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Abstract—In the last decade, several experiments were con-
ducted to investigate human motor control behaviour for the task
of arm reaching, using the visual feedback of their hand position
provided only at the end of each trial (of reaching motion).
Current computational frameworks so far have yet to model
the observations made in these experiments that humans learn to
complete a task by feedforward action using such feedback, which
is considered as a displacement error at the end of each trial of
the reaching motion. This paper demonstrates how this learning
can be formulated as an optimization problem, and hence can
be modelled by an optimal control based design framework.
By designing a cost function which weighs the tracking of the
target and the smoothness of human motion, the constructed
framework, implemented in the form of point-to-point learning
control (LC), inherently embeds the feedforward control and
enables learning over the repeated trials using the errors only at
the endpoint of a reaching motion trajectory, as opposed to that of
the entire reference trajectory; and is therefore able to reproduce
the human learning behaviour observed in the experiments.

Index Terms—Iterative Learning Control, Computational Neu-
roscience, Human Motor Learning

I. INTRODUCTION

Humans are observed to successfully accomplish their given
tasks when provided with the continuous responses from
muscle dynamics as well as the visual and proprioceptive
feedback of their movement [5], [13], [20], [29], [33]. To study
the motor control involved in accomplishing these tasks, ex-
periments have been developed in which humans are required
to perform a task successfully in a controlled environment.
Accompanying these experiments are computational models
which aim at explaining the experimental results and the
underlying mechanism [8], [28], [34].

A particular class of experiments of recent interest are
those which attempt to assess human motor learning dynamics
in reaching tasks where continuous visual feedback is not
provided during the motion, forcing the human subjects to
learn using only visual feedback provided at the end of each
iterative movement trial [6], [9], [14], [23]. The results of
these experiments show that learning in a target reaching task
is not affected whether the subjects are presented with visual
feedback across the entire trajectory; as long as the endpoint
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position is provided after the movement is completed [9]. It is
hypothesized from these results that when continuous feedback
is not provided, humans use a feedforward strategy to perform
movements [11], [12], [30], while employing an error-based
learning method to improve task performance across trials
[32].

Despite the many experiments having been carried out
in this manner, a computational modelling for the process
of motor learning using endpoint information has yet to be
constructed. Current models of human motor control with
endpoint vision use a forward prediction model to simulate
the movements [1], [15], [19], [31]. However, such models
do not explain how humans are able to learn a feedforward
control action using the visual error information at the end of
the trials. On the other hand, models which focus on learning
are used to capture the human learning behaviour observed
in experiments in which continuous feedback during the arm
reaching movement is available [4], [8], [34]. Therefore, these
models require a reference trajectory that is defined at every
sampling instance throughout the duration of the motion, and
are not representative of experiments in which continuous
feedback is not available.

Considering the above, this paper aims to present a novel
framework to model human learning when visual feedback is
provided only at the end of each reaching movement; based
on the notion that humans learn a feedforward control action
using the visual error information provided only at the end of
their movement.

In this paper, it is demonstrated that the human learning
behaviour using endpoint visual feedback can be formulated
as an optimization problem. By solving this problem using
suitable optimization-based techniques, a framework can be
subsequently constructed to model the human motor learn-
ing. Although there exist many optimization-based control
frameworks in the literature, such as [21], [27] to name
a few, none has been applied to simulate human learning
using endpoint visual feedback. Considering this, the current
paper demonstrates how a framework for modelling human
learning using endpoint vision can be constructed by solving
the aforementioned optimization problem using point-to-point
learning control (LC) [10], which has previously been used to
capture the behaviour of a human individual learning the task
of reaching using continuous visual feedback during the whole
movement [35]. By doing so, the framework is shown to be
able to capture the observation that human learning occurs in
the cases where feedback is provided throughout the entire
movement as well as where feedback is provided only at the
endpoint [9].
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This paper is organized as follows. First, a simpler variation
of the experiments reported in [33] is presented in Section
II. The conducted experiment shows that humans can learn
the task of reaching when provided with only endpoint visual
feedback. The experimental results are subsequently used to
formulate the modelling of human learning using the endpoint
feedback as a particular optimization problem in Section III.
Section IV then proceeds to solve the proposed optimization
problem, where point-to-point LC is used as a specific method
of solving the problem. Two sets of simulation results (with
and without the consideration of the smoothness of human
reaching motion) are compared to the experiment results in
Section V. It is worthwhile to note that the purpose of the
simulations is not to produce a perfect model of human motion
but rather to illustrate the ability of the framework in modelling
human learning using endpoint information. The features of
the framework, its limitations and future applications are
discussed in Section VI.

II. HUMAN LEARNING USING ENDPOINT FEEDBACK

The capability of humans to complete a task using feed-
forward action learnt only through feedback provided at the
endpoint of each iteration of a repetitive exercise has been
previously demonstrated by experiments reported in [26]. The
experiment described in this section is a simpler variation of
that reported in [26], exhibiting the human ability to learn to
reach a given target point when presented with only the final
cursor position at the end of each trial, and thereby motivates
the need for a computational framework of human motor
learning for such cases. The experimental results presented
serve as a means of validating the performance of the model in
capturing human learning under the experimental conditions.

The equipment used in the setup is first described, followed
by the task to be performed by the subjects and then the
experimental conditions. Interested readers should refer to [33]
for further details.

A. Equipment Setup

Experiment Equipment: The experiment setup is com-
prised of a the robot (3DOM) [18] (Figure 1).

During the experiment, the human subject holds onto the
robot arm while seated on a high chair, facing a mirror
positioned at shoulder level which serves to prevent direct
visual feedback of the hand and of the robotic arm. The
movement of the subject’s hand position during the experiment
is tracked by the robot end-effector at a sampling rate of
200Hz. The position is obtained by the software to determine
the location of a 1cm diameter cursor on an LCD monitor
resting on a platform above the subject, which is reflected in
the mirror.

General Experiment Description: Six neurologically
unimpaired, naïve subjects, (four right-handed males, one
female, one left-handed male), were invited to participate in
the experiment. During the experiment, the subjects performed
point-to-point planar reaching movements to a target point.
More specifically, the subjects were required to reach from
a starting point towards a target ring 20cm away from the

robotmonitor

robot

mirror

Fig. 1. Experimental setup showing the subject holding onto the robot. The
subject’s hand is constrained to the robot by a cuff. For the task of point-
to-point reaching, the target and the cursor representing the subject’s hand is
displayed on a monitor. The subject observes a reflection of the screen on a
mirror which also serves to separate the subject’s hand from his/her vision.

body parallel to the sagittal plane along the y axis within
550±100ms (Figure 1). The timer started when the subjects’
velocity exceeded 0.4m/s and stopped when the velocity was
less than 0.4m/s for more than 10ms.

At the end of each movement, the subjects were shown the
final cursor location and the target ring would change to one of
red, green or blue, depending on whether the subjects were too
slow, too fast or on time in arriving at the target, respectively.
After about 1.2 seconds, the cursor disappeared and the robot
assisted the subject back to the starting point for the next trial.
A scoring system which rewards the subject for arriving at the
target on time was applied to the experiment.

Experiment Protocol: Before the experiment, the subjects
were provided with practice trials of 100 movements reaching
for the target while being provided with continuous feedback
of the cursor position throughout each trial. The time to finish
the reaching tasks was not restricted.

During the experiment, the subjects were required to per-
form the same reaching movement with continuous visual
feedback removed. The subjects were aware of the visual
feedback being removed from their vision. They were also
aware that the requirement for the task was now to perform
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Fig. 2. A typical subject’s position, velocity and acceleration profiles during
the experiment. Left column shows the first 10 trials during which the
visual cursor is turned off. The right column shows the last 10 trials the
subject makes before the experiment is finished. This ensures that the subject
reached a steady-state in achieving the point-to-point reaching task given
visual information at the end of each trial as required by the experiment.

the movement in 550 ± 100ms. The subjects were required
to perform 30 successful trials in order to complete the
experiment. The subjects’ learning behaviour in these trials
were recorded and are presented in the following section.

B. Experiment Results

All six subjects were able to perform the task successfully.
A typical subject’s trajectory profile (Subject 1) along the y
direction for this reaching task is shown in Figure 2. From
the results, it is observed that for the first 10 trials, the
subjects performed smooth movements with low velocity and
were not able to arrive at the target with zero velocity in
550ms (Figure 2, left column). For the last 10 trials of the
experiment, the subjects showed that they were able to arrive
at the target with zero velocity in 550ms (Figure 2, right
column). Furthermore, the movements exhibited a bell-shaped
profile, in agreement with those found in the literature [13].
Therefore, it was observed that the subjects learned to improve
their performance during the experiment using the endpoint
feedback provided to them at the end of each trial [26].

By plotting the subject’s position at 550ms, it is seen in
Figure 3A that the subject learns to improve his/her perfor-
mance such that his/her position at 550ms converges to the
target position.

In addition, the obtained experimental data was fitted to an
exponential function

y(k) = a exp(bk), (1)
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Fig. 3. A. A typical subject’s position across trials at 550ms, along with
the fitted parameters describing his/her learning rate. B. The learning rates
identified (mean and standard deviation) for all subjects who conducted the
experiment .

where y(k) is the subject’s position at 550ms at the kth trial.
Positive parameters a and b are subsequently identified from
data. In this case, the parameter b represents the rate at which
the subject learns the task (i.e. the convergence rate), as shown
in Figure 3A. It is further observed that for all six subjects,
the convergence rates are identified to be around 0:04 (Figure
3B), implying that all subjects are able to learn to improve
their performance in a similar manner using the observed error
between their hand position and the target. Note that due to
the experimental protocol, different subject requires different
number of trials in order to complete the experiment, resulting
in the different learning rates observed in Figure 3 B.

In conclusion, it is observed from the experimental results
that the human

1) learns to perform the reaching task using only knowledge
of the endpoint, and

2) exhibits the bell-shaped velocity and acceleration profiles
as seen in Figure 2 right column.

Additionally, it has been proposed that humans move in a
predominantly feedforward manner with minimal contribution
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from continuous feedback within each trial [11], [12], [30].
To achieve the above observations, the problem of mod-

elling of human motor learning using endpoint feedback is
formulated as an optimization problem in the next section.

III. GENERAL PROBLEM FORMULATION

In Section II, learning is observed in experiments of requir-
ing human subjects performing target reaching while being
provided with only endpoint visual feedback. It is shown in
this section that this ability of human learning can be described
by a learning controller that solves an optimization problem
which balances the performance of tracking at the endpoint
and that of end-effector smoothness [13].

To do this, a planar two-link manipulator model can be used
to represent the human upper limb manipulating the position of
the hand end-effector, by using parameters commonly adopted
in the human upper limb model (see, for example, [4], [34]).
This type of model is widely used in human motor learning and
is consistent with the experimental setup in which the joints
of the upper arm are constrained to two degrees of freedom
by the robot. At each iteration, for any t ∈ [0, T ], the model
of the upper limb is given as

ẋ1(t) = x2(t),

ẋ2(t) = f(x1(t),x2(t)) + g(x1(t))τ (2)
z(t) = h(x1(t),x2(t))

where the states x1 and x2 are in Rn and represent the joint
positions and joint velocities respectively. The input τ ∈ Rm
represents the driving torque; the output z ∈ Rp is a vector
containing the position and velocity states. The nonlinear
mapping g : Rn → Rn×m represents the inverse of the
inertial matrix. The nonlinear mapping f : Rn × Rn → Rn
is composed of the nonlinear components of the system
dynamics weighted by the inverse of the inertia matrix−g(x1)
and is defined as

f(x1,x2) =: −g(x1)(c(x1,x2) + p(x1)),

where c(x1,x2) and p(x1) represent the Coriolis and centrifu-
gal effects and gravity effects respectively [34]. The nonlinear
mapping h : Rn × Rn → Rp is

h(x1,x2) :=
[
F(x1) J (x1)x2

]
,

where F : Rn → Rp represents the forward kinematics from
the joint states to the end-effector and J : Rn → Rp represents
the relation between the joint and end-effector velocities.
All nonlinear mappings are smooth on their domains. When
performing a planar motion task, the output dimension in (2)
satisfies p = 2n = 2m.

To model human learning, a controller needs to be designed
to enable the system (2) to track a desired trajectory yd(t)
across iterations a set of finite number of points defined at
various time instances tjs , s = 1, . . . ,M satisfying 0 ≤ tj1 ≤
· · · ≤ tjM ≤ T . This can be represented as a desired trajectory
−→y r, where

−→y r =
[
yd(tj1)T , yd(tj2)T , · · · , yd(tjM )T

]T ∈ Rp·M . (3)

Although the task considered in the experiments is only
to track the endpoint, we can still formulate the human
learning as a more general optimization problem where the
cost function balances the tracking performance (Jt(−→y r, τ k))
and other performance indices (J̃(τ k)) (which may be used
to represent motion smoothness) through the introduction of
constant weights α1 ≥ 0 and α2 ≥ 0 [25]:

J(−→u k) = α1Jt(
−→y r, τ k) + α2J̃(τ k) subject to (2). (4)

Remark 1. The simulation presented in this paper is a specific
application example of the problem described in this section.
In this case, the simulation only attempts to model human
learning of an endpoint target. Other experiments, such as
those where humans are required to reach a target through
via-points [15] can also be simulated using the same problem
formulation. ◦
Remark 2. The cost function (4) is versatile enough such that
any important features of human motion can be included in
the cost function. This paper uses motion smoothness as an
illustrative example of how human motion features can be
incorporated in the framework. ◦

Through the process of solving the optimization problem
(4), it is possible to construct a framework which

1) learns an optimal feedforward signal to enable it to
achieve the desired task, while no online continuous
feedback is required to stabilize the plant across each
trial,

2) adjusts the feedforward signal at each trial to enable
learning in a similar manner to the human learning using
endpoint information from the last iteration,

3) possesses the capability of incorporating other possible
cost that could represent factors which govern human
motion, such as motion smoothness, allowing the frame-
work to develop along with existing research in modelling
human motor learning, and

4) provides flexibility that can be tailored for a particular
individual by introducing new parameters α1 and α2.

To demonstrate the construction of the framework, point-to-
point LC [10] is revisited in the next section.

IV. MODELLING OF MOTOR LEARNING

In the previous section, it has been shown that modelling
human learning using endpoint visual feedback can be for-
mulated as an optimization problem. This section attempts
to solve the optimization problem using point-to-point LC
in order to construct a framework which is representative
of human learning as proposed in the literature. That is, the
framework aims to model the proposition that humans learn
a feedforward control action using feedback at the end of the
movement of previous trial [30].

In order to construct the framework, the nonlinear dynamics
given in (2) is first input-output feedback linearized [16], [17]
by defining the control law τ as

τ = (Lgh(x))−1 (−Lfh(x) + u)

= (ψ(x1))−1
(
−S(x1)f(x1,x2)− ∂S

∂x1
(x1)x2

2 + u

)
(5)
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where S(·) is the Jacobian of the arm forward kinematics,
ψ(·) := (S(·)g(·))−1 and Lfh and Lgh are the Lie derivatives
defined as Lfh(x) := ∂f

∂xh(x) and Lgh(x) := ∂g
∂xh(x)

respectively [16]. This results in the following continuous-time
LTI system:

ẋ1 = x2

ẋ2 = u

y =
[
x1 x2

]T
. (6)

The system (6) is then discretized using an appropriate sam-
pling rate h to obtain an equivalent discrete-time LTI system
to (6):

yk(j + 1) = Ayk(j) +Buk(j), j = 0, 1, . . . N − 1 (7)

where N is the total number of sampled points,

A :=

[
In×n hIn×n
0n×n In×n

]
, B :=

[
h2

2 In×n
hIn×n

]
. (8)

For the experiment, the sampling rate h is chosen to be 10ms
(100 times a second), considering that the muscle spindle firing
rate is approximately 50 − 150 Hz [24] [7]. As the duration
of each trial for the experiment is 550ms, 55 sampling points
in each trial is obtained with N = 54.

Remark 3. In general, it is required that the sampling rate h
should be sufficiently fast such that N = T/h and the total
number of points to be tracked M satisfy the condition p ·N−
max {d, (p−m) ·N} ≥ p ·M , see [10] for further details. ◦
Considering the discrete-time LTI system (7), the sequence of
inputs

−→u k =
[
uk(0)T uk(1)T ... uk(N − 1)T

]T
(9)

and the sequence of outputs

−→y k =
[
yk(0)T yk(1)T ... yk(N − 1)T

]T
, (10)

are related by the input-output mapping G ∈ Rp·N×m·N , i.e.,
−→y k = G−→u k with the resetting condition yk(0) = 0. This
input-output mapping is also known as the transition matrix,
which is defined as

G =


B 0 · · · · · · 0
AB B 0 · · · 0
A2B AB B · · · 0

...
...

...
. . .

...
AN−1B AN−2B · · · · · · B

 . (11)

The matrix (11) is used to design the cost function (4) which
is subsequently solved using point-to-point LC in order to
construct a framework to model human learning using the
endpoint feedback from the last trial, as demonstrated in
the experiments given in Section III. The two components
of the cost function (i.e. the tracking and the smoothness
components) are designed in the next two sections.

A. Designing of the tracking component

The cost function for the tracking component Jt is designed
in this section to ensure that the position of the hand reaches
the final target at 550 ms, thereby completing the task. For this
experiment, humans are required to reach a target point 20cm
away from the body on the same plane with zero velocity. As
such, the desired output at the target point is defined to be
yr =

[
0 0.2 0 0

]T
.

Furthermore, during the experiment, humans learn to ensure
that their hand position tracks the target over repeated trials
using information at the end of the last trial. Therefore, only
the last point of the output sequence at each trial (10) is to be
considered. To incorporate this trait, as well as the dynamics
of the plant described by the input-output mapping (11), the
tracking component of the cost function is constructed as

min−→u
Jt(
−→u ) =

∥∥(yr − ΦG−→u k)
∥∥2 (12)

where Φ ∈ Rp·M×p·N is a projection matrix defined as

Φi,j =

{
Ip if j = ji, i = 1, 2, . . .M
0p otherwise , (13)

which extracts a sequence of M points from the output
sequences. For the experiment, M = 1 to reflect the fact that
only one target is required to be reached, and the projection
matrix of (13) is defined as

Φ =
[

04×4 04×4 04×4 . . . I4×4
]T
.

To exhibit humans learning to track the target, a simple
gradient descent method is applied to the cost function (12).
This results in the feedforward sequence −→u being adjusted at
each trial k according to the following law:

−→u k+1 = −→u k + Γ (ΦG)
T (−→y r − ΦG−→u k

)
(14)

where the update gain matrix Γ is chosen to be

Γ =

[
400I2×2 02×2

02×2 120I2×2

]
to ensure convergence [10, Theorem 4].
Remark 4. The control law (14) generates an input sequence
at (k + 1)th trial using the information of the kth trial. No
feedback adjustment (i.e. the information during trial k + 1)
is needed. Therefore, the constructed framework is comprised
of a feedforward controller which learns using feedback at the
end of the previous trial, and can therefore naturally be used
to model human motor learning in the experiments of interest
[30]. ◦

B. Designing of the motion smoothness component

Other than using a cost function Jt to incorporate tracking
performance, this section details the design of the second com-
ponent of the cost function (4). This component is designed
using the well-known end-effector jerk minimization [13] in
order to incorporate motion smoothness into the framework.
The second component of the cost function (4) is consequently
designed as

J̃(−→u k) =
∥∥WΞ−→u k

∥∥2 ≡ ∥∥Θ−→u k

∥∥2 ,
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where Ξ ∈ Rp·N×m·N is a matrix describing the first order
approximation of the derivative of the acceleration of the
body’s end-effector in task space using the sampling rate h
defined in Section IV-A:

Ξ =
1

h


1 −1 · · · · · · 0
0 1 −1 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 · · · · · · 1

 . (15)

The quadratically weighted factor W ∈ Rp·N×m·N is defined
as

W =


c21 Im×p 0 · · · 0

0 (c1 − c2)2Im×p · · · 0
...

...
. . .

...
0 0 · · · (c1 −Nc2)2Im×p

 ,
(16)

where c1 and c2 are two positive constants representing the
bias of the non-symmetric trajectories observed from exper-
iments. The matrix W is symmetric and positive definite.
This weight W introduces bias into the end-effector jerk in
order to account for the sharper deceleration observed in the
experiment results of Figure 2. In the simulation, c1 and c2
are selected heuristically as 1 and 0.1 respectively.
By incorporating a secondary objective function of weighted
jerk along with the tracking objective function described in
(12), the cost function (4) is defined as

J =
∥∥α1(−→y r − Φ−→y k)

∥∥2 +
∥∥α2Θ−→u k

∥∥2 , (17)

where positive constants α1 and α2 are weights on tracking
and jerk components respectively. Using gradient decent, the
following update law is derived for the framework:

−→u k+1 = −→u k + Υα2
1(ΦG)T (−→y r − Φ−→y k)

−Υα2
2ΘTΘ−→u k, (18)

where Υ is an updating gain matrix with appropriate dimen-
sion. By applying [10, Theorem 4], the convergence of the
updating law (18) can be guaranteed if Υ satisfies

σ(Υ) > 0

σ(Υ) < min

{
2

σ((α2R)(α2R)T )
,

2

σ(α1ΦG(α1ΦG)T )

}
,

where σ(A) and σ(A) are respectively the smallest and the
largest singular values of a possibly non-square matrix A [35],

and the matrix R is selected as R =

[
ΦG
−ΘTΘ

]
.

In the simulation model, the update matrix is chosen as

Υ =

[
400I2×2 02×2

02×2 120I2×2

]
to ensure the convergence of the tracking error.

The weights α1 and α2 produce a balance between the
tracking performance and the smoothness of the acceleration
signals. Different choices of these two parameters leads to
different performance. Considering that different people have
different weights, the obtained experimental data is used to

find an appropriate ratio between α1 and α2. The ratio can be
derived by considering (18) at steady state:

Υ(α2
1 (ΦG)

T
(−→y r − Φ−→y ss)− α2

2(ΘTΘ−→u ss) = 0, (19)

where −→u ss and −→y ss are the steady state input and output
which are observed after the human has learned the movement
in the experiment respectively (i.e. −→u k+1 = −→u k = −→u ss and
−→y k = −→y k+1 = −→y ss) for a sufficiently large k. Considering
that the weights are scalars, the ratio ρ :=

α2
2

α2
1

can subsequently
be determined as

ρ =

∥∥∥(ΦG)
T

(yr − Φyss)
∥∥∥

‖ΘTΘuss‖
. (20)

Using the experiment data, the ratio ρ is computed as
ρ = 5.1740× 10−4. This indicates that the primary objective
(tracking) is dominant which is consistent with the experimen-
tal setting. In order to show the influence of minimal jerk, α1

is selected as 100 in the simulation. This leads to the value
of α2 = 0.517, which is similar to the values determined
heuristically.

Remark 5. Similar to [10, Section III-B], it is possible to
reformulate the reaching task as an optimization problem with
a hard constraint on tracking performance. That is, subjects
must be able to reach the endpoint at exactly 550ms at every
trial. However, such problem formulation is not consistent with
what was observed during experiments as the tracking error
of the endpoint at 550ms is adjusted at every trial by the
human (see Figure 2). In addition, such formulation makes it
difficult to determine the importance of objectives such as jerk
minimisation compared to the objective of endpoint tracking
when the subject performs the reaching task. In contrast,
the problem formulation presented makes it possible to find,
through comparison with experiment data, that humans weigh
the tracking objective more highly than the minimization of
jerk. That is, although smoothness is an important character-
istic of human motion, humans are willing to trade it off in
order to track a given task. ◦
Remark 6. The current framework assumes that humans pos-
sess perfect knowledge of the body. However, the framework
is also applicable for the case where there are imperfections in
humans’ knowledge of the body and of the environment. This
is because the point-to-point LC implemented in this frame-
work is robust to modelling uncertainties and disturbances
[10]. The framework can therefore ensure learning of the target
reaching task even if the model dynamics (2) are different from
the actual dynamics. ◦
Remark 7. In previous work, inverse optimal control has been
applied to steady-state experiment data in order to identify
the weights of a cost function describing the human’s motion
[2], [3], [22]. This approach is designed to model human
motions without repetitions and does not have the focus on the
“learning” aspect of human motor control. On the other hand,
the proposed point-to-point learning control is able to adjust
its input through repetitions by solving a standard optimization
problem with a high-dimensional input using the gradient
descent method. This kind of problem formulation enables

doetomo
Sticky Note
are the weights on the tracking and the jerk components, respectively.
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the controller to model human’s ability to learn through
repetitions, and is therefore more applicable to model human
learning using endpoint feedback. The model is therefore
shown to be able to not only identify the necessary parameters
to model human motions at the end of learning (steady state
over iterations), but also the motions during learning (transient
across iterations) through the appropriate choice of the update
gain of the gradient descent (i.e. Υ in (18)).

V. SIMULATION RESULTS

In the previous section, it is demonstrated that by solving
an optimization problem of the form (4), a framework using
point-to-point LC can be constructed to simulate the task of
learning to reach a target using only endpoint visual feedback.
In this section, the experiment results are compared to the
simulation results obtained using the control laws described
in (14) and (18) of Sections IV-A and IV-B, representing
the cases of with and without the consideration of human
movement smoothness respectively.

First of all, a general qualitative appreciation of the sim-
ulation and experiment results is made by comparing the
simulation and experimental trajectories over the first 10 trials
(before learning) and over the last 10 trials (after learning). A
quantitative comparison is then made by observing how well
the model predicts the progression in tracking accuracy as
the number of trials increases, and by evaluating how well
the simulated trajectories match the subject’s experimental
trajectories during each trial.

A. Qualitative comparison

The subject’s movements during the first 10 trials and during
the last 10 trials of the experiment are presented in Figure 4,
Column 3. Simulations obtained from the models described
in Section III are shown in Figure 4 Columns 1 and 2. It is
observed that the position profiles produced by the simulation
are able to track the final target independent of the inclusion of
motion smoothness. During early trials, the trajectories show
that the path which the hand follows experiences difficulties
in reaching the target but over the last 10 trials, the hand is
observed to be able to reach the target (Figure 4, Columns 1
and 2). This is unsurprising considering that the main objective
for both models is to minimize the difference between the hand
position at the end of each movement and the target. This
learning is also observed in the experiment results (Figure 4,
Column 3). For both simulations, the velocity profile is bell-
shaped, which is similar to that of the experiment (Figure 4,
Column 3). Therefore, if only position and velocity profiles
are considered, both models are able to simulate how humans
track the final target point using only endpoint information.

On the other hand, significant differences between the
acceleration profiles are observed for the two simulations.
When considering only tracking and not motion smoothness,
it is observed that the acceleration profile obtained through the
simulation failed to match that of the experimental data (Figure
4, Column 1). The simulation predicts instantaneous increase
of the acceleration of over 3m/s2, which is not supported by
the observation of gradual acceleration increase shown by the
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Fig. 4. Comparison between simulation results from each of the two stages
outlined in Section IV-A (column 1) and Section IV-B (column 2) and
experiment results (column 3) for the vertical y direction. This shows that
by incorporating motion smoothness, the simulation is able to better capture
the experimental observations (column 2 vs column 3) when compared to the
case where only tracking is considered (column 1)

human subject. When motion smoothness is considered, the
ratio ρ is estimated from experiments as ρ = 5.1740× 10−3.
This ratio indicates that jerk is not the dominant objective of
the cost function compared to tracking the target. Nevertheless,
by choosing the cost function weights as α1 = 100 and
α2 = 0.517 to reflect the ratio ρ , the simulation model is able
to generate trajectories which converges to the target with a
bell-shaped velocity profile and a smooth acceleration profile
(Figure 4, Column 2). More specifically, the acceleration
profile exhibits a gradual increase to the maximum value
before de-accelerating gradually to the maximum deceleration,
which more closely matches experimental results.

Remark 8. The simulation results converges to a smooth
distinct trajectory while variations continue to be observed
in the experimental results in Figure 4, even over the last 10
trials. The fluctuations are due to human variability, which can
be simulated by introducing white noise to the plant model
[34]. This is not done in this paper because the purpose of
this work is to demonstrate the framework’s ability to model
human learning using endpoint information alone, and the
ability to incorporate some human motion characteristics such
as smoothness into the cost function. ◦
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Fig. 5. Comparison of accuracy (left column) during the experiment (·) and
that simulated by the model (+) (far left column, Figure 5A and B: Accuracy
in Reaching the Target). It is observed that independent of the inclusion of
motion smoothness, the simulation is able to display learning convergence
towards the target at the endpoint in a similar manner to that of the subject.
However, it is evident that the incorporation of motion smoothness (Figure 5
D) provides a correlation coefficient close to 1 for the majority of the trials
compared to the case when the simulation only considers tracking (Figure 5
C)

B. Quantitative comparison

In this section, simulation results constructed from the
models described in Section III are compared quantitatively to
the experiment results described in Figure 5. For the reaching
task, the subject’s hand position at the end of each trial during
the experiment is compared to that of the simulation (Figure
5, A and B). From these graphs, it is observed that the
simulation results show convergence of the hand’s endpoint
over trials independent of the inclusion of motion smoothness.
This agrees with the fact that tracking the target is the main
objective considered by the two models and demonstrates
the framework’s effectiveness in exhibiting learning using
feedback at the end of each trial.

To observe how well the simulated trajectories compare
to those of the experiments at each trial, the associated
correlation coefficient for each trial is plotted in Figure 5 (C
and D). Comparing the two figures, it is evident that without
consideration of motion smoothness, the simulation exhibits
lower performance in matching experimental results. This is
especially significant when observing the correlations between
the velocity and the acceleration profiles.

To observe how well the simulation applies to the entire
population, the framework is applied to all six subjects’ data
and the correlations between the simulated and experiment
results are obtained. The box plots of the correlations (Figure
6) shows that the model is able to simulate the experiment
results well for all six subjects, with the correlation coefficients
for position and acceleration being above 0.7, while the
velocity is above 0.5. The coefficients are similar to those
of other models reported in the literature [4], [34].
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VI. DISCUSSION AND CONCLUSION

Humans can learn point-to-point reaching using only visual
feedback of their cursor position at the end of each trial [9],
[26]. Learning in such task is unaffected whether continuous
visual feedback is provided or only movement endpoint visual
feedback is available. Computational models to date, however,
always consider human learning along the entire trajectory of
the motion, assuming the availability of feedback across the
entire movement [4], [8], [21], [34]. Consequently they are
unable to model the experiment observations and concepts for
the case where only the endpoint is provided at the end of the
movement.

This current paper shows how human learning using end-
point visual feedback can be posed as an optimization problem
where the cost function weighs the tracking of the endpoint
and motion smoothness. It is further demonstrated through
solving the proposed optimization problem using point-to-
point LC that it is possible to construct a framework which
is representative of the methods in which humans learn the
experimental task. More specifically, the framework is able to

1) Model the human ability to learn a feedforward controller
along the iteration domain.

2) Model human ability to learn using only information
provided at the end of each trial, as opposed to continuous
feedback information.

3) Incorporate additional factors which govern human mo-
tion such as smoothness of motion.

It is observed in Section V that the constructed framework
is able to exhibit good consistency between the simulations
and the experiments. Noting that the computational model has
been previously shown to successfully model human motor
learning using feedback from the entire trajectory [35], it is
therefore demonstrated to capture the observation that for a
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target reaching task, human learning ability is unaffected in
learning using the feedback throughout the entire trajectory or
using only the feedback at the end of the movement [9].

Furthermore, the ability to include additional factors and
the simplicity of the current framework provides it with a
significant versatility in simulating human motion. The same
framework can also be applied to human learning in other
experiments, such as movement through via-points [15], or
movement in three-dimensions through the addition of an extra
dimension to the dynamic system. The main challenges which
the authors can foresee when modelling novel experiments
is the design of the experiment itself. For example, to ex-
tend the framework to model three dimensional movement,
suitable motion capture mechanisms are required, while the
experimenter needs to design suitable constraints to restrict
the subject’s motion such that it can be accurately represented
by a simplified model of the arm.

Further experiments can be modelled by applying small
changes to the structure of the optimization problem of Section
III. For example, by simply changing the value of the target
location (−→y r) of (3), the framework can be used to model the
experiment of humans learning multiple targets in multiple
directions as outlined in the literature [26]. In the same way,
it can be used to simulate human reaching motion to different
parts of the workspace. Any differences in the human motion
dynamics as a result of the different workspace can be easily
reflected by the different values of identified weights α1 and
α2. Future work will attempt to formulate other experiments in
the literature as optimization problems, such as those involving
different environmental forces and visions, and solving them
to simulate human learning as observed in the literature. By
doing this, it is hoped that the constructed frameworks can
aid motor control scientists to further develop the theory of
human motor learning.
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