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Abstract—This paper establishes the feasibility of multiple
model switched adaptive control within functional electrical
stimulation (FES) based upper limb stroke rehabilitation. An
estimation-based multiple model switched adaptive control
(EMMSAC) framework for nonlinear, time-invariant systems
is described, and extensions are presented that enable its
application to time-varying Hammerstein structures that can
accurately represent the stimulated arm. A principled design
procedure is then developed to construct both a suitable set of
candidate models from experimental data, and a corresponding
set of tracking controllers. The procedure is evaluated by
applying it to a sample of able-bodied, young participants
in order to produce a general EMMSAC controller. This is
then applied to a different sample of the population during
an isometric, non-voluntary, trajectory tracking task. Results
confirm that multiple model switched adaptive control can
provide consistent levels of performance for the population with
minimal prior plant model identification. The results show it
is possible to eliminate model identification while employing
closed-loop controllers that maintain high performance in the
presence of rapidly changing system dynamics. This paper hence
addresses critical limitations to effective stroke rehabilitation in
a clinical setting.

I. INTRODUCTION

Of the fifteen million cases of stroke per annum, approxi-
mately a third result in death and another third in permanent
disability [1]. In the UK approximately 70% of first time
stroke sufferers experience upper limb impairment [2], and
less than 40% regain motor function to a level that enables
them to perform functional tasks independently [2]. This can
limit the ability of sufferers to engage in activities that are
frequently performed in day-to-day life (e.g. eating, bathing
and dressing). Successful rehabilitation requires repeated
practice of tasks to promote motor re-learning. However,
conventional rehabilitation, involving manual assistance by
a physiotherapist, does not translate to an improved ability to
perform functional tasks [3].

Functional electrical stimulation (FES) is a technology
that has the potential to provide more efficient, cost-effective
therapy, enabling more frequent practice of movements and
increased motivation compared to conventional therapy. FES
involves the application of an electrical stimulus to impaired
muscles to elicit a contraction that produces a desired move-
ment. Its use is supported by clinical studies [4], [S] and
neurophysiology and motor learning results [3], [6]. There
is evidence that the outcome of FES-based rehabilitation is
improved if a patient is attempting to perform a functional
task concurrently with the application of electrical stimulation
[6]. When FES is applied, electrical impulses travel towards
the target muscle, but also towards the spinal cord. Rushton

[6] suggests that the coincidental arrival of these impulses,
and the voluntary impulses sent from the brain strengthens
the synaptic connections within the spinal cord. This synaptic
strengthening, termed Hebbian learning, requires maximal
voluntary effort from the patient and the coordinated appli-
cation of electrical stimulation as an aid [6]. Most clinical
FES systems are either open-loop or triggered and thus have
limited ability to activate impaired muscles in a way that
exploits the effect of Hebbian learning. Application of closed-
loop control can increase the (tracking) accuracy with which
the applied stimulation matches the intended movement via
feedback of measured signals such as force, position, velocity
and muscle activation (electromyography (EMQG)).

For precise closed-loop feedback control of FES, a mathe-
matical description of electrically stimulated muscle is vital.
However, identification of such a model is widely seen as
impractical in a clinical setting due to time constraints and
rapidly changing dynamics (due to fatigue, spasticity and
changing physiological and environmental factors such as
skin impedance, temperature and electrode placement). One
of the few model-based upper limb FES controllers to be
employed in a clinical intervention with stroke patients is
iterative learning control (ILC) [7]. When used to assist
functional reaching tasks, the tracking accuracy provided by
ILC gave rise to statistically significant reduction in patient
impairment [8], [9] but a lengthy identification procedure
was required at the beginning of each treatment session,
and unpredictable, rapid variation in the system degraded
performance as each treatment session progressed.

The inability to completely adapt to rapidly changing
experimental conditions is commonly highlighted as the fun-
damental stumbling block limiting the transfer of advanced
FES control techniques to clinical practice [10]. Poor control
accuracy means FES cannot support the intended movement,
and the effectiveness of the intervention suffers as a re-
sult. Adaptive control approaches are potential candidates
to overcome this problem. However, they have seen limited
application to FES-based rehabilitation. Most notably, model
reference adaptive control (MRAC) has been applied and
tested with able-bodied participants [11]. However, it has not
transferred to the clinical domain.

The application of adaptive control approaches to real-
world applications relies heavily on robustness, which, in
the mid-1980s, was shown to be largely absent [12]. There
followed a period of intense interest in establishing a com-
plete robust adaptive control theory [13]. A recent approach
has used the framework [14] to enable a robustness analysis



of adaptive control schemes [15]. This framework was a
generalisation of the linear gap metric theory that underpins
robust control, and enabled the removal in [15] of the
restrictions attached to previously used uncertainty models in
robust adaptive control [13]. Recent research [16], [17], [18]
has employed this framework to provide robustness results
for multiple model type adaptive control (MMAC) algo-
rithms [19], [20], [21]. In estimation-based multiple model
switched adaptive control (EMMSAC), optimal disturbance
estimation is used to assess the performance of a number
of pre-selected candidate plant models. A controller design
procedure assigns to each plant candidate a corresponding
controller such that the controller belonging to the plant with
best performance can be switched into closed-loop with the
plant. The EMMSAC framework, along with stability and
robustness proofs for linear time-invariant (LTI) plants are
developed in [16], [17], [18]. It is distinguished from other
approaches to MMAC by its integral treatment of robustness
and by its axiomatic input-output analysis, which gives signif-
icant generality and wide classes of algorithms. Further, the
approach gives a principled theoretical route to design. This
paper represents the first major implementation of EMMSAC,
but note the application to atomic force microscopy in [22].
Also note that the Kalman Filter based optimisation used
in this variant of EMMSAC is strongly related to the early
(stochastic) versions of MMAC (see e.g. [19]).

This paper comprises the first application of multiple
model switched adaptive control to regulate FES-induced
isometric muscle contractions, and establishes its potential
for stroke rehabilitation. The system comprising the muscle,
electrodes, and stimulator is both nonlinear and time-varying;
modifications to the EMMSAC framework are hence intro-
duced that allow its implementation, and in-so-doing motivate
the extension of the theory presented in [16], [17], [18] to
the time-varying setting. A general multiple model adaptive
controller is constructed by analysing experimental data taken
from a sample of the population (sample A). Based on princi-
ples suggested in [16], [17], [18], this data is used to construct
a plant model set that is specific to the experimental plant
considered. It is then shown that the resulting controller can
be applied to multiple participants (sample B) with limited
prior identification and no visible degradation in performance.
Statistical analysis of the acquired data shows that the ability
to switch between controllers results in improved tracking
performance when compared with more conventional, non-
switched methods. This paper hence comprises a critical
step to realising model-based FES control approaches that
do not require explicit identification procedures and adapt to
uncertain and time-varying conditions.

II. PROBLEM DESCRIPTION

The most widely assumed structure used to represent
electrically stimulated muscle is the Hill model [23], which
describes the output force as the product of three independent
factors associated with the length and velocity of the muscle,
and the nonlinear muscle activation dynamics under isometric

conditions. The activation dynamics are most commonly rep-
resented by a static nonlinearity in series with linear dynamics
(a Hammerstein structure). They constitute an important com-
ponent of the model, since controlled motions are typically
smooth and slow so that the effects of inertia, velocity, and
series elasticity are small and the isometric behaviour of
muscle dominates. The isometric model captures the principle
time-varying effects such as fatigue and spasticity.

The popularity of the Hammerstein structure to represent
the activation dynamics is due to its correspondence with
biophysics: the static nonlinearity represents the Isometric
Recruitment Curve (IRC), which is the static gain relation
between the stimulus activation level and steady-state output
torque or force when the muscle is held at a fixed length; and
the linear dynamics represent the muscle contraction dynam-
ics, which combines with the IRC to give the overall torque
generated. Another key advantage of this structure is the ease
with which model-based controllers can be implemented. The
Hammerstein plant model is illustrated in Figure 1.
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Figure 1. Hammerstein plant model [7], [24]

The Hammerstein structure P = (f, G) is defined by
w= f(uz), up =w1 +w, y1 = Gui, Yo =y1 + 2

in which wuy is the pulsewidth of the electrical stimulation
signal that originates from the stimulator; f is the static
nonlinearity, which represents the combined IRC and stim-
ulator dynamics; w is the torque demand (in Nm) after
applying f; (u1,y1) are the respective input-output signals
to the linear block, GG, representing the muscle contraction
dynamics; (uo, yo) are disturbances acting on the system (e.g.
measurement noise, voluntary input, physical disturbances);
and yo is the output torque. The input disturbance, ug, is
assumed to appear between the nonlinear and linear blocks.
Note that this ensures that cancellation of the nonlinearity
can occur in situations where ug # 0. In general, the
disturbances (ug, yo), and therefore the plant signals (u1, y1 ),
are unknown. The control input, us, and the measurable
output, 4o, are known signals.

The stimulator output is typically a square wave of fixed
amplitude and frequency, as illustrated in Figure 2. Each
individual pulse is asymmetrical such that only the positive
half-cycle has sufficient voltage amplitude to excite the
muscle (|a;| > excitation threshold > |as]), yet balanced
(zero net) current flow is maintained. The pulse frequency, fs,
is typically between 10 Hz and 100 Hz. In this research the
stimulation frequency is set to either 40 H z or 80 H z and the
sample rate, T, of the control system is set to 160 Hz. The
controlled variable, us, is the pulsewidth, 0 < pw < 300 us.

The nonlinearity, f, has previously been parameterized
using saturation, piecewise linear functions and predefined



A
Z
- — Ideal signal
2 ---- True signal
£
=
©)
—
Q 1 2
= e VR 7
= 0w g = >
g [ (RS g
e \ \~| Time (s)
2@ A A4

Figure 2. Biphasic stimulation waveform

functional forms (e.g. [25], [26]), with the linear dynamics
generally taken as first or second order [27], [28]. In a clinical
setting the linear and nonlinear parameters must be identified
using an excitation signal that does not cause discomfort for,
or an involuntary response from, the participant [24]. Such
identification procedures are time-consuming, and accelerate
the onset of fatigue and spasticity. The onset of fatigue is
further amplified by the inefficiency of the applied stimu-
lation; motor units are all recruited at the same time, in
reverse order, and at a higher frequency than normal. Hence,
regardless of the initial accuracy of an identified plant model,
the fatigue-related time-variance of the true plant will cause a
degradation in the performance of the (non-adaptive) control
system as time progresses.

III. ESTIMATION-BASED MULTIPLE MODEL SWITCHED
ADAPTIVE CONTROL

EMMSAC [16], [17], [18] is a multiple model adaptive
control approach in which optimal disturbance estimation is
used to assess the performance of a set of candidate plant
models, {Py, ..., P,}. A residual is produced for each plant,
which is a measure of the size of its smallest (external) distur-
bance estimates. The model with smallest residual is deemed
to have best performance and its associated controller, chosen
from the set of controllers {C1,...,C,}, is switched into
closed-loop operation with the true plant.

The closed-loop interconnection of plant P and controller
C' is given by

Uy = Uy +u2, y1 = Pui, Yo =vy1 +y2, ua =Cya (1)

and is illustrated in Figure 3 , where all signals are as defined
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Figure 3. Feedback interconnection of plant and controller

previously in Section II. The gain of the closed-loop [P, C]|

is given by

N = sup ||U27y2||. )

(uo,y0)#0 ||u07y0||

If this value is bounded, i.e. if v < oo, then the closed-loop
system is said to be BIBO stable. However, in practical im-
plementation, there will be some mismatch between the plant
model and the true plant, which motivates the analysis of the
chosen control approach from a robust control perspective.

The nonlinear gap metric introduced in [29] allows the
robustness analysis of nonlinear systems such as the EMM-
SAC algorithm. It is shown in [16], [17], [18] that there exist
finite bounds from the external disturbances to the internal
signals, i.e. v < oo, which guarantees the robustness of the
algorithm. An important result is that the established bounds
are independent of the size of the plant model set for certain
plant set geometries [16], [17], [18].

The sections that follow introduce the general framework
that describes EMMSAC for LTI plants and highlight the
essential, non-trivial choices that are required to allow its
application to the nonlinear, time-varying control problem
considered here. To date, EMMSAC has been developed
for the time-invariant case only. The work presented hence
provides insight into the future progression of theory to the
time-varying setting.

A. Disturbance Estimation

For each LTI plant model, P, € {Pi,...,P,}, the
disturbance estimation procedure produces an estimate of
the size of the smallest disturbances, (uf},yh), that explain
the observed signals, (ug,ys2). The residual, r,, which is a
measure of the size of the disturbance estimate, is then used
to evaluate the performance of the associated plant, where
a smaller value represents a model whose dynamics best
‘explains’ the observations. Note that the estimation can be
performed on both an infinite- and finite-horizon [16], [17],
[18]; the remainder of this description deals exclusively with
the infinite-horizon case.

Let nga’b] (ug,y2) be the set of all disturbance sig-
nals (uf,y?) that are compatible with the observed signals
(u2,y2) and (1) for the candidate plant P,, over the interval
[a,b], a < b, a,b € Z. Then the residual at time k for plant
p is given by

rplk] =inf{r >0 | r = [voll, vo GNIEO’k](Uzayz)}-

Computation of the optimal disturbance estimates vg is, in
general, not a recursive procedure. Thus direct computation
of r,[k], in general, will result in a growth in computational
complexity for increasing k. However, there is a special case
for which the computation of 7,[k] is recursive; when the
estimation is performed using a Kalman filter [30] for LTI
plants in [2, as justified by Theorem IIL.1 below. In that
case, the computational complexity of the estimation depends
only on the order of the plant model. This result enables
a computationally tractable implementation of the infinite-
horizon optimal disturbance estimator.



B. Kalman Filter Implementation

The infinite-horizon Kalman filter disturbance estimator is
now introduced. Given a candidate linear plant model, P,,
with initial state z,(0) and discrete-time state space repre-
sentation given for k € N,

xp(k +1) = Apmp(k) + Bpuzlj(k)v yf(k) = Cpayp(k) (3)

where z,(0) has the possibility of being non-zero, the
discrete-time Kalman filter estimator, K F), is given by

&p(k+1/2) = @y (k) + By (k) Cy [CpZp(K)C, + 1]

: [y2(k) - ijp(k)]
Yp(k+1/2) = 8,(k) — E;n(k)c;-zr [szp(k)cg—)r + I]_l'

L C,%, (k) \
dp(k+1) = Ayiy(k + 1/2) + Byus(k) @
Sp(k+1) = A5, (k+12)A) + BB,

71 (k) = Cpip(k)

with model-dependent initial covariance and initial state
estimate, ¥,(0) and #,(0), respectively. In these equations,
ug(k) and yo(k) are as defined previously; and 7¥ is the
Kalman filter estimate of the plant output, y;, before distur-
bance 7, associated with model P,.

In this Kalman filter implementation, the residual is given
by the following theorem from [17].

Theorem IIL1. Let G, = (A,, B, Cy,0) be the state-space
representation of an LTI plant model. Consider the Kalman
filter equations (4). Let ¥,(0) = 0 and %,(0) = 0. Then the
residual for plant model G, at sample instant T is given by
the weighted 1?-norm

T /2
rplT] = Z [y2(k) + gf(k)H[QCpr(k)C;Jrl]*l
k=0
Proof. The proof can be found in [16]. O

Note that X(k) > 0 for all £ € N if ¥(0) > 0, which
guarantees the existence of the weight [C),%,(k)C,) + 1]~
The residual calculation can be performed recursively:

rp(r) = (= 1) + lly2(7) + H (D, s, (ne -1+
Note that C, represents the state-space output matrix and will
also later represent the controller for plant P,. Throughout
this paper, the meaning of C), is clear from the context in
which it is used.

Use of a Kalman filter to perform the disturbance estima-
tion limits the algorithm to the LTI setting. To perform the
disturbance estimation for the nonlinear Hammerstein plant
model, P, = (f,,Gp), the nonlinear function, f,, is first
applied to the observed signal u to produce a hypothesis, w,,,
for the internal signal, w, of Figure 1, (f,G) = (fp,Gp).
The estimation is then performed exactly as in the linear
case where the estimator (4) is designed for G, and utilises
observed signals (w,,y2). The same procedure to perform
the estimation for linear plant models with input saturation
is theoretically justified in [17].

C. Switching Algorithm

Given a set of n plant models, the switching signal points
to the plant P,, 1 < p < n that has minimal residual r, [k]
and index p at sample instant k, and is thus given by

q(k) := argmin rpy[k], Vk € N.

1<p<n

If there are multiple minimal residuals {r,,...,7,,} at time
step k, then ¢(k) is taken to be the smallest index p;, ¢(k) =
min{py,...,ps}. Once a plant model has been identified, its
corresponding controller is switched into the closed-loop with
the true plant. The controller is initialised with a zero internal
state when it is switched into the closed loop. Thus we define
the controller C': up > y2 by uz(k) = Cyqy(v(t)) where

vt) = { n(t)

and ks is the sample at which the last switch occurred,
ie. ks = max {t < k| q(t) # q(t — 1)}. This has
simple interpretation; at sample instant ks, controller Cy )
is switched into the closed-loop with zero initial conditions,
and remains there until the next sample instant, k, at which
the switching signal, ¢(k), changes value. An alternative
approach (not pursued here) is to match the states of the
old and new controller to provide a smoother, ‘bumpless’
transfer at switching times. Additionally, there may exist
disturbances, (uo, yo), which might cause ¢ to switch rapidly
and lead to instability. To prevent this, an operator, D, can
be used to assign to each plant model a minimum delay
that must elapse before a switch is allowed to occur. Note
that this delay operator is not implemented for the practical
application presented here.

if t < kg
if t >k,

D. Extension to the Time-Varying Case

The approach presented in the preceding sections is re-
quired for the implementation of the algorithm in the time-
invariant setting. For the time-varying case considered in this
application, the model initially identified to represent the true
plant becomes less appropriate as the physical characteristics
that define the true plant vary with time. Thus, the information
gained from observation of (us,y2) at the start of the horizon
has less significance than the information gained from the
most recent observations of (ug,y2). To account for this, a
weight can be applied each time the residual is calculated to
successively weight older observations towards zero. Applica-
tion of the weight, A < 1, gives recursive residual calculation

rp(r) = Xrp(r = 1) + llya(7) + 51 (DI, =, (rycr 411

Although it allows improved controller performance when
applied to time-varying plants such as those considered in
this paper, this modification is yet to be justified theoretically
within the EMMSAC framework. We note, however, that the

introduction of ‘forgetting factors’, A < 1, is common in
adaptive control for time-varying plants.



IV. APPLICATION OF EMMSAC FRAMEWORK TO
NONLINEAR FES MUSCLE MODELS

This section follows on from the problem description given
in Section II. The details provided here enable the practical
implementation of EMMSAC in Section V.

A. Model Specification

Due to confirmed accuracy in clinical trials [7], in this pa-
per the linear component, G, of the underlying Hammerstein
plant model is taken as the critically damped second order
transfer function

w?

= Ui(s) (5

Gy M) = g s al

in which w,,, the natural frequency, is the uncertain parameter
to be identified. The discrete-time state space representation
of this transfer function is obtained by first taking the
observable canonical form [31], given by

A, = {—wain (1)] B, = [o?fj Co=[1 0] (©
and discretising the resulting matrices at the specified sample
rate, T, to produce for the linear model, G, a correspond-
ing discrete-time state-space representation (A, B,C,0).
The discretisation process uses zero order hold on the
inputs. The observable canonical form is used so that
C = [1 0] for all w,, which simplifies later control design.
The static nonlinearity takes the form

ea2u2 — ]

e®2Y2 + qg

f:uQn—Mu,w—al< >,O<uz<300 @)
with uncertain parameters aj,as and as [7]. The upper limit
on the pulsewidth input, ug, is an approximate value at which
saturation of the nonlinear function, f, occurs. The limits
are included to prevent over-stimulation of the triceps and
to ensure the existence of a solution to the inverse function
used to linearise the response of the plant. See Figure 8 for
representative graphs of f. Note that f always has a sigmoidal
shape representing a deadband region of low response, and
an increasing response level with increasing pulsewidth, until
saturation is achieved.

B. Plant Model Set

The uncertain true plant is modelled by the Hammerstein
structure illustrated in Figure 1 with uncertain nonlinear
isometric recruitment curve, f, and uncertain linear activation
dynamics, G, as described in Section IV-A. Assuming that
the range of each uncertain model parameter is known (from
experimental data, for example), it is possible to specify a
continuously parameterised set of models that represents the
uncertainty associated with the plant. The sets containing
all possible values of the uncertain linear and nonlinear
Hammerstein model parameters are given respectively by
Ua = [Wéaw%] C Ry and Uy = {[alba%] x [al27ag] X
[a},a4]} € R3, in which [ denotes a lower bound and u
denotes an upper bound. These sets are identified and sampled
(as later described in Section V-C) to produce a linear

model set and a nonlinear model set, given respectively by
Ac = {(A;,B;,C;), i =1,...,m | (6) holds, w’ € U}
and Ay = {f;, j=1,...,n](7) holds, (al,a},al) e Uy},
in which m and n are the required number of linear and
nonlinear models, respectively. The complete plant model
set, Ag, is then formed from the pairwise combination of the
elements of Ag and Ay (i.e. Ay = Ag X Ay) and contains
mn plant models P, = (f;, G;).

C. Controller Design

Recall that for each plant model, P, = (f;,G;), 1 < j <
n, 1 <14 < m, the controller design procedure is required to
produce a controller, Cy, : 2 — ug, that delivers closed-loop
stability, as defined by (2). The underlying controller selected
in this research has two components, connected in series: a
linearising function (designed for f;), and a linear quadratic
(LQ) optimal tracking controller (designed for G;).

1) Linearising Controller: Linearisation is achieved
through application of the inverse function given by

J J o, %
fj_l ut e ug, ug = ijln <a1,+a3u>7 T(Z <u* STg

J %
as ay u

where u* represents the output from the LQ optimal con-
troller and af, a) and a} are the uncertain parameters
associated with the j** nonlinear model. The limits on the
inverse function arise from the limits imposed on f in (7). In
order to find the values of T, and T} for a particular plant, the
uncertain parameters for that plant need to be substituted into
(7) with ug = 0 and uy = 300, respectively. The resulting
values of w correspond to the values of 7, and T}, which
are then defined for the nonlinear model in question.

2) LQ Optimal Tracking Control: For the LQ optimal
state feedback tracking controller, H, implemented here, a
quadratic performance index is used to determine the optimal
control input. This index penalises non-zero output errors and
control signals and its minimisation leads to a linear state
feedback law when applied to linear systems, i.e. for LTI
plant model G;, H; : x, — u*. Note that the state, x,, is
indexed by p because it is the state associated with the p'"
Hammerstein plant model, P, = (f;,G;). Given the state-
space representation (3) where z,(0), and A, = A;, B, = B;
and C, = C; are discrete, the performance index is given by

T
I =3 {lmp(t)~50) T Qlay(t)~(t))+u” (t-1)Ru(t-1)},

t=to+1
(®)

where Z(t) is the reference state trajectory, () is a positive-
semidefinite matrix weight used to penalise tracking error,
and R is a positive-definite matrix weight used to penalise
control effort. Given fixed Z(t), @, and R, the resulting LQ
optimal controller, minimises the weighted costs associated
with tracking error and control effort. Selection of this
controller design procedure allows both the fair comparison
of multiple controllers, and the level of FES-based assistance
to be set by the therapist when used in a clinical setting (by
varying the weights @ and R). For the single-input single-
output (SISO) case considered here, R can be taken as unity
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Figure 4. Control system showing uncertain plant, estimator bank, and switched controller

without loss of generality. The matrix @ is a diagonal matrix
whose dimension is dependent on the order of the system.
In this particular case, the system is assumed to be second

order and 0 0
=T 4

where Q7 and Q)2 penalise the first and second elements of
the state vector, respectively.

Given an output reference trajectory, g2, the corresponding
state trajectory is given by ¥; = C;(C;C;")"17,. Note
that use of the observable canonical form for the state
space representation (specifically that C; = [1 0]) gives
#; = [2 0]". The importance of this is that the reference
state trajectory, Z, is then the same for all linear models, G;,
which simplifies the implementation of the controller.

Given the state-space representation (3), A, = A;, By =
B; and C,, = C}, and the performance index (8), the discrete-
time solution for optimal control is given by

uilzp)(t) = —[B] Si(t + 1)B; + R] "' B;"-

[Si(t + 1) Az, (t) + bi(t + 1)) ®
where S;(-) and b;(-) are recursively computed using
Si(t) = A;—{Si(t +1) = S;(t+ I)Bi[B;rSi(t +1)
B;+R|7'B S;(t+1)} 4 + Q 10)

bi(t) = [A] + Ki()B bi(t + 1) — Qi (t)
K;(t) = —[B; Si(t + 1)B; + R| 7' B, S;(t + 1) A;

with terminal conditions S;(T) = Q(T), and b;(T) = 0
[32]. Note that the dependence of the optimal control input
on the initial state of the system, xp(to), is implicit in (9);
although z,,(to) does not appear in (9), it determines the value
of z,(t). Also note that the parameters that determine the
optimal control, S;(-) and b;(-), are computed backwards in

time. An advantage of this setup is that the controller can be
switched mid-operation without the need to recompute S;(+)
and b;(-) with new initial conditions.

The described control approach results in a pulsewidth
input uy = f;l[u;‘ [#,](t)] where &, is the Kalman filter
state estimate for plant p obtained from (4) and this defines
the p** controller, C,, corresponding to P, = (f;, G;).

D. Full Control System

The full control system, as described in the preceding
sections, is illustrated in Figure 4. The true plant is assumed
to have Hammerstein structure with components f,- and
Gp-, and disturbances, (ug, o), as described in Section II
The control input, uq, is fed into the bank of n nonlinear
functions. The outputs from each of the functions are then
fed, along with the measured signal s, into the bank of m
infinite-horizon Kalman filter estimators. This results in mn
estimators, F, where estimator F;; performs the estimation
for plant model P, = (f;, G;), as described in Section III-B.
Each estimator produces for its plant, P,, 1 < p < mn,
a state estimate, Z,, and a residual, r,, that indicates the
size of the smallest estimated disturbances, (i5, gf), for that
plant model. The weighted residual calculation is performed
as described in Section III-D. Use of the weight, A, (to
successively weight older observations to zero) reduces the
switching delays that occur as the true plant varies with
time. However, the estimation becomes more susceptible to
noise and rapid, potentially destabilising, switching can occur.
Thus, selection of A is a balance between achieving switching
that is both stable and noise independent, and rapid enough
to detect the potentially fast time-variance of the true plant.

Comparison of the residuals {r1,...,7mn} allows the
switching signal, ¢, (as described in Section III-C) to be de-
termined. In turn, this selects the controller C), = ( fj_l7 H;)



to be implemented where the indexes ¢ and j are determined
from g. Note that for completeness, the delay operator, D,
from [16], [17], [18] has been included in the figure; for
the implementation described in this paper no switching
delay is enforced. The switched controller (grey highlight) is
divided into two sections, one containing LQ optimal tracking
controllers, the other containing inverse nonlinear functions,
as detailed in Section IV-C. Thus within D the switching
signal ¢ is decomposed into two additional switching signals:
1 < ¢ < m, specifying the switched linear quadratic
optimal tracking controller; and 1 < g,; < n, specifying the
switched inverse nonlinear function. The former is used with
the switched state estimate &, (observe that g, rather than
q;, switches the state estimate) to implement the switched
LQ optimal state feedback controller (9). The LQ optimal
tracking controller is separated into three blocks, C}, C2,
and b;(t + 1), 1 < i < m, where m is the total number
of linear models (and hence the total number of LQ optimal
tracking controllers), b; is determined from (10), and where
Cilap)(t) = St + 1) Aip(t), CP](t) = {-[BiSi(t +
1)B; + R|7'Bl}u(t), and v(t) = C}&,](t) + bi(t). The
resulting control signal, «*, as defined by (9) is fed into
the bank of inverse nonlinear functions, f;l, 1 <5 <n,
where n is the total number of nonlinear models. Then the
nonlinear switching signal, ¢, specifies the switched inverse
nonlinear function that maps from u*, to the pulsewidth, us,
of the electrical stimulus.

V. PRACTICAL APPLICATION

This section builds on the basis of Section III, and the
application-specific design framework of Section IV, to de-
velop a principled experimental procedure for constructing
the plant model set for a sample (A) of the population.
This set is then used in tests on another sample (B) of the
population, with experimental results given in Section VI.

A. Experiment Apparatus

The experimental facility comprises a workstation that has
been used in both clinical stroke rehabilitation trials [8] and
model identification tests [24], [33]. The system is validated
in [34] and employs a planar robotic arm that supports users
in performing two-dimensional reaching tasks. A six-axis
force-moment sensor is attached to the end effector and in this
research the positions of both the shoulder and end effector
are fixed such that the angle between the ulna and humerus
is approximately ninety degrees, as shown in Figure 5.

Surface electrodes (PALS Platinum 5 x 5cm) are placed
on the triceps such that the induced currents flow through
muscle fibres in the lateral and long heads to achieve the
strongest possible contraction. The surface electrodes are
attached to the output channel of a commercial stimulator
(Odstock, O4CHS). The pulsewidth is the controlled variable
with the pulse frequency initially fixed at 80 Hz (see Figure 2
for an illustration of the waveform). For each participant,
the amplitude is set at a comfortable level by applying a
maximum pulsewidth input (300 us) and then gradually
increasing the stimulator amplitude.
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Figure 5. Participant performing isometric task using robotic workstation

The clinically relevant task is for the torque, 7', produced
about the elbow to follow a trajectory that is representative
of a smooth reaching movement. The torque is calculated
using the kinematic model shown in Figure 5, where F;, Iy,
and F, are the force components measured by the sensor in
the base coordinate frame; M,,, M,,, and M, are the moment
components, also measured by the sensor, also in the base
coordinate frame; [; is the distance from the thumb web to
the olecranon process of the ulna; [, is the distance from
the olecranon process to the acromion; 9y and 9, are unit
vectors aligned with the forearm and upper arm, respectively;
and ¥, = 0y X1, is the axis about which the stimulated triceps
exerts a moment. The torque amplitude is calculated from
T = [F Fy BT (8 x 05) - i + [mg my m2] " - .
To identify a kinematic model, the lengths l; and [, are
directly measured, and the approximate acromion position
is calculated via a non-linear optimisation procedure applied
to range of movement data in which the participant moves
their arm over the workspace [35]. The vectors, 0y and 9,
are then calculated from the known end-effector position and
the underlying kinematic relationship.

B. Stimulated Muscle Model Identification Procedure

To produce a realistic set of plant candidates, an identi-
fication procedure was used to produce an estimate of the
uncertain Hammerstein parameters from experimental data.
The ramp deconvolution method is commonly used to achieve
this and has been shown to have high accuracy with relatively
short computation time when compared to other identification
methods [28]. Results are presented in [24], which show that
the method is comparable to other tests used in the literature.

To identify a single model representing the true plant, the
participant was seated at the workstation with their forearm
placed in the support as in Figure 5, and the pre-experiment
set up was performed as described in Section V-A. Next a
trapezoidal input signal was provided to the stimulator and the
resulting pulsed stimulation waveform applied to the muscle.
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Figure 6. Comparison of torque output for two participants

The input (ug) is 0 ps for five seconds, ramps up to 300 us
over five seconds, ramps back down to 0 ps over five seconds,
and remains at 0 us for a further five seconds. The zero
stimulation period allows the triceps to relax gradually, to
ensure that the muscle returns to the same initial (resting)
conditions for each application of the reference. After filtering
the recorded response (third order lowpass Butterworth, cut-
off frequency 10 Hz), the curve is shifted to minimise the
difference between it and the reference input on the as-
sumption that the linear activation dynamics comprise a pure
delay, which allows the nonlinear and linear dynamics to be
deconvolved. This leaves an approximation of signal w = u;
(assuming zero disturbance, i.e. ug = 0). This can be plotted
against uy (the reference input) to directly obtain the shape
of f (since ug comprises a straight line from 0 to 300 and
back to 0). Using this information, a least squares nonlinear
curve fitting procedure (MATLAB function Isgcurvefit) is
employed, which identifies the optimal (in a least squares
sense) nonlinear parameters of (7). Utilising the identified
nonlinearity to form the input w, an iterative procedure is
then used to identify the linear parameter of (5) and (6):
for each possible value of w,,, the simulated response (using
wy, and the identified nonlinear parameters, (a1, as,as)) is
compared with the true response. The optimal value of w,, is
deemed to be that which minimises the error between these
two signals. The fitting process is validated by comparing the
modelled response with the true response.

C. Selection of Plant Model Set

The selection of an appropriate plant model set is required
to ensure a high level of performance for all possible true
plants. This section details a suitable procedure to identify
plant candidates for the population (young, able bodied
participants) using experimental data.

1) Collection of Fatigue Data: Five able-bodied, young
participants were recruited for the initial stage of data collec-
tion (sample A). Participants were seated at the workstation
with their arm placed in the forearm support as shown in
Figure 5, and the setup procedure described in Section V-A
was performed. For two of the participants it was found that
optimising the electrode position resulted in the early onset
of fatigue for a single arm. As a result, the test data (both
participants, single arm only) was discounted.

To identify plant models that capture the response of the
triceps to electrical stimulation at different stages of fatigue,
the ramp deconvolution input signal described in Section V-B
was applied repeatedly to the triceps of each participant. Each
application of this reference signal is referred to as a trial, and
thirty consecutive trials are referred to as a fatigue test. The
developed torque recorded from two different participants
engaging in such a test is shown in Figure 6, which illustrates
the inter-participant and inter-trial variation. Upon completion
of the fatigue test, the identification procedure described in
Section V-B was used to identify thirty plant models (one for
each trial) that captured the time-variance of the true plant.
The complete data set contained 240 plant models (eight
fatigue tests in total, thirty models identified in each).

2) Analysis of Fatigue Data: Table 1 shows for each
participant the correlation between the identified value of
the linear parameter, w,, and the trial number. The ‘p-
value’ indicates the probability of obtaining the result when
the true correlation is in fact zero. Although there is some

Participant | Arm | —1 < Correlation < 1 | p-value
| L -0.72 0.0000
R R _
2 L 0.52 0.0035
R -0.34 0.0643
3 L 0.09 0.6539
R 0.10 0.5939
4 L -0.40 0.0299
R R _
5 L -0.58 0.0009
R 0.25 0.1778
Average - -0.31 0.0998
Table 1

CORRELATION BETWEEN LINEAR PARAMETER AND TRIAL NUMBER

suggestion of an overall decrease in w,, with increasing trial
number (average correlation = —0.31), this is not consistently
observed when the data sets are considered individually.
Thus it cannot be concluded that any correlation between
the two parameters exists. Lack of correlation implies that
the trial number cannot be used as a scheduling variable to
predict the linear parameter in advance. Figure 7 shows the
trial-by-trial variation of the identified linear parameter, w,,
for the eight fatigue tests performed. Observe that for all
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Figure 7. Variation of linear parameter, wy, for all tests on all participants

participants the majority of the identified values lie within a
narrow band. Thus a single, relatively small parameter set
can be chosen to represent the uncertain linear activation
dynamics for the population. This is a significant outcome, as
smaller model sets result in reduced computational costs. It
is possible to parameterise the linear parameter set using the
cumulative distribution, ®,,, , of the data shown in Figure 7.
This distribution represents the linear parameter uncertainty
set, Ug, of Section IV-B, which can be sampled to produce
the linear model set, Ag. The i*" value of w,, in A is given
by wi = @;f}((% —1D/am), 1 < i < m, where, as previously,
m is the required number of linear models.

The same procedure cannot be applied to identify the
uncertainty set representing the nonlinear component of
the model because it is described by three parameters,
(a1, a2,as3), which only have partial correlation with one
another and the trial number. However, a few general obser-
vations can be made regarding the variation of the identified
nonlinearity. As the trial number increases: i) it takes a larger
initial pulsewidth to achieve a contraction, resulting in a
larger deadband region; ii) for high values of pulsewidth
the output saturates less, resulting in a smaller saturation
region; and iii) the peak torque produced (at a pulsewidth
input of 300 ps) decreases. These observations are illustrated
in Figure 8, which shows the nonlinear models identified for
a single fatigue test for one participant (tr; indicates the
isometric recruitment curve identified using data from the
jth trial). Given these observations, selection of the nonlin-
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Figure 8. Example trial-by-trial variation of identified nonlinearity

earity follows a similar procedure to selection of the linear
model. First, the cumulative distributions (P4, and Py,
respectively) of the upper deadband and lower saturation
pulsewidth limits for all 240 identified models are found.
Here the deadband upper pulsewidth limit and the saturation

lower pulsewidth limit are defined as the pulsewidths at
which the output of the nonlinearity reaches 5% and 95%
of its peak value, respectively. The distribution of the peak
torque is not found using experimental data as the required
peak torque is task- and participant-dependent and varies as
the stimulator gain is tuned. For the tests described here,
the largest peak torque output was selected to be 20 Nm
(corresponding to the strongest non-fatigued participant); and
the smallest peak torque output was set to 2 Nm (corre-
sponding to the weakest fatigued participant). The cumulative
distribution, @7, of the peak torque output value was
then found by interpolating linearly between these upper
and lower peak torque limits. The three cumulative distribu-
tions, ®ap, Psat; Pr,.,,. are then used to find the set of pa-
rameters (deadband pulsewidth, pwgp; saturation pulsewidth,
Pwsqt; and peak output, Tpeqr) for the jth model in Ay
using pu, = ©g) (27 = D/n), pwly, = ®4(25=1jom),
. = <I>}p1mk((2j—1)/2n)7 1 < j < n, where n is
the required number of nonlinear models. Then an iterative
procedure is used to find the (ai,a},a}) that produce an
isometric recruitment curve with deadband, saturation, and
peak output that are closest to the required values.

Once the m linear models and n nonlinear models have
been identified, all of the pairwise combinations of these sets
Ag and Ay are used to populate the plant model set, which
contains mn models.

VI. EXPERIMENTAL RESULTS
A. Experiment Description

Participants were seated at the workstation and the experi-
ment set up of Section V-A was performed. For the controller
tests an offset sinusoidal signal of period 10 s was selected
as the reference to represent a smooth reaching movement.
The (participant-dependent) peak value of this reference was
set to 50% of the peak torque measured when maximum
stimulation (300 ps) was applied to the triceps. The sample
frequency was set to 160 H z. The stimulator frequency was
reduced to 40 H z to reduce the risk of stimulating peripheral
nerves in participants with smaller triceps.

The tracking performance of two different controllers (one
adaptive, one non adaptive) was compared. Five able-bodied,
young participants were recruited (sample B). Both their left
and right arms were tested. Nine data sets are considered
hereafter; one data set was discounted because an electrode
position that produced an appropriate response could not
be found. The only identification tests performed were the
measurements of the arm lengths and joint positions used to
form a kinematic model of the arm, and the single ramp
deconvolution test used to identify a model for use with
the non-switched (non-adaptive) controller. For each test, the
selected controller was required to regulate the pulsewidth
input such that the plant followed the reference torque
trajectory over ten consecutive trials. All estimator variables
(state and covariance estimates), excluding the residuals, were
reset in between trials. After the ten trials were completed,
the participant was given a thirty minute rest period to allow



the arm to recover from fatigue before the other controller
was tested. The order in which the controllers were applied
was randomised to prevent confounding of results.

1) Non-switched controller: The controller used for
benchmarking was a single LQ optimal controller with lin-
earising function f~!, designed as described in Section IV-C
with controller weights @1 = 50, @2 = 0 and R = 0.4.
The plant model used to design this controller was identified
immediately prior to its use using the ramp deconvolution
identification procedure described in Section V-B.

2) Switched (adaptive) controller: The switched controller
was the estimation-based multiple model switched adaptive
controller (EMMSAC) described in Section III. The plant
model set was selected a priori using the procedure described
in Section V-C with m = 2 and n = 1000. The estimator for
each plant model was the Kalman Filter estimator described
in Section III-B; the residual calculation was weighted with
a forgetting factor, A = 0.995. A linearising controller, as
described in Section IV-C, was designed for each plant model
P, = (f;,G;) with weights ()1 = 50, Q2 =0 and R = 0.4.

B. Experiment Results

Prior to performing the controller tests the adaptive con-
troller was first tested on a single participant from the
population sample used to select the plant model set (sample
A of Section V-C). The results of this test are shown in Figure
9. They illustrate the high level of tracking performance that
is possible given appropriate tuning of the stimulator gain
and an appropriate number of models in the plant model set.

Figure 10 shows the response for a single participant from
sample B when performing the test using the non-switched
controller. Figure 11 shows results from the same test when
using the switched (adaptive) controller. As can be seen from
Figure 12, the tracking performance for each controller is
comparable over the first five trials. The performance of
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Figure 12. Controller tracking performance

the non-switched controller then degrades as the participant
fatigues and the true plant deviates from the model identified
prior to the first trial. In contrast, the performance of the
switched controller improves over the last five trials. This
occurs because the participant relaxes back into a position
where approximately zero torque is measured. Note that the
lack of complete relaxation on the part of the participant (as
seen in the first six trials of Figure 11, in which the response
does not accurately track the ‘troughs’ of the reference) can-

not be compensated for by the controller without activating
antagonist muscle groups.

The onset of fatigue can be observed from the nonlinear
switch shown in Figure 11. The nonlinear models are ordered
to represent increasing levels of fatigue from model 1 (the
least fatigued) to model 1000 (the most fatigued). Thus, as
the participant fatigues, the value of the nonlinear switching
signal is expected to increase, which is the trend over all
ten trials. This is consistent with the trend observed in
Figure 8, which shows the effect of fatigue on the identified
nonlinear model. The intra-trial variation of the nonlinear
switching signal serves to compensate for minor differences
between the reference and response that result from plant-
model mismatch, external disturbances, and hysteresis. The
latter occurs due to the differences between the FES-activated
muscle dynamics and the relaxing muscle dynamics.

During some of the trials (e.g. trial one of Figure 11, after
approximately six seconds) the response becomes oscillatory.
In this particular example the oscillations are low amplitude.
However, in other cases the amplitude has been high enough
to significantly reduce the tracking performance. This oscil-
lation occurs because the resistance between the electrodes
and the muscle fibres is high, resulting in an ‘on-off’ mode
of operation where the pulsewidth alternates between its
minimum and maximum limits (0 ps and 300 ps, respec-
tively, as given by (7)), as the response oscillates about the
reference. This can be overcome by replacing the electrodes,
the performance (measured by charge transference) of which
reduces with increased use. More commonly, the stimulator
gain is increased such that an appropriately high current can
be induced in the tissues for a larger range of pulsewidths
below the maximum value (300 ps). This has been tested
experimentally with a subsequent reduction in oscillations.
The effect of varying the stimulator gain is to vary the value
of the nonlinear switch (increasing the gain decreases the
value). This highlights the importance of tuning the stimulator
gain when initialising the experiment, such that the true plant
lies within the boundaries of the chosen plant model set.

Figure 13 compares the RMS tracking error achieved for
the two controllers for all nine sets of data. The introduction
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Figure 13. Comparison of controller performance

of switching results in a comparable or reduced level of RMS
tracking error for all data sets.

The described experiment is a repeated measures test,
which means the two sample sets can be classed as dependent
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Figure 11. Adaptive controller example, participant from sample B (legend as above)

samples. Thus statistical analysis involves inference about
two means with dependent samples. It is assumed that the
RMSE data acquired for each of the controllers belongs to
a normal distribution. The claim is that the inclusion of
switching reduces RMS tracking error. Thus a one-tailed
Student’s t-test is implemented using the MATLAB function

tedf(). For the data shown in Figure 13 there is > 99%
confidence that the inclusion of switching reduces RMS
tracking error. At the 95% confidence level the effect of the
inclusion of switching is to reduce the average RMS tracking
error by approximately 22%. If the second half of the data
(trials five to ten, at which point fatigue is more prevalent) are



considered alone, the tracking error is reduced by 42% at the
95% confidence level. This is a significant result. Note that
performance gains resulting from the inclusion of switching
are likely to be higher still in a clinical setting because stroke
patients are likely to experience higher levels of fatigue (and
spasticity) more rapidly than able-bodied participants.

VII. CONCLUSIONS AND FUTURE WORK

The results presented in this paper confirm the ability of
the multiple model switched adaptive controller to compen-
sate for the time-varying characteristics of human muscle.
Furthermore, the hypothesis that a single plant model set
can be used for the entire population of able-bodied, young
participants has been confirmed; combined with reduced
tracking error, the ability to apply a controller with minimal
prior identification tests is an attractive characteristic of the
proposed algorithm, as it potentially enables the transference
of closed-loop model-based control approaches to the clinical
setting. This, in turn, will allow more accurate assistance
and effectiveness of rehabilitation, which will enable the
efficacy of FES as a treatment to be tested. Future work will
involve: testing the ability of the adaptive controller to track
randomised smooth reference signals; extension to the non-
isometric case in which the position of the electrodes changes
relative to the muscle; inclusion and modelling of voluntary
effort from participants; and testing with the populations of
older, able-bodied participants, and stroke patients.
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