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Abstract 

Although the assessment of dynamic cerebral autoregulation (CA) based on measurements of  

spontaneous fluctuations in arterial blood pressure (ABP) and cerebral blood flow (CBF) is a 

convenient and much used method, there remains uncertainty about its reliability. We tested 

the effects of increasing ABP variability, using a modification of the thigh cuff method, on 

the ability of the autoregulation index (ARI) to discriminate between normal and impaired 

CA, using hypercapnia as a surrogate for dynamic CA impairment. In 30 healthy volunteers 

ABP (Finapres) and CBF velocity (CBFV, transcranial Doppler) were recorded at rest and 

during 5% CO2 breathing, with and without pseudo-random sequence inflation and deflation 

of bilateral thigh cuffs. The application of thigh cuffs increased ABP and CBFV variabilities 

and was not associated with a distortion of the CBFV step response estimates for both 

normocapnic and hypercapnic conditions (p = 0.59 and p = 0.96 respectively). Sensitivity and 

specificity of CA impairment detection were improved with the thigh cuff method, with the 

area under the receiver-operator curve increasing from 0.72 to 0.85 (p = 0.023). We conclude 

that the new method is a safe, efficient and appealing alternative to currently existing 

assessment methods for the investigation of the status of cerebral autoregulation. 

 

Keywords: arterial blood pressure; cerebral autoregulation; cerebral blood flow; 

pseudorandom binary sequences 
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Introduction 

Cerebral autoregulation (CA) is a complex homeostatic mechanism whose action maintains a 

relatively constant flow of blood in the face of perturbations in arterial blood pressure (ABP), 

and protects the cerebral parenchyma from hyper- or hypo-perfusion injury (Paulson et al 

1990; van Beek et al 2008).  

The advent of instrumentation that allows continuous noninvasive monitoring of cerebral 

blood flow (CBF) and ABP with excellent temporal resolution, has caused a shift in our 

understanding of CA dynamics (Aaslid et al 1989). Instead of relying on vasoactive drugs to 

induce large stable changes in ABP, as required by the traditional ‘static’ approach (Paulson 

et al 1990; Tiecks et al 1995), the dynamic CA response can be identified using different 

maneuvers such as the sudden release of compressed thigh cuffs (Aaslid et al 1989),  

rhythmic hand grip (Kwan et al 2004), Valsalva maneuver (Tiecks et al 1996),  changes in 

posture (Claassen et al 2009; Lipsitz et al 2000) and others that can induce transient 

alterations in ABP.  Most of these maneuvers are difficult to implement in a clinical setting 

due to the need for patient cooperation, parallel increases in sympathetic activity, or safety of 

protocols in vulnerable patients. For these reasons, one important alternative, which has been 

favoured by many centers, is the use of spontaneous fluctuations in ABP and CBF coupled 

with system identification techniques to derive parameters that can reflect the efficacy of 

dynamic CA (Panerai 1998). In particular, transfer function analysis using ABP as input and 

CBF velocity (CBFV) as output yields estimates of the gain and phase frequency responses 

which have been shown to be markers of dynamic CA in multiple clinical conditions such as 

stroke, carotid artery disease, severe head injury, diabetes  and subarachnoid haemorrhage 

(Panerai 2008; van Beek et al 2008). Moreover, the ARI, an index of dynamic CA initially 

validated using thigh cuff maneuvers (Tiecks et al 1995), can also be derived from 
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spontaneous fluctuations  (Panerai et al 1998). The ARI ranges from 0 (absence of CA) to 9 

(best observed CA) and has also been shown to discriminate between different groups of 

patients (Panerai 2008). 

Despite encouraging results, most studies described in the literature on the use of spontaneous 

fluctuations in ABP and CBF to assess dynamic CA were based on differences between 

groups rather than individual subjects. Consequently, very limited information is available 

about the sensitivity and specificity of this approach and hence its overall diagnostic 

accuracy. One ongoing concern about the use of spontaneous fluctuations for assessment of 

dynamic CA is the potential lack of substantive variability in ABP and CBF which could lead 

to poor signal-to-noise ratio and limitations in reproducibility (Brodie et al 2009; Claassen et 

al 2009; Gommer et al 2010; Liu et al 2005; Zhang et al 1998b). Following the recent 

development of a new approach to increase ABP variability (Katsogridakis et al 2012), we 

have made use of the well known effect of hypercapnia as a surrogate of CA impairment 

(Aaslid et al 1989; Panerai et al 1999; Paulson et al 1990) to test the hypothesis that detection 

of impaired CA is improved by increases in ABP variability. 

 

Materials and Methods 

Subjects and measurements 

Ethical approval was obtained from the local ethics committee prior to commencing the 

study. Volunteers were recruited if they were normotensive and their medical history was free 

of known cardiovascular and neurological disorders.  On the day of the trial, participants 

were reminded of the protocol and written informed consent was obtained.  
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Participants were asked to assume a supine position, and following a brief settling down 

period brachial ABP was measured by means of oscillometric sphygmomanometry. Bilateral 

thigh cuffs and the face mask were then attached, and a trial inflation/ deflation cycle was 

performed to familiarize volunteers with the procedure and to ensure that the flow of air to 

the thigh cuffs was uninterrupted. The thigh cuff inflation system was described in detail in a 

previous communication (Katsogridakis et al 2012). In summary, the system comprises a 

compressor and high-pressure reservoir that holds the air required to inflate bilateral thigh 

cuffs. The flow of air to the cuffs is controlled by the coordinated action of a pressure 

regulator, a boost valve, an adaptive controller and a deflation valve. Cuffs are alternately 

inflated and deflated (to a maximum pressure of 150 mmHg) following a pseudo-random 

binary sequence (PRBS) which increases ABP variability over a wider frequency range ( > 

0.05Hz) than would be obtained by using a fixed inflation/deflation frequency (Katsogridakis 

et al 2012). Delivery of 5% CO2 in air is achieved through a face mask (Vital Signs Inc., 

Totowa, NJ), which is connected to the CO2 delivery subunit. The subunit comprises a y-

valve that controls whether carbon dioxide or air is being administered and a 200 litre 

Douglas bag is used to store the CO2/air mixture. Hardware and software included necessary 

safety features to protect the subjects from unintended exposure to CO2 and excessive thigh 

cuff inflation pressure (Katsogridakis et al 2012). 

Arterial blood pressure was monitored non-invasively using the arterial volume clamping 

method (Finometer,  Finapres Medical Systems, Amsterdam). Freehand transcranial Doppler 

(Companion III, Viasys Healthcare) identification of both middle cerebral arteries was 

performed and probes were then held in place with a custom-built head frame. The face mask 

was connected to the CO2 delivery system and to the capnograph (Datex, Normocap 200) to 

monitor end-tidal CO2 (EtCO2) levels. A 3-lead surface electrocardiogram (ECG) was also 

recorded.  
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Following a 10 min period of supine rest, participants underwent a 5 min baseline recording. 

Three additional five-minute recordings were then performed in random order to cover all 

possible combinations of CO2 administration (no CO2 administration and 5% constant CO2 

administration) and thigh cuff inflation (no thigh cuff inflation and PRBS driven thigh cuff 

inflation). 

Data analysis 

Signals were sampled at a rate of 500Hz and stored on a dedicated personal computer for 

offline analysis. All recordings were visually inspected, the ABP signal was calibrated and 

narrow spikes (<100ms) and artefacts were removed. Subsequently, all signals were filtered 

in the forward and reverse direction using an eighth-order Butterworth low pass filter with a 

cut-off frequency of 20Hz.  

The beginning and end of each cardiac cycle were detected from the ECG signal and the heart 

rate (HR) was estimated to obtain mean beat-to-beat values for the recorded signals. 

Estimates were then interpolated using a third-order polynomial and resampled at 5Hz to 

create a time series with a uniform time base.  

Auto- and cross-power spectral densities were estimated using the Welch averaged 

periodogram method, employing a 102.4s window (512 samples), with a 50% overlap. The 

complex transfer function H(f) between ABP and CBFV was estimated as:  

 

where Syx(f) is the cross-power spectral density between signals y(n) and x(n) and Sxx(f) the 

auto-power spectral density of signal x(n). The inverse Fourier transform was subsequently 

used to estimate the CBFV impulse response function from H(f), whilst the CBFV step 

response function  was obtained by integrating the CBFV  impulse response (Zhang et al 
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1998a). These were in turn used to derive the autoregulation index (ARI) using Tiecks model, 

employing the mean square error criterion (Tiecks et al 1995). 

 

Statistics  

The Shapiro-Wilk test was used to test for normality. Non-normally distributed data were 

log-transformed. Repeated measures ANOVA was used to test the effect of different 

maneuvers on measured and derived parameters (ABP, CBFV, EtCO2 and ARI).  Right and 

left MCA estimates of ARI were averaged if not significantly different as assessed with the 

paired Student’s t-test. To assess whether the use of thigh cuffs led to distorted estimates of 

dCA, compared to those obtained from the use of spontaneous fluctuations, the value of the 

CBFV step response function at 6s was obtained for every volunteer and paired Student’s t–

tests were performed between the two estimates for normocapnic and constant hypercapnic 

conditions. 

Sensitivity and specificity were used as measures of the performance of ARI in detecting 

hypercapnia induced dCA impairment (Panerai et al 1999; Paulson et al 1990). Sensitivity 

(Sn) was estimated as: 

 

TPFN

TP
Sn


  

where TP is the number of true positive volunteers (impaired dCA) and FN the number of 

false negatives. Specificity (Sp) was estimated as: 

 

TNFP

TN
Sp


  

where TN is the number of true negative volunteers (intact dCA) and FP the number of false 

positives. The receiver-operator characteristic (ROC) curve was plotted as Sn versus (1-Sp) 
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by using all discrete values of ARI between 0 and 9 as thresholds (cutpoints) for impairment 

of CA.Values of ARI<threshold were assumed to indicate positive cases (CA impairment). 

For normocapnia these represented FP and for hypercapnia TP. The reverse classification 

applied to ARI values above threshold. ROC curves were constructed for baseline and also 

for PRBS driven thigh cuff inflation and deflation. The improvement in ROC detection 

characteristics due to increased ABP variability was assessed by testing the areas under the 

curve with the method proposed by DeLong et al.  (DeLong et al 1988). Values of p<0.05 

were considered to indicate statistical significance.  

 

  

Results 

A total of  30 healthy adult volunteers (13 female) aged 22 to 55 years were recruited. The 

procedure was well-tolerated and good quality, complete sets of data were obtained for all 

subjects. Participant demographics and population-averaged values for the main parameters 

are given in Tables 1 and 2, respectively. Figure 1 shows representative recordings obtained  

for baseline and the three different  maneuvers. Significant changes in all main parameters in 

Table 2 were observed as the combined result of hypercapnia and operation of the thigh cuffs 

(ANOVA). Post hoc analysis indicated that heart rate changed due to hypercapnia but not due 

to PRBS inflation and deflation of thigh cuffs. 

 

The use of PRBS inflation and deflation of thigh cuffs resulted in increased ABP variability 

both during normocapnia (9.2 ± 10.5 to 17.6 ± 14.5 mmHg
2
/Hz, p=0.011) and hypercapnia 

(11.0 ± 8.6 to 22.3 ± 18.4 mmHg
2
/Hz, p=0.001), as assessed by average power spectral 

values over the frequency range 0-0.1 Hz. The increase in variability did not affect estimates 
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of CBFV step responses (Fig. 2). Impairment of dynamic CA due to hypercapnia was 

confirmed by the incomplete return of the CBFV step response baseline (Fig. 2B) with 

correspondingly smaller values of ARI (Table 2). Step response values at 6s were not 

different for baseline compared to thigh cuff operation for both normocapnia (0.03 ± 0.33 vs. 

0.02 ± 0.25, p=0.56) and hypercapnia (0.42 ± 0.43 vs. 0.42 ± 0.37, p=0.96). ARI values from 

the right and left MCAs were not significantly different and were averaged for the ROC 

analysis to follow. The change in right and left MCA averaged ARI values induced by PRBS 

controlled thigh cuffs was not significant either for normocapnia (-0.15 ± 1.19; p=0.49) or 

hypercapnia (0.43 ± 1.90; p=0.27).  

Both ROC curves in Fig. 3 showed good classification characteristics in comparison with the 

line of indifference (random choice of impaired/unimpaired). Clearly superior results with 

improvements in sensitivity for any specificity (except near Sp=0 – and of little practical 

importance) were obtained due to increased ABP variability induced by PRBS cuff inflation 

and deflation. The area under the ROC curve increased from 0.72 for baseline to 0.85 during 

cuff operation (p=0.023). The optimal operating point, often defined as the point closest to 

Sp=1 Sn=1, also displays higher sensitivity and specificity for the thigh-cuff inflations.  

 

 

 

Discussion 

Main findings 
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The current study provided confirmation that PRBS controlled inflation/deflation of bilateral 

thigh cuffs induces significant increases in ABP variability compared to spontaneous 

fluctuations recorded at rest. Of note, this study enrolled a much larger population and none 

of the subjects were the same as those who participated in the original pilot study 

(Katosogridakis et al 2012). The main new finding of relevance though is that increased ABP 

led to improved detection of CA impairment induced by hypercapnia. This improvement did 

not depend on the selection of a specific value of the autoregulation index (ARI), but was 

clearly apparent from the shift of the ROC curve (Fig. 3). 

One important additional finding, was that dynamic CA, either expressed by the entire CBFV 

step response curve or the ARI index, did not change significantly due to the random inflation 

and deflation of thigh cuffs. At first sight this might look contradictory, but closer 

examination showed that small changes in individual values of ARI did take place, these did 

not influence the population distribution at either normocapnia or hypercapnia, but 

significantly improved the consistency of the ARI drop from hypocapnia to hypercapnia 

which led to the changes observed in the ROC curve. 

 

Role of ABP variability 

Concerns about the influence of ABP on the reliability of parameters used for assessment of 

dynamic CA have been raised in previous studies (Gommer et al 2010; Liu et al 2005; Zhang 

et al 1998b) with the suggestion that different protocols, such as the sit-to-stand maneuver 

(Claassen et al 2009) could be beneficial to address this potential problem. In particular, Liu 

et al (2005) demonstrated that selecting recordings with high spontaneous ABP variability led 

to more robust estimates of dynamic CA parameters.  
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Apart from our own pilot study based on a smaller and different group of subjects 

(Katsogridakis et al 2012), the use of PRBS to drive the inflation and deflation of bilateral 

thigh cuffs has not been described previously. Aaslid et al. (Aaslid et al 2007) used a square 

wave sequence to drive the inflation of thigh cuffs in a group of adult and paediatric 

neurosurgical patients under mild hypocapnic conditions. Changes in ABP variability due to 

the repeated inflation and deflation of thigh cuffs were not reported and neither the use of 

different square wave frequencies. The influence of thigh cuff inflation on heart rate or other 

indicators of sympathetic outflow was not described either. 

Compared to the classical single inflation/release of thigh cuffs (Aaslid et al 1989) or the 

fixed frequency square wave inflation/deflation approach  (Aaslid et al 2007), PRBS 

controlled inflation/deflation of thigh cuffs present several important advantages. First of all, 

the method allows the time during which the cuffs remain inflated to be much reduced 

compared to the conventional thigh-cuff test (Katsogridakis et al 2012), thus reducing patient 

discomfort and minimizing the possibility of increased sympathetic activity, as indicated by 

the stable HR values in Table 2 (van Lieshout and Secher 2008). Several of our subjects 

expressed some degree of discomfort from the face mask, but none complained about the 

thigh cuffs. This was in stark contrast with our previous extensive experience with the use of 

the classical single inflation/release of thigh cuffs, which can be very painful due to inflation 

pressures of 20 mmHg or more above systolic ABP during at least 3 min (Mahony et al 

2000). Second, due to its temporal variability, PRBS have a much broader frequency 

spectrum than a single frequency square wave and for this reason the increased ABP 

variability is also likely to show a broader spectrum thus bringing additional improvements to 

the quality of transfer function analysis estimates (Katsogridakis et al 2012).  

Despite potential limitations due to insufficient ABP variability, estimates of dynamic CA 

based on spontaneous fluctuations should be regarded as the best ‘physiological reference’ 
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method due to the lack of intervening covariates. For this reason, whenever alternative 

methods for assessment of CA are proposed, for example using changes in posture, it is 

important to demonstrate that these yield at least similar results to the approach based on 

spontaneous fluctuations. Finally, it should also be highlighted that the PRBS instrumentation 

system is portable and can thus readily be made available by the patients’ bedside. 

 

Accuracy of dynamic CA indices 

The ROC curve has been used previously in clinical studies of dynamic CA, but not to 

describe the diagnostic accuracy of ARI for detection of impaired CA resulting from 

hypercapnia. In severe head injury, Panerai et al (Panerai et al 2004) obtained the ROC curve 

for the ARI as a predictor of mortality. Hu et al (Hu et al 2008) showed ROC curves for two 

different techniques to derive the phase difference between CBFV and ABP, another 

indicator of dynamic CA, as predictors of type 2 diabetes. More recently Budohoski et al 

(Budohoski et al 2012) also presented ROC curves comparing two different indices of CA 

based on correlation coefficients, as predictors of intracranial hypertension caused by severe 

head injury. Unfortunately, none of these previous studies reported on levels of ABP 

variability, thus making comparisons with our results difficult. However, it is possible to 

speculate that ABP variability could be elevated in patients with diabetes due to depression of 

the baroreflex in this patient group, whilst severe head injury patients in intensive care might 

have their ABP variability elevated due to artificial ventilation. 

 

Study limitations 

 

Measurements of CBFV can reflect changes in CBF as long as the diameter of the insonated 

vessel remains constant. Several studies have demonstrated that the cross-sectional area of 
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the MCA changes minimally during thigh cuff inflation/deflation or due to large changes in 

ABP or PaCO2  (Giller et al 1993; Newell et al 1994; Serrador et al 2000).  

For the purposes of this study, a maximum thigh cuff pressure setting (MTCP) of 150mmHg 

was selected, and was used uniformly for all volunteers. Future studies could include the 

personalized selection of the MTCP pressure settings in their design, to ensure that maximum 

ABP variability is induced. This is particularly important when investigating CA function in 

elderly subjects or patients with elevated systolic BP. 

One potential limitation of deriving values of ARI from thigh cuff maneuvers is the need of a 

priori knowledge of the critical closing pressure (CrCP) of the cerebral circulation as part of 

the mathematical formulation originally proposed by Tiecks et  al (195). However, in our 

study this was circumvented by direct fitting of the template functions proposed by Tiecks et 

al (1995) using a lest squares approach which automatically matches the amplitudes of the 

measured and theoretical (template) step responses without the need to estimate the CrCP. 

Only healthy volunteers were included in this study, and it is therefore not certain whether 

similar results would be obtained in patients with cardiovascular conditions. The age range of 

the volunteers may also constitute a limitation that hinders the extrapolation of our findings to 

an older population. 

The sample size of the study (n=30) was calculated to detect a change in ARI = 1.2, with 

80% power at p=0.05 (Brodie et al 2009). Changes in ARI above this target were observed 

due to hypercapnia, both during baseline and PRBS controlled inflation/deflation of thigh 

cuffs, but not due to the effect of thigh cuffs, considering the changes mentioned in Results of 

-0.15 in normocapnia and 0.43 in hypercapnia. Therefore, it is possible that with a larger 

sample size, the effect of random inflation/deflation on dynamic CA would have manifested. 

To assess the sensitivity and specificity of ARI in detecting impairments of autoregulation, 

we decided to induce a state of autoregulatory inefficiency by means of administering CO2 at 
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a concentration of 5%, which was used as a surrogate of dynamic CA impairment. Though 

sufficient evidence exists to suggest that this assumption is not unreasonable (Panerai et al 

1999; Paulson et al 1990), caution needs to be exercised before extrapolating our findings to 

impairment of dCA caused by different pathologies. 

 

 

Conclusions 

We have demonstrated the feasibility and efficacy of using pseudorandom binary stimuli for 

the integrated assessment of cerebral haemodynamics with good acceptability by the 

volunteers. This approach resulted in increased ABP variability without distortion of dynamic 

CA estimates. Moreover, the use of PRBS to drive the inflation of thigh cuffs resulted in 

improved sensitivity, specificity and accuracy of the ARI method in detecting dynamic CA 

impairment. Further work is needed to investigate the reliability of estimates of dynamic CA 

obtained with this new method of assessment in a larger population and to test its 

applicability in a clinical setting. 
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Figure legends 

Figure 1. Representative recordings of ABP (thick line, mmHg), CBFV (thin solid lines, 

cm/s) and EtCO2 (dotted line, mmHg) from a 27 year-old male volunteer. Subplots (A) and 

(C) represent the use of spontaneous variability under normocapnic and hypercapnic 

conditions respectively. Subplots (B) and (D) represent recordings obtained from the use of 

the thigh cuffs under normocapnic and hypercapnic conditions respectively. ABP, CBFV and 

EtCO2 are given in units of mmHg, cm.s
-1

 and mmHg, respectively. 

Figure 2. Group averaged CBFV step response functions obtained from the use of thigh cuffs 

(dashed line) and spontaneous variability (solid line) under normocapnic (A) and hypercapnic 

conditions (B). Error bars represent largest ± 1 SEM. During normocapnia (A) the rapid 

return of the step response to baseline, at approximately 4 s indicates an efficient dynamic 

CA which is not observed during hypercapnia (B) when CA is significantly impaired (Table 

2). 

Figure 3. Receiver operating characteristic (ROC) curves for the detection of CA impairment 

induced by hypercapnia. Using different threshold values for ARI, sensitivity and specificity 

(see Methods) were obtained for spontaneous fluctuations in ABP (grey line, squares) and for 

PRBS controlled inflation/deflation of thigh cuffs (black line, circles). Not all cutoff points 

can be distinguished due to the superposition of values of sensitivity and 1-specificity. The 

increased area under the curve, in relation to the ‘line of indifference’ (dashed line) indicates 

the superior discrimination between normal and impaired CA resulting from the use of thigh 

cuffs to increase ABP variability. 
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Table 1. Volunteer demographics (mean ± SD) 

Age (years)   31.4 ± 12 

Height (cm)   174 ± 8 

Weight (kg)   72.2 ± 12.8 

BMI (kgm
-2

)   23.6 ± 3.3 

Systolic BP (mmHg)  123.0 ± 11.6 

Diastolic BP (mmHg)  75.8 ± 8.3 
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Table 2. Population averages for measured and derived parameters (mean ± SD) 

Parameter  Normocapnia / NTC      Normocapnia / TC     Hypercapnia / NTC Hypercapnia/ TC p-values  

                (ANOVA) 

mABP (mmHg)   88.4 ± 14.7  91.0 ± 13.1  93.5 ± 16.9  94.7 ± 16.1  p = 0.020 

CBFVL (cm/s)   53.6 ± 12.2  55.2 ± 12.1  65.4 ± 15.6  70.7 ± 14.2  p <   10
-4

 

CBFVR (cm/s)   52.7 ± 14.1  54.6 ± 11.9  63.9 ± 15.9  66.6 ± 14.3  p <   10
-4

  

EtCO2 (mmHg)  39.8 ±   3.1  38.0 ±   3.1  45.9 ±   2.9  46.8 ±   2.8  p <   10
-4

 

HR (bpm)   69.1 ±   8.0  68.3 ±   7.3  70.9 ±   6.6  71.4 ±   6.7  p = 0.001 

ARIL       6.1 ±   1.5    6.2 ±   1.0    4.4 ±   1.5    4.1 ±   1.4     p < 10
-4

 

ARIR      6.2 ±   1.3    6.1 ±   0.9    4.8 ±   1.9    4.3 ±   1.6  p < 10
-4 

 
 
NTC: no thigh cuffs 
TC  : thigh cuffs 
ARIL : ARI value obtained from CBFV recordings of the left MCA. 
ARIR : ARI value obtained from CBFV recordings of the right MCA 
 


