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Abstract— The changing music landscape demands new ways of 

searching, organizing and recommending music to consumers. 

Content-based music similarity estimation offers a robust 

solution using a set of audio features. In this paper, we describe 

the feature extractors to model timbre, rhythm and tempo. We 

discuss the corresponding feature similarity relations and how 

the distance measures are combined to quantify music similarity. 

The proposed system was submitted to 2011 Music Information 

Retrieval Evaluation eXchange (MIREX) Audio Music Similarity 

task for validation. Both objective and subjective tests show that 

the systems achieved an average genre classification of accuracy 

of 50% across ten genres. Furthermore, the genre classification 

confusion matrix revealed that the system works best on rap, 

hiphop and related types of music. 
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I.  INTRODUCTION 

Recent advances in technology and the Internet are 
changing the way music is distributed and accessed. The 
increased accessibility of music allows people to store 
thousands of music files in their portable media players, 
computing device, mobile phones, and other devices. The 
latest development called cloud storage enables online storage 
of digital music. This encouraged music distributors to adapt 
by establishing online channels such as Apple iTunes Store1, 
Amazon MP32 and Napster3. In 2010, The International 
Federation of the Phonographic Industry reported that more 
than a quarter of the recorded music industry global revenues 
(29%) came from digital channels [1]. It is a market worth 
US$4.6 billion, an increase of 6% from 2009. 

Given the large music collections available, there is a 
demand for new applications for searching, browsing, 
organizing, as well as recommending new music to users. A 
common method for searching for music is keyword search.  
People can enter the artist, track title or album name on a 
search engine and a list of nearest matching tracks are 
returned. However, this assumes that the user knows the 
specific keywords and that to some extent such tracks exist. It 
is also possible to perform a broader search by providing 
general keywords, e.g. genre, year, location, etc. 

                                                           
1 http://www.apple.com/itunes/ 
2 http://www.amazon.co.uk/MP3 
3 http://www.napster.com 

 There are other challenges that present new opportunities 
for research using large music collection for searching and 
retrieval of music related data. This research field is 
collectively called Music Information Retrieval (MIR). MIR is 
a multidisciplinary field that includes acoustics, 
psychoacoustics, signal processing, computer science, 
musicology, library science, informatics, and machine 
learning, etc. [2]. Its main goal is to provide a level of access 
to the world’s vast music collection on a level at par, or 
exceeding, that being afforded by text-based search engines. 
This paper focuses on content-based methods for music 
similarity estimation. This involves extracting useful 
information or features from audio signals and developing a 
computational model for music similarity estimation. 

The paper is organized as follows. The following section 
presents the related work. Section 3 details how the relevant 
audio features are extracted. Section 4 describes how the 
derived features are combined and used for audio music 
similarity estimation. Section 5 presents the validation results 
of the system using the 2011 Music Information Retrieval 
Evaluation eXchange (MIREX) data. Finally, the findings are 
summarized in Section 6. 

II. RELATED WORK 

Existing works on audio music similarity estimation focus 
on the estimation of similarity between one, or a combination 
of facets of music such as timbral and rhythmic information. 
Logan and Salomon were one of the first to publish a music 
similarity function based on audio content analysis [3]. The 
similarity function has been successfully applied to playlist 
generation, artist identification and genre classification of 
music. The method is based on the comparison of a ‘signature’ 
for each track using the Earth Mover’s Distance (EMD), a 
mathematical measure of the difference between two 
distributions. For each track, the Mel-frequency Cepstral 
Coefficients (MFCCs) are computed. The signature is then 
formed using K-means clustering on the spectral features. 
Aucouturier and Pachet provided the groundwork for 
estimating music similarity using timbre [4]. A Gaussian 
mixture model (GMM) is trained on MFCC vectors from each 
song and is compared by sampling the distributions in order to 
estimate the timbral similarity between two songs. They also 
introduced the ‘Aha’ factor to correct unexpected associations. 

 



In 2005, Mandel and Ellis presented a new system that uses 
single Gaussian distribution model to approximate timbre [5]. 
The first 20 MFCCs are calculated for a given audio frame. 
The mean and covariance matrix are computed for the resulting 
MFCC vectors. Thus, a song is represented by a 20x20 
covariance matrix and a 20-dimensional mean vector. Similar 
to other timbre music similarity models, the temporal aspects 
are ignored. The similarity between two songs is then 
computed by Kullback-Leibler (KL) divergence. A symmetric 
KL divergence (SKLD) is derived to make it suitable as a 
distance function. 

Pampalk combined Mandel and Ellis’s timbre model with 
information from fluctuation patterns (FP) [6]. The fluctuation 
pattern describes the modulation of the loudness amplitudes 
per frequency bands. To some extent it can describe periodic 
beats. The resulting fluctuation pattern is a matrix with rows 
corresponding to frequency bands and columns corresponding 
to modulation frequencies (in the range of 0 to 10 Hz). The FP 
patterns are then summarized by computing the median of all 
FP matrices. The distance between FPs is computed by 
interpreting the FP matrix as high-dimensional vector and 
computing the Euclidean distance. The spectral similarity 
model is a single Gaussian with full covariance matrix. The 
distance between two Gaussians is computed using SKLD. 
Thus, the distance between two tracks is a weighted 
combination of the FP, spectral distances and derived features.  

In our system, audio signals are modeled as long-term 
accumulative distribution of frame-based spectral features. 
This is also known as the “bag-of-frames” (BOF) approach 
wherein audio data are treated as a global distribution of frame 
occurrences. The disadvantage however is that temporal 
information is lost. There are several approaches to summarize 
the features. Tzanetakis, et al. used a single Gaussian with a 
diagonal covariance matrix [7].  Subsequent studies showed 
that using a single multivariate Gaussian with full covariance 
matrix can achieve the same level of performance [5][8]. In 
this work, we adopt this approach to benefit from reduced 
computational complexity compared to GMM.    

III. FEATURE EXTRACTION 

This section describes the processes involved in deriving 
the features from audio signals. The features extracted from 
audio files are approximations of timbre, rhythm and tempo. 
The feature extraction and distance computation algorithms are 
implemented in MATLAB®. 

A. Audio Preprocessing 

Our system requires that the audio signals are sampled, or 
resampled, at Fs = 22050 Hz. This reduces the amount of data 
to be processed without compromising the salient features. The 
audio signals are then normalized such that they have 
maximum amplitude of one and have average value of zero. 
This removes DC component from the Fourier transform and 
also ensures that the amplitude of the transforms are of similar 
magnitude. Since the signals are almost of similar magnitudes 
after normalization, the loudness information is lost. However, 
this is acceptable since loudness is not as effective as other 
features for similarity functions [6]. 

B. Timbre 

The timbre component is represented by the MFCCs [9]. 
The normalized audio signals signal is divided into frames with 
a window size and hop size of 512 samples (~23 msec.). The 
first 20 MFCC coefficients are derived but the zeroth 
coefficient is discarded. The resulting MFCC vectors are 
modeled as a single Gaussian distribution represented by its 
mean µ and covariance matrix Σ. 

To enhance the timbre model, a number of coefficients are 
also derived. There are a number of simple features that can be 
computed from the spectrogram [10]. In this work, only the 
spectral flux is used. 

1. Spectral Flux – defined as the squared difference 
between the normalized magnitudes of successive 
unfiltered spectral distributions. It measures the 
amount of local spectral change over a frame. 
  

   (1) 
 
where Nt(n) and Nt-1(n) are the normalized magnitude 
spectrum of the Fourier transform at the current 
frame t, and the previous frame, t-1, respectively. 

 
2. Spectral Flux for Delta Spectrum – given the 

unfiltered magnitude spectrum M, the delta spectrum 
M’ is derived by getting the difference between 
successive frames.  The spectral flux is computed 
from M’ to determine the rate of change of the 
spectral flux. 
 

Since the spectral flux coefficients are computed on the 
same time frames that MFCC used, the author proposes to 
append these coefficients on the MFCC matrix before taking 
the mean and covariance. In this way, the dynamic information 
is also preserved. This increases the dimensions of the mean 
vector and covariance matrix; hence it increases the 
computational complexity. Optimization is performed to find a 
balance between the number of dimensions and the 
performance of the algorithm. This is done by determining the 
best combination of MFCC values and spectral flux features 
that gives the highest genre classification accuracy. For 
example, in each time frame the last 19 MFCC values are 
appended with the spectral flux and spectral flux delta values.  
This results in a timbre model represented by 21x21 covariance 
matrix and a 21-dimensional mean vector.  

C. Rhythm 

The rhythm component is represented by the fluctuation 
patterns. Modulated sounds at low level modulation 
frequencies up to a modulation frequency of 20 Hz produce the 
hearing sensation of fluctuation strength [11]. The relationship 
between the fluctuation strength F and modulation frequency 
fmod with masking depth ∆Ls given by:  
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The sensation of fluctuation strength is most intense around 
4Hz [11]. This is the basis of fluctuation pattern. The following 
steps describe the derivation of FPs:  

1. Cut the spectrogram into short segments with 
window size of 3 secs. and hop size of 1.5 secs. The 
longer segment size is used, as compared to the size 
used for MFCC, to better capture the rhythm. 

2. Map the 36 Mel-frequency bands into 12 such that 
the lower frequency bands are more preserved while 
the higher frequency bands are grouped. 

3. For each segment and each frequency band, use FFT 
to compute the amplitude modulation frequencies of 
the loudness in the range of 0-10 Hz 

4. Apply the weighting function using the model of 
perceived fluctuation strength (2). 

5. Apply filters to reduce the influence of low 
frequencies and highlight the modulation frequency 
around 4 Hz. 

 

The resulting FP is a matrix whose rows correspond to 
frequency bands and columns correspond to modulation 
frequencies (0 to 10 Hz). To summarize all FP patterns 
representing the segments of a music piece, the median of all 
FP’s is computed. A single FP matrix represents a music file. 
The distance between pieces is computed by reshaping the FP 
matrix into a high-dimensional vector then solving for the 
Euclidean distance. 

D. Tempo 

Tempo is a fundamental property in music, particularly in 
western music. The tempo estimator used in this work is 
adapted from the work of [12]. It is simple and 
computationally efficient that can be easily integrated in our 
feature extraction system. 

Global tempo estimation is done in two stages: onset 
envelope detection and tempo derivation. Given the Mel power 
spectrum, the first-order difference along time is calculated in 
each band. The negative values are set to zero, i.e. half-wave 
rectified, then the remaining positive differences are summed 
across all frequency bands. The resulting signal is then passed 
through a high-pass filter with a cut-off around 0.4 Hz to make 
it locally zero mean. The output is a one-dimensional onset 
strength envelope as a function of time that responds to 
proportional changes in energy summed across the 36 Mel 
frequency bands.   

The second phase for the tempo estimator is to calculate the 
global tempo from the onset strength envelope. Given the onset 
strength envelope, autocorrelation will reveal any regular, 
periodic structure. For delays that align many peaks, a large 
correlation is observed. Human tempo perception is known to 
have a bias towards 120 bpm [13]. Hence, a perceptual 
weighting window is applied to the raw autocorrelation to de-
emphasize periodicity peaks far from the bias. Finally, the 
scaled peaks are interpreted as indicative of the likelihood of a 
human choosing that period as the underlying tempo. The 
tempo period strength (TPS) is described by this equation.  
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Figure 1. Tempo calculation. top: Raw autocorrelation of onset strength 

envelope; bottom: autocorrelation with perceptual weighting window applied 

and estimated tempo marked. 
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where O(t) is the onset strength envelope and W(τ) is a 
Gaussian weighting function on a log-time axis: 
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where τ0 is the center of the tempo period bias, and στ controls 
the width of the weighting curve. . The optimum τ0 is 0.5 sec 
(corresponding to 120 bpm) and στ of 1.4 octaves. The primary 
tempo is the delay τ for which the TPS(τ) is largest, see Fig. 1.  

IV. MUSIC SIMILARITY ESTIMATION 

The timbre, rhythm and tempo distances between tracks are 
computed separately. A direct approach to combine timbral 
similarity with other features is to compute a weighted sum of 
the individual distances, see Fig. 2. Each distance component is 
normalized by removing the mean and dividing by the standard 
deviation of all the distances. The system is then optimized by 
determining the weights for each distance component that 
achieved the highest genre accuracy. It was determined the 
optimum weights for the timbre, rhythm, and tempo are 
wtimbre=0.95, wrhythm=0.04, wtempo=0.01, respectively. Symmetry 
is obtained by summing up the distances in both directions. 

Using a single Gaussian with full covariance matrix to 
model timbre, the similarity can be computed using the 
Kullback-Leibler (KL) divergence. The KL divergence 
between two single Gaussians p(x)=N(x;µp,Σp) and 
q(x)=N(x;µq,Σq) is given by [14]: 

(5) 
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Figure 2. Block diagram of the proposed system for estimate music similarity. 

 

where |Σ| denotes the determinant of the matrix Σ, Tr( )
 

denotes the trace of the matrix. The resulting divergence is not 
symmetric. A symmetric version can be derived from (5). The 
symmetrised Kullback-Leibler divergence (SKLD) between 

two single Gaussian distributions x1~N(µ1,Σ1) and x2~N(µ2,Σ2) 
is defined as: 
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The values obtained from SKLD have a large range, thus the 
log function is applied to (6).  The Euclidean distance is used 
to compute the distance between rhythm patterns while the 
absolute distance is used for the tempo estimates. 

V. EXPERIMENTS 

Performance evaluation is a complex task that is often 
complicated with copyright issues. Researchers tend to 
evaluate their systems using their own database. This makes it 
hard to compare the systems on a level field. To solve this, the 
International Music Information Retrieval Systems Evaluation 
Laboratory (IMIRSEL) in the Graduate school of Library 
Information science at the University of Illinois conducts 
annual evaluations of many Music Information Retrieval 
(MIR) algorithms. Different MIR tasks work on a particular 
database and performance metrics. The annual evaluations are 
known as the Music Information Retrieval Evaluation 
eXchange (MIREX).  

A. Setup 

The author submitted the proposed system to MIREX 2011 
audio music similarity task. The system was given 7000 songs 
chosen from IMIRSEL's "uspop", "uscrap" and "american" 
"classical" and "sundry" collections. The system then returned 
a 7000x7000 distance matrix. 100 songs were randomly 
selected from the 10 genre groups (10 per genre) as queries and 
the first 5 most highly ranked songs out of the 7000 were 
extracted for each query (after filtering out the query itself, 
returned results from the same artist were also omitted). Then, 
for each query, the returned results (candidates) from all 
participants were grouped and were evaluated by human 
graders using the Evalutron 6000 grading system [15]. Each 
individual query/candidate set was evaluated by a single 
grader. For each query/candidate pair, graders provided two 
scores to quantify similarity: a fine score from 0 (dissimilar) to 
100 (exact), and a categorical broad score with 3 categories: 
Not Similar (0), Somewhat Similar (1), Very Similar (2).  

TABLE I.  COMPARISON OF SYSTEM PERFORMANCE 

Algorithm Genre 

Classification 

Accuracy 

Average  

Fine Score 

Average  

Broad Score 

Proposed System 50.63% 50.49 1.09 

Best Performing System 59.67% 58.64 1.31 

B. Results 

The objective results4, based on the percentage of genre 
neighborhood clustering accuracy from indexed metadata, are 
tabulated on the second column of Table I. The results are 
artist filtered, that means an artist can only appear once in the 
training set or the testing set but not both. This process 
removes any biases of the algorithm towards a particular artist. 
The objective results are highly correlated with the human 
evaluation grades presented third and fourth columns of Table 
I. Both objective and subjective results show that returning the 
5 closest songs to a given query, 50% of the candidate songs 
belong to the same genre. For comparison, the best performing 
system [16] in MIREX 2011 returns 60% of the candidate 
songs from the same genre.  

To better understand the performance of the algorithm, the 
artist filtered genre confusion matrix for the proposed system is 
tabulated in Table II. The columns represent the true genres 
while the rows denote the predicted genres based on the genre 
of the candidate songs. Looking on the main diagonal of the 
matrix, it is observed that there is inconsistency in the 
accuracy. The algorithm performs effectively on raphiphop, 
metal, blues and country. Interestingly, it performed poorly on 
classical music. This is unexpected as previous runs using local 
database always had the highest accuracy with classical genre. 

The western genres used in MIREX are not completely 
delineated. Hence, it is also observed from Table II that certain 
genres are often confused with other, but somehow similar 
genres. For example, metal is confused with rockroll, blues is 
confused with jazz, and so on. By clustering related genres, the 
resulting confusion matrix is shown in Table III. The average 
genre classification accuracy increases to 84%. Hence, there is 
a need to improve the performance of the algorithms in terms 
of differentiating songs from a cluster. This can be addressed 
by deriving additional features and improving the distance 
computation method. It is also worth considering the limitation 
of the “bag-of-frames” approach. The state-of-the-art uses 
larger time windows to preserve salient temporal information. 

Among the three features used in the system, the highest 
weight is applied to the timbre component. This emphasizes 
the importance of timbre among other facets of music. Most 
audio signal processing techniques work on short frames or 
segments. Timbre encompasses all the spectral and rapid time-
domain variability in the acoustic signal. Such information can 
be highly indicative of audio similarity as similar music may 
have similar instrumentation or orchestration. Other features, 
such as rhythm or tempo serve to complement timbre, and may 
even capture the mood of music. In addition, a more suitable 
model for the complex human judgment should be developed, 
rather than a simple sum of feature distances.  

                                                           
4 http://www.music-ir.org/mirex/wiki/2011:MIREX2011_Results 



TABLE II.  ARTIST FILTERED GENRE CLASSIFICATION CONFUSION MATRIX 

predicted
\true 

Metal Blues Baroque Country Rockroll Jazz Raphiphop Edance Classical Romantic 

Metal 0.64914 0.00543 0.00486 0.02714 0.24029 0.026 0.01771 0.12914 0.00029 0 

Blues 0.00286 0.60657 0.002 0.03857 0.01057 0.20314 0.00486 0.00457 0.00857 0.00343 

Baroque 0.00457 0.00571 0.41086 0.01143 0.01257 0.01743 0.004 0.00857 0.16371 0.15314 

Country 0.05114 0.08657 0.04714 0.60743 0.26629 0.12 0.04629 0.098 0.00571 0.00371 

Rockroll 0.23971 0.02457 0.02571 0.17171 0.37743 0.05486 0.03686 0.11629 0.00114 0.00429 

Jazz 0.00571 0.18057 0.00571 0.05171 0.01686 0.46057 0.00914 0.03743 0.00686 0.00314 

Raphiphop 0.01743 0.02543 0.00229 0.03429 0.03629 0.02057 0.818 0.214 0.00057 0.00086 

Edance 0.01686 0.00314 0.00029 0.01686 0.01686 0.01714 0.06257 0.35686 0.00029 0.00086 

Classical 0.00343 0.03543 0.28629 0.02229 0.00829 0.05086 0.00029 0.01086 0.30143 0.35 

Romantic 0.00914 0.02514 0.21486 0.01857 0.01457 0.02943 0.00029 0.02429 0.51143 0.48057 

TABLE III.  ARTIST FILTERED, CLUSTERED GENRE CLASSIFICATION CONFUSION MATRIX 

predicted
\true 

Metal Blues Baroque Country Rockroll Jazz Raphiphop Edance Classical Romantic 

metal,country, 

rockroll 0.93999 0.11657 0.07771 0.80628 0.88401 0.20086 0.10086 0.34343 0.00714 0.008 

blues,jazz 0.00857 0.78714 0.00771 0.09028 0.02743 0.66371 0.014 0.042 0.01543 0.00657 

baroque,classical, 

romantic 0.01714 0.06628 0.91201 0.05229 0.03543 0.09772 0.00458 0.04372 0.97657 0.98371 

raphiphop,edance 0.03429 0.02857 0.00258 0.05115 0.05315 0.03771 0.88057 0.57086 0.00086 0.00172 

 

VI. CONCLUSION 

This paper presented a system for performing content-
based music similarity estimation. The proposed system used 
features extracted from audio files to model timbre, rhythm and 
tempo. For the submitted algorithms to MIREX 2011 AMS 
task, both objective and subjective tests show that the systems 
achieved a genre classification of accuracy of 50%. By 
clustering related genres, the system’s accuracy increases to 
84%. The system can be further improved by considering other 
audio features and distance measures. This work serves to 
complement other approaches that may be limited by time and 
resources, such as manual annotation of music tracks. It 
recognizes that music similarity is very much dependent on 
user cultural background or preferences, and audio 
classification is best done by music experts.  
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