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With the increasing input power in optical fibers, the dispersion problem is becoming a severe restriction on wavelength division
multiplexing (WDM).With the aid of solitons, in which the shape and speed can remain constant during propagation, it is expected
that the transmission of nonlinear ultrashort pulses in optical fibers can effectively control the dispersion. The propagation of a
nonlinear ultrashort laser pulse in an optical fiber, which fits the high-order nonlinear Schrödinger equation (NLSE), has been
solved using the G󸀠/G expansion method. Group velocity dispersion, self-phase modulation, the fourth-order dispersion, and the
fifth-order nonlinearity of the high-order NLSE were taken into consideration. A series of solutions has been obtained such as the
solitary wave solutions of kink, inverse kink, the tangent trigonometric function, and the cotangent trigonometric function. The
results have shown that the G󸀠/G expansion method is an effective way to obtain the exact solutions for the high-order NLSE, and
it provides a theoretical basis for the transmission of ultrashort pulses in nonlinear optical fibers.

1. Introduction

It is understood that a soliton is excited by a nonlinear
field, and its energy is relatively concentrated in a small
area. The elastic scattering phenomenon occurs during the
interaction between two solitons.The energy is nondispersed,
so that the shape and speed can remain unchanged during
its propagation. The history of the studies of solitons can
be traced back to 1834, when James Scott Russell, a British
scientist, accidentally observed that a bulge of water in
Edinburgh-Glasgow Canal was propagating undistorted over
several kilometers [1]. In 1973, Hasegawa and Tappert [2] first
proposed the idea of applying “optical solitons” to photonic
communication. After rigorous theoretical andmathematical
deduction, he predicted that both bright and dark soliton
pulses were present in an optical fiber. He also proved that any
nondestructive optical pulse could travel as stable as a soliton
during its transmission in an optical fiber. As an intrinsically
nonlinear phenomenon, a soliton is the product of the optical
fiber dispersion and the nonlinear interaction. It obeys the
NLSE and is controlled by the optical fiber dispersion and
the nonlinear effects of self-phasemodulation. In 1980, bright
solitons were observed for the first time in an optical fiber by

Mollenaure [3] and his colleagues during their experiments
at the Bell Laboratory of the United States. In 1987, Emplit
observed dark solitons in a fiber by using an amplitude
technique and a phase filtering technique. In mathematics,
the progress of the soliton theory has been achieved mainly
by finding a large number of soliton solutions for nonlinear
partial differential equations, so as to gradually establish
a systematic theory of solitons. The special properties of
a soliton, the related mathematical description of its rich
structure, and the deep physical origins have profoundly
expanded the applications of soliton theory and methods.
The study of the exact solutions for the NLSEs has become
an important research and development direction. The 𝐺󸀠/𝐺
expansionmethod [4], one of themethods for obtaining exact
solutions for NLSE, has attracted much attention recently
[4–6]. In particular, it plays an important role in deriving
the propagation wave solution of NLSE. Therefore, a good
understanding of the 𝐺

󸀠
/𝐺 expansion method is of great

significance to the transmission application of ultrashort
pulses in nonlinear optical fibers. This paper presents the
method in detail with examples for obtainingmultiple soliton
solutions.
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2. 𝐺󸀠/𝐺 Expansion Method

The nonlinear equation with two variables 𝑥 and 𝑡 could be
written as

𝑃(𝑢 (𝑥, 𝑡) ,
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2
, . . .) = 0. (1)

The first step of the 𝐺󸀠/𝐺 expansion method is to assume
a variable 𝜉 = 𝑥 − V𝑡; thus, 𝑢 = 𝑢(𝑥, 𝑡) = 𝑢(𝜉); it can then be
expressed as a 𝐺󸀠/𝐺 power polynomial:
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𝑚
(
𝐺
󸀠

𝐺

)

𝑚

+ 𝛼
𝑚−1

(
𝐺
󸀠

𝐺

)

𝑚−1

+ ⋅ ⋅ ⋅ + 𝛼
0
, (2)

in which 𝐺 = 𝐺(𝜉) satisfies the second-order linear ordinary
differential equation:

𝐺
󸀠󸀠
+ 𝜆𝐺
󸀠
+ 𝜇𝐺 = 0, (3)

where 𝛼
𝑚
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, . . . , 𝛼
0
, 𝜆, 𝜇 in (2) and (3) are undetermined

parameters, in which, 𝛼
𝑚

̸= 0, and the general solution of (3)
is expressed as

𝐺 (𝜉) = 𝐴e(−𝜆+√𝜆
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The derivative of 𝐺(𝜉) can be derived from (4):
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(5)

The ratio of 𝐺(𝜉) and 𝐺󸀠(𝜉) is expressed as [6]
𝐺
󸀠

𝐺

= −
𝜆

2

+

√𝜆
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− 4𝜇

2

×

(𝐴 + 𝐵) sinh((√𝜆2 − 4𝜇/2) 𝜉) + (𝐴 − 𝐵) cosh((√𝜆2 − 4𝜇/2) 𝜉)

(𝐴 + 𝐵) cosh((√𝜆2 − 4𝜇/2) 𝜉) + (𝐴 − 𝐵) sinh((√𝜆2 − 4𝜇/2) 𝜉)
.

(6)

3. Applying the 𝐺
󸀠
/𝐺 Expansion Method

to Solve NLSE for Ultrashort Pulses in
Optical Fibers

Many problems in the study of natural science can be related
to nonlinear evolution equations, and the optical soliton
is one of them. It is always problematic to find soliton
solutions for nonlinear evolution equations by physicists and
mathematicians. With the development of modern com-
puters, many methods have been developed, such as the
homogeneous balance method and the hyperbolic function
method [7–9].This research uses the𝐺󸀠/𝐺 expansionmethod
to solve the high-order NLSE.

The generalized NLSE is given by
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Considering the case when 𝑙 = 1, 𝑚 = 2, 3, 4, and 𝑛 = 1, 2,
the corresponding coefficients are nonzero and the rest of the
coefficients are zero. Assuming the coefficient 𝛼

1
= 1 and

allowing the variable 𝑥 to be replaced by 𝑧 and the function
𝜓 to be replaced by 𝑞, the high-order NLSE (with items
included, namely, the group velocity dispersion, the self-
phasemodulation effect, the fourth-order dispersion, and the
fifth-order nonlinear term) can then be expressed as
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(8)

in which 𝛽
2
, 𝛽
3
, and 𝛽

4
are the second-, third-, and fourth-

order dispersion coefficients and 𝛾
2
and 𝛾
4
are the third- and

fifth-order nonlinear coefficients. The second-order disper-
sion coefficient 𝛽

2
is also known as the group velocity dis-

persion coefficient. With increasing optical power in a fiber,
it is necessary to take the third-order nonlinear term into
account, which represents the phase equilibrium between the
group velocity dispersion and the nonlinear effect. This will
allow the maintaining of unchanged properties for soliton
pulses in an optical fiber, which is necessary for long distance
transmission, and is also beneficial to WDM.

Other methods, such as the extended tanh-function
method, the subsidiary ordinary differential method, and the
extended hyperbolic auxiliary equation method, have been
used in order to find the exact solutions for (8) [10–12]. It has
been found that there is no solution for (8) when 𝛽

3
−𝛽
4
] ̸= 0.

In order to obtain the exact solution, ] = 𝛽
3
/𝛽
4
is assumed

and (8) is then converted to a real equation after its real
part and imaginary part are separated. The 𝐺󸀠/𝐺 expansion
method is then used for solving the equation.
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3.1. Reduction TravellingWave. Assume the form of the exact
solution is

𝑞 (𝑧, 𝑡) = 𝑢 (𝜉) ei(𝐿𝑧−V𝑡), 𝜉 = 𝑘𝑧 − 𝜔𝑡. (9)

The parameters of 𝑘, 𝐿, 𝜔, V are undetermined parame-
ters. A series of expressions can be obtained based on (9).The
key equation (10) can be obtained after the real part and the
imaginary part of (8) are separated:
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3.2. The Exact Solution Obtained Using the 𝐺󸀠/𝐺 Expansion
Method. The 𝐺󸀠/𝐺 expansion method was proposed for the
exact solutions by Wang et al. [4]. The method is effective to
solve the exact solutions for the nonlinear partial differential
equation.

The form of the exact solution for (10) is

𝑢 (𝜉) =
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where 𝐺 = 𝐺(𝜉) and it satisfies (3).
The result of 𝑛 = 1 can be obtained by balancing the

highest derivative 𝑢󸀠󸀠󸀠󸀠 and the highest derivative with high
nonlinearity 𝑢5 in (10).The general expression for (10) can be
expressed as
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Based on (12) and (10), and assuming the coefficients
of (𝐺󸀠/𝐺)𝑖, 𝑖 = 0, 1, 2, 3, 4, 5 are zero, a set of six algebraic
equations can be obtained:
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The parameter 𝛼
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𝛼
1
=
4
√
𝛽
4

𝛾
4

𝜔. (19)

It was mistakenly written as 𝛼
1
=
5
√(𝛽
4
/𝛾
4
)𝜔 in [6].

3.2.1. The First Type Exact Solution. From (14) when 𝜆 = 0,
the result is 𝛼
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The exact solution of (21) based on (6) is
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Consider the following.

(a) When 𝜇 < 0 and 𝐴 = 𝐵 = 1, the kink wave solution is
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(b) When 𝜇 < 0 and 𝐴 = −𝐵 = 1, the inverse kink wave
solution is
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The exact solution of (26) based on (6) is
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Consider the following.
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(d) When 𝜆2 − 4𝜇 < 0 and 𝐴 = −𝐵 = 1, the solitary wave
solution of the cotangent trigonometric function is

𝑞
24
=
4
√
𝛽
4

𝛾
4

𝜔

√4𝜇 − 𝜆
2

2

cot(
√4𝜇 − 𝜆

2

2

𝜉) ei(𝐿𝑧−V𝑡). (32)

The application of the feature equations can be found in
[13–17].

4. Conclusions

A 𝐺
󸀠
/𝐺 expansion method was applied to obtain the exact

solutions for NLSE which is the governing equation for
ultrashort pulse transmission in a nonlinear fiber. The items
of the group velocity dispersion, self-phasemodulation effect,
the fourth-order dispersion, and the fifth-order nonlinearity
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were considered. Two kinds of the kinkwave solution, inverse
kink wave solutions, the solitary wave solution of the tangent
trigonometric function, and the solitary wave solution of the
cotangent trigonometric function were found by using the
𝐺
󸀠
/𝐺 expansion method.
These results have important significance in optical fiber

communication and its applications.
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