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Abstract:  We report on a method to obtain accurate dispersion 

measurements from spectral-domain low-coherence interferograms, which 

enables high accuracy (~ps/nm/km), broadband measurements and the 

determination of very dense (up to 20 points/nm over 500 nm) datasets for 

both dispersion and dispersion slope. The method exploits a novel phase 

extraction algorithm which allows the phase associated with each sampling 

point of the interferogram to be calculated and provides for very accurate 

results as well as a fast measurement capability, enabling close to real time 

measurements. The important issue of mitigating the measurement errors 

due to any residual dispersion of optical elements and to environmental 

fluctuations was also addressed. We performed systematic measurements on 

standard fibers which illustrate the accuracy and precision of the technique, 

and we demonstrated its general applicability to challenging problems by 

measuring a carefully selected set of fibres: a lead silicate microstructured 

fiber with a flat, near-zero dispersion profile; a hollow core photonic 

bandgap fiber with strongly wavelength-dependent dispersion and 

dispersion slope; a small core, highly birefringent index guiding 

microstructured fiber, for which polarization resolved measurements over 

an exceptionally wide (~1000 nm) wavelength interval were obtained. 
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1. Introduction  

The accurate measurement of the group velocity dispersion (GVD) of optical fibers over wide 

wavelength intervals (up to several hundred nanometers) is of great importance for the 

efficient exploitation of nonlinear optical effects. For instance, the precise knowledge of the 

wavelength dependent dispersion profiles, including the position of any zero-dispersion 

points, is essential for optimizing the shape and spectral extent of supercontinuum generation 

[1], or to ensure phase matching conditions in parametric processes [2], or to control effects 

such as pulse compression and soliton self-frequency shift [3]. It is often also desirable to 

obtain dense GVD datasets composed of closely spaced data points as the latter enable to 

reliably determine the higher dispersion orders, which are critical e.g. for applications 

involving pulse compression [4] and soliton generation [5]. As the above mentioned 

applications typically require relatively short device lengths (of a few meters to few tens of 

meters), the ability to measure short samples is of great value. Microstructured optical fibers 

(MOFs), incorporating arrays of wavelength-scale air holes (or other high-index-contrast 

features) afford great flexibility in designing the fiber GVD as well as the other linear and 

nonlinear transmission properties. However, often the dispersion of MOFs is very sensitive to 

the fiber’s structural parameters and small differences between idealized structures and real 

fibers mean that state-of-the-art modeling tools often cannot provide fully reliable predictions 

[6]. Thus, a dispersion measurement technique that can provide high accuracy and dense 

datasets over broad wavelength intervals is paramount for both fiber development and 

application work.  

Several well established techniques exist to measure dispersion in optical fibers, 

particularly at telecom wavelengths. Here, time-of-flight [7] and phase shift [8] techniques are 

commonly employed; however, these require very long fiber lengths of the order of tens of 

km. On the other hand, dispersion measurement techniques that can use short fiber samples 

are commonly based on low-coherence interferometry (LCI). In these methods, 

interferograms are produced by combining two broadband beams, one directed through the 

fiber under test, and the other (reference beam) directed through a free-space variable delay 

line. The interference can be detected either in the time domain [9,10], typically by varying 



the length of the delay line, or in the spectral domain [11-13], by using a scanning 

monochromator or optical spectrum analyzer (OSA). In the spectral domain, the wavelength 

dependent GVD can in principle be extracted from single-shot interferograms, which can 

extend over intervals as wide as several hundred nm. The information on the fiber dispersion 

(as well as higher dispersion orders) is contained in the phase of the interferogram. To retrieve 

the phase from the wavelength dependent intensity, two methods are widely employed. The 

first consists in finding the intensity maxima (or equivalently of the minima), which 

correspond to a 2π phase shift [12]. This straightforward approach has however the drawback 

of significantly under-exploiting the information contained in the interferogram as it only 

outputs a small set of phase values from which the GVD is determined and thus in general it 

cannot yield reliable information on the dispersion slope. In contrast, a direct nonlinear fit 

[13] of the interferogram can in principle yield denser datasets, however this approach 

requires the initial conditions to be set on a case-by-case basis and extensive verification of 

the quality of the fit, which is very time consuming and often leads to sub-optimal results.  

In this work, we present a novel LCI method based on a direct phase extraction scheme, 

which achieves a combination of broad bandwidth (several hundred nm), dense wavelength 

sampling intervals and ~ps/nm/km accuracy from single shot measurements. More 

importantly, it provides for a fast measurement capability, without need for complex off-line 

data analysis, and is thus amenable to automation. We report systematic measurements 

demonstrating the accuracy and precision of the technique and its resilience against 

environmental drifts and disturbances. To further illustrate the versatility of our method, we 

apply it to the case of three microstructured optical fiber types with widely ranging dispersion 

profiles. 

2. Direct Phase Extraction Method 

To introduce the data analysis method we start by considering a basic schematic of a SD-LCI 

measurement setup, such as the one based on a Mach-Zehnder interferometer shown in Fig. 

1(a). The output of a broadband light source is split into two beams, one propagating in the 

test fiber and a second propagating in air, here assumed a virtually dispersion-free medium. 

The two beams are then combined and measured using an OSA. If       and       are the 

intensities of the fiber and reference beam, respectively, the wavelength dependent intensity 

recorded at the combiner is given by the well-known equation: 

                        √                      (1) 

The oscillatory part depends on the phase difference between the two paths,     , and it 

contains an envelope term, termed as the visibility of the interferogram,       , which 

effectively defines the interferogram width. Under general conditions, it can be shown that the 

visibility is a function of the resolution of the OSA and of the dispersive properties of the fiber 

itself. The phase contains the information about the dispersion of the test fiber as it is related 

to the fiber’s propagation constant       via the following equation: 

                 ⁄  (2) 

where L and d are the length of the test fiber and of the reference arm, respectively. The phase 

can also be expressed via a Taylor series expansion at an arbitrary wavelength, 0 as: 

                              
           

    (3) 

The terms            in the expansion are related to the optical path difference, the 

differential group delay and the group velocity dispersion (at 0), respectively; higher order 

terms (not explicitly shown in Eq. 3) are related to higher dispersion orders. 



An example of interferogram obtained from a standard single mode fiber (SMF) is shown 

in Fig. 1(b). It is characterized by spectral fringes having a wavelength dependent spacing, 

with the maximum spacing occurring at local centers of symmetry (CoSs), in which the phase 

is stationary and the group delays of the two interferometer arms are exactly matched. The 

direct extraction of the phase value associated with each point of the interferogram is obtained 

by solving Eq. (1) with respect to     , which requires three separate steps: i) normalization 

for the spectrum of the source, ii) normalization for the envelope function and iii) inversion of 

the cosine function. To perform the first step, the intensities of the reference and fiber arms 

are independently recorded, and the background normalized interferogram (shown in Fig. 

1(c)-1, blue trace) is obtained as follows: 

        
                

 √          
                 (4) 

To extract the fringes,    must be divided by the visibility,     . As the latter depends on the 

phase derivative and thus on the dispersion, it is necessary to determine empirically the 

envelope from the measured interferogram. We do this by identifying the maxima and minima 

and reconstruct      through a linear interpolation of the maxima and the absolute values of 

the minima of the various fringes, see Fig. 1(c)-2. Such procedure can be implemented via 

simple algorithms and has been verified to provide an accurate end result despite the 

seemingly coarse linear approximation. The normalized interferogram is then divided by the 

envelope (see Fig 1(d)-3, blue trace). It should be noted that this operation is carried out 

where the interferogram is at the most visible, and thus       . Finally, the extraction of 

the phase requires the calculation of the inverse cosine, i.e.: 

            [
      

     
] (5) 

 

 

 
Figure 1: (a) Schematic of a generic spectral domain low-coherence interferometry (SD-LCI) setup based 

on a Mach-Zehnder topology; (b) As-measured interferogram (0) of a standard SMF using setup described 
in Section 3; (c) “Background” intensity normalised interferogram (1) and extracted envelope (2). The red 

dots indicate the maxima and absolute values of the minima; (d) Envelope-corrected interferogram (3) and 

wavelength dependent phase (4) calculated using Eq. 5. No polynomial smoothing was used in this instance. 

 



The solution of Eq. (5) requires the knowledge of all the maxima (to address the 2π ambiguity 

of arccos) and of the wavelength of the phase inversion points or CoS. The latter can be 

calculated by defining a ‘fringe spacing function’ from the position of the zeros of the 

normalized interferogram and searching for its local maxima and from knowledge of the 

envelope function (it can be shown that        at the CoSs). One final step is to address the 

ambiguity of the phase sign due to cosine being an even function. The phase sign is 

determined experimentally by looking at the direction of the wavelength shift of each CoS 

(which depends on the sign of the dispersion) when the reference arm length is varied. This 

operation can be performed very quickly prior to a measurement. The wavelength dependent 

phase reconstructed following this method in the case of a standard SMF is shown in Fig. 1(d) 

(red trace). Note that a very smooth and dense dataset is obtained. 

Once      has been determined, the dispersion can finally be obtained via the following 

equation:  

       
 

    
[  

  

  
      

   ] (6) 

which can be obtained by writing the expression of the   coefficient in Eq. (3).  

The method described here has a number of advantages over other similar phase 

extraction methods. Firstly, it provides very dense datasets and it exploits each of the points of 

the interferogram, including those in close proximity of the CoSs. Since it can be shown that, 

for a given resolution of the OSA, the spectral extent of the interferogram is maximized when 

the interferogram is resolved in proximity of its center of symmetry (as shown in Fig.1(c)), 

this implies that, in addition to better accuracy, the present method generally achieves a wider 

measurement range as compared to e.g. the phase maxima/minima method. Furthermore, the 

method does not involve any nonlinear fit and as such is very fast, as opposed to cosine fit 

methods and other methods based on polynomial fitting of the phase function, which in 

general require optimization and quality checks of the results. Dispersion datasets calculated 

through direct numerical differentiation of      (Eq. 6) may in some instances contain an 

undesirable amount of noise. In order to reduce such noise, a polynomial smoothing of the 

retrieved phase vs. wavelength curve can be used. Note that this operation does not affect the 

accuracy of the result because the smoothing is performed on a very large dataset and the 

noise was experimentally observed to be statistical, nor the overall speed is affected as 

suitable algorithms to automatically optimize the order of the polynomial can be employed. 

This operation is not mandatory to determine the GVD but is preferable in order to achieve 

reliable results for higher dispersion orders obtained by further differentiation of Eq. 6. 

3. Interferometric Setup and Method Validation 

The setup used for the dispersion measurement, shown in Fig. 2, uses a broadband SC source 

(Fianium SC450, 450-2300 nm) and a free-space Mach-Zehnder interferometer composed of 

two beamsplitters (BS1, BS2), two mirrors (M1, M2) and two hollow back-reflectors (HR1, 

HR2) inserted to allow matching of the length of the reference arm to the measurement arm 

within the coherence length of the source. A polarizer and half-wave plate (P and λ/2) are 

used to adjust the polarization state of the interfering beams and offer the option of aligning 

the measurement beam with a specific polarization axis of the fiber under test. Two motorized 

shutters (S1, S2) allow the two beams to be recorded individually for intensity normalization 

purposes and in order to check the source stability over time. The optical elements used in our 

setup were carefully chosen to provide the widest broadband operation whilst ensuring that 

they introduced the minimum amount of differential dispersion between the two arms. Any 

significant residual dispersion present along either of the beam paths could cause systematic 

errors which would require suitable correction, particularly in the case of fibres with flat, 

near-zero dispersion and when targeting an accurate measurement of the position of zero 

dispersion wavelengths. We verified that the phase error due to optical components in our 



system was negligible by recording the interferogram obtained by eliminating the half-plate, 

test fiber and microscope objectives and extending the measurement arm through mirrors, so 

as to have equal path lengths. A maximum phase error of <10 mrad was recorded in the 600-

1750 nm wavelength range. We then measured the phase error introduced by the half-wave 

plate (Thorlabs AHWP05M-1600) by measuring the difference between the phase of two 

interferograms of a standard single mode fiber obtained with and without the half-wave plate. 

We finally estimated the phase error of the two microscope objectives used for input/output 

coupling to the test fiber. The results obtained were in this case small but not negligible and 

thus dispersion data measured for the half-wave plate and the objective lenses were used in 

subsequent measurements to compensate for the systematic error. 

 

 
Fig. 2: Setup implemented for the dispersion measurement (refer to text for detailed description). BS1,2: 

beamsplitter cubes, M1,2: mirrors, HR1,2: hollow back-reflector, P: polarizer; λ/2: half-wave plate; S1,2: 

motorized beam shutters, xyz: micro-positioner stages used for input/output coupling in the fiber under test. 

 

Another and potentially more serious issue may arise if the relative phase along the two paths 

is affected by time-varying environmental perturbations (such as drafts, vibrations and 

temperature drifts). To address such ‘temporal stability’ issue, complex active stabilization 

schemes have previously been proposed [12]. We followed a simpler approach and minimized 

the perturbations by placing our interferometer in an enclosure. To gauge its effectiveness, we 

measured the dispersion of a standard SMF using OSA scan times ranging from a few seconds 

to several minutes with such an ‘isolated’ setup and compared the results with an un-isolated 

setup. The results are shown in Fig. 3. Whilst for an un-isolated system a relatively short scan 

time of ~60 s already results in a measurable error of >2 ps/nm/km, for an ‘isolated’ setup a 

precision of better than 0.1 ps/nm/km is obtained for scan times as long as 400 s (i.e. well 

beyond the typical scan times needed to collect a well-resolved interferogram). We thus 

concluded that simple and cost-effective hermetic enclosures can be very effective in 

substantially alleviating the temporal stability issue. From these results we concluded that our 

dispersion measurements can achieve a precision as low as 0.1 ps/nm/km. It should be noted 

that this estimate includes also possible contributions due to any instabilities in the output 

intensity of the source, which in principle need to be considered as the measurement and 

background spectra are collected at different times. 

 



 
Fig. 3: Evaluation of the measurement precision: the dispersion of a standard single mode fiber is calculated 
from interferograms obtained by setting increasing OSA scan times and (a) using an un-isolated setup or (b) 

placing the interferometer inside a hermetic enclosure. The effect of environmental disturbances is very 

obvious in the first set of plots, while it is almost completely removed in the second. 

 

Further, we investigated the absolute accuracy of our technique by comparing the measured 

dispersion profiles with the theoretical predictions based on the experimental refractive index 

profiles of the SMF used in our tests (shown in Fig. 4(a)). Fig. 4(b) shows the excellent 

agreement between the experimental and simulated data. Our dispersion measurement 

technique provides an accuracy of better than 0.5 ps/nm/km over at least 400 nm (1200-

1600 nm). In order to illustrate the importance of dense wavelength sampling, we also 

calculated the “theoretical” dispersion slope from the refractive index profile and compared it 

with experimental data (Fig. 4c). As can be seen, very good agreement is equally obtained for 

the dispersion slope over most of the 400 nm wide interval. 

 

 
Fig. 4: Evaluation of the accuracy of the technique on a standard single mode fibre (SMF). (a) Measured 
refractive index profile of the SMF; (b) measured and simulated dispersion, (c) measured and simulated 

dispersion slope. 

 



We implemented a fully automated setup using a PC and the Labview® development 

environment. The PC controls the two beam shutters S1 and S2 and the OSA so that the three 

spectra necessary for data analysis (interference spectrum, reference arm spectrum and fiber 

arm spectrum), are sequentially acquired. The dataset is then analysed with the algorithms 

based on the data analysis approach described in section 2. The dispersion profiles are 

promptly displayed on-screen without the need for any manual intervention during any part of 

the process. We typically obtain single-shot dispersion profiles in less than 10 s. 

4. Dispersion measurement of key MOF fiber types 

In order to further investigate the potential of our technique, we measured three 

microstructured fibers with very different dispersion properties: i) a lead silicate 

microstructured fiber exhibiting a flat and near-zero dispersion profile, ii) a hollow core 

photonic bandgap fiber characterized by high and strongly varying dispersion within its 

transmission window and finally, iii) a highly birefringent microstructured fiber exhibiting 

relatively low dispersion (<100 ps/nm/km) over a very broad range of wavelengths 

(~1000 nm). Besides having convenient dispersion profiles, these fibers have interesting 

applications, some of which have been demonstrated already in several of our ongoing 

research programs. 

 

 
  

Fig. 5: Dispersion measurement results for three different types of microstructured optical fibers: 

(a) Highly nonlinear lead silicate fiber with W-type index profile: (top) interferograms measured for two 

fibers with slightly different core diameters (1.62 and 1.67 µm); (bottom) corresponding calculated 
dispersion curves (b) Hollow-core bandgap fiber with a 7 cell core structure; (c) highly birefringent index-

guiding microstructured fiber: polarization resolved measurements. 

 

The first example is an all-solid soft-glass microstructured fiber based on a combination 

of three different lead-silicate glasses arranged to produce a W-type index profile (as 

discussed in more detail in [2]). Such ‘W-fiber’ was designed to have high nonlinearity and a 

flat and near-zero dispersion profile at 1550 nm, as required in several nonlinear signal 



processing applications [13, 14]. To accurately match the design target (maximum dispersion 

below a few ps/nm/km in the C-band), W-fibers with a few percent difference in their core 

diameters were fabricated by suitably changing the fiber drawing parameters. To resolve the 

small differences in dispersion, high measurement accuracy in the range ~1ps/nm/km were 

required. Fig. 5(a) shows the interferograms (top) and the corresponding dispersion profiles 

(bottom) obtained for two W-fibers having a ~4% difference in core diameter. As expected, 

these fibers show flat and near-zero dispersion profiles with differences in the maximum GVD 

values down to a few ps/nm/km. We conclude that our measurement method can resolve very 

small differences in the dispersion profiles as required. The knowledge of GVD profiles was 

useful to support further application work: the fiber having an all-normal dispersion profile 

(red trace) was successfully used for broadband wavelength conversion [2], while the one 

with two close ZDWs and a small amount of anomalous dispersion in between 

(<2.5 ps/nm/km, green trace) was used to demonstrate generation of a broad and flat 

supercontinuum at relatively low pump powers [15]. 

We then tested a hollow core photonic bandgap fiber (HC-PBGF) with a 7-cell core 

geometry, also designed for operation around 1550 nm. A scanning electron microscope 

(SEM) image is shown in the inset of Fig. 5(b). HC-PBGFs are resonant structures which 

guide light within a well-defined interval of wavelengths and typically have GVD profiles 

diverging both at the short and long wavelength bandgap edges [16]. This unusual dispersion 

profile enables us to further demonstrate the performance of our technique at high values of 

both dispersion and dispersion slope and to estimate the highest/lowest measurable dispersion. 

When the fiber dispersion is high, the interferograms have closely spaced spectral fringes and 

become narrower in width. Even using the highest feasible resolution compatible with 

temporal stability (high OSA resolutions require longer spectral acquisition times), we found 

that six to seven interferograms (obtained by suitably varying the length of the reference arm) 

were typically required to map the dispersion over the whole bandgap of the HC-PBGF, about 

~250 nm in width. The full dispersion profile could then be obtained as a collection of 

neighboring curves, as shown in Fig. 5(b). The highest measurable dispersion, in this case 

about ±1000 ps/nm/km, is determined by the resolution of the OSA. It should be noted that 7 

cell PBGFs are slightly multimode [17] and indeed several secondary interferograms, 

produced by higher order core modes, were observed to overlap with the primary 

interferogram of the fundamental (LP01-like) mode. Whilst their intensity could be minimized 

by optimizing the input coupling, they could not be completely eliminated and their presence 

produced a slightly higher level of noise as compared, e.g. to what was observed in the case of 

SMF. Despite this, the curves obtained from adjacent interferograms were remarkably 

consistent (within ~5%); note that no interpolation or other data reduction treatment is applied 

to the dispersion data plotted in Fig. 5(b).  

Last, we measured a highly birefringent, high nonlinearity index-guiding MOF 

incorporating a strongly asymmetric core (SEM in Fig.5(c)-inset). By adjusting the input half-

wave plate, we obtained polarization resolved measurements along the two fiber axes. As this 

fiber has moderate GVD values (<100 ps/nm/km), it was possible to obtain data over a 

~1000 nm wide interval (700-1700nm) by analyzing a set of 8 contiguous interferograms per 

each polarization. The corresponding GVD curves plotted in Fig. 5(c) are again remarkably 

consistent. Note that the measurement range is limited by the bandwidth of the components 

and the OSA range only. 

7. Conclusion 

We have reported a dispersion measurement based on a direct phase extraction method that 

provides for fast, high accuracy and ~ps/nm/km absolute precision measurements over broad 

spectral intervals several hundred nm wide using single shot interferograms. The method, 

based on a state-of-the-art supercontinuum source, is relatively simple to implement, uses 

widely available optical components and is amenable to being extensively automatized. To 



achieve high measurement precision and accuracy we investigated systematically sources of 

environmental noise and we have eliminated the systematic error introduced by optical 

components used within the set-up used. The accuracy and absolute precision estimated from 

measurements on a standard single mode fibre over a 400nm wide interval (1200-1600nm) 

were <0.5 ps/nm/km and <0.1 ps/nm/km, respectively, for spectra collected in as little as 10s. 

To fully illustrate its potential and the versatility, we have successfully applied our method to 

measure microstructured fibers having markedly different dispersion profiles. The technique 

is ideally suited to resolve differences arising due to very small structural variations and can 

cope with dispersion profiles having extreme curvature or dispersion values as high as 

1000 ps/nm/km. For fibers with more moderate values of dispersion (~100 ps/nm/km), 

measurements over intervals exceeding 1000 nm are possible by collecting multiple adjacent 

interferograms. 
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