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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF PHYSICAL SCIENCES AND ENGINEERING

School of Physics and Astronomy

Doctor of Philosophy

A LATTICE MEASUREMENT OF THE B∗Bπ COUPLING USING DWF LIGHT

QUARKS AND THE RELATIVISTIC HEAVY QUARK ACTION

by Benjamin Samways

I describe a calculation of the B∗Bπ coupling in lattice QCD. The B∗Bπ coupling is

directly related to gb, the leading order low-energy interaction constant of heavy meson

chiral perturbation theory. Knowledge of the coupling will help decrease systematic un-

certainties in lattice QCD B-physics studies, which are important to constrain the CKM

matrix and probe the Standard Model. This calculation is performed with 2+1 flavours

of dynamic quarks using the domain wall fermion action. To simulate the heavy b-quark

I use a non-perturbatively tuned relativistic heavy quark action which keeps discreti-

sation effects under good control. This allows me to make the first calculation of the

B∗Bπ coupling directly at the physical b-quark mass. I conduct a chiral and continuum

extrapolation to the physical point and consider all sources of systematic error. The

final result including both statistical and sytematic errors is gb = 0.567(52)stat(58)sys.
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Chapter 1

The Standard Model

This thesis presents a calculation of the B∗Bπ coupling, which is directly related to the

leading order low-energy interaction constant, gb, of heavy meson chiral perturbation

theory (HMχPT). This is the effective theory that describes the interactions of light

pseudoscalar mesons (π, κ, η) with heavy-light mesons, such as the B and the B∗. The

main relevance of this work is that HMχPT can be used to describe the chiral behaviour

of heavy meson matrix elements calculated on the lattice and link them to quantities at

physical light-quark masses, rather that the unphysically large masses at which lattice

computations are typically performed. By fixing the unknown coupling constant, gb, we

can decrease the systematic uncertainties that are introduced into lattice calculations

when performing extrapolations guided by the theory.

Some of the strongest tests of the Standard Model come from flavour physics and specif-

ically the B-meson sector. These tests rely on having both accurate experimental results

and precise theoretical input. Currently, for a number of interesting processes, the lat-

tice input is the limiting factor. Some examples of these processes are discussed at the

end of this chapter.

One of the main difficulties in Lattice QCD calculations is dealing with the large range

of quark masses that we observe in nature. The small masses of the light quarks can

cause a critical slow-down in the numerical algorithms, and the masses of heavy quarks

can lie above the UV cut-off introduced by discretising the theory. In this thesis the

calculations are performed using a non-perturbatively tuned relativistic action for the

heavy b-quarks. This allows us to perform simulations directly at the the b-quark mass,

rather than in the infinite mass limit, or by using much lighter charm quarks, as in all

previous similar calculations. Furthermore, we utilise the domain wall fermion action to

simulate light quarks. This provides favourable chiral properties and is automatically

O(a) improved, hence reducing cut-off effects, albeit at extra computational cost.

This thesis is set out as follows: in the rest of this chapter I will introduce the Stan-

dard Model (SM) of particle physics and go on to discuss the relevance of heavy-quark

physics as a means to test the theory. Chapter 2 is dedicated to effective theories, with

1



2 Chapter 1 The Standard Model

its main aim being to introduce HMχPT. In Chapter 3 I will give an overview of Lattice

QCD and describe the methods used in this work. Finally, Chapter 4 contains the focus

of this thesis — the determination of the B∗Bπ coupling. This includes extrapolating

to physical light quark masses and taking the continuum limit, as well as an in depth

discussion of all the uncertainties present in the calculation.

The Standard Model (SM) of particle physics represents our best current understanding

of fundamental particles and their interactions. Although it cannot claim to be a com-

plete theory, one glaring omission being its inability to incorporate General Relativity,

it is highly successful and continues to make accurate predictions within the realm of

its applicability. The matter content of the theory is grouped into three families with

equivalent properties, but increasing mass. In each family there are two quarks, one of

‘up-type’ and one of ‘down-type’, known as up, down, strange, charm, top and bottom.

Each family also contains two leptons, an electron-type and a neutrino-type. These are

the electron, neutrino, muon, muon-neutrino, tau, and tau-neutrino. All of these par-

ticles are considered fundamental, meaning they have no internal sub-structure. The

particles all have mass in the SM, except the neutrinos. This contradictory to modern

experimental evidence [4], and although many extensions to the theory tackle this issue,

none of these have yet been validated.

The interactions between the particles are mediated by the exchange of gauge-bosons,

integer-spin particles that arise due to the local symmetries of the theory. There are

four types of gauge-boson. The photon, W and Z-bosons are the force-carriers of the

electroweak sector, and the gluons are the force-carriers of QCD. Of these, only the W

and Z-bosons have mass.

The final piece of the jigsaw is a particle that has proved particularly elusive. The Higgs

boson, or perhaps more diplomatically, the Standard Model Scalar, is an integral in-

gredient of the electroweak theory. It appears as a result of the spontaneous symmetry

breaking (SSB) of electroweak gauge symmetry by the Higgs potential and provides a

mechanism to give particles mass in a gauge invariant way. At the time of writing the

discovery of the SM Higgs is all but confirmed by the ATLAS and CMS experiments

at the LHC [5, 6]. A resonance has been seen near 125 GeV in both detectors, with

a significance of more than 5-sigma, and the most current data [7, 8] also points to

agreement with the spin-parity (JP = 0+) predictions of the SM.

This chapter introduces the two main components of the Standard Model, Quantum

Chromodynamics and the Electroweak theory, before discussing the phenomenology of

B-mesons, an area of particular relevance to this thesis.
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1.1 QCD

Quantum Chromodynamics (QCD) is the theory that describes the strong interaction

between quarks and gluons. The quarks carry an internal symmetry known as colour

which transforms under the fundamental representation of SU(3)c. The promotion of

this symmetry to a local (gauge) symmetry demands the introduction of eight gluon fields

corresponding to the eight generators of the SU(3)c algebra. The QCD Lagrangian is

LQCD = −1

4
F aµνF

a µν +
∑

f

q̄f
(

i /D −mf

)

qf , (1.1)

with f labeling the six quark flavours. The covariant derivative is given by

Dµ = ∂µ + igT aAaµ, (1.2)

where the T a are the eight generators of the Lie algebra. The gluon fields necessarily

transform in the adjoint representation to ensure that the covariant derivative maintains

the same transformation properties as the quark fields. The field strength tensor F aµν ,

contains the generators, and due to the non-abelian nature of SU(3), the structure

constants fabc also appear.

F aµν = ∂µA
a
ν − ∂νAaµ − gfabcAbµAcν (1.3)

This gives rise to gluon-gluon interactions and hence the highly non-linear nature of

QCD. The QCD coupling constant g is observed to be large at hadronic scales, which

means that perturbation theory is not applicable in this regime. In fact, under renormal-

isation the coupling has been shown to run, meaning at low energies, or large distances,

the coupling grows. This provides an explanation for quark confinement — the obser-

vation that quarks and gluons only appear in bound states. The failure of perturbation

theory to be a useful calculational tool at low energy scales means other techniques are

needed to explain the complex pattern of hadronic phenomena in terms of QCD. The

most powerful of such techniques is Lattice QCD, which I will introduce in Chapter 3.

1.1.1 Other Symmetries of QCD

The Lagrangian of QCD possesses a number of symmetries on top of the SU(3)C gauge

symmetry on which the theory is based. Some of these symmetries continue to hold at

the quantum level and some are only present in the classical Lagrangian. As is always

the case with symmetries, they provide powerful predictive tools for theorists.
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1.1.1.1 Chiral Symmetry

In the limit of vanishing quark masses the QCD Lagrangian is entirely chiral. This

means it can be divided into separate left and right-handed sectors that transform in-

dependently under SU(3)L,R flavour. In reality, of course, the quarks are not massless,

but considered against ΛQCD ∼ 200 MeV, the dynamically generated scale of the the-

ory, the approximation is good for the light flavours (u, d, s). A consequence of this

symmetry should be that the nucleon and its negative parity partner the N∗ have de-

generate masses. No such degeneracy is seen, and the mass splitting is far too large to

be explained by the explicit symmetry breaking due to the small quark masses. The

explanation is that the chiral symmetry is spontaneously broken. This idea is explored

more in Chapter 2 when we discuss Chiral Perturbation Theory.

1.1.1.2 Discrete Symmetries

Parity A parity transformation is the reflection of all position space components of

a particle, this reverses the momentum without changing its spin. The transformation

of a quark field under parity is given by

Pψ(t, x̄)P † = ηaγ
0ψ(t,−x̄) (1.4)

where ηa is some complex phase. Bosons are eigenstates of parity, but fermions are

not. We can however form parity eigenstates by combining quark fields into Dirac

bilinears. The eigenstates of these operators are shown in Table 1.1. These prove useful

as interpolating operators to produce states with specific quantum numbers in Lattice

QCD simulations.

Charge Charge conjugation is the exchange of a particle with its antiparticle. In

terms of a unitary operator, C, the transformation acts on a quark field as

CψC† = −i(ψ̄γ0γ2)T . (1.5)

Again, although a quark field is not an eigenstate of charge, we can form Dirac bilinears

which are. From the properties in Table 1.1 we can see that QCD is completely invariant

under C, P and a combined CP transformation. There is a third symmetry worth

mentioning — time reversal. Again QCD is invariant separately under T and combined

CPT, furthermore any local and Lorentz-covariant quantum field theory is invariant

under CPT [9, 10] and no evidence has been seen to contradict this. In contrast, CP is

known to be broken by the electroweak sector of the SM.



Chapter 1 The Standard Model 5

JPC Dirac Bilinears

Scalar 0++ ψ̄ψ, ψ̄γ0ψ
Pseudo-scalar 0−+ ψ̄γ5ψ, ψ̄γ0γ5ψ

Vector 1−− ψ̄γiψ, ψ̄γ0γiψ
Axial-vector 1++ ψ̄γiγ5ψ

Tensor 1+− ψ̄γiγjψ

Table 1.1: Quantum numbers of the Dirac bilinears in the form JPC , where
P represents the eigenvalue of parity (±1), C charge and J is the total spin.
Euclidean versions of these bilinears are commonly used in Lattice QCD as
interpolating operators to produce states of the required quantum numbers.

1.1.2 Strong CP

There is one caveat to the previous statement that QCD is invariant under CP. If we

allow all the terms permitted by gauge invariance in the QCD Lagrangian there is one

more that we have not previously mentioned:

Lθ = θ
g2

32π2
F aµνF̃

µνa (1.6)

where the dual field strength tensor, F̃ aµν , is defined as

F̃ aµν =
1

2
ǫµνρσF

ρσa (1.7)

This term can be written as a total derivative so you expect that it would not contribute

to the action. However, t’Hooft [11, 12] showed than non-trivial gauge configurations are

possible where the surface integral does not vanish. This is important to explain the large

mass of the η′ meson, because if this term vanished it would imply a conserved U(1)A

symmetry (see Section 2.1). This term explicitly breaks CP, however experimentally no

CP breaking is seen in the QCD sector. This means the coefficient θ must be vanishingly

small. Furthermore, when weak interactions are included, the quark mass matrix is in

general complex. This has the effect that when diagonalising to get to the physical mass

matrix (see Section 1.2) the coefficient θ gains an extra term:

θ → θ +Arg detM (1.8)

where M is the quark mass matrix. The lack of explanation for the smallness of the

θ term is known as the strong CP problem. For a more detailed explanation, and a

discussion of proposed solutions see [13].
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1.2 Electroweak Theory

The electroweak theory of Salam, Glashow and Weinberg [14, 15, 16] unifies the electro-

magnetic and weak interactions into a single gauge theory. The matter content of the

SM is packaged into left-handed doublets and right-handed singlets of the gauge group

SU(2)L.
(

ν

e

)

L

,

(

u

d̃

)

L

,

(

νµ

µ

)

L

,

(

s

c̃

)

L

,

(

ντ

τ

)

L

,

(

t

b̃

)

L

, (1.9)

eR, uR, dR, µR, sR, cR, τR, tR, bR (1.10)

The tilde on the ‘down-type’ quarks indicate that these are the weak, rather than mass,

eigenstates. The full gauge group of the electroweak theory is SU(2)L×U(1)Y , where the

Y stands for hypercharge. All matter transforms under U(1)Y , with the representation

given by the hypercharge. For instance,

eR → e′R = e−ωY (eR)eR, with Y (eR) = −1 (1.11)

In the unbroken theory there are four gauge bosons, three W a
µ corresponding to the

uL dL uR dR eL eR νL
Q 2/3 -1/3 2/3 -1/3 -1 -1 0
T3 1/2 -1/2 0 0 -1/2 0 1/2
Y 1/3 1/3 4/3 -2/3 -1 -2 -1

Table 1.2: The Standard Model matter content of the first generation, and each
particle’s electric charge Q, third component of weak iso-spin T3 and hyper-
charge Y .

generators of SU(2) and a Bµ from the U(1)Y which is related to the photon of electro-

magnetism. The final ingredient is the Higgs doublet which has weak quantum numbers

(2, 12) and a symmetry breaking potential

V (Φ) = −µ2Φ†
iΦ

i + λ
(

Φ†
iΦ

i
)2

(1.12)

that gives rise to a non-zero vacuum expectation value (VEV)

〈Φ〉 =
(

0

v

)

. (1.13)

The breaking of the electroweak gauge group SU(2)L ×U(1)Y → U(1)Q produces three

Goldstone bosons that provide the longitudinal component to the gauge bosons, effec-

tively giving them a mass. The zeroth component W 0
µ mixes with the Bµ, therefore we
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diagonalise by introducing the combinations

Zµ = cos θwW
0
µ − sin θwBµ

Aµ = sin θwW
0
µ + cos θwBµ,

(1.14)

where θw is known as the Weinberg angle. This produces a massive vector boson Zµ and a

massless photon Aµ. The chargedW
±
µ = (W 1

µ±W 2
µ)/
√
2 acquire masses proportional to

v, as well as the Higgs itself becoming massive. The mixing angle θw gives a relationship

between the masses of the W and Z bosons

cos θw =
mW

mZ
(1.15)

which can be used to determine the angle experimentally. It is not possible to add

explicit mass terms to the Lagrangian, as this would mix the left and right handed

components, and break the gauge symmetry. Instead we introduce Yukawa interactions

between left and right-handed components and the Higgs doublet. For instance,

LY ukawa = −λe l̄L · ΦeR + h.c. (1.16)

which gives a mass to the electron when the Higgs field gets a VEV, and introduces a

three-point interaction ēHe. The upper component of the lepton doublet (the neutrino)

does not acquire a mass. A similar technique is used to generate quark masses, except

now it is necessary to introduce an second term to provide masses to the up-quarks.

There are no symmetry constraints to disallow Yukawa terms that mix quarks from

different generations, therefore we must consider the couplings λij as matrices in flavour

space.

LY ukawa = −λijd q̄iL · ΦdjR − λiju ǫabq̄aiLΦ†bujR + h.c. (1.17)

Physical quarks correspond to a basis were the mass matrix is diagonal, which can be

found through bi-unitary transformations

Du = U †
uλuWu, Dd = U †

dλdWd. (1.18)

To achieve this we also make the relevant rotations to the quark fields,

uiR →W ij
u u

j
R,

diR →W ij
d d

j
R,

uiL → U iju u
j
L,

diL → U ijd d
j
L,

(1.19)

This has no physical effect on the quark kinetic terms, which are diagonal in flavour

space so the rotation matrices cancel. The same is true for the neutral current inter-

actions involving photons, or the Z boson. The interesting effect involves the charged

interactions which are mediated by a W± boson. Here the transformation matrices no
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longer cancel. For instance,

− g

2
√
2
¯̃uiLγ

µd̃iLW
−
µ → −

1

2
√
2
ūiLγ

µ(U †
uUd)

ijdjLW
−
µ . (1.20)

The charged current interactions therefore mix flavour states. The matrix

V = U †
uUd (1.21)

is known as the CKM mixing matrix, from its originators Cabibbo, Kobayashi and

Maskawa [17, 18], and characterises the amount of mixing between different generations.

1.3 The CKM matrix

The CKM matrix relates the physical mass eigenstates to the weak flavour eigenstates.







d̃

s̃

b̃






=







Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb













d

s

b






(1.22)

It is a 3× 3 unitary matrix and as such has nine free parameters, three rotation angles

and six phases. Of the complex phases we can absorb five into re-definitions of the

quark fields, but one must remain. The standard parameterisation [19] uses three angles

θ12, θ23 θ13 and a phase δ13.

V =







c12c13 s12c13 s13e
−iδ13

−s12c23 − c12s23s13e−iδ13 c12c23 − s12s23s13e−iδ13 s23c13

s12s23 − c12c23s13e−iδ13 −c12c23 − s12s23s13e−iδ13 c23c13






(1.23)

In the above matrix s12 = sin θ12 and c23 = cos θ23 etc. The complex phase is of

particular significance as this is the only place1 where CP violation can enter into the

Standard Model. A central property of the CKM matrix is its unitarity. This provides

the constraints
∑

j

VijV
∗
kj = 0. (1.24)

For each choice of i and k this defines a triangle, each with a different shape but a

common area, related to the CP-violating phase. The most common of these so called

unitarity triangles is

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 (1.25)

which is commonly divided by the best known of the elements VcdV
∗
cb to create a triangle

in the complex plane with vertices at (0, 0), (1, 0) and (ρ̄, η̄).

1Except through the QCD strong CP term, however experimental evidence overwhelmingly points to
this being zero.
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Figure 1.1: The unitarity triangle.

1.3.1 CP violation

The violation of CP symmetry is of particular importance for our understanding of

nature. If CP were conserved the laws of physics would be identical for matter and

antimatter. This would cause difficulties explaining the abundance of matter that we

observe in the universe [20]. As it stands, we do have evidence of CP violation, coming

from such processes as rare kaon decays [21], K̄0 − K0 mixing [22, 23, 24], B̄0 − B0

mixing [25, 26] and more recently in charged B decays [27]. As mentioned in the previous

section, the only possible source of CP violation in the SM is through the complex phase

that appears in the CKM matrix, although this source of CP violation is thought to be

too small to explain the matter/antimatter asymmetry by itself. Interestingly, the third

generation of quarks was originally postulated to help explain CP violation, because

a two dimensional analogue of the CKM matrix has only one parameter, the Cabbibo

angle θc and no imaginary components. An important test of the SM is to measure the

CKM components and test whether their values are consistent with the CP violation we

observe experimentally.

1.4 B-Physics

An area of phenomenology that is particularly important to constrain the CKM matrix,

investigate CP violation and search for hints of new physics, is the b-quark sector. With

a plethora of experimental data available from the dedicated B-factories of BaBar, Belle

and LHCb, as well as the general purpose experiments ATLAS and CMS, it is important

for theorists to be able to provide the necessary input to apply these results to test the

Standard Model. The rest of this section discusses two processes that are currently being

investigated as part of the RBC/UKQCD B-physics program.
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γ

γ

α
α

dm∆
Kε

Kε

sm∆ & dm∆

SLubV

ν τubV

βsin 2

(excl. at CL > 0.95)
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0.5

1.0

1.5
excluded area has CL > 0.95

Summer 12

CKM
f i t t e r

Figure 1.2: The unitarity triangle showing the constraints provided by neutral
B-meson mixing (∆md & ∆ms) and |Vub| from B → πlν. Plot courtesy of the
CKM fitter group [1].

1.4.1 B0 − B̄0 mixing

One tight constraint on the apex on CKM unitarity triangle comes from neutral B-

meson mixing, which can give information on the ratio of CKM elements |Vts|2/|Vtd|2.
The standard parameterisation of the experimentally accessible B0− B̄0 mass difference

[28] is

∆mq =
G2
Fm

2
W

6π2
ηBS0mBqf

2
Bq
BBq |V ∗

tqVtb|2, (1.26)

where q labels the flavour of the light quark in the B-meson. The coefficient ηB, and the

Inami-Lim function S0 [29] are both accessible using perturbation theory, whereas the

combination of the decay constant and the bag parameter f2Bq
BBq must be computed
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non-perturbatively using Lattice QCD. By taking a ratio of mass differences

∆ms

∆md
=
mBs

mBd

ξ2
|Vts|2
|Vtd|2

(1.27)

we get a particularly tight constraint on the CKM matrix elements |Vts|2/|Vtd|2 due to

the cancelling of many uncertainties in the SU(3) breaking ratio

ξ =
fBs

√

BBs

fBd

√

BBd

. (1.28)

One uncertainty that does not cancel, however, comes from the extrapolation to phys-

ical quark masses. Experimentally, the mass-splittings ∆md and ∆ms are known to

∼1% [30], however the precision of the lattice calculations are currently only at ∼3%
[31, 32]. A major source of uncertainties in all previous calculations arises from diffi-

culties performing lattice simulations with physical light quark masses, and hence the

chiral extrapolation from simulated masses down to the physical point. Theoretical in-

sight from HMχPT, which we will discuss in more detail in Section 2.3, can guide this

extrapolation, but lack of knowledge of the LEC of the theory introduces unwanted un-

certainties. At NLO in HMχPT the running of fBd
and BBd

in the light quark mass is

given by

fBd
= F

(

1 +
3

4
(1 + 3g2b )

m2
π

(4πfπ)2
log(m2

π/µ
2)

)

+ · · ·

BBd
= B

(

1 +
3

4
(1− 3g2b )

m2
π

(4πfπ)2
log(m2

π/µ
2)

)

+ · · · ,
(1.29)

where gb is the leading order LEC of the theory. This is directly related to the strong

coupling gB∗Bπ, the calculation of which is the main focus of this thesis and is described

in Chapter 4.

Figure 1.3: B0 − B̄0 mixing proceeds mainly through box diagrams with a top
quark in the loop. Being a highly suppressed next-to-leading-order process it is
particularly sensitive to new physics [2].

1.4.2 B → πlν

Another interesting process is the semi-leptonic decay B → πlν, which can be used to

determine the CKM element |Vub|. Recently there has been a 3σ tension between |Vub|
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determined exclusively from B → πlν and inclusively from B → Xulν where Xu is

any hadronic final state [33]. Furthermore, determinations of |Vub| from the branching

ratio BR(B → τν) disagree with the average of the inclusive and exclusive semi-leptonic

decays by more than 2σ [34]. The most recent measurements of BR(B → τν) by Belle

[35] do seem to be more compatible, although the errors are large.

Experimentally, the B → πlν decay is accessed by measuring the differential decay-rate,

which can be parameterised in the Standard Model by

dΓ(B → πlν)

dq2
=
G2
F |Vub|2

192π2m3
B

[

(m2
B +m2

π − q2)2 − 4m2
Bm

2
π

]3/2 |f+(q2)|2. (1.30)

On the right-hand side of (1.30) the form-factor |f+(q2)|2 has to be calculated using

Lattice QCD to be able to access the CKM element |Vub|2. Currently work is in progress

within the RBC/UKQCD collaboration to calculate the form-factor |f+(q2)|2 [36]. This

will require chiral extrapolations, guided by HMχPT, that also rely on knowledge of the

coupling gB∗Bπ.



Chapter 2

Effective Field Theories

The Standard Model is an incredibly complex theory, which in principle is capable

of explaining all natural phenomena short of gravity. However, the full theory is not

always the correct tool for the job. In principle you could predict the weather using

quantum mechanics, but you would be a fool to try. A classical approach would be

more relevant on the scale of the atmosphere. Similarly, there are certain regimes where

a simplified field theory is more applicable than the full SM. Constructing an effective

field theory (EFT) begins with choosing the correct variables to describe the problem

at hand. A more rigorous statement would be that the irrelevant degrees of freedom are

integrated out of the problem, in the sense of Wilson’s picture of renormalisation [37, 38],

leaving their effect present in the couplings of the remaining terms. The symmetries of

the EFT constrain which terms can be present, hopefully leaving only a small number

of relevant interactions. The relevant couplings are the unknowns of the theory, and

need to be found by experiment or matched to theory at a different scale. A sensible

EFT has a small number of unknowns that when determined allow a large number of

predictions. A final requirement of a successful EFT is some scheme to order the terms

by relevance, allowing the approximation that the theory inherently introduces to be

controlled systematically. For chiral perturbation theory, which I discuss in Section 2.1,

the terms are ordered in powers of momentum. For heavy meson chiral perturbation

theory there is a further expansion in inverse powers of the heavy quark mass.

This section aims to introduce heavy meson chiral perturbation theory (HMχPT) which

deals with the low energy interactions of light pseudo-scalar and heavy-light mesons.

To tackle this goal first I introduce Chiral Perturbation theory, which by itself is highly

useful, and a particularly important tool in the field of lattice QCD. Finally, in Section

2.4, I provide a brief overview of the Symanzik improvement program. This is an effective

field theory based approach to improve the continuum limit of lattice QCD that will

prove useful when discussing systematic uncertainties in Chapter 4. The derivations

in this chapter largely follow the reviews and lecture notes in the following references

[39, 40, 41, 42, 43].

13
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2.1 Chiral Perturbation Theory

The Lagrangian of QCD can be decomposed into left and right-handed quark fields that

in the absence of a mass term decouple into independent fields.

LQCD = q̄R /DqR + q̄L /DqL (2.1)

The Lagrangian then remains invariant under separate global SU(3) flavour transforma-

tions. The massless approximation, as it turns out, is good. The masses of the quarks

are conveniently split into two regimes,

mu, md, ms < ΛQCD < mc, mb, mt

1.7MeV 4.1MeV 101MeV 400MeV 1.5GeV 4.5GeV 173GeV
(2.2)

where the three lightest quarks lie well below ΛQCD and the heavy quarks lie well above.

The energy scale of the interaction within mesons is of the order ΛQCD, so treating the

light quarks as approximately massless seems reasonable. The significance of the heavy

quark masses is discussed in section 2.2. The full symmetry group in the chiral limit is

SU(3)L × SU(3)R × U(1)L × U(1)R. The U(1)V is trivially realized as baryon number

conservation, and the U(1)A is only a good symmetry classically. The U(1)A is broken

on quantisation of the theory, and this breaking is known as the axial anomaly. The

current that corresponds to U(1)A has a non-trivial divergence that is equal to the right

hand side of equation (1.6). Introducing degenerate masses for the quarks breaks the

SU(3)L × SU(3)R symmetry to its subgroup SU(3)V , and allowing for non-degenerate

masses leaves only a remaining symmetry of U(1)V ×U(1)V × · · · ×U(1)V (nf factors).

Experimentally it has long been noticed that there exists an octet of light pseudoscalar

mesons that can be conveniently catagorised in terms of an approximate flavour SU(3).

π =
1√
2









1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K̄0 − 2√
6
η









∼







uū ud̄ us̄

dū dd̄ ds̄

sū sd̄ ss̄






(2.3)

This octet transforms under a flavour SU(3) that can clearly be identified with the

diagonal subgroup SU(3)V of the full QCD symmetry group. The lightness of these

mesons and the absence of parity partners with equal mass suggest that the full group

SU(3)L × SU(3)R is not realised in nature, despite the symmetry in the Lagrangian,

but is spontaneously broken to the subgroup SU(3)V . The pattern of symmetry break-

ing allows us to interpret the lightness of the octet of pseudoscalar mesons as due to

their nature as the Nambu-Goldstone bosons corresponding to the broken generators of

SU(3)L × SU(3)R → SU(3)V . Of course in the symmetry limit of exactly vanishing

quark masses these particles would be massless, but outside of the chiral limit they are

massive and referred to as pseudo-Goldstone bosons.
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To make the previous statement more concrete we consider the Noether currents asso-

ciated with the chiral group

JaµV = q̄γµ
λa

2
q, JaµA = q̄γ5γµ

λa

2
q (2.4)

where the λa are the generators of SU(3). Let us consider one of the associated charges

Q and postulate the existence of an operator O such that

〈0|[Q,O]|0〉 6= 0. (2.5)

This is clearly not possible if the charge Q annihilates the vacuum. Therefore, by

Goldstone’s theorem [44] we know there exists a massless state |G〉 such that

〈0|J0|G〉〈G|O|0〉 6= 0 (2.6)

The Goldstone bosons correspond to the eight broken generators of the axial charges

QaA, so there must be eight Goldstone states |Ga〉. The operators must be pseudoscalars,

the simplest choice being Oa = q̄γ5λ
aq, which satisfy

〈0|[QaA, q̄γ5λbq]|0〉 = −
1

2
〈0|q̄{λa, λb}q|0〉 = −2

3
δab〈0|q̄q|0〉. (2.7)

This defines the quark condensate that is the order parameter for Spontaneous Chiral

Symmetry Breaking.

〈0|ūu|0〉 = 〈0|d̄d|0〉 = 〈0|s̄s|0〉 6= 0 (2.8)

2.1.1 The CCWZ Formalism

We have identified that low-energy QCD has an approximate chiral symmetry that is

spontaneously broken by the vacuum. In this low energy regime the relevant degrees

of freedom are the Goldstone bosons. It should be possible to construct an effective

theory, in terms of the Goldstone fields, that incorporates the full symmetries of the

Lagrangian. Callan, Coleman, Wess and Zumino [45, 46] set out a general method

for writing effective Lagrangians in the case of spontaneously broken symmetries. The

NGB fields are fluctuations around the standard vacuum configuration in the space of

the broken generators. We can write these fields in terms of a local transformation

matrix Ξ(x) ∈ G, that acts on the vacuum. For instance,

φ(x) = Ξ(x)













0

0
...

v













. (2.9)
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Here we note that we could also describe the same fields by Ξ(x)h(x), where h ∈ H,

the subgroup of G that leaves the vacuum invariant. To define the EFT solely in terms

of the NGBs field (otherwise you would need to integrate out the massive fields later),

CCWZ take the broken generators Xa and write

Ξ(x) = eiX
aπa(x). (2.10)

It is necessary that an effective Lagrangian written in terms of the Ξ(x) fields is invariant

under the full symmetry group G, however it is not clear how Ξ(x) transforms under

an arbitrary global transformation g ∈ G, as Ξ(x) does not span the entire group. It is

however possible to write an arbitrary transformation as

gΞ(x) = Ξ′(x)h (2.11)

where h ∈ H is in general non-trivial and a function of both g and Ξ. This allows the

definition of a global transformation rule for Ξ(x) under G

Ξ(x)→ gΞ(x)h−1(g,Ξ(x)). (2.12)

2.1.2 The Chiral Lagrangian

Applying the CCZW formalism to QCD we pick as the broken generators Xa = T aL−T aR.
A general SU(3)L × SU(3)R transformation can be written in block diagonal form

g =

[

L 0

0 R

]

(2.13)

and then a transformation h from the subgroup SU(3)V is diagonal

h =

[

U 0

0 U

]

(2.14)

The Ξ(x) field using the definition above is given by

Ξ(x) = exp i

[

T aπa(x) 0

0 −T aπa(x)

]

=

[

ξ(x) 0

0 ξ†(x)

]

(2.15)

where

ξ(x) = eiT
aπa(x) (2.16)

The transformation rule for Ξ, using the formalism of the previous section is

[

ξ(x) 0

0 ξ†(x)

]

→
[

L 0

0 R

][

ξ(x) 0

0 ξ†(x)

][

U−1 0

0 U−1

]

, (2.17)
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and hence,

ξ†(x)→ Rξ†U−1(x) (2.18)

ξ(x)→ LξU−1(x) = U(x)ξ(x)R† (2.19)

A further simplification can be made by choosing another basis, where we take

Σ(x) = ξ2(x). (2.20)

and then the transformation law reduces to the purely global form

Σ(x)→ LΣ(x)R†. (2.21)

To give the boson field the canonical mass dimension of a scalar field it is conventional

to write

Σ(x) = e2iπ/f , (2.22)

where f can be identified with the pion decay constant, and π = T aπa has the form

given in equation 2.3. To write the most general Lagrangian invariant under the chiral

symmetry we first consider terms like TrΣΣ†. These are invariant under the chiral

group, but ΣΣ† = 1. This means the Lagrangian would be independent of π. Instead

consider terms like ∂µΣ∂
µΣ†, in this case the Lagrangian is independent of π when π is

constant, corresponding to a configuration equivalent to the vacuum. The NGBs will be

derivatively coupled meaning interactions will vanish as p→ 0. The most most general

Lagrangian, to leading order is

L(2) = f2

4
Tr
[

∂µΣ∂
µΣ†

]

. (2.23)

where the prefactor is to give the correct normalisation of the standard kinetic term.

L(2) = Tr∂µπ∂
µπ +

1

3f2
Tr[π, ∂µπ]

2 + · · · (2.24)

From this Lagrangian it is possible to determine all π−π scattering amplitudes to order

p2 in terms of a single LEC f .

2.1.3 Quark Masses

The non-zero quark masses of QCD explicitly break chiral symmetry. This can be

accounted for in the chiral Lagrangian if we consider a mass term that itself transforms

under SU(3)L × SU(3)R, such that QCD would still be invariant.

M → LMR† (2.25)
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where

M =







mu 0 0

0 md 0

0 0 ms






. (2.26)

With this definition we construct the most general Lagrangian with the requisite sym-

metry properties. To lowest order the symmetry breaking term is

L(2)sb =
f2B0

2
Tr[MΣ† +ΣM †]. (2.27)

where B0 is a new LEC. This term breaks the degeneracy of the vacuum by picking out

a particular direction in Σ. Expanding the trace in 2.27, gives to first order a prediction

for the NGB masses due to the explicit symmetry breaking of quark masses.

M2
π± = B0(mu +md) + · · · (2.28)

M2
K± = B0(mu +ms) + · · · (2.29)

M2
K0,K̄0

= B0(md +ms) + · · · (2.30)

2.2 Heavy Quark Effective Theory

A heavy-light meson consists of one heavy quark, one light quark and any amount of

gluons and virtual quarks. As we have previously mentioned the mass of the heavy

quarks (c, b, t) are much greater than the typical interaction scale of QCD inside a

meson. It is therefore not unreasonable to consider the heavy quark to be approximately

on-shell, meaning in its rest frame it is just a static source of gluons. For interactions

of O(ΛQCD) the heavy quark’s momentum only changes by ΛQCD/mQ, therefore in the

mQ →∞ limit velocity is conserved. The heavy quark just sits there and doesn’t affect

the dynamics of the problem. The system can then be completely described by the

quantum numbers of the light degrees of freedom. The interactions inside the heavy-

light meson are ∼ ΛQCD, meaning the amount by which the heavy quark is off-shell is

of this order. Calling this quantity kµ, the heavy quark’s momentum is

Pµ = mQvµ + kµ. (2.31)

For a quark with Lagrangian LQCD = Q̄(i /D −mQ)Q, and tree level propagator

S =
i

/P −mQ
, (2.32)

we can insert Equation (2.31) and expand in 1/mQ.

S = i

(

1 + /v

2

)

1

v · k +O
(

ΛQCD
mQ

)

(2.33)
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This propagator is reproduced, to leading order, by the Lagrangian

LHQETLO = Q̄v(iv ·D)Qv, (2.34)

where the heavy quark field Qv obeys

(

1 + /v

2

)

Qv = Qv. (2.35)

This is the leading order Heavy Quark Effective Theory (HQET) Lagrangian. We notice

that there is no mass term and no gamma-matrices, corresponding to a spin-flavour

symmetry. A more rigorous derivation is needed to obtain the higher order spin and

mass dependent terms that are suppressed by powers of the heavy quark mass.

We can write the total angular momentum of the heavy meson as

J = L+ S (2.36)

where L is the angular momentum of the light degrees of freedom and S is the angular

momentum of the heavy quark. Considering a state with l = 1/2, we can have J = 0

and J = 1, corresponding to a degenerate pseudoscalar and vector meson. This could

be the B and B∗ or the D and D∗. We can see already how powerful this picture is by

considering the mass splitting between the vector and pseudoscalar B-mesons, and the

equivalents in the charm sector

mD∗ −mD

mD
≈ 8%

mB∗ −mB

mB
≈ 0.9%. (2.37)

Clearly, for the heavy quarks the splitting is smaller. We expect the splittings to be of

of the form mP ∗−mP ≈ a/mQ. This allows us to make a better prediction m2
D∗−m2

D ≈
m2
B∗ −m2

D, which agrees very well with the experimental data [30]

m2
D∗ −m2

D = 0.55GeV2 m2
B∗ −m2

B = 0.48GeV2. (2.38)

It is conventional to package these two mesons together into a single field

H =
1 + /v

2

[

B∗
µγ

µ −Bγ5
]

, (2.39)

where the B and B∗ are column vectors with entries corresponding to bū, bd̄, bs̄. The

heavy meson fields transform under the spin SQ and flavour SU(3) symmetry U as

H → SQHU
† (2.40)

With these ingredients in place we can combine the light pseudoscalar mesons of chiral

perturbation theory with the heavy-light mesons of HQET.
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2.3 Heavy Meson Chiral Perturbation Theory

The most general Lagrangian we can write in terms of the H fields and the light pseu-

doscalars, that obeys both the light-flavour symmetries and the symmetries of HQET,

is

LHMχPT = Tr
[

H̄(iv ·D)H
]

+ gTr
[

H̄Hγµγ5Aµ
]

(2.41)

combined with the light pseudo-scalar kinetic and mass terms (2.23), (2.27).

DµH = ∂µH + VµH (2.42)

defines a covariant derivative for SU(3) flavour to ensure that the H field transforms

correctly under the unbroken symmetry group.

Aµ =
i

2

(

ξ∂µξ† − ξ†∂µξ
)

Vµ =
i

2

(

ξ∂µξ† + ξ†∂µξ
)

(2.43)

At this order there is a single LEC g that governs the strength of the interactions. If we

take the H fields to be made up of B and B∗ mesons, as in Equation (2.39), then we

will call the coupling gb. For a theory with D mesons everything is the same except we

make the replacement gb → gc.

2.3.1 gB∗Bπ

The B∗Bπ coupling is defined by the strong matrix element [47]

〈B(p)π(q)|B∗(p′, λ)〉 = −gB∗Bπ(q
2)q · ǫλ(p), (2.44)

where λ labels the polarisation of the vector meson. This is an unphysical matrix

element, as the decay is forbidden by lack of phase space. However, the equivalent

quantity in the charm sector is allowed, and has been measured by the CLEO experiment

[48]

gD∗Dπ = 17.9± 0.3± 1.9 (2.45)

The same matrix element, at leading order in HMχPT is given by

〈B(p)π(q)|B∗(p′, λ)〉 = −gb
2mB

fπ
q · ǫλ(p). (2.46)

leading to the relation

gB∗Bπ =
2mB

fπ
gb (2.47)

This allows the low energy constant to be accessed directly through a strong decay

amplitude.
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2.4 Symanzik Improvement Program

The Symanzik improvement program [49, 50] is a technique to systematically improve

the continuum limit of a lattice gauge theory using a continuum effective theory. Lattice

QCD will be introduced in Chapter 3, but for the following discussion it is sufficient to

consider Lattice QCD as QCD with some ultra-violet cut-off a. Symanzik’s idea was

to demand equality between the lattice theory and a renormalised continuum effective

theory.

LLat .= LSym (2.48)

The dotted equality means that both sides produce the same physics. The central idea

is that the Symanzik side of the equality can be written as QCD plus higher order

(dimO > 4) operators.

LSym = LQCD +
∑

O
adimO−4CO(g

2;ma;µa)OR(µ) (2.49)

The dimensionless coefficients CO contain all dependence on short-distances and the

operators OR encode the long-distance physics. The coefficients depend on all couplings

of the lattice action, and for fixed values (of g2, ma etc) they encode information about

the cut-off effects of the lattice theory. The application of the Symanzik theory is to

subtract (discretised versions of) these higher-order terms from the lattice action to

improve the continuum limit. In theory, this can be performed order-by-order, thus the

technique is known as Symanzik improvement program.

It is possible to make field redefinitions to LQCD that will not change on-shell matrix

elements. For instance

q → q + adimXǫXXq, q̄ → q̄ + adimX ǭX q̄X (2.50)

for any gauge covariant operator X and any choice of the parameters ǫX and ǭX . At

each order these substitutions will change the higher order terms. Inserting (2.50) into

LQCD creates new terms like

∑

X

adimX
[

ǭX q̄X( /D +mq)q + ǫX q̄(−
←−
/D +mq)Xq

]

, (2.51)

which just amount to a change of the coefficients of higher order terms. The field

redefinitions are arbitrary and do not affect the physics, meaning the terms like (2.51)

must be redundant. At dimension five there are five possible operators that obey the

symmetries of QCD (see 1.1.1), of which only two are linearly independent or cannot be

directly absorbed by redefinitions of the couplings,

O5 = iq̄σµνF
µνq, O′

5 = 2q̄D2q. (2.52)
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The second of these can be rewritten as

O′ = 2q̄ /D( /D +m)q − 2mq̄ /Dq, (2.53)

a redundant part and a piece that can be absorbed into the field normalisation. There-

fore at dimension five there is only one additional operator to consider, the so called

Sheikholeslami-Wohlert term [51] O5 = iq̄σµνF
µνq. This tells us that by subtracting

O5 with the correct coefficient from our lattice theory we have equality with QCD up

to terms proportional to a2 1 It is important to note that O5 is a continuum opera-

tor, to improve LLat it is necessary to subtract a discretised version of the operator.

For a specific discretisation of the Sheikholeslami-Wohlert term see (3.47). Improving

the action is all that is necessary to improve on-shell quantities [52], however for other

quantities it is also necessary to improve the lattice operators that we take expectation

values of. In this work, however, we will only be calculating matrix elements of domain

wall fermion light quark operators (see Section 3.3.2 and 4.5) and as such we will not

require any explicit operator improvement. Various approaches have been used to tune

the coefficient of the lattice Sheikholeslami-Wohlert term, including perturbation theory

[51, 53] and so called tadpole improvement [54]. For the work in this thesis a lattice

action with a non-perturbatively tuned Sheikholeslami-Wohlert term is used. This is

discussed in section 3.4.4.

1In lattice QCD a will be a short-distance that we will aim to take to zero.
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Lattice QCD

Lattice Quantum Chromodynamics (LQCD) is the Euclidean space, discrete, finite vol-

ume version of QCD. By putting QCD on a hyper-cubic lattice we regularise the theory

and at the same time make it amenable to numerical simulations. In the low-energy

regime of QCD, which includes most interesting hadronic phenomena, the QCD cou-

pling is large and perturbation theory breaks down. This is where LQCD becomes

invaluable. This chapter will introduce the QCD path integral on which the LQCD is

based, followed by a description of the various lattice actions used in this work. Finally,

the chapter will finish with a discussion of the numerical techniques necessary to make

real lattice computations.

3.1 Path Integrals

Observables in QCD can be calculated as vacuum expectation values of quark and gluon

operators using a path integral approach.

〈O(ψ̄, ψ,A)〉 = 1

Z

∫

D[ψ̄]D[ψ]D[A] O(ψ̄, ψ,A) e−Sg [A]−Sf [ψ̄,ψ,A] (3.1)

Z =

∫

D[ψ̄]D[ψ]D[A] e−Sg [A]−Sf [ψ̄,ψ,A] (3.2)

In the equation above the action has been separated into two parts, a purely gauge part

and the fermion action. In the above all flavour indices have been suppressed. The

fermion fields are represented by anti-commuting Grassman numbers which would prove

difficult to represent on a computer, however the fermionic part of the action is quadratic

in the quark fields, meaning we can use the standard Gaussian formula to integrate out

the fermions.

Z =

∫

D[ψ̄]D[ψ]D[A] e−Sg [A]−ψ̄D(A)ψ =

∫

D[A] det[D(A)]e−Sg [A] (3.3)

23
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In the above expression the fermion action is written as some Dirac operator which is

dependent on the gauge fields through a covariant derivative. Historically lattice calcu-

lations were carried out setting the fermion determinant to unity, known as the quenched

approximation. This corresponds to neglecting sea-quark loop effects. Current simula-

tions use fully dynamical sea quarks (i.e. calculating the determinant) and we see the old

approximation was surprisingly good, nonetheless it was an uncontrolled approximation

and needs to be removed. If the determinant is positive definite, which it will be in the

case of two degenerate flavours, we can treat the product of the determinant and the

exponential as a probability weight. Once space and time have been discretised, and the

integral rendered finite dimensional, we can use importance sampling to approximate

the integral. The quark fields under the path integral can be Wick contracted to be

re-expressed as a product of fermion propagators.

S(A;x, y) = D−1(A;x, y) (3.4)

The propagators themselves are functions of the gauge fields. If we can correctly sample

the space of all gauge fields and calculate the propagators on each field configuration

the integral can be approximated by a sum over N field configurations

〈O(ψ̄, ψ,A)〉 =
N
∑

i

Tr [S(A;x, y)S(A; y, z) · · · ] +O
(

1√
N

)

, (3.5)

where the trace runs over spin and colour indices. With an increasing number of sam-

ples this will converge to the correct correlation function, and due to the central limit

theorem the sample mean will belong to a Gaussian distribution. Due to the exponential

weight factor (3.3), the distribution is narrow and only a small part of the integration

space makes the dominant contribution to the integral. To generate the sample gauge

configurations a Markov chain is used. This is a random walk through configuration

space that is constructed such that at equilibrium it is the desired distribution. A suf-

ficient condition to acheive the desired distribution is to demand that the transition

probability from state U to U ′, T (U ′|U) obeys

T (U ′|U)P (U) = T (U |U ′)P (U ′), (3.6)

which is known as the detailed balance equation. The transition probability must also be

postive for all pairs of U and U ′ with
∑

U ′ T (U ′|U) = 1. It is usually necessary to run the

Markov process for a large number of steps before equilibrium is reached, this is known

as thermalisation. Furthermore, each trajectory (step in the chain) is closely related to

the last. This is known as auto-correlation. Usually measurements are only carried out

on trajectories that are well separated, hence reducing auto-correlation, however this

must still be taken into account during the data analysis (see Section 3.5.3). There are

a number of algorithms available to generate the Markov chain, such as Heat Bath [55],

Over-relaxation [56] and Hybrid Monte-Carlo (HMC) [57]. The configurations used in
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this thesis were generated with the Rational Hybrid Monte-Carlo algorithm (RHMC)

[58]. This is an improved version of HMC that allows simulations with an odd number

of sea-quarks, where the product of fermion determinants is not automatically positive

definite. The process of generating gauge configurations is the most expensive part of a

lattice QCD calculation. Typically, the configurations are generated as a collaborative

effort and reused in a number of different physics analyses.

Next we shall discuss how to put the theory onto a lattice. The two most important

criteria any discretised gauge theory must meet are gauge invariance and a well defined

continuum limit. Therefore, first we will consider how to introduce a discretised covariant

derivative. If we place the fermion fields at the lattice vertices the obvious choice for a

derivative is a symmetric difference

∂µψ(x)→
1

2a
(ψ(n+ µ̂)− ψ(n− µ̂)) , (3.7)

where µ̂ is a unit vector that points in either of the four lattice dimensions. Using this

definition we can make a first attempt at a massless free fermion action.

S0
F [ψ̄, ψ] = a4

∑

n∈Λ
ψ̄(n)





4
∑

µ=1

γµ
ψ(n+ µ̂)− ψ(n− µ̂)

2a



 (3.8)

Here µ runs over the four dimensions of the lattice, a is the lattice spacing and Λ

represents the spatial extent of the lattice. To maintain gauge invariance we have to

make sure the action is invariant under the unitary local transformations

ψ(n)→ ψ′ = Ω(n)ψ(n), ψ̄(n)→ ψ̄′ = ψ̄(n)Ω(n)†. (3.9)

where Ω(n) is an SU(3) gauge matrix at site n. Clearly, terms with non-matching lattice

indices will not be invariant under these transformations. For instance,

ψ̄(n)ψ(n− µ̂)→ ψ̄(n)Ω(n)†Ω(n− µ̂)ψ(n− µ̂) (3.10)

To restore gauge invariance we introduce fields Uµ(n) which are group elements of SU(3)

and live on the links. The index µ refers to it being the link between n and its nearest

neighbour in the µ-direction, at position n + aµ̂. We also use the relation U−µ(n) ≡
Uµ(n− µ̂). These gauge links have the transformation properties

Uµ(n)→ U ′
µ = Ω(n)Uµ(n)Ω(n+ µ̂)† (3.11)

With this ingredient in place, we can rewrite Equation 3.8 in a gauge invariant form

S0
F [ψ̄, ψ] = a4

∑

n∈Λ
ψ̄(n)





4
∑

µ=1

γµ
Uµ(n)ψ(n+ µ̂)− U−µ(n)ψ(n− µ̂)

2a



 . (3.12)
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The link variables are related to the continuum gauge fields through the expression

Uµ(n) = exp(iaAµ(n)), (3.13)

meaning that elements of the group SU(3), rather than generators, become the funda-

mental variables that we deal with in the lattice formulation and the gauge links act as

parallel transporters for the gauge transformations.

3.2 Gauge Actions

To construct an action out of the link variables we must identify how to make gauge

invariant objects. Any transformation matrices will cancel from within a string of gauge

links, but the matrices at either end will not. Therefore, we consider closed loops of

gauge links, the simplest of which is the plaquette. This is a one-by-one square of gauge

links

Uµν = Uµ(n)Uν(n+ µ̂)U−µ(n+ µ̂+ ν̂)U−ν(n+ ν̂), (3.14)

the trace of which is invariant under a gauge transformation. From this we have the

necessary ingredients to write down Wilson’s gauge action [59].

Sg[U ] =
2

g2

∑

n∈Λ

∑

µ<ν

Re tr [1− Uµν(n)] (3.15)

The continuum limit of Equation 3.15 can be found by inserting the definition of the

gauge link from Equation 3.13, applying the Baker-Campbell-Hausdorff formula and

Taylor expanding for small a.

Sg[U ] =
a4

2g2

∑

n∈Λ

∑

µ<ν

tr
[

Fµν(n)
2 +O(a2)

]

(3.16)

3.2.1 Improved Gauge Actions

We have shown that the Wilson gauge action reproduces the continuum gauge action

to O(a2), but we could also add higher dimensional operators to the lattice action that

would have no effect in the continuum, but possibly cancel higher powers of a. This

is the basis for improvement programs, which we discussed more thoroughly in Section

2.4. Any additional operators must be gauge invariant, so the obvious choices are larger

loops of gauge links, such as the one-by-two rectangle. This lattice operator can be

added to the Wilson gauge action,

Sg[U ]improved =
2

g2

∑

n∈Λ

∑

µ<ν

Re tr
[

1− c0Uplaqµν (n)− c1U rectµν

]

, (3.17)
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with the restriction that c0 + 8c1 = 1 to ensure that FµνFµν is normalised to unity. A

variety of techniques, both perturbative and non perturbative, have been employed to

tune the improvement coefficients, such as:

Lüscher-Weiz [60, 61, 52] c1 = −1/12
Iwasaki [62, 63] c1 = −0.331
DBW2 [64] c1 = 1.4069.

As well as improving the continuum limit, it has been shown that these improved actions

can improve the chiral properties of simulations [65] when used in conjunction with

domain wall fermions (see section 3.3.2). The work described in this thesis is carried

out on configurations produced by the RBC/UKQCD collaboration using the Iwasaki

gauge action.

3.3 Fermion Actions

Starting from Equation 3.12 our first attempt at a fermion action is

S0
F [ψ̄, ψ] = a4

∑

n∈Λ
ψ̄(n)





4
∑

µ=1

γµ
Uµ(n)ψ(n+ µ̂)− U−µ(n)ψ(n− µ̂)

2a
+mψ(n)



 . (3.18)

To see where this fails we calculate the propagator, with trivial gauge fields, by perform-

ing a Fourier transform on the lattice Dirac operator and finding its inverse.

S(p) =
m− ia−1

∑

µ γµ sin(pµa)

m2 + a−2
∑

µ sin(pµa)
2

(3.19)

We can easily check that this has the correct continuum limit. Setting the mass to zero

we retrieve the continuum propagator.

S(p)|m=0 =
−ia−1

∑

µ γµ sin(pµa)

a−2
∑

µ sin(pµa)
2

a→0→
−i
∑

µ γµpµ

p2
(3.20)

The continuum propagator has a single pole at p = (0, 0, 0, 0), however, the lattice version

also has poles at ap = (π, 0, 0, 0), (0, π, 0, 0), · · · , (π, π, π, π). These 15 unphysical poles

correspond to 15 unwanted particles known as doublers. This is clearly a problem.
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3.3.1 Wilson Fermions

A sensible lattice theory of fermions will only have one pole at ap = (0, 0, 0, 0), corre-

sponding to a single physical particle. One way this can be achieved is by giving each of

the doublers a large mass, of the order of the cut-off, which goes to infinity and decouples

the doublers in the continuum limit. This was the approach first suggested by Wilson.

In momentum space, an extra term is added to the Dirac operator

D(p) = m+
i

a

∑

µ

γµ sin(pµa) +
1

a
(1− cos(pµa)), (3.21)

and hence each doubler has a mass m + 2/a. The free propagator calculated from this

operator is free of the unwanted modes. The Wilson term itself is a discretisation of the

negative Laplacian, meaning the Wilson-Dirac operator can be written in the succinct

form

D(n,m)αβab =

(

m+
4

a

)

δαβδabδnm −
1

2a

±4
∑

µ=±1

(1− γµ)αβUµ(n)abδn+µ̂,m (3.22)

In the above equation the Greek indices label spin, the Roman indices label colour,

and the definition γ−µ ≡ −γµ is used. The Wilson fermion action successfully removes

the doubler modes, and in the continuum limit restores all the relevant symmetries of

QCD. However, at finite lattice spacing the chiral symmetry is explicitly broken by the

Wilson term which acts like a mass term, even for zero quark mass. Having a lattice

action that violates chiral symmetry has many disadvantages, both theoretically and

practically. A chiral action eases the problem of operator mixing when renormalising

composite operators, making the problem more like the continuum. Another problem

concerns so called exceptional configurations. The eigenvalues of a lattice Dirac operator

D[U ], with bare quark mass m, can be written

m+ λi[U ]. (3.23)

In general λi[U ] is complex, but real negative values are possible. For small m the

fluctuating values of λ[U ] can cause the eigenvalues of D[U ] to become very small,

meaning numerical inversions become impractical. The only way around this is to use

larger quark masses, often far from the physical point. This is not a problem however

for chiral fermion actions for which the spectrum of the Dirac operator lies in a circle

on the complex plane of radius 1/a, centred at m + 1/a. This is a consequence of the

Ginsparg-Wilson equation which is introduced in the next section.
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3.3.2 Domain Wall Fermions

An important theorem by Neilsen and Ninomiya [66] states that a local, translation

invariant, real, bilinear lattice action, cannot be simultaneously free of doublers and

chirally invariant. This was how things stood until a paper by Ginsparg and Wilson [67]

was rediscovered. In their now famous work they suggested a modified form of chiral

symmetry. Continuum chiral symmetry can be neatly summarised by demanding that

the Dirac operator anti-commutes with the fifth gamma matrix, {D, γ5} = 0, which was

assumed as a condition by Neilson and Ninomiya. Ginsparg and Wilson extended this

expression by including a cut-off dependent term on the right-hand side.

Dγ5 + γ5D = aDγ5D (3.24)

This equation recovers continuum chiral symmetry for a → 0, and for a 6= 0 allows an

alternative definition of the usual chiral rotations

ψ → eiαγ5(1+
a
2
D)ψ ψ̄ → ψ̄eiα(1+

a
2
D)γ5 . (3.25)

The Ginsparg-Wilson equation can be solved exactly by the overlap operator [68, 69, 70]

Dov =
1

a
(1 + γ5sign[γ5A]) , (3.26)

where A is a suitable ‘Kernel’ Dirac operator. In practice the Wilson operator is usually

chosen. Unfortunately, although the overlap operator possesses exact chiral symmetry,

numerically it is extremely taxing to simulate, due to the matrix sign function. Chiral

fermion actions did not gain any traction until Kaplan’s seminal 1992 paper [71]. In

this he showed how massive interacting fermions in 2n + 1 dimensions can be used to

simulate massless fermions in 2n dimensions. This is the origin of domain wall fermions

(DWF). The standard DWF formulation introduces a finite fifth-dimension Ls, which

when taken to infinity provides exact (Ginsparg-Wilson) chiral symmetry. In the modern

viewpoint, the extra-dimension is merely a useful calculational tool, corresponding to an

approximation of the overlap sign-function [72, 73]. It can be shown that for Ls →∞ the

domain wall and overlap formulations are exactly equivalent. A further benefit of domain

wall fermions, or any other chirally symmetric formulation, is that it is automatically

O(a) improved. This can be most easily seen by considering the effect of adding an O(a)
improving term, such as a lattice Sheikholeslami-Wohlert term (Section 2.4). Such an

operator would no longer obey the Ginsparg-Wilson equation (3.24) so we must conclude

that chiral actions are already improved to this order.
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3.3.2.1 Continuum Formulation

The basis of Kaplan’s idea was to write down a 5d Dirac operator, with a mass-term

dependent on the extra dimension, s.

D5 = /∂ + γ5∂s +M(s) (3.27)

The exact form of the mass term is unimportant, so long as M(∞) = M , M(0) = 0

and M(−∞) = −M . A step function is a convenient choice. A generic solution to the

equations of motion can be written as

ψ = φ(s)u(p)eı~p.~x. (3.28)

A specific solution is the massless case where i/p = 0 and the spinor is a helicity eigenstate

γ5u(p) = ±u(p).

[γ5∂s +M(s)]φ±(s)u± = 0 (3.29)

This gives two possible solutions for the s-dependent function.

φ±(s) = exp

[

∓
∫ s

0
M(s′)ds′

]

(3.30)

However, if we are to insist on only normalisable solutions, then φ−(s) must be discarded.

The interpretation is that a single massless chiral mode is bound to the domain wall,

with a wave function falling off exponentially in the s-direction. If the opposite chirality

is required all that is necessary is to interchange m(s) → −m(s). Furthermore, if the

s-coordinate is made finite, for instance 0 < s < Ns with M(s) =M Dirichlet boundary

conditions, opposite chiral modes are found on the two domain walls.

3.3.2.2 Discretisation

To use this technology in lattice simulations it is necessary to discretise the operator D5.

A naive approach, as with regular fermion actions, falls foul of the doubling problem. To
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Figure 3.1: Chiral modes bound to the walls of the fifth dimension.

side-step these difficulties a five-dimensional Wilson term is introduced from the outset.

DDWF (n,m; s, t) =
1

2

4
∑

µ=1

γµ

[

Uµ(n)δn,m+µ − U †
µ(n)δn,m−µ

]

δs,t +M0δn,mδs,t

−
4
∑

µ=1

1

2

[

Uµ(n)δn,m+µ − 2δn,m + U †
µ(n)δn,m−µ

]

δs,t

+
1

2
γ5 [δs,t+1 − δs,t−1] δn,m

−1

2
[δs,t+1 − 2δs,t + δs,t−1] δn,m

(3.31)

For simplicity we set the lattice spacing to unity. After performing a Fourier transform

on the regular 4-coordinates the operator can be rewritten as

DDWF (p; s, t) = ı/̄pδs,t +

[

1 +M0 −
4
∑

µ=1

(1− cos pµ)

]

δs,t − P+δs,t−1 − P−δs,t+1 (3.32)

/̄p =
4
∑

µ=1

γµ sin pµ. (3.33)

Here P± = 1
2(1±γ5) are the usual chiral projectors. Taking the viewpoint that the extra

dimension is simply a flavour label, the action can be further simplified by writing it in

terms of a non-diagonal, p-dependent mass matrix.

S =
∑

s,t

∑

p

ψ̄s(−p)
[

ı/̄pδst + P−Ms,t + P+M
†
s,t

]

ψt(p) (3.34)
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Ms,t =





















b(p) −1 0 · · · 0

0 b(p) −1 0
...

... 0 b(p) −1 0

...
. . . 0 b(p) −1

m · · · · · · 0 b(p)





















(3.35)

b(p) = 1 +M −
4
∑

µ=1

(1− cos pµ) (3.36)

To give the quarks mass we add a parameter m in the bottom left-hand corner of (3.35).

We now expect to find light modes bound to the oppposite walls with heavy modes living

in the middle of the flavour space. To investigate this we can calculate the eigenvectors

and eigenvalues of the mass matrix. Following [74, 75] we look at the eigenvectors of

(MM †)s,t in the zero momentum limit, where b0 = 1 +M .

(MM †)s,t =



















b20 + 1 −b0 0 · · · bm

−b0 b20 + 1 −b0 0
...

0 −b0 b20 + 1 −b0 0
... 0 −b0 b20 + 1 −b0
bm · · · 0 −b0 b20 +m2



















(3.37)

From the eigenvalue equation we find three constraints

(b20 + 1− λ2i )φ−1 − b0φ−2 + b0mφ
−
Ns

= 0 (3.38)

− b0φ−s−1 + (b20 + 1− λ2i )φ−s − b0φ−s+1 = 0 (3.39)

b0mφ
−
1 − b0φ−Ns−1 + (b20 −m2 − λ2i )φ−Ns

= 0 (3.40)

and similarly for the φ+. These equations can be solved using the ansatz φ = Aeαs +

Be−αs, and for 0 < b0 < 1

cosh(αi) =
1 + b20 − λ2i

b0
. (3.41)

The lowest eigenvalue is shown in [76, 77, 74] to be

λ21 = m2(1− b0)2 +O(m4) +O(bNs

0 )

= m2M2(2−M)2 +O(m4) +O((1−M)Ns)
(3.42)

with corresponding eigenvector

φ(1)s =
√

1− b20eαi(s−1)(sign b0)
s−1. (3.43)

We interperate this to mean the lightest mode is bound to the domain wall and falls of

exponentially with s (with the opposite handed mode on the other boundary). Its mass
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is given by λ1 and is proportional to m, except with an additve renormalisation that

falls off as Ns →∞ for 0 < M < 2. This is refered to as the residual mass and originates

from the left and right-handed modes mixing in the middle of the fifth-dimension. The

rest of eigenmodes have ocillatory behaviour coming from α becoming imaginary and

correspond to heavy modes living in the fifth-dimensional bulk.

φ(i)s =
2

Ns
sin

(

π(i− 1)

Ns
[Ns + 1− s]

)

i 6= 1 (3.44)

To remove these modes we add an extra term to the action

S = ψ̄DDWFψ + φ̄DPV φ. (3.45)

These fields are pseudo-fermions, meaning they have all the same quantum numbers as

the fermion fields, but are not Grassman valued. On integration of the action det[DPV ]

appears downstairs, allowing it to be chosen such that it exactly cancels the bulk mode

contribution to det[DDWF ]. Vranas showed in [77] that a suitable choice is DPV =

DDWF (m = 1).

3.4 Heavy Quark Actions

In principle we can use any fermion action to simulate heavy quarks, however in practice

there is an important restriction that the mass of the heavy quark should not be larger

that the inverse lattice spacing.

ma≪ 1 (3.46)

Current lattice simulations use inverse lattice spacings in the range a−1 = 2–4 GeV.

Comparing this to the mass of a b-quark (mb ≈ 4.5GeV) we see that a naive approach

is doomed to failure. For charm quarks (mc ≈ 1.3 GeV) it is not so cut-and-dried. As

it is currently not feasible to reduce the lattice spacing sufficiently to simulate safely,

instead an alternative discretisation is usually used. The idea is that simulating quarks

with ma ≫ 1 results in uncontrolled discretisation errors, so by choosing a suitably

improved action and operators (see Section 2.4) it is possible to control these effects.

Most techniques are based upon HQET. Usually the procedure is to use an alternative

action for the heavy valence quarks, and simulate on a regular gauge background. The

effects of heavy quarks are suppressed in loops, so neglecting them makes a negligible

difference. It should be added that lattice spacings in some modern dynamical simula-

tions are getting small enough that charm quarks can be simulated with the same action

as light quarks. For example, the European Twisted Mass Collaboration (ETMC) have

begun simulating with dynamical charm quarks [78, 79, 80], in so called 2+1+1 flavour

simulations.
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3.4.1 Static Action

The static quark action, originally introduced by Eichten and Hill [81], is a lattice

discretisation of the leading order HQET action. In this formulation the quarks are

infinitely heavy and hence do not propagate in space. A propagator for a static quark

reduces to the trace of the product of gauge matrices in the temporal direction. Nu-

merically, static simulations are very simple to implement as it it is not necessary to

perform an inversion of the Dirac matrix. The main problem with the static approach

is that the signal to noise ratio can be poor, making it difficult to extract the desired

observables. The standard approach to mitigate these problems is to apply smearing

such as APE [82] or HYP [83] to the gauge matrices in the propagator. This reduces the

short distance fluctuations in the gauge backgrounds and improves the signal to noise

ratio. Despite the limitations of static quark simulations it has proved to be an effective

and popular method for investigating heavy quark physics on the lattice. A number of

calculations of gB∗Bπ have been performed in the static limit which will be discussed in

Chapter 4.

3.4.2 Non-relativistic QCD

Non-relativistic QCD [84] is an effective theory most applicable to heavy quarkonium.

Essentially it is HQET, but by using a power counting more suitable to heavy quark-anti-

quark pairs the higher order terms are instead ordered by powers of v/c. Numerically

the theory works very well, but has the disadvantage that no continuum limit is possible.

3.4.3 Relativistic Heavy Quark Action

The relativistic heavy quark (RHQ) action is an anisotropic Wilson action, with a

Sheikholeslami-Wohlert term [51]. It is able to describe quarks in the region where

ma ≪ 1 and ma ≥ 1, meaning it can be used for both heavy and light quarks. By

breaking axis-interchange symmetry the RHQ action takes advantage of the fact that

for heavy quarks, although the mass is large, the spatial derivative or momentum is not

necessarily so. The action can be written as

SRHQ = a4
∑

x,y

ψ̄(y)

(

m0 + γ0D0 + ξ~γ· ~D − a

2
(D0)

2

− a

2
ξ( ~D)2 +

∑

µν

ia

4
cpσµνFµν

)

y,x

ψ(x),

(3.47)

Dµψ(x) =
1

2a

[

Uµ(x)ψ(x+ µ̂)− U †
µ(x− µ̂)ψ(x− µ̂)

]

, (3.48)

D2
µψ(x) =

1

a2

[

Uµ(x)ψ(x+ µ̂) + U †
µ(x− µ̂)ψ(x− µ̂)− 2ψ(x)

]

, (3.49)
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Fµνψ(x) =
1

8a2

∑

s,s′=±1

ss′
[

Usµ(x)Us′ν(x+ sµ̂)U †
sµ(x+ s′ν̂)U †

s′ν(x)− h.c.
]

ψ(x), (3.50)

where m0 is the bare quark mass, ξ is the anisotropy parameter and cP is the coefficient

for the isotropic Sheikholeslami-Wohlert term. The RHQ method was originally pro-

posed independently by groups at Fermilab [85] and Tsukuba [86], but later Christ and

Lin [87] showed that it could be written in the form of Equation (3.47) with only three

unknown parameters. This is in contrast to the original formulation where six parame-

ters were needed. Furthermore, they also showed that the three parameters (m0, ξ, cP )

could be determined non-perturbatively. Once the action is tuned it is accurate to order

(ma)n for all n and to first order in |p̄a|. The tuning of the RHQ parameters has been

completed for b-quarks [3] on the RBC/UKQCD configurations that are used in this the-

sis. In the next section we will briefly describe the tuning method from [3]. The lattice

action is not Lorentz invariant, so mesons receive corrections to their energy-momentum

dispersion relation due to lattice artifacts:

(aE)2 = (aM1)
2 +

(

M1

M2

)

(a~p)2 +O([a~p]4). (3.51)

where

M1 = E(~p = 0) (3.52)

and

M2 =M1 ×
(

∂E2

∂P 2
i

)−1

~p=0

(3.53)

are known as the rest mass and kinetic mass respectively.

3.4.4 RHQ parameter tuning

The tuning of the RHQ parameters was achieved by matching non-perturbative lat-

tice calculations to experimental values. To fix the three unknown parameters three

quantities are required. The chosen quantities are the spin-averaged Bs meson mass,

MBs =
1

4
(M∗

Bs
+ 3MBs) (3.54)

the hyperfine splitting,

∆MBs =MB∗
s
−MBs (3.55)

and the requirement that the Bs meson rest (3.52) and kinetic masses (3.53) are equal

such that they obey a continuum dispersion relation.

MBs

1

MBs

2

= 1 (3.56)
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The Bs system was used as it contains no valence light quarks that require extrapolating

to physical mass. The observables, in general, have a non-linear relationship with the

parameters, but if a small enough range is chosen a linear approximation may be made.

The tuning proceeds by choosing a box of parameters around a central point of size

σ{m0,ξ,cP }. The seven parameter sets are







m0a

cp

ξ






,







m0a− σm0a

cp

ξ






,







m0a+ σm0a

cp

ξ






,







m0a

cp − σcp
ξ






,







m0a

cp + σcp

ξ






,







m0a

cp

ξ − σξ






,







m0a

cp

ξ + σξ






.

(3.57)

The observables are calculated on each set and then checks are made that the observables

dependence on the parameters are indeed linear in this region. If so, the tuned parameter

set can be calculated from the linear model

Y = J







m0a

ξ

cp






+A (3.58)

where Y is the vector of observables

Y =









M̄Bs

∆MBs

MBs
1

MBs
2









. (3.59)

The vector J is a finite difference approximation of the derivatives from the observables

Yi calculated on the ith parameter set (3.57).

J =
[

Y3−Y2
2σm0a

, Y5−Y4
2σcP

Y7−Y6
2σξ

]

(3.60)

A = Y1 − J × [m0a, cP , ξ]
T (3.61)

We can then find the tuned parameters







m0a

ξ

cP







RHQ

= J−1 ×



















M̄Bs

∆MBs

MBs
1

MBs
2









PDG

−A











, (3.62)

where the vector of observables are the experimental values from the PDG. The pro-

cedure ends when the tuned values on the left-hand side of (3.62) lie with the box of

parameters defined by (3.57). This condition ensures that the tuned values are found by
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interpolation, rather than extrapolation. If the parameters are not found to lie within

the box, the box is moved and the process repeated.

3.5 Lattice Methods

3.5.1 Correlation Functions

We saw in section 3.1 that the observables that we wish to calculate in Lattice QCD are

the vacuum expectation values of time ordered products of quark and gluon operators.

Let us investigate in more detail the left hand side of (3.1). We will assume the simple

case of two operators, O† and O, which have the correct quantum numbers to create

and destroy a pion from the vacuum. These can be constructed by selecting the correct

Dirac bilinear from table 1.1, for instance, for a π− we would choose

O(x) = d̄(x)γ5u(x). (3.63)

The two-point correlation function is then

C(~p, t) =
∑

~x

ei~p·~x〈0|O(~x, t)O†(~0, 0)|0〉, (3.64)

where we have Fourier transformed to a definite momentum ~p. Next, using the time

translation operator

Ô(t) = etĤ ˆO(0)e−tĤ (3.65)

we can move the operator at ~x back to the origin in time and insert a complete set of

states:

C(~p, t) =
∑

x

ei~p·~x〈0|O(~x, 0) |n〉〈n|
2En

O†(~0, 0)|0〉e−tEn . (3.66)

The operators we chose have the quantum numbers of a pion, so only pions and their

excited states will overlap. Setting the momentum to zero

C(t) = |〈π|O†|0〉|2e−mπt + |〈π′|O†|0〉|2e−mπ′ t + · · · , (3.67)

where π′ refers to an excited pion state. If we wait for a large enough t the excited states

will be sufficiently suppressed that we can access the ground-state pion’s mass and the

matrix element squared. Equation (3.67) is not completely correct as the pion states

may also propagate backwards in time. Therefore, due to the periodicity of the lattice,

the time dependence is actually cosh-like,

C(t) ∝ e−mt + e−m(T−t) = 2e−mT/2cosh(m(T/2− t)) (3.68)
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where T labels the time extent of the lattice.

As explained in Section 3.1 the correlator (3.64) is evaluated using the QCD path inte-

gral. First the fermionic part of the integral is performed and all the quark fields are

contracted using Wick’s theorem. Then the resulting gauge integral is performed by

averaging over the gauge configurations (3.5). The Wick contraction of a pair of quark

fields is given by the fermion propagator

q(x)q̄(y) = S(x, y), (3.69)

which is evaluated by inverting the Dirac operator

D(x, z)S(z, y) = δ(x, y), (3.70)

typically using an iterative method such as Conjugate Gradient (see Section 3.5.6). For

the example of a π− in (3.66) the Wick contractions evaluate to

C(t) = Tr
[

S(~x, t;~0, 0)γ5S(~0, 0; ~x, t)γ5

]

= Tr
[

S(~x, t;~0, 0)S†(~x, t;~0, 0)
] (3.71)

where we have assumed degenerate light quarks, such that S = Su = Sd, and in the last

line utilised γ5-hermiticity (3.79). For an iso-singlet operator,

O1 =
1√
2

(

ū(x)γ5u(x) + d̄(x)γ5d(x)
)

, (3.72)

there is an added complication. After performing the Wick contractions we get two

contributions, a connected term, the same as (3.71), and a disconnected term

− 2D(t) = −2Tr
[

S(~x, t; ~x, t)
]

Tr
[

S(~0, 0;~0, 0)
]

. (3.73)

The disconnected term is dominated by noise and difficult to evaluate numerically.

Figure 3.2: Connected (left) and disconnected contributions (right).
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3.5.2 Effective Mass

To determine at what point the excited states have sufficiently decayed it is common to

examine a quantity known as the effective mass, most-simply defined as he ratio of the

correlator at successive time points

meff(t+
1

2
) = − ln

C(t)

C(t+ 1)
. (3.74)

When the exponentials coming from the excited states have decayed sufficiently meff ≈
m. There are various definitions of the effective mass in use, however in this work we

use the version above. If it is important to take into account the backwards propagating

components, for instance light particles on a lattice with a small temporal extent, then

construct
C(t)

C(t+ 1)
=

cosh(meff(T/2− t))
cosh(meff(T/2− t+ 1))

(3.75)

and solve for meff at every t. Figure 3.3 shows an effective mass plot for the B-meson

two-point function. On the left-hand side the correlator is polluted by excited states,

towards the middle, indicated by the blue band, there is a plateau where meff ≈ m

holds, finally on the right-hand side the correlator becomes too noisy to see any signal.

The effective mass plot show the region where the correlator can be fitted to extract the

mass. Typically the mass is extracted from a fit to the correlator itself, rather than to

the effective mass.

Figure 3.3: An effective mass plot of the B-meson correlator. The blue region
shows the region where the correlator has been fitted.
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3.5.3 Jack-Knife Analysis

In Monte-Carlo simulations it is necessary to calculate error estimates of expectation

values coming from measurements that may be correlated. This arises because new gauge

configurations are generated by updating the previous. Although measurements are not

usually made on consecutive configurations, residual auto-correlations can still survive.

Correlated measurements can cause error estimates to be underestimated. Furthermore,

it is often necessary to calculate the error on some function of one or more, possibly

related, expectation values. Here it is important to remember that generally 〈f(x)〉 6=
f(〈x〉). The standard techniques to deal with these situations are known as resampling

methods, consisting of jack-knife and bootstrap. The work conducted in this thesis relies

on a single-elimination jack-knife technique [88] to estimate and propagate statistical

errors.

For a quantity x that is evaluated on an ensemble of N configurations the jth jack-knife

sample is defined as

x̃j =
1

N − 1

∑

i 6=j
xi, (3.76)

an average of all samples with one removed. To deal with the case where consecutive

measurements are correlated, it is common to divide the data into blocks. In this case

the jth sample has one block of size b removed and N = nx/b. The standard error is

then given in terms of the jack-knife samples

S.E. =
√
N − 1σ =

√

N − 1

N

∑

j

(x̃j − 〈x̃〉)2 (3.77)

The size of the jack-knife blocks should be progressively increased, which will decrease

correlations between blocks. If this process does not effect the errors, you can be happy

that there are no significant correlations. In this work, to reduce correlations, consecutive

measurements were performed on configurations translated by a random 4-vector (see

Section 4.4), this allowed us to use jack-knife blocks of a single configuration. To correctly

calculate errors from a function of different observables, such as in Section 4.4, the

function is evaluated on each configuration and then the jack-knife is performed.

3.5.4 Point Sources

To evaluate the right-hand side of (3.1) in Lattice QCD it is necessary to calculate

propagators for each gauge configuration in the sum of (3.5). This involves inverting

the lattice Dirac operator ((3.31) for DWF), which is a very large and sparse matrix.

For the lattices used in this thesis it has O(1017) elements, although many are zero.

To calculate the complete inverse is not feasible, instead the standard technique is to
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perform a point inversion by solving the equation

D(x, y)αβab S(y, 0)
ββ0
bb0

= δx,y0δα,β0δa,b0 , (3.78)

where the roman indices label colour and the greek indices label spin. This finds a single

column of the inverse Dirac operator which gives a propagator from one space/spin/-

colour point on the lattice to all others. Typically this inversion is completed twelve

times, once for each spin-colour combination. The point-to-all propagator is more useful

than it may at first seem due to a property called γ5-hermiticity

γ5S(x, y)γ5 = S†(y, x), (3.79)

where the dagger applies to the spin and colour indices. This means if we calculate a

propagator from one point on the lattice to all others, we can get the backward running

propagator for free.

3.5.5 Extended Sources

A state created on the lattice using a local operator, such as from Table 1.1, may only

have a small overlap with a physical meson, as this is an extended object. As finer

lattices are used you will get less and less overlap with the physical meson states. To

counteract this problem extended sources are introduced. This means we replace point-

like interpolating operators with extended objects

O(x) = ψ̄(s)(~x, x0)
a
αΓα,βψ

(s)(~x, xo)
a
β (3.80)

where the superscript s on the quark fields stands for smeared. The smeared fields are

related to the point fields through

ψ(s)(~x, xo)
a
α =

∑

~y

S(~x, ~y)abαβψ(~y, x0)bβ . (3.81)

There are many possible choices of S available, some of which are gauge invariant, some

of which are not. A popular choice is the wall source

S(~x, ~y)abαβ = 1δabδα,β , (3.82)

which is equivalent to a ‘wall’ of point sources on a single time slice. However, to use

wall sources it is first necessary to fix the gauge. This is because the gauge average of a

non-gauge invariant quantity is always zero. In this work we use a smearing motivated

by the attractive idea that the meson wave function should be approximately Gaussian

[89, 90]. This can be implemented on the lattice in a gauge invariant manner with a
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smearing function

S(σ, nσ; ~x, ~y)abαβ =

(

1 +
σ2

2nσ
∆(x, y)

)nσ

δabδα,β , (3.83)

where ∆(x, y) is the lattice Laplacian

∆(x, y) =
3
∑

µ=1

(

Uµ(x)δx+µ̂,y + U †
µ(x− µ̂)δx−µ̂,y − 2δx,y

)

. (3.84)

The smearing has two parameters σ and nσ which correspond to the Gaussian radius

and the number iterations used to approximate the exponential. It should be noted

that smearing can be applied at either end of a propagator. For a smeared source

the propagator is inverted using a smearing function as the source term, whereas for a

smeared sink the smearing can be applied afterwards.

3.5.6 Conjugate Gradient

Equation (3.70) can be solved iteratively using an algorithm such as Conjugate Gradient.

Conjugate Gradient solves Ax = b for hermitian positive-definite A by minimising the

quadratic form f(x) = xT b−xTAx. At each step the algorithm searches for the minimum

along a direction A-orthogonal to the last search direction. As the algorithm progresses

through iterative applications of the matrix A it is ideally suited for large sparse problems

where direct methods are impractical. Although the method relies on a hermitian matrix

A, which often is not the case for lattice Dirac operators, the problem can easily be

rephrased in terms of the normal equations A†Ab = A†x.

Figure 3.4: The conjugate gradient algorithm

1: d0 = r0 = b−Ax0
2: loop

3: αi =
rTi ri
dTi Adi

4: xi+1 = xi + αidi
5: ri+1 = ri + αiAdi
6: if ri+1 < ǫ then
7: exit

8: end if

9: βi+1 =
rTi+1

ri+1

rTi ri

10: di+1 = ri+1 + βi+1di
11: end loop

The rate of convergence of Conjugate Gradient is proportional to the square-root of the

condition number of the matrix, which, for a normal matrix, is equal to the ratio of the

largest to smallest eigenvalue. For lattice simulations with small quark masses the Dirac
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operator becomes extremely ill-conditioned and this is one of the reasons why simulating

with physical quark masses proves challenging 1.

3.5.7 Preconditioning

For badly conditioned matrices it is often possible solve a related system that has a

better condition number. Generally, this means solving

P−1APx = P−1b, (3.85)

for a choice of P such that P−1AP has a smaller condition number that A. A specific

type of preconditioning that works well with the domain wall fermion Dirac operator

is even-odd preconditioning. This involves decomposing the Dirac operator into even

and odd sites, where (x1 + x2 + x3 + x4) is even or odd2, and performing an Schur

decomposition

DDWF =

(

Mee Meo

Moe Moo

)

=

(

1 0

Moe M−1
ee

)(

Mee 0

0 Doo

)(

1 M−1
ee Meo

0 1

)

= LDU,

(3.86)

where

Doo =Moo −MoeM
−1
ee Meo. (3.87)

We wish to solve the equation

DDWFψ = η

LDUψ = η

DUψ = L−1η,

(3.88)

which, in terms of even and odd vectors is

(

Mee Meo

0 Doo

)(

ψe

ψo

)

=

(

1 0

−MoeM
−1
ee 1

)(

ηe

ηo

)

(3.89)

(

Meeψe +Meoψo

Dooψo

)

=

(

ηe

ηo −MoeM
1
eeηe

)

. (3.90)

1The other main reason is that for lighter quarks it is necessary to have a larger physical volume
because lighter particles tend to propagate further and thus finite volume effects can become large if the
volume is too small.

2This is called 4D preconditioning. An alternative is 5D preconditioning where the definition of even
or odd sites is based upon (x1 + x2 + x3 + x4 + x5)
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We can then iteratively solve

Dooψo = ηo −MoeM
1
eeηe = η′o (3.91)

and reconstruct the even part of the solution using

ψe =M−1
ee (ηe −Meoψo). (3.92)

The matrix Doo has a smaller condition number that DDWF and hence reduces the

number of CG iterations by about a factor of two. This method relies on the fact that

for domain wall fermions the inverse M−1
ee is trivial to find. Another effective method of

preconditioning is deflation — this is discussed in the next section.

3.5.8 Low mode averaging

It has been observed that meson correlations functions, at small quark masses and large

temporal separations, are dominated by the eigenmodes of the Dirac operator with the

smallest eigenvalues [91]. This observation suggests that by calculating a small number

of the lowest eigenmodes and forming a spectral decomposition of the Dirac operator

in the subspace spanned by the low-modes we can calculate the dominant part of the

propagator exactly.

D(x, y)i(y) = λii(x) (3.93)

S(x, y) =
N
∑

i

1

λi
i(x)⊗ i†(y) + Shigh(x, y) (3.94)

The low mode part of the propagator is all-to-all, meaning it is possible to take advantage

of the translation invariance of the theory to obtain a volume average. For instance,

returning to the pion correlator in (3.71), we could instead calculate

C(t) =
1

V T

∑

~x,~y,τ

Tr [S(~x, τ + t; ~y, τ)γ5S(~y, τ ; ~x, τ + t)γ5] , (3.95)

where V is the volume, and T is the spatial extent of the lattice. This correlator has

a smaller variance than (3.71) and makes better use of the information present in each

configuration. Furthermore, all-to-all propagators make the evaluation of disconnected

contributions (3.73) feasible. The eigenvectors can be calculated using an algorithm

such as Implicitly Restarted Arnouldi Method (IRAM) [92], or the Kalkreuter-Simma

method [93].
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Figure 3.5: Pion correlator constructed using 20 eigenmodes and 64 stochastic
sources.

3.5.9 Stochastic sources

It is still necessary to estimate the contribution to the propagator Shigh in the subspace

orthogonal to the eigenmodes. One way this can be achieved, which also permits volume

averaging, is by using stochastic sources [94, 95]. The general idea is to generate a set

of random vectors with the property

Nr
∑

r

1

Nr
ηr(x)⊗ ηr†(y) ≈ δ(x, y), (3.96)

where in the limit Nr → ∞ the equality becomes exact. This can be achieved, for

example, by filling every component of the vector with complex Z(2) ⊗ Z(2) noise, a

choice that provides good variance reduction [96]. To construct the all-to-all propagator

it is necessary to solve the equation

D(x, y)ψr(y) = ηr(x) (3.97)

for each source vector. The approximate propagator can then be written as the sum

S(x, y) ≈
Nr
∑

r

1

Nr
ψr(x)⊗ ηr†(y). (3.98)
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To find only the high-mode part of the propagator the Dirac operator is projected into

the high-mode subspace before solving (3.97):

PhD(x, y)Phψ
r(y) = ηr(x) (3.99)

where

Ph = 1− Pl = 1−
N
∑

i

i(x)⊗ i†(y). (3.100)

This has the added benefit that the Dirac operator operator’s condition number is im-

proved, and is known as deflation. This can be easily seen by considering the condition

number as the ratio of the operator’s largest to smallest eigenvalue. Figure 3.6 shows

the effect of deflation on the number of matrix-vector products necessary to solve (3.99).

Figure 3.6: The effect of deflation for two different quark masses. For lighter
quark masses the Dirac operator is worse conditioned and deflation has a larger
effect.

3.5.10 The one-end trick

The method of low mode averaging (LMA) with stochastic sources, described above, is

particularly suitable for evaluating disconnected contributions, however for connected

correlators a better method is the one-end trick [97, 98]. Consider a zero-momentum
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meson two-point function averaged over the lattice volume:

C(t) =
1

V

∑

~x,~y

Tr
[

S(x, y)Γ1S(y, x)Γ2

]

=
1

V

∑

~x,~y

Tr
[

S(x, y)Γ1γ5S
†(x, y)γ5Γ2

]

.

(3.101)

Then generate a set of stochastic wall sources,

η(~x, τ) =







Z(2)⊗ Z(2) if tx = τ

0 if tx 6= τ
(3.102)

that can be used to approximate a delta function

1

Nr

Nr
∑

r

|ηr(~x, τ)〉〈ηr(~y, τ)| ≈ δ(~x, ~y)δ(t, τ). (3.103)

The we insert the above delta function into equation (3.101)

C(t) =
1

V Nr

∑

~x,~y,~z,r

Tr
[

S(x, y)|ηr(y)〉〈ηr(z)|Γ1γ5S
†(x, z)γ5Γ2

]

. (3.104)

giving

C(t) =
1

V Nr

∑

~y,r

Tr
[

〈ψrΓ(y)|γ5Γ2|ψr(y)〉
]

(3.105)

|ψr(y)〉 = S(y, x)|ηr(x)〉 (3.106)

|ψrΓ(y)〉 = S(y, x)(Γ1γ5)
†|ηr(x)〉. (3.107)

In the definition of ψΓ (3.107) we see that the product Γ1γ5 appears. For Γ1 = γ5

this gives the identity and ψΓ = ψ, meaning only one propagator inversion is needed.

For other gamma-matrices it is possible to calculate the spin components separately

and construct the different ψΓ explicitly. The one-end trick has an advantage over the

stochastic method described in Section 3.5.8 because only one stochastic delta function is

introduced, meaning less noise. However, it cannot be used for disconnected quantities.
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The B∗Bπ coupling

In this chapter I describe a calculation of the B∗Bπ coupling. The coupling is directly

related to the LEC gb of HMχPT as described in section 2.2. The coupling is relevant

to improving the accuracy of the chiral extrapolations necessary in the RBC/UKQCD

collaboration’s ongoing B-physics program. This includes calculations of B0−B̄0 mixing

and the form-factor f+(q
2) from B → πlν decay which were both discussed in Chapter

1.

There has long been interest in fixing the value of the coupling g. The first estimates

were made using non-relativistic quark models [99] which gave a value of g = 1. Later

relativistic models revised the estimate down to g = 1/3 [100]. A number of calcula-

tions have been made using QCD sum rules [101, 102, 103, 104], which predict a wide

spread of values from g = 0.09 − 0.55. In the D system the decay D∗ → Dπ has suffi-

cient phase space to occur and has been measured by the CLEO [105] giving a value of

gD∗Dπ = 17.9±0.3±1.9, and hence gc = 0.59±0.01±0.07. More recently a preliminary

result has come from the BaBar experiment at SLAC of gc = 0.76 ± 0.01. The first

lattice study of the coupling was a quenched calculation on a a−1 = 1.1 GeV lattice

by UKQCD [106]. The simulation was performed in the static limit using the action

of Eichten and Hill [81] and clover improved light-quarks. They calculated a value of

g∞ = 0.42±0.04±0.08. This result agrees well with previous theoretical determinations,

but was only considered a proof-of-concept study due to large uncertainties from the chi-

ral extrapolation and uncontrolled errors arising from the quenched approximation. In

2002 Abada et al. [107] performed another quenched calculation with clover improved

quarks which they extrapolated up to the charm mass. Later they combined this calcula-

tion with another on the same lattice, but with static heavy-quarks allowing an interpo-

lation to the b-quark mass. The results from the two studies are gc = 0.67± 0.08± 0.06,

gb = 0.58 ± 0.06 ± 0.10 and g∞ = 0.48 ± 0.03 ± 0.11. The first fully dynamical nf = 2

study was performed by Ohki et al., again in the static limit. They applied low mode

averaging (see Section 3.5.8) to achieve very small statistical errors, and made a chiral

extrapolation using both a linear and chiral log formula. For their final result they quote

49
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g∞ = 0.516±0.005±0.033±0.028±0.028, where the sources of errors are statistical, chi-
ral, pertubative and discretisation respectively. In the last year we have for the first time

seen studies considering all sources of systematic error. Detmold, Lin and Meinel [108]

calculated the static coupling on RBC/UKQCD 2 + 1 flavour gauge configurations (as

used in this work) and considered all sources of systematics. In a companion paper [109]

they derived an NLO expression in HMχPT for the axial vector current matrix element

that allowed them to take a theoretically guided extrapolation to the chiral limit. Their

final quoted value is g∞ = 0.449± 0.047± 0.019. Furthermore, Becirevic and Sanfilippo

[110] recently made a calculation using the twisted mass action of the coupling gc. They

used configurations with a small lattice spacing and O(a) improved quarks to simulate

directly at the charm mass. Calculations on multiple lattices confirmed that they had

discretisation effects under control. Their final result is gc = 0.54 ± 0.03 ± 0.03. The

only missing piece in the jigsaw is a calculation of the coupling directly with physical

b-quarks. Moreover, this is arguably a more important quantity as it is not directly

accesible through experiment. This is the aim of the calculation performed here.

This chapter is organised as follows. In section 4.1 we show how the B∗Bπ matrix

element can be described by a form factor decomposition and discuss which form factors

are of interest. In section 4.2 the focus will be on how best to perform the lattice QCD

calculation, where we will compare a number of different approaches and their relative

costs. Sections 4.3 and 4.4 will introduce the necessary correlation functions and define

ratios which will allow us to extract the quantities of interest, and in Section 4.5 we will

describe the renormalisation of the axial vector current that is used. Section 4.6 will

describe the details of the calculation and then we will finish with results (section 4.7),

an in-depth investigation of the systematic errors (section 4.8) and finally conclusions

(section ??).

4.1 Form Factors

As outlined in section 2.3.1 the coupling gB∗Bπ is defined by the strong matrix element

〈B(p)π(q)|B∗(p′, λ)〉 = −gB∗Bπ q · ǫλ(p′). (4.1)

To transform this matrix element into a vacuum expectation value of fields we perform

an LSZ reduction on equation (4.1)

gB∗Bπ q · ǫλ(p′) = i(m2
π − q2)

∫

d4x eiq·x〈B(p)|π(x)|B∗(p′, λ)〉. (4.2)
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where π(x) is an interpolating operator for the pion. By applying the partially-conserved

axial current relation (PCAC)

π(x) =
1

m2
πfπ

∂µAµ(x), (4.3)

we can then write the matrix element of equation (4.1) in a form more amenable to

lattice simulation

gB∗Bπ(q
2)ǫλ · q = m2

π − q2
fπm2

π

∫

d4x eiq·x〈B(p)|qµAµ(x)|B∗(p′, λ)〉 (4.4)

where Aµ = q̄γµγ5q is the light-quark axial vector current. If we parameterise the axial

current matrix element in term of form factors

〈B(p)|Aµ|B∗(p′, λ)〉 = 2mB∗A0(q
2)
ǫ · q
q2

qµ

+ (mB∗ +mB)A1(q
2)

[

ǫµ − ǫ · q
q2

qµ
]

+A2(q
2)

ǫ · q
mB∗ +mB

[

pµ + p′µ − m2
B∗ −m2

B

q2
qµ
]

,

(4.5)

we see by taking the divergence of equation (4.5) that at q2 = 0

gB∗Bπ =
2mB∗A0(0)

fπ
. (4.6)

We cannot simulate exactly at q2 = 0 in lattice QCD as the finite extent of the lattice

means we can only access discrete momenta. The smallest non-zero momentum available

is π/L ≈ 220 MeV, on the lattices used in this study. This compares to mB∗ −mB ≈ 45

MeV [30] which gives a measure of the tuning of the B-mesons’ momenta that would

be needed to set q2 = 0. One possible technique to simulate at q2=0 would be using

twisted boundary conditions [111, 112]. Furthermore, from equations (4.5) and (4.4) we

also see the form factor A0 contains the pion pole, so it will be difficult to extrapolate.

However, the form factor decomposition in equation (4.5) must be free of unphysical

poles, which allows us to obtain the relation

2mB∗A0(0) = (mB∗ +mB)A1(0) + (mB∗ −mB)A2(0), (4.7)

and hence

gB∗Bπ =
1

fπ
[(mB∗ +mB)A1(0) + (mB∗ −mB)A2(0)] . (4.8)

Similarly, we have

gb =
1

2mB
[(mB∗ +mB)A1(0) + (mB∗ −mB)A2(0)] , (4.9)
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by using the relation in (2.47). Furthermore, we will see that the q2 dependence of A1

and A2 is mild, so an extrapolation to q2 = 0 is not a problem. The splitting between

the vector and the pseudoscalar B-meson masses is a percent level effect, therefore the

dominant contribution to the coupling comes from the form factor A1. For infinite heavy-

quark mass the B and the B∗ become degenerate and we get the simplified relation

g∞ = A1(0). (4.10)

4.2 Calculational Strategy

To determine the form factors in Eq. (4.9), we need to calculate the matrix element

〈B(p)|Aµ|B∗(p′, λ)〉. This can be accessed through a lattice three-point correlation func-

tion of a light-quark axial vector current and interpolating operators for a B and a B∗-

meson. We have chosen to calculate the light-quark using the domain-wall action and

the heavy-quark propagators using the tuned RHQ action. As we are dealing with a light

axial vector current we do not need to consider improvement of any operators containing

b-quarks. Furthermore, we can make use of the light axial vetor current renormalisation

constant that has been non-pertubatively calculated by the RBC-UKQCD collaboration.

We will discuss this in more detail in Section 4.5. Due to the extra-dimension used in

the domain-wall formulation, and the fact the Dirac matrix is poorly conditioned for

light-quarks, the DWF inversions are far more costly that the heavy-quark inversions.

Table 4.1 shows a comparison of the times for each inversion on 32 nodes of the Uni-

versity of Southampton Iridis 3 cluster for the RBC-UKQCD 243 x 64, mud = 0.005,

β = 2.13 configurations. As can be seen the cost of an RHQ inversion is insignificant

versus a DWF inversion, so it is preferable to limit the number of light-quark propaga-

tors calculated. Furthermore, the RBC-UKQCD collaboration have precalculated DWF

propagators stored on disk which could be reused wherever possible. We considered

three different approaches to organise the calculation.

Propagator Time

DWF mud = 0.005 14721 seconds
RHQ m = 7.8 11 seconds

Table 4.1: Propagator calculation time using 32 nodes of Iridis 3 on the RBC-
UKQCD 243 x 64, mud = 0.005, β = 2.13 configurations.

4.2.1 Method I

The B∗-meson is created at the origin using a smeared interpolator, and destroyed at

fixed time ty. The spatial position of the B-meson interpolator can be summed to Fourier

transform it to zero momenta. Potentially, partially twisted boundary conditions could
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be used to tune the momentum of the B∗-meson such that q2 = 0. The signal can be

searched for by varying the time tz. This approach would involve calculating a heavy

propagator from the origin and a light sequential propagator from ty. The precalculated

propagators could be reused for the light-quark propagator from the origin to tz. This

method would require a minimum of one DWF inversion, and more if twisted boundary

conditions were used.

B B∗

Aµ

x = (0,0)y = (ty,y)

z = (tz, z)

b

d u
γµγ5

γ5 γi

Figure 4.1: Quark flow diagram for the 〈B(p)|Aµ(q)|B∗(p′)〉 three-point function
with Gaussian smeared source and sink.

4.2.2 Method II

To try to achieve a cleaner signal we could use a stochastic source for the B∗-meson

[96, 113], or more specifically employ the one-end trick [98]. This involves using a vector

of Z2 noise in every spatial component of a single time slice as a propagator source

(see Section 3.5.10). The idea being to cheaply get a volume average, better utilise

the information in the configurations, and achieve smaller statistical errors. Using this

method we would not be able to reuse the saved DWF propagators and a minimum of

two light inversions would be necessary.

B

Aµ

tx = 0y = (ty,y)

z = (tz, z)

b

d u
γµγ5

γ5 γi

Z2 Noise

B∗

Figure 4.2: Quark flow diagram for the 〈B(p)|Aµ(q)|B∗(p′)〉 three-point function
using a stochastic wall source
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4.2.3 Method III

To maximise the benefit of having precalculated DWF propagators we could rearrange

the calculation such that the axial vector current is at the origin. This means that we

can use precalculated propagators for both light-quarks. This is a different technique

to how three-point functions are typically calculated [114]. Usually the position of the

creation and anhilation operators are fixed and the other operator is scanned between

them. Instead we could fix the axial vector current at the origin and scan the position

of the B∗ creation operator to find the signal. As the axial current is placed at the

origin we would need to employ the periodicity of the lattice to create the B∗ at a large

time and propagate it across the origin. The B-meson could then be destroyed at some

small time. Using this method no light inversions are needed. It is however necessary to

perform a number of heavy-quark inversions to tune the optimal place to destroy the B-

meson. These inversions are cheap and will not significantly affect the cost of this method

B B∗

Aµ

x = (tx,x)y = (ty,y)

z = (0,0)

b

d u
γµγ5

γ5 γi

Figure 4.3: Quark flow diagram for the 〈B(p)|Aµ(q)|B∗(p′)〉 with the operators
arranged such that precalculated propagators can be used.

It was decided to pursue the calculation using method III. We would be able to see

after a small amount of computation if it was possible to achieve a clean signal for the

correlation functions.

4.3 Correlation Functions

To access the matrix element in equation (4.4) we calculate the lattice three-point func-

tion:

C(3)
µν

(

tx, ty; p̄, p̄
′) =

∑

x̄ȳ

e−ıp̄·x̄e−ıp̄
′·ȳ〈B(y)Aν(0)B∗

µ(x)〉tx<0<ty

≈
∑

λ

Z
1/2
B Z

1/2
B∗

2EB2EB∗

〈B(p′)|Aν |B∗(p, λ)〉(ǫλ)µe−EBtye−EB∗ (T−tx).

(4.11)
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and the vector and pseudoscalar two-point functions:

C
(2)
BB (t; p̄) =

∑

x̄

e−ıp̄·x̄〈B(x)B(0)〉 ≈ ZB
e−EBt

2EB
(4.12)

C
(2)
B∗

µB
∗
ν
(t; p̄) =

∑

x̄

e−ıp̄·x̄〈B∗
ν(x)B

∗
µ(0)〉 ≈ ZB∗

e−EB∗ t

2EB∗

(

δµν −
pµpν
p2

,

)

(4.13)

Here, ZB and ZB∗ correspond to the pseudoscalar and vector matrix elements respec-

tively, and λ labels the vector meson’s polarisation state. In the RHS of equation (4.13),

the polarisation states have been summed over. The (local) interpolating operators used

in equations (4.11, 4.12, 4.13) are given by

B(x) = d̄(x)γ5b(x), B∗
µ(x) = ū(x)γib(x), Aν(x) = ū(x)γµγ5d(x). (4.14)

The approximate equalities in equations (4.11, 4.12, 4.13) are due to the excited B and

B∗-meson states that the interpolators also produce. For t → ∞ the excited states are

suppressed and the equalities become exact.

4.3.1 Three-point correlation function

The necessary trace to calculate the three-point function in figure 4.3 and equation (4.11)

is

C(3)
µν

(

tx, ty; p̄, p̄
′) =

∑

x̄ȳ

e−ıp̄·x̄e−ıp̄
′·ȳ
〈

d̄(y)γ5b(y)ū(0)γµγ5d(0)b̄(x)γνu(x)
〉

=
∑

x̄ȳ

e−ıp̄·x̄e−ıp̄
′·ȳ Tr

[

Sl (0, y) γ5Sh (y, x) γνSl (x, 0) γµγ5

]

.

(4.15)

where we have avoided a possible disconnected contribution by not using the iso-singlet

π0. In the second line we have used isospin symmetry to set Su = Sd = Sl. We can use

pre-calculated point source light-quark propagators Sl (x, 0), where

DDWF (y, z)Sl (z, 0) = δ (y) (4.16)

D−1
DWF (x, y)DDWF (y, z)Sl (z, 0) = D−1

DWF (x, y) δ (y) (4.17)

Sl (x, 0) = D−1
DWF (x, y) δ (y) . (4.18)

We solve the equation

DRHQ (y, x) Σ (x, 0) = γ5Sl (y, 0) γ5e
i~p′·~yδy0,ty (4.19)
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to give the sequential propagator, defined as:

Σ (x, 0) =
∑

~y

ei~p
′·~ySh (x, y) γ5Sl (y, 0) γ5. (4.20)

Using γ5-hermiticity

γ5Σ
† (x, 0) γ5 =

∑

~y

ei~p
′·~yγ5Sl (0, y) γ5Sh (y, x) , (4.21)

which is the quantity needed in (4.15)

C(3)
µν

(

tx, ty; p̄, p̄
′) =

∑

x̄ȳ

e−ıp̄·x̄ Tr
[

γ5Σ
† (x, 0) γ5γνSl (x, 0) γµ

]

(4.22)

=
∑

x̄ȳ

e−ıp̄·x̄e−ıp̄
′·ȳ Tr

[

Sl (0, y) γ5Sh (y, x) γνSl (x, 0) γµγ5

]

(4.23)

We pick multiple choices of ty in the first half of the lattice, and then look at tx in the

second half of the lattice.

4.3.2 Two-point correlation function

Again, by Wick contracting the two-point functions in (4.12) and (4.13) we arrive at the

following traces

C
(2)
BB (t; p̄) =

∑

x̄

e−ıp̄·x̄ Tr[γ5Sh(x, 0)γ5Sl(0, x)]

=
∑

x̄

e−ıp̄·x̄ Tr[Sh(x, 0)S
†
l (x, 0)]

(4.24)

C
(2)
B∗

µB
∗
ν
(t; p̄) =

∑

x̄

e−ıp̄·x̄ Tr[γµSh(x, 0)γνSl(0, x)]

=
∑

x̄

e−ıp̄·x̄ Tr[γµSh(x, 0)γνγ5S
†
l (x, 0)γ5]

(4.25)

These can be evaluated using the precalculated light-quark propagators so only a single

heavy-quark inversion is needed.

4.4 Correlator Ratios

To extract the required matrix element from (4.11) we form a ratio of the three-point

correlator and both two-point correlators. The vector meson matrix element in the

three-point correlator can be written as a numerical factor times a polarisation vector

〈B∗(p′, λ)|B∗
µ(0)|0〉 = Z

1/2
B∗ ǫ

λ
µ. (4.26)
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We can then perform polarisation-sums over this vector, and the polarisation vectors that

appear in the form factor decomposition. In Euclidean space the formula for polarisation

sums is
∑

λ

ǫλµǫ
λ
ν = δµν −

pµpν
p2

. (4.27)

If we set both the vector and pseudoscalar momenta to zero in equation (4.11), such

that q̄ = p̄ = p̄′ = 0 and q2 = q20 = (mB∗ −mB)
2 ≈ 0, we can see from equation 4.5 that

the only form factor accessible is A1. Therefore we form the ratio:

R1 =
C

(3)
i,i (tx, ty; p̄ = 0, p̄′ = 0)Z

1/2
B Z

1/2
B∗

C
(2)
BB (ty; p̄ = 0)C

(2)
B∗

iB∗
i
(T − tx; p̄ = 0)

= (mB∗ +mB)A1(q
2
0) (4.28)

which is valid for i = 1, 2, 3 meaning we can average on i. To access the other form

factors we need to inject a unit of momentum, such that q̄ = p̄ = (1, 0, 0) × 2π/L and

p̄′ = 0. Following the notation from [107], we define the ratios

R2 =
C

(3)
1,0 (tx, ty; p̄ 6= 0, p̄′ = 0)Z

1/2
B Z

1/2
B∗

C
(2)
BB (ty; p̄ = 0)C

(2)
B∗

2B∗
2
(T − tx; p̄ 6= 0)

=
∑

λ

〈B(p′|A0|B∗(p, λ)〉ǫλ1 (4.29)

R3 =
C

(3)
1,1 (tx, ty; p̄ 6= 0, p̄′ = 0)Z

1/2
B Z

1/2
B∗

C
(2)
BB (ty; p̄ = 0)C

(2)
B∗

2B∗
2
(T − tx; p̄ 6= 0)

=
∑

λ

〈B(p′|A1|B∗(p, λ)〉ǫλ1 (4.30)

where the polarisation vectors shown come from the vector matrix elements ZB∗ . The

result of the polarisation sums is complicated and given in detail in Appendix A. Finally,

we define

R4 =
C

(3)
2,2 (tx, ty; p̄ 6= 0, p̄′ = 0)Z

1/2
B Z

1/2
B∗

C
(2)
BB (ty; p̄ = 0)C

(2)
B∗

2B∗
2
(T − tx; p̄ 6= 0)

=
∑

λ

〈B(p′|A2|B∗(p, λ)〉ǫλ2

= (mB∗ +mB)A1(q
2).

(4.31)

which is equivalent to R1 but for larger q2. These ratios allow access to the form factor

A2 through

A2

A1
=

(mB∗ +mB)
2

2m2
Bq

2
1

[

−q21 + EB∗(EB∗ −mB)−
m2
B∗(EB∗ −mB)

EB∗

R3

R4
− im

2
B∗q1
EB∗

R2

R4

]

.

(4.32)

The ratio in equation (4.32) is obtained at a non-zero value of q2 and needs to be

extrapolated. However, this only contributes to the coupling suppressed by the ratio

(mB∗−mB)/(mB∗ +mB), so any uncertainty this introduces should be small. The form

factor A1 is also obtained at a non-zero q2, but is significantly closer to zero. If we define
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functions G1 and G2

G1(q
2) = (mB∗ +mB)A1(q

2),

G2(q
2) = (mB∗ −mB)A2(q

2),
(4.33)

we can write the coupling as G1(0) plus a small correction from the ratio G2/G1.

gB∗Bπ =
ZA
fπ
G1(0)

(

1 +
G2(0)

G1(0)

)

(4.34)

gb =
ZA
2mB

G1(0)

(

1 +
G2(0)

G1(0)

)

(4.35)

The factor ZA in equations (4.34, 4.35) is the local axial vector current renormalisation

factor, which arises because we do not work with the full DWF conserved current.

4.5 Axial Current Renormalisation

For domain wall fermions there is a single unique vector transformation that gives rise

to a conserved 4d vector current

Vaµ(x) =
Ls−1
∑

s=0

jaµ(x, s), (4.36)

where

jaµ(x, s) =
1

2

[

ψ̄(x+ µ̂, s)(1 + γµ)U
†
x,µt

aψ(x, s)− ψ̄(x, s)(1− γµ)Ux,µtaψ(x+ µ̂, s)
]

.

(4.37)

Furthermore, there are a number of equivalent transformations that produce the con-

served 4d axial vector current

Aaµ(x) =
Ls−1
∑

s=0

sgn

(

s− Ls − 1

2

)

jaµ(x, s). (4.38)

These both reduce to the standard continuum forms for a → 0. For practical purposes

these conserved currents are unwieldy to work with, so instead it is normal to use local

versions of the currents

Aµ(x) = q̄(x)taγµγ5q(x), V a
µ (x) = q̄(x)taγµq(x) (4.39)

which are related to (4.36) and (4.38) by multiplicative renormalisation factors.

ZAA
a
µ = Aaµ, ZV V

a
µ = Vaµ (4.40)
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In this work we use the local axial current and renormalise it using the factors calculated

in [115]. These are obtained by looking at the ratio

ZA =

∑

x〈V4(x)P (0)〉
∑

x〈V4(x)P (0)〉
, (4.41)

where P (0) is a pseudoscalar interpolating operator. The ratio of the vector currents is

used, but with exact chiral symmetry ZA and ZV are equal [116]. The values used are

given in table 4.2.

Ensemble a (fm) ZA

243 ≈ 0.11 0.7019(26)
323 ≈ 0.08 0.7396(17)

Table 4.2: Axial current renormalisation factors used in this work

4.6 Numerical Calculation

4.6.1 Ensemble Properties

We perform our calculation on RBC/UKQCD collaboration ensembles generated with

the Iwasaki gauge action, and the 2+1 flavour domain wall fermion action [115, 117]. The

configurations are generated with two degenerate light-quarks and a single near-physical

mass strange quark. The use of the DWF and Iwasaki actions together gives good chiral

properties and allows the tunnelling between topological sectors necessary to achieve

good sampling during ensemble generation [118]. The configurations are generated with

a domain wall height of M5 = 1.8 and a fifth dimensional extent of LS = 16. With

these parameters the explicit chiral symmetry breaking is small, quantified by a residual

mass of m24
resa = 0.003 and m32

resa = 0.0007 on the 243 and 323 ensembles respectively.

The residual mass is the small additive mass renormalisation that appears due to the

finite extent of the fifth dimension in the domain wall fermion formulation. We use

ensembles with two different lattice spacings, but both with approximately equal spatial

extent. The coarser ensembles have 24 points in the spatial directions, and 64 point in

the temporal direction. The finer lattices have 32 points in the spatial directions and 64

points in the temporal direction. These have physical lattice spacings of a ≈ 0.11fm and

a ≈ 0.086fm respectively. The availability of two lattice spacings will help us to take a

continuum limit of physical quantities. Table 4.3 lists the details of the configurations

used in this study. The coarser 243 ensembles have been generated with three different

light sea quark masses ofml=0.005, 0.010 and 0.020 in lattice units and the 323 ensembles

at ml=0.004, 0.006, 0.008. These correspond to pion masses down to approximately

mπ=290 MeV. Both ensembles were generated with near-physical strange quark masses,

we discuss the implications of the deviation from the physical values in section 4.8.8.
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The lattice scale was set in [115] from the Ω mass and has also been set in [119] from the

Υ(2S)−Υ(1S) mass splitting. Both results are consistent and give a−1=1.729(25) GeV

on the 243 ensemble and a−1=2.281(28) GeV on the 322 ensemble. On the 243 lattices

we use a single source position for all our measurements, whereas on the 323 lattice,

for which we have fewer gauge configurations, we make measurements at two source

positions. On all ensembles we perform a random translation on the gauge field before

performing a measurement. This allows us to make measurements on configurations

separated by less trajectories, and reduce the effect of auto-correlations.

L3 × T a(fm) mla msa mπ(MeV) #Configs Sources

243 × 64 0.11 0.005 0.04 329 1636 1
243 × 64 0.11 0.010 0.04 422 1419 1
243 × 64 0.11 0.020 0.04 558 345 1
323 × 64 0.08 0.004 0.03 289 628 2
323 × 64 0.08 0.006 0.03 345 889 2
323 × 64 0.08 0.008 0.03 394 544 2

Table 4.3: Ensemble properties. All ensembles are generated using 2+1 flavours
of Domain Wall Fermions and the Iwasaki gauge action. The fifth dimensional
extent of both lattices is LS = 16 and the domain wall height M5 = 1.8,
corresponding to a residual chiral symmetry breaking ofm24

resa = 0.003, m32
resa =

0.0007.

4.6.2 Quark Sources

We apply Gaussian smearing to the heavy-quark propagators to improve overlap with

the B and B∗-meson ground-states. As discussed in section 3.5.5, by using extended

sources we can mimic the mesons’ wave-functions and achieve better overlap with their

groundstates. Following experience gained from the RHQ action tuning calculation [3],

we use a gauge covariant Gaussian smearing function [89, 90], as defined in section 3.5.5,

and the parameters listed in table 4.4. Here N is the number of smearing iterations

and σ is related to the Gaussian’s root-mean-squared radius by rrms ≈
√
3σ/2 in the

free-field case. We do not use smearing on the light-quark propagators, as these are

precalculated with point sources. In figures 4.4 and 4.5 we show the effect of smearing

on a test calculation of the B-meson effective mass, using 550 configurations from the

243, ml = 0.005 ensemble. These plots clearly show that the longest plateau is seen when

applying the smearing only to the heavy-propagator source. Therefore, in this work we

chose to apply a smeared source and a point sink to all heavy-quark propagators.

4.6.3 Propagator Generation

The generation of all heavy-quark propagators and the calculation of traces was carried

out using the Chroma software system [120] on the University of Southampton’s Iridis
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Ensembles a (fm) rrms (fm) σ N

243 ≈0.11 0.777 10.36 170
323 ≈0.086 0.777 7.86 100

Table 4.4: Parameters used to apply covariant Gaussian smearing to all heavy-
quark propagator sources calculated in this work

t

Figure 4.4: B-meson two-point functions with no smearing on the heavy prop-
agator (left) and Gaussian smearing at both ends (right). In both cases the
light-quark propagator has a point source and sink. Calculated using 550 con-
figurations of the 243 ml = 0.005 ensemble.

t

Figure 4.5: B-meson two-point functions with a smeared source and point sink
on the heavy propagator (left) and point source and smeared sink (right). In
both cases the light-quark propagator has a point source and sink. Calculated
using 550 configurations of the 243 ml = 0.005 ensemble.

3 Cluster, and the JPsi cluster at Fermi Lab. We calculated the propagators using

the tuned vales of the RHQ parameters calculated in [3], and listed in table 4.5. The

inversions were carried out using the conjugate gradient algorithm, running to a residual

of 10−45. We had concerns that because the heavy propagators become numerically very

small for large times a standard CG stopping criterion might not sufficiently converge

all elements. Therfore we ran tests using a time-slice-by-time-slice stoping criterion, and

found that this was equivalent to demanding a smaller (10−45) norm-squared residual.
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moa cp ξ

a≈0.11 fm 8.45(6)(13)(50)(7) 5.8(1)(4)(4)(2) 3.10(7)(11)(9)(0)
a≈0.056 fm 3.99(3)(6)(18)(3) 3.57(7)(22)(19)(14) 1.93(4)(7)(3)(0)

Table 4.5: Tuned RHQ parameters for b-quarks and their uncertainties, these
are statistical, heavy-quark discretisation effects, lattice scale uncertainty, and
experimental uncertainties respectively [3].

4.7 Results

4.7.1 Three-Point Function

Figure 4.6 show the three-point correlators for two different values of ty, the position

of the B-meson interpolator. The plots show a cosh-like form, with a peak at tx = ty,

corresponding to when the mesons are created and annihilated at the same lattice point.

More curiously the cosh-like form of the correlators is translated in the x-axis by an

amount equal to ty. Naively, looking at the expected form for the three-point correlators

in (4.11) we would expect the only effect of changing ty to be a constant scaling of the

correlator. This should not cause a translation along the x-axis. To solve this puzzle it is

Figure 4.6: The three-point correlation functions summed over all spatial indices
for ty = 6 (left) and ty = 8 (right). The top plots are on a log scale, whereas
the lower plots are on a linear scale. The point where the correlation function
blows-up is where the meson creation and annihilation operators are on the
same lattice space.

necessary to consider all the possible contributions to the correlators that arise when you

take into account the periodicity of the lattice. When one performs the Wick contraction
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of the correlation function in equation (4.11) the result is equivalent to that from different

orderings of the operators. For instance, when we consider the operator that produces

a B∗-meson to be before the axial current in time, it can also be considered to be after

the axial current. In figures 4.7 and 4.8 we show the different arrangements of operators

that can contribute. These are separated into tx < ty in figure 4.7 and tx ≥ ty in figure

4.8. There are, of course, even more arrangements if you consider t+nT ∀ n ∈ Z, but for

increasing n these become more and more suppressed as the states propagate further in

time. Each of the arrangements is labeled by a capital roman letter A–H and their time

dependence is given by assuming immediate ground-state dominance. The arrangement

that gives the desired matrix element is C(tx, ty) in figure 4.7. To estimate how much

each arrangement contributes to the matrix element we are looking for, we plot all the

contributions by making the approximation that each matrix element is unity. We can

then choose sensible values for the meson masses and sum the effect of each arrangement.

The result closely matches what is seen for the real three-point function (see figure 4.6),

a cosh-like shape shifted along the x-axis by ty. We also see a large peak at tx = ty.

This helps confirm the data that we have calculated makes sense, but we would also like

to confirm that the desired matrix element can be accessed by looking at the correlator

for large tx. To ascertain this we have plotted the individual relative contributions to

Fig. 4.9 separately. We can see in figure 4.10 that the contribution C dominates for

large tx. In fact, at tx=50 (typical fit-ranges are 50–56) it is ≈ 1030 times larger than

the next biggest contribution. This argument could be flawed if the matrix elements

are extremely large for the other unwanted contributions, however this seems extremely

unlikely. The next-largest contribution according to the time dependence corresponds

to a pion decaying into a B and B∗-meson. The matrix element for this process must

be vanishingly small.

4.7.2 Two-Point Functions

Figure 4.11 show effective mass plots for the vector and pseudoscalar mesons, along with

a fit line and one sigma statistical error band. The fits are performed by minising an

uncorrelated χ2 function using the Minuit algorithm [121]. We show a constant fit to the

effective mass for clarity, although the actual fits are performed to the raw correlators

using an exponential fit function.

f(t;E,A) =
A

2E
e−Et (4.42)

Owing to the large masses the exponentials have a very fast fall off making it unnecessary

to consider the backward propagating parts by using a cosh fit function. The two-point

correlators are used both in direct fits using Eq. 4.42, to find the amplitudes ZB and ZB∗ ,

and also to divide the three-point correlators to form the ratios R1–R4. The effective
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0 T−T

Aµ

txty − T

A(tx, ty) ∝ exp(−mB(T − ty)) exp(−mB∗tx)

0 T−T

Aµ

txty

B(tx, ty) ∝ exp(−mπty) exp(−mB∗(tx − ty))

0 T−T

Aµ

tx − T ty

C(tx, ty) ∝ exp(−mBty) exp(−mB∗(T − tx))

0 T−T

Aµ

tx − Tty − T

D(tx, ty) ∝ exp(−mπ(T − tx)) exp(−mB(tx − ty))

Figure 4.7: Contributions to the three-point correlator for tx > ty

mass plots at zero momentum, and the first non-zero momentum, on the 243, ml = 0.005

and 323, ml = 0.006 ensembles are shown in Figures 4.11, 4.12, 4.13 and 4.14.
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0 T−T

Aµ

tx − T ty

E(tx, ty) ∝ exp(−mBty) exp(−mB∗(T − tx))

0 T−T

Aµ

tx ty

F (tx, ty) ∝ exp(−mB(ty − tx) exp(−mπtx)

0 T−T

Aµ

txty − T

G(tx, ty) ∝ exp(−mB(T − ty) exp(−mB∗tx)

0 T−T

Aµ

tx − T ty − T

H(tx, ty) ∝ exp(−mπ(T − ty) exp(−mB∗(ty − tx))

Figure 4.8: Contributions to the three-point correlator for tx ≤ ty

4.7.3 Ratios

We evaluate the ratios in equations (4.28, 4.29, 4.30 and 4.31), and calculate gb from

equation (4.35) underneath a single elimination jack-knife. This correctly propagates the

statistical errors from each correlator through the calculation, taking into account that

each measurement is correlated. The configurations are each translated by a random
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Figure 4.9: The sum of all contributions to the three-point correlator as shown
in figures 4.7 and 4.8 assuming immediate ground-state dominance, and setting
all the matrix elements to unity. The shape closely matches what is seen in the
actual calculation of the three-point function (see Figure 4.6).

Figure 4.10: Relative size of the eight contributions to the three-point function
arising due to the periodicity of the lattice. To extract the correct matrix
element the contribution of interest is C. This contribution dominates for large
tx.

vector, minimising any auto-correlations between subsequent measurements. Figure 4.15

shows gb from the lightest ensemble on each lattice plotted against the jack-knife bin

size. There is no effect from varying the bin size on either ensemble so we conclude

that the auto-correlation time is less than the separation of measurements and hence we

use a block size of one in the jack-knife. On each jack-knife block we fit the two-point

functions and extract the amplitudes ZB and ZB∗ from Eqs (4.12) and (4.13). The three-

point correlators are then averaged over any equivalent indices (for R1 specifically) and
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Figure 4.11: B-meson effective mass (left) at zero momentum and B∗-meson
effective mass at zero momentum, both on the 243, ml = 0.005 ensemble

Figure 4.12: B∗-meson effective mass/energy (left) at the first non-zero momen-
tum and B∗-meson effective mass/energy at the second non-zero momentum,
both on the 243, ml = 0.005 ensemble

Figure 4.13: B-meson effective mass (left) at zero momentum and B∗-meson
effective mass at zero momentum, both on the 323, ml = 0.006 ensemble

divided by both two-point functions. The ratios are then multiplied by the amplitudes

ZB and ZB∗ with their statistical errors added in quadrature. Finally, we fit the resulting

ratios to a constant by minimising a χ2 function. This procedure is completed on each

jack-knife block and then the ensemble average taken. The statistical error is calculated

according to Eq. (3.77). We choose the fit ranges as consistently as possible over each

lattice, meaning we apply the same fit-range for a particular ratio to every valence mass.

We choose a different fit range for the fine and coarse ensembles. Examining the ratio

R1 for different choices of ty on the 243, ml = 0.05 ensemble (Figure 4.16) we see the

best signal for ty = 6. We therefore use this value for every 243 ensemble and choose

ty = 8 on the 323 ensemble as this corresponds to the same physical distance. Figure 4.17
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Figure 4.14: B∗-meson effective mass/energy (left) at the first non-zero momen-
tum and B∗-meson effective mass/energy at the second non-zero momentum,
both on the 323, ml = 0.006 ensemble

shows the ratios R1, R2 and R3 on the 243 ml=0.005 ensemble with the best-fit and

error band also shown. We need to calculate the form factor A1 at q2 = 0, however the

ratio R1 only gives us it at q20 = (mB∗ −mB)
2. We also calculate R4 which also gives

A1, but at a larger q2 (we calculate R4 at two momenta). Figure 4.18 shows the q2

dependence of the form factor. It shows that attempting to extrapolate to q2=0 would

not change A1(q
2) within statistical errors. Therefore we assume A1(q

2
0) = A1(0). Also

shown in figure 4.18 is the ratio G2/G1(q
2). We perform a linear extrapolation of this

quantity to q2 = 0 using the two data points. The effect of the ratio G2/G1(0) is to

make a correction of <1% to gb, therefore any uncertainty from the extrapolation should

be negligible.

Figure 4.15: The coupling gb with jack-kife errors plotted against the bin size.
No effect is seen, so we conclude each configuration is suitably uncorrelated.
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Figure 4.16: The ratio R1 evaluated for different values of ty on the 243, ml =
0.005 ensemble. The longest plateau is seen for the value ty=6. We show the
region in the latter half of the lattice where we expect to see the signal.

4.7.4 Chiral and Continuum extrapolation

Our calculation is performed with light-quark masses heavier than in nature, corre-

sponding to pions upwards of 290 MeV. This means that to have a physical result we

will need to perform an extrapolation down to the chiral point. We can be guided in this

by using HMχPT, as calculations of the axial current matrix element in the effective

theory, beyond tree level, have a dependence on the pion mass squared. Detmold, Lin
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Figure 4.17: The ratios R1, R2 and R3 calculated on the 243, ml = 0.005
ensemble

Figure 4.18: The q2 dependence of the form factor A1 (left) and the linear
extrapolation of the ratio G2/G1 to q2 = 0 on 243, ml = 0.005 ensemble

and Meinel [109] have carried out this calculation in HMχPT for both the SU(2) and

the SU(3) case, with both unitary and partially-quenched sea quarks. For the SU(2)

case, with unitary masses they give the result

g = g0

(

1− 2(1 + 2g20)

(4πfπ)2
m2
π log

m2
π

µ2
+ αm2

π

)

. (4.43)
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Ensemble

243 243 243 323 323 323

~pa[π/L] 0.005 0.010 0.020 0.004 0.006 0.008

B fit-range (0,0,0) 8− 16 8− 16 8− 16 8− 17 8− 17 8− 17
B∗ fit-range (0,0,0) 7− 15 7− 15 7− 15 8− 16 8− 16 8− 16
R1 fit-range (0,0,0) 50− 58 50− 58 50− 58 50− 58 50− 58 50− 58
B∗ fit-range (1,0,0) 7− 15 7− 15 7− 15 8− 16 8− 16 8− 16
R2 fit-range (1,0,0) 51− 60 51− 60 51− 60 47− 55 47− 55 47− 55
R3 fit-range (1,0,0) 50− 56 50− 56 50− 56 46− 55 46− 55 46− 55
R4 fit-range (1,0,0) 50− 57 50− 57 50− 57 47− 56 47− 56 47− 56
B∗ fit-range (1,1,0) 9− 15 9− 15 7− 15 10− 16 10− 16 10− 16
R2 fit-range (1,1,0) 51− 60 51− 60 51− 60 47− 55 47− 55 47− 55
R3 fit-range (1,1,0) 49− 55 49− 55 49− 55 46− 55 46− 55 46− 55
R4 fit-range (1,1,0) 51− 57 51− 57 51− 57 46− 54 46− 54 46− 54

Table 4.6: Fit ranges used for the two-point functions and the ratios. For non-
zero momenta equivalent combinations are averaged.

which is NLO in the chiral expansion, but only leading order in the heavy-quark ex-

pansion. This means that strictly it is only applicable for static heavy-quarks. We will

discuss the implications of this in the section on systematic errors. They point out that

this is the correct chiral formula for gb, and it differs by a chiral log of fπ to the formula

for gB∗Bπ, due to the factor fπ that appears in the relation between the two couplings.

The term containing the chiral log comes from the one-loop intergrals and the term with

the α coefficient corresponds to the NLO analytic terms. The analytic terms should can-

cel the renormalisation scale dependence, which we confirmed explicitly by fitting with

a range of µ2. We have added a quadratic term in the lattice spacing to account for dis-

cretisation effects. The light-quark and gluon actions are O(a) improved, so this should

account for leading order effects. We cannot model any higher order effects with only

two lattice spacings. Our complete fit function, including the lattice scale depenence is

given by

g = g0

(

1− 2(1 + 2g20)

(4πfπ)2
m2
π log

m2
π

µ2
+ αm2

π + βa2
)

. (4.44)

Discretisation effects arising from the heavy-quark action are not so straight forward to

account for, and if large could change our assumption of leading a2 effects. Therefore

we will treat them separately in the next section. Figure 4.19 shows the combined

chiral and continuum extrapolation down to the physical point. We fit each ensemble

by minimising an uncorrelated χ2 and find a surface in parameter space (g, α, β) where

∆χ2=3.50. This correponds to a one-sigma confidence limit for three parameters [122].

We then find the extremes of the fit function on this surface, which are represented by

the green shaded regions in Figure 4.19. To carry out the fit we use the PDG value of

the pion decay constant fπ=130.40(04)(20) MeV [30]. The uncertainties for the axial

current renormalisation factor are added in quadrature to each data point.
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Figure 4.19: Combined chiral and continuum extrapolation to the physical
point. The blue points and dashed line are the 243 data points and fit respec-
tively. The red points, and dashed line correspond to the finer 323 ensembles.
The green solid is the extrapolation to the continuum, surrounded by a one
sigma error band. The point where the green line crosses the vertical dashed
line corresponds to a physical pion mass. The fit function is given by Eq. (4.44).

4.8 Systematic Errors

4.8.1 1/MQ effects

The expression (4.43) for the axial vector current matrix element that we use to fit the

light-quark mass dependence of our calculation is NLO in the light degrees of freedom,

but only leading order in the heavy degrees of freedom. This corresponds to infinitely

heavy-quarks. Our calculation is however performed at the physical b-quark mass. In-

tuitively we expect this not to be significant as we are using the formula only to fit the

light mass dependence. Referring to previous studies [123, 124] we see that the effect of

the next order in HMχPT is extra terms in the Lagrangian that can be accounted for

by rescaling the coupling by two unknown parameters.

g → g +
1

MQ
(g1 + g2) (4.45)

For our purposes this means that our fit parameter g contains an explicit dependence on

the heavy-quark mass. This does not alter our results and shows the procedure is valid

up to NLO. We therefore ascribe no systematic errors specifically to the truncation of

the series in 1/MQ. We will however consider uncertainties present overall in the chiral

extrapolation.
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4.8.2 Heavy-quark discretisation errors

A discussion of cut off effects for heavy-quarks on the lattice can be tackled using an

effective field theory, similar to the Symanzik approach [49]. This involves constructing

an effective theory that reproduces the same physics as the lattice theory.

LLat .= LSym (4.46)

The Symanzik side of the equality is QCD, plus higher order operators.

LSym =
1

2g2
tr [FµνF

µν ]− q̄
(

/D +m
)

q +
∑

i

Ci(g2,ma, µa)Oi(µa) (4.47)

By identifying the relevant operators, and determining the coefficients which encode the

short distance physics, it is possible to subtract from the lattice side the relevant pieces

to improve the continuum limit. This is the usual improvement picture, but what about

for heavy-quarks with mass mQ? Unfortunately, for large mQa we do not have QCD

plus small corrections because some of the higher order operators, containing derivatives,

produce powers of (mQa)
n, meaning the corrections are not necessarily small. However,

by making field transformations we can remove these contributions at all orders. This is

effectively just a reordering of the higher-order terms, but the leading order Lagrangian

also changes in the process [125].

LQCD .
= LSym = · · · − Q̄

(

γ4D4 +m1 +

√

m1

m2
γ ·D

)

Q+
∑

i

CConti (g2,m2a, µa)Oi

(4.48)

Similarly we write a continuum effective theory that reproduces the matrix elements of

our lattice action.

LLat .= · · · − Q̄
(

γ4D4 +m1 +

√

m1

m2
γ ·D

)

Q+
∑

i

CLati (g2,m2a, µa)Oi (4.49)

In both the above equations the ellipsis stands for the gauge part of the action. Both

effective theories contain the same operators, so any mismatch between the coefficients

of the operators reveals the heavy-quark discretisation errors. Otkay and Kronfeld

[126] have catalogued the relevant operators according to two different power-counting

schemes, NRQCD and HQET and calculated the Wilson coefficients to tree level.

The coupling gb is proportional to the matrix elememt 〈B∗
µ(p)|Aµ(q)|B(p′)〉 at p = p′ =

q = 0. If we write the continuum QCD action in terms of the lattice action, plus the

differences between LCont and LLat, then expand to first order, the expectation value

we want becomes
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〈B∗
µ(p)|Aµ|B(p′)〉Cont

= 〈B∗
µ(p)|Aµ|B(p′)〉Lat +

∫

d4x
∑

i

(

CConti − CLati

)

〈B∗
µ(p)|T{Oi(x)Aµ(0)}|B(p′)〉Lat

= 〈B∗
µ(p)|Aµ|B(p′)〉Lat

[

1 +
∑

i

(

CConti − CLati

) 〈[B]|Oi(x)|[B]〉
2MB

]

(4.50)

After the first line we have inserted a complete set of states between both time orderings,

allowing us to factor out the original matrix element. Here [B] means the sum over the

B and B∗, including excited states, coming from the two different time orderings and

assuming that matrix elements 〈B|Aµ|B〉 and 〈B∗|Aµ|B∗〉 do not contribute. As we are

only calculating a small correction, and it is assumed that the excited state contributions

would themselves be small, we will only consider the ground states, and treat the vector

and pseudoscalars as equivalent in the powercounting.

gerrorb = gb
∑

i

(

CConti − CLati

)

∑

i

〈Oi〉
2MB

(4.51)

We can then estimate the size of the 〈Oi〉 using HQET power-counting arguments. In

the HQET power-counting the RHQ action is non-pertubatively tuned up to order λ,

where

λ ∼ aΛQCD,ΛQCD/mQ. (4.52)

Therefore we wish to evaluate equation (4.51) for all operators of order λ2. There are

two such operators identified in [126],

h̄ {γ ·D, α ·E}h,
h̄γ4 (D ·E−E ·D)h.

(4.53)

The relevant mismatch function fE(m0a, cp, ξ) = CCont − CLat, for both operators, was

also calculated to tree level in [126].

fE(m0a, cp, ξ) =
1

8m2
Ea

2
− 1

8m2
2a

2
, (4.54)

where
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1

m2a
=

2ξ2

m0a(2 +m0a)
+

ξ

1 +m0a
, (4.55)

1

4m2
Ea

2
=

ξ2

[m0a(2 +m0a)]2
+

ξcp
moa(2 +m0a)

, (4.56)

and (m0a, cp, ξ) are the tuned parameters of the action (see Section 3.4.3). The estimated

size of the operators in equation (4.53) is

〈OE〉HQET ∼ a2Λ3
QCD. (4.57)

Evaluating the mismatch function (4.54) at the values of the tuned RHQ paramters on

the 323 lattice and combining with the operators in (4.53), for both B and B∗-mesons,

we get

error =
√
4fE〈OE〉/2MB ∼ 0.009% (4.58)

This is negligible compared to the scaling we see between the two lattice spacings, which

we therefore ascribe solely to light-quark and gluon discretisation effects.

4.8.3 Light-quark and gluon discretisation errors

Our theoretical understanding of domain wall fermions and the Iwasaki gauge action tells

us the lowest order cut-off effects should be proportional to a2. However, examination

of the data suggests that no cut-off dependence may also be a reasonable hypothesis.

Figure 4.20 shows chiral fits to the data without an a2 term. To estimate the systematic

errors coming from the continuum extrapolation we consider the difference between a fit

to our finest data set (a ≈ 0.086fm) and the a2 extrapolation using both lattices. The

chiral value of the coupling in the no-scaling picture is 10% smaller than using our full

chiral-continuum fitting procedure.

4.8.4 Chiral Extrapolation

To estimate the uncertainty in the chiral extrapolation we consider a range of possible

fits. First, we consider the effect of neglecting the heaviest masses (Figure 4.22, left).

This alters the form of the fit dramatically, but does not change the final result signifi-

cantly. Figure 4.22 shows a fit to our data using a function linear in m2
π. Finally, we try

to simulate the effect of the missing higher-order terms in our fit function by varying the

value of fπ by 25% in each direction (Figure 4.21). The largest variation in the chiral

value of gb is from the linear fit. This value is larger than our full chiral-continuum fit
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Figure 4.20: Chiral fits of the 322 data points (top) and the data points from
both lattices (bottom). The data points in both plots are fitted to Eq. (4.43).

by approximately 10%. Considering together the similar size but opposite sign varia-

tions we produce in both the chiral and continuum fits, it seems reasonable to use the

full fit (Figure 4.19) as our central value and include an error of 10% to account for

uncertainties in the combined fitting procedure.
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Figure 4.21: Increasing the value of fπ used in the fit (Eq. 4.44) by 25% (top)
and decreasing by 25% (bottom).

4.8.5 Lattice Spacing Dependence

The coupling gb is a dimensionless number calculated from ratios of correlators, hence

it should have no strong dependence on the uncertainty in the lattice spacing. However,

variations in a may have an effect on the chiral and continuum extrapolations. Table

4.7 shows the effect of varying the lattice spacing on the extrapolated chiral-continuum

value of gb. The largest variation in gb is achieved by increasing the value of the lattice

spacing by σ24 on the 243 lattice and decreasing the 323 lattice spacing by σ32. Here
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Figure 4.22: Chiral fit (Eq. 4.44) with the heaviest masses missing (top), and a
simple linear fit ( g0(1 +m2

pi + βa2) ) to all the data (bottom).

σ corresponds to the quoted lattice scale uncertainty in [115]. In this extreme case,

which assumes the errors on the two lattice spacings are completely anti-correlated, gb

changes by 1.44%. Therefore ascribing an error of 1% to this source of uncertainty seems

reasonable.
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Lattice Spacing gb ∆gb % change

a24 a32 0.5667
a24 + σ a32 + σ 0.5659 -0.0008 -0.14
a24 − σ a32 − σ 0.5674 0.0007 0.12
a24 − σ a32 + σ 0.5749 0.0082 1.44
a24 + σ a32 − σ 0.5601 -0.0066 -1.16
a24 + 2σ a32 + 2σ 0.5652 -0.0015 -0.26
a24 − 2σ a32 − 2σ 0.5686 0.0019 0.34

Table 4.7: Variation in gb as a function of the lattice spacing, where a−1
24 =

1.729(28) GeV and a−1
32 = 2.28(3) GeV

4.8.6 Finite Volume

We can expect that finite volume effects are small as there are no propagating light

particles in the simulated system. To estimate the size of these effects we compare the

axial vector matrix element at NLO in heavy meson χPT , fitted to our data, with and

without the finite volume effects included. In the infinite volume the form of the effective

coupling at NLO is calculated in [109].

g = g0

[

1− 2

(4πfπ)2
I(mπ)−

4g20
(4πfπ)2

∂F (mπ,∆)

∂∆
+ analytic terms

]∣

∣

∣

∣

∆=0

(4.59)

In a finite volume the integrals I(mπ) and F (mπ, 0) become sums over discrete momenta.

These can be treated as corrections and separated from the infinite volume results by

the substitutions

I(mπ)→ I(mπ) + IFV (mπ) (4.60)

F (mπ)→ F (mπ) + FFV (mπ). (4.61)

The form of these corrections has been calculated in [127, 128], and in the limit mL≫ 1

they are given by

IFV (mπ) =
1

4π2

∑

ū 6=0̄

√

mπ

2uL

(

1

uL

)

e−umL×
{

1 +
3

8umL
− 15

128(umL)2
+O

(

[

1

umL

]3
)}

,

(4.62)

FFV (mπ) =
−m2

24π

∑

ū 6=0̄

e−umL

uL
A. (4.63)
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where ū = (u1, u2, u3) with ui ∈ Z, u ≡ |ū| and

A = e(z
2) [1− erf(z)] +

(

1

umL

)[

1√
π

(

9z

4
− z3

2

)

+

(

z4

2
− 2z2

)

e(z
2) [1− erf(z)]

]

(4.64)

−
(

1

umL

)2 [ 1√
π

(

−39z

64
+

11z3

42
− 9z5

16
+

7z

8

)

−
(

−z
6

2
+
z8

8

)

e(z
2) [1− erf(z)]

]

(4.65)

+O
(

1

(umL)3

)

, (4.66)

z =

(

∆

m

)

√

umL

2
. (4.67)

where ∆ = mB∗ −mB. By evaluating the correction terms numerically and comparing

the finite and infinite volume expressions fitted to our data at all simulated pion masses,

we can estimate the size of the effects. These results are shown in Table 4.8. For our

lightest data point, where you would expect finite volume effects to be largest, the size

of the correction is 1%, so as a conservative estimate of the overall effect we add 1% to

our error budget.

mπ [GeV] gIV gFV (gIV − gFV )/gIV

0.289 0.5688 0.5628 0.0104
0.331 0.5387 0.5357 0.0056
0.344 0.5907 0.5882 0.0041
0.393 0.6061 0.6049 0.0019
0.418 0.5652 0.5644 0.0014
0.557 0.5733 0.5732 0.0002

Table 4.8: Finite volume corrections to the effective coupling

4.8.7 RHQ parameter uncertainties

4.8.7.1 Statistical

To test the dependence of gb on the uncertainties in the tuned RHQ parameters we

calculate the coupling on the 243 ml = 0.005 ensemble using the full box of RHQ

parameters around the tuned values (3.57). We then interpolate gb to the point of

the tuned parameters using equations (4.68, 4.69, 4.70). By following this procedure

underneath a jack-knife, using the tuned parameter values on each configuration, we

can propagate the errors from the tuning through to gb. Comparison of this number to

the result calculated directly using the tuned values of the parameters gives a measure

of how sensitive gb is to the uncertainties arising from the tuning.
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MRHQ
gb

= JM ×







moa

cp

ξ







Tuned

+AM (4.68)

JM =
[

M3−M2

2σm0a
, M5−M4

2σcp
, M7−M6

2σξ

]

(4.69)

AM =M1 − JM ×
[

moa, cp, ξ
]T

(4.70)

Comparing the two values (Table 4.9) there is no significant difference. The central values

differ by 0.1%, and the errors differ by 0.9%. In the context of the overall uncertainty

this can be considered negligible.

gb

Tuned point 0.7581 ± 0.0412
Interpolated 0.7573 ± 0.0408

Table 4.9: Values of the (unrenormalised) coupling constant gb on the 243

ml = 0.005 ensemble calculated directly at the tuned RHQ parameters, and
interpolated to the tuned point under the jack-knife. The difference between
the two values is negligible.

4.8.7.2 Systematic

We also consider the effect of systematic uncertainties that arise in the determination of

the RHQ parameters. These are estimated in [3], the sources being heavy-quark discreti-

sation effects, uncertainty on the lattice spacing, and uncertainty in the experimental

inputs. To determine the sensitivity of gb on these uncertainties we use the calculation

on the box of parameters (3.57) to interpolate to the value of the coupling at the tuned

parameter values, shifted by the systematic uncertainties. This procedure relies on the

box being small enough that the parameter dependence is linear within this region. We

shift one parameter at a time by each error source and consider the overall error as the

effect of each of these shifts added in quadrature. Figures 4.23, 4.24 and 4.25 show gb as

a function of each RHQ parameter, with shaded regions corresponding to the parameter

uncertainties. The combined result is an error of 1.5% for the systematic uncertainties

on the RHQ parameters, as shown in table 4.10.

4.8.8 Unphysical strange-quark mass

Our simulation is performed with a sea strange-quark mass that differs from the phys-

ical value by approximately 10%. Although the correlators we calculate to extract the
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% error from parameter

Source moa cp ξ Total

HQ discretisation 0.25 0.65 0.30 0.76
Lattice scale 0.97 0.65 0.24 1.19
Experimental 0.14 0.33 0 0.35
All sources 1.01 0.98 0.38 1.46

Table 4.10: The effect of RHQ parameter systematic errors on gb. Each param-
eter was shifted by one sigma and the effect on gb calculated by extrapolation
using equation (4.68).

Figure 4.23: gb as a function of the three RHQ parameters m0a (top), cp (left)
and ξ (right). The vertical dashed line shows the tuned parameter value, and
the shaded region shows the systematic error coming from the heavy-quark
discretisation effects.

coupling contain no valence strange-quarks, the value of ms can affect loops. To test the

dependence of our calculation on the sea strange-quark mass we initially tried reweight-

ing [129, 130]. The reweighting factors have already been calculated [115] on a subset

of the configurations used in this study. We examine the lightest available ensemble on
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Figure 4.24: gb as a function of the three RHQ parameters m0a (top), cp (left)
and ξ (right). The vertical dashed line shows the tuned parameter value, and
the shaded region shows the systematic error coming from the lattice scale
uncertainty.

both the fine and the coarser lattice. For the 243 lattice we reweight from m
(sim)
s = 0.04

to the physical mass of ms = 0.0345, in 22 steps on a subset of 195 configurations. On

the finer lattice we reweight m
(sim)
s = 0.03 to ms = 0.0275, in 5 steps on a subset of

307 configurations, using two source positions. Figure 4.26 shows the dependence of gb

on the sea strange-quark mass over these ranges. The reweighting calculation on the

coarser ensemble suffers from poor statistics, both from the small number of configu-

rations used, and the additional statistical fluctuation introduced by the reweighting

procedure. Each step in the reweighting proceedure is highly correlated to the previous

one, therefore to ascertain whether we see any statistically significant result we take the

difference between either end of the mass range on each configuration and perform a

jack-knife. The change in the coupling after rewighting to the physical mass is smaller

than the resolution given by the jack-knife errors. We therefore turn to other techniques

to determine the effect of the unphysical sea strange-quark mass.
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Figure 4.25: gb as a function of the three RHQ parametersm0a (left), cp (middle)
and ξ (right). The vertical dashed line shows the tuned parameter value, and
the shaded region shows the systematic error coming from the experimental
uncertainties in the quantities used to tue the paramaters.

Detmold et al. have also derived the HMχPT NLO axial-current matrix element in the

partially quenched SU(2) and SU(3) cases [109]. This allows us to evaluate the expres-

sion with different valence and sea strange-quark masses. The NLO matrix element has

four different contributions, coming from so called sunset diagrams, wave-function renor-

malisation, tadpole diagrams and the NLO analytic terms. Each of these contributions

have been calculated explicitly, except the NLO analytic terms, for which the observa-

tion was made that their contribution is proportional to the pseudo-scalar mass squared.

We have calculated the effect of a 10% change in the sea strange-quark on the loop di-

agrams, and this propagates to a 1.5% change in the value of the coupling. This result

seems consistent with the study of reweighting on the ensembles [115] performed by the

RBC/UKQCD collaboration where similar quantities, namely the pion-decay constant,

was seen to display a 1.5% change in reweighting to the physical strange-quark mass.

Therefore we ascribe an error of 1.5% due to the unphysical strange-quark mass.
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Figure 4.26: Reweighting on a subset of configurations. 323 ml = 0.004 (left),
323 ml = 0.006 (right)

Ensemble m
(sim)
s m

(phys)
s Nconf

243 ml = 0.005 0.04 0.0345 195
243 ml = 0.010 0.04 0.0345 178
323 ml = 0.004 0.03 0.0275 307 (×2 sources)
323 ml = 0.006 0.03 0.0275 156 (×2 sources)

Ensemble gb at m
(sim)
s gb at m

(phys)
s ∆gb

243 ml = 0.005 0.447±0.088 0.540±0.159 0.093±0.114
243 ml = 0.010 0.694±0.089 0.826±0.186 0.133±0.141
323 ml = 0.004 0.539±0.030 0.540±0.034 0.002±0.018
323 ml = 0.006 0.581±0.037 0.569±0.047 -0.012±0.024

Table 4.11: Parameters and results of strange-quark mass reweighting. The
∆gb column gives the difference between the coupling at the simulated and
physical strange mass, calculated underneath a jack-knife. The differences are
not statistically significant.

4.8.9 Final result and error budget

Systematic Errors

Lattice spacing uncertainty 1%
Finite volume 1%

RHQ parameters 1.5%
Chiral and continuum extrapolation 10%
Nonphysical strange-quark mass 1.5%

Total 10.3%

Table 4.12: Systematic error budget.

Taking the sum in quadrature of all the systematic errors described in section 4.8 we

arrive at a total uncertainty of 10.3%. Our final value of the gb coupling including

statistical and systematic errors is:

gb = 0.567(52)stat(58)sys (4.71)
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Conclusions

We have performed a calculation of the single low energy constant of the heavy meson

chiral perturbation theory interaction Lagrangian, gb and arrived at a final result of:

gb = 0.567(52)stat(58)sys (5.1)

Our calculation used the domain wall fermion action for the light-quarks that provides

good chiral properties, and automatic O(a) improvement. To simulate the heavy b-

quarks we use the non-pertubatively tuned relativistic heavy-quark action. This allowed

us to keep discretisation effects under good control, whilst simulating with a physical

heavy-quark mass. In fact by utilising the RHQ action we have been able to perform the

first calculation of the coupling directly at the physical b-quark mass. Our simulation

was performed at unphysical light-quark masses, but we have performed a theoreticaly

guided extrapolation down to the physical point. Furthermore, we have applied our un-

derstanding of the scale dependence of our lattice actions to subtract any cut-off effects,

giving us a result valid in the continuum. We have acheived good statistical precision

and conducted a full analysis of all sources of systematic uncertainty. The dominant

sources of systematic errors are the chiral and continuum extrapolations, both of which

can be improved by further numerical simulation with lighter quarks and extra lattice

spacings. We feel that we have made conservative estimates of these effects, as it is

always better to over, rather than underestimate systematics.

Our result is in agreement with other determinations of the coupling, but has the

advantage of being performed with 2 + 1 flavours of dynamical sea quarks. The only

previous calculation in a 2 + 1 flavour formulation [108] simulated the heavy quark in

the infinite mass limit, whereas we have utilised the non-perturbatively tuned relativis-

tic heavy quark action to simulate with a physical b-quark mass. Figure 5.1 shows a

comparison of previous calculations of the coupling. The only previous result at the

b-quark mass was found by interpolating between static and charm-mass results, and is

shown as transparent in Fig. 5.1. Interestingly, our value also lies in the region which you
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Figure 5.1: Comparison of recent calculations of the HMχPT coupling. The
inner bars represent statistical errors and the outer bars represent systematic
errors, except Becirevic and Hass who only quote a single error. Quenched cal-
culations are represented with circular markers, the nf=2 calculations are shown
with square markers and diamond markers correspond to nf=2+1 calculations.

would expect by making this interpolation. Examination of these results point to only

a mild dependence on the heavy-quark mass which inspires confidence in the framework

of HMχPT. Further confidence is taken from experimental results of Γ(D∗) [48, 131]

which are in agreement with the calculations at the charm mass. It is not possible to ex-

perimentally determine the coupling with b-quarks as there is not sufficient phase space

for the decay to proceed. This is further evidence for the value of this calculation. It

is hoped that further study of this quantity with configurations closer to the physical

light-quark mass would reduce the systematics arising from the chiral extrapolations,

and application of low-mode-averaging techniques would further increase the statistical

precision.
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Correlator Ratios

The form factor A1 can be accessed through the ratio of the three-point correlator,

defined in (4.11), and the two two-point functions (4.12) and (4.12). Both the momentum

of B and the B∗ meson are set to zero, meaning the extracted value of the form factor

is A1(q
2
0) where q

2
0 = (mB∗ −mB)

2.

R1 =
C

(3)
i,i (tx, ty; p̄ = 0, p̄′ = 0)Z

1/2
B Z

1/2
B∗

C
(2)
BB (ty; p̄ = 0)C

(2)
B∗

iB∗
i
(T − tx; p̄ = 0)

= (mB∗ +mB)A1(q
2
0) (A.1)

To access the other form factors we need to inject a unit of momentum, such that

q̄ = p̄ = (1, 0, 0) × 2π/L and p̄′ = 0. Following the notation from [107], we define the

ratio

R2 =
C

(3)
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1/2
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− (m2
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− (mB∗ +mp)q1p0
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(A.2)
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where in the first line the polarisation vector was extracted for the B∗ matrix element

ZB∗ and in subsequent lines the polarisation states are summed over with the polarisation

vectors in the form factor decomposition (4.5). Furthermore, a similar calculation is

carried out to form the ratios R3 and R4.

R3 =
C

(3)
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These ratios can then be combined to access to the form factor A2 through the expression

A2
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=

(mB∗ +mB)
2

2m2
Bq

2
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.

(A.5)



Appendix B

Other Plots

This appendix contains plots of the correlator ratios and meson two-point functions for

the ensembles not shown in the main text.

B.1 243, ml = 0.005

Figure B.1: Ratio R1 on the 243, ml = 0.005 ensemble.
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Figure B.2: Ratio R2 on the 243, ml = 0.005 ensemble, at the first (left) and
second (right) non-zero momentum.

Figure B.3: Ratio R3 on the 243, ml = 0.005 ensemble, at the first (left) and
second (right) non-zero momentum.

Figure B.4: Ratio R4 on the 243, ml = 0.005 ensemble, at the first (left) and
second (right) non-zero momentum.

Figure B.5: B meson (left) and B∗ meson effective mass on the 243, ml = 0.005
ensemble, at zero momentum.
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Figure B.6: B∗ meson effective mass on the 243, ml = 0.005 ensemble at the
first non-zero momentum (left) and the second non-zero momentum (right).

Figure B.7: A1(q
2) and G2/G1(q2) on the 243, ml = 0.005 ensemble.
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B.2 243, ml = 0.010

Figure B.8: Ratio R1 on the 243, ml = 0.010 ensemble.

Figure B.9: Ratio R2 on the 243, ml = 0.010 ensemble, at the first (left) and
second (right) non-zero momentum.

Figure B.10: Ratio R3 on the 243, ml = 0.010 ensemble, at the first (left) and
second (right) non-zero momentum.
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Figure B.11: Ratio R4 on the 243, ml = 0.010 ensemble, at the first (left) and
second (right) non-zero momentum.

Figure B.12: B meson (left) and B∗ meson effective mass on the 243, ml = 0.010
ensemble, at zero momentum.

Figure B.13: B∗ meson effective mass on the 243, ml = 0.010 ensemble at the
first non-zero momentum (left) and the second non-zero momentum (right).

Figure B.14: A1(q
2) and G2/G1(q2) on the 243, ml = 0.010 ensemble.
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B.3 243, ml = 0.020

Figure B.15: Ratio R1 on the 243, ml = 0.020 ensemble.

Figure B.16: Ratio R2 on the 243, ml = 0.020 ensemble, at the first (left) and
second (right) non-zero momentum.

Figure B.17: Ratio R3 on the 243, ml = 0.020 ensemble, at the first (left) and
second (right) non-zero momentum.
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Figure B.18: Ratio R4 on the 243, ml = 0.020 ensemble, at the first (left) and
second (right) non-zero momentum.

Figure B.19: B meson (left) and B∗ meson effective mass on the 243, ml = 0.020
ensemble, at zero momentum.

Figure B.20: B∗ meson effective mass on the 243, ml = 0.020 ensemble at the
first non-zero momentum (left) and the second non-zero momentum (right).

Figure B.21: A1(q
2) and G2/G1(q2) on the 243, ml = 0.020 ensemble.
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B.4 323, ml = 0.004

Figure B.22: Ratio R1 on the 323, ml = 0.004 ensemble.

Figure B.23: Ratio R2 on the 323, ml = 0.004 ensemble, at the first (left) and
second (right) non-zero momentum.

Figure B.24: Ratio R3 on the 323, ml = 0.004 ensemble, at the first (left) and
second (right) non-zero momentum.
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Figure B.25: Ratio R4 on the 323, ml = 0.004 ensemble, at the first (left) and
second (right) non-zero momentum.

Figure B.26: B meson (left) and B∗ meson effective mass on the 323, ml = 0.004
ensemble, at zero momentum.

Figure B.27: B∗ meson effective mass on the 323, ml = 0.004 ensemble at the
first non-zero momentum (left) and the second non-zero momentum (right).

Figure B.28: A1(q
2) and G2/G1(q2) on the 323, ml = 0.004 ensemble.
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B.5 323, ml = 0.006

Figure B.29: Ratio R1 on the 323, ml = 0.006 ensemble.

Figure B.30: Ratio R2 on the 323, ml = 0.006 ensemble, at the first (left) and
second (right) non-zero momentum.

Figure B.31: Ratio R3 on the 323, ml = 0.006 ensemble, at the first (left) and
second (right) non-zero momentum.
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Figure B.32: Ratio R4 on the 323, ml = 0.006 ensemble, at the first (left) and
second (right) non-zero momentum.

Figure B.33: B meson (left) and B∗ meson effective mass on the 323, ml = 0.006
ensemble, at zero momentum.

Figure B.34: B∗ meson effective mass on the 323, ml = 0.006 ensemble at the
first non-zero momentum (left) and the second non-zero momentum (right).

Figure B.35: A1(q
2) and G2/G1(q2) on the 323, ml = 0.006 ensemble.
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B.6 323, ml = 0.008

Figure B.36: Ratio R1 on the 323, ml = 0.008 ensemble.

Figure B.37: Ratio R2 on the 323, ml = 0.008 ensemble, at the first (left) and
second (right) non-zero momentum.

Figure B.38: Ratio R3 on the 323, ml = 0.008 ensemble, at the first (left) and
second (right) non-zero momentum.
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Figure B.39: Ratio R4 on the 323, ml = 0.008 ensemble, at the first (left) and
second (right) non-zero momentum.

Figure B.40: B meson (left) and B∗ meson effective mass on the 323, ml = 0.008
ensemble, at zero momentum.

Figure B.41: B∗ meson effective mass on the 323, ml = 0.008 ensemble at the
first non-zero momentum (left) and the second non-zero momentum (right).

Figure B.42: A1(q
2) and G2/G1(q2) on the 323, ml = 0.008 ensemble.
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