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Interpretable Classification Model For Automotive Material Fatigue 

by Kee Khoon LEE 

This thesis describes the problem of classifying and predicting fatigue crack 

initiation sites in automotive material through microstructure quantification and 

develops machine learning methods to address this task. The work is novel in that 

it develops machine learning techniques for: 1. handling of imbalanced classification 

data which recovers an underlying structure, 2. the development of a new under-

standing of the relationship between the inputs and crack initiation site predictions, 

hence improving interpretability of the model. 

A typical learning machine requires modification to its cost function in terms 

of misclassification cost and sampling bias in order to deal with imbalanced data. 

The way the classification rate is obtained may be altered to the geometric mean 

(Gmean) where it is found to be less sensitive to the skewness in the distribution of 

the classification rate. These modifications, are then applied to Support Vector Ma-

chines (SVM) and various extension techniques. Results on two data sets obtained 

from camshaft and plain journal bearing linings show that a good Gmean value of 

0.70 is achieved. The classification model structure was then decomposed to provide 

an interpretable model. While SUpport vector Parsimonious ANalysis Of VAriance 

(SUPANOVA) uses this technique for regression, it has now been extended to clas-

sification with imbalanced data to provide a parsimonious (interpretable) model. 

The original classification model structure of the camshaft and plain journal bear-

ing lining consists of the sum of 512 and 2048 sub-components respectively. With 

our SUPANOVA, the sum of the sub-components was reduced significantly to 6 

for both applications and yet retains a good predictive performance. Initial anal-

ysis of this data from the metallurgist user community has focused on univariate 

components by considering variations in the arithmetic means in each of the in-

dividual inputs. Here, the results extend to higher order terms which have been 



compared with their understanding of the physical system. To enhance visuali-

sation the results from the SUPANOYA. parsimonious models, data on simulated 

particle distributions were generated. The simulated data set was generated sys-

tematically and assessed with parsimonious models. With this knowledge obtained 

from the modelling, the key microstructural features that optimise these automotive 

materials' fatigue performance have been identified. 
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Chapter 1 

Introduction 

1.1 Imbalanced Data and Model Interpretability for Classification 

In real world applications data sets with limited samples are available. The problem 

0/ gmoZZ gomp/eg 0/ /uzfAer compJzcoW 6^ %m6oZoMce(f For 

m o (fmpnogfzc oncf poaa%6̂ e (o 

obWn 0/ (io(o /or (/le pogz^me oMcf cogea? foaz^zi/e e%omp/eg 

are usually difficult (and practically undesirable) to obtain, time consuming and 

costly. Can a statistical learning algorithm give a good prediction based on such 

imbalanced data? Would you be convinced by a derived model if it provides a good 

o/id no 0/ com6mo(zoM 0/ /eaftfrea wAzcA 

Zeo(f (o (Azg precfzc^zoM? a porgzmonzoua mode/ and !/ê  o good 

pey/ormonce za o (feazroAZe soZû ioM (o fAe oAoi/e proWem. T/iw 

investigates the above two issues namely: imbalanced data and model interpretability 

/or o cZoaa%/ica(20M TAe ^!/ppor( Vector MocAme approoc/i OMc( 

oaaocm^ecZ Aot/e been coMgWerW /or (%io (fa(o gets OM /ofzpue 

crac^ mz(%a(2on /eo^urea o6fameii ̂ rom o^/^omo^zfe mo^enoZ ezompZeg. 

The accuracy of the probabilistic density estimation task depends on the input 

dimensions. As the input dimensions increase, the amount of data required must 

grow exponentially in order to provide consistent model estimation. The goal of 

most classical classification techniques is based on having a good density estimation 

of its data (Vapnik 1995). In real world problems, the amount of data is always 

limited. Hence, good probabilistic density estimation is difficult to achieve. As 
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such, the learning algorithm is required to handle the problem of small samples of 

data. Statistical Learning Theory (SLT) effectively describes statistical estimation 

with small samples (Cherkassky & Mulier 1998). The key ingredient of SLT is 

the use of the Structural Risk Minimisation (SRM) principle, which defines the 

tradeoff between complexity of approximation function and quality of the training 

data fitted. The generalisation of the model developed by SLT is achieved by the 

ability to control the set of approximation functions. A learning machine known 

as a Support Vector Machine (SVM) was developed based on this concept and is 

described further in chapter 3. 

In classical SVM, as in most learning algorithms, its goal is to achieve a greater 

accuracy, assuming the misclassification costs of individual class are the same and 

there is no sampling bias. Imbalanced data is the problem when one class is heavily 

represented whilst the other is under represented. As such, the training distribution 

for each class may be pre-specified instead of being randomly selected, resulting in a 

sampling bias (i.e. violation of equal probability of selection principle of the popu-

lations). Another issue which is strongly related to the imbalanced data is the mis-

classification cost. Imposing a misclassification for each class reflects the importance 

of each class. Furthermore, using the Arithmetic Mean (AMean) for measuring the 

performance criteria for the imbalanced data is biased towards the majority class. 

As such, a more appropriate criterion is the Geometric Mean (GMean) which is 

less affected by extreme values (i.e skewness distribution). For an imbalanced data 

set, the assumption used in the classical SVM requires an appropriate modification. 

This modification is done via the SVM parameters (i.e. the capacity control) in 

order to obtain a good prediction. The above issue of imbalanced data have been 

investigated using several SVM (and extension techniques) are described in more 

detail in chapter 4. 

Model interpretability is an important issue in classification if one would like to 

know about the input/output relationship in the model. Much of the work done 

on Artificial Neural Networks (ANN) is considered as a "black box" classification 

as it is difficult to explain simply or qualitatively the trends that the output has 



determined. SUpport vector Parsimonious ANalysis Of VAriance (SUPANOVA) 

uses the idea of an AN OVA kernel to enforce a sparse representation of the model 

structure. The flexibility of the model lies in the use of the spline kernels and the 

sparseness relies on the norm which is used to enforce the penalty. The nature 

of the formulation of the ANOVA framework also favors small order terms being 

selected as all the univariate terms are required to pass through its origin. As 

such all the higher order terms are constrained to be zeros along these axes. The 

model structure is thus decomposed into a sum of smaller order terms that can 

provide easy visualisation and interpretability of the model. The original work of 

SUPANOVA was applied to regression tasks. In this work it has been extended to 

a classification problem with imbalanced data. This approach has been applied to 

two data sets obtained from automotive materials, namely, the camshaft and the 

plain journal bearing lining. The theory and algorithm developed for SUPANOVA 

for classification with imbalanced data is described in chapter 5. The results and 

discussion based on analysis of the two materials data sets are then described in 

chapter 6. 

To further visualise the SPANOVA parsimonious model obtained, a particle 

simulation was used. The simulated particle distributions provided a systematic 

way to vary the parameters (e.g. the object area, the object shape, the object 

distribution and object angle) selected by the SUPANOVA model. By attempting 

to vary these inputs separately, a parametric assessment of the model predictions 

can also be achieved. These components selected as contributing to crack initiation 

have been compared with the understanding of the professional metallurgist and this 

further understanding can be used to optimise automotive materials performance. 

The detailed procedure, justification of each simulated data set and the discussion 

of the results obtained from this simulated data are described in chapter 7. 

Our approach can also be applied to other real world problems such as in many 

fault diagnostic and condition monitoring problems where the data sets are usually 

imbalanced and a simple parsimonious model with easy interpretability is a desired 

outcome. As such, the techniques described here are broadly applicable. 



1.2 Thesis Overview 

This thesis explores the following; imbalanced data and model interpretability, ap-

plied to the real world application problem of fatigue crack initiation in automotive 

components. The outline of this thesis is as follows ; 

Chapter 2 - Fatigue and Microstructural Quantification Techniques This 

chapter describes the practical rationale for the work in this thesis. The cause 

and catastrophic effects of fatigue are first briefly described. Fatigue crack ini-

tiation can be captured by a microstructure quantification technique. The Fi-

nite Body Tessellation (FBT), an example of a microstructure quantification 

technique, produces a set of features that describe the prior domain knowl-

edge of the microstructural distribution (e.g. morphology of secondary par-

ticles and the particles spatial distribution). This set of features is described 

in more detail in section 2.2. Two typical components in which fatigue crack 

initiation is an important issue are addressed here by looking at the fatigue 

of materials used in the camshaft (ADI) and plain journal bearing lining (Al-

Si-Sn). Preliminary results use simple visualisation (e.g. comparing means 

and standard deviations) and physical understanding. However, this may not 

help to explain the dependency observed between large numbers of potentially 

independent variables (i.e features). Therefore a review of adaptive numerical 

modelling (especially Artificial Neural Network (ANN) approaches - which 

provide flexible data based models) commonly used in the material science 

field is then provided. A classical approach for classification, the Fisher Lin-

ear Discriminant (FLD), is also outlined. These approaches however may not 

be appropriate for small sample data sets as it usually requires large amount 

of data to be available. This is considered in more detail in the next chapter. 

Chapter 3 - Learning from Data One of the goals for the ANN approach is to 

estimate the probabilistic density of the data. This requires an exponential 

increase of the number of training data as the input dimension increases to 

provide consistent results. This chapter provides the basis of constructing 



a learning machine for small sample data sets. This is developed on the 

probabilistic dependency between the (input,output) from a class of functions 

restricted by the number of data pairs and is known as Statistical Learning 

Theory (SLT). To construct a learning machine with SLT, four important 

components, (namely, the learning task, induction principle, decision function 

and the algorithm to implement the aforementioned ingredients) are required 

and are described in section 3.4 to 3.7. The induction principle in SLT relies 

upon the Structural Risk Minimisation (SRM) principle. An understanding 

of SRM will provide an explanation for the misunderstanding between the 

conceptual and technical implementation for a pattern recognition problem. 

A learning machine built from SLT and the kernel methods is the Support 

Vector Machine (SVM). This is described in section 3.7 including a review 

of the use of SRM in SVM and Regularisation Network (RN) for which both 

use kernel methods. The kernel provides a mapping from input space to a 

high dimensional feature using its dot product. The work on SVM originated 

from a classification case and it can be extended to multi-class and regression 

estimation. The generalisation issue of SVM is related to tuning the parameter 

which was mainly based on minimising the bound of the expected risk and 

is described in the last section of this chapter. A common problem with 

classification problems is that of imbalanced data. Can the standard learning 

machine built be used for imbalanced data? This is further developed in 

chapter 4. 

Chapter 4 - SVM for Imbalanced Data The conventional learning machine is 

built on the assumption that the misclassification costs of each individual class 

are the same and there is no sampling bias between training and testing. This 

chapter starts with the description of problems associated with imbalanced 

data and how to deal with it. Furthermore, the Arithmetic Mean (Amean) 

commonly used to measure the performance criteria may not be appropriate 

for assessing the performance with imbalanced data. Therefore, other per-

formance measurement criteria such as the Geometeric Mean (Gmean) which 



are less sensitive to large changes between their classification rate performance 

are also discussed in section 4.2. When classifying an imbalanced data set, 

the assumption used in the conventional learning machine requires an appro-

priate modification for the above two assumptions. For the case of using the 

SVM, this modification can be implemented via the SVM parameters (i.e. the 

capacity control) in order to obtain a good prediction. The following sections 

of this chapter describe several SVM extension techniques such as Control 

Sensitivity (CS) SVM, Non-Standard Situations (NSS) SVM and Adaptive 

Margin (AM) SVM which offer different ways to deal with imbalance of data 

in a SVM framework. The classification model structure produced here is dif-

ficult to interpret. The issue of model interpretation is then developed further 

in chapter 5. 

Chapter 5 - Model Interpretation for classification Non-parametric models 

such as classical artificial neural networks (ANN) can be considered as a "black 

box" model. This kind of model is difficult to interpret. This chapter is con-

cerned with model interpretability for classification within the SVM frame-

work. This is done by decomposing the model structure in feature space into a 

smaller subset of its input variables described in section 5.2. The interpretabil-

ity comes from using the spline kernel with a norm for enforcing sparseness 

of the model structure in the feature space. Inherently, the ANOVA favours 

the selection of lower order terms and provides a parsimonious model that is 

eaay to interpret. This is the motivation of the work based on SUPANOVA 

which was then developed for the decomposition of the model structure of 

the kernel in SVM for regression problems. Here, its use is extended to the 

classification of imbalanced data using the appropriate hinge loss function and 

the assumption for imbalanced data as described in the previous chapter (i.e. 

misclassification cost and sampling bias). This approach will provide enforced 

sparseness of the kernels in the feature space to provide model structure in-

terpretability for the imbalanced data model. As such, a smaller sum of the 

sub-components can be obtained and these can therefore be identiEed as the 



important features. The features obtained from FBT described in chapter 2 

(i.e. for the two automotive materials) are then used to apply the techniques 

described in chapter 4 and 5 for classifying and predicting fatigue crack initi-

ation. Chapter 6 describes the model specification and results obtained. 

Chapter 6 - Data Analysis This chapter uses the Finite Body Tessellation 

(FBT) data obtained from the automotive material (Chapter 2) used for the 

Camshaft (ADI) and the Plain Journal Bearing Lining (Al-Si-Sn). This chap-

ter begins with an outline of the model specification for the ADI. Prior to 

using the SVM framework described in Chapter 3.8, the Fisher Linear dis-

criminant (FLD), a simple and classical approach for classification, was inves-

tigated. A comparison of results obtained between FLD and SVM extension 

techniques (described in chapter 4.3) then follows. The comparisons are then 

extend to the SVM extension techniques that incorporate the modifications 

for imbalanced data (i.e misclassification cost and sampling bias implemented 

through the capacity control of the SVM). The best result for dealing with 

imbalanced data is then extended to provide model interpretability using the 

SUPANOVA for classification of imbalanced data (described in chapter 5). 

This produces a parsimonious model which comprises of a sum of a smaller 

set of sub-components. The sub-component plots are then discussed in sec-

tion 6.2.1 with attempts to link this trend behaviour with the metallurgists' 

understanding. This process is then repeated for the case of Al-Si-Sn. 

Chapter 7 - Simulated Data Analysis The parsimonious models produced by 

the SUPANOVA are still quite complex. It is necessary to vary the input fea-

tures systematically in order to enhance our understanding of our model. As-

sessing the effect of the parsimonious components selected by our SUPANOVA 

can be done via particle distribution simulations. There are four main vari-

ations possible in the input parameters (e.g. the object shape, object area, 

object distribution and object angle) that are related to those components 

selected. This chapter starts off with the justification of the simulated data 

to be generated corresponding to the SUPANOVA components selected. This 



is followed by a detailed description of the procedure and specification of how 

to generate the simulated data set in section 7.2. This simulated data is 

then used as the test set in the SUPANOVA model. The results are then 

presented in section 7.3, where the enhanced visualisation of the model now 

offered for the two sets of automotive materials investigated are discussed. 

The final section in this chapter makes a comparison of the results obtained 

from inspection of the SUPANOVA components and the predictions of fatigue 

initiations in the simulated particle distributions. 

Chapter 8 - The Conclusions and Future Work This chapter provides a sum-

mary of the work presented in this thesis. The approaches used are discussed. 

Future extensions to improve the current work from both the modelling and 

metallurgists' point of view are also described. 

1.3 Research Contributions 

In development of the standard learning machine the main aim is to achieve max-

imum accuracy, assuming no sampling bias between the training and testing data 

and that the misclassification costs are equal. The performance criteria for a clas-

sification problem therefore uses the Arithmetic Mean (Amean). This leads us 

to make a necessary modification to the above assumptions of the machine learn-

ing for imbalanced data. Furthermore, in a classification model interpretability is 

often neglected. It is important to understand and visualise what trend of the (in-

put,output) will initiate a fatigue crack in automotive material. This allows a more 

micromechanistic understanding to be built up and hence fatigue resistance to be 

optimised. A set of simulated data that produced a particle by particle distribution 

was used to visualise and extrapolate the model produced, by varying individual 

features of the particle distribution systematically. With the knowledge obtained 

from the modelling, the key production and microstructural features that will opti-

mise automotive materials' performance can be obtained. Although this work has 

concentrated on automotive material performance, there is a diversity of real world 

application problems which require similar approaches. As such, the techniques 

described in this thesis are broadly applicable. 



The main contributions of this work are based on the extension of the SVM frame-

work to provide a model interpretation in a classification scenario which has imbal-

anced data. The work of this thesis has contributed in part or full to the following 

publications ; 

® K K Lee, C J Harris, S R Gunn and P A S Reed (2001). Classification of 

Imbalanced Data With Transparent Kernel, INNS-IEEE International Joint 

conference on Neural Network (IJCNN), Washington DC U.S.A, July 2001, 

pg 2410-2415. 

• K K Lee, C J Harris, S R Gunn and P A S Reed (2001). Regression models for 

classification to Enhance interpretability. Proceeding of the 3rd International 

Conference on Intelligent Processing and Manufacturing of Materials (IPMM), 

Vancouver Canada, July/Aug 2001. 

• K K Lee, C J Harris, S R Gunn and P A S Reed (2001). Control Sensitivity 

SVM for Imbalanced Data : A Case Study, 5th International Conference 

on Artificial Neural Networks and Genetic Algorithm (ICANNGA), Prague 

Czech Republic, April 2001. 

• K K Lee, C J Harris, S R Gunn and P A S Reed (2001). Approaches to Imbal-

anced Data for Classification : A Case Study, International ICSC Congress on 

Computational Intelligent ; Methods and Applications (CIMA) in Advances 

in Intelligent Data Analysis (AIDA), University of Wales Bangor, June 2001. 

® K K Lee, C J Harris, S R Gunn and P A S Reed (2001). A Case Study of 

SVM Extension Techniques on Classification of Imbalanced Data, Congress 

on Neural Networks and Applications, Fuzzy Sets and Fuzzy Systems and 

Evolutionary Computing, Tenerife Spain, Feb. 2001. Eds. : Nikosmastoraks 

in the world Scientific and Engineering Artificial Intelligent Series, Advances 

in Neural Networks and Applications, pg 309-314. 

• P A S Reed, R C Thomson, J S James, D C Putman, K K Lee and S R 

Gunn (2001). Microstructural effects in the fatigue of austempered ductile 

iron. Submitted to Journal of Materials Science and Engineering (Nov 2001). 



P A S Reed, K K Lee, C J Harris and S R Gnnn (2002). Interpretable models 

for classification of fatigue crack initiation sites. Work in progress, to be 

submitted to Journal of Materials Science and Engineering. 
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Chapter 2 

Fatigue and Microstructural 

Quantification Techniques 

Approximately 90% of metallic failures are caused by fatigue (Callister 1997). Fa-

tigue can result in a catastrophic failure caused by the initiation and growth to final 

failure of cracks in material subjected to fluctuating stresses (e.g. bridges, aircraft, 

train tracks and many machine components). Therefore, this chapter begins with 

o o/ imporfoMce o/ proceaa. t/iia luorA;, 

fatigue initiation is analysed through microstructure quantification techniques using 

Finite Body Tessellation (FBT). FBT provides a set of features that describe the 

pnor (fomom AMOiuWpe o/ (/le o/ 

secondary particles and the particles' spatial distribution). This is described in sec-

tion 2.2. The importance of this analysis in an automotive material is demonstrated 

by looking at two applications (i.e. a camshaft and plain journal bearing lining). 

The experimental testing conditions used together with the preliminary results are 

0/ a aeconcfon/ pAoae ^e.^. m (gmw 0/ (Ae po/fzcZea' azze, 

s/iope, promde o oaaessmeMf ond wiiofisotion o/ fAe 

importance of such features in initiating fatigue. The method used to produce sim-
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properftea 6e macfe conatderiiig (/le electa 0/ mani/ 'unriabZes. 
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description of the classical approach to classification (the Fisher Linear Discrimi-

nant (FLD)). However, these techniques usually require large amounts of data which 

may not he available. 

2.1 Fatigue 

The failure of engineering materials is usually an undesirable event since it might 

involve loss of human life, economic loss and complete stoppage of work in order to 

replace failed components. The usual cause of this failure is the improper selection 

of materials for the service conditions, which includes inappropriate processing, in-

adequate design of components and misuse. Hence, appropriate prevention is vital 

against such failure incidents. The focus of this work is upon fatigue crack initiation 

in automotive materials. The term "Fatigue" is derived from the fact that failure 

occurs after a lengthy period of repeated stress or strain cycling. The process of 

fatigue failure in metals is characterised by three typical stages: (1) crack initia-

tion, where a microcrack develops on the metal's surface at a point of high stress 

concentration; (2) crack propagation, where the crack length increases with each 

stress cycle; (3) final static failure, which occurs very rapidly when the critical crack 

size is reached (Suresh 1998). The crack initiation is of key importance, since crack 

propagation will not occur prior to this. The crack initiation site may include sur-

face scratches, key ways, dents and sharp fillets. In the absence of mechanical stress 

raisers, microscopic surface discontinuities are produced under cyclic loading result-

ing from dislocation slip steps which may act as sufficient stress raisers. Secondary 

phase particles within a metal may also act as initiation sites, when dislocations 

impinge on hard phases leading to microscopic stress concentrations. In order to 

investigate how fatigue cracks initiate, a series of cyclic stress tests can be applied 

to a material. A bend test has been used in this work, using three point loading 

techniques. A bar or flat strip specimen of rectangular cross section is cyclically 

loaded until crack initiation is observed (see Fig. 2.1). During the fatigue test, 
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the specimen microstructure can be examined periodically using acetate replicas 

to identify crack initiation sites. In materials containing secondary phases the ini-

tiation events maybe related to the particles and quantifying their distribution is 

therefore important. 

1/ 71 

17 

Figure 2.1: Three point flexural fatigue test geometry. At the point of loading, 
the top surface of the specimen is placed in a state of compression and the bottom 
surface is in tension, and it is this region of maximum tension that is observed closely 
as fatigue cracks will initiate here. Fatigue occurs when this specimen is cyclically 
stressed (i.e. with repeated bending), cracks initiate and propagate through the 
metal thickness to a point where the remaining sound structure fails by ordinary 
rupture (because the applied load can no longer be supported). 

2.2 Microstructural Quantification Techniques 

Various methods have been developed for characterising the microstructural distri-

bution of discrete secondary phase bodies on two-dimensional sections. They in-

clude field methods (Vander Voort 1990), inter-particle spacing methods (Schwarz 

& Exner 1983) and tessellation methods (Mray et al. 1983). The field methods 

provide a broad evaluation of the microstructural distribution scales (using infor-

mation about the particle density of varying test areas). The inter-particle spacing 

methods on the other hand describe more about the types of distribution and local 

clustering (using the measurement obtained from the nearest neighbour distances 

between particle centroids). Tessellation, a microstructure quantification technique, 

provides a particle-by-particle analysis of the distribution of secondary phase bodies 

(e.g. graphite nodules) rather than the overall distribution of such particles. 

Finite body tessellation (FBT), an extension of Dirichlet tessellation, was in-

troduced by (Boselli et al. 1999). The Dirichlet tessellation cells are constructed 
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based on the particles centroids. It is best applied in the representation of circu-

lar objects with a narrow size distribution. If the size of the object is large and 

its nearest neighbour close, then the side of its cell may intersect with the object 

(Spitzig et al. 1985). Furthermore, the restriction to effectively circular objects 

restricts its application. In the FBT, the tessellated cells are constructed from the 

actual interfaces of the object. It is subject to the constraint that every point within 

the cell is closer to the interface of its corresponding body than any other. Figure 

2.2 shows three stages involved in the FBT procedure: binarisation of the image, 

a distance transformation and a watershed transformation. The image captured 

typically contains a noisy background. During this process, some of the edges of 

the secondary body may be discontinuous and must be corrected. A morphological 

filter is then used to fill holes within the bodies. This is a rather tedious stage 

as it involves particle by particle filling and also knowledge of the "correct" mi-

crostructure, i.e. expert filtering also occurs. The distance transformation which is 

the heart of the tessellation technique, converts a binary image consisting of fea-

ture and non-feature pixels into a greyscale image where every non-feature pixel is 

assigned a grey value that approximates the distance to the nearest feature pixel 

(Borgefors 1986). There are six common distance transformations namely; city 

block, chessboard, octagonal, chamfer 3-4, chamfer 5-7-11 and Euclidean. It has 

been shown that by using the chamfer 5-7-11, a reasonably high accuracy can be 

obtained (Boselli et al. 1999, Borgefors 1986). A watershed transformation is used 

to generate thin divisions between the objects (Vincent & Soille 1991). 

A set of measurements relating to the spatial distributions and morphology of 

the object can be obtained from tessellation. Figure 2.3 shows the definitions of 

these measurements from FBT. The measurements available are: 

1. Object area, (O.A) 
2. Object aspect ratio, (O.Ar) 

aspect ratio of the object (maximum chord length divided by maximum width 
perpendicular to the maximum chord length); 

3. Object angle, (O.Ang) 
reference from the horizontal axis with the maximum chord length of the 
object (between 0 and | radians); 

4. Cell area surrounding the object, (C.A) 
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(a) A sample of the original microstructural image in binary format. 
The grey images are thresholded in order to obtain a true representation of the binaries 

from the noisy background. 

(b) The sample after the distance transformation. 
The binary image consisting of feature and non-feature pixels is converted into 

a greyscale image where every non-feature pixel is assigned a grey value 
that approximates the distance to the nearest feature pixel. 

(c) The watershed images. 
This draws a thin line dividing the objects, thus defining the C.A 

associated with each object. 

Figure 2.2; Successive steps to obtain a Finite Body Tessellation (FBT). 
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1; Object area 
(OA) 

Object aspect ratio 
(OA) 

-3: Object angle 
(O.Ang) 

4; Cell area 
(C.A) 

5: Cell aspect ratio 
( C A ) 

6: Cell angle 
(C.Ang) 

7: Local Area Fraction (L.A.IO = object area (l)/cell area(4) 

(a) Single cell measurements 

8: Number 
of Near 

Ndghb ours 
(N.N.N) 

10: Mean Near 
Neighbour 
Distance 

9; Nearest 
Neigjbb our 
Distance 
((Lm) 

11; Nearest 
Neighbour 
Angle 
(N.N.Ang) 

(b) Cell and near neighbour measurements 

Figure 2.3: Definitions of the FBT measurements. These describe the spatial dis-
tributions and morphology of the objects. 
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5. Cell aapect ratio, (C-A^) 
aspect ratio of the cell (maximum chord length divided by the maximum 
width perpendicular to the maximum chord length); 

6. Cell angle, (C.Ang) 
angle of the cell's longest chord with respect to the horizontal (between 0 and 
^ radians); 

7. Local area fraction, (L.A.F) 
area of object/area of associated cell; 

8. number of near neighbours, (N.N.N) 
number of objects sharing a cell boundary with object of interest; 

9. nearest neighbour distance, (d^m) 
the minimum edge to edge distance between the object of interest with any 
of its neighbours; 

10. mean near neighbour distance, {dMean) 
average of the minimum edge to edge distance between the object of interest 
with all its neighbours; 

11. nearest neighbour angle, (N.N.Ang) 
the angle between the horizontal axis and the centroid of the object of interest 
with its nearest neighbour (between 0 and | radians). 

Identifying the importance of each measurement in fatigue initiation requires a 

interpretable model for classification, this will be described in chapter 5. With this 

knowledge, the key microstructural features that will optimise automotive materials 

fatigue performance can be obtained. 

2.3 The Industrial Applications 

Most machine components are subjected to fluctuating stresses leading to fatigue. 

In this work, we investigate the automotive materials used in camshafts and plain 

journal bearing linings (Hockley et al. 1999). The motivation for investigating these 

two components in automotive applications is as follows ; 

1. Camshaft 

The Camshaft controls the opening and closing of the poppet valves in a com-

bustion engine. Modification of its motion from sliding to rolling contact will 

provide better power and fuel efiRciency. However, the contacting surface of 

the roller camshaft requires resistance to rolling fatigue, high strength and 

ductility. Figure 2.4 shows the roller-follower design Camshaft. Mechani-

cal property understanding of the heat-treatment effects and crack initiation 

within the selected material is required. For certain heat-treatments, service 
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conditions may lead to multiple fatigue crack initiation sites that greatly ac-

celerate crack growth. Therefore understanding potential crack initiation sites 

through evaluation of fatigue tests for a selected material is very important, 

rocker arm 

pushrod 

cam 

Figure 2.4: The roller-follower design camshaft. 

2. Plain journal bearing lining 

A modern plain journal bearing lining consists of two half shells which are 

clamped together within the bearing housing to support the journal between 

them. Each shell comprises several layers of different materials (see Fig. 2.5). 

A bearing must have a long life span. There are several factors affecting 

the life span of a bearing: the loads on the bearing, the lubrication used 

(hydrodynamic pressure), fit of the bearings on the shaft and in the housing, 

friction coefficient of the materials and the material used, etc. The plain 

journal bearing lining we are investigating here requires the production of high 

output transmission and must be able to withstand the varying hydrodynamic 

pressure of the journal in the automotive engine. In order to do this, it is 

necessary to investigate both the loading conditions and the fatigue failure 

behaviour of the bearing's lining material. 

Prior to discussing some of the results obtained by Hockley and Joyce et al- at 

Southampton, the two experimental testing conditions used are briefly described 

here, alongside a brief discussion of the current metallurgical understanding of the 

materials used in these automotive applications. 
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SheU 1 

Journal 

Housing 

SheU2 28.0 mm 

(a) Bearing mounting (b) Plain journal bearing lining 

Figure 2.5: The plain journal bearing lining mounted on a housing to support the 
journal between them. 

1. Camshaft 

Cast iron is a cheap metallurgical substance with good mechanical rigidity and 

strength under compression. The mechanical strength and toughness of cast 

iron can be improved by altering the graphite flakes to a spheroidal-graphite 

shape (produced by adding a small amount of either cerium or magnesium to 

molten iron just before casting). The metal matrix is a complex mixture of 

different microconstituents such as, ferrite, retained austenite (RA), carbides, 

cementite and bainite surrounding the graphite nodules that will affect me-

chanical properties. The relative proportions of these microconstituents can 

be altered by subsequent solid-state heat-treatment. Austempering (a low 

temperature heat treatment carried out after a high temperature austenitis-

ing step) is used to refine the microstructure and produce a more uniform and 

desirable size distribution of matrix phases. Furthermore, it relieves stress, 

whilst reducing brittleness and hardness of the matrix structure. Hence, 

Austempered Ductile cast Iron (ADI) can be used in the camshaft appli-

cation with appropriate adjustment of the heating parameters and material 

composition. 

(Hockley et al. 1999) have shown that austenitising at 950°C for 1 hour and 

austempering at 400°C for 2 hour yields good fatigue resistance. This is due 

to the coarse bainitic lath structure and increased RA content. Reducing 

the austempering temperature to 250°C increases the strength but decreases 
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the fatigue resistance. This leads to a trade off between strength and fatigue 

resistance. However, the wear requirements of the camshaft requires high 

strength/hardness so the austempering temperature of 250°C is likely to be 

used, but is known to produce multiple fatigue cracks. 

Microstructural quantification provides a means of understanding fatigue 

damage evolution through assessing the spatial distribution of those graphite 

nodules that initiate cracks. However, there will be other effects on the me-

chanical properties due to ADI microstructure, such as: 

® the volume fraction of RA that is present in the matrix; 

• the shape, size and distribution of the bainite phases; and 

• the presence of carbides. 

The effect of these factors on crack initiation has not been taken into account. 

Here, we assess only the graphite nodule morphology. This seems to be rea-

sonable as the majority of fatigue cracks (95%) were associated with graphite 

nodules (See Fig. 2.6a) in the 850/250 condition. 

2. Plain journal bearing lining 

The shell of the plain journal bearing lining studied here consists of three ma-

terial layers, namely, Aluminum-Silicon-Tin (Al-Si-Sn) alloying lining (0.244 

mm), A1 interlayers (0.06 ± 10% mm) and Steel backing (1.505 mm). The 

fatigue behaviour of the plain bearings is dependent on many complex factors. 

Loading is via the oil layer separating the bearing surface from the journal. 

The behaviour of this hydrodynamic oil film causes discontinuous and rapidly 

changing stress fields to be set up across the bearing surface. The Al-Si-Sn 

lining comes into direct contract with the hydrodynamic pressure. Hence, the 

crack is likely to be initiated from this layer and it is important to investigate 

the dependencies of the material/component combination that initiates these 

cracks. It we seen that fatigue crack initiation in this material was exclusively 

associated with the debonding of the Si phase from the surrounding matrix 

(Joyce 2001). In this work, the distribution of the secondary phase of the Si 

is taken into account only (see Fig. 2.6b). 
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(b) Optical microscopy of the Al-Si-Sn alloy lining material showing spheroidised 
Si distribution with recticular Sn (length of 100/i.m). The Sn phase occasionally 

encapsulates the Si. 

Figure 2.6: Optical microscopy of the automotive camshaft (ADI) and plain journal 
bearing lining (Al-Si-Sn). A crack initiation point could be veried by assessing the 
repica record. 
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Short crack tests were carried out in both materials under a three point bend 

plain rectangular bar configuration (described in section 2.1) as multiple cracks 

were expected. This reduced the area of likely crack initiation sites and thus area 

of crack monitoring. Interrupted cycling and acetate replication were used to mon-

itor the microstructural features initiating the fatigue cracks. A crack initiation 

point could be veried by assessing the repica record. Polished plain bend bars with 

dimensions of 10mm x 10mm x 70mm were used in the short crack testing for the 

ADI camshaft material. For the case of the plain journal bearing lining a 80mm 

X 20mm test specimen was obtained from the flat strip material produced prior to 

bearing formation and the lining surface ground down to about 0.25mm. Inter-

rupted cycling and acetate replication was also used to monitor the microstructure 

and the initiation of short fatigue cracks on the specimen surface. The graphite 

nodule and the Si distributions for those initiating cracks and those not initiating 

cracks are then assessed using the tessellation techniques described in section 2.2. 

2.3.2 Preliminary Results 

The experimental results are given below for each case. 

1. Camshaft 

In the 850/250°C condition, about 116 "crack" initiation sites and 2803 "no 

crack" sites at graphite nodules were found in one sample. The surrounding 

particles may affect the microconstituent formation (discussed previously) 

which may also affect the crack initiation. However, 95% of these initiation 

sites were due to the graphite nodules and the rest were within the surrounding 

matrix. Preliminary results comparing simple means of the features obtained 

from FBT, shows that initiation of cracks occurs for larger nodules of individ-

ual high O.A surrounded by a relatively low average O.A of smaller graphite 

nodules (see table 2.1) (Hockley et al. 1999). 

2. Plain journal bearing lining 

A total of 10 regions were selected randomly for identifying areas of mi-

crostructure containing crack initiation sites. The total number of cells was 

2938. Only the Si secondary phase distribution is considered here as fatigue 
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crack initiation in this material was exclusively associated with the debonding 

of the Si phase from the surrounding matrix (Joyce 2001). Also, the Si phase 

is occasionally encapsulated by the Sn completely making the Sn distribution 

difficult to assess. The cells produced by the FBT were then divided into 

three populations : 

i) Initiating Cells (163) - those cells containing a Si particle at which a 

fatigue crack initiated. 

ii) Bordering Cells (810) - those cells sharing a common boundary with an 

initiating cell (i.e. near neighbours of the initiation particles). 

iii) Background Cells (1965) - those cells containing a particle that is not 

sharing any boundary and showing no sign of fatigue crack initiation. 

Results comparing the mean and standard deviation of the FBT features 

show that there is not much significant difference between the bordering and 

background cells (see table 2.2). As such, the bordering and the background 

cells were assumed to belong to the same class. The results further show that, 

as the O.A, C.A , dMean and L.A.F increase crack initiation is more likely to 

occur (Joyce 2001). 

2.4 Particle Distribution Simulation 

The ability to extract detailed geometrical information on a particle-by-particle ba-

sis, and then examine such measurement information across the whole microstruc-

ture, makes tessellation a uniquely powerful approach to assess both localised (crack 

initiation) and global (secondary processing effects on particle distribution) process 

behaviour. Previous work at Southampton (Yang et al. 2000, Yang et al. 2001) has 

been carried out to enhance understanding of the effect of random and clustered 

particle distributions. A variety of two-dimensional finite-size particle distributions 

have been simulated to achieve this. The approach taken can be generalised to 

other systems containing low aspect ratio finite bodies of low to moderate area 

fraction. The motivation of this work was that ductility and fracture toughness are 

seen to decrease with increasing inhomogeneity of the reinforcement distribution 

(i.e increased clustering) with many researchers indicating that particle clusters 
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may provide easy crack initiation and/or propagation sites. In order to compare 

the real and simulated particle distributions, it is essential to ensure that the area 

fraction of the particles are the same. To further address this issue, the simulation 

packages for particle distributions needs to be able to investigate the inSuence of 

particle morphology, random and clustered (i.e microstructural characteristics). 

Several microstructure characteristics were defined for microstructure simula-

tions in the previous work by (Boselli et al. 1999). The main parameters were the 

definition of shape, size and spatial distribution of the objects and object orienta-

tion which can be simulated using an in-house (Yang et al. 2000) Fortran program. 

Figure 2.7 shows an example of circular particles with a constant size that are :(a) 

randomly distributed and (b) clustered. The location of the object is generated us-

ing a two dimensional rectangular area with a specified nominal width and height. 

The percentage area fraction and the size of the object has to be determined prior to 

generating the distributions. This information enables specification of the number 

of objects to be simulated in the area under consideration. There are two stages 

involved in order to generate each microstructure characteristic: (1) generating the 

O.A and (2) generating the location of the centroids and ensuring that no over-

lapping occurs between the objects. The locations of the object centroids were 

generated with a normal distribution in their x and y coordinates. For the clus-

tered distribution, a set of "parent" locations were generated based on a specified 

distance being maintained between them and then a normal distribution for a spec-

ified number of "children" particles were placed locally around each parent. This 

simulated particle distribution program may then be used to systematically vary 

the object shape, size, orientation and spatial distribution to visualise the model 

produced from our learning system. The full procedure and related results will be 

described in more detail in chapter 7. 

This simulated particle distribution program may then be used to systematically 

vary the object shape, size, orientation and spatial distribution to visualise the 

model produced from our learning system. The full procedure and related results 

will be described in more detail in chapter 7. 
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ai 

Description Initiating Background Overall Description 
Mean SD Mean SD Mean SD 

Object Area, (O.A) xi 2326.88 2549.83 476.45 890.87 549.88 1071.70 
Object Aspect Ratio, (O.A^) X2 IjW 0.28 L40 OjW 1.40 0^7 
Object Angle, (O.Ang) 13 (rod) OjW 0.45 0J9 0.41 0.78 0.41 

Cell Area, (C.A) Xi 12340.84 7628.74 5761.52 4653.25 6022.60 4973.30 
Local Area Fraction, (L.A.F) X5 15.87 10^3 6.34 7.03 6.71 7.42 

Number of Near Neighbours, (N.N.N) xg 7.60 2.21 5.68 1.82 5.76 1.87 
Nearest Neighbour Distance, (d^m) X7 {jim) 16.23 16j# 17.40 17.04 1%36 17̂ W 

Mean Nearest Neighbour Distance, (dmeon) {fj,m) &L81 21.08 5&71 24.16 57.03 24.09 
Nearest Neighbour Angle, (N.N.Ang) a;g (rad) 0.77 0.47 0.75 0.46 0.75 0.40 

Table 2.1: Results obtained from the automotive camshaft ADI material. The mean and standard deviations (SD) of the FBT features between the 
"crack" (initiating), "no crack" (background) and their overall distribution are shown here. Units are in micrometers and radians where applicable. 



to 
O) 

Description Initiating Bordering Background Overall Description 
Mean SD Mean SD Mean SD Mean SD 

Object Area, (O.A) xi 12.17 1L54 6.22 6.73 4.24 5.19 5.23 6.44 
Object Aspect Ratio, (O.A^) X2 1.49 0.36 1.50 0.41 1.48 0.50 1.49 0.47 
Object Angle, (O.Ang) x$ {rad) 0.90 0.41 0.88 0.42 0.87 0.4 0.88 0.41 

Cell Area, (C.A) 14 113.65 5&59 87.59 5&45 6&46 4121 7&23 49.49 
Cell Aspect Ratio, (C.A^) 1.49 0.42 1.61 1.22 1.70 1.51 1.67 1.40 
Cell Angle, (C.Ang) zg {rad) 0.88 0.42 0.79 0.44 &77 0.44 0.78 0.45 

Local Area Fraction, (L.A.F) x-j 10.48 &41 6.98 5.34 6.93 5.73 7J^ 5.72 
Number of Near Neighbours, (N.N.N) zg L38 6.00 L45 5.52 1.42 5J0 1.45 

Nearest Neighbour Distance, (dmin) xg (fim) I j ^ 2.53 1.92 1.94 1.7 2J^ 1.88 
Mean Nearest Neighbour Distance, (dmean) 7.59 2.5 7jm 2.64 6.03 2.56 6.47 2.66 

Nearest Neighbour Angle, (N.N.Ang) xn {rad) OJS 0.44 0.79 0.46 0.83 0.45 0.82 0.46 

Table 2.2: Results obtained from the automotive plain journal bearing lining material. The mean and standard deviations (SD) of the FBT features 
between the "crack" (initiating), bordering, the "no crack" (background) and their overall distribution are shown here. Units are in micrometers 
and radians where applicable. 



(a) Random distribution of the objects 

(b) Clustered distribution of the objects 

Figure 2.7; A sample of the simulated particles corresponding to a circular shape 
with (a) randomly and (b) clustered distributions. The particles are in black and 
the background is white. 
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2.5 Modelling in the Material Science Community 

Artificial Neural Networks (ANN) have been notably successful in the field of mate-

rial science in tackling the problems of regression and classification. Their applica-

tions, focus mainly on metal property/process predictions (i.e. regression problems), 

(Sumpter & Noid 1996, Bhadeshia 1999, Linkens & Yang 2001) have provided a good 

review of the wide application of ANN to the field of materials science. Early work 

on ANNs in material science has used Multi-Layered Perceptrons (MLP). MLPs are 

non-linear data driven models that have the advantage of finding the interrelation-

ships between variables without having to specify their prior relationship, but they 

require a large set of training data to make the derived model robust. These re-

quirements come from the goals set, which are usually based on probability density 

estimation. This requirement extends to many classical approaches for classifica-

tion, such as nearest neighbourhood, linear discriminant and parametric models 

which were built based on the assumption that the data set is large. Using the 

probabilistic density estimation of the data will lead to the problem of the " Curse 

Of Dimensionality" (COD) (Bishop 1995). As the input dimension increases, the 

number of data required increases exponentially in order to provide the same con-

sistent result. A Bayesian framework uses the prior to overcome the problem of 

COD. This is done by imposing some prior knowledge about the parameters of the 

model. Mackay and Bhadeshia have done substantial work on applying Bayesian 

frameworks in the field of materials science problems (Bhadeshia et al. 1995, Gavard 

et al. 1996, Fuji et al. 1996). The Bayesian framework in ANN is based on its ability 

to infer the model complexity from data. Furthermore, it incorporates error bars, 

which represent the uncertainty involved in the model prediction. Alternatively, the 

ad hoc decision of selecting the parameters in an MLP are made explicit by Gaus-

sian Processes (GP), implementing a Gaussian prior over the function space, which 

the learning machine computes. (Bailer-Jones et al. 1997, Bailer-Jones et al. 1999) 

compare the use of Bayesian NN with a GP model in the prediction of deformed 

and annealed microstructures and also uses these approaches to model austenite 

formation in steel. They concluded that in their GP model, its hyperparameters 
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are more interpretable than the weights obtained in the Bayesian ANN (i.e the 

weights are explicitly parameterised). Furthermore, the prediction results gained 

from GP are superior to those of Bayesian ANN. A good review of Bayesian ANN 

and GP can be found in (MacKay 1991, Neal 1996). 

ANN outperform classical linear pattern recognition techniques as the neural net-

work is a non-linear model (Bhadeshia 1999). This non-linearity has its advantages 

and disadvantages. Bhadeshia claims that the parameters in ANN, such as the de-

rived function and the associated coefficients (i.e. weights), can be revealed as rela-

tionships and interaction of the model features. (Plate 1999, Schooling et al. 1999) 

point out that the ANN can be considered as a "black box" as it is difficult to under-

stand/visualise both the functions computed and the structure that is computed. 

Another difficulty involved in using ANN is the problem of overfitting (leading to 

poor generalization). Although this can be reduced using a cross-validation tech-

nique, it is both computationally expensive and requires a large set of data to be 

available. (Linkens & Yang 2001) highlighted that a more robust model can be pro-

duced with a "Grey box" modelling approach. Grey Box modelling is where some 

physical properties of the model can be incorporated into he model. A well known 

example of Grey box modelling is the neuro-fuzzy model. This combines fuzzy rules 

(physical understanding of the system) with an ANN (intelligent model). The in-

terpretability of the model can be obtained through assessing linguistic fuzzy rules 

(Schooling et al. 1999). The advantages of Grey box modelling, as mentioned by 

(Linkens & Yang 2001) are its robustness, improvement of generalisation ability and 

reduction in dependence on the process data (i.e. a transparent model). There are 

many successful applications of both ANN and its extension, neuro-fuzzy networks, 

notably in the field of materials at both the material departments of Southampton 

University and Sheffield University, Institute for Microstructural and Mechanical 

Process Engineering (IMMPETUS). 

Part of the theme of this thesis is to provide an interpretable model (i.e. Grey 

box modelling). Our focus here is on using the SUpport Parsimonious ANalysis 

Of VAriance (SUPANOVA). This approach obtains its parsimonious model (hence 

29 



interpretability) through decomposing its model structure (i.e. the kernel function 

is decomposed in the Support Vector Machine (SVM)). The SVM was developed 

based on Statistical Learning Theory (SLT) which was thought to be the best ap-

proach for modelling with small sample data set in accordance to (Cherkassky & 

Mulier 1998). The development of SVM and SUPANOVA will be described in more 

detail in chapter 3 and 5 respectively 

2.6 Classical Classification Approach - Fisher Linear Discriminant 

Prior to using complex models (e.g. SVM) for a classification problem, simple 

classical approaches should be attempted. From SLT, these simple approaches may 

indeed outperform the more complex approaches. (This is explained in more detail 

in chapter 3.1 and 3.5.2.) Therefore the next section describes a simple classification 

approach - The Fisher Linear Discriminant (FLD). Discrimininant functions are 

used to distinguish the differences between two or more groups of data or features in 

classification problems (Bishop 1995). A typical choice of a discrimination function 

is one which is linear in the input vector x and can be written in the form of: 

y(x) = w^x + h (2.1) 

where w is the weight vector b is the bias and T is the transpose, w can be optimally 

selected so as to accommodate class overlapping by maximising the class separation 

in which the decision boundary is given by y(x) = 0 . In a two class problem, an 

input vector x is assigned to class +1 if y(x) > 0 and to class —1 if y(x) < 0. 

Linear discriminant analysis provides the basis of generalisation to non-linear dis-

crimination functions and other non-linear methods. Fisher linear discrimination 

(FLD) is a classical method for classification (Fukunaga 1990). It is used to reduce 

the increasing dimensionality of the input feature space by maximising the sepa-

ration between class means while minimising the class variance direction. Fisher 

discrimination is "not strictly" a discriminant, but it can easily be used to con-

struct a discriminant (Cover 1965) using the idea of the least squares approach. 
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Figure 2.8; The necessity of considering within class covariance for Fisher Linear 
Discriminant. Projecting the mean of both classes along Xi will result in large 
separations and overlaps (A and B), compared to projecting the mean along Xg 
which will result in small separations and no overlaps (C and D). 

For a two-class problem, the Fisher criterion is given by : 

(Pi -

E 
(2.2) 

A:=l k 

where pk = is the class mean of the projected data for class k, = 

PkY is the within class covariance for class k and m is the mean 

vector class for k class. It can be seen that the necessity to measure the within 

class covariance here as the larger separation between the means implies good sep-

aration as there is a tradeoff between larger separation and overlapping between 

classes (see Fig. 2.8). Maximisation of the Fisher criterion results in maximisation 

of the separation of the projected class mean and the minimisation of total within 

class variance. Therefore, the Fisher criterion maximises a function representing 

the projection of the class means and hence class separation. There exists a closed 

form solution to the weight maximisation as : 

w <x S „ ' ( m 2 - m , ) (23) 

where is the total within class covariance matrix given by ; 

(x" - mi)(x" - mi)^ 4- ^ (x" - m2)(x" - 1112)̂  (2.4) 

The weight vector w is a specific choice of direction for the projection of data 

onto a one-dimensional space (i.e. finding the direction of the weighting vector w) 
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(Rencher 1998). The weight direction is the main concern here and hence it is a 

descriptive model of the training data. 

In order to construct a discriminant function as in Eq. (2.1), a least squares 

approach can be used to obtain the bias b. The basic idea of least squares is to 

minimise the Fisher criterion J of Eq. (2.2) with respect to w. The bias b can be 

expressed aa : 

b = —w^m (2.5) 

where m is the mean of all the patterns k. Now the discriminant function is similar 

to the one in a linear discriminant. In comparing the least squares and Fisher 

approach, least-squares makes the output space as close as possible to the target 

output while Fisher maximises the class separation in the output space. Although 

the approaches in the two methods are different, the resulting weights for the FLD 

coincides with the least-squares approach. 

The solution to the FLD is equivalent to that of the Bayes linear classifier 

(i.e. P(y|x) = p{'x\y)P{y)) when the class conditional density (i.e. p(x|?/)) is 

assumed to be a multi-dimensional Gaussian distribution with equal covariance 

matrix and prior of its target (i.e. P{y)). At first sight, the original FLD seems not 

to suffer the "curse of dimensionality" that was due to the class conditional density 

estimation. It becomes clear when we consider that the mean vector m and the 

class covariance matrix from the FLD are taken to be the maximum likelihood 

estimation corresponding to the mean and class covariance of the Bayes approach. 

Therefore, the classification approach to solve classification problems still requires 

the density estimation of its data. Furthermore, the FLD is a descriptive rather 

than a predictive model. The main difference between these two models is that the 

descriptive model provides a description of the data while the predictive model (e.g. 

Support Vector Machines (SVM), provides predictions about the data. The FLD 

uses empirical data to describe the models and also focuses on getting the right 

values for weights only, rather than the loss incurred from the decision function. 

The use of Empirical Risk Minimisation (ERM) alone is only justifiable when we 
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have a large set of data or the underlying data distribution is known. However, 

in practice, the data is limited and using ERM will not in general reflect the true 

distribution. This briefly describes why the classical approach is not appropriate 

for classification. 

Another approach to deal with large input dimensionality is to investigate the 

effect of limited data. Statistical Learning Theory (SLT) was developed based 

on small sample data sets in which it takes into account the capacity of the 

class function which is better known as the Vapnik-Chervonenkis (VC) dimension 

(Vapnik 1995). From the view point of the VC dimension, if the mapping from the 

input space to the feature space allows small training error and low capacity, then 

good generalisation is guaranteed. Model interpretability was developed based on 

the SLT framework based on model structure decomposition. Work done by several 

authors at Southampton (Kandola et al. 1999, Christensen et al. 2001) uses this 

approach for regression tasks for application to processing-property relationships in 

aluminum alloys. 

2.7 Summary 

The importance of fatigue crack initiation has been highlighted. The FBT pro-

vides a set of features that captures the distribution of the secondary phase and the 

morphology of the particle which may cause fatigue crack initiation. Further visual-

isation of the model may be achieved by using simulated particle distributions. This 

work focuses on the automotive industry looking into two components and mate-

rial combinations, namely, the camshaft with ADI and plain journal bearing lining 

with Al-Si-Sn. The advantages and disadvantages of ANN modelling approaches in 

materials science have been described, bringing out the issue of data with limited 

samples and model interpretability. The theoretical basis of classical approaches to 

classification have also been outlined using the FLD. 
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Chapter 3 

Learning Prom Data 

Real world data sets have a restricted amount of data. Statistical learning theory 

(SLT) is perhaps the best currently available theory for finite sample statistical esti-

a basic understanding of SLT and its conversion of a learning problem with a limited 

ntimAer 0/ gompZeg o opproa;zmo(%on tnowM og moc/ime 

learning. The main requirements for setting up machine learning are then described 

in section 3.3 to 3.7. Understanding of Structural Risk Miminisation (SRM) for 

implementation in pattern recognition requires understanding of both the underlying 

conceptual and technical implications. These two requirements are not consistent 

but have led to the assumption that an accurate probability density estimation of the 

data provides a good classification model. This is assumed in the classical approach 

of solving this problem, indicating that the classical approach is inappropriate for 

small sample data set learning. As such, the Support Vector Machine (SVM) was 

then constructed from the framework of the SLT. The key success of SVM lies in 

using the SRM and kernel methods. The relationship between the SVM and the Reg-

ore (AeM m %we (/le AenieZ 

method to handle the problem of dimensionality transformation but with different 

wo2/a 0̂ (fe^ermme (Aezr ogaocio^edporame^era. TAe appZzco^mn o/(Ae (as/za 

gucA 05 and regreaazon (/leM /oZ/owa. TTie Meed 0̂ promde 

^ood êneroZ%aa(%on za (Aen dzacwaaed m aec(*OM deacnbmp Aow Âe parome^era 

m con 6e !̂̂ Med. 
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3.1 Classical Statistical Classification Approach 

Pattern recognition problems can be defined as follows: given an input point x E 

a class decision is made by determining which region the point lies in and 

providing an index for the region as the decision output, y. Classical formulation of 

classification problems is based on statistical decision theory. The simplest example 

is the construction of the optimal decision rule using prior probability of the target 

assuming that this is known (i.e. simply assign the output label to the class with 

the largest probability) 

y(x) = 0 if P{y = 0) > P{y = 1) 

= 1 otherwise (3.1) 

Upon observing the input, x and making the decision thereafter, provides more 

information about the decision region. As such, the decision can be made based on 

the posterior probability of x (i.e. replace P{y = 0) > P(y — l)byP(y = 0|x) > 

P{y = l |x)) . Expressing the posterior probabilities via Bayes theorem : 

p(x|^ = 0 ) f (%/ = 0) 
f (?/ = 0|x) 

p(x) 

f b = l |x , = (3.2) 

where P(x|y) is the probability density/likelihood estimation of the data x for 

a given class y. The accuracy of this function was then used to minimise the 

misclassification error in the classical approach. We will see in the next chapter 

that for imbalanced data a misclassification cost has to be incorporated into each 

class and the drift of the target needs to be incorporated as well in order to make 

a better prediction. 

The above sets up the basis of the classical pattern recognition problem asso-

ciated with Statistical Learning Theory. Clearly, in order to solve the posterior 

probability, one would be required to solve the probability density of estimation of 

X (i.e p(x|y)). Much of the classical approach to pattern recognition such as Fisher 

Linear Discriminant and Artificial Neural Networks all require a good estimation 
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on the probabilistic density or underlying distribution on its data. An accurate 

estimation of the probabilistic density requires a large set of data with respect to 

its input dimension. Given that we typically have insufficient data in real world 

data sets to generate an adequate density function, this approach to solving pattern 

recognition problems is limited. In fact, according to (Friedman 1997), the more 

commonly used loss functions for classical pattern recognition such as squared error 

and entropy use the concept of density estimation. In such instances, the goal for 

classification is (incorrectly) interpreted as posterior probability estimation (i.e the 

P(y|x) = p{:x.\y)P{y)). Friedman observed that accurate estimation of the poste-

rior probability is not necessary for accurate classification. The explanation of his 

observation can be derived from the statistical learning point of view (see section 

3.5.2). As such, the estimation of the density function should be made redundant 

and one should solve the classification directly, this leads to the motivation of a 

learning machine the Support Vector Machine (SVM) which was developed based 

on Statistical Learning Theory (SLT). 

3.2 Statistical Learning Theory 

(Vapnik 1995) suggests that when solving problems with limited data, "Do not 

attempt to solve a specified problem by indirectly solving the harder general problem 

The intermediate step referred to is the probability density estimation step de-

scribed above, the complexity of which is higher than the desired classification 

problem. The classical approach uses empirical risk minimisation (ERM) indirectly 

to estimate the densities, which are then used to formulate the decision rule. Under 

SLT, the goal is to find a decision boundary minimising the expected risk. This is 

based on the concept of Structural Risk Minimisation (SRM) that will be described 

in more detail in the next section. 

The classical approach to learning requires either the underlying distribution of the 

data to be known or that the data set is large in order to obtain good probabilistic 

density estimation to its input. This however is not the case for most practical appli-

cations. Learning from another point of view can be established from the structure 

36 



of the data given. Such learning from data requires us to build a model from an 

insufBcient set of information (usually small sample data sets) in order to attain 

some underlying structure of the (unknown) process and using this to achieve good 

prediction performance. Given that the data set is small and its representation of 

this underlying structure and also the model usually are in numerical form, from a 

statistical perspective this can be cast as the problem of Function Approximation. 

This setting is equivalent to using learning for multivariate function approximation 

from limited data, which is an ill-posed problem. A problem is well posed when a 

solution exists, is unique and depends continuously with the data set. It is ill-posed 

when it fails to satisfy at least one of these criteria. 

Statistical learning theory effectively describes statistical estimation for small 

data samples (Cherkassky & Mulier 1998). The proponents of SLT are set using 

the probabilistic dependency between the (input,output) to form a class of function 

restricted by the amount of data given to handle the ill-posed problem. Then, in a 

statistical learning framework, learning is an estimation of a class function : 

2/ = / (x , a) (3.3) 

The class of function is determined by its parameter a. a is used to describe how 

the output y is obtained and needs to be determined. The risk of obtaining this 

parameter is associated with a loss function and the joint probability density func-

tion. This is the general setting of SLT and it provides a wide range of possibilities 

in learning which will be elaborated later in this chapter. A robust model for con-

structing SLT is the powerful learning machine which is a learning algorithm that 

can provide accurate function approximation with good generalisation by bounding 

the risk associated with the parameter. 

3.3 Learning Machines 

The properties that we would like the learning machine to have are ; 1.) a good 

estimator of the unknown function (i.e. estimating an unknown dependency from 

known observation), 2.) it must be computationally efficient - to solve the problem 

with a reasonable computation time and 3.) to guarantee good generalisation ability 
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- to deal with problems of predictive learning (using the estimated dependency to 

predict new unseen data). There are four important components that comprise 

this machine ; 1) the definition of the learning task (learning associated with a 

loss function) , 2) an induction principle , 3) a set of decision functions and 4) an 

algorithm to implement the previous 3 components. The following section describes 

each component in more detail. 

3.4 Loss Function And Risk Minimisation 

The capacity of a set of functions, to which the solution belongs, lies in hypothesis 

space and is given as / ( x , a), where a E A and A is any abstract set of parameters. 

Given the hypothesis space, the best estimation of the function / (x , o;) for which 

the risk function associated with x is minimised is given as : 

'R(a) = y / (x , 2/)o(x(Z?/ (3.4) 

Where >C(y,/(x,a)) is the loss function, that measures the difference between the 

actual value, y and its estimates from the learning, / ( x , a) given by the unknown 

structure of a point x associated with its parameter a. The p(x, y) defines the 

joint probability density function (PDF) since we typically do not know about the 

PDF, it is possible to find an approximation according to minimising the expected 

average loss. This will be described in the next section. The common three learning 

problems are classification, regression and density estimation, each requiring an 

appropriate loss function in order to minimise its respective expected loss function. 

The definitions of each problem are briefly described as follows : 

Classification For a two class pattern recognition problem, each vector x is labeled 

by an output y G 0 or 1 in Eq. 3.3. The corresponding loss function is an 

indicator function that measures the classification errors, given as : 

/:(?/, / (x , a)) = 0 if ^ = / (x , a) 

= 1 otherwise (3.5) 
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If the estimation of the unknown function ( / (x, a)) is the same as the labeled, 

y, there is no penalty imposed. Otherwise, a misclassification cost is involved. 

Regression Est imation The label of the output in this task is a real number (i.e. 

2/ E %) and usually, it is assumed that it consists of a sum of deterministic 

function (p(x) = f yp(i/lx)dy) and a random error (noise) with zero mean 

(i.e. y = g(x) + e) A metric representation is usually used as a tool to get the 

estimate closer to the unknown estimated functions. A common loss function 

for regression is the squared error : 

r(2/,/(x,a;)) = ( 2 / - / ( x , a ) ) ^ (3.6) 

Density Estimation The density estimation of a input vector x, has no output y 

involved. If the unknown input vector belongs to the set of joint probabilistic 

densities P{-x,a),a E A, the loss function of the density estimation can be 

written as : 

/I(x, f (x, a)) = - l o g f (x, a) (3.7) 

3.5 Induction Principle 

Given a limited data set, estimating the optimal function of / (x , a) exactly is not 

possible. The approximated optimal function is found by using the induction prin-

ciple. The induction principle allows / (x , a) of the "true dependency" to be found 

in the class of estimation function with limited data. The simplest induction princi-

ple is the so-called Empirical Risk Minimisation (ERM) principle and in statistical 

learning is known as the Structural Risk Minimisation (SRM). The SRM sets the 

basic framework for the learning machine known as a Support Vector Machine. 

The learning machine then uses a constructive implementation of the induction 

principles (Vapnik 1995). 
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3.5.1 Empirical Risk Minimisation (ERM) 

Minimising the risk function in Eq. 3.4 requires the joint PDF of finite data to be 

known, but usually this is unknown. One can approximate it using the empirical 

risk function : 

e 
= (3.8) 

i=l 

where a G A and A is any abstract set of parameters and £ is the number of data. 

The selection of the decision rule is based on its empirical performance on the finite 

number of training samples. This induction principle is known as the Empirical 

Risk Minimisation (ERM). Using the ERM as an approximation to minimising the 

risk function especially when £ is small is inappropriate. (Vapnik 1995) showed that 

for the case of pattern recognition, there exists a bound on the expected risk that 

holds with probability 1 — r) : 

R(a) < + / M l ° g ( f ) + 1 ) - ! (3.9) 

Where h is the Vapnik-Chervonenkis (VC) dimension of the set of decision functions 

parameterised by a, and (typically rj = mi i i (^ , 1). The VC dimension of a set of 

decision functions is the maximum number of points that can be separated in all 

possible ways by that set of decision functions. For a known value of h, our goal is 

to make the bound as small as possible so that the best choice can be calculated. 

From this existing bound, the use of ERM is justified only if a large data sample is 

provided. That is, if the ratio of l / h is large, then the confidence interval (second 

term in 3.9) approaches 0, then the ERM is close to the expected risk. However, if 

i / h is small, then both the terms need to be minimised. To minimise both terms, 

however, requires the VC dimension of a set of decision functions to be a control 

variable and at the same time should generate a simple model rather than a complex 

model (relating to Occam's Razor Principle ^.) 

^William of Occam (1285-1349) :"Causes Should Not be multiplied beyond necessity" 
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There are two ways to solve this minimisation of the bounded problem (Cherkassky 

&: Mulier 1998), 

1) Keep the confidence interval fixed and minimise the empirical risk. The 

model structure is controlled by the number of basis functions and for a given 

number of basis functions the empirical risk is minimised using numerical op-

timisation. For a given number of data samples there is an optimal structure 

providing the smallest estimate of the expected risk. An example of this prin-

ciple is used in the Radial Basis Function (RBF) network commonly used in 

artificial neural networks (ANN) and the regularisation network (RN). 

2) Keep the empirical risk fixed and minimise the confidence interval. A 

special structure (i.e. structural risk minimisation (SRM)) is required to en-

sure that the empirical risk is small for all approximation functions. Under 

this, the best value from the structure is that which minimises the value of the 

confidence interval. An example is the Support Vector Machine (SVM). In 

accordance with (Evgeniou et al. 1999), the RN and the SVM are very similar 

in their properties except the way in which their bounds are minimised. This 

will be described in more detail in section 3.7.3. 

As mentioned in the induction principle section, the optimal decision function 

that is selected might not reflect the true unknown function. Therefore, general-

isation is used to control the set of functions / ( x , a) . The capacity of this set of 

functions (also known as hypothesis space) controls the empirical risk achieved. A 

large hypothesis space will produce low empirical risk but poor generalisation. On 

the other hand, a small hypothesis space will produce good generalisation but will 

not be able to describe the data variable dependency in the data. The characteristic 

of the derived model generalisation ability typically has a bowl shape with respect 

to the capacity of the set of functions. As such, it can be controlled by either 

choosing the appropriate VC-dimension or some other embodiment of capacity in 

the set of functions. 
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The SRM induction is an induction principle based on statistical learning. It pro-

vides a formal mechanism for choosing an optimal model complexity for limited 

data. Implementation of the SRM principle depends on two concepts : the set of 

approximation functions has to be a nested structure ordered according to complex-

ity (VC dimension) and the expected risk, where the sum of the empirical risk and 

the confidence interval is minimised. Rigorous estimation of the prediction risk is 

difficult since it is difficult to estimate the VC-dimension for non-linear functions. 

This requires separation between complexity and dimensionality using a decision 

function of a linear form and kernel methods (see section 3.7.2). 

The confidence bound in Eq.3.9 justified the use of SRM principle. It attempts 

to control both empirical risk on the training data and the capacity of the set of 

decision functions to obtain the expected risk. The structure is defined as ; 

C ^2 c .... C & (3.10) 

Where the set of decision functions S = / ( x , a), a G A and it ranks according to 

their complexity as the subscribed n increases. Hence satisfying a VC dimension 

that are: 

< As < < /in (3.11) 

From here, the appropriate structure is selected that minimises the bound in Eq. 

3.9. As such, the SRM principle defines a tradeoff between the accuracy or fitting 

and complexity of the approximation based on a set of data given. 

Prior to implementing SRM, it is important to notice two important issues regard-

ing its conceptual and technical implication. This important issue is extended to 

learning associated with the classification task : 

• The misclassification error empirical risk is binary. Hence, conceptually min-

imising it will lead to a combinatorial optimisation problem. For technical 

implementation, a continuous optimisation is only used to approximate the 

misclassification error. 
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» The estimation of the prediction performance is known as model selection. 

The conceptual and technical implementation uses the direct misclassification 

error. 

The requirement for the distinction between the conceptual and technical im-

plementation leads to two different costs involved in practical implementation of 

SRM. Firstly the empirical risk uses a continuous loss function (while conceptually 

it uses the misclassification error - via continuous nonlinear optimisation). Sec-

ondly, the estimation of the expected risk uses the misclassification error (model 

selection) (Cherkassky & Mulier 1998). This unfortunately was not obvious in the 

classical approach to classification problems, leading to the interpretation of the 

goal of classification problems as the probabilistic density estimation described in 

section 3.1. Understanding the different basis between classical (focused on the 

probabilistic density estimation of the data) and statistical learning (SRM) focused 

on approaches to pattern recognition, explains why some simple methods such as 

nearest neighbour distance, or linear discriminant sometimes outperform sophisti-

cated non-linear methods such as ANN (Cherkassky & Mulier 1998). For example, 

• Simple classification methods such as nearest neighbour may not require a 

non-linear optimisation solution (the empirical risk is minimised directly) 

• If the simple methods provide the same level of empirical misclassification 

in the minimisation stage as the more complex model, then the use of the 

complex model may not provide a better performance as the empirical risk 

estimation is an approximation of the misclassification error. 

• The sensitivity of classification is less than regression, as slight changes (pro-

vided by the non-linear model based on the practical implementation) may 

not have much impact on the misclassification error. 

Therefore, SLT provides a good justification for the success of some classical 

approaches as compared to non-linear modelling. The problem of classification is 

simpler than regression and hence should be solved prior to developing regression 

approaches. 
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3.6 The Decision Functions 

The output from the learning machine is a set of linear functions defined as : 

I 
= + 6 (3.12) 

2 = 1 

where Xj, i = 1,..., £ are input vectors in 6 is a scalar and a is a parameter. The 

kernel Matrix A'(x, x,) is symmetric (the kernel function will be described in more 

detail in section 3.7.2). A linear function can be more accurately estimated than 

non-linear functions. However, sometimes a linear function is not flexible enough to 

represent the function, hence a non-linear function is required. In ANN non-linear 

functions are used directly over the input space and then the classification is done 

in the input space. This does not provide a unique solution to the problem because 

the complexity constraint is not defined clearly (i.e. how many basis functions are 

good enough for the estimate). We will see next that the SVM uses these linear 

functions with constraint on complexity to form the set of decision functions as 

above using the SRM principle. 

3.7 Support Vector Machine (SVM) 

Many practical applications have a set of data that are insufficient for drawing 

accurate inferences. Limited data may lead to selecting a model that is too simple 

(as a consequence of insufficient data). This implies that the data set is too small 

to identify any complex model with certainty. Note: this is different from Occam's 

Principle for selecting a simpler model or imposing a simpler prior model. Rather, 

the prediction performance of this simpler model has to be questioned. We accept 

that our model might be partially wrong. A question is now raised how much we can 

reliably infer from the data if given a statistical model? Support Vector Machine 

(SVM) is a learning machine that was developed based on the SLT (Cortes & 

Vapnik 1995). SVM comprises of two important features, namely, the use of SRM 

and kernel methods. The next section will describe in more detail these two features. 

This is then followed by a brief review of the regularisation network (RN) (i.e. it 
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can be considered as a kernel learning machine too) and how these are related to 

SVM. 

3.7.1 Construction of SVM 

The SVM was developed by (Cortes &: Vapnik 1995, Boser o/. 1992) who imple-

mented the SRM principle into a learning machine. In SLT, the classification prob-

lem is conceptually inherently less complex than the regression estimation problem. 

Therefore, a classification problem should be used directly instead of estimating the 

probabilistic density function of the data. However, the technical implementation is 

not that straightforward as described in section 3.5.2. This leads to a different goal 

for the classical approach to a classification problem and the SLT approach. The 

goal set for the classical approach requires estimation of the probability density of 

the data, which may not imply a good classification rate to be obtained. On the 

other hand, the goal for a SLT is to find the decision boundary minimising the 

expected risk (Eq. 3.9). SVMs were therefore developed based on their conceptual 

simplicity (i.e. developed for a classification problem and then extended to regres-

sion problems). 

In classification, a hyperplane (usually a linear function) capable of separating the 

training data without error is used. Given the training data consisting of I samples 

(xi,yi), , (x^,2/^) , X G E ± 1 can be separated by the hyperplane decision 

function : 

/ ( x ) = (w^x) + b (3.13) 

where w are the weight vector coefficients and b the bias. This defines a general 

hyperplane and there exists many possible solutions. In order to fix the misclassi-

fication error from the empirical risk to be as small as possible (this is the second 

idea of how to minimise the bound described in section 3.5.1), it is important that 

all the possible hyperplanes can be represented in the form of Eq.3.13. In order 

to implement the SRM principle with the hyperplane, the VC dimension (which 

measures the capacity of a set of functions) must be bounded. In accordance with 

(Vapnik 1995), the bounded VC dimension, A of the set of canonical hyperplanes 
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in N dimensional space is : 

h < min[R'^A'^, iV] + 1 (3.14) 

where R is the radius of a hypersphere enclosing all the data points and A is the 

bound of weighted coefficients (i.e. || w ||< A). This effectively controls the capacity 

of the function by reducing the number of possible hyperplanes. Notice the notion 

of complexity and dimensionality are separated. The complexity is controlled by 

the bound and it is independent of the dimensionality. In the classical approach 

such as a ANN, the complexity is controlled by the number of basis functions and 

it is dependent on the input dimensionality. The dimensionality is handled by the 

kernels method described next. The output of the decision functions given in section 

3.6 is of linear form and in SVM, it is subjected to the constraint of the canonical 

hyperplane. In some practical applications, linear decision boundaries might be 

inappropriate, and non-linear decisions are applied. The non-linear decision in 

SVM uses the elegance of the kernel methods (denoted by ii'(x, x') to transform 

the input vector, x into a high dimensional feature T (via prior non-linear mapping) 

and then to construct the optimal hyperplane. 

3.1.2 Feature Space and Kernel Functions 

Linear models provide little flexibility to our model as they only use the linear 

dependencies between the data. An example of this is the Fisher linear discriminant 

(FLD) described in chapter 2.6, which assumes the distribution of the data to be 

Gaussian, given the covariance between both classes is the same. This model can 

be useful if prior knowledge about the problem is good and the estimate of the 

parameters can be accurately obtained. On the other hand, non-linear models such 

as ANN have been successfully used (as reported in the material science literature 

(see chapter 2.5)). Their success is due to the flexibility of their structure in being 

able to adapt to a wide range of functions, hence allowing a non-linear model. 

(Bishop 1995) view ANN as a framework for transforming a non-linear functional 

input to a set of output variables. The input vector x in the space 3%̂  is mapped 

non-linearly by a function into the feature space T. The learning then proceeds 
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to use this T space rather than the original input space. It is believed that by 

transforming the data to a high dimensional space (i.e. ^ space), the data can 

be separated more easily (Cover 1965). However, working in T space requires the 

ability to control its complexity (in a basis function model this means controlling the 

number of basis functions) leading to the same problem of dimensionality. Kernel 

methods are different from the ANN approach as there is no restriction placed on 

the number of basis functions used to construct the high dimensional mapping of 

the input variables. Work by (Smola 1998) shows that the kernels correspond to 

regularisation operators which can be used to provide a smooth mapping, hence 

providing a good generalisation. This will be described in more detail in the next 

section. 

The solution to the above problem of complexity versus dimensionality is separated 

in SVM. The complexity is bounded by the SRM principle and the dimensionality 

is managed via the kernel methods which map the input vector to the T space using 

only its dot products x^x' . This eliminates the need to calculate the mapping into 

a T space directly which will then run into the dimensionality problems. 

Candidates for the kernel functions have to satisfy Mercer's theorem (Mercer 1909). 

Mercer's theorem provides the condition for a valid Kernel to be used (i.e. it must 

be positive definite). 

This allows for the mapping of the dot product of the input vector, x to the T 

vector (i.e. x^x' —> <^(x)^<^(x')) which can be done implicitly through the selection 

of the kernel function as : 

A'(x,x') = <^(x)^<^(x'). (3.15) 

where 0(x) is the basis function. This transforms the inner product of the input 

vector to a high dimensional T space known as a Hilbert space. A Hilbert space 

H, is defined as a complete inner product space where the completeness is due to 

the metric defined by the inner product and it can be thought of as an extension of 

with a linear transformation to an infinite dimensional space. An exeimple of 9̂  

space is the well known Euclidean space. These kernels are then readily substituted 
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into the SVM for both classiEcation and regression problems. 

Here are some of the commonly used kernel functions : 

Polynomial Kernel - with p degree of freedom 

i^(x, X ) = (x^x' + 1)^ (3.16) 

Radial Basis Function (RBF) Kernel - with a width 

' l9 
X - X I"' 7;r(x ,x)=exp( r — ) (3.17) 

(7̂  

Spline Kernel - given an order of m and b nodes in a 1 dimension input, its inner 

product kernel is ; 

A'(a;, a;') = ^(za;'):' + ^ ( : r - (3 18) 
j=0 k=l 

where (a; — t)+ = moz((z — f),0) and (i, 6 [0,1]. For a linear spline, 

(Smola 1998) show that with the order of m = 1 and an infinite number of 

nodes, the kernel is : 

1 , ' , ' / ' / \\2 , (min(z,z'))^ 
K{x, X ) = 1 + XX XX mm (a;, x —(mm(a;, x')) H (3.19) 

With a N dimensional splines, the solution for a linear spline is the product 

of the N one dimensional splines. 

Mercer's theorem only provides information on which kernels can be used but it does 

not provide us with information as to which kernel is best. (Vapnik 1995) views 

the choice of kernel as equivalent to choosing features, (̂ (x )̂, related to the original 

inputs. He observed that the upper bound on the VC dimension is a potential 

avenue to provide a means for comparing the kernels. This approach is widely used 
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for feature selection (Chapelle & Vapnik 1999, Weston et al. 2000). It is important 

to realise that even though a strong theoretical method might exist for selecting 

the best kernel, it still requires an independent test to be used for kernel selection. 

Finally, a good reference to kernel methods can be found in (Vapnik 1995). 

3.7.3 SRM in Regularisation Networks and SVMs 

Work by (Evgeniou et al 1999), provides a unified view of kernel learning ap-

proaches with Regularisation Networks (RN) based on SLT, showing that the bound 

used for the SVM is equivalent to that of RN. There are several notable learning al-

gorithms such as Radial Basis Function (RBF) networks, Gaussian Processes (GP) 

and SVM that use kernel methods. Their main differences are how they attempt 

to minimise the bound as described in section 3.5.1. Also, their approach to opti-

mising the associated parameters is different. For example using: the least square 

estimation (RBF network), the duality representation (SVM), and the Most Prob-

able (MP) for GP. These correspond to parameterisation of the basis function and 

the kernel representation. This section provides a brief description of how the reg-

ularisation network and the SVM are related. 

The RN attempts to penalise a model's parameters and structure by avoiding over-

fitting of data and restoring the well-posed condition for learning. Regularisation 

uses prior knowledge about the desired function to make the problem a well-posed 

one. The commonly used form of the priori is the "smoothness" of the function 

parameters (e.g. in Eq. 3.3 the a). The smoothness is defined as lack of oscillation 

behaviour of the function (e.g. two similar inputs will correspond to two similar 

outputs if the function is smooth) compared with the possible function behaviour in 

local neighbours of input space. The accuracy of the function estimation depends 

on having enough samples within the neighbourhood to specify the smoothness 

constraint. This is then inherent to the problem of dimensionality because as the 

dimensionality increases the number of samples must increase exponentially to give 

consistent results. This could be offset by increasing the number of data samples 

falling within the neighbourhood but this is at the expense of imposing stronger 

constraint. The standard minimisation of the loss function for the learning machine 

49 



IS : 

1 ^ 
(a) = 7 ^ / ( x , a)) + AQ(a) (3.20) 

1=1 

Where A is a regularisation parameter which controls the tradeoff between the 

smoothness of approximation and accuracy of the approximation and Q{a) is the 

regularisation function that provide smoothness/constraints to / (x , a). Notice that 

this is a means to minimise the bound described in section 3.5.1 (i.e. keep the 

confidence interval fixed and minimise the empirical risk). Given a sequence of 

positive numbers, the term Q(a) is some function that reflects the capacity of the 

function ( / (x, a)) and will monotonically increase. It is worth mentioning here that 

there are other regularisation functions that exist such as the squared norm of a; 

Q(a) =11 a \\l (known as ridge regression) and constraining the model to stay in a 

small subset of possible models (i.e min L(yj , / (x , cv) subjected to Q(a) < ^) 

(Bellman 1961). It should be noted that Q(a) lies in hypothesis space. 

Classical regularisation network theory lacks practical justification when applied to 

a finite set of data. (Vapnik 1995) justifies the use of regularisation techniques for 

finite data by considering the approximation function ( / (x, a)) for a finite set of 

data. The function has to be constrained to an appropriately "small" hypothesis 

space. If the hypothesis space is large, model fitting is good but generalisation 

performance is poor. This concept is then formulated by Vapnik into the terms of 

the capacity of a set of functions depending on the training set size. For a small 

data set, the capacity of the function space is small, whereas it becomes large for a 

larger training set. 

Let us summarise how the RN and SVM can be related before proceeding to describe 

the implementation of SVM. For the case of the RN, the Q{a) is fixed and A is 

unknown. On the other hand for a SVM, the Q{a) is unknown and A is fixed. 

In order to implement the SRM bound, the Q{a) must be a fixed prior. This is 

equivalent to fixing the weighted coefficients w as described in Eq. 3.14. 
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3.8 SVM For Pattern Recognition 

For a two class separable pattern recognition case, the optimal hyperplane is de-

Hned as a hyperplane associated with (w , 6) in the feature space that maximises 

the margin from the closest point without training error. The margin is defined 

as the minimum distance from the hyperplane to the closest point. The optimal 

hyperplane is then obtained by maximising the margin given by (Vapnik 1995) ; 

rCw, 6) == Tr^^rii (3 21) 
II u 

Maximising the margin requires minimising w. Minimising this w is equivalent to 

implementing a SRM. It reduces the number of possible hyperplanes while minimis-

ing the bound on the VC dimension. In order to maximise the margin, minimising 

a quadratic cost function in w is appropriate : 

^ II w | | \ (3.22) 

In this way, the optimal weight w^pt obtained will provide the maximum separation 

between two classes and hence the optimal hyperplane is unique. Given a training 

vector as Xj,i = 1, ,£ with corresponding target % E {—1,1}, combining the 

linear discriminant function of the two different classes can be translated into : 

+ &) > 1 Vi = l , ...,£. (3.23) 

Now, the cost function is a quadratic function and the constraints are linear with 

respect to w. This constrained optimisation problem is called the primal problem 

and it can be solved using a Lagrange function, given as: 

1 ^ 
^(w, 6, a) = - II w 11̂  - Y ] 0!i(2/i(w^x^ + 6) - 1) (3.24) 

j=i 

where a, are the Lagrange multipliers. The solution to this constrained optimisation 

problem is the saddle point for the function which needs to be minimised with 

respect to w and b and maximised with respect to a. In order to obtain an optimal 

solution for the Lagrange multipliers, the primal problem is transformed to a dual 
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problem and is given as : 

maxw(a!) = max (min/I(w,6,a)). (3.25) 
a a W;6 

Then the dual problem can be solved by differentiating the Lagrangian function 

with respect to w and b to be equal to 0 and is given as : 

a = ^ (x:, Xj) (3.26) 
i i,3 

subject to the constraint : 

I 
0% > 0 , = 0 (3JM3 

i 

which can be solved using Quadratic Programming (QP) with a linear constraint. 

In addition, Karush Kuhn Tucker (KKT) states that the Lagrange multiplier a 

and the dual function (Eq. 3.26) must be of a non-zero value. Hence, the linear 

constraint in Equation (3.23) needs to satisfy this KKT condition, such that : 

CKi(2/i(w^Xi + 6) - 1) = 0 V z , ^ (3.28) 

hence, only points with x, which satisfy 

i/i(w^x^-|-6) = l (3.29) 

will have non-zero Lagrange multipliers. These values are then called Support Vec-

tors (SVs) and are those points which are closest to the decision boundary. These 

represent those points that are most difficult for the machine to assign a class. 

Furthermore, the SVs represent the sparseness of the training set (due to the dual 

problem solution) and will be used for prediction. Hence, the optimal hyperplane 

is given aa : 

/ W <̂ '2/̂ (3̂ , x) + 6) (3.30) 
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where b is the bias. The bias can be calculated implicitly or explicitly; implicitly 

because some kernel functions will themselves contain the bias. The explicit bias 

can be calculated as: 

6 = ^ ai%(x,xi) (3.31) 
i^Svs 

It has been shown that even with the different approaches in obtaining the bias, 

both still provide reasonably good results (Gunn 1998). For the case where the b 

are calculated implicitly, the linear constraint in Eq. 3.27 (i.e. — 0) is not 

required. The optimum weight vector w can be obtained as ; 

— ^ ^ (3.32) w 
ieSvs 

and the margin is derived from Eq. (3.21). 

The description above is based on a linear separable case or hard margin, which 

implies that it is a noise free problem. However, a more realistic case will be a linear 

non-separable case, as it can accommodate problems with noise and hence allow for 

the classes to overlap. This can be implemented using the margin disturbed classifier 

(Taylor 1998) or the soft margin approach (Cortes & Vapnik 1995). The distributed 

classifier adds a constant factor to the kernel function output whenever the given 

inputs are identical. On the other hand the soft margin approach defines prior, the 

size of the training weight as an upper bound. In both cases, the magnitude of the 

constant factor controls the number of training points that the system weights. 

The soft margin approach is described in more detail as follows. Two situations can 

occur in the margin : when a point falls inside the margin but in the right class (i.e. 

0 < ^ < 1) or in the wrong class (i.e. ^ > 1) with respect to the optimal hyperplane 

(see Fig. 3.1). The are non-negative scalar variables known as slack variables 

and are used to measure data points which lie within the margin corresponding 

to its border. In this case, it requires the accommodation of some error in the 

decision boundary. A non-negative scalar variable, can be added to the linear 
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Optimsl Hjiperplane, D(%)=0 

Figure 3.1: SVM Non-Separable case decision boundary, slack variable, ^ and mar-
gin. Three points in this figure are non-separable. The subscript 1 and 2 are 
misclassified while 3 is classified correctly. The ^ measures the errors with respect 
to their corresponding class hyperplane. The optimal hyperplane is obtained by 
maximising the margin between the class. 

discriminant function in Eq. (3.23), and is rewritten as : 

4- 6) > 1 - (i Vz = 1, / (3.33) 

subject to the constraint : 

& > 0 V% = 1, (3.34) 

The new minimisation problem is given as the cost function ; 

w, e) = II w 11^+cG(5]er (3.35) 

G{.) is a free function except that it must be a convex function with G(0) = 0. For 

(7 = 1, the number of errors can be counted within the margin and sometimes we 

address it as the 1 norm loss function. It is possible to set <7 = 2, this becomes a 

quadratic loss function. However, cr = 1 is commonly used as it is easy to interpret 

(Cortes & Vapnik 1995). The C can be considered as "prior knowledge" or a 

"regulariser" of the data noise as it controls the tradeoff between the complexity 

of the decision boundary and the number of errors allowed which is known as the 
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capacity control. Therefore, the Lagrange function for the non-separable caae is : 

= 2 II w 11̂  + 6) - 1 + (i) -
1=1 i=l i=l 

(3.36) 

with 0 < cxi < C and > 0 as the Lagrange multipliers and we want to minimise 

with respect to w, b and Solving this problem is exactly the same as the separable 

case except for the constraint of the Lagrange multiplier, Ofj, Eq. (3.27) which has 

an upper limit of C. 

What has been described so far is for the case where the decision boundary is linear. 

Where a non-linear decision boundary is appropriate, the kernel described in section 

3.7.2 can then attach to the input and then transform it to the feature space where 

the non-linear decision is obtained. 

3.8.1 SVM for Multi-Class Problems 

The above binary classification problem can be extended to A-class classification 

problems; A;-class pattern recognition problems are usually solved using the voting 

scheme method based on binary classification decision functions. In SVM, the 

most commonly used is the one-against-the-rest voting schemes (Blanz et al. 1996). 

That is the classifier constructs a hyperplane between class k and the k — 1 

other classes. This method requires k binary classifiers to be constructed. For 

a given test point, a voting scheme (e.g. the winner-takes-all, tree voting) can 

then be used to assign the class with largest positive output (assuming the output 

values are real). Another approach is the One-against-One; this approach requires 

k{k — l ) /2 hyperplanes to be constructed, separating each class from the other 

classes and then uses the voting schemes to aasign the class for a test point. This 

approach was extended to incorporate tree voting schemes into the testing phase 

by (Piatt et al. 2000). A more natural way to solve the A-class problem is to 

construct a decision function by considering all classes at once (Weston & Watkins 

1998) rather than constructing the combination of binary classification rules. This 

approach attempts to generalise the binary classification support vectors method 

with ordering of the constraint for the hyperplane through the piecewise linear 
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separation by the maximum of k linear functions. This will allow the quality of 

each hyperplane to be measured individually. Weston show that the results obtained 

on benchmark data sets suggest that his new approach can reduce the number of 

support vectors and hence kernel computation. Furthermore with this approach, 

the problem that the voting scheme may become stuck at for example a draw, is 

not encountered. 

3.8.2 SVM for Regression Estimation 

The ideas of SVM classification can be applied to regression problems by introducing 

a more robust loss function that measures the difference between the target and 

the predicted values. Whilst there are a few loss functions that SVM regression 

problems can accommodate, the two most commonly used are (-insensitive and the 

quadratic loss function defined respectively by : 

e-insensitive loss function 

I / (x ) — y I — e otherwise 

where e is a prescribed parameter, that represents the allowance for the in-

sensitivity to the error (that is error within this range is not penalised). 

quadratic loss function 

'̂ 9(2/, / W ) = ( / (x) - 2/)̂  (3.38) 

The task of the loss function is therefore to minimise the cost function of : 

c) = 2II 11̂  ^ E (3-39) 
i=l 2=1 

where C is a user prescribed parameter (i.e. capacity control), and are slack 

variables representing the upper and lower errors on the model output respectively. 

These result in an optimisation process which leads to the well known QP problem 

given for each function respectively as : 
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e-insensitive loss function 

^ ^ Xj) 

maxw(a, a j = max 
a,a* a,a* 

i=l j=l 

+ ^ - c) - + () 
2=1 

> (3.40) 

subjected to 

0 < a , < C , 2 = 1, / 

0 < a * < C , 2 = 1, / 

I 
- 0 = 0 

%=1 
(3.41) 

making use of the KKT conditions (i.e. a ' a = 0), the support vectors are then 

one of the Lagrange multipliers with non-zero values. The regression function 

is then given by / ( x ) = (w^x) -I- 6 where w = - a!!)A:'(xj,x) and 

b = —|w[iir(xr, Xj) + K(xs,xi)] where there are two support vectors for the 

upper and lower values. 

quadratic loss function 

maxw(a!, a*) = max < 
CK;Q!* 

1=1 j=l 
> (3.42) 

+ ^ ( a ! i - 0!*)2/i - ^ ^ ( a - + a;^) 
2 = 1 1=1 

Making use of the KKT conditions and letting = a, — a*. The quadratic 

optimisation problem can be simplified as : 

, f n f 1 ^ 
^ = arg nun - ^ ^ (x,, Xj) - ^ + — ^ (3.43) 

i = l j=l i=l i=l 
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subjected to ; 

t 

= 0 (3^14) 
2 = 1 

The regression function is then given by w = (/3i)A'(x^, x) and h = 

— |w[A'(xr, Xj) +ir(x5, Xj)] where there are two support vectors for the upper 

and lower values. 

It is possible to convert the regression task to classification. This can be achieved 

by letting the target y be set as +/— 1 in Eq. 3.38. However, there is an issue 

involving computing the parameters involved. For the case of the e-insensitive loss 

function, we have to select the upper and lower values of the parameter e. On the 

other hand, using the quadratic loss function, the sparse representation inherent 

by the Dual representation for the QP (in Eq. 3.25) is unavailable now as all the 

training samples are taken to be support vectors. 

3.9 SVM Parameter Tuning 

In the previous section we have described how SVMs are constructed and the 

types of task they can perform. The next question is how to obtain SVM opti-

mal hyperparameters (e.g. capacity control and kernel parameters). A common 

method for doing this is estimating the generalisation error by cross-validation 

methods (such as the Leave-One Out (LOO) (Wahba et al. 1999, Chapelle & 

Vapnik 1999, Joachims 2000, Herbrich 2001)), this is a time and computationally ex-

pensive approach. As such, it can be extended to the A-fold cross validation which is 

more computationally desirable. Much of the work by the above authors on tuning 

SVM parameter concentrates on minimising the VC-bound (to provide good gener-

alisation error), which is to approximate the VC dimension by E{B?A^{a)) in Eq. 

3.14. (Joachims 2000) uses ^ —a, (Chapelle & Vapnik 1999) uses the approximation 

span rule on the support vectors to estimate the upper bound. The extension of the 

LOO SVM to provide better generalisation is known as the Adaptive Margin (AM) 

SVM (Herbrich 2001). This approach provides an automatic tuning to its margin 

and it will be described in more detail in chapter 4.3.3. (Wahba et o/. 1999) use 
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the Generalised Approximation Cross Validation (GACV), which is a computable 

proxy for the Generalised Comparative Kullback-Liebler distance (GCKL distance). 

The GCKL is an upper bound for the misclassification rate, given by 

= J C i r w a ^ (3.45) 

where A is the regularising parameter, t is the number of data, / is the approximated 

function, Etme is the expected true loss, T = 1 — yf and (r)+ = r if r > 0 otherwise 

0. TAftiile 

MisClassification{X) = E t r u e j ? — ( 3 . 4 6 ) 

where in this case the r = —yf and (r)+ = 1 if r > 0 otherwise 0. It is note worthy 

that the A is associated with the / and is used to obtain the minimised GACV and 

hence GCKL. 

Work by (Weston et al. 2000) views tuning the parameter as feature selection. 

Instead of minimising the bound, one can also use feature selection to provide a good 

generalisation performance. They use the p-norm for minimising the parameters of 

the model : 

min II w lip (3.47) 

subject to the constraint of Eq. 3.23. The standard SVM uses a 2-norm for min-

imising the weight parameters (i.e. | || w |p in Eq. 3.22) which provides an easy 

solution. (Weston et al. 2000) uses the 0-norm (i.e. || w ||o= card{wi\w ^ 0)}) 

which was used directly in the learning machine. Solving this is a non-polynomial 

(NP) problem. Therefore, an approximation of this NP problem is then studied. 

Note : this approach has no sparse constraint and also may exhibit local minima 

(but at least it can be solved using constrained gradient approaches). The useful-

ness of this approach depends on the problem at hand, for example whether the 

data has a lot of irrelevant features. It requires a prespecihed number of features 

and therefore can be used as a feature selection algorithm to reduce the number of 
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irrelevant features. (Duan & Poo 2001) use the ^ — span rule and cross-validation 

described with three sets of benchmark data samples and show that although k-

fold cross validation is computationally expensive it provides the best estimate for 

generalisation error. 

3.10 Summary 

Given a set of data for classification, the goal set by the classical approach is inter-

preted as setting an accurate probabilistic density estimation of the data. This is 

not appropriate for a classification system especially with small sample data set. As 

such, learning machines known as SVMs have been developed based on SLT which 

effectively describe small data sets. The SLT is the current best known theory 

developed for small data set learning (Cherkassky & Mulier 1998). This chapter 

provides a basic understanding of SLT and the difi'erent goals set for classical pat-

tern recognition and SLT have been highlighted. The main components that build a 

learning machine namely, the loss function, induction principle, set of decision func-

tions and an algorithm to build the machine have been described. In accordance 

with SLT, the complexity of classification is lower than for the regression task, and 

it should be constructed prior to the regression task. Part of the success of the 

SVM is its use of the structural risk minimisation (SRM) and kernel functions. The 

SRM handles the complexity of the model associated with data size and the kernel 

function handles the dimensionality mapping from input space to feature space. 

The relationship in SRM between the SVM and the RN has been highlighted as 

both use kernel methods for learning. Their main difference is the way in which 

they minimise the risk bound of the parameters involved. The SVM tasks can be 

extended to multi-class classification and regression estimates and have also been 

described here. Finally, tuning of the SVM parameters focuses on minimising its 

expected risk bound, hence providing generalisation to the model. 

In a pattern classification machine learning, a common problem is the imbal-

anced data. The following chapter will describe what modification is required for 

standard learning machines to be used for imbalanced data. 
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Chapter 4 

SVM For Imbalanced Data 

Learning algorithms used in machine learning are usually inappropriate for imbal-

anced data as they assume no sampling bias and that the misclassification cost for 

both classes are the same. This chapter therefore describes why imbalanced data 

is important and how to deal with it for classification problems. The conventional 

classification performance criterion using the Arithmetic Mean (Amean) is biased 

(oworck (Ae mojonf?/ cWg /or zmboZoMceof gucA, we (Ae 

rzc MeoM ^ k s a 6^ ea;(reme t/afuea. Gmean w (Ae m (/le 

Receiver operating Characteristic (ROC) which is maximised when the classification 

rate between both classes are balanced. Several SVM extension techniques are then 

reviewed which offer different ways of dealing with imbalanced data for classification. 

4.1 Curse of Imbalanced Data 

Imbalanced data in classification can be defined as occurring when the data of one 

class is heavily represented while the other is under represented. This is a very com-

mon problem seen in most practical learning problems, such as fault diagnostics, 

conditional monitoring, and can be found in many fields such as medical, nuclear 

processing plants and metallurgy. The data for a given minority/positive case in 

most diagnostic problems is less than (or under represented) the majority/negative 

case (or heavily represented). It is often difficult and expensive to obtain the mi-

nority information. As such, we have imbalanced data associated with our learning 

problems. (Provost 2000) hag provided a good review as to why learning problems 

do not perform well with such imbalanced data, since the goal set by most learning 
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approaches is to maximise the accuracy of classi6cation rate and also the claasifier 

assumes that the training and testing distributions are consistent. This assumption 

made by most machine learning is for computational convenience. The accuracy of 

a learning problem in this case is therefore always biased towards the heavily rep-

resented class. Also, the distributions between the training and testing are usually 

prespecified rather than randomly selected. 

The simplest way to handle the problem of imbalanced data is to threshold the 

output. For example, in a artificial neural network (ANN), the output of the model 

is the posterior probability of the class membership and can be thresholded. This 

is a more powerful and useful representation for classification than that provided 

by networks which only provide the discriminant between classes directly (for ex-

ample Fisher linear discriminant and classical SVM). This scaling technique can 

be extended to scale its weight update as well. Other techniques such as modified 

sampling can be used for imbalanced data. The modified sampling techniques' aim 

is to balance the training data either by upsampling (replicating the minority class) 

or downsampling (ignoring some cases in the majority class). However, with this 

approach, the original distribution of data which might be useful for interpretation 

is likely to be lost unless there is an appropriate criteria for selecting important 

or redundant data. Another well known sampling technique similar to the Monte 

Carlo approach is the Bootstrapping technique. This technique does not require 

assumptions regarding sampling distribution. 

Typically, the imbalanced data may require a different Misclassification Cost (MC). 

The MC due to wrong classification of one class might be more heavily represented 

than the other class. Usually, the minority class should invoke a higher MC because 

it is the phenomenon of interest. As such, the MC for the minority is more than 

the majority class. This will shift the accuracy towards preferentially classifying 

minority class. The most common example of why the observed (training distribu-

tion) may not represent the target distribution is the sampling bias. The sampling 

bias arises due to the training data being sampled in a way which is not completely 

random (i.e. a bias from the true distribution). If we consider the case where 
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we simply select the training data randomly from the actual population, then we 

may arrive at the situation where one (or more) classes are under-represented for 

training. For example, the prior distribution of the positive and negative clagses is 

P{y = +1) = 0.01 and P{y = —1) = 0.99 respectively. If we randomly select the 

training data with 100 data points, we will have only 99 data points representing 

the negative class with 1 data point representing the positive class. It will therefore 

be impossible to achieve good generalisation performance. Instead, we can select 

the training set in such a way that it is not truly random. For example, in the 

standard learning machine, the assumption is made that the prior is for balanced 

classes by choosing P{y = — P{y = -1)^^ = By upsampling the positive 

class and downsampling the negative class, the classes are balanced but the true 

distribution of classes is no longer guaranteed. This requires us to have a learning 

procedure to adapt to the true representation of our classification algorithm more 

appropriately. This analogue of the true distribution between the target for the 

training and testing classes might be different. As such, it is necessary to compen-

sate for this, therefore, learning from imbalanced data incorporating two different 

priors for training and testing can be formulated from Bayes theorem as follows : 

Assuming that the probabilistic likelihood of the data and prior of the train class 

and test class are the same : 

Pfr(x) = Pk(x) (4.1) 

and the posterior probabilities of input x for the test and train class are: 

Pk(x|2/)f(e(3/) 

f . b l x ) = (4.2) 
-Mr IXI 

then putting Eq. 4.1 and Eq. 4.2 together, we get : 

ffe(2/|x) = (4 3) 

63 



The optimal prediction from a testing example then becomes : 

7̂% -p / \ 
fL(2/|x) = argmin^gy ^ (4.4) 

where m is the number of class and MC{yi) is the cost deal to misclassification. It 

is important to incorporate MC as the important of misclassification cost of each 

class can be specified. This provides a natural way to view problems of imbalanced 

data in a learning problem and will be used in section 4.3.2 to developed the Non-

standard Situation (NSS) SVM. 

4.2 Performance Criteria for Imbalanced Data 

A confusion matrix is a useful tool for visualising the performance of most classifi-

cation problems. It consists of the number of points in the data set corresponding 

to four categories; False Positive (FP), False Negative (FN), True Positive (TP) 

and True Negative (TN). TP and TN are the correct prediction while FP and FT 

are the wrong prediction. Table 4.1 is a representation of the confusion matrix for 

a two class problem. Due to the curse of the imbalance of data, using standard 

Target 
_ P N 

Prediction P 
N 

TP FP 
FN TN 

Table 4.1: Confusion Matrix 

performance criteria such as the Arithmetic Mean (AMean) to assess the classifi-

cation rate of the train and test set is not applicable in this case. For example, 

a system with an AMean of 50% may be dominated by one class providing 90% 

whilst the other provides 10% classification rate with respect to the majority and 

minority classes respectively. In imbalanced data applications, the prediction from 

the minority class is usually more important as explained earlier. As such, the 

above system cannot be used and an appropriate criterion has to be used. 
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The ROC analysis was initiated from the field of signal detector theory (Egan 

1975) and has been extended for use in machine learning systems to compare the 

relationship between classifiers (Provost & Fawcett 1997). The ROC curve describes 

the trade-off between sensitivity ( ^ ^ ^ ^ ) and specificity {j'™pp) values which can 

be obtained from the confusion matrix. The range of the ROC curve is from 0 to 1 

in sensitivity and specificity and the best solution of the classification system can 

be compared to the worst, with the best on the top left corner and worst on the 

lower right corner. The ROC curve then allows us to represent simultaneously the 

classifier performance by two degrees of freedom for a range of possible classification 

thresholds using the plot of TP and FP. Figure 4.1 shows an illustration of the 

ROC curve. The advantage of the ROC is that the performance of the classifier is 

independent of the class distribution (i.e. the classification rate is not aff'ected by 

the majority class). Furthermore, the ROC captures, in a single graph, the various 

alternatives that are available to the user as they move their criteria into higher or 

lower levels. 

Another way of evaluating the imbalance of data is by forcing the accuracy between 

two classes to be balanced (Kubat et al. 1998). This is known as the geometric mean 

(Gmean) and it is less sensitive to skew distribution than the Amean. A simple 

view of the difference between AMean and GMean is that, given a set of numbers 

(e.g. the classification rate), we want to represent it with a number. The question 

now arises as to how these sets of numbers can be combined and be represented by a 

single number? The ways to combine the set of numbers for the case of the Amean 

is adding them together while for the case of Gmean the numbers are multiplied 

together. The GMean is less affected by extreme values than the Amean and it is 

a useful measure of the central tendency for some positively skewed distributions. 

The formula for the GMean is defined as : 

Gmean = (4.5) 
i=l 
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where B is a set of positive numbers (which in our case, is the classification rate) 

and m is the number of classes. Note that the Gmean is equal to AMean when all 

the S ' s are equal. 

1.0 

« 0.6 

n 0.4 

0.2 0.4 0.6 O.f 
Feise positive rate 

Figure 4.1: Example of a ROC curve showing the plot of TP vs FP. The curve 
corresponds to different thresholds used for the classifier. The best solution of the 
system can be compared to the worst with the best on the top left corner and the 
worst on the lower right corner. The ® which forces the classifier to have a balanced 
classification between both classes corresponds to a typical Gmean in the ROC 
curve. 

4.3 SVM Extension Techniques 

The building up of the SVM has been described in Chapter 3. The main advan-

tage of SVM is that it was developed based on the SLT which is best used to 

describe small sample data sets. SVM was also developed based on classification 

problems. There is a huge list of applications of SVM in a diverse range of fields 

such as; image classification, 3-D object orientation, text categorisation, hand writ-

ten digital recognition etc ; a comprehensive list can be found in Isabelle Guyon's 

web page (http://www.clopinet.com/isabelle/Projects/SVM/applist.html). How-

ever, little attention has been paid to SVM in handling problems of imbalanced data. 

Early work by (Veropoulos et al. 1999), impose a different MC associated with each 

dags. This approach is related to imbalanced data but the problem of sampling biag 

which occurs with imbalanced data has not been resolved by them. (Lin et al. 2000) 

then extended their work to incorporate both MC sampling bias costs for imbal-

anced data into SVM and this is called Non-Standard Situation (NSS) SVM, which 
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was built using the framework of the regularisation network as described in chapter 

3.7.3. Other work that relates to imbalanced data in SVM is the classification of 

the microarray gene (Brown et al. 1999). They used the margin distribution ap-

proach to deal with imbalanced data and used a regularisation parameter associated 

with the ratio of the class prior and the operational prior distribution. (Cawley & 

Talbot 2001) uses this class prior with the soft-margin approach. Both have been 

shown to produce good results in the problem that they investigated. In other tech-

niques such as Adaptive Margin (AM) SVM (Herbrich 2001) which we investigated 

for imbalanced data, the margin is adapted automatically to fit each of the training 

data set. The standard AM SVM is built upon the Leave-One Out (LOO) SVM. 

To accept more outliers, the AM SVM is incorporated with a regulariser making 

it the generalised LOO SVM. We then make modifications to the misclassification 

cost incorporating sampling bias and misclassification cost into the AM SVM for 

imbalanced data. The following sections describe these SVM extension techniques 

in more detail. 

The capacity control C (sometimes known as the variance of the noise data) in the 

SVM is used to control the tradeofiF between the complexity of the decision boundary 

and the network capacity of the number of misclassification errors (i.e. how many 

errors can be tolerated with the training data). By splitting the C according to 

the respective classes implies that the MC associated with each class is different. 

This was originally proposed by (Veropoulos et al. 1999) and can be extended to 

the use of imbalanced data as it effectively incorporates a different cost function for 

each class. Note : however, in this approach the sampling bias is not incorporated. 

The standard soft-margin approach for SVM can be extended to the use of Control 

Sensitivity (CS) SVM, where the Lagrangian in Eq. 3.36 now has different cost 

functions associated with it. This is used to accommodate the two different cost 
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functions for each class and is rewritten as : 

r ( w , 6 , a , ( ) = ^ | | w | | ^ + C + + 
i=l|2/i=+l 2=l|2/i=-l 

- ^ + 6) - 1 + &) - ^ (4.6) 
i=l 2=1 

with 0 < a;j|y.=+i < C+ , 0 < 0!i|y.=_i < C~ and r, > 0 as the Lagrange multipliers. 

We can extend the use of the 1-norm (i.e ^) cost function to the 2-norm (i.e ^^) and 

the dual formulation can now be written as ; 

^ 2 / 1 1 

i=l :J=1 i\yi=+l i\yi=—l 

This implementation can be carried out in a standard SVM by adding the and 

•^pr term onto the diagonal of the kernel function with respect to their appropri-

ate classes. This approach can be viewed as implementing an asymmetric margin 

classifier in order to describe the misclassification risk similar to that of the margin 

distribution by (Taylor 1998). 

CS SVM shows that it is possible to incorporate different cost functions associated 

with different classes. However, there are now two parameters, C~ and C+ which 

need to be pre-specified or tuned and a way of measuring the performance for each 

combination of the C's is required. It is always difficult to determine the realistic 

cost for misclassification in each class and hence, the combination of C's can be 

large which results in a large computational burden. 

^.3.2 Non-Standard Situation (NSS) SVM 

The sampling bias is a problem that is typically inherent in imbalanced data be-

cause the data selected for training needs to be pre-specified (sampled individually) 

rather than selected randomly, hence violating the random principle of sampling (all 

samples are equally sampled with equal probability). This leads to the necessity of 

differentiating the prior distribution for training from that for testing and incorpo-

rating the misclassification cost into the loss function for the imbalanced data. (Lin 
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et al. 2000) developed the SVM for non-standard situations based on the regulari-

sation framework following (Lin 1999) and established the relationship between the 

standard SVM and the Bayes theorem. Lin showed that the estimates of the SVM 

from the sampling set is related to Bayes rule as sign[P(y = 1|X = x) — 0.5] as the 

number of data gets to infinity. 

For the case of imbalanced data, the MC and the sampling cost can be incor-

porated into the Bayes theorem as described in section 4.1. For the case of a two 

class problem, the training and testing posterior probability of the input x can be 

written as : 

7r^/+(x)-|-7rtg/-(x) 

where "4-" and "-"are the respective class, tt are the prior probabilities in the output 

population, the subscript "tr" and "te" denote the training class and testing class 

respectively, and / is the probability density of the input. This leads to the Bayes 

rule for SVM to be rewritten for imbalanced data as : 

4,(^) = sign[P„(!,|x) - (4.9) 

where L's are the imbalance modification factor (i.e L{—1) — and 

L{+1) = MC^TT^TT^). The regularised problem for SVM is then modified to that 

of minimisation problem of : 

1 ^ 
+ AII/II2 (4.10) 

2=1 

where A is a regulariser (can be thought to be equal to ^ in the standard SVM), 

[.]+ is a function such that, T+=T if r > 0 otherwise 0 (similar to that of the slack 

variable ^ of the conventional SVM used in section 3.8 Eq. 3.33). The bias term in 

the SVM is given by: 

, T I \ \ ' \ / 

The solution to the above problem can be solved using the QP similar to that 
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described in chapter 3.8, except now the imbalance modification factor, L's are 

required to be incorporated corresponding to the capacity control C in the conven-

tional SVM and the regularising parameter A needs to be determined, this will be 

described in more detail in chapter 5.5. 

4-3.3 Adaptive Margin (AM) SVM 

The conventional SVM machine fixed the margin r (see Eq. 3.21), to separate 

between the classes. Rather than fixing this margin, Adaptive Margin (AM) SVM 

adapts the margin automatically. Making the margin sensitive to each point was 

first proposed by (Herbrich 2001). This is done by formulating the margin error and 

the support vectors, a* to be dependent. This idea was based on the Leave-One-Out 

(LOO) to provide a good generalisation bound (Weston 1999). The bound on the 

expected risk in Eq. 3.9 can be obtained from the error of the sparse solutions, 

which in turn is bounded by the ratio of the number of non-zero coefficients of a to 

the number of training examples £. 

In classical SVM, the best choice of training errors and margin depends on the 

capacity control, C. In AM SVM, the C is fixed since in LOO-SVM, a soft margin is 

automatically attached. This is because the algorithm does not attempt to minimise 

the number of training errors - it minimises the number of points that are classified 

incorrectly even when they are removed from the linear combination that forms the 

decision rule (Weston 1999). (Herbrich 2001) extended the work of LOO SVM by 

generalising it. This was done through adding a regulariser term to the loss margin 

in the constraint. The generalised LOO uses the learning algorithm to minimise 

the bound of the error directly through slack variables, and can be written as: 

I 
minimise (4.12) 

i = i 

> 1 - + AaiA;(x^, x^) 

subject to > 0 

Ai > 0 . (4^3) 

The significance of the regulariser, A, at each training point is : 
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® if A=0, no effort has been made to make the minimisation function smooth. 

It is based on the empirical risk. 

« if A —>• oo, no effort has been made to reduce the empirical risk. It is equivalent 

to kernel density estimation in each class. 

® if A=1 , this is the LOO SVM. 

The regulariser, A, can then be used to relax the decision boundary and hence al-

lows the application to find the outliers in the data. Now the margin for separating 

the class is automatically adapted. Previous approaches required a tradeoff be-

tween maximising the margin and misclassification of errors. We then extend this 

approach to our application for imbalanced data by splitting the ^ into two classes 

associated with their appropriate loss function (i.e. the imbalanced modification 

factor in Eq. 4.9). Hence, rewriting Eq. 4.12 to : 

minimise Z,(-l) ^ & 4- L{+1) ^ (4.14) 
1 i=l|y=l 

subject to constraint of Eq. 4.13. 

4.4 Summary 

Typical learning machine algorithms are not readily usable for imbalanced data 

unless some modification is made. The two important factors for imbalanced data 

are the specification of the accuracy of misclassification rate and the sampling bias 

which have to be considered. Also, the Gmean performance criterion is more ap-

propriate for imbalanced data as it is less sensitive to large deviation between two 

outputs. SVM was developed based on SLT and SLT effectively describes statisti-

cal estimation with small samples. SVM was also developed based on classification 

problems. Several SVM extension techniques that may be suitable for imbalanced 

data have been described in detail in this chapter. The CS SVM was driven by im-

posing a misclassification cost for each class. The training and testing distribution 

is not taken into account here. The NSS SVM then incorporates the two factors 

for imbalanced data into account. The interesting thing about AM SVM is the 

LOO error. However, the reason for investigating the AM SVM is due to the fact 
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that the margin is adapted automatically rather than fixed. Among the techniques 

reviewed, the work by done (Lin et al. 2000) called the NSS SVM seems to be more 

appropriate for our imbalanced data as it has a sound theoretical background incor-

porating misclassification cost and sampling into SVM training. The imbalanced 

modification factor (L's) derived from Lin's NSS SVM is then applied to AM SVM. 

Obtaining a good classification for imbalanced data is not the end goal of a good 

classification system. What would be also desirable is to understand the structure 

of the derived model for interpretation. 
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Chapter 5 

Model Interpretation for 

Classification 

The ultimate goal of a classification system is the classification rate. However, it 

is often important to justify how the output is derived from the inputs and which 

ore (Ae omeg. TAere ia o/iteM a compZea; 

inputs. The class posterior probability is a common way to assess classification 

problems that provides model interpretahility by specifying how confident we are of 

selecting the appropriate class. Another way to view interpretahility of the model 

is to decompose the model structure into a simpler form and yet retain the model's 

performance. This is the approach that we have considered in this thesis to provide 

model structure interpretability by enforcing sparseness of the model. The first sec-

tion describes interpretability from the classification point of view given some classi-

fication system examples and describes how this can provide interpretability. In this 

work, the interpretability of our model was attempted within the SVM framework. 

This starts off with the well known additive model structure. The feature selection 

(ecAnzguea uaecf m ore oko 6r%e^^ (feacn6e(i smce ^ro?;We3 m(eypre(a6%J% 

/or (/le modef. Prior ô deacribmg (/*e ,9[7ppor( ?;ecfor forgtmonzoKS vljVoZ?/g%g 0 / 

l{4nonce opproocA, mom compomem^g, nomeZ^ ^/le ?ige o/5^Zme 

te/TieZg (Ae (fecompog%(%o» /uMĉ zoM, ore <iegcn6e(f re/o^mp (Aege fo fAe 

mocfeZ. TAe ongmoZ worA; on wog (feneZopeti/or o regreggmn 

ôgA;. TAe /znoZ geĉ zoM %g (feZê o(e<i (o (Ae zmpZemen̂ ô zoM o/6'[/fL47VOl{4 /or cZog-
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5.1 Understanding the Interpretability of a Classification System 

In a classification problem, the task is to assign a new input to a number of possible 

labelled outputs. Learning is then the process of determining the model parameters 

that provide the output on the basis of a given set of data. The performance of the 

classification is based on the classification rate, which measures how well the learn-

ing algorithm is able to discriminate between the classes. In many practical appli-

cations, the output from the classifier which simply discriminates between classes 

is insufficient. For example, an Artificial Neural Network (ANN) (highlighted in 

chapter 2.5) is viewed as a "black box" classification tool as it is unable to provide 

a clear explanation as to its output (i.e. it is difiicult to interpret its parameters). 

It is difficult to convince the end user that this classification is correct unless it 

can provide some understanding of how this output was derived or at least indicate 

how confident we are for this output compared to other classes (i.e. class posterior 

probability). The class posterior probability expresses the quantity of uncertainty 

in prediction while it helps to facilitate the separation between "inference" and 

"decision" (Duda et al. 2000). As our investigation into the automotive material 

is a two class problem, this thesis concentrates on understanding the parsimonious 

representation of the classification model rather than the confidence of the model. 

In classical work such as linear discriminants, the output provides information about 

the projection of the input space to a one-dimensional space for classification. The 

interpretability lies in the parameters of the technique that represents the pro-

jection from high-dimensional data onto a line and performs classification in this 

one-dimensional space (Bishop 1995). The projection maximises the distance be-

tween the means of the two classes while minimising the variance within each class. 

Although the parameters provide information about the projection, the strict as-

sumption about the model (being a multi-dimensional Gaussian distributed model 

and equal covariance matrix) is not realistic for most practical applications. Other 

techniques such as tree methods adaptively split the input space into disjointed 

regions in order to construct a decision boundary. The regions are chosen based 

on a greedy optimisation procedure where in each step, the algorithm selects the 
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split that provides the separation of the class according to some cost function (a 

cost that reflects the misclassification risk). Pruning methods are usually used af-

ter growing the tree for model selection. The Classification And Regression Tree 

(CART) algorithm (Breiman et al. 1984) is commonly used for a binary tree split. 

The binary tree structure produced by CART is easily interpretable for a moderate 

number of nodes. Each node represents a rule involving one of the input variables 

hence providing interpretability on how the output of the CART is derived. The 

main problems with this approach are that it is sensitive to coordinate rotation, the 

solution may be a local minima (due to the greedy search) and also that the region 

over which local averaging occurs is highly restrictive (i.e partitioning is by a recur-

sive splitting of hyperrectangular subdomains by a plane perpendicular to a selected 

input). Other partition methods exist such as the nearest neighbourhood method, 

which uses the Voronoi partition (that is the distribution is the set of points in the 

plane which are as close or closer to the centre of that disc than to the centre of 

any other disc in the distribution). As such, the nearest neighbourhood structure 

is a piecewise regression model like CART but with less restriction. The decision 

about the boundary is constructed using the m data point nearest to the point of 

estimate or voting scheme. The problem with this approach is its computational 

burden for a large data set. Every set of training data has to be recalculated in or-

der to make a prediction. Techniques such as Learning Vector Quantisation (LVQ) 

(Kohonen 1990) have been used to combat the computational issue by represent-

ing a large data set by a smaller number of prototype vectors. Another technique 

similar to tree methods is the graphical model. A graphical model has the notation 

for modularity - that is a complex system can be built by combining simpler parts 

(Murphy 2001). The graphical model uses the theory of the graph and probabil-

ity. Probability theory links the simpler parts together to provide a whole system 

which is consistent and also interfaces models to data. The Graphical model theory 

provides transparent interfaces of models with highly interacting sets of variable as 

well as their data structure which leads to an easier understanding of the original 

high dimensional model. A common type of graphical model in machine learning is 
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the direct graphical model sometimes known as a Bayesian network (Pearl 1998). 

In probabilistic reasoning, random variables represent an event or an object. The 

aim is to compute their joint probabilities given the random variable of the current 

state of the world, however making each and every combination is combinatorially 

expensive. As such, the Bayesian network recognises that certain random variable 

pairs may be uncorrelated once information concerning some other random vari-

ables is known. This allows us to reduce the chain rule size by eliminating the 

conditional independence for probabilistic terms while explicitly keeping the joint 

probability. 

However, most techniques described so far are based on setting the initial goal that 

requires good density estimation. This has been described in the earlier chapter 

3.5.2 as a misconception between conceptual needs and technical interpretation. 

There are many other classification techniques yet to be discussed here, for exam-

ple Bayesian Neural networks which use the evidence framework to select important 

features. This is done via adding a hyperparameter into each input feature which 

provides information about the importance of each input feature in the model. 

Neuro-fuzzy networks use linguistic explanations for modelling. All this work may 

provide us with an understanding of the output of the classification which is an 

important issue for the classification problem. 

5.2 Interpretability in SVM via Model Structure 

A complex model is typically difficult to interpret. This inability to interpret the 

model can lead a complex model to be described as a "black box" system. It is 

therefore important to be able to provide a simpler or parsimonious model to yield 

interpretability of the model structure. This principle was stated by Occam, that 

design should take into account the simplicity of the model in addition to good pre-

dictive performance. The bound on the expected risk from the SVM can be used 

as a guide to feature selection in SVM, hence providing an interpretable model. 

Work done by (Weston et al. 2000) uses the 0-norm on the weights to provide di-

rect feature selection for SVM. This approach of feature selection is to reduce the 

number of features used and also preserve or improve the discriminative ability of 
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the classifier at the same time. It is important because it affects the running time 

requirements and interpretation issues imposed by the problems. In this thesis, the 

model structure approach has been focussed upon to provide interpretability to the 

model by decomposing the model into simpler terms, hence providing interpretabil-

ity for a high dimensional input problem. 

The additive model is an attractive framework that has been used to establish the 

generalisation of linear models (Hastie & Tibshirani 1990). This additive model was 

used to avoid the dimensionality problem. (Rasmussen 1996) has shown that the 

additive model has many successes when used in the learning machine community. 

His work concentrates on the predefined nature of additive models and determines 

whether it can capture the properties of the physical data. Additive models are 

useful because they are a superposition of one-dimensional functions. As such the 

effect of different variables can be examined separately. With such properties, this 

model is attractive as it provides easy interpretation of the model. A simple additive 

model is: 

N 

(5 1) 
i=l 

where N is the number of input dimension, x is the input vector and / j are the uni-

variate functions. A sparse representation of the model structure can be enforced 

on the additive model. This has been used in the signal processing community to 

decompose any signal into a linear expansion of waveforms (waveforms are discrete 

time signals with specified length) (Mallat & Zhang 1993). A large number of basis 

functions that were linear superpositions were built and weighted coefficients were 

associated with each basis function. Picking out the important basis function or 

sparse representation from this large number of basis functions (known as the Dic-

honan/) requires an enforcement of the weight associated with each basis function. 

This is related to a learning problem by minimising the following expected cost 

function : 

J 

E [ a ] = / : ( / ( x ) , ^ G j < ^ j ( x ) ) + A II a ||o ( 5 . 2 ) 

i=l 
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Where £ is the loss function between the approximation and the sparse represen-

tation, 0-norm counts the number of non-zero values of a, A is a parameter that 

measures the tradeoff between sparsity and approximation (or is chosen as propor-

tional to the noise) and J is the number of basis functions, ^j(x). Therefore, a large 

value of A implies a more sparse representation or more coefficient a's become zero. 

The loss function needs to be inferred from the given data set and is known as the 

empirical risk minimisation (as described in chapter 3.5.1). Typically, it uses an em-

pirical approach with a convex loss function (i.e. min j Oj^j(x))^). 

Note : this minimisation assumes that the true function or the target y is corrupted 

by additive noise. The problem with this additive model is that the 0-norm of the 

coefficient is a non-polynomial hard problem to solve because it requires a search 

through all the combinations (Chen et al. 1999). Therefore, an alternative is to use 

a greedy method to estimate the cost function or different norms to enforce a sparse 

representation. The early work uses the greedy method known as "matching pur-

suit" . It starts with an initial approximation scheme with a square error loss, and 

the basis functions are added iteratively to the model. It is note worthy that this 

is similar to that of a Radial Basis Network for given Gaussian basis function and 

the same number of basis functions. The use of 2-norm for minimizing coefficients 

was implemented in the Method of Frames (MOF) (Daubechies 1992) in wavelets. 

This approach has computational advantages, however, sparsity is not preserved. 

(Chen et al. 1999), used the 1-norm (which is the summation of the absolute value 

of the coefficients) instead of an approximation to the 0-norm or 2-norm, and this 

is known as Basis Pursuit De-Noising (BPDN). The computation cost for BPDN 

is still expensive, even with linear programming as obtaining its goal minimum 

requires a computation of all terms in the dictionary term. 

In SVM, the kernel is a tool used to map the input dimensional to a high non-

linear feature space. Attempts to decompose the associated kernels used in SVM 

is to provide a sparse kernel and hence, an interpretable model. Here, we have 

described how a sparse kernel can be obtained by enforcing different 1-norms to the 

kernel coefficient. Several kernels are described in Chapter 3.7.2. Not all kernels 
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fit nicely into this additive model framework. Next, we describe how the SVM can 

obtain its model interpretability using the unique properties of the spline kernel 

and the Reproducing Kernel Hilbert Space (RKHS) enabling their tensor products 

to be produced. 

5.3 Spline Kernels and ANOVA Decomposition Functions 

Splines are good for modeling due to their ability to approximate arbitrary func-

tions, shown by (Wahba 1990). It provides a natural and flexible approach to density 

estimation which has been shown to couple well with data that are sparse. Splines 

are not parametric in a function form, but they can be written as a linear combina-

tion of basis functions that usually have a polynomial representation. B-splines are 

computationally advantageous and favorable when a rule base is described (Brown 

& Harris 1994) and are widely used in neuro-fuzzy networks. However, (Gunn 1999) 

has observed experimentally that they have the tendency to oscillate. While infinite 

splines have no oscillation problem, there are no scales involved. Hence, no param-

eter has to be determined, making it very attractive. This motivates the use of 

spline kernels within the ANOVA framework, as the ANOVA decomposition would 

produce a magnitude of such parameters which need to be determined. The simple 

first order spline kernel with infinite nodes, which passes through its origin, is a 

piecewise cubic with knots located at a subset of the data given as in Eq. 3.19. 

Kernels can be constructed from their tensor products of other kernels. As such, 

extended kernel functions can be constructed from the additive sum in terms of a 

Mercer theorem (described in more detail in the next section). This enables the 

learning problem with an additive spline model to become : 

N 

£ j=l 

N 

j=i f 
N 

= 

j=i 
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Where ^ is the number of samples, N is the number of input dimensions, w is the 

weight associated with each univariate spline kernel. This then forms a learning 

problem which is an additive model where / (x) is estimated through adding each 

/ (x) associated with a univariate term. A special case of the additive model focuses 

on building up the model with a univariate (i.e / ( x i , . . . , x a t ) = / o + fiixl) + .... + 

fNi^N) satisfying /iv(0) = 0 for all variables of N). The interactive model was not 

considered in this special case of the additive model (Chen et al. 1999) as such, 

it suffers from approximation errors. Let us consider a 2 dimensional integral to 

illustrate their interactive terms : 

/o = / (0 ,0) 

/i(a;i) = y/(:ci,a;2)c(a;2-/o 

/2(a;2) = 

/i2(a;i,a;2) = /(:ri ,a;2)-y/(a;i ,a;2)((2;2-y/(a;i ,a;2)c(a;i + /o 

/(a;i,2;2) = /o + /i(a;i) + /2(:r2) + /i2(a;i,a;2) (5.4) 

This decomposition can be viewed as a functional version of the statistical method-

ology Analysis Of Variance (ANOVA). The curse of dimensionality will exist in this 

instance when the order of interaction increases. In most instances, we are inter-

ested only in the low interaction terms since they can be more easily interpreted. 

Hence, a term that enforces a sparse representation of the model (e.g. BPDN) can 

be incorporated to provide a interpretable model. Putting the flexibility of the 

spline and the decomposition of the ANOVA function into additive components to-

gether with an enforcing term for sparse representation leads to the SUpport vector 

Parsimonious ANOVA (SUPANOVA) (Gunn 1999). 

5.4 SUpport vector Parsimonious ANOVA (SUPANOVA) 

The ANOVA kernel has been used by (Stitson & Weston 1996) and has shown good 

performance. ANOVA kernels have been used in this thesis, electing the sparse 

ANOVA kernel will produce a parsimonious model, which has a sparse structural 

representation, and yet is Sexible enough to retain the model representation (i.e. 
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preserve generalisation as well). Understanding the model structure provides a good 

understanding of the selection of inputs. This is an important issue in any learning 

problem and it has often been neglected in classification problems or is considered 

in terms of class posterior probability (e.g. in ANN applications). The sparse model 

provides easy interpretation with a smaller number of interactive terms (through 

decomposition of the model). The ANOVA kernel can be incorporated into the 

SVM framework with an enforcing term to choose a parsimonious model and can 

written as : 

I 
/ ( x ) = ^ CKi ^ Qjjiy (x*, x); subjected to > 0 (5.5) 

2=1 i 

where the kernel, K j is associated with a weighted term, aj, and j is the number 

of basis functions. The enforcing term for transparency can then be introduced by 

careful selection of each weighting term for each kernel (sparse selection). As has 

been noted in section 5.2, there are several enforcing terms (i.e norms) that can 

be employed. It has been argued that the BPDN is more appropriate in this case, 

leading to modification of the constraint of a j in the above equation to a 1-norm 

(similar to Eq. 5.2 except that it uses 1-norm). The spline ANOVA kernel uses 

the infinite spline as it is flexible and has no scale term to be determined. Further-

more, the additive representation of the ANOVA model structure is advantageous 

as the higher order interactive terms can be ignored, hence leaving small subsets 

of ANOVA which can be easily visualised. This provides a parsimonious model 

as opposed to neural networks where the structure of the network is in itself very 

difficult to interpret. The ANOVA kernels that can be used in SVM must satisfy 

the Mercer condition, and is stated as : 

• if K1 and K2 are positive definite then K1 4- K2 and K1 x K2 are positive 

definite. 
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Then a multivariate AN OVA. kernel can then be written using the tensor product 

of a univariate plus a bias term, 

N 

1=1 

1 = 1 i<j i=l 

Note that each of the additive terms has its own property, since ki and k2 can be 

expressed individually and it is also similar to that expressed in Eq. 5.4 for the case 

of a 2-dimensional problem. In built up AN OVA kernels, a univariate is required to 

satisfy /^(O) = 0 for all variables. This means that the univariate terms will pass 

through zero and the bivariate and other higher terms will also be constrained to 

be zero along their axes. As a result, this parsimonious model will favour smaller 

order terms rather than higher AN OVA terms. 

The approach to obtain the model structure is different from the CART algorithm. 

CART uses a greedy search to provide flexible basis functions using a partitioning 

approach. However, they may be entrapped locally. Here, we are using the full 

model and we look into the subsets rather than at the subsets to build the full 

model. However, the potential problem with any additive model is when the model 

itself contains high dimensional interactions, whereby the transparency would not 

be apparent. However the interactive terms can be restricted by a regulariser, A 

(Eq. 5.2), although this may provide an interpretable model at the expense of 

structural integrity. 

5.5 support vector Parsimonious ANOVA (SUPANOVA) for 

Imbalanced Classification 

In dealing with imbalanced data, incorporating a modified class dependent mis-

classification cost function and sampling bias is required for the SVMs described 

in Chapter 4. The misclassification cost for each class can be implemented in the 

capacity control, C (i.e. and for the respective class) as in Control Sensi-

tivity SVM (Veropoulos et al. 1999). This can be extended to imbalanced data by 

imposing a heavy penalty on a skewed class. As such, the sampling bias needs to 
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be incorporated as given in the case of (Lin o/. 2000) for non standard situation 

(NSS) SVM. The difference lies in the fact that (Lin et al. 2000) use the regulari-

sation network and we are using the classical SVM approach. The diEerences are 

highlighted here : 

• Standard SVM 

+ (57) 
i=l 

• Regularisation Network SVM 

1 
^ ^ ( 2 / i ) & + -̂  II / III: (5.8) 
1=1 

Comparing the above two equations : 

c = ^ (5.9) 

where L{+1) — MC"7r^7r^ and Z,(—1) = are the imbalanced modified 

factor given in Eq. 4.9 where MC are the misclassification costs. It should be noted 

that the ratio of the L is affected by the A. The exact value of L(l) and L{—1) 

is not important as opposed to its ratio as the optimum decision is based on the 

sign of the posterior of the training minus the L's ratio (see Eq. 4.9). This is a 

reflection of the threshold imposed for the decision boundary. The geometric means 

(Gmean) were then used to obtain the true classification rate of the positive and 

negative class of the classifier. This was found to be the best approach to deal with 

imbalanced data although our previous work was based on using the misclassifica-

tion cost alone and finding the two different misclassification costs through trial and 

error (Lee et al 20016, Lee et al. 2001 d, Lee et al. 2001a). This approach provides 

a more natural way to allow for the imbalanced data in SVM. 

The above described approaches deal with the problem of imbalanced data. This 

work is extended to provide an interpretable model using the SUPANOVA. A fast 

way of converting the SUPANOVA from regression applications to classification 
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problems was described in (Lee et al. 2001 e). This was done by altering the model 

selection from being based upon Mean Square Error to classification rate. This the-

sis however, reformulates the regression task to a classification task by changing the 

quadratic (regression) to a hinge loss function for regularisation. The SUPANOVA 

technique allows for an additive decomposition of low dimensional kernel models to 

be recovered, enhancing model visualization. This is a difficult task and is decom-

posed into 4 stages similar to those of the regression, except that the loss function 

and the model selection are changed. It is noteworthy that, prior to proceeding, the 

form of the univariate kernel must be chosen. There are many kernels that can be 

employed, such as Radial basis functions, polynomials, splines. However, there are 

additional parameters within many of these kernels that must be determined, there-

fore, whilst they provide increased flexibility for the model, a significant additional 

cost is introduced. A spline kernel has been used here as it does not require any 

additional parameters to be determined and it does have the ability to approximate 

any function with arbitrary accuracy (Wahba 1990). 

The stages involved in SUPANOVA for classification of imbalanced data are : 

1. Model Selection 

a good generalisation estimate from the SVM based on GMean provides the 

value of the two different imbalanced modified factor L's for each class as 

described in Eq. 5.9. 

2. AN OVA basis selection; 

using the values of L's in model selection, Lagrange multipliers, 0 < a < L{yi) 

are obtained. The decision function (below) is decomposed into all its possible 

sub-components assuming all the a's to be 1. 

t m 

/ W = I Z ^ x) (5.10) 
i=l j 

where > 0 are the Lagrange multipliers, T/i are the targets, are the 

weighted model coefficients £, n is the number of training patterns and m is 

the number of additive kernels used in the model. 
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3. Sparse AN OVA. selection; 

this reduces the number of model coefficients, a j > 0 from stage 2 by a 1-norm 

imposed on the additive model coefficients. The solution to a quadratic loss 

function is then given as : 

min II ?/ — Hg +A || o ||i, 
a 

= m i n a ^ $ ^ $ a + (A1 — subject to Oj > 0 (5.11) 
a 

equation and for the case of the hinge loss function by : 

min II 7/ - ||i,/i +A || a ||i (5.12) 

mm 
O 

A1 

iv(+l) 

I { - 1 ) 

T 
-I 0 " _ i • 

a -I 0 a - 1 

e subject to -I 0 0 e < 0 

r . 0 -I 0 . r . 0 

0 0 -I 0 

where % is the target, $ is the ANOVA basis matrix obtained, A is the struc-

tural regulariser and —>• denotes a vector of size 2^ and ^ and is the slack 

variable that measures the distance of a point from the optimal hyperplane 

corresponding to its respective class (i.e. max{l — yi^a, 0)). Hence providing 

interpretability through the additive kernel function. 

4. Parameter selection 

using only those coefficients selected in stage 3, reconstruct a new model using. 

/ (x ) : S i g i i ( ^ ^ O j j < : j ( x j . x ) ) (5.13) 
2 = 1 

5.6 Summary 

Class posterior probability and model structure are two different ways to provide 

interpretability to a classification model. Several model structures used in classifi-

cation such as CART and graphical models have been described. However, such an 

approach requires a good estimate of the model's posterior density leading to the 
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curse of dimensionality. A way to deal with this problem is to use the SLT. This is 

the basis of the ANOVA kernel used in SVM which decomposes the structure model. 

The conventional Support Vector kernel uses the full kernel and has a complex in-

terpretation. The sparseness in the kernel is enforced in the kernel coefficients and 

can be obtained using the p-norm on the coefficients, hence enforcing sparseness 

of the model structure which is the kernel in the feature space. Furthermore, the 

contraction of the ANOVA kernel has a constraint where all the univariates must 

pass through its origin which also means that all other higher order terms are con-

strained to be zero along their axes. As such, this favours selection of the lower 

order terms. Not all kernels fit nicely into these frameworks. The spline kernel 

is flexible in approximating arbitrary functions and has no scale parameter and is 

a good choice. The SUPANOVA was then developed for decomposing the model 

structure of the kernel in SVM for regression. In this thesis, we extend its use for 

classification of imbalanced data using 4 stages similar to that of regression except 

that the loss function is altered to a hinge loss function and the appropriate mis-

classification cost with the training and testing target distribution is incorporated. 

The performance selection is also altered based on the geometric mean which is 

less sensitive to big differences between the classification rate between each class. 

This approach provides an enforced sparseness of the kernels in the feature space 

to provide model structure interpretability. As such, the important input features 

distinguishing between classes can be recovered. 
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Chapter 6 

Data Analysis 

The importance of understanding why fatigue crack initiation occurs in component 

materials used in the automotive industry has been highlighted in Chapter 2. In this 

thesis, we investigate fatigue crack initiation in automotive camshafts and plain 

journal hearing linings. The problem that we first encounter is that of a small set of 

data which is imbalanced. Difficulties involved in dealing with imbalanced data and 

Aotu (o (feoZ (/leae ore m ,? oncf in orcfer 

using SUPANOVA. This chapter is divided into two main sections dedicated to the 

analysis of each set of data. With the camshaft data, we attempt to use several SVM 

extension techniques to deal with imbalanced data. Then, by using this model (i.e. 

mocfeZj, we (o modeZ TAe aekc(e(f 

are then compared with the metallurgists' understanding of the mechanics of the 

lining fatigue data. 

6.1 Automotive Camshaft Material - Austempered Ductile Iron 

(ADI) 

6.1.1 Model Specification 

The ADI materials data set for the automotive camshaft application contains a total 

of 2923 examples of which 116 samples are crack initiation sites ("Crack" class) while 

2807 samples did not act as crack initiation sites ("No Crack" class). These data 

were obtained from a FBT of ADI which has been described in chapter 2.2. A set of 
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nine measurements relating to the spatial distributions and measures of the object 

(graphite nodules) were obtained from the tessellation. This set of nine features 

describes the prior domain knowledge of the microstructural distribution, e.g. the 

morphology of the secondary particles. The features measured for each graphite 

nodule which are used for learning are generated from the following measurements; 

1. Object area, (O.A) 
2. Object aspect ratio, (O.A^) 
3. Object angle, (O.Ang) 
4. Cell area surrounding the object, (C.A) 
5. Cell aspect ratio, (C.A^) 
6. Cell angle, (C.Ang) 
7. Local area fraction, (L.A.F) 
8. number of near neighbours, (N.N.N) 
9. nearest neighbour distance, (dMm) 

10. mean near neighbour distance, (dMean) 
11. nearest neighbour angle, (N.N.Ang) 

See also Fig. 2.3 from chapter 2. 

Prior to using the different approaches to classify the graphite nodules, the input 

features are normalised. This will ensure that the input feature is restricted to a unit 

domain and so provides no bias for each feature. Here we normalise the data to be 

between 0 and 1. Upon normalising, the data is ready to be partitioned into training 

and testing sets. The emphasis here is to use at least 75% of the "crack" class for 

training as it is the minority class and understanding why cracks are initiated is our 

main interest. Due to the extensive analysis time required to compute for a large 

set of data, 700 samples from the "no crack" class were randomly selected for the 

classification exercise. As such a set of imbalanced data with "crack" samples = 90, 

and "no crack" samples = 700 were used as our training sets. The rest of the data 

from both classes are then used for testing. The selection of the training set in each 

case is then repeated five times with random selection of the data each time. This 

was designed to assess the eSect of data selection on the models produced. The 

average Geometric mean (Gmean) was then used to assess the overall performance 

of each technique and the Gmean variance is used to measure the confidence in the 

model selected as it refiects the dependency of the model on the data set selected 

for training and testing. 



Work done previously by (Hockley et al. 1999) uses simple averaging techniques 

(i.e. comparison of means and standard deviations - see table 2.1) and visualisation 

of the histogram plots to assess the difference between crack initiating graphite 

nodules and those that do not act as crack initiators. We have first extended the 

use of the simple linear discriminant technique described in chapter 2.6 to the data. 

Although this is a linear model, it provides feature selection by maximising the 

class separation. Furthermore, a linear classifier is less sensitive to noisy data and 

no complicated optimisation is required as discussed in chapter 3.5.2. Table 6.1 

shows the results obtained from the Fisher Linear Discriminant (FLD) features 

using all nine features and just three features (the O A, rci, the C.A, Z4 and the 

L.A.F Z5). These three features were selected as important by prior analysis based 

on simple averaging techniques by Hockley et al. The results show that the FLD 

model is biased in both cases towards the "no crack" class (i.e. the classification rate 

is dominated by the "no crack" class). Although, we have identified the successful 

prediction of the "crack" class as being important, we also need to consider the 

tradeoff for the "No Crack" class. For example, the model is useless if it can classify 

99% of the "Crack" class correctly but only 1% classification for the "no crack" 

class. Our target was set through discussion with the metallurgists as achieving 

a successful classification rate of at least 70% for both classes. The geometric 

mean provides a more suitable measurement of successful prediction for which the 

performance in predicting both classes is high only when they are reasonably equally 

well predicted. 

Table 6.1 also demonstrates that using the Arithmetic mean (Amean) technique 

for measuring classification performance for imbalanced data is inappropriate. The 

Amean technique does not reflect the difference between the classification rate of the 

"crack" class (TP) and the "no crack" class (TN)(e.g. the Amean for using all the 

9 features and using the 3 features are fairly similar but the difference between both 

classes' classification rate using all 9 features is 0.51 (i.e. 0.88-0.37) while for the 

3 features is 0.77 (i.e. 0.99-0.22)). Therefore the use of Gmean clearly shows that 



the results from using all 9 features gives a better representation of the skewness in 

prediction between the two classes. Lastly, the results show that using more features 

could enable us to obtain a better classification performance based on either Amean 

or Gmean. This shows that the 9 features contain more information than just using 

the three features identified by simple inspection, although the Gmean variance is 

higher than when using the 3 features. 

No. of Feature TP TN Amean Gmean Gmean (variance) 
F9, An 0.37 0.88 &62 0.57 0.0412 

F3, a;i,a;4,a;5 0.22 0.99 &61 0.49 0.0312 

Table 6.1: Result from Fisher Linear Discriminant (FLD). TP and TN denote the 
true classification rate for the "crack" and "No Crack" class respectively. This model 
is biased towards the TN class, the Gmean is less sensitive to a skew distribution 
of the classification rate and it can be seen that using all nine features obtained a 
less skewed result and a better overall classification rate. 

Linear Discriminant analysis provides an initial statistically based analysis prior 

to generalising with more complex nonlinear modelling approaches. The linear 

approach may miss key features of the data which can only be represented using 

nonlinear approaches. Furthermore, the FLD provides a description of the data 

rather than predicting unseen data that might also be useful. Last but not least, it 

requires density estimation of the input which may not be appropriate for a given 

limited number of data, as described in chapters 2.6 and 3.1. As such, a non-

linear approach known as SVM has been investigated. SVM have gained success in 

recent years for many classification and regression problems (Burges 1998, Smola 

1998). SVM was developed from the "Statistical Learning Theory" (SLT) which was 

thought to effectively describe statistical estimation with small samples (Cherkassky 

& Mulier 1998). Another important feature of SVM is its substitution of the kernels. 

This eliminates the problem of the input dimensionality that FLD has. Next, we will 

describe the results obtained using the SVM and its extension techniques described 

in chapter 4.3. 
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6.2 SVM Results 

Our initial approach was to use the standard SVM, Adaptive Margin (AM) SVM 

and SVM for regression to deal with the imbalanced data set. The results are 

summarised in Table 6.2. Two kernels, namely the spline and Radial Basis Function 

(RBF) were used. Spline kernels were used because of their flexibility and there 

is no free parameter to be determined. Furthermore, it can be easily incorporated 

with a parameter to enforce sparseness in the model interpretability (as discussed 

in chapter 5.3). On the other hand, RBF kernels require the width (a) to be tuned. 

The capacity Control, C, was sampled logarithmically on [0.01, 10000] for both 

classes (i.e. the "crack" and "no crack" class). The results from the standard SVM 

show that with C of both classes allowed to be rather high (i.e. C"*" and C~ are 

1000) the spline kernel obtains a Gmean classification rate of 0.58 with a variance 

of 0.0312. On the other hand, the RBF with (7=0.5 obtains a similar Gmean of 0.59 

with a variance of 0.0354. We have used a = 0.1,0.5,1.0 and see that a =0.5 gives 

the best results. Again, the C is rather high here, indicating that a large amount 

of smoothness is required. 

Classification Performance TP TN GMean 
Approaches Kernels (Variance) 

FLD - 0.37 0.88 0.57 
0.0412 

SVM Spline 0.36 0.94 0.58 
r7+ = innn n- = innn n.n312 

RBF ((7=0.5) 0.39 0.90 0.59 
r7+ = innn r7- = lono 0.0354 

AMSVM Spline 0.32 0.91 0.54 
A = n A = n nn94i 

RBF (0.5) 0.32 0.92 0.53 
A = n A = n 0.0416 

Regression SVM Spline 0.38 0.91 0.59 
r7+ = innnn r7- = innnn 0.0158 

Table 6.2: Summary of the best test results obtained by averaging the set of five random 
data set selection samples with Fisher Linear Discriminant (FLD) techniques and standard 
SVM with various extension techniques for the imbalanced data set. TP and TN are the 
true classification rate for "crack" and "no crack" classes respectively. 

Rather than keeping the margin fixed in the classical SVM, we make the margin 

automatically adapt to its data. The margin can be relaxed by having a regularising 

parameter A and this was varied from 0 to 10. This was the approach taken by 
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Adaptive Margin (AM) SVM, also known as Generalised LOO SVM described in 

chapter 4.3.3. The results indicate that no smoothness (i.e. A=0) is necessary in 

order to obtain a good solution. This approach did not provide enough flexibility for 

imbalanced data as it only gave a Gmean of 0.54. The advantage of this approach 

is that the optimal parameter (A) can be obtained from the training set alone (i.e 

it is the generalised LOO method). Next, in the regression SVM case, we allow 

the target y to be a step function and alter the model selection for a regression 

task (i.e. mean squared error) to the misclassification cost. This provides a quick 

way of converting the regression problem in SVM into a classification problem. 

A quadratic loss function (see chapter 3.8.2) is used in this case as there are no 

parameters to be tuned. However, a sparse representation is no longer available. A 

fairly similar result was obtained with that of the standard SVM but the variance is 

lower with a higher regulariser required (i.e. C's = 10000). This may be due to the 

loss function and because the model selection reflects a different cost. No attempts 

were made to use the RBF as the above results show similar performance, and also 

it is an extra parameter requiring tuning making it computationally less efficient. 

In summary, our initial attempts show that all the approaches (FLD and SVM) 

have a bias towards the "no crack" class with a classification success rate of at least 

0.88, whereas the "crack" class has a far lower classification success rate of 0.32-

0.39. Also, a high capacity (i.e. large smoothness) is required for the case when the 

margins are fixed (i.e. standard SVM and SVM for regression). However, when the 

margin is automatically adapted, it shows that no smoothness is required to obtain a 

good solution. This may show the flexibility of the adaptive margin approach. The 

variance of the FLD on Gmean is higher than that of the SVM approaches, although 

the average Gmean values are comparable. This leaves doubts as to the stability 

of the classification based on classical FLD as it appears to be more susceptible to 

data set selection than the SVM approaches. The testing results for modified SVM 

approaches dealing with imbalanced data are summarised in Table 6.3. Our first 

attempt to deal with imbalanced data is to make it almost balanced. As such, we 

further downsampled the majority class (i.e. "no crack") from 700 to 120: Note: we 
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(a) Balanced data set (b) Imbalanced data set 

Figure 6.1: The plots of the GMean result of the CSSVM result used for balanced 
and imbalanced data. CI and C2 denote the "crack" and "no crack" class capacity 
control and x l and x2 denotes the order of the C's value. The plots show that for 
the case of imbalanced data, the capacity control has to be penalised differently 
in order to obtain good results. This is demonstrated by the higher value of the 
Gmean for the balanced case lying on the diagonal axis while for the imbalanced 
case it is off the diagonal axis. 

simply took the first 120 from the 700 previously randomly selected data. The set 

of C's used are the same as in the previous set. Results have shown improvement, 

increasing the Gmean result by at least 0.09. Also, the variance is greatly improved. 

However, the results obtained between the 2 kernels are very different (in terms of 

both classification rate and capacity control) compared to using the imbalanced 

data set. Identifying the kernel to be used is therefore an important issue in this 

approach. Although the results of the reduced set of data provide good results, the 

classification rate for the T P (crack) is less than 0.70 which is less than we have 

identified as a good classification rate (through discussion with the fatigue experts 

who provided the original data). Furthermore, the importance of the kernel used is 

highlighted therefore making it another tuning parameter to be considered. Next, 

we attempt to use the CS SVM (described in chapter 4.3.1) on imbalanced data 

in order to impose different misclassification costs. The capacity control is now 

two dimensional rather than one dimensional (i.e we have capacity control sampled 

logarithmically on [0.01,10000]^, producing 49 models for selection). The Gmean 

was observed to have out-performed the SVM using balanced data and the variance 

is also smaller (i.e we are more confident in our model which is less susceptible to 

data set selection) with both classification rates well above 0.70. We observe that 

93 



the ratio between the misclassification cost is 10 times (i.e. = o\ = 10. This 

could coincide with the ratio of the data sets used (i.e. " W ^ 

Figures 6.1 a and b, show 2D plots of the Gmean results for the balanced and 

imbalanced data set. It can be seen that for the case of the balanced data set, the 

highest value of Gmean lies along the diagonal axis (i.e. C+ = C') while for the 

case of the imbalanced data this shifts towards the crack class. 

The use of the spline kernel and the RBF (cr=0.5) kernels for the case of imbal-

anced data seem to provide similar solutions. As such, we will concentrate on using 

the spline alone. It will become clearer that the use of this kernel provides a further 

advantage when dealing with model interpretability as described in chapter 5.3, 

which has formed the basis for SUPANOVA. The analogue of using two different 

C's is derived by imposing a different misclassification cost. A misclassification cost 

ratio of 8 seems to be unrealistic compared with values quoted in the literature of 

2-5 at most. The Non-Standard Situation (NSS) SVM approach provides a natural 

way of dealing with imbalanced data. It incorporates the imbalanced data into 2 

important components : the misclassification cost (MC) and sampling bias (tt) as 

described in chapter 4.1 and 4.3.2. The associated values for this approach used in 

this case can be shown as : 

~ ^ < = ^0 (G.l) 

~ = i i < = ^ 

Z,(-H) = 

= 0.0108MC- (6.3) 

= 0.1125MC+ (6.4) 

substituting the imbalanced modified factor Z,'s for the case of standard SVM (see 

Eq. 5.9) and assuming the smoothness parameter to be (A = 10"®), the C of the 
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SVM is modified to : 

C+ i ( - i ) 

2nA 
0.1125MC+ 
2(790)(10-5) 

7.12MC+ (6.5) 

c-
^(+1) 

2nA 
0.0108MC-

2(790)(10-5) 

= 0.69MC- (6.6) 

Notice that the magnitude of the ratio between the capacity control is controlled 

by A, a smoothness parameter. 

The MC for the crack class was varied between [1 and 2] and the A is varied 

between [10"^, 10"®, 10"®]. Our results show that with no heavy MC imposed on 

the "crack" class (i.e. using only the factor of sampling bias), a Gmean of 0.74 

with variance of 0.0106 and the classification rate of both classes are at least 0.74. 

When the misclassification cost of the "crack" class was directly imposed twice, 

the classification rate of the crack class increased but the Gmean is reduced. As 

for the case of the varying A (which is the regulariser parameter in the RN, see eq. 

4.10), we find that there is no significant effect on their results. However, the results 

shown here are based on A = 10"®. The idea of imposing MC and sampling bias was 

extended to the AM SVM and regression SVM. The results from the extended AM 

SVM indicate that the LOO SVM (i.e. A=l) provides a good solution. However, 

a slight increase in allowing generalisation for the crack class (i.e. A=4) improved 

the Gmean and its variance. The extended regression also performed much better 

than the original regression SVM with a Gmean of 0.72. 

In conclusion, the above results show that most of our extended approaches do 

provide a reasonably good Gmean performance. Therefore, for imbalanced data, it 
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Classification Performance 
TP TN GMean 

(Variance) 
Approaches Kernels TP TN GMean 

(Variance) 
SVM 

balanced data 

Spline 0.68 
- 1000 

0.76 
C~ = 1000 

0.72 
0.0107 

SVM 

balanced data RBF (a=0.5) 0.56 
C~^ = 1 

0.83 
c - = 1 

0.68 
0.0187 

CSSVM 

With Ll-norm 
Error 

Spline 0.71 
= 1 

0.78 
C - = 0.1 

0.74 
0.0078 

CSSVM 

With Ll-norm 
Error 

RBF (<7=0.5) 0.76 
= 1 

0.79 
C~ = 0.1 

0.75 
0.0040 

NSS SVM Spline 
(A = 10-^MC=1) 

0.74 
C+ = 7.12xMC 

0.75 
G" = 0.68 

0.74 
0.0106 

NSS SVM 

Spline 
(A = 10~®,MC=2) 

0.85 
C+ = 7.12xMC 

0.60 
C - = 0.68 

0.71 
0.0071 

Extended 
AMSVM 

Spline 
(A = 1,MC=1) 

0.74 
C+ = 7.12xMC 

0.73 
C - = 0.68 

0.73 
0.0069 

Extended 
AMSVM 

Spline 
(A = 4,MC=1) 

0.76 
C+ = 7.12xMC 

0.73 
C - = 0.68 

0.75 
0.0036 

Extended SVM 
(Reg) 

Spline 
(MC=1) 

0.71 
C+ - 7.12xMC 

0.72 
C - = 0.68 

0.72 
0.0078 

Table 6.3: Summary of the best test results by averaging the results of five random 
selection data set samples using different techniques to handle the problems of imbalanced 
data. TP and TN are the true classification rates for "crack" and "no crack" classes 
respectively. 

is necessary to incorporate the sampling bias and if necessary, a higher misclassifi-

cation cost for the minority class. The ratio of the factors for imbalanced data for 

CS SVM for the "crack" class and the "no crack" class is 10 while in NSS SVM 

it is 10.47 (i.e. They are fairly similar (however, a good result requires fine 

tuning) and are the key factors required for this imbalanced set of data. The devel-

opment of the NSS SVM may provide a rough guide to the ratio of the factors for 

imbalanced data. In this instance, it has been shown that the heuristic approach 

of the CS SVM outperforms the NSS SVM with its somewhat lower variance for 

the GMean. As such, it was this model that we used as a basis for further work 

although it must be acknowledged that the decision has been made based on slight 

differences only) . This model structure was decomposed for model interpretation 

purposes. It is noteworthy that although the modified AM SVM can be used, it is 

however computationally expensive (i.e. with the kernels involved in the constraint 
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Eq. 4J8y 

6.2.1 Results and Discussion for Model Interpretability 

The previous attempts using a set of five randomly selected data set samples pro-

vided an assessment of which is the more appropriate approach for imbalanced data. 

Having identified the most acceptable performance (CS SVM) (i.e. rating the fac-

tors for taking imbalanced data into account (associated with misclassification cost 

and the sampling bias)), the SUPANOVA approach was then used on the CS SVM 

to generate model interpretability. In this case, we now increase the number of ran-

domly selected training data sets to ten. The parameters that we use for the model 

structural regulariser A are set in the range of [0.05,0.1-1] with increments of 0.1. 

The number of input components selected as represented was based on its occur-

rence more than five times out of the ten in the models generated on the randomly 

selected sample sets. In this approach, we use the hinge loss function which provides 

a more natural way of dealing with classification as the loss function for the MC 

and the model selection are the same. Our initial work (Lee et al. 2001c) did not in-

corporate the modification factor L into the AN OVA basis (Eq. 5.12). Thus, there 

is an inconsistency in the loss function between the CS SVM and the SUPANOVA. 

As such, a better result is obtained when both loss functions are consistent. The 

complete description of the SUPANOVA for imbalanced data classification can be 

found in chapter 5.5. By using the full kernel, we obtain a Gmean of 0.74 and a 

variance of 0.0202. An increase in A reduces the number of components selected. 

However the Gmean variance increases. The results show that when A = 0.4, a 

sum of 6 subcomponents provide a reasonable Gmean and Gmean variance. With 

the increase values of A, the number of subcomponents selected reduced to only 

one and the Gmean results are bad. Tables 6.4 and 6.5 show the summary of the 

modelling results and the input components selected by the SUPANOVA for the 

ADI material. 

The plots from Fig. 6.2 show the trends of the 6 components obtained from our 

SUPANOVA model and are described as follows ; 
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Approaches TP TN GMean 
Van an re 

Components 

SUPANOVA 
Classifications 

0.72 
r7+ = 1 n 

0.77 
r - = m 

0.74 
n 0909 

512 
A=0 

SUPANOVA 
Classifications 

0.71 
(?+ = 1 .n 

&76 
= n.1 

&73 
n.0947 

13 
A=0.05 

SUPANOVA 
Classifications 

0.70 
(1+ = 1 n 

0.77 
G~ = 0.1 

0.72 
n.n9R9 

6 
A=n.4 

Table 6.4: Summary of results from SUPANOVA. These results are based on averag-
ing 10 randomly sampled data sets and the number of input components identified 
are based on occurrence more than 5 times out of 10. Note: the A here are used to 
enforce sparseness of the components rather than acting as a regulariser parameter 
as in SVM. 

Components Occurrence Consistency Remarks 
bias 10 YES -

C.A, 10 YES As C.A increases, cracks are 
likely to initiate 

L.A.F, 10 YES As L.A.F increases, cracks are 

X5 likely to initiate 
N.N.N, 6 YES As N.N.N increases, cracks are 

likely to initiate 
O.Ang djjiin 8 YES As both components increase, 
3:3 (g) a;? cracks are unlikely to initiate 
dMean (g) N.N.Ang 6 YES As both components increase 

to a threshold, cracks start to 
initiate 

Table 6.5: SUPANOVA components selected and their occurrence in the classifi-
cation task. 0 denotes Tensor product. "Consistency" refers to similar trends 
observed in the SUPANOVA terms. 

• Univariate: Large cell area (C.A) (100% selection), high local area fraction 

(L.A.F) (100% selection) and a large number of near neighbours (N.N.N) (60% 

selection) are all shown to identify a graphite nodule that initiates a fatigue 

crack. 

This can be interpreted as large graphite nodules of high L.A.F (i.e. with local 

clustering from a lot of N.N.N) acting as fatigue initiation sites. The fact that 

the classification has identified C.A rather than object area (O.A) explicitly 

is intriguing. Due to the FBT process, the cell area (C.A) is directly linked to 

the O.A (as the cell is defined as always larger than the O.A). The condition 

that both increased C.A and L.A.F (i.e. 0^^) give rise to preferential crack 

initiation can be satisfied by considering a large O.A as identifying a crack 



(a) Cell Area 

Numbef ot Near Neighbouf. (N.N.N) x. 

(c) Number of Near Neighbour 

N.«MlN,lgl,bM„Angl.. 0 » Mom Nem Nrt,H»o, Dai™., x, 

(e) Mean Near Neighbour Distance 

and Nearest Neighbour Angle. 

Local Aiea Fiac&on, (L>.f) K 

(b) Local Area Fraction 

Nearest Neqhboui Distance, " oWeclAngle. {0>ng) 

(d) Object Angle and Nearest 
Neighbour Distance. 

Comoonents Freauencv 
Crack 
C.A (high) 10/10 
L.A.F (high) 10/10 
N.N.N (high) 
N.NAng (high) and dnean (high) 6/10 

No Crack 
dMin (high) and O.Ang (high) 8/10 

Summary table 

Figure 6.2: An example of plots with the components selected versus the output of 
SUPANOVA for classification with imbalanced data. Bias and 5 other components 
being selected as significant factors causing fatigue crack initiation. The tessellation 
measurements (already normalised) form the x-axis and x-y axes, whilst on the y-
axis or z axis, the scales values act as an indicator of crack initiation (i.e a negative 
value denotes a crack initiation and positive value denotes a crack not initiating). 

initiating nodule. The interdependency of the features measured by the FBT 

is a function of the geometry of 2 phase microstructures. In real life cases 

many of these input parameters vary and despite the imposed transparency 
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afforded by the SUPANOVA decomposition, some ambiguity as to the key 

features causing fatigue initiation remains. As detailed later in chapter 7, 

this can be further explored by producing simulated microstructures where 

the input features can be varied in a more systematic way and the resultant 

predictions produced by the classification models assessed. So, in considering 

the univariate, a reasonable initial interpretation would be that large graphite 

nodules of high L.A.F (i.e. with local clustering provided by a larger than 

average N.N.N) will act as crack initiators. 

• Bivariate: Two bivariates have been identified: Object Angle (O.Ang) and 

nearest neighbour distance (dmin) (80% selected) and Mean near neighbour 

distance {dmean) and nearest neighbour angle (N.N.Ang) (60% selected) (See 

Fig. 6.2d and e). 

The O.Ang defines the angle between the object major axis and the loading 

axis, the larger the O.Ang the closer the object's major axis is to perpendicular 

to the loading axis (see Fig. 6.3). In the case of the graphite nodules the aspect 

ratio is close to 1 (i.e. the mean and standard deviations for "crack" class 

is 1.30 and 0.28, and for "no crack" class is 1.40 and 0.38 respectively) as 

the nodules are reasonably spherical, so a link to O.Ang is initially surprising. 

Considering the bivariate dependence between O.Ang and dmin it appears that 

for a far away nearest neighbour (N.N), a high O.Ang (i.e. object major axis 

perpendicular to the loading axis) leads to a graphite nodule not initiating a 

crack. 

Lo adins axis L oading axis 

< • < 1̂  

Object'^ 

a.) Obj ect Small b.) Object Angle Largs 

Figure 6.3: The alignment between the object angle and the loading axis. 

The N.N.Ang is defined as the angle between the loading axis and the line 

connecting the centre of the N.N object of interest. Thus, if N.N.Ang is 
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high the N.N lies perpendicular to the load axis, and if the N.N.Aug is low, 

the N.N is parallel to the object of interest in line with the loading axis -

as shown in Figure 6.4. Now, considering the bivariate dependence between 

dmean and N.N.Ang, it appears that with increasing dmean (i.e. further apart 

near neighbours) and increase in N.N.Ang (i.e. the N.N. particle becoming 

closer to being perpendicularly aligned to the object of interest) leads to an 

increased likelihood of the graphite nodule initiating fatigue. 

Loading Axis Loading Axis 

< ^ ^ ^ ^ 
Nearest Neighbour 

Object Nearest Neig±rour 

Object 

a.) N e a r e s t N d ^ o u r Angle Small b.) Nearest Nei^bour An^e Large 

Figure 6.4: The alignment of the nearest neighbour angle with respect to the object 
and its loading axis. 

The dmean and dmin relate to the spacing between the graphite nodule inter-

faces - averaged for all near neighbours and for the N.N respectively. The 

dmean value depends on many factors, including N.N and their spacing, and 

can be considered to reflect clustering (although not unambiguously), and 

a high dmean may be considered to reflect a relatively unclustered situation, 

which may allow the positioning of the N.N. to be more influential in aflPecting 

the central graphite nodule. The N.N particle appears therefore to have two 

possible efi'ects (from inspection of the SUPANOVA trends) if it is far away 

and the central graphite nodule's major axis is perpendicular to the loading 

axis, then the nodule is not likely to initiate a fatigue crack. If the average 

N.N spacing is high (again, relatively unclustered) then the N.N particles po-

sitioning may be more influential and if it is perpendicularly aligned above or 

below the central graphite nodule, this appears to promote cracking. 
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Attempting to consider all these variables, it seems that large nodules in a locally 

clustered environment with many near neighbours are likely to initiate cracks. If 

the situation is less clustered, then a N.N particle aligned perpendicularly above 

the central graphite nodule may promote cracking. If the O.Ang is perpendicular 

to the loading axis and yet the N.N is distant then the graphite nodule is unlikely 

to initiate a fatigue crack. 

We can try to explain these trends in the following way. The graphite nodules 

have a significantly lower effective Young's modulus than the surrounding matrix, 

decohere easily and may be considered to act as holes in a mechanical sense. The 

predominantly spherical nature of the nodules indicates that size increase will not 

increase the local stress concentration factor, although the larger graphite nodules 

will give a larger sampling volume of potential initiation points. Local clustering 

around such larger graphite nodules (as identified by the classifier) may be expected 

to superimpose local particle stress Gelds, raising the peak stress levels. The more 

complex bivariate relationships are somewhat harder to assess. The O.Ang defines 

the angle between the loading axis and the major axis of the nodule and if this 

is high the major axis of the nodule is closer to perpendicular to the tensile axis 

(which might be expected to promote cracking). However this, combined with a 

relatively furthest N.N might be expected to minimise superimposition of local par-

ticle stress fields, and hence make these nodules less likely to act as crack initiation 

sites. Given the low aspect ratio of the nodules (they are effectively spherical) cor-

relations with O.Ang are surprising. When the near neighbours are relatively far 

away or fewer in number, then the positioning of the N.N appears important, with 

a perpendicularly oriented N.N making a nodule more likely to crack. The cracks 

initiate perpendicular to the loading axis and so superposition of local stress fields 

between the N.N in a perpendicular orientation may promote cracking. The two 

univariate components (i.e. the C.A and L.A.F) tally with the finding of (Hockley 

et al. 1999). Here, we have picked up an extra component, that is the N.N.N which 

may be an important component. With SUPANOVA, we are also able to pick up 

higher order interactions that are not easily identifiable through simple means of 
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visualisation. These interpretable classiEcation results allow us to start to assess 

the relationships that give rise to crack initiation and hence eventually to identify 

optimised microstructures with good fatigue resistance for the camshaft applica-

tion. Further assessment of these results are considered in chapter 7 - where the 

model predictions for simulated particle distributions are examined, an analysis of 

scales (and distributions in scale) would be valuable, along with comparison against 

various mechanical analyses that exist of 2 phase materials, however, a thorough 

investigation of these points is beyond the scope of the current work. 

6.3 Automotive Plain Journal Bearing Lining Material -

Aluminium-Silicon-Tin (Al-Si-Sn) 

6.3.1 Model Specification 

The plain journal bearing lining fatigue initiation assessment used a total of 10 

observation regions which were selected randomly from microstructure containing 

crack initiation sites as discussed in section 2.3. The total number of cell was 

2938, with silicon (Si) being identified as the primary initiating phase. The cells 

produced by the FBT were initially divided into three populations; initiating Cells 

(with 163 cases); bordering Cells (with 810 cases surrounding the initiating sites) 

and background Cells (with 1965 cases). Results by (Joyce 2001) comparing the 

mean and standard deviation show that there is little significant difference between 

the bordering and background cells (see table 2.2). As such, the bordering and 

the background cells are considered here to belong to the same class. Once again, 

we have a two class classification problem as in the case of the previous camshaft 

application. We now have a total of 2938 examples of which 163 samples are crack 

initiation sites ("Crack" class) while 2775 samples do not act as crack initiation 

sites ("No Crack" class). There are altogether 11 features used for this example 

(as seen in Table 2.2). The two extra features extracted from the FBT are the 

Cell Aspect Ratio (C.A^) and Cell Angle (C.Ang). In this application, the tensile 

axis was vertical, so a large O.Ang corresponds to particles aligned parallel to the 

loading axis. Note: this difference for the case of ADI, where the tensile axis was 

horizontal. 
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The data are normalised between 0 and 1. The data are partitioned into the training 

and testing sets consisting of 1200 ("no crack") and 120 ("crack") data in the 

training sets, and the rest are used for the testing set. These are randomly selected 

and the data set partitioning was repeated 10 times to provide good generalisation 

for our model. We have again chosen to use 75% of the crack data for training. 

The reason for using more of the data collected for the "no crack" class compared 

with the ADI application (1200 compared to 700) is because we are combining two 

populations in the Al-Si-Sn case (background and bordering). If we randomly took 

700 samples, then they might predominantly come from either class. Hence the need 

to ensure reasonable representation from both classes. Again, the average Gmean 

(based on averaging 10 models) was then used to assess the overall performance of 

each technique and the Gmean variance is used to measure the confidence in the 

model selected as it reflects the dependency of the classification on the data set 

selected for training and testing. 

The previous application of the CS SVM and the NSS SVM on ADI showed good 

prediction results. These approaches were then extended to this new set of data 

(Al-Si-Sn). A set of capacity controls similar to those used in the ADI case were 

used with the spline kernel. The results show that with (C+ = 10, C " = 1) a 

GMean of 0.72 was obtained. A set of regularisers A = [10"^, 10"^, 10^®] with 

MC+ = [1,2,3,4,5] were used in the NSS SVM. The imbalanced factors L were 

calculated and the corresponding capacity control obtained as = 3.35MC''" and 

= 0.92MC" for the case when A = 10~®. Table 6.6 summaries the results of the 

CS and NSS SVM. Results show that a misclassification cost of 3 is required to be 

imposed on the "crack" class in order to obtain a Gmean of 0.70. The imbalanced 

modification factor for the NSS SVM is 10.92 while for the CS SVM is 10. The 

variance obtained is similar to that of the CS SVM. As such, the CS SVM model 

was again selected for the SUPANOVA to provide model interpretability. In both 

applications we have assessed, we have shown that the NSS SVM can provide a 

rough guide for the value of the imbalance modification factor L. However, fine 
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tuning may be required. The model structure regulariser A we obtained here varied 

from 0-20 and results show that A = 15 yields the best result as shown in Table 

6.7. A set of 6 components were obtained with reduced Gmean of 0.70 compared 

to 0.72, but with a slightly lower Gmean variance. The fact that a higher model 

regulariser is required is due to the fact that the capacity control used here is 

larger than the case of the ADI (i.e. ADI - [C^ = 1.0,(7" = 0.1] and Al-Si-Sn -

[C+ = 10,C" = 1.0] ). The components picked up and consistency of the input 

components being selected are presented in table 6.8. 

Approaches TP TN GMean 
Variance 

CS SVM 0J3 
C+ = 10 

0.71 
C~ = 1 

0J2 
0.0185 

NSS SVM 
]WC=1 C+ = 3.35xMC 

0.87 
C- = 0.92 

0.40 
0.0439 

NSS SVM 
]WC=3 

OjW 
C+ = 3.35xMC 

OJO 
C- = 0.92 

OJO 
0.0184 

Table 6.6: Summary of the test results for Al-Si-Sn results from CS and NSS SVM. This 
shows that a misclassification penalty of 3 must be imposed for the crack class in the NSS 
SVM in order to obtain a good classification. The Gmean of the CS SVM is better than 
the NSS SVM. 

Approaches TP TN GMean 
Variance 

Components 

SUPANOVA 0J3 0.71 0J2 2048 
Classifications r7+ = in n- = 1 nniRs A=n Classifications 

OjW OJl OJO 6 
r7+ = in r - = 1 n.nnm A=1R 

Table 6.7: Summary of the test results for Al-Si-Sn results from SUPANOVA for clas-
sification. These results are based on averaging the predictions based on 10 randomly 
sampled data sets and the number of components identified are based upon occurrence 
more than 5 times out of 10. 

Figure 6.5, shows the plots of selected examples of the input components. The 

univariate plots of the C.A and L.A.F. show that as both values increase, the 

chances of crack initiation also increase. The occurrence of the two univariates are 

100% (i.e. 10 models out of 10 selected these two components). There is a slightly 

different trend in one of the L.A.F plots (as shown in Fig. 6.6a) as it is a concave 

shape trend (lowest at 0.40). However, the C.A area trend consistently indicates 

that crack initiation occurs as C.A. gets larger. The bivariate plot for the O.Ang 
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LocalAieaFiaction, (LAF) t 

(a) Cell Area (b) Local Area Fraction 

Objed Angle. (0>) x. Mean Near NelghOoui Distance, Local Area Fraction, (LA.F)Xy 

(c) Object Angle and Cell Angle (d) Local Area Fraction and 
Mean Near Neighbour Distance 

N.N,Ana , 

Components Frecfuencv 
Crack 
C.A (high) 10/10 
L.A.F(high) 10/10 
N.N.N (high) 6/10 
C.Ang (high) and O.Ang (high) 8/10 
dMtan (high) and L.A.F (high) 6/10 

No Crack 
duin (high) and O.Ang (high) 
and N.N. Aug (high) 8/10 

(e) Object Angle and Nearest 

Neighbour Distance and Nearest 

Neighbour Angle. 

Summary table 

Figure 6.5: An example of plots with the input components selected versus the 
output SUPANOVA for classification with imbalanced data. Bias and 5 other com-
ponents have been selected as significant factors causing fatigue crack initiation. 
The tessellation measurements (already normalised) form the x-axis and x-y axes, 
whilst on the y-axis or z axis, the scales values act as an indicator of crack initiation 
(i.e a negative value denotes a crack initiation and positive value denotes a crack 
not initiating). 
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Components Occurrence Consistency Remarks 
bias 10 YES -

C.A 
374 

10 YES As C.A. increases, cracks likely 
to initiate 

L.A.F 
XT 

10 NO As L.A.F. increases, cracks likely 
to initiate 

O.Ang 0 C.Ang 8 NO Simply (varying functions) diffi-
cult to explain 

L.A.F ^mean 6 YES As both components increase, 
cracks likely to initiate 

O.Ang 0 dMin 0 N.N.Ang 
373 0 3:9 0 3=11 

8 YES As the three components in-
crease, Cracks unlikely to initiate 

Table 6.8: SUPANOVA components selected, their occurrence rated out of 10 and consis-
tency in classification task. 0 denotes Tensor product. "Consistency" refers to similar 
trends observed in the SUPANOVA terms. 

and C.Ang shows a complex trend which indicates a large O.Ang and C.Ang are 

likely to initiate a crack. The selection of the occurrence of this component is 80%. 

However, one of the plots (shown in Fig. 6.6b) has a different shape but it too 

shows that as the O.Ang (increases independent of C.Ang), the chances of crack 

initiation increase. The next bivariate plot selected in Fig 6.5d is the L.A.F. vs 

dMean- A hvperplane of concave shape is seen along the diagonal of both increasing 

axes (i.e. as both features increase). This indicates that there is a threshold value 

(i.e. approximately 0.5 for both directions) for these two features. Beyond this 

threshold, cracks are more likely to initiate. The confidence about the importance 

of this bivariate component selected is less as it only has an occurrence of 60%. 

The trivariate relationship selected consists of O.Ang, djvfm and N.N.Ang with an 

occurrence of 80%. This plot simply indicates that as all three features increase, 

the chances of crack initiation decreases. 

In summary, an increase of both C.A and L.A.F indicates that the object is 

large (as discussed in the ADI section). A large Si particle is more likely to cause 

cracks because of the increase of local matrix strain around the large hard/stiff 

particles. (It is noteworthy that in the Al-Si-Sn case, the initiating particles have 

a significantly higher stiffness than the surrounding matrix, in contrast to the ADI 

case.) The bivariate plot of the O.Ang and C.Ang implies that the Si particles 

(which have a slightly higher Mean O.A^ (1.49 compared to ADI 1.40) when locally 
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Call Angle, (CAng) x, 
Object Angle, (OA) x. 

(a) Local Area Fraction (b) Object Angle and Cell Angle 

Figure 6.6: The inconsistency of the trends obtained for Local area fraction and 
also the Object Angle and Cell Angle as opposed to those obtained from Figure 6.5 

aligned parallel to the loading axis are more likely to cause crack initiation. 

The other bivariate function obtained is the L.A.F and the dMean, cracks being 

likely to initiate as both increase. This may describe a relatively large Si particle 

which is relatively isolated (i.e. large duean, but large O.A to still give large L.A.F). 

There will be little stress/strain shielding from neighbouring Si particles. Therefore, 

cracks are perhaps more likely to be initiated if both components increase. Finally, 

the trivariate plot indicates that as the O.Ang, dMin and N.N.Ang increase, crack 

initiation is unlikely (shown schematically in Fig. 6.7). The large can perhaps 

be considered to indicate a situation where any local stress/strain field overlapping 

between the N.N is minimised hence making crack initiation unlikely. 

Loading 
Axis 

— — Nearest Neighbour 

D m . Large 

Nearest N e i ^ b o u r Distance Large 

Figure 6.7: Schematic representation of the extreme of the trivariate function (i.e. 
O.Ang, dMin and N.N.Ang) that indicates crack initiation unlikely. 

Further investigation of these possibilities of crack initiation using Finite Ele-

ment Analysis (FEA) simulations of idealised examples is necessary and ongoing 

within the Materials Research Group. It is also necessary to try and systematically 

vary the parameters selected by the SUPANOVA decomposition for self-consistent 
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particle distributions to assess those features of particle distributions which will give 

rise to increased fatigue initiation. The simulated particle distributions described in 

Chapter 7 have been used for both the ADI and Al-Si-Sn SUPANOVA classification 

models to further enhance the interpretability offered and to provide indications of 

more fatigue initiation resistant microstructures. 

6.4 Summary 

The present data can be dealt with in the standard SVM by incorporating a factor 

for imbalanced data that was derived from imposing different misclassification costs 

for each class and sampling bias. The NSS SVM provides us with a rough guide 

of the ratio required for the capacity control used in SVM between both classes. 

However, a better result can be obtained with fine tuning. The interpretability of 

the model was provided by decomposing the model structure. This was used in the 

original SUPANOVA for regression tasks. Here, we extend its use for the case of 

imbalanced data for classification. There were six important components selected 

in each data set investigated out of the possible 512 (ADI) and 2048 (Al-Si-Sn). A 

larger regulariser. A, is required to obtain the smaller set of components required. 

Finally, the sets of components selected show qualitative correlation with known 

metallurgical factors as important factors which initiate fatigue cracks. These com-

ponents selected are inter-related. As such, it is necessary to vary them systemati-

cally in order to enhance our understanding. This is done via the simulated particle 

distributions which will be described in the following chapter. 
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Chapter 7 

Simulated Data Analysis 

The important input components needed to classify fatigue initiation sites have been 

picked up by our SUPANOVA model. However, the components selected are inter-

related and it is difficult to unambiguously determine the key particle distribution 

characteristics that promote failure. This chapter describes the particle simulations 

that were used to systematically vary the key input components within self-consistent 

particle distributions. The results from these simulated data sets enhance the inter-

pretability offered by the SUPANOVA model and provide indications of more fatigue 

microatructiirea m AD7 ond beorinp Zmmg aHoi/g. 

The first section describes the selection and justification of the simulated data sets. 

This is then followed by a detailed description of the procedure required for the spec-

ification of the simulated data. The descriptive enhancement offered by the simu-

lated data for the ADI and Al-Si-Sn SUPANOVA models is investigated. Finally, 

the results obtained from the SUPANOVA model and the simulated distributions are 

degcnbed. 

7.1 Selection and justification of the simulated data sets 

Varying individually each component of the FBT features is a very difficult task 

as all the components are inter-related. However, we can vary various parameters 

such as the object shape, size, angle and distribution which can be fixed/varied in 

a systematic fashion to allow clearer visualisation of the trends identified by the 

SUPANOVA technique. Let us summarise the components identified for the two 

automotive materials selected from the SUPANOVA model. For the case of the 
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ADI: Cell Area (C.A), Local Area Fraction (L.A.F), Number of Near Neighbours 

(N.N.N), Object Angle (O.Ang) Vs Nearest Neighbour distance (dMin) ; Mean Near 

Neighbour Distance (dMean) Vs Nearest Neighbour Angle (N.N.Ang) are selected 

as important components. For the Al-Si-Sn: C.A, L.A.F, O.Ang Vs Cell Angle 

(C.Ang); L.A.F Vs dMean and O.Ang Vs d^in Vs N.N.Ang are selected. 

In considering all these variables, we have attempted to identify a consistent set 

of particle distributions which vary these parameters systematically. By varying 

the inputs systematically, although variables remained within each individual input 

range, the input combinations may cover high dimensional input space where there 

was no original training data. As such, these simulations are further interrogations 

of the model produced. This attempt is summarised in Table 7.1 for ADI and in 

Table 7.2 for the Al-Si-Sn case. To identify these distributions we have adopted 

the following notation: e.g. ARCE-0 where the first letter indicates the material 

used (A stands for ADI, B for Al-Si-Sn), the second letter indicates the object 

distribution (R stands for random, C for clustered), the third letter indicates the 

object area (O.A) (C stands for constant, V for varying), and the last letter indicates 

the shape of objects at angle 9 (C stands for circular, E-0 stands for ellipse shapes 

at angle 9 to the loading axis). If we consider the univariates chosen for ADI (Fig. 

6.2a-c), we need to try and assess whether the dependence on C.A and L.A.F in 

fact reflects a large object size. By fixing the objects to be circles of equal size and 

varying their distribution (random compared with clustered) we can vary the C.A 

and L.A.F independently of object size and angle (ARCC and ACCC). We can then 

bring in the effect of object size by taking the random and clustered distributions, 

but now varying the object size (ARYC and ACVC). The N.N.N is hard to vary 

independently, but considering the 4 distributions already identified, it is likely that 

we will get the largest N.N.N for small objects which are locally clustered. 

If we now go on to consider the two bivariate functions (Fig. 6.2d-e), we want 

to aasess O.Ang Vs dMin and dMean Vs N.N.Ang. To assess the bivariate function, 

first we need to consider ellipses (where we have taken the mean aspect ratio) with 

the two extremes of O.Ang imposed on the particle distribution. In our case, we 
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have aligned the ellipses parallel to and perpendicular to the loading axis. By-

considering both random and clustered distributions of constant size ellipses with 

parallel or perpendicular alignment (ACCE-O" and ARCE-0°, and ARCE-90° and 

ARCE-90° respectively) we should be able to assess the bivariate function in Fig. 

6.2d. To vary ^Mean and N.N.A simultaneously (Fig. 6.2e) a further consideration 

of ARCC and ACCC may be helpful as the clustered distribution will have a smaller 

^Mean from the parent particles (methodology detailed later). N.N.Ang is difficult 

to systematically vary. A final "complex" set of particle distributions of varying 

sized ellipses at varying angles in both random and clustered distributions have 

also been considered to provide an overview of the simulated data set ARVE-0 and 

ACVE-g. 

If we consider the Al-Si-Sn system as summarised in Table 7.2 and Fig. 6.5a-e 

a similar set of particle distributions can be considered that will also assess the 

various input dependencies revealed by the SUPANOVA decomposition. In all, 

10 simulated particle distributions have therefore been considered for each case: 

circular objects of constant and varying size in random and clustered distributions, 

e.g. ARCC, ACCC, ARVC and ACVC, constant sized ellipses at 90° and parallel to 

the loading axis in random and clustered distributions: e.g. ARCE-O", ACCE-0°, 

ARCE-90° and ACCE-90°. Finally, 2 more complex particle distributions have been 

considered consisting of ellipses of varying size and object angle in both random and 

clustered distributions (e.g. ARVE-0 and ACVE-0). These last 2 distributions are 

more realistic and give an overview of the model predictions for fatigue initiation 

sites. The procedure to produce these 10 simulated particle distributions is now 

described in the following section. 
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CO 

Components Shapes Related to Simulated narameters Notes 
Cell Area (C.A) 

& 

Local Area 
Fraction (L.A.F) 

Circular Object Size 
+ 

Object distribution 

1. Fix Object Area (O A) + Random Distribution (ARCC) 
(APPAl .Ren 

Clustering may be used as a 
tool to vary the L.A. F 
(if objects are close L.A.F 
likely to be high -
independent of object size) 

Cell Area (C.A) 
& 

Local Area 
Fraction (L.A.F) 

Circular Object Size 
+ 

Object distribution 2. Fix O A + Clustered Distribution (ACCC) (APP Al. fig 2) 

Clustering may be used as a 
tool to vary the L.A. F 
(if objects are close L.A.F 
likely to be high -
independent of object size) 

Cell Area (C.A) 
& 

Local Area 
Fraction (L.A.F) 

Circular Object Size 
+ 

Object distribution 
3. Varv O.A + Random Distribution (ARVC) CAP? Al. fie 3) 

Clustering may be used as a 
tool to vary the L.A. F 
(if objects are close L.A.F 
likely to be high -
independent of object size) 

Cell Area (C.A) 
& 

Local Area 
Fraction (L.A.F) 

Circular Object Size 
+ 

Object distribution 

4. Varv O.A + Clustered Distribution fACVC) (APP Al. fie 41 

Clustering may be used as a 
tool to vary the L.A. F 
(if objects are close L.A.F 
likely to be high -
independent of object size) 

Number of Near 
Neighbours 

(N.N.N) 

Circular Object distribution 5. Fix O.A + Random Distribution (ARCC) It is very difficult to simulate 
this independently. 

Depends on clustering and 
size of object. 

Number of Near 
Neighbours 

(N.N.N) 

Circular Object distribution 

6. Fix O.A + Clustered Distribution (ACCC) 
It is very difficult to simulate 
this independently. 

Depends on clustering and 
size of object. 

Number of Near 
Neighbours 

(N.N.N) 

Circular Object distribution 

7. Vary O.A + Random Distribution (ARVC) 

It is very difficult to simulate 
this independently. 

Depends on clustering and 
size of object. 

Number of Near 
Neighbours 

(N.N.N) 

Circular Object distribution 

8. Vary O.A + Clustered Distribution (ACVC) 

It is very difficult to simulate 
this independently. 

Depends on clustering and 
size of object. 

Object Angle 

VS 
Nearest Neighbour 

Distance (dwrn) 

Ellipse 
(With angle 

between 
loading axis) 

Object distribution 
+ 

Object Angle 

9. Fix O.A + Random Distribution + Angle 90 (ARCE-90 °) 
(APP Al.fia 5) 

Two extremes of O.Ang have 
been considered. 

Clustered - should have a 
smaller dwm. 

Object Angle 

VS 
Nearest Neighbour 

Distance (dwrn) 

Ellipse 
(With angle 

between 
loading axis) 

Object distribution 
+ 

Object Angle 10. Fix O.A + Random Distribution + Angle 0 (ARCE-0 °) 
fAPPAl.RE6) 

Two extremes of O.Ang have 
been considered. 

Clustered - should have a 
smaller dwm. 

Object Angle 

VS 
Nearest Neighbour 

Distance (dwrn) 

Ellipse 
(With angle 

between 
loading axis) 

Object distribution 
+ 

Object Angle 

11. Fix O.A + Clustered Distribution + Angle 90 (ACCE-90 °) 
M f P A L G e n 

Two extremes of O.Ang have 
been considered. 

Clustered - should have a 
smaller dwm. 

Object Angle 

VS 
Nearest Neighbour 

Distance (dwrn) 

Ellipse 
(With angle 

between 
loading axis) 

Object distribution 
+ 

Object Angle 

12. Fix 0.A + Clustered Distribution + Angle 0 (ACCE-0 °) 
fAPP Al.f ie 8) 

Two extremes of O.Ang have 
been considered. 

Clustered - should have a 
smaller dwm. 

Mean Near 
Neighbour 

Distance (dwcm,) 
Vs 

Nearest Neighbour 
Angle (N.N.Ang) 

Circular Object distribution 13. Fix O.A + Random Distribution (ARCC) N.N.Ang is hard to 
independently vary 
systematically. 
Clustered - should have a 
smaller dMean established from 
the parents. 
The dkhm could be affected 
bv the N.N.N. 

Mean Near 
Neighbour 

Distance (dwcm,) 
Vs 

Nearest Neighbour 
Angle (N.N.Ang) 

Circular Object distribution 

14. Fix O.A + Clustered Distribution (ACCC) 
N.N.Ang is hard to 
independently vary 
systematically. 
Clustered - should have a 
smaller dMean established from 
the parents. 
The dkhm could be affected 
bv the N.N.N. 

Mean Near 
Neighbour 

Distance (dwcm,) 
Vs 

Nearest Neighbour 
Angle (N.N.Ang) 

Circular Object distribution 

15. Varv O.A + Random Distribution (ARVC) 

N.N.Ang is hard to 
independently vary 
systematically. 
Clustered - should have a 
smaller dMean established from 
the parents. 
The dkhm could be affected 
bv the N.N.N. 

Mean Near 
Neighbour 

Distance (dwcm,) 
Vs 

Nearest Neighbour 
Angle (N.N.Ang) 

Circular Object distribution 

16. Vary O.A + Clustered Distribution (ACVC) 

N.N.Ang is hard to 
independently vary 
systematically. 
Clustered - should have a 
smaller dMean established from 
the parents. 
The dkhm could be affected 
bv the N.N.N. 

Overall view Ellipse Object Size 
+ 

Object Distribution 

17. Vary O.A + Vary object Angle +Random Distribution 
(ARVE-G) (APP Al. Gg 9) 

Provides overview of the 
simulated data set 

Overall view Ellipse Object Size 
+ 

Object Distribution 18. Vary O.A + Vary object Angle + Clustered Distribution 
(ACVE-8) (APP Al. Be 10) 

Provides overview of the 
simulated data set 

Table 7.1: Description of particle distributions produced to assess the input components identified by the SUPANOVA decomposition for the ADI 
cases (see Fig. 6.2 a-e). The notation used here is as follows: e.g. ARCE-g where the first letter indicates the material used (A stands for ADI), 
second letter stands for object distribution (R stands for random, C stands for clustered), third letter stands for object area (C stands for constant, 
V stands for varying), and the last letter stands for shape of objects at angle 9 (C stands for circular, E-g stands for ellipse shapes at angle 9 to the 
loading axis). The particle distributions of this simulated data can be referred to in Appendix A. 
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Components Shapes Related to Simulated parameters Notes 
Cell Area (C.A) 

& 
Local Area Fraction 

(L.A.F) 

Circular Object Size 
+ 

Object 
distribution 

1. Fix Object Area (O.A) + Random Distribution (BRCC) 
(APPBi.fia n 

Clustering may be used as a 
tool to vary the L.A.F (if 
objects are close, L.A.F is 
likely to be high - independent 
of object size) 

Cell Area (C.A) 
& 

Local Area Fraction 
(L.A.F) 

Circular Object Size 
+ 

Object 
distribution 

2. Fix 0 .A + Clustered Distribution mCCC) (APP B1. Ae 21 

Clustering may be used as a 
tool to vary the L.A.F (if 
objects are close, L.A.F is 
likely to be high - independent 
of object size) 

Cell Area (C.A) 
& 

Local Area Fraction 
(L.A.F) 

Circular Object Size 
+ 

Object 
distribution 3. Vary O.A + Random Distribution ("BRVO (APP Bl , fia 3) 

Clustering may be used as a 
tool to vary the L.A.F (if 
objects are close, L.A.F is 
likely to be high - independent 
of object size) 

Cell Area (C.A) 
& 

Local Area Fraction 
(L.A.F) 

Circular Object Size 
+ 

Object 
distribution 

4. Vary 0 .A + Clustered Distribution CBCVO CAPP BL fig 4) 

Clustering may be used as a 
tool to vary the L.A.F (if 
objects are close, L.A.F is 
likely to be high - independent 
of object size) 

Object Angle (O.Ang) 
VS 

Cell Angle (C.Ang) 

Ellipse 
(With angle 

between 
loading 

axis) 

Object 
distribution 

+ 

Object 
Angle 

5. Fix O.A + Random Distribution + Angle 90 (BRCE-90°) 
( A P P B L f i a 5) 

Two extremes of the O.Ang 
have been considered. 

Cell Angle depends on the 
object distributions. 

Object Angle (O.Ang) 
VS 

Cell Angle (C.Ang) 

Ellipse 
(With angle 

between 
loading 

axis) 

Object 
distribution 

+ 

Object 
Angle 

6. Fix O.A + Random Distribution + Angle 0 (BRCE-0°) 
( A P P B l . S e 6) 

Two extremes of the O.Ang 
have been considered. 

Cell Angle depends on the 
object distributions. 

Object Angle (O.Ang) 
VS 

Cell Angle (C.Ang) 

Ellipse 
(With angle 

between 
loading 

axis) 

Object 
distribution 

+ 

Object 
Angle 7. Fix O.A + Clustered Distribution + Angle 90 (BCCE-90'') 

W f P B L S e n 

Two extremes of the O.Ang 
have been considered. 

Cell Angle depends on the 
object distributions. 

Object Angle (O.Ang) 
VS 

Cell Angle (C.Ang) 

Ellipse 
(With angle 

between 
loading 

axis) 

Object 
distribution 

+ 

Object 
Angle 

8. Fix O.A + Clustered Distribution + Angle 0 (BCCE-0°) 
( A P P B l . f i e S ^ 

Two extremes of the O.Ang 
have been considered. 

Cell Angle depends on the 
object distributions. 

L.A.F 
Vs 

Mean Near Neighbour 
Distance (dinran) 

Circular Object Size 
+ 

Object 
distribution 

9. Fix O.A + Random Distribution (BRCC) L.A.F is related to object size 
while dMcan distribution is 
affected by the number of near 
neighbours hence, object 
distribution must be varied. 

L.A.F 
Vs 

Mean Near Neighbour 
Distance (dinran) 

Circular Object Size 
+ 

Object 
distribution 

10. Fix O.A + Clustered Distribution (BCCC) 
L.A.F is related to object size 
while dMcan distribution is 
affected by the number of near 
neighbours hence, object 
distribution must be varied. 

L.A.F 
Vs 

Mean Near Neighbour 
Distance (dinran) 

Circular Object Size 
+ 

Object 
distribution 

11. Vary O.A + Random Distribution fBRVC) 

L.A.F is related to object size 
while dMcan distribution is 
affected by the number of near 
neighbours hence, object 
distribution must be varied. 

L.A.F 
Vs 

Mean Near Neighbour 
Distance (dinran) 

Circular Object Size 
+ 

Object 
distribution 12. Vary O.A + Clustered Distribution (BCVC) 

L.A.F is related to object size 
while dMcan distribution is 
affected by the number of near 
neighbours hence, object 
distribution must be varied. 

O.Ang 
VS 

Nearest Neighbour 
Distance (dwm) 

Vs 
Nearest Neighbour 
Angle (N.N.Ang) 

Ellipse 
(With angle 

between 
loading 

axis) 

Object 
distribution 

+ 

Object 
Angle 

13. Fix O.A + Random Distribution + Angle 0 (BRCE-90°') It is hard to independently 
vary systematically. 
Therefore, by fixing the object 
angle to the 2 extreme values, 
we investigated the effect of 
dMin and N.N.Ang. The dwom 
distribution could reflect the 
number of near neighbours, 
hence, object distribution 
considered. 

O.Ang 
VS 

Nearest Neighbour 
Distance (dwm) 

Vs 
Nearest Neighbour 
Angle (N.N.Ang) 

Ellipse 
(With angle 

between 
loading 

axis) 

Object 
distribution 

+ 

Object 
Angle 

14. Fix O.A + Random Distribution + Angle 90 fBRCE-0°) 
It is hard to independently 
vary systematically. 
Therefore, by fixing the object 
angle to the 2 extreme values, 
we investigated the effect of 
dMin and N.N.Ang. The dwom 
distribution could reflect the 
number of near neighbours, 
hence, object distribution 
considered. 

O.Ang 
VS 

Nearest Neighbour 
Distance (dwm) 

Vs 
Nearest Neighbour 
Angle (N.N.Ang) 

Ellipse 
(With angle 

between 
loading 

axis) 

Object 
distribution 

+ 

Object 
Angle 

15. Fix O.A + Clustered Distribution + Angle 0 (BCCE-90°) 

It is hard to independently 
vary systematically. 
Therefore, by fixing the object 
angle to the 2 extreme values, 
we investigated the effect of 
dMin and N.N.Ang. The dwom 
distribution could reflect the 
number of near neighbours, 
hence, object distribution 
considered. 

O.Ang 
VS 

Nearest Neighbour 
Distance (dwm) 

Vs 
Nearest Neighbour 
Angle (N.N.Ang) 

Ellipse 
(With angle 

between 
loading 

axis) 

Object 
distribution 

+ 

Object 
Angle 

16. Fix O.A + Clustered Distribution + Angle 90 (BCCE-90°) 

It is hard to independently 
vary systematically. 
Therefore, by fixing the object 
angle to the 2 extreme values, 
we investigated the effect of 
dMin and N.N.Ang. The dwom 
distribution could reflect the 
number of near neighbours, 
hence, object distribution 
considered. 

Overall view Ellipse Object Size 
+ 

Object 
Distribution 

17. Vary O.A + Vary object Angle +Random Distribution 
(BRVE-0) CAPP BL fig 9) 

Provides an overview of the 
simulated data set 

Overall view Ellipse Object Size 
+ 

Object 
Distribution 

18. Vary O.A + Vary object Angle + Clustered Distribution 
(BCVE-8) ( A P P B L f i e l O ) 

Provides an overview of the 
simulated data set 

Table 7.2: Description of particle distributions produced to assess the input components identified by the SUPANOVA decomposition for the 
Al-Si-Sn cases (see Fig. 6.5 a-e). The notation used here is as follows: e.g. BRCE-0 where the first letter indicates the material used (B stands 
for Al-Si-Sn), second letter stands for object distribution (R stands for random, C stands for clustered), third letter stands for O.A (C stands for 
constant, V stands for varying), and the last letter stands for shape of objects at angle 0 (C stands for circular, E-9 stands for ellipse shapes at 
angle 0 to the loading axis). The particle distributions of this simulated data can be referred to in Appendix B. 



7.2 Procedure and Specification for Simulated Data 

The features selected by the SUPANOVA for imbalanced data can be explored and 

visualised further with the help of the simulated data. Chapter 2 has described the 

use of a particle simulation created by (Yang et al. 2000, Yang et al. 2001). We 

have identified a set of model particle distributions for both the ADI and Al-Si-Sn 

applications. The procedure and specification to produce these are now described 

in more detail. 

1. A 2 dimensional rectangular field with nominal width of 1014 pixels/units and 

height of 653 pixels/units was specified. 

2. In order to provide a realistic simulated data set, the Volume Fraction (VF) 

and hence the average area fraction (AF) of secondary phase particles found 

in the original data set and the simulated data set must be consistent. The 

secondary phase particles for the ADI are graphite nodules and for the case of 

the plain journal bearing are Si particles, both of which are roughly spherical 

in shape. Once the AF is known, a number of objects can be specified to fit 

into the simulated image area with the appropriate radius. In the case of the 

ADI, the average radius of the particles was then used to calculate the number 

of particles with respect to the nominal width specified. In the case of the 

Al-Si-Sn alloy, the average radius of the particles was much smaller, and so the 

nominal image area was effectively reduced to 101.4 by 65.3 pixel/unit to keep 

the number of particles considered in the simulation to a reasonable number. 

However, if the particles are very small in the simulation, then significant 

rounding errors due to pixel resolution will be present. As such, the scale is 

eflfectively magnified by ten times. The procedure for calculating the number 

of particles in each case is given briefly below. 

A D I 

= 0.0913 
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Average Radius, R = 13 ///units 

Number of Objects in the 6eld = 

Al-Si-Sn 

= 0.0723 

Average Radius, R = 1.28 ///units (We magnified it by 10 times, therefore 

taken as 12.8 ///units) 

Number of Objects in the field = lBi>i|^^.0723_g2 

3. Once the number of particles in the image area has been defined, the size, 

shape and distribution of the objects can be varied as follows : 

• Circular objects with uniform or exponential size distribution (defined 

around a mean value) 

® Elliptical objects with uniform or exponential size distribution (defined 

around a mean value) 

Note: For a given area, the circle can be converted to an ellipse shape. 

This is given as : area of circle {liXR^) = area of Ellipse {liXAXB) 

where A and B are the length of the major axis and length of the minor 

axis of an ellipse. A/B is the aspect ratio of the ellipse which is a feature 

obtained from the FBT. The mean A^ for ADI = 1.41 and for the Al-

Si-Sn alloy — 1.49. Therefore, with this information available an object 

with a circular shape can be converted to a ellipse. 

® Elliptical objects with varying angles of the particle major axis to the 

loading axis 

4. The centroid of the objects are then generated in the form of a random or 

clustered distribution. It is important to note that a strict constraint is im-

posed that the objects generated should not overlap (for a given shape, size 

and orientation) with each other. 

Random - The centroids of the objects are generated using a random number 

generated with a repeatable sequence. 
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Clus te red - A set of "parent" centroids are generated which are at least 200 

units/pixels away from each other. In the ADI - 11 parents were defined 

, in the Al-Si-Sn - 9 parents. 

The average number of "children" associated with each parent can be 

calculated based on the number of parents that have been specified. In 

ADI - 10 children per parent, in Al-Si-Sn = 10 children per parent, thus 

allowing approximately 110 particles in total in the ADI and 90 particles 

in total in the Al-Si-Sn 

The centroid of each child is based on the variance of the x and y co-

ordinates specified with reference to its parent. For both the ADI & the 

Al-Si-Sn - x-axis variance =80, y-axis variance = 50. 

Note : this clustering is a global clustering and is defined as such based 

on work done by (Yang et al. 2001). They systematically defined a global 

clustering eEect from dmean measurements obtained from the standard 

deviation divided by its mean (i.e. COVdmean = ueanduTan)' this 

value is greater then 0.36±0.02, this unambiguously indicates a clustered 

distribution. 

5. The O.Ang can be fixed to be parallel, perpendicular or random with respect 

to the (horizontal) loading axis. 

6. Upon obtaining the relevant parameters (i.e. for circular objects - x and y 

coordinates and object radius; for ellipses - x and y coordinates, A and B 

chord lengths of the ellipse) these values are then digitised to produce the 

simulated images. 

7. The tessellation analysis was then applied to the simulated image. The edge 

objects are eliminated as they are insufficiently defined in terms of near neigh-

bours, C.A etc. However, it is important to ensure that the remaining AF 

remains within ±10% of its original value. Furthermore, for the case of ran-

dom and clustered distributions of the objects, the value of the COVdmean 

must be retained. 
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8. The cells generated from the tessellation were then labelled for later identifi-

cation. 

9. The tessellated information from this simulated data were then used as a test 

set for the 10 SUPANOVA classification models produced on the ten data set 

training-testing random positions. Prior to using it as a testing set, the data 

is normalised against the original data using its mean. 

10. The consistency of initiation site selection was then assessed for each simulated 

distribution, and a clearer understanding of the importance of each component 

selected by the SUPANOVA approach achieved (as discussed in the following 

section). 

7.3 Use of Simulated Data to Enhance Visualisation 

The two extreme examples of the simulated data cases can be seen in Fig. 7.1. The 

complete set of figures referred to in this section have been collated in Appendix A 

(APP A for ADI) and Appendix B (APP B for AL-Si-Sn). APP Al, Figures 1-10 

show the simulated particle distributions and their associated tessellation cells in 

ADI. The consistency of initiation site identification by the 10 SUPANOVA models 

is given by the degree of contrast for a given particle, i.e. a white particle is never 

identified as initiating a crack (0/10) whereas a dark grey particle is always identified 

as a crack initiator (10/10). Those that were selected less than 5 times were not 

considered (allocated to the 0/10 group) and also, the boundary objects are not 

considered as they do not provide a full set of feature information. A similar set of 

figures were obtained for the case of the Al-Si-Sn (APP Bl, Fig. 1-10). Tables 7.3 

and 7.4 summarise the mean and standard deviations for each tessellation feature 

for all the simulated data sets for ADI and Al-Si-Sn respectively. It includes each 

of the simulated distributions and the breakdown for the "crack" and "no crack" 

classes for the original data distribution. The "crack" and "no crack" population 

distributions for each univariate of interest have also been systematically compared 

in histogram form for each simulated particle distribution. Appropriate bivariate 

plots of the two classes have also been considered. The results of these comparisons 
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are summarised in table 7.5 a,b,c (for ADI) and 7.6 a,b,c,d (for Al-Si-Sn) and are 

also discussed below. 

a.) ADI, random object distribution, constant 
area, circular shapes. 

b.) ADI, clustered object distribution, varying otgect 
area ellipse shapes at angle 6 to die loading axis. 

Figure 7.1: a & b are examples showing the two extreme cases for the simulated 
data set. a.) is a simple simulated data set where the object shapes are round 
(hence no O.Ang effect), O.A is fixed, with object distribution random, b.) is a 
more complex simulated data set where the object shapes are now ellipses (hence, 
O.Ang is a variable), O.A is varied, object distribution clustered. 

7.3.1 Automotive Camshaft - ADI 

Univariate Discussion (C.A,L.A.F,N.N.N) 

The class means and histogram comparisons for ARCC (R is random distribu-

tion, C is constant O.A, and the next C is circular object) indicate that the "crack" 

class tends in fact to have a smaller C.A and a larger L.A.F (see Table 7.3 and APP 

A2.1, Fig. 1 and 2). If the clustered version of this particle distribution ACCC is 

now considered, a similar trend is observed. It should be noted that although differ-

ences in the mean values of these univariates are observed, the standard deviations 

(S.D) are relatively high. More initiation sites (10/10 cf. 0/10) are also predicted 

in the clustered than the random distribution (i.e APP Al, Fig. 1 ( ARCC- 17%) 

and APP Al, fig 2 (ACCC-33%)). If we now vary O.A for both the random and 

clustered distributions (ARVC and ACVC) we can see that the "crack" class tends 

to have a larger O.A, C.A and L.A.F (APP A2.1, Fig. 3,4,5). In the more clustered 

case, the trend with C.A is less clear cut (APP A2.1, Fig. 6), however the mean 

and S.D values indicate that the "crack" class tends to have a larger value (table 

7.3). More initiation sites are again predicted for the clustered case (APP Al, Fig. 

3 (ARVC-28%) and APP Al, Fig. 4 (ACVC-36%)) although it is less clear cut. 

Considering these 4 simulations for the case of the N.N.N, given that the O.A is 
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fixed and the object distribution is random (ARCC), it is difficult to assess the 

class distribution (APP A2.1, Fig. 7). The "crack" class appears to be associated 

with either lower or higher values of the N.N.N compared to the "no crack" class. 

However, when the object is clustered (ACCC) the "crack" class is observed to have 

more N.N.N (APP A2.1, Fig. 8). If we now vary the O.A (ARVC and ACVC), a 

clearer view can be seen as the "crack" class has more N.N.N (APP A2.1, Fig. 9). 

In summary, assessing the simulated data to consider the univariate dependencies 

revealed by SUPANOVA shows that for the basic microstructural parameters cov-

ered by these simulations, a large C.A is not a good "crack" indicator. A large 

L.A.F is a better indicator for ADI fatigue crack initiation. This is more clearly 

shown when the O.A is varied (ARVC and ACVC). The effect of the N.N.N is shown 

more in the clustered object distribution (ACCC and ACVC) although this effect 

is less clear cut, once O.A is also varied, and the L.A.F effect outweighs it to some 

extent. 

Bivariate Discussion (O.Ang and duin, ^Mean and N.N.Ang) 

Now, let us consider the bivariate case for the O.Ang and the d-Min- The object 

shape now has changed to an elliptical shape so as to incorporate the two extreme 

angles involved in the O.Ang (i.e parallel (ARCE-O-ACCE-0) and perpendicular 

(ARCE-90 and ACCE-90) to the loading axis). Considering the case when the 

O.Ang is set perpendicularly (ARCE-90 and ACCE-90) to the loading axis, it was 

observed that the "crack" class has a smaller duin (APP A2.1, Fig. 10). This tallies 

with our SUPANOVA model which indicates that a large O.Ang with large dMin 

is unlikely to initiate cracks. This observation was not clear for the case when the 

O.Ang is parallel (ARCE-0 and ACCE-0) to the loading axis (APP A2.1, Fig. 11, 

12). Comparing the object clustering effect, we observed that more crack initiation 

was seen when the O.Ang is set parallel to the loading axis (APP Al, Fig. 6 

(ARCE-0 (51%)) , APP Al, Fig. 8 (ACCE-0 (56%)) compared to APP Al, Fig. 5 

(ARCE-90 (23%)) , APP Al, Fig. 7 (ACCE-90 (38%))). 

The ^Mean and N.N.Ang is very difficult to vary systematically. However, the 

d-Mean IS related to the object distribution. As such, the previous four sets of 
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simulated data (ARCC,ACCC,ARVC,ACVC) were further used in this bivariate 

analysis. Given the O.A is fixed and the objects are randomly distributed (ARCC), 

the "no crack" class tends to lie on the lower side of the hyperplane as dMean and 

N.N.Ang increase proportionally (APP A2.3, Fig. 13). This is reflected in our 

SUPANOVA model where a threshold value is seen beyond which cracks will start 

to initiate (Fig. 6.2e). When the object distribution is clustered (ACCC), the "no 

crack" class tends to lie in the middle value of the dMean with a relatively small 

N.N.Ang (APP A2.3, Fig. 14). When the O.A is varied (ARVC and ACVC), it 

becomes more difficult to assess the trends (APP A2.3, Fig. 15). 

Validation Data set Discussion 

The final two simulated data sets used were the ARVE-0 (Object distribution 

random, varying O.A and ellipse in shape at 9 angle w.r.t the loading axis) and 

ACVE-^ (Object distribution clustered, varying O.A and ellipse in shape at 9 angle 

w.r.t the loading axis). This resembles more closely the original data set. Large 

O.A, C.A, L.A.F and N.N.N and small d^in tends to initiate cracks (APP A2.4, Fig. 

16,18,19,20,21). The effect of the O.Ang shows that the crack class has a smaller 

O.Ang (APP A2.4, Fig. 17, 24). It is difficult to assess the effect of the mean 

near neighbour distance (APP A2.4, Fig. 22, 25). For the case where the objects 

are clustered, the "crack" class dMean is either relatively high or low. This might 

reflect the threshold we obtained from the SUPANOVA model (Fig. 6.2e). It is 

also observed that the mean value for the "crack" class is fairly similar for the case 

of the object being randomly distributed but higher for the case when the object is 

clustered (table 7.3). However, the value for the S.D is high in both cases for the 

"crack" class. Assessing the N.N.Ang becomes more difficult when the O.A is set to 

vary (APP A2.4, Fig. 23,26). Here, again, we see that when the object distribution 

is clustered more cracks are initiated (APP Al, Fig. 9 (ARVE-^ (37%)) and APP 

Al, Fig. 10 (ACVE-0 (41%))). The univariate analysis from this simulated data 

tallies with that of the model produced. This is reflected clearly when the O.A 

varies. However, the S.D values for the "crack" class are high for the components, 

O.A, C.A and L.A.F. This may indicate that there are also other factors affecting 
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the crack initiation other than those of the univariates such as bivariates and other 

combined object distribution effects. The bivariates are somewhat difficult to assess 

since the O.Ang and object size were varied simultaneously (APP A2.4, Fig. 27, 

28^ 

API Conclusion 

In summary, the simulated data set provides further understanding of the SU-

PANOVA model, as shown in Table 7.5a-c. For example, when the O.A is varied, 

better understanding is obtained of the role of O.A, C.A and L.A.F (see point no. 

3,4,7,8 in table 7.5a and Fig. 7.2). We can also assess the effect of the object dis-

tribution (see points 1,2,3,4 (table 7.5a) and 1,2,3,4 (table 7.5b) and also Fig. 7.3). 

This serves as an example for the univariate components. For the bivariate case, 

by fixing the O.A, a better understanding of the relationship between the dMean 

and N.N.Ang is provided (see points 5,6 (table 7.5b) and Fig. 7.4). Also, by fixing 

the O.Ang to the two extreme cases (i.e. parallel or perpendicular to the loading 

axis) a better understanding of the effect of O.Ang is obtained (points 1,2 (table 

7.5b) and Fig. 7.5), with more initiation being found for the case where the ellipses 

major axes are parallel to the loading axis. 
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N3 

Particles Distribution 0.A O . A r O.Ang C.A L.A.F N.N.N dwifi f^Mean N,N,Ang 

No. of objects COVtjMean Mean (S.D) Mean (S.D) Mean (S.D) Mean (S.D) Mean (S.D) Mean (S.D) Mean (S.D) Mean (S,D) Mean (S,D) No. of objects COVtjMean 

Origin COiVI 5 4 9 . 8 8 ( 1 0 7 1 . 7 0 ) 1 . 4 0 ( 0 . 3 7 ) 0 . 7 8 ( 0 . 4 1 ) 6 0 2 2 . 6 0 ( 4 9 7 3 . 3 0 ) 6 . 7 1 ( 7 . 4 2 ) 5 . 7 6 ( 1 . 8 7 ) 1 7 . 3 6 ( 1 7 . 0 2 ) 5 7 , 0 3 ( 2 4 , 0 9 ) 0 , 7 5 ( 0 , 4 0 ) 2 9 2 3 0 . 4 2 

Crack 2 3 2 6 . 8 9 ( 2 5 4 9 . 8 3 ) 1.30(0.28) 0 . 6 9 ( 0 . 4 5 ) 1 2 3 4 0 . 8 4 ( 7 6 2 8 . 7 4 ) 1 5 . 8 7 ( 1 0 . 1 3 ) 7.60(2.21) 1 6 . 2 3 ( 1 6 . 3 6 ) 6 4 , 8 1 ( 2 1 , 0 8 ) 0 , 7 7 ( 0 , 4 7 ) 1 1 6 

NoCmck 4 7 6 . 4 5 ( 8 9 0 , 8 7 ) 1 . 4 0 ( 0 . 3 8 ) 0 . 7 9 ( 0 . 4 1 ) 5 7 6 1 . 5 2 ( 4 6 5 3 . 2 5 ) 6 . 3 4 ( 7 . 0 3 ) 5.66 (1.62) 1 7 . 4 0 ( 1 7 . 0 4 ) 5 6 , 7 1 ( 2 4 , 1 6 ) 0 , 7 5 ( 0 , 4 6 ) 2 8 0 7 
ARCC COIVI 5 4 0 . 0 0 (0 ) 1 . 0 5 (0 ) 0 . 7 8 ( 0 ) 5 6 6 5 . 9 2 ( 2 1 5 0 . 0 7 ) 1 1 . 0 8 ( 4 . 6 4 ) 5 . 6 1 ( 1 . 1 1 ) 1 8 . 6 3 ( 1 1 . 9 1 ) 5 4 , 2 4 ( 1 7 , 9 3 ) 0 , 7 5 ( 0 , 4 1 ) 8 0 

Crack 5 4 0 . 0 0 (0 ) 1 . 0 5 (0 ) 0 . 7 8 (0 ) 4 6 8 3 . 2 6 ( 2 9 5 3 . 8 2 ) 1 5 . 6 8 ( 7 . 5 4 ) 5 . 9 3 ( 1 . 8 2 ) 1 1 . 9 2 ( 1 0 . 0 5 ) 4 6 , 4 2 ( 2 8 , 0 3 ) 0 , 8 1 ( 0 , 4 3 ) 1 4 
NoCrack 5 4 0 . 0 0 (0 ) 1 . 0 5 ( 0 ) 0 . 7 8 (0 ) 5 8 7 4 . 3 7 ( 1 9 0 2 . 9 9 ) 1 0 . 1 0 ( 3 . 0 4 ) 5 . 5 5 ( 0 . 9 0 ) 2 0 . 0 5 ( 1 1 . 8 5 ) 5 5 , 9 0 ( 1 4 , 7 5 ) 0 , 7 3 ( 0 , 4 1 ) 66 

ACCC COM 5 3 6 . 0 0 ( 0 ) 1 . 0 1 (0 ) 0 . 7 8 (0 ) 5 5 0 7 . 9 0 ( 3 1 5 9 . 2 7 ) 1 3 . 0 0 ( 7 . 1 0 ) 5 . 6 9 ( 1 . 2 0 ) 1 2 . 5 8 ( 9 . 0 2 ) 5 1 , 6 5 ( 2 5 , 2 2 ) 0 , 8 1 ( 0 , 4 7 ) 7 8 0 . 4 9 
Crack 5 3 6 . 0 0 ( 0 ) 1 . 0 1 (0) 0 . 7 8 (0 ) 5 4 6 8 . 0 8 ( 4 7 6 9 . 1 9 ) 1 6 . 9 5 ( 9 . 8 2 ) 6 . 0 0 ( 1 . 3 9 ) 1 0 . 7 1 ( 8 . 3 3 ) 4 9 . 5 0 ( 3 6 . 4 5 ) 0 , 7 9 ( 0 , 4 4 ) 2 6 

NoCrack 5 3 6 . 0 0 (0 ) 1 . 0 1 (0) 0 . 7 8 (0 ) 5 5 2 8 . 9 8 ( 1 8 8 2 . 0 0 ) ) 1 0 . 9 1 ( 3 . 8 2 ) 5 , 5 3 ( 1 , 0 6 ) 1 3 . 5 8 ( 9 . 2 9 ) 5 2 . 7 8 ( 1 6 . 8 8 ) 0 , 8 2 ( 0 , 4 9 ) 5 2 
ARVC COM 4 9 7 . 1 1 ( 4 1 5 . 6 2 ) 1 . 0 5 ( 0 . 0 5 ) 0 . 8 0 ( 0 . 3 6 ) 5 9 6 6 . 3 4 ( 2 7 5 9 . 1 2 ) 8 . 2 5 ( 5 . 6 4 ) 5 , 6 5 ( 1 , 2 5 ) 2 1 . 0 9 ( 1 3 . 1 3 ) 5 9 . 6 0 ( 1 9 . 3 7 ) 0 , 8 5 ( 0 , 4 8 ) 8 1 

Crack 9 8 9 . 3 9 ( 3 6 4 . 8 5 ) 1 . 0 3 ( 0 . 0 2 ) 0 . 7 9 ( 0 ) 7 6 3 1 . 4 4 ( 2 7 1 8 . 3 2 ) 1 4 . 2 4 ( 5 . 7 6 ) 6 , 7 0 ( 1 , 0 6 ) 1 7 . 8 6 ( 1 2 . 6 1 ) 6 0 . 7 1 ( 1 8 . 8 6 ) 0 , 7 4 ( 0 , 5 2 ) 2 3 
NoCrack 3 0 1 . 9 0 ( 2 3 3 . 4 5 ) 1 . 0 6 ( 0 . 0 5 ) 0 . 7 8 10) 5 3 0 6 . 0 4 ( 2 5 0 4 . 0 2 ) 5 . 8 8 ( 3 . 4 1 ) 5 , 2 4 ( 1 , 0 6 ) 2 2 . 3 7 ( 1 3 . 2 2 ) 5 9 . 1 6 ( 1 9 . 7 2 ) 0 , 8 9 ( 0 , 4 5 ) 5 8 

ACVC COM 5 3 0 . 8 2 ( 5 0 5 . 1 5 ) 1 . 0 5 ( 0 . 0 4 ) 0 . 7 5 ( 0 . 3 4 ) 5 4 2 9 . 4 2 ( 3 5 5 4 . 3 0 ) 1 1 . 7 5 ( 9 . 5 4 ) 5 , 5 3 ( 1 , 5 4 ) 1 6 . 6 1 ( 1 4 . 5 3 ) 5 1 . 8 2 ( 2 6 . 1 5 ) 0 , 8 3 ( 0 . 4 7 ) 7 6 0 . 5 
Crack 9 8 7 . 1 4 ( 5 5 3 . 6 1 ) 1 . 0 3 ( 0 . 0 2 ) 0 . 7 9 (0 ) 6 0 8 0 . 0 2 ( 4 2 4 6 . 0 1 ) 2 0 . 2 3 ( 9 , 7 5 ) 6 , 4 6 ( 1 , 6 4 ) 1 2 . 9 9 ( 1 3 . 1 5 ) 4 5 . 8 8 ( 2 3 . 5 6 ) 0 . 9 5 ( 0 , 4 3 ) 2 8 

0 . 5 

NoCrack 2 6 4 . 6 3 ( 1 8 6 . 3 0 ) 1 . 0 6 ( 0 . 0 5 ) 0 . 7 8 (0 ) 5 0 4 9 . 9 1 ( 3 0 6 6 . 4 4 ) 6.61 (4.77) 4 96 (1 19) 1 8 . 7 2 ( 1 5 . 0 0 ) 5 5 . 2 8 ( 2 7 . 1 9 ) 0 , 7 6 ( 0 , 4 9 ) 4 8 
ARCE-90 COM 5 5 4 . 9 5 ( 0 . 3 9 ) 1 . 4 4 (0 ) 1 . 5 1 (0 ) 5 7 7 7 . 4 9 ( 2 0 9 3 . 0 7 ) 1 1 . 1 3 ( 4 , 6 9 ) 5 , 6 8 ( 1 , 4 0 ) 1 6 . 6 6 ( 1 3 . 6 8 ) 5 4 . 8 3 ( 1 8 . 1 2 ) 0 , 8 7 ( 0 , 4 2 ) 7 7 0 . 3 3 

Crack 5 5 5 . 0 0 (0 ) 1 . 4 4 (0 ) 1 . 5 1 ( 0 ) 5 2 3 5 . 9 1 ( 2 9 4 6 . 7 1 ) 1 3 . 7 7 ( 6 . 5 5 ) 6 , 2 2 ( 1 , 9 3 ) 7 . 9 6 ( 6 . 8 0 ) 5 5 . 7 0 ( 2 5 . 7 7 ) 0 , 9 0 ( 0 , 4 4 ) 1 8 

NoCrack 5 5 4 . 9 5 ( 0 . 3 9 ) 1 . 4 4 (0 ) 1 . 5 1 ( 0 ) 5 9 4 2 . 7 2 ( 1 7 5 4 . 0 6 ) 1 0 . 3 3 ( 3 . 6 6 ) 5 , 5 1 ( 1 , 1 7 ) 2 1 . 9 5 ( 1 3 . 6 1 ) 5 4 . 5 7 ( 1 5 . 3 4 ) 0 , 8 6 ( 0 , 4 2 5 9 

ARCE-0 COM 5 5 3 . 9 5 ( 0 . 3 2 ) 1 5 2 ( 0 ) 0 . 0 0 (0 ) 5 6 6 6 . 5 0 ( 2 6 0 9 . 6 2 ) 12.03 (5.7) 5 , 7 7 ( 1 , 0 9 ) 1 6 . 8 6 ( 1 2 . 7 5 ) 5 4 . 5 5 ( 1 8 . 3 9 ) 0 , 7 5 ( 0 , 4 8 ) 8 2 

Crack 5 5 3 . 9 8 ( 0 . 1 5 ) 1 . 5 2 ( 0 ) 0 . 0 0 (0 ) 5 6 7 3 . 0 8 ( 3 2 3 1 . 9 9 ) 1 3 . 3 4 ( 7 . 1 9 ) 6 , 0 0 ( 1 , 0 8 ) 1 7 . 0 9 ( 1 5 . 1 4 ) 5 5 . 5 4 ( 2 5 . 4 1 ) 0 , 9 3 ( 0 , 4 1 ) 4 2 
NoCrack 5 5 3 . 9 5 ( 0 . 3 2 ) 1 . 5 2 (0) 0 . 0 0 (0 ) 5 6 5 9 . 5 8 ( 1 7 7 8 . 3 5 ) 1 0 . 6 6 ( 3 . 0 4 ) 5 , 5 3 ( 1 , 0 6 ) 1 6 . 6 3 ( 9 . 8 1 ) 5 3 . 5 2 ( 1 3 . 5 2 ) 0 , 5 6 ( 0 , 4 8 ) 4 0 

ACCE-90 COM 5 5 5 . 0 0 (0 ) 1 . 4 4 (0) 1 . 5 1 (0 ) 5 7 3 5 . 2 8 ( 3 4 6 7 . 9 1 ) 1 3 . 3 8 ( 7 . 6 1 ) 5 , 8 6 ( 1 , 1 3 ) 1 5 . 7 8 ( 1 2 . 2 2 ) 5 1 , 4 9 ( 2 5 , 3 6 ) 0 , 9 2 ( 0 , 4 3 ) 7 7 0 . 4 9 
Crack 5 5 4 . 9 7 ( 0 . 1 9 ) 1 . 4 4 (0 ) 1 . 5 1 (0 ) 5 0 7 9 . 4 3 ( 4 3 9 7 . 4 0 ) 1 7 . 9 4 ( 9 . 8 1 ) 5 , 9 3 ( 1 , 2 5 ) 1 0 . 7 4 ( 8 . 7 9 ) 4 6 , 4 1 ( 3 2 , 4 5 ) 1 , 0 5 ( 0 , 4 1 ) 29 

NoCrack 5 5 5 . 0 0 (0 ) 1 . 4 4 (0 ) 1 . 5 1 (0 ) 6 1 3 1 . 5 1 ( 2 7 3 8 . 8 2 ) 1 0 , 6 2 ( 3 , 9 6 ) 5 , 5 2 ( 1 , 0 3 ) 1 8 . 8 2 ( 1 3 . 0 5 ) 5 4 , 5 7 ( 1 9 , 6 6 ) 0 , 8 3 ( 0 . 4 3 ) 46 
ACCE-0 COM 5 5 3 . 7 9 ( 1 . 2 0 ) 1 . 5 2 ( 0 . 0 2 ) 0 . 0 0 ( 0 ) 5 4 8 7 . 2 4 ( 3 3 7 8 . 2 1 ) 1 4 , 7 1 ( 9 , 5 4 ) 5 , 6 3 ( 1 , 2 7 ) 1 5 . 5 1 ( 1 3 . 0 3 ) 4 9 , 4 6 ( 2 7 , 7 9 ) 0 , 7 3 ( 0 , 4 0 ) 7 8 0 . 5 6 

Crack 5 5 3 . 3 9 ( 1 . 5 7 ) 1 . 5 1 ( 0 . 0 3 ) 0 . 0 0 (0 ) 5 2 9 7 . 3 7 ( 4 1 9 5 . 7 1 ) 1 7 . 7 7 ( 1 1 , 4 6 ) 5 . 8 9 ( 1 , 4 5 ) 1 4 , 3 9 ( 1 3 , 5 9 ) 4 7 , 6 8 ( 3 3 , 7 3 ) 0 , 7 2 ( 0 , 3 8 ) 4 4 _ _ 
NoCrack 5 5 3 . 7 9 ( 1 . 2 0 ) 1 . 5 2 ( 0 . 0 2 ) 0 . 0 0 (0 ) 5 7 3 2 . 9 6 ( 1 8 9 2 . 0 5 ) 1 0 , 7 5 ( 3 . 5 3 ) 5 , 2 9 ( 0 . 9 1 ) 1 6 , 9 6 ( 1 2 , 3 1 ) 5 1 , 7 7 ( 1 7 , 5 8 ) 0 , 7 5 ( 0 , 4 4 ) 3 4 

_ _ 
ARVE-e COM 5 8 1 . 1 ( 5 3 5 . 8 ) 1 . 4 5 ( 0 . 0 8 ) 0 . 8 ( 0 . 4 4 ) 6 1 3 3 . 7 6 ( 2 9 8 1 . 0 7 ) 9 . 5 6 ( 7 . 2 0 ) 5 , 7 8 ( 1 , 3 4 ) 1 9 , 0 9 ( 1 4 , 7 3 ) 5 8 , 4 6 ( 1 9 , 9 3 ) 0 , 8 4 ( 0 , 4 2 ) 7 8 0.34 

Crack 1 0 8 3 . 6 2 ( 5 6 3 . 0 8 ) 1 . 4 4 ( 0 . 0 5 ) 0 . 7 5 ( 0 . 4 4 ) 7 9 2 7 . 5 6 ( 3 0 2 8 . 8 3 ) 1 5 . 4 9 ( 8 . 0 2 ) 6 , 6 2 ( 1 , 2 9 ) 1 4 , 9 0 ( 1 4 , 1 4 ) 5 9 , 3 8 ( 2 2 , 9 6 ) 0 , 8 8 ( 0 , 4 7 ) 2 9 
NoCrack 2 8 3 . 6 9 ( 1 8 0 . 8 7 ) 1 . 4 5 ( 0 . 1 0 ) 0 . 8 3 ( 0 . 4 4 ) 5 0 7 2 . 1 1 ( 2 4 1 0 . 3 6 ) 6 . 0 6 ( 3 . 4 5 ) 5 , 2 9 ( 1 , 1 0 ) 2 1 , 5 8 ( 1 4 , 6 4 ) 5 7 , 9 2 ( 1 8 , 1 3 ) 0 , 8 1 ( 0 , 4 0 ) 4 9 

ACVE-9 COM 5 5 5 . 4 7 ( 2 . 5 8 ) 1 . 4 7 ( 0 . 0 4 ) 0 . 8 9 ( 0 . 4 5 ) 5 8 6 8 . 1 8 ( 2 1 2 3 . 5 9 ) 1 0 . 7 5 ( 4 . 2 4 ) 5 , 6 7 ( 1 , 1 3 ) 1 8 , 1 1 ( 1 2 , 9 1 ) 5 5 , 9 7 ( 1 6 , 6 4 ) 0 . 8 2 ( 0 . 4 6 ) 8 5 0 . 4 3 
Crack 9 0 7 . 6 3 ( 5 4 1 . 3 0 ) 1 . 4 3 ( 0 . 0 6 ) 0 . 6 2 ( 0 . 4 2 ) 6 7 9 1 . 6 8 ( 3 6 7 4 . 8 1 ) 1 6 . 1 2 ( 8 . 8 0 ) 6 , 6 9 ( 1 , 5 1 ) 1 2 , 1 1 ( 1 2 , 6 5 ) 5 5 , 1 6 ( 2 5 , 5 1 ) 0 . 8 9 ( 0 . 4 7 ) 3 5 

NoCrack 2 4 8 . 9 6 ( 1 9 3 . 4 9 ) 1 . 4 6 ( 0 . 1 2 ) 0 . 9 0 ( 0 . 4 2 ) 4 2 0 3 . 7 8 ( 2 3 6 7 . 2 2 ) 7 . 0 7 ( 5 . 0 3 ) 5 , 1 0 ( 1 , 3 0 ) 1 4 , 9 4 ( 1 2 , 0 2 ) 4 8 , 4 4 ( 1 8 , 6 7 ) 0 . 8 4 ( 0 . 4 7 ) 5 0 

Table 7.3: Summary of the mean and standard deviation (S.D) values of the simulated data sets and the original data set "Origin" for the ADI. 
COM denotes the complete set of simulated data, "crack" and "no crack" class denotes the breakdown of their class distributions. NOTE: the 
values of the boundary cells are not considered here and some slight rounding errors may appeared, this is due to conversion from simulated data 
to FBT data. 



to 

Comoonents Simulated parameters Results Summary 
Cell Area 

(C.A) 
& 

Local Area 
Fraction 
(L.A.F) 

1. Fix O.A + Random 
Distribution (ARCC) 

• Crack class tends to have a smaller C.A (APP A2,1, fig 1) and 
larger L.A.F (APP A2.1, fig 2) 

• Our simulation has shown 
consistently that purely 
considering a large C.A as an 
indicator for crack initiation, is 
not a true reflection of the 
situation. This may be partly due 
to the high standard deviation 
(S.D) observed (table 7.3). 

• However, it is true that as the 
L.A.F gets larger a crack is more 
likely to initiate. 

• Higher consistency (i.e. more 
10/10 cases) of larger O.A 
causing crack initiation were pick 
up when the object size is varied. 

" Clustering tends to result in more 
crack initiation sites occurring. 

Cell Area 
(C.A) 

& 
Local Area 

Fraction 
(L.A.F) 

2. Fix O.A + Clustered 
Distribution (ACCC) 

• Crack class tends to have a smaller C.A and larger L.A.F 
• More Cracks were initiated for clustered case 

(17% Random (APP Al. fig 1) Vs 33% Clustered (APP Al.fia 2)) 

• Our simulation has shown 
consistently that purely 
considering a large C.A as an 
indicator for crack initiation, is 
not a true reflection of the 
situation. This may be partly due 
to the high standard deviation 
(S.D) observed (table 7.3). 

• However, it is true that as the 
L.A.F gets larger a crack is more 
likely to initiate. 

• Higher consistency (i.e. more 
10/10 cases) of larger O.A 
causing crack initiation were pick 
up when the object size is varied. 

" Clustering tends to result in more 
crack initiation sites occurring. 

Cell Area 
(C.A) 

& 
Local Area 

Fraction 
(L.A.F) 

3. Vary O.A + Random 
Distribution (ARVC) 

• Crack class has larger O.A, C.A and L.A.F (APP A2.1, fig 3,4,5 
respectivelv). 

• Our simulation has shown 
consistently that purely 
considering a large C.A as an 
indicator for crack initiation, is 
not a true reflection of the 
situation. This may be partly due 
to the high standard deviation 
(S.D) observed (table 7.3). 

• However, it is true that as the 
L.A.F gets larger a crack is more 
likely to initiate. 

• Higher consistency (i.e. more 
10/10 cases) of larger O.A 
causing crack initiation were pick 
up when the object size is varied. 

" Clustering tends to result in more 
crack initiation sites occurring. 

Cell Area 
(C.A) 

& 
Local Area 

Fraction 
(L.A.F) 

4. Vary O.A + Clustered 
Distribution (ACVC) 

• Crack class has larger O.A 
• C.A is difficult to assess (APP A2.1, fig 6), but the mean values 

show that the crack class tends to have larger C.A (table 7.3) 
• Crack class has a larger L.A.F 
• More cracks were initiated for clustered case 

(28% Random (APP I. fig 3) Vs 36% Clustered (APP 1, fig 4) ) 

• Our simulation has shown 
consistently that purely 
considering a large C.A as an 
indicator for crack initiation, is 
not a true reflection of the 
situation. This may be partly due 
to the high standard deviation 
(S.D) observed (table 7.3). 

• However, it is true that as the 
L.A.F gets larger a crack is more 
likely to initiate. 

• Higher consistency (i.e. more 
10/10 cases) of larger O.A 
causing crack initiation were pick 
up when the object size is varied. 

" Clustering tends to result in more 
crack initiation sites occurring. 

Number of 
Near 

Neighbours 

5, Fix O.A + Random 
Distribution (ARCC) 

• It is difficult to assess which class distribution is more significant, 
but the crack class appears to have either fewer or more N.N.N than 
the no crack class (APP A2.1, fig 7). The mean value for both class 
are similar but the crack class has higher S.D value (table 7.3). 

• It is interesting to see that when 
the O.A is varied, the 
significance of the N.N.N in the 
crack class is highlighted more 
easily. This might be due to the 
effect of the significance of the 
large objects and hence the larger 
L.A.F. 

• Crack class has more N.N.N. 
Another indication of clustering 
effect. 

Number of 
Near 

Neighbours 

6. Fix O.A + Clustered 
Distribution (ACCC) 

• Crack class has more N.N.N. The crack class has higher mean and 
S.D values (APP A2.1, figS). 

• It is interesting to see that when 
the O.A is varied, the 
significance of the N.N.N in the 
crack class is highlighted more 
easily. This might be due to the 
effect of the significance of the 
large objects and hence the larger 
L.A.F. 

• Crack class has more N.N.N. 
Another indication of clustering 
effect. 

Number of 
Near 

Neighbours 

7. Vai-y O.A + Random 
Distribution (ARVC)) 

• Crack class has more N.N.N and this becomes more apparent when 
the O.A is varied (APP A2.1. fig 9) 

• It is interesting to see that when 
the O.A is varied, the 
significance of the N.N.N in the 
crack class is highlighted more 
easily. This might be due to the 
effect of the significance of the 
large objects and hence the larger 
L.A.F. 

• Crack class has more N.N.N. 
Another indication of clustering 
effect. 

Number of 
Near 

Neighbours 

8. Vary O.A + Clustered 
Distribution (ACVC) 

• Crack class has more N.N.N and this become more apparent when 
the object size is varied. 

• It is interesting to see that when 
the O.A is varied, the 
significance of the N.N.N in the 
crack class is highlighted more 
easily. This might be due to the 
effect of the significance of the 
large objects and hence the larger 
L.A.F. 

• Crack class has more N.N.N. 
Another indication of clustering 
effect. 

Table 7.4a: S u m m a r y of results for ADI obta ined f rom the s imulated d a t a set p roduced to enhance model interpretabil i ty. 



Comoonents Simulated oarameters Results Summary 
Object Angle 

(O.Ang) 
VS 

Nearest 
Neighbour 

Distance (dwm) 

1. Fix 0 . A + Random 
Distribution + Angle 90 
rARCE-QOn 

• The dMin for crack class is smaller (APP A2.2, fig 10) 
• Crack initiation sites are 23% of particles (APP Al, fig 5). 

• When the O.Ang is 
peipendicular to the loading 
axis, crack initiation is less 
likely compared to when it is 
parallel. Furthermore at 90° 
angle, the mean and S.D value 
of the dwm for the no crack 
class is higher than the crack 
class (table 7.3). 

• Our SUPANOVA model 
suggests that large O.Ang, 
with large dwm will not initiate 
cracks. This is reflected here 
for self-consistent particles 
distributions. 

Object Angle 
(O.Ang) 

VS 
Nearest 

Neighbour 
Distance (dwm) 

2. Fix O.A + Random 
Distribution + Angle 0 
(ARCE-0°) 

• The mean value for dmin for both classes are very similar (see 
table 7.3, crack value is 17.09 and no crack value is 16.63 and 
also APP A2.2, fig. 11) 

• Crack initiation site are 51% of carticles (APP Al. fig 6) 

• When the O.Ang is 
peipendicular to the loading 
axis, crack initiation is less 
likely compared to when it is 
parallel. Furthermore at 90° 
angle, the mean and S.D value 
of the dwm for the no crack 
class is higher than the crack 
class (table 7.3). 

• Our SUPANOVA model 
suggests that large O.Ang, 
with large dwm will not initiate 
cracks. This is reflected here 
for self-consistent particles 
distributions. 

Object Angle 
(O.Ang) 

VS 
Nearest 

Neighbour 
Distance (dwm) 

3. Fix O.A + Clustered 
Distribution + Angle 90 
fACCE-gO"^ 

• The dinin for the crack class is smaller 
• Crack initiation site are 38% of particles (APP Al, fig 7) 

• When the O.Ang is 
peipendicular to the loading 
axis, crack initiation is less 
likely compared to when it is 
parallel. Furthermore at 90° 
angle, the mean and S.D value 
of the dwm for the no crack 
class is higher than the crack 
class (table 7.3). 

• Our SUPANOVA model 
suggests that large O.Ang, 
with large dwm will not initiate 
cracks. This is reflected here 
for self-consistent particles 
distributions. 

Object Angle 
(O.Ang) 

VS 
Nearest 

Neighbour 
Distance (dwm) 

4. Fix O.A + Clustered 
Distribution + Angle 0 
(ACCE-0°) 

• The mean value for dw™ for both classes ate very similar (see 
table 7.3, crack value is 14.39 and no crack value is 16.96 and 
also APP A2.2, fig.l2) 

• Crack initiation site are 56% of particles (APP Al, fig 8) 

• When the O.Ang is 
peipendicular to the loading 
axis, crack initiation is less 
likely compared to when it is 
parallel. Furthermore at 90° 
angle, the mean and S.D value 
of the dwm for the no crack 
class is higher than the crack 
class (table 7.3). 

• Our SUPANOVA model 
suggests that large O.Ang, 
with large dwm will not initiate 
cracks. This is reflected here 
for self-consistent particles 
distributions. 

Mean Near 
Neighbour 
Distance 

(dMcan) 
Vs 

Nearest 
Neighbour 

Angle 
(N.N.Ang) 

5. Fix O.A + Random 
Distribution (ARCQ 

• The no Crack class tends to lie on smaller value of N.N.Ang 
(APP A2.3. Re 131 

• For a given fixed O.A with 
object distribution being 
random, a distinction can be 
made between the crack and no 
crack classes (at least from the 
bivariate plots) with the "no 
crack" class tending to lie on 
smaller value of N.N.Ang. For 
the case of when the object are 
clustered, the "no crack" class 
tending to lie on middle values 
of dMcan with small N.N.Ang. 

Mean Near 
Neighbour 
Distance 

(dMcan) 
Vs 

Nearest 
Neighbour 

Angle 
(N.N.Ang) 

6. Fix O.A + Clustered 
Distribution (ACCC) 

• The no Crack class tends to lie on middle values of dwcm with 
small N.N.Ans (APP A2.3. fie 14) 

• For a given fixed O.A with 
object distribution being 
random, a distinction can be 
made between the crack and no 
crack classes (at least from the 
bivariate plots) with the "no 
crack" class tending to lie on 
smaller value of N.N.Ang. For 
the case of when the object are 
clustered, the "no crack" class 
tending to lie on middle values 
of dMcan with small N.N.Ang. 

Mean Near 
Neighbour 
Distance 

(dMcan) 
Vs 

Nearest 
Neighbour 

Angle 
(N.N.Ang) 

7. Vary O.A + Random 
Distribution (ARVC) 

• It is difficult to assess the effect due to varying O.A (APP 
AJ.3.Gg. 15). 

• For a given fixed O.A with 
object distribution being 
random, a distinction can be 
made between the crack and no 
crack classes (at least from the 
bivariate plots) with the "no 
crack" class tending to lie on 
smaller value of N.N.Ang. For 
the case of when the object are 
clustered, the "no crack" class 
tending to lie on middle values 
of dMcan with small N.N.Ang. 

Mean Near 
Neighbour 
Distance 

(dMcan) 
Vs 

Nearest 
Neighbour 

Angle 
(N.N.Ang) 

8. Vary O.A + Clustered 
Distribution (ACVC) 

• It is difficult to assess the effect due to varying O.A 

• For a given fixed O.A with 
object distribution being 
random, a distinction can be 
made between the crack and no 
crack classes (at least from the 
bivariate plots) with the "no 
crack" class tending to lie on 
smaller value of N.N.Ang. For 
the case of when the object are 
clustered, the "no crack" class 
tending to lie on middle values 
of dMcan with small N.N.Ang. 

Table 7.4b: Continued from Table 7.5a. 



bO o 

Components 
OveiTiew 

Simulated parameters 
1. Vary O.A + Vary object 

Angle +Random 
Distribution (ARVE-0) 

Results 

2. Vary O.A + Vary object 
Angle + Clustered 
Distribution (ACVE-0) 

Crack has large O.A (APP A2.4, fig 16) 
Crack class has smaller O.Ang (APP A2.4, fig 17) 
Crack has large C.A (APP A2.4, fig 18) 
Crack has large L.A.F (APP A2.4, fig 19) 
Crack has large N.N.N (APP A2.4, fig 20) 
Crack has smaller dwin (APP A2.4, fig 21) 
The crack class dMcan is either on the large value or the small 
value side). Its S.D is also higher than the no crack class (table 
7.3). While the no crack class are more centered around the 
middle value of the dMcan. (APP A2.4, fig 22). 
Difficult to assess the N.N.Ang (APP A2.4, fig 23). 
Crack initiation sites are 37% of particles (APP Al . fig 9). 
Crack has large O.A 
Crack class has smaller O.Ang (APP A2.4, fig 24) 
Crack has large C.A 
Crack has large L.A.F 
Crack has large N.N.N 
Crack has smaller dwm 
Difficult to assess the dMcm (APP A2.4, fig 25). The mean 
values indicate that crack class has larger dMoan with high S.D 
(table 7.3). 
Difficuh to assess the N.N.Ang (APP A2.4, fig 26). 
Crack initiation sites are 41% of particles (APP Al . fig 10). 

Summary 
Varying the O.A leads to 
more consistenct 
identification of initiation and 
also easier identification that 
a large object, large C.A and 
large L.A.F initiate a cracks. 
However, their S.D are higher 
than the no crack class which 
indicates others factors such 
as those of the bivariates and 
the clustering effect also 
contribute to crack initiation. 
The univariate tallies with 
that of the model produced. 
The bivariate is more difficult 
to visualise as now the 
complexity between each 
features varies (e.g. APP 
A2.4, fig 27 and 28). 
Clustering causes more crack 
initiation. 

Table 7.4c: Continued from Table 7.5a. 
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a.) ARCC - O.A are FIXED b.) ARVC - O.A are VARIED 

Figure 7.2: The histogram of L.A.F. When the O.A are fixed (a), it is difficult to 
see the effects of "crack" initiation as compared to the case when the O.A is varied 
(b). From (b), the "crack" class appears to have a positive correlation with L.A.F. 
Similar trends were observed for C.A and O.A. 

a.) ADI, random object distribution, constant 
area, circular shapes. 

b.) ADI, clustered object distribution, constant area, 
circular shape. 

Figure 7.3: Given that the O.A are fixed and the object shape is circular (i.e. no 
effect of O.Ang), it appears that the clustered (b) object distribution has more 
"crack" initiations than the random (a) case. 
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a.) ARCC - O.A are FIXED b.) ARVC - O.A are VARIED 

Figure 7.4: The bivariate plot of N.N.Ang and dMean- When the O.A is fixed (a), 
the "no crack" class lies on the right hand side of the hyperplane (i.e. if you draw a 
diagonal line between (0,0) and 120,1.4). Given the O.A as fixed and the objects are 
randomly distributed (ARCC), the "no crack" class tends to lie on the lower side 
of the hyperplane.This implies that as dMean and N.N.Ang increase proportionally 
cracks are unlikely to initiate. When the O.A is varied it became difficult to see the 
trends. 

a.) ADI, fixed object area, clustered object distribution, 
constant object area, ellipse shapes at angle 90° to the 
loading axis. 

b.) ADI, fixed object area, clustered object distribution, 
constant object area, ellipse shapes parallel to the 
loading axis. 

Figure 7.5: Shows the effect of O.Ang. When the O.A is fixed and the object 
distribution is clustered, more "crack" initiations are observed when the O.Ang is 
parallel (b) to the loading axis than the case when it is perpendicular (a). Similar 
trends were observed for the case when the object distribution was random. 
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1.3.2 Automotive plain bearing lining -Al-Si-Sn 

Univariate Discussion (C.A,L.A.F) 

Again, let us consider the univariates case (i.e. C.A and L.A.F) first. For a 

given fixed O.A with random or clustered distribution, (i.e. BRCC k BCCC), the 

crack class C.A and L.A.F tends to fall either on low or high values (APP B2.1, Fig. 

1,2,3,4 compared to the "no crack" class). Further analysis of the mean and S.D 

values indicates that the C.A appears to be larger for crack initiating Si particles 

(table 7.4). For L.A.F, the analysis of the mean and SD is less clear (i.e. for the 

BRCC distribution, they are fairly similar for both classes while in BCCC, the 

"crack" class is higher). However, it is clear that when the objects are distributed 

randomly, there is less crack initiation compared to clustered distributions (APP 

Bl, Fig. 1 (BRCC - 10%) and Fig. 2 (BCCC - 30%)). Upon the O.A being varied 

(i.e. BRVC and BCVC), it can be seen that large O.A, C.A and L.A.F tends to 

initiate cracks (APP B2.1, Fig. 5,6,7). However, the effect of object distribution 

on "crack" initiation is less obvious (APP Bl, Fig. 3 (BRVC - 33%) and Fig. 4 

(BCVC - 35%)). 

Bivariate Discussion (O.Ang and C.Ang, L.A.F and dMean) 

Now, let us consider the bivariate analysis for O.Ang versus C.Ang. The ellip-

tical shapes with two extreme O.Ang situations were used in this case, the object 

being perpendicular to the loading axis (i.e. BRCE-90 and BCCE-90) and parallel 

to the loading axis (i.e. BRCE-0 and BCCE-0). When the O.Ang is set to be 

parallel to the loading axis, the "crack" class has large C.Angs (APP B2.2, Fig. 

8) and more cracks are observed (APP Bl, Fig. 5 and 7) than when the O.Ang 

is perpendicular to its loading axis (APP Bl, Fig. 6 and 8). When the object is 

perpendicular to its loading axis, the effect of C.Ang is difficult to assess as the 

"crack" class is distributed on its low and high values (APP B2.2, Fig. 9). This 

effect coincides with the SUPANOVA model (Fig. 6.5c and Fig. 6.6b) as we can 

see that the "crack" class tends to be on the high side of the O.Ang and is well 

distributed along the C.Ang (i.e in Fig. 6.5c the C.Ang is large and in Fig. 6.6b the 

C.Ang is small). When the objects are clustered (BCCE-90), the effect of C.Ang is 
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more difficult to assess (APP B2.2, Fig 10). The effect of crack initiation related 

to the object distribution in this case is not clear (i.e. APP Bl, Fig. 5 (BRCE-0 

(61%)), APP Bl, Fig. 7 (BCCE-0 (62%)) compared to APP Bl, Fig. 6 (BRCE-0 

(18%)), APP Bl, Fig. 8 (BCCE-90 (22%))). Next, consider the bivariates of L.A.F 

versus dMean- Given that the O.A is fixed (BRCC and BCCC), we observed that 

the "crack" class lies in the region where it has a small L.A.F with high dMean or 

large L.A.F with low dMean (APP B2.3, Fig. 11). This might be a reflection of 

the threshold effect from our SUPANOVA model (see Fig. 6.5d). Once the O.A is 

varied (i.e. BRVC and BCVC), the trends for the "crack" class are clearer and it 

has now shifted upwards with higher dMean and high L.A.F (APP B2.3, Fig. 12). 

We observed further that there is an inverse correlation (as might be expected) 

between the L.A.F and dMean which is approximately exponential for both classes. 

Trivariate Discussion (O.Ang and dMin and N.N.Ang) 

Now consider the trivariates for the O.Ang, dMin and N.N.Ang. In this simula-

tion the O.A and the O.Ang is fixed, to simplify the analysis. The O.Ang is again 

fixed as perpendicular or parallel to the loading axis. As such, we investigated 

the other two components {dMin and N.N.Ang) using the bivariate plots. It was 

observed that when the O.Ang is parallel to the loading axis (BRCE-0, BCCE-0) 

the "crack" class tends to have a small d^m (APP B2.4, Fig. 13 and 15) ranging 

from 0-2.5. This is further shown in APP B2.4, Fig. 16 indicating that the "crack" 

class has a smaller N.N.Ang. On the other hand, when it is perpendicular to the 

loading axis (APP B2.4, Fig 14, 17) the d^m are well distributed. The analysis 

when the O.Ang is perpendicular to the loading axis (i.e. BRCE-90 and BCCE-90) 

show that the "crack" class has larger dMin • The model from SUPANOVA (Fig. 

6.5e) indicates that as O.Ang, d^m and N.N.Ang gets larger, cracks are unlikely 

to initiate. Within our 0° particle simulation this can be seen to be true, although 

crack initiations are more prevalent for the distribution as a whole. 

Validation Data set Discussion 

The overview of this simulation set was a distribution with an elliptical shape 

object with varying O.A, O.Ang, random (BRVE-0) or clustered (BCVE-0). It 
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was observed that in this more realistic distribution which is closer to the original 

distribution, the "crack" class has large O A, O.Ang, C.A, C.Ang, L.A.F, more 

N.N.N and smaller N.N.Ang. Although the O.Ang for the clustered object is difficult 

to assess in its histogram plot (APP B2.5, Fig. 23), the mean and S.D values show 

that "crack" class value is higher (Table 7.4). When the object distribution is 

random (BRVE-6'), the effect of dMm (APP B2.5, Fig. 18) and dMean (APP B2.5, 

Fig. 19) is difficult to distinguish even by considering their mean and S.D values. 

However, when the object distributions are clustered (BCVE-0) the value of these 

two features becomes small for the "crack" class. It is also worth noting that in this 

instance, the C.A^ is now fairly similar for both classes as the objects are clustered 

(APP B2.5, Fig. 24). The effect on numbers of crack initiation sites of object 

distribution is not clear here (APP Bl, Fig. 9 (BRVE-6', random 28%) and Fig. 10 

(BCVE-0, clustered 24%). However, it implies that O A and hence object size are 

important for crack initiation. 

Let us now consider the case of bivariate and trivariate components. The bivari-

ate plot for both (random or clustered object distribution) shows that the "crack" 

class has large C.Ang value above 0.8 % 46° (APP B2.5, Fig. 20 and 25). For the 

case of the bivariates between dMean and L.A.F, it can be seen that the classes can 

be separated by an approximated curve with "crack" class on the higher side of 

the curve (i.e. low dMin, and high L.A.F). On further observation, when the ob-

jects are clustered (APP B2.5, Fig. 26) the "crack" class tends to have large L.A.F 

compared to the randomly distributed population (APP B2.5, Fig. 21). The vari-

ation in trivariate components (O.Ang, N.N.Ang and dmin) are considered via the 

bivariate plots between the N.N.Ang and duin for the two fixed O.Ang conditions. 

For randomly distributed objects (BRVE-6') and large O.Ang, the bivariate plots 

of N.N.Ang and dMin show that the "crack" class tends to have smaller N.N.Ang 

(APP B2.5, Fig. 22) mostly below value of 1 % 58°). This tallies with our SU-

PANOVA model which indicates large O.Ang, large d^in and large N.N.Ang make 

crack initiation unlikely. For the case when the objects are clustered (BCVE-0), 

the effect of O.Ang is difficult to distinguish between classes (as discussed earlier). 
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However, the bivariate plot of N.N.Ang and dMin show the "crack" class tends to 

have smaller dĵ r̂ n (APP B2.5, Fig. 27). 

Al-Si-Sn Conclusion 

In summary, once again, we see that by fixing the O.A, we see the importance of 

the object distribution (i.e. clustered distribution is likely to have more cracks (Ta-

ble 7.6a points 1 and 2). By varying the O.A, the clustering effect is overshadowed 

by the object size, hence L.A.F becomes more important. As such, large O.A, C.A 

and L.A.F (table 7.6a, points 3 and 4) are likely to initiate cracks. Furthermore, 

with the O.A being a varying parameter, we see that there is an exponential rela-

tionship between L.A.F and dMean (table 7.6b points 1-4 and Fig. 7.6). The O.Ang 

is assessed by varying between the two extreme values (i.e. perpendicular (BRCE-

90, BCCE-90) or parallel (BRCE-0, BCCE-0)) to the loading axis. Results show 

that as the O.Ang is parallel to the loading axis, more crack initiation is observed 

(table 7.6a points 5 and 7) as compared to those perpendicular to the loading axis. 

Also, when the O.Ang is parallel to the loading axis, it was observed that the d-Min 

was low in order to initiate cracks (table 7.6b, points 5 and 7 and Fig. 7.7) when 

the O.Ang are large. 
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CO 
CO 

Particles Distribution OJk O A O.Ang C A C A C.Ang L.A.F N.N.N d„i„ N.N.Ang No.of 
Otgects 

COVdMoa Particles Distribution 

Mean (S.D) Mean (S.D) Mean (S.D) Mean (S.D) Mean (S.D) Mean (S.D) Mwn (S.D) Mean (S.D) Mean (S.D) Mean (S.D) 

No.of 
Otgects 

COVdMoa 

Origin COM 5.23 (6.44) 1.49 (0.47) 0.88 (0.41) 72.23 (49.49) 1.67(1.40) 0.78 (0.45) 7.15 (5.72) 5.70 (1.45) 2.14 (1.88) 6.47 (2.66) 0.82 (0.46) 2938 0.41 
Crack 1217(11.54) 1.49 (0.36) 0.90 (0.41) 113.65 (58.60) 1.49 (0.42) 0.88 (0.43) 10.48 (6.42) 6.39 (1.39) 2.61 (1.87) 7.59 (2.50) 0.73 (0.44) 163 

0.41 

NoCrack 4.82 (5.75) 1.49 (0.48) 0.87 (0.41) 69.80 (47.81) 1.68 (1.43) 0.78 (0.45) 6.95 (5.62) 5.66 (1.44) 2.12(1.79) 6.40 (2.65) 0.82 (0.46) 2775 

0.41 

BRCC COM 5.36 (0) 1.01 (0) 0.81 (0) 71.02 (30.24) 1.54 (0.38) 0.82 (0.44) 9.16 (4.25) 5.67 (1.18) 2.38(1.64) 6.40 (2.14) 0.68 (0.42) 56 0.33 
Crack 5.36 (0) 1.01 (0) 0.81 (0) 81.03 (48.63) 1.82 (0.42) 1.15(0.37) 9.23 (5.31) 6.50 (1.38) 1.81 (2.23) 7.89 (3.31) 0.47 (0.40) 6 

0.33 

NoCrack 5.36 (0) 1.01 (0) 0.80 (0) 69.98 (28.14) 1.52 (0.37) 0.78 (0.44) 9.15(4.18) 5.59(1.14) 2.44 (1.58) 6.25(1.97) 0.70 (0.42) 58 

0.33 

BCCC COM 5.36 (0) 1.01 (0) 0.81 (0) 67.88 (50.42) 1.55 (0.48) 0.71 (0.46) 11.97 (7.14) 5.75(1.19) 1.84 (1.33) 5.80 (3.14) 0.95 (0.42) 63 0.54 
Crack 5.36 (0) 1.01 (0) 0.81 (0) 89.32 (79.15) 1.40 (0.31) 0.92 (0.36) 13.98(10.84) 5.84(1.42) 1.91 (1.69) 6.80 (4.84) 0.77 (0.47) 19 

0.54 

NoCrack 5.36 (0) 1.01 (0) 0.81 (0) 58.63 (27.42) 1.62 (0.53) 0.62 (0.48) 11.10(4.67) 5.70(1.09) 1.81 (1.17) 5.36 (1.94) 1.02 (0.38) 44 

0.54 

BRVC COM 4.80 (4.24) 1.06 (0.05) 0.76 (0.36) 65.76 (33.29) 1.62 (0.46) 0.81 (0.47) 7.36 (5.33) 5.68(1.32) 2.15(1.76) 6.53 (2.06) 0,68 (0.45) 65 0.32 
Crack 9.15(4.37) 1.03 (0.02) 0.81 (0) 81.53 (36.66) 1.55(0.46) 0.82 (0.47) 12.59(5.31) 6.14(1.08) 1.91 (1.45) 6.64 (2.06) 0.75 (0.47) 22 

0.32 

NoCrack 2.58(1.72) 1.07 (0.06) 0.80 (0) 57.68 (28.62) 1.66 (0.45) 0.81 (0.48) 4.68 (2.73) 5.44(1.39) 2.27(1.90) 6.48 (2.08) 0.64 (0.44) 43 

0.32 

BCVC COM 4.70 (3.93) 1.06 (0.05) 0.77 (0.39) 68.82 (42.33) 1.65 (0.43) 0.86 (0.42) 9.04 (8.47) 5.77 (1.45) 1.98(1.37) 6.21 (2.91) 0.75 (0.40) 62 0.47 
Crack 8.22 (4.46) 1.03 (0.02) 0.81 (0) 91.42 (51.42) 1.51 (0.34) 0.82 (0.45) 13.83 (11.16) 6.73 (1.49) 1.79(1.47) 7.02 (3.73) 0.68 (0.33) 22 

0.47 

NoCrack 2.76 (1.61) 1.07(0.06) 0.80 (0) 56.39 (30.55) 1.72 (0.46) 0.88 (0.40) 6.40 (5.01) 5.25 (1.15) 2.08 (1.32) 5.77 (2.29) 0.79 (0.44) 40 

0.47 

BRCE-0 COM 5.55 (0.01) 1.44 (0.01) 1.51 (0) 72.90 (35.79) 1.43 (0.32) 0.92 (0.38) 9.85 (5.40) 5.81 (1.17) 2.09 (1.82) 6.27 (2.12) 0.85 (0.43) 57 0.34 
Crack 5.55 (0.01) 1.44 (0.01) 1.51 (0) 69.71 (38.53) 1.40 (0.28) 1.08 (0.30) 10.85 (6.22) 5.51 (1.01) 1.60 (1.72) 6.02 (2.51) 0.66 (0.40) 35 

0.34 

NoCrack 5.55 (0.01) 1.44 (0.01) 1.51 (0) 77.98 (31.13) 1.48 (0.36) 0.66 (0.35) 8.27 (3,28) 6.27(1.28) 2.87 (1.74) 6.68 (1.97) 1.15(0.29) 22 

0.34 

BRGE-90 COM 5.54 (0.01) 1.52 (0) 0.00 (0) 72.91 (34.46) 1.52 (0.37) 0.64 (0.39) 9.57 (5.06) 5.67(1.11) 2.07(1.65) 6.46 (2.26) 0.69 (0.43) 61 0 ^ 
Crack 5.54 (0.01) 1.52 (0) 0.00 (0) 115.10(49.46) 1.54 (0.47) 0.55 (0.40) 7.87 (8.26) 5.81 (1.25) 3.20 (2.13) 8.61 (2.82) 0.66 (0.43) 11 

0 ^ 

NoCrack 5.54 (0.01) 1.52 (0) 0.00 (0) 63.63 (21.62) 1.52 (0.35) 0.66 (0.39) 9.95 (4.08) 5.64 (1.08) 1.83(1.44) 5.99 (1.83) 0.69 (0.43) 50 

0 ^ 

BCCE-0 COM 5.55 (0) 1.44 (0) 1.51 (0) 71.07 (39.13) 1.55 (0.40) 0.88 (0.46) 10.00 (4.76) 5.77 (1.10) 1.97(1.62) 6.16(2.55) 0.84 (0.50) 61 0.41 
Crack 5.55 (0) 1.44(0) 1.51 (0) 68.83(40.15) 1.61 (0.45) 1.13(0.33) 10.46(4.90) 5.76 (1.20) 1.69 (1.63) 6.02 (2.63) 0.66 (0.46) 38 

0.41 

NoCrack 5.55 (0) 1.44 (0) 1.51 (0) 74.77 (37.97) 1.46 (0.26) 0.48 (0.33) 9.25 (4.52) 5.78 (0.95) 2.43 (1.58) 6.37 (2.44) 1.14(0.41) 23 

0.41 

BCCE-90 COM 5.54 (0.01) 1.51 (0.01) 0.00 (0) 73.20 (57.40) 1.54 (0.39) 0.69 (0.42) 11.91 (8.02) 5.69(1.15) 2.07 (2.01) 6.03 (3.23) 0.77 (0.45) 59 0.55 
Crack 5.54 (0.01) 1.51 (0.01) 0.00 (0) 139.41 (88.30) 1.45 (0.21) 0.67 (0.35) 9.54(11.78) 6.38(1.33) 4.04 (2.99) 9.57 (4.74) 0.96 (0.51) 13 

0.55 

NoCrack 5.54(0.01) 1.51 (0.00) 0.00 (0) 54.49(23.31) 1.57 (0.42) 0.69 (0.44) 12.59 (6.62) 5.50 (1.03) 1.51 (1.18) 5.04 (1.90) 0.72 (0.42) 46 

0.55 

BRVE-9 COM 4.80 (4.94) 1.52 (0.11) 0.79 (0.50) 67.26 (30.37) 1.44 (0.29) 0.69 (0.48) 7.48 (6.32) 5.72(1.24) 2.30(1.68) 6.44 (2.29) 0.92 (0.46) 64 0.36 
Crack 10.04 (6.21) 1.49 (0.05) 0.97 (0.47) 91.82 (27.44) 1.40 (0.17) 1.05 (0.46) 12.09 (7.63) 6.39 (0.92) 2.38(1.56) 6.60 (2.09) 0.81 (0.46) 18 

0.36 

NoCrack 2.75 (2.06) 1.54 (0.12) 0.71 (0.50) 57.65 (25.91) 1.45 (0.33) 0.55 (0.42) 5.67 (4.69) 5.46 (1.26) 2.27(1.74) 6.38 (2.38) 0.97 (0.46) 46 

0.36 

BCVE-6 COM 4.67 (4.96) 1.53 (0.11) 0.67 (0.45) 59.53 (34.09) 1.63 (0.45) 0.75 (0.47) 8.80 (6.85) 5.61 (1.21) 1.71 (1.55) 5.77 (2.45) 0.84 (0.44) 66 0.42 
Crack 11.30 (5.95) 1.53 (0.04) 0.72 (0.46) 69.54 (25.47) 1.61 (0.42) 0.98 (0.44) 16.28 (5.40) 6.25(1.39) 1.84 (0.89) 5.08(1.47) 0.79 (0.47) 16 

0.42 

NoCrack 2.55(1.72) 1.53 (0.12) 0.66 (0.45) 56.33 (36.06) 1.63 (0.46) 0.68 (0.46) 6.40 (5.41) 5.40(1.09) 2.07(1.61) 5.99 (2.66) 0.86 (0.43) 50 

0.42 

Table 7.5: Summary of the mean and standard deviation (S.D) values of the simulated data sets and the original data set "Origin" for Al-Si-Sn. 
COM denotes the complete set of simulated data. "Crack" and "no crack" class denotes the breakdown of their class distributions. NOTE: the 
values of the boundary cells are not considered here and some slight rounding errors may appear, this is due to conversion from simulated data to 
FBT data. 



CO tl̂  

Components 
Cell Area 

(C.A) 
& 

Local Area 
Fraction 
(L.A.F) 

Object 
Angle 

(O.Ang) 
VS 

Cell Angle 
(C.Ang) 

Simulated parameters 
Fix O.A + Random 
Distribution (BRCC) 

Fix O.A + Clustered 
Distribution (BCCC) 

Vary O.A + Random 
Distribution (BRVC) 

4. Vary O.A + Clustered 
Distribution (BCVC) 

Fix O.A + Random 
Distribution + Angle 0 
(BRCE-0°) 
Fix O.A + Random 
Distribution + Angle 90 
(BRCE-90°) 
Fix O.A + Clustered 
Distribution + Angle 0 
(BCCE-0°) 
Fix O.A + Clustered 
Distribution + Angle 90 
(BCCE-90°)) 

Results 
The crack class appears to have low and high values of the 

C.A (APP B2.1, f igl) . The mean and S.D value of the crack 
class is larger (table 7,4). 

The crack class appears to have low and high values of the 
L.A.F (APP B2.1, fig2). The mean value of both class are 
fairly similar with crack class having a higher standard 
deviation (S.D) (table 7.4). 

Similar observation as for BRCC was made for the case of 
the C.A(APPB2.1.fig3). 

Similar observation as for BRCC was made for the case of 
the L.A.F (APP B2.1, fig4). However, the mean and S.D 
values are obsei-ved to be higher for the crack class. 

Given that the O.A are fixed, more cracks were initiated 
for the clustered case (i.e. Random (BRCC) - 10% (APP Bl, 
fig n and Clustered f B C C O - 30% TAPP Bl. fig 2̂  
Crack class has large O.A, C.A and L.A.F (APP B2.1, fig 
5.6.7). 
Crack class has large O.A, C.A and L.A.F similar to that 
observed in BRVC. 
The number of cracks initiated is not significantly different 
between both simulations when the O.A varies (i.e. Random 
(BRVC) - 33% (APP B1. fig 3) and Clustered (BCVC) - 35% 
(APP Bl. fig 4'). 
The crack class has large C.Ang (APP B2.2, fig 8). 
Crack initiation sites are 61% of particles (APP Bl, fig 5). 

The crack class appears to have more low and high values of 
the C.Ang (APP B2.2, fig 9). 
Crack initiation sites are 18% of particles (APP Bl. fig 6). 
The crack class has large C.A. 
Crack initiation sites are 62% of particles (APP Bl, fig 7). 

It is difficult to assess which class distribution is significant in 
C.Ang (APP B2.2, fig 10). The mean and S.D values for both 
classes are fairly similar (table 7.4). 
Crack initiation sites are 22% of particles (APP Bl , fig 8). 

Summai-y 
Given a fixed O.A, the effect 
of the cell area and L.A.F is 
difficult to asses. However, 
object clustering tends to 
initiate more cracks. 
When the O.A is varied, the 
clustering effects seems to be 
shielded by the effect of the 
L.A.F. 
Higher consistency (i.e. more 
10/10 cases) of larger O.A 
causing crack initiation were 
picked up when the object size 
is varied. 

When the O.Ang is parallel to the 
loading axis, crack initiation is 
more likely to occur than when it 
is perpendicular. 
The effect on crack initiation of 
the object distribution is not clear 
(i.e. BRCE-0 - 61% , BCCE-0 -
62% and BRCE-90 - 1 8 % , 
BRCE-90-22%) 
The effect seen here that crack 
class tends to have either low or 
high values of the C.Ang is 
reflected in our SUPANOVA 
model (fig 6.5c). 

Table 7.6a: Summary of results for Al-Si-Sn obtained from the simulated data set produced to enhance model interpretability. 



C/J 

ComDonents Simulated oarameters Results Summary 
L.A.F 

Vs 
Mean Near 
Neighbour 

Distance (dwom) 

1. Fix O.A + Random 
Distribution (BRCC) 

• There appears to be an inverse relationship between L.A.F 
and dMcan as the crack class appears to lie on a slightly higher 
line (APP B2.3, fig 11) (i.e. for a given L.A.F, dwcm slightly 
higher") 

• The relationship between the 
L.A.F and dMcm can be seen to 
be an inverse exponential (APP 
B2.3, fig 11 and fig 12). 

• Given a fixed O.A, the crack 
class either Ues on the region 
where it has small L.A.F with 
large dwcm or high L.A.F with 
low dMcan-

• When the O.A is varied, both 
dMcan and L.A.F for the crack 
class has now shifted to higher 
values. This is due to the 
increase in large L.A.F, which 
is likely to be attributed to 
larger obiects. 

L.A.F 
Vs 

Mean Near 
Neighbour 

Distance (dwom) 2. Fix O.A + Clustered 
Distribution fBCCCl 

• Similar to that observed in BRCC. 

• The relationship between the 
L.A.F and dMcm can be seen to 
be an inverse exponential (APP 
B2.3, fig 11 and fig 12). 

• Given a fixed O.A, the crack 
class either Ues on the region 
where it has small L.A.F with 
large dwcm or high L.A.F with 
low dMcan-

• When the O.A is varied, both 
dMcan and L.A.F for the crack 
class has now shifted to higher 
values. This is due to the 
increase in large L.A.F, which 
is likely to be attributed to 
larger obiects. 

L.A.F 
Vs 

Mean Near 
Neighbour 

Distance (dwom) 

3. Vary O.A + Random 
Distribution (BRVC) 

• The dMcan for the crack classes has now shifted to higher 
values CAPP B2.3. fig 121 

• The relationship between the 
L.A.F and dMcm can be seen to 
be an inverse exponential (APP 
B2.3, fig 11 and fig 12). 

• Given a fixed O.A, the crack 
class either Ues on the region 
where it has small L.A.F with 
large dwcm or high L.A.F with 
low dMcan-

• When the O.A is varied, both 
dMcan and L.A.F for the crack 
class has now shifted to higher 
values. This is due to the 
increase in large L.A.F, which 
is likely to be attributed to 
larger obiects. 

L.A.F 
Vs 

Mean Near 
Neighbour 

Distance (dwom) 

4. Vary O.A + 
Clustered 
Distribution (BCVC) 

• Similar to that observed as in BRVC. 

• The relationship between the 
L.A.F and dMcm can be seen to 
be an inverse exponential (APP 
B2.3, fig 11 and fig 12). 

• Given a fixed O.A, the crack 
class either Ues on the region 
where it has small L.A.F with 
large dwcm or high L.A.F with 
low dMcan-

• When the O.A is varied, both 
dMcan and L.A.F for the crack 
class has now shifted to higher 
values. This is due to the 
increase in large L.A.F, which 
is likely to be attributed to 
larger obiects. 

O.Ang 
Vs 

Nearest Neighbour 
Distance (dwm) 

Vs 
Nearest Neighbour 

Angle (N.N.Ang) 

5. Fix O.A + Random 
Distribution + Angle 
0 fBRCE-0°) 

• The bivariate plot between N.N.Ang and dwm shows that the 
crack class tends to have low dwm (APP B2.4, fig 13). 

• When the O.Ang is set parallel 
to the loading axis, the crack 
class has low dwh (range from 
0L3). 

• On the contrary when the 
O.Ang is set perpendicular to 
the loading axis, the clustered 
objects show that the crack 
class has dwin are well 
distributed. 

• From the SUPANOVA model, 
it can be seen that as the O.Ang, 
dmin and N.N.Ang get larger, 
crack initiation is unlikely. 

O.Ang 
Vs 

Nearest Neighbour 
Distance (dwm) 

Vs 
Nearest Neighbour 

Angle (N.N.Ang) 

6. Fix O.A + Random 
Distribution + Angle 
90 fBRCE-gO") 

• The bivariates plots between N.N.Ang and dwm show that the 
crack class dwm are well distributed (APP B2.4, fig 14). 

• When the O.Ang is set parallel 
to the loading axis, the crack 
class has low dwh (range from 
0L3). 

• On the contrary when the 
O.Ang is set perpendicular to 
the loading axis, the clustered 
objects show that the crack 
class has dwin are well 
distributed. 

• From the SUPANOVA model, 
it can be seen that as the O.Ang, 
dmin and N.N.Ang get larger, 
crack initiation is unlikely. 

O.Ang 
Vs 

Nearest Neighbour 
Distance (dwm) 

Vs 
Nearest Neighbour 

Angle (N.N.Ang) 7. Fix O.A + Clustered 
Distribution + Angle 
0 (BCCE-0°) 

• The bivariate plot between N.N.Ang and dwm shows that the 
crack class again has low dinin (APP B2.4, fig 15). Further 
obsei-vation of the histogram plot of N.N.Ang distribution 
shows that the no crack has larger values (APP B2.4, fig 161. 

• When the O.Ang is set parallel 
to the loading axis, the crack 
class has low dwh (range from 
0L3). 

• On the contrary when the 
O.Ang is set perpendicular to 
the loading axis, the clustered 
objects show that the crack 
class has dwin are well 
distributed. 

• From the SUPANOVA model, 
it can be seen that as the O.Ang, 
dmin and N.N.Ang get larger, 
crack initiation is unlikely. 

O.Ang 
Vs 

Nearest Neighbour 
Distance (dwm) 

Vs 
Nearest Neighbour 

Angle (N.N.Ang) 

8. Fix O.A + Clustered 
Distribution + Angle 
90 (BCCE-90'3 

• The bivariates plots between N.N.Ang and dwm show that the 
crack class has large dwm (APP B2.4, fig 17). 

• When the O.Ang is set parallel 
to the loading axis, the crack 
class has low dwh (range from 
0L3). 

• On the contrary when the 
O.Ang is set perpendicular to 
the loading axis, the clustered 
objects show that the crack 
class has dwin are well 
distributed. 

• From the SUPANOVA model, 
it can be seen that as the O.Ang, 
dmin and N.N.Ang get larger, 
crack initiation is unlikely. 

Table 7.6b: Continued from Table 7.6a. 



CO 
G) 

Components 
Overview 

Simulated parameters 
1. Vai-y O.A + Vary object 

Angle +Random 
Distribution (BRVE-0) 

Results 
Crack class has a large O.A 
Crack class has a large O.Ang 
Crack class has a large C.A 
Crack class has a small Cell Aspect Ratio (C.AJ 
Crack class has a large C.Ang 
Crack class has a large L.A.F 
Crack class has more near neighbours (N.N.N) 
It is difficult to assess both class distributions of the dwm 
(APP B2.5, fig 18) even with the mean and S.D values 
(table 7.4). 
It is difficult to assess both class distributions of the dwcm 
(APP B2.5, fig 19) even with the mean and S.D values 
(table 7.4). 
Crack class has smaller N.N.Ang. 
28% crack initiation sites observed (APP Bl, fig 9) 
The bivariate plot for C.Ang and O.Ang show that the crack 
class tends to have large C.Ang (APP B2.5, fig 20) 
The bivariate plot for dwan and L.A.F tends to show that as 
the dMcan decreases, the L.A.F increases and this relationship 
occurs at higher dwcm values for the case of the crack class 
(APPB2.5,fig21) 
The bivariate plot for N.N.Ang and dnm show that the crack 
class tends to have smaller N.N.Ang (APP B2.5, fig 22). 

Summarv 
It is clear that the crack class has 
large O.A, O.Ang, C.A, C.Ang, 
L.A.F, more N.N.N and a 
smaller N.N.Ang. 
When the object distribution is 
random, the dwm and dwcm are 
difficult to assess. However, 
when the object distribution is 
clustered (BCVE-0), the crack 
class has smaller dwm and smaller 
dMcan. This also produces a 
similar C.Ar for class. 
Upon varying the O.A, the 
clustered distribution does not 
necessarily have more crack 
initiations observed. This implies 
that the O.A is a more important 
factor than any clustering effect 
(BRVE-e - 28% and BCVE-O -
24%) 
The bivariates for the C.Ang and 
O.Ang show that the crack tends 
to have large C.Ang (value 
above 0.8 which is 
approximately 45°) and between 
dMcan and L.A.F an inverse 
relationship at higher dMcan 
values for the case of the crack 
class. 
The bivariate plot for N.N.Ang 
and dMin for the random object 
distribution show that the crack 
class tends to have smaller 
nearest N.A.Ang while for the 
case of the clustered object 
distribution , the crack class was 
observed to have small duin. 

Table 7.6c: Con t inued f r o m Table 7.6a. 



Components 

CO 
-<I 

Simulated parameters 
1, Vary O.A + Vary object 

Angle + Clustered 
Distribution (BCVE-0) 

Results 
Crack class has a large O.A 
It is difficult to assess both class distributions for the O.Ang 
(APP B2.5, fig 23). The mean values suggest that the crack 
class has a larger O.Ang (table 7.4). 
Crack class has a large C.A 
It is difficult to assess both class distributions for C.Ar (APP 
B2.5, fig 24) even the mean and S.D values are fairly similar 
(table 7.4). 
Crack class has a large C.Ang 
Crack class has large L.A.F 
Crack class has more N.N.N 
Crack class has smaller dwm 
Crack class has smaller dwan 
Crack class has smallerN.N.Ang. 
24% crack initiation sites (APP Bl, fig 10) 
The bivariate plots for C.Ang and O.Ang shov/ that cracks 
tend to have large C.Ang (APP B2.5, fig 25) 
The bivariate plots for dwcm and L.A.F show that as the dmean 
decreases, the L.A.F increases and this relationship occurs at 
higher dMean values for the case of the crack class (APP B2.5, 
GgZQ 
The bivariate plots for N.N.Ang and dwm show that the crack 
class tends to have smaller dwrn (APP B2.5, fig 27). 

Summary 
See Above 

Table 7.6d: Continued from Table 7.6a. 



Bivariate plots of L.A.F Vs ^Mean 

00 VQ 

a.) BRCC - O.A are FIXED b.) BRVC - O.A are VARIED 

Figure 7.6: The bivariate plots of dMean and L.A.F. Their relationship can be seen 
as an inverse exponential trend. When the O.A is fixed (a), this relationship is not 
obvious as compared to the case when O.A is varied (b.) 

Bivariate plots of N.N.Ang Vs 
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a.) BRCE-0 - O.Ang parallel to the loading axis b.) BRCE-90 - O.Ang perpendicular to the loadi: 

Figure 7.7: The bivariate plots of N.N.Ang and d^m- a.) when the O.Ang is 
parallel (or large O.Ang) to loading axis, the "crack" class tends to lie on small 
^Min (range between 0-2.5). b.) when the O.Ang is perpendicular (or small O.Ang) 
to loading axis, the "crack" class tends to be well distributed along dMm 
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7.4 Relationship between the results from SUPANOVA model and 

simulated data 

Chapter 6.2.1 and 6.3.2 provides a detailed description of the results obtained from 

the SUPANOVA model. The previous section in this chapter described the results 

from our simulated particle distributions. Now, let us compare the two sets of 

results together in each application (i.e. ADI and Al-Si-Sn). 

API 

Let us begin with ADI. The effect of the univariate components selected from 

the SUPANOVA is fairly clear cut. It shows that as C.A, L.A.F, N.N.N gets larger, 

cracks will initiate. From the simulated data, we can see that the effect of C.A is 

not independent of O.A and L.A.F sizes as when O A is held constant, the large C.A 

no longer predicts crack initiations (see App A2.1, Fig. 1). Although inspection of 

means indicates the crack class tends to have a large C.A, the standard deviation is 

very high, thus large C.A alone does not uniquely specify crack initiation as shown in 

our simulation. For the case of the L.A.F, the SUPANOVA model results tallies with 

our simulated model (see App A2.1, Fig. 5), as we can clearly see that large L.A.F 

tends to initiate cracks. The final univariate is the N.N.N. Again, the SUPANOVA 

model results tally with our simulated model as we can see that clustering (see App 

Al, Fig. 2) initiates more cracks than randomly distributed objects (see App Al, 

Fig. 1). Furthermore, we observed from the simulated data set that when the O.A 

is fixed, the significance of the clustering efi'ect can be visualised easily. 

The bivariate component from the SUPANOVA model indicates that as O.Ang 

and d-Min gets larger, cracks are less likely to initiate. The simulated data tallies 

with this finding (i.e. when the O.Ang is perpendicular to the loading axis (APP 

Al, Fig. 5), cracks are unlikely to initiate compared to those that are parallel 

(App Al, Fig. 6)). Finally, the bivariate plot of duean and N.N.Aug from the 

SUPANOVA model indicates that as both N.N.Ang and dMean are large, cracks 

are likely to initiate. The dMean value depends on many factors, including N.N.N 

and their spacing, where it can be considered to refiect clustering (although not 

unambiguously) and a high may redect a relatively unclustered situation, 
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which may allow for the positioning of the N.N to be more influential in affecting 

the central graphite nodule. Our simulated data indicates that when the object is 

randomly distributed (App A2.3, Fig. 13) the "crack" class have a large N.N.Ang. 

Al-Si-Sn 

The above analysis for the univariate components (i.e. the C.A and L.A.F) 

in the ADI is also applicable to the case of Al-Si-Sn. Next, we will examine the 

bivariate and trivariate components for the Al-Si-Sn. The bivariate plots of O.Ang 

and C.Ang from the SUPANOVA model shows a complex non-linear trend which 

indicates a large O.Ang and C.Ang are likely to initiate cracks (Fig. 6.5c). Our 

simulated data tallies with this finding, as we observed that as our O.Ang is set to 

be parallel to the loading axis (i.e. large), cracks are more likely to initiate (App 

Bl, Fig. 5 and 7) compared to those that are perpendicular (App Bl, Fig. 6 and 

8). Also, we observed that when the O.Ang is set to be perpendicular to the loading 

axis, the "crack" class lies on either low and high values of C.Ang. These trends 

can be observed in the SUPANOVA figure 6.5. 

For the next bivariate plot of L.A.F and dMean from the SUPANOVA model, a 

hyperplane of a concave shape is seen along the diagonal of both increasing axes 

(i.e. as both features increase) indicating a threshold (see Fig. 6.5d) for these two 

features. This threshold effect can be seen in our simulated data (App B2.3, Fig. 

12), indicates that the "crack" class has large dMean- The trivariate components 

selected by SUPANOVA indicate that as all inputs increase (i.e. O.Ang, dMin and 

N.N.Ang) it is unlikely to initiate cracks (Fig. 6.5e). This trend can be observed 

from our simulated data (App B2.4, Fig. 13). 

Conclusion 

The relationship between the results obtained from the SUPANOVA models 

mostly tallies with that of the simulated results accept for the case of the C.A. The 

SUPANOVA model indicates that large C.A tends to initiate cracks. On the other 

hand, we observed from our simulated model when the O.A is fixed large C.A does 

not necessarily initiate cracks. A better indication of crack initiation would be the 

L.A.F. Clustering in particle distributions has generally been shown to promote 
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crack initiation. Another example which is interesting is the O.Ang. When the 

O.Ang is parallel to the loading axis, we see that for both cases (ADI and Al-Si-Sn), 

crack initiation is more likely to occur compared to when the O.Ang is perpendicular 

to the loading axis. This is somewhat counterintuitive, as if crack initiation occurred 

by particle cracking, we might expect a particle aligned perpendicular to the tensile 

axis to crack more easily. However, in these 2 cases, the initiation mechanism 

is via decohesion, which appears promoted for interfaces aligned parallel to the 

loading axis. Decohesion may occur by a combination of peak tensile stress, peak 

hydrostatic stress and strain accumulation effects which may be affected differently 

by particles shape. 

7.5 Summary 

The FBT components selected by the SUPANOVA decomposition identifying crack 

initiation sites are inter-related and it is difficult to simulate variations in them sys-

tematically. However, we can use particle simulations which provide self-consistent 

distributions to assess those components which give rise to increased fatigue ini-

tiation. Four parameters in the particle simulations were varied systematically, 

namely, the object shape, the O.A, the object distribution and the O.Ang. The 

object shape allows the effect of the O.Ang to be eliminated (i.e. when it is cir-

cular in shape, there is no O.Ang). The O.A allows the effect of object size to 

be assessed and helps to identify which of the linked parameters (C.A, L.A.F) are 

determining initiation (i.e. L.A.F and not C.A). The object distribution allows the 

effect of clustering to be assessed. Finally, the O.Ang has been assessed for the 

two extreme situations, perpendicular to the loading axis or parallel to the load-

ing axis. Varying this parameter systematically provides a better interpretability 

to our model produced by the SUPANOVA. For example, a fixed O.A shows the 

effect of clustering (i.e. clustering tends to lead to more cracks). When the O.A 

is varied, the significance of the clustering effect is shielded or outweighed by the 

effect of large objects. This is seen in both our data sets, given that they are quite 

different mechanical situations (soft particles in a hard matrix (ADI) and vice versa 
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(Al-Si-Sn)) this is intriguing, although it should be noted that a decohesion mech-

anism of fatigue initiation has been proposed for both cases. These are specific 

examples of how we have used systematic variations in simulated particle distri-

butions to further assess the SUPANOVA classification model. Our analysis goes 

on further to make comparisons between the results obtained from the application 

of the SUPANOVA classification model to the simulated particle distributions and 

the input terms selected by the SUPANOVA model. These trends observed in the 

SUPANOVA model tally with most of the simulated data set except for the C.A. 

The simulated data shows that only large C.A with large L.A.F are the true fatigue 

crack initiation factors. O.Ang shows the same effect in the two applications consid-

ered, where particles with their major axis oriented parallel to the loading axis are 

more likely to initiate cracks. Generally speaking, similar relationships have been 

identified for the two applications - e.g. C.A, L.A.F. In both cases, more clustered 

particle distributions are predicted to initiate more fatigue cracks, as indicated by 

L.A.F, N.N.N dependencies. There are clearly more parameters within the particle 

simulation packages to be investigated in future work. 
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Chapter 8 

Conclusions and Future Work 

Most machine learning requires modifications to the cost function to incorporate 

misclassification costs and sampling bias costs in order to he used appropriately for 

imbalanced data. Their performance criteria (e.g. Amean or Gmean) may also 

be altered to be less sensitive to the skewness distribution of the classification rate 

(Gmean being more appropriate than Amean). A classification model with good 

prediction tends to he complex and therefore difficult to interpret. Interpretation 

is valuable in identifying which features are important in classifying behaviour and 

AeMce AeZp m cri^eno. A parazmonwug mo&Z coM 

made by model structure decomposition and sparse selection, hence providing an 

interpretahle model. The SUPANOVA approach uses a spline kernel and ANOVA 

decomposition followed hy a sparse selection of ANOVA terms to provide model 

et al. et al. GuMn Aoue 

aiiccegg/uH?/ oppZied /or repreaaion Wks m mho?is acieMce 

worA; (o (Ae coge 0/ 

(0 gcience /a^z^^e /ozZure proAZemg. 

8.1 Summary of Work 

This thesis focuses on (1) the classification and hence prediction of crack initia-

tion sites in two automotive materials systems (2) producing an interpretive model, 

hence developing a new understanding of the relationship between the input features 

obtained from Finite Body Tessellation (FBT) and fatigue initiation. Two sets of 

fatigue initiation data which were obtained from automotive materials, (camshaft 
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(ADI) and plain journal bearing lining (Al-Si-Sn)), and using SUPANOVA devel-

oped for classification of imbalanced data. As in many real world problems, the 

crack initiation data was smaller than the "no crack" majority class. The results 

show that the extended approach for SVMs requires a sampling bias and if neces-

sary, a higher misclassification cost for the minority class for a set of imbalanced 

data. The ratio between the imbalanced modification factor (i.e. L's) is an impor-

tant parameter. The results from the Non-Standard Situation (NSS) SVM provide 

a good guide to the necessary ratio of the L's. However, fine tuning is required 

to obtain better results. In both data sets, a successful classification rate of both 

classes of at least 0.70 was obtained. The structure of this classification model is 

then decomposed to provide a parsimonious model to aid model interpretability. 

This is done using the SUPANOVA for classification for imbalanced data. The 

parsimonious model comprises a sum of subset components (6 components for both 

applications) which were selected out of a possible 512 and 1024 combinations for 

the ADI and the Al-Si-Sn respectively. The trends of the 6 input components se-

lected by the model have been assessed in terms of the mechanistic understanding 

they provide for the fatigue initiation phenomena. Here, it has been possible to 

consider significant bivariate and trivariate interactions in addition to univariate 

eSects which could also be picked out by simple approaches such as observing their 

means, standard deviations and simple visualisation plots. A simulated data set 

was then used to further visualise the effects and interrelationships of these 6 com-

ponents selected for each case. For example, in both cases, the univariate function 

selected by our model, which shows that a large cell area (C.A) promotes crack 

initiation, has been further examined. It has been shown that it is not a good 

indicator of crack initiation by itself. It is necessary for both a large C.A and a 

large L.A.F to be present to initiate cracks. As such, this work has successfully 

picked up some of the significant features of the particle that lead to 

fatigue initiation in these materials (e.g. clustering) allowing further optimisation 

of these microstructures by considering the model predictions on simulated particle 

distributions. There is a diversity of real world applications with similar problems. 
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(i.e. with imbalanced data where parsimonious models are desirable, as opposed to 

complex models). The work, therefore has a broad-based application potential. 

8.2 Future Work 

There are several areas of future work that can be extended from this research from 

both the modelling and materials point of view. They are listed as follows : 

From the modelling point of view ; 

• The current work uses misclassification cost and sampling bias to tackle the 

problem of imbalanced data. Other approaches, such as clustering (e.g. Learn-

ing Vector Quantisation (LVQ) as described in chapter 5.1) can be used sys-

tematically to reduce the number of majority class samples. The reason for 

not using more data from the majority class in this work has been to enable 

computation efficiency. 

• Rather than reducing the number of data which may lead to less true rep-

resentation of our data distribution, a faster algorithm could be used. Work 

has already been carried out in the image processing field to increase com-

putational efficiency in SVM such as chunking algorithms which essentially 

breaks the large data set into smaller subsets which are then combined (Osuna 

et al 1996). The SVM is trained with an algorithm that starts with an ar-

bitrary subset/'chunk' of training data, those support vectors are used to 

construct the hypothesis on the remaining training data and the points that 

violate the KKT conditions are added to the previous support vectors of the 

previous system to form a new chunk. A stopping criteria is then used to stop 

this procedure. 

e The current work on SUPANOVA for imbalanced data requires four stages, de-

scribed in chapter 5.5 and the best classification rate is obtained in a heuristic 

way. The classification rate used is based on the Geometric Mean (GMean). It 

would be interesting to incorporate this model selection into the loss function 

and then optimising the model can be done automatically. 
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® Setting the output of the SVM for classification to be probabilistic is ad-

vantageous as it allows for confidence in the determination of class member-

ship. A brief description of work done based on probabilistic SVM follows. 

(Vapnik 1995) (decompose the feature space), (Wahba et al. 1999) (logistic 

link function), (Piatt 2000) ( logistic link function with sparse representa-

tion in place) and several authors (Sollich 2000, Kwok 1999, Seeger 1999) 

use the Bayesian framework. With a Bayesian framework, the training of 

SVM can be viewed as maximising posterior (MAP) solution to an inference 

problem (Kwok 1999). The problem associated with a Bayesian approach for 

probabilistic SVM lies in the difficulties involved in trying to normalise the 

prior (note: SVM prior is simply a Gaussian Process over latent function) 

(Sollich 2000). Recent work by (Tipping 2000) uses a unique prior defined by 

its data size and location of the training input. This is known as the relevant 

support vector machine. (Herbrich et al. 2001) eliminate the SVM prior to 

normalising using the Bayes point SVM. In this work, the prior is replaced 

by a spherical one (i.e. ||w|| = 1 uses only the spatial direction of the weight 

vectors which is important for classification). 

• Transforming the SVM output to a probabilistic term and then using the SU-

PANOVA for decomposition would provide more meaningful interpretability 

of the value of the output (e.g. in the plot of the components selected, the y 

axis is an indication function where the absolute value has no significance but 

we use the "sign" to provide interpretability to our model (i.e. a implies 

crack initiation and a"-|-" implies no crack initiation)). 

From a metallurgist's view point : 

# The discussion of the work here assumes that particles spacing has no direct 

e&ct on the matrix properties, however in the case of ADI the graphite nodule 

spacing may affect local concentration profiles and hence matrix properties 

which should be considered in further analysis. 

® The difficulties of simulating the local clustering distribution of the particles 

(i.e. the near neighbour and its angle) is a current pit fall of the particle 
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simulation process. It would be interesting to incorporate simple algorithms 

so that specific location (e.g. N.N.Ang can also be specified) of the particles 

can be simulated. 

® The Finite Body Tessellation (FBT) captures information on the distribution 

of the secondary phase and the morphology of the particles. This gives us 

our prior knowledge of the features that initiate fatigue cracks in our two sets 

of automotive material. Other techniques such as Finite Element Analysis 

(FEA) can also be used to investigate fatigue crack initiation. FEA requires 

prior knowledge of the material properties (e.g. Young's modulus of the indi-

vidual/surrounding particles and their elastic-plastic material properties) and 

their testing condition (i.e. loading condition) to be specified correctly in or-

der to obtain an accurate analysis. The analysis obtained from the FEA can 

provide insight into the local stress-strain fields indicating the region where, 

for example, when the strain is high and crack initiation is likely to occur. 

The FEA can then be compared with the SUPANOVA model predictions to 

confirm whether the particles selected experience the stress-strain conditions 

that will initiate fatigue cracks. This will provide independent correlation of 

the SUPANOVA model predictions. 

• Our work on Al-Si-Sn assumes that the background and bordering secondary 

particles of the Si are the same. As such, only two classes are required to be 

classified as "crack" or "no crack" class. It might be interesting to investigate 

the effect of the bordering secondary particles, hence making a three class 

classification problem. A brief description about multi-class SVM can be 

obtained from chapter 3.8.1. 

These are some of the areas that are worth investigating further, based on the 

results from this research work, although these ideas are not exhaustive. 
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Appendix A 

ADI 

A.l Simulated Particle Distribution and their associated 

tessellation cells 
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A R C C 

Figure 1; ADI, random object distribution, constant object area, 
circular shapes. 

ACCC 

Figure 2: ADI, clustered object distribution, constant object area, 
circular shapes. 
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Figure 3: ADI, random object distribution, varying object area, 
circular shapes. 

ACYC 

Figure 4: ADI, clustered object distribution, varying object area, 
circular shapes. 
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ARCE-90 

Figure 5: ADI, fixed object area, random object distribution, constant object area, 
ellipse shapes at angle 90° to the loading axis. 

ARCE-0 

Figure 6: ADI, fixed object area, random object distribution, constant object area, 
ellipse shapes parallel to the loading axis. 
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ACCE-90 
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Figure 7; ADI, fixed object area, clustered object distribution, constant object area, 
ellipse shapes at angle 90° to the loading axis. 

ACCE-0 

Figure 8: ADI, fixed object area, clustered object distribution, constant object area, 
ellipse shapes parallel to the loading axis. 
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ARVF-e 

Figure 9; ADI, random object distribution, varying object area, 
ellipse shapes at angle 8 to the loading axis. 

ACVE-e 

•; i / 

Figure 10: ADI, clustered object distribution, varying object area, 
ellipse shapes at angle 6 to the loading axis. 
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A.2 Analysis of the Simulated Particle Distribution 

A.gJ A n a W a 0/ (Ae CeZZ Area ("C./lj, loca^ Areo mrnber 0/ Near NeigMour ("N.N.Ar; 

CJI 



i 

0.7 

djs 

„ Dj5 

^ 0.4 

S- 05 

0.1 

A R C C 

ft 

a Crack 

• HO C Rack 

R i g ? 
n F5 n rt 

F ig 1 H iztogram plote of ARC C - C ell Area 

ARVC 

• Oaok 

• NO Crack 

9 2 00 O <S G& 
O (O 0& V-

Cbj. Area 

A RCC 

D.iS 

• .I 
• 35 

^ 03 
i,- 025 

I " 
£ n.is 

0.1 
•us 

• 

L.A.F 

m Crack 

• NO Crack 

Fig 2 Histogram plots of ARCC - Local Area Fraction 

ARVC 

• .3 

U.25 

f •.2 

L,, 
8-

£ 0.1 

•.•s 
• 

»- to w n 

o Crack 

• NO Crack 

r- CO v> r> a CO w w 2 ^ ^ 
o n A r « a 

Fifl 3 Histoflram plots of ARVC - Object Area Fifl 4 H istoflram plots of ARVC - Cell Area 



Oi 01 

A R V C 

0.35 

0 3 • 

D.2S • 

• 2 • 
c 
3 D.1S • 

£ 
0.1 -

O.DS • 

• ' 

DC rack 

D NO Crack 

L.A.F 

Fiq5 Histogram plote of ARVC - Local Area Fraction 

ARCC 

0.i5 -r 
O.i -

D.3S -
0.3 -

D.2S -c 
3 0.2 -
£ •.IS -

0.1 -
0.0s -

0 -

1 1 1 1 

laCiacK 

• NO C lack 

M D r - K > 0 1 D 

No. of Near Nslgliboun 

as 

• 25 

I n.is 

£ n.i 

•us 
• 

•.i 
• JS 

F • 3 
• 2S 

c 0.2 
i- • .IS 
l •.1 

• US 
• 

ARVC 

f l 

• Crack 

B NO Crack 

5 5 
If T- CO u> r> 

2 B5 ffi R a ^ 
" sa £ 2 R (q B 

0»ll Ari»a 

§ 

Fig 6 Histogram plots of ARVC - Cell Area 

ACCC 

acrack 
• NO cracK 

n Vi 
w r> -* u) r- DO 01 3 ^ S 

No. of Near Nelghbouri 

Fig7 Histogram plots of ARCC - Number of Near Neighbours Fig 8 Histogram plots of ACCC - Number of Near N eighbours 



ARVC 

• J 6 

D5 

OJ) 

D5 

0.1 

D 1 1 1 n 1 

• ciacK 

• NO Clack 

( N r > - * u ^ i w [ » c n a * - r > 

No. Of N»ar N»Ighbour i 

Cn 
-J 

Fig 9 Histogram plote of ARVC - Number of Near Neighbours 



8 
e 
a 

•2 Q 
s~. s o ~o 

% 

o 

<u 
g 

:s' 
o 
<u < 

(0 i G 
e 

O) 
O) 

158 



en 
<;o 

A R C E - 9 0 

n3s 

n3 

U2S 

02 

D.15 -

0.1 

UDS 

U i 

OGrack 

• HO Crack 

" 9 M M 9 W B B W W 
mars ct NBlglilinur Dlctanap 

Fig 10 Histogram plots of ARCE-90 - Nearest Neighbours Distance 

A C C E - 0 

0.3 

• 25 

I 0 1S 

^ 0.1 

DUS 

0 

[ 

1 1 n 

• C[3ck 
• NDCtacis 

N@ar« it Neighbour Dlitance 

ARCE-0 

0.3S 

03 

025 
6 

02 
C 

0.15 
f 

0.1 

ODS 

0 
% 5 

• Crack 

a NO Crack 

IJIS 
r4 r4 M W Pi CN 
M r> -* U> U> r» 

Near* it N»Iglibour Qilance 

Fig 11 Histogram plots of ARCE-0 - Nearest Neighbour Distance 
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Appendix B 

Al-Si-Sn 

B.l Simulated Particle Distribution and their associated 

tessellation cells 

1 6 7 



BRCC 

BCCC 

Figure 1: Al-Si-Sn, random object distribution, constant object area, 
circular shapes. 

Figure 2; Al-Si-Sn, clustered object distribution, constant object area, 
circular shapes. 
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Figure 3: Al-Si-Sn, random object distribution, varying object area, 
circular shapes. 

Figure 4: Al-Si-Sn, clustered object distribution, varying object area, 
circular shapes. 
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BRCR-0 

Figure 5: Al-Si-Sn, fixed object area, random object distribution, constant object area, 
ellipse shapes parallel to the loading axis. 

BRCE-90 

Figure 6: Al-Si-Sn, fixed object area, random object distribution, constant object area, 
ellipse shapes at 90° to the loading axis. 
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Figure 7; Al-Si-Sn, fixed object area, clustered object distribution, constant object area, 
ellipse shapes parallel to the loading axis. 

BCCE-90 

Figure 8: Al-Si-Sn, fixed object area, clustered object distribution, constant object area, 
ellipse shapes at 90° to the loading axis. 
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BRVF.-FI 

Figure 9: Al-Si-Sn, random object distribution, varying object area, 
ellipse shapes at angle 0 to the loading axis. 

BCVE-e 

Figure 10: Al-Si-Sn, clustered object distribution, varying object area, 
ellipse shapes at angle 9 to the loading axis. 
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B.2 Analysis of the Simulated Particle Distribution 

B.2.1 Analysis of the Cell Area (C.A) and Local Area Fraction (L.A.F) 
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