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by Kee Khoon LEE

This thesis describes the problem of classifying and predicting fatigue crack
initiation sites in automotive material through microstructure quantification and
develops machine learning methods to address this task. The work is novel in that
it develops machine learning techniques for: 1. handling of imbalanced classification
data which recovers an underlying structure, 2. the development of a new under-
standing of the relationship between the inputs and crack initiation site predictions,
hence improving interpretability of the model.

A typical learning machine requires modification to its cost function in terms
of misclassification cost and sampling bias in order to deal with imbalanced data.
The way the classification rate is obtained may be altered to the geometric mean
(Gmean) where it is found to be less sensitive to the skewness in the distribution of
the classification rate. These modifications, are then applied to Support Vector Ma-
chines (SVM) and various extension techniques. Results on two data sets obtained
from camshaft and plain journal bearing linings show that a good Gmean value of
0.70 is achieved. The classification model structure was then decomposed to provide
an interpretable model. While SUpport vector Parsimonious ANalysis Of VAriance
(SUPANOVA) uses this technique for regression, it has now been extended to clas-
sification with imbalanced data to provide a parsimonious (interpretable) model.
The original classification model structure of the camshaft and plain journal bear-
ing lining consists of the sum of 512 and 2048 sub-components respectively. With
our SUPANOVA, the sum of the sub-components was reduced significantly to 6
for both applications and yet retains a good predictive performance. Initial anal-
ysis of this data from the metallurgist user community has focused on univariate
components by considering variations in the arithmetic means in each of the in-
dividual inputs. Here, the results extend to higher order terms which have been



compared with their understanding of the physical system. To enhance visuali-
sation the results from the SUPANOVA parsimonious models, data on simulated
particle distributions were generated. The simulated data set was generated sys-
tematically and assessed with parsimonious models. With this knowledge obtained
from the modelling, the key microstructural features that optimise these automotive

materials’ fatigue performance have been identified.
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the first letter is changed to B
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Chapter 1

Introduction

1.1 Imbalanced Data and Model Interpretability for Classification

In real world applications data sets with limited samples are available. The problem
of having small samples of data is further complicated by imbalanced data. For
example, in a fault diagnostic and conditional monitoring problem,is it possible to
obtain equal amounts of data for the positive and negative cases? Positive examples
are usually difficult (and practically undesirable) to obtain, time consuming and
costly. Can a statistical learning algorithm give a good prediction based on such
imbalanced data? Would you be convinced by a derived model if it provides a good
prediction and yet no understanding of the combination of input features which
lead to this prediction? Generating a parsimonious model and yet retaining a good
predictive performance s a desirable solution to the above problem. This thesis
investigates the above two issues namely: imbalanced data and model interpretability
for a classification system. The Support Vector Machine (SVM) approach and its
associated extension techniques have been considered for two data sets on fatigue
crack initiation features obtained from automotive material examples.

The accuracy of the probabilistic density estimation task depends on the input
dimensions. As the input dimensions increase, the amount of data required must
grow exponentially in order to provide consistent model estimation. The goal of
most classical classification techniques is based on having a good density estimation
of its data (Vapnik 1995). In real world problems, the amount of data is always

limited. Hence, good probabilistic density estimation is difficult to achieve. As



such, the learning algorithm is required to handle the problem of small samples of
data. Statistical Learning Theory (SLT) effectively describes statistical estimation
with small samples (Cherkassky & Mulier 1998). The key ingredient of SLT is
the use of the Structural Risk Minimisation (SRM) principle, which defines the
tradeoff between complexity of approximation function and quality of the training
data fitted. The generalisation of the model developed by SLT is achieved by the
ability to control the set of approximation functions. A learning machine known
as a Support Vector Machine (SVM) was developed based on this concept and is
described further in chapter 3.

In classical SVM, as in most learning algorithms, its goal is to achieve a greater
accuracy, assuming the misclassification costs of individual class are the same and
there is no sampling bias. Imbalanced data is the problem when one class is heavily
represented whilst the other is under represented. As such, the training distribution
for each class may be pre-specified instead of being randomly selected, resulting in a
sampling bias (i.e. violation of equal probability of selection principle of the popu-
lations). Another issue which is strongly related to the imbalanced data is the mis-
classification cost. Imposing a misclassification for each class reflects the importance
of each class. Furthermore, using the Arithmetic Mean (AMean) for measuring the
performance criteria for the imbalanced data is biased towards the majority class.
As such, a more appropriate criterion is the Geometric Mean (GMean) which is
less affected by extreme values (i.e skewness distribution). For an imbalanced data
set, the assumption used in the classical SVM requires an appropriate modification.
This modification is done via the SVM parameters (i.e. the capacity control) in
order to obtain a good prediction. The above issue of imbalanced data have been
investigated using several SVM (and extension techniques) are described in more
detail in chapter 4.

Model interpretability is an important issue in classification if one would like to
know about the input/output relationship in the model. Much of the work done
on Artificial Neural Networks (ANN) is considered as a “black box” classification

as it is difficult to explain simply or qualitatively the trends that the output has



determined. SUpport vector Parsimonious ANalysis Of VAriance (SUPANOVA)
uses the idea of an ANOVA kernel to enforce a sparse representation of the model
structure. The flexibility of the model lies in the use of the spline kernels and the
sparseness relies on the norm which is used to enforce the penalty. The nature
of the formulation of the ANOVA framework also favors small order terms being
selected as all the univariate terms are required to pass through its origin. As
such all the higher order terms are constrained to be zeros along these axes. The
model structure is thus decomposed into a sum of smaller order terms that can
provide easy visualisation and interpretability of the model. The original work of
SUPANOVA was applied to regression tasks. In this work it has been extended to
a classification problem with imbalanced data. This approach has been applied to
two data sets obtained from automotive materials, namely, the camshaft and the
plain journal bearing lining. The theory and algorithm developed for SUPANOVA
for classification with imbalanced data is described in chapter 5. The results and
discussion based on analysis of the two materials data sets are then described in
chapter 6.

To further visualise the SPANOVA parsimonious model obtained, a particle
simulation was used. The simulated particle distributions provided a systematic
way to vary the parameters (e.g. the object area, the object shape, the object
distribution and object angle) selected by the SUPANOVA model. By attempting
to vary these inputs separately, a parametric assessment of the model predictions
can also be achieved. These components selected as contributing to crack initiation
have been compared with the understanding of the professional metallurgist and this
further understanding can be used to optimise automotive materials performance.
The detailed procedure, justification of each simulated data set and the discussion
of the results obtained from this simulated data are described in chapter 7.

Our approach can also be applied to other real world problems such as in many
fault diagnostic and condition monitoring problems where the data sets are usually
imbalanced and a simple parsimonious model with easy interpretability is a desired

outcome. As such, the techniques described here are broadly applicable.



1.2 Thesis Overview

This thesis explores the following: imbalanced data and model interpretability, ap-
plied to the real world application problem of fatigue crack initiation in automotive

components. The outline of this thesis is as follows :

Chapter 2 - Fatigue and Microstructural Quantification Techniques This
chapter describes the practical rationale for the work in this thesis. The cause
and catastrophic effects of fatigue are first briefly described. Fatigue crack ini-
tiation can be captured by a microstructure quantification technique. The Fi-
nite Body Tessellation (FBT), an example of a microstructure quantification
technique, produces a set of features that describe the prior domain knowl-
edge of the microstructural distribution (e.g. morphology of secondary par-
ticles and the particles spatial distribution). This set of features is described
in more detail in section 2.2. Two typical components in which fatigue crack
initiation is an important issue are addressed here by looking at the fatigue
of materials used in the camshaft (ADI) and plain journal bearing lining (Al-
Si-Sn). Preliminary results use simple visualisation (e.g. comparing means
and standard deviations) and physical understanding. However, this may not
help to explain the dependency observed between large numbers of potentially
independent variables (i.e features). Therefore a review of adaptive numerical
modelling (especially Artificial Neural Network (ANN) approaches - which
provide flexible data based models) commonly used in the material science
field is then provided. A classical approach for classification, the Fisher Lin-
ear Discriminant (FLD), is also outlined. These approaches however may not
be appropriate for small sample data sets as it usually requires large amount
of data to be available. This is considered in more detail in the next chapter.

Chapter 3 - Learning from Data One of the goals for the ANN approach is to
estimate the probabilistic density of the data. This requires an exponential
increase of the number of training data as the input dimension increases to

provide consistent results. This chapter provides the basis of constructing



a learning machine for small sample data sets. This is developed on the
probabilistic dependency between the (input,output) from a class of functions
restricted by the number of data pairs and is known as Statistical Learning
Theory (SLT). To construct a learning machine with SLT, four important
components, (namely, the learning task, induction principle, decision function
and the algorithm to implement the aforementioned ingredients) are required
and are described in section 3.4 to 3.7. The induction principle in SLT relies
upon the Structural Risk Minimisation (SRM) principle. An understanding
of SRM will provide an explanation for the misunderstanding between the
conceptual and technical implementation for a pattern recognition problem.
A learning machine built from SLT and the kernel methods is the Support
Vector Machine (SVM). This is described in section 3.7 including a review
of the use of SRM in SVM and Regularisation Network (RN) for which both
use kernel methods. The kernel provides a mapping from input space to a
high dimensional feature using its dot product. The work on SVM originated
from a classification case and it can be extended to multi-class and regression
estimation. The generalisation issue of SVM is related to tuning the parameter
which was mainly based on minimising the bound of the expected risk and
is described in the last section of this chapter. A common problem with
classification problems is that of imbalanced data. Can the standard learning
machine built be used for imbalanced data? This is further developed in
chapter 4.

Chapter 4 - SVM for Imbalanced Data The conventional learning machine is
built on the assumption that the misclassification costs of each individual class
are the same and there is no sampling bias between training and testing. This
chapter starts with the description of problems associated with imbalanced
data and how to deal with it. Furthermore, the Arithmetic Mean (Amean)
commonly used to measure the performance criteria may not be appropriate
for assessing the performance with imbalanced data. Therefore, other per-

formance measurement criteria such as the Geometeric Mean (Gmean) which



are less sensitive to large changes between their classification rate performance
are also discussed in section 4.2. When classifying an imbalanced data set,
the assumption used in the conventional learning machine requires an appro-
priate modification for the above two assumptions. For the case of using the
SVM, this modification can be implemented via the SVM parameters (i.e. the
capacity control) in order to obtain a good prediction. The following sections
of this chapter describe several SVM extension techniques such as Control
Sensitivity (CS) SVM, Non-Standard Situations (NSS) SVM and Adaptive
Margin (AM) SVM which offer different ways to deal with imbalance of data
in a SVM framework. The classification model structure produced here is dif-
ficult to interpret. The issue of model interpretation is then developed further
in chapter 5.

Chapter 5 - Model Interpretation for classification Non-parametric models
such as classical artificial neural networks (ANN) can be considered as a “black
box” model. This kind of model is difficult to interpret. This chapter is con-
cerned with model interpretability for classification within the SVM frame-
work. This is done by decomposing the model structure in feature space into a
smaller subset of its input variables described in section 5.2. The interpretabil-
ity comes from using the spline kernel with a norm for enforcing sparseness
of the model structure in the feature space. Inherently, the ANOVA favours
the selection of lower order terms and provides a parsimonious model that is
easy to interpret. This is the motivation of the work based on SUPANOVA
which was then developed for the decomposition of the model structure of
the kernel in SVM for regression problems. Here, its use is extended to the
classification of imbalanced data using the appropriate hinge loss function and
the assumption for imbalanced data as described in the previous chapter (i.e.
misclassification cost and sampling bias). This approach will provide enforced
sparseness of the kernels in the feature space to provide model structure in-
terpretability for the imbalanced data model. As such, a smaller sum of the

sub-components can be obtained and these can therefore be identified as the



important features. The features obtained from FBT described in chapter 2
(i.e. for the two automotive materials) are then used to apply the techniques
described in chapter 4 and 5 for classifying and predicting fatigue crack initi-
ation. Chapter 6 describes the model specification and results obtained.
Chapter 6 - Data Analysis This chapter uses the Finite Body Tessellation
(FBT) data obtained from the automotive material (Chapter 2) used for the
Camshaft (ADI) and the Plain Journal Bearing Lining (Al-Si-Sn). This chap-
ter begins with an outline of the model specification for the ADI. Prior to
using the SVM framework described in Chapter 3.8, the Fisher Linear dis-
criminant (FLD), a simple and classical approach for classification, was inves-
tigated. A comparison of results obtained between FLD and SVM extension
techniques (described in chapter 4.3) then follows. The comparisons are then
extend to the SVM extension techniques that incorporate the modifications
for imbalanced data (i.e misclassification cost and sampling bias implemented
through the capacity control of the SVM). The best result for dealing with
imbalanced data is then extended to provide model interpretability using the
SUPANOVA for classification of imbalanced data (described in chapter 5).
This produces a parsimonious model which comprises of a sum of a smaller
set of sub-components. The sub-component plots are then discussed in sec-
tion 6.2.1 with attempts to link this trend behaviour with the metallurgists’
understanding. This process is then repeated for the case of Al-Si-Sn.
Chapter 7 - Simulated Data Analysis The parsimonious models produced by
the SUPANOVA are still quite complex. It is necessary to vary the input fea-
tures systematically in order to enhance our understanding of our model. As-
sessing the effect of the parsimonious components selected by our SUPANOVA
can be done via particle distribution simulations. There are four main vari-
ations possible in the input parameters (e.g. the object shape, object area,
object distribution and object angle) that are related to those components
selected. This chapter starts off with the justification of the simulated data

to be generated corresponding to the SUPANOVA components selected. This



is followed by a detailed description of the procedure and specification of how
to generate the simulated data set in section 7.2. This simulated data is
then used as the test set in the SUPANOVA model. The results are then
presented in section 7.3, where the enhanced visualisation of the model now
offered for the two sets of automotive materials investigated are discussed.
The final section in this chapter makes a comparison of the results obtained
from inspection of the SUPANOVA components and the predictions of fatigue
initiations in the simulated particle distributions.

Chapter 8 - The Conclusions and Future Work This chapter provides a sum-
mary of the work presented in this thesis. The approaches used are discussed.
Future extensions to improve the current work from both the modelling and

metallurgists’ point of view are also described.

1.3 Research Contributions

In development of the standard learning machine the main aim is to achieve max-
imum accuracy, assuming no sampling bias between the training and testing data
and that the misclassification costs are equal. The performance criteria for a clas-
sification problem therefore uses the Arithmetic Mean (Amean). This leads us
to make a necessary modification to the above assumptions of the machine learn-
ing for imbalanced data. Furthermore, in a classification model interpretability is
often neglected. It is important to understand and visualise what trend of the (in-
put,output) will initiate a fatigue crack in automotive material. This allows a more
micromechanistic understanding to be built up and hence fatigue resistance to be
optimised. A set of simulated data that produced a particle by particle distribution
was used to visualise and extrapolate the model produced, by varying individual
features of the particle distribution systematically. With the knowledge obtained
from the modelling, the key production and microstructural features that will opti-
mise automotive materials’ performance can be obtained. Although this work has
concentrated on automotive material performance, there is a diversity of real world
application problems which require similar approaches. As such, the techniques

described in this thesis are broadly applicable.



The main contributions of this work are based on the extension of the SVM frame-
work to provide a model interpretation in a classification scenario which has imbal-
anced data. The work of this thesis has contributed in part or full to the following
publications :

e K K Lee, C J Harris, S R Gunn and P A S Reed (2001). Classification of
Imbalanced Data With Transparent Kernel, INNS-IEEE International Joint
conference on Neural Network (IJCNN), Washington DC U.S.A, July 2001,
pg 2410-2415.

e K K Lee, CJ Harris, SR Gunn and P A S Reed (2001). Regression models for
classification to Enhance interpretability, Proceeding of the 3rd International
Conference on Intelligent Processing and Manufacturing of Materials (IPMM),
Vancouver Canada, July/Aug 2001.

e K K Lee, C J Harris, S R Gunn and P A S Reed (2001). Control Sensitivity
SVM for Imbalanced Data : A Case Study, 5th International Conference
on Artificial Neural Networks and Genetic Algorithm (ICANNGA), Prague
Czech Republic, April 2001.

e K K Lee, C J Harris, SR Gunn and P A S Reed (2001). Approaches to Imbal-
anced Data for Classification : A Case Study, International ICSC Congress on
Computational Intelligent : Methods and Applications (CIMA) in Advances
in Intelligent Data Analysis (AIDA), University of Wales Bangor, June 2001.

e K K Lee, C J Harris, S R Gunn and P A S Reed (2001). A Case Study of
SVM Extension Techniques on Classification of Imbalanced Data, Congress
on Neural Networks and Applications, Fuzzy Sets and Fuzzy Systems and
Evolutionary Computing, Tenerife Spain, Feb. 2001. Eds. : Nikosmastoraks
in the world Scientific and Engineering Artificial Intelligent Series, Advances
in Neural Networks and Applications, pg 309-314.

e P A S Reed, R C Thomson, J S James, D C Putman, K K Lee and S R
Gunn (2001). Microstructural effects in the fatigue of austempered ductile

iron. Submitted to Journal of Materials Science and Engineering (Nov 2001).



e P A S Reed, K K Lee, C J Harris and S R Gunn (2002). Interpretable models
for classification of fatigue crack initiation sites. Work in progress, to be

submitted to Journal of Materials Science and Engineering.
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Chapter 2

Fatigue and Microstructural

Quantification Techniques

Approzimately 90% of metallic failures are caused by fatigue (Callister 1997). Fa-
tigue can result in a catastrophic failure caused by the initiation and growth to final
failure of cracks in material subjected to fluctuating stresses (e.g. bridges, aircraft,
train tracks and many machine components). Therefore, this chapter begins with
a description of the importance of understanding the fatigue process. In this work,
fatigue initiation is analysed through microstructure quantification techniques using
Finite Body Tessellation (FBT). FBT provides a set of features that describe the
prior domain knowledge of the microstructural distributions (e.g. morphology of
secondary particles and the particles’ spatial distribution). This is described in sec-
tion 2.2. The importance of this analysis in an automotive material is demonstrated
by looking at two applications (i.e. a camshaft and plain journal bearing lining).
The experimental testing conditions used together with the preliminary results are
described in the subsequent section. The ability to simulate the microstructural dis-
tribution of a secondary phase (e.g. in terms of the particles’ distribution, size,
shape, orientation) may provide a quantitative assessment and visualisation of the
importance of such features in initiating fatigue. The method used to produce sim-
ulated particle distributions is briefly outlined in section 2.4.

The development and processing of materials is a complex process. Simple visuali-
sation of the links between processing, microstructure and the resultant mechanical

properties cannot be made easily without considering the effects of many variables.
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As such, non-linear techniques such as artificial neural networks (ANN) have been
used fairly recently in materials science to try to predict a range of processing-
property relationships. An overview of these applications is provided along with the
description of the classical approach to classification (the Fisher Linear Discrimi-
nant (FLD)). However, these techniques usually require large amounts of data which

may not be available.

2.1 Fatigue

The failure of engineering materials is usually an undesirable event since it might
involve loss of human life, economic loss and complete stoppage of work in order to
replace failed components. The usual cause of this failure is the improper selection
of materials for the service conditions, which includes inappropriate processing, in-
adequate design of components and misuse. Hence, appropriate prevention is vital
against such failure incidents. The focus of this work is upon fatigue crack initiation
in automotive materials. The term “Fatigue” is derived from the fact that failure
occurs after a lengthy period of repeated stress or strain cycling. The process of
fatigue failure in metals is characterised by three typical stages: (1) crack initia-
tion, where a microcrack develops on the metal’s surface at a point of high stress
concentration; (2) crack propagation, where the crack length increases with each
stress cycle; (3) final static failure, which occurs very rapidly when the critical crack
size is reached (Suresh 1998). The crack initiation is of key importance, since crack
propagation will not occur prior to this. The crack initiation site may include sur-
face scratches, keyways, dents and sharp fillets. In the absence of mechanical stress
raisers, microscopic surface discontinuities are produced under cyclic loading result-
ing from dislocation slip steps which may act as sufficient stress raisers. Secondary
phase particles within a metal may also act as initiation sites, when dislocations
impinge on hard phases leading to microscopic stress concentrations. In order to
investigate how fatigue cracks initiate, a series of cyclic stress tests can be applied
to a material. A bend test has been used in this work, using three point loading
techniques. A bar or flat strip specimen of rectangular cross section is cyclically

loaded until crack initiation is observed (see Fig. 2.1). During the fatigue test,
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the specimen microstructure can be examined periodically using acetate replicas
to identify crack initiation sites. In materials containing secondary phases the ini-
tiation events maybe related to the particles and quantifying their distribution is

therefore important.

i ihi

Figure 2.1: Three point flexural fatigue test geometry. At the point of loading,
the top surface of the specimen is placed in a state of compression and the bottom
surface is in tension, and it is this region of maximum tension that is observed closely
as fatigue cracks will initiate here. Fatigue occurs when this specimen is cyclically
stressed (i.e. with repeated bending), cracks initiate and propagate through the
metal thickness to a point where the remaining sound structure fails by ordinary
rupture (because the applied load can no longer be supported).

2.2 Microstructural Quantification Techniques

Various methods have been developed for characterising the microstructural distri-
bution of discrete secondary phase bodies on two-dimensional sections. They in-
clude field methods (Vander Voort 1990), inter-particle spacing methods (Schwarz
& Exner 1983) and tessellation methods (Mray et al. 1983). The field methods
provide a broad evaluation of the microstructural distribution scales (using infor-
mation about the particle density of varying test areas). The inter-particle spacing
methods on the other hand describe more about the types of distribution and local
clustering (using the measurement obtained from the nearest neighbour distances
between particle centroids). Tessellation, a microstructure quantification technique,
provides a particle-by-particle analysis of the distribution of secondary phase bodies
(e.g. graphite nodules) rather than the overall distribution of such particles.
Finite body tessellation (FBT), an extension of Dirichlet tessellation, was in-

troduced by (Boselli et al. 1999). The Dirichlet tessellation cells are constructed
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based on the particles centroids. It is best applied in the representation of circu-
lar objects with a narrow size distribution. If the size of the object is large and
its nearest neighbour close, then the side of its cell may intersect with the object
(Spitzig et al. 1985). Furthermore, the restriction to effectively circular objects
restricts its application. In the FBT, the tessellated cells are constructed from the
actual interfaces of the object. It is subject to the constraint that every point within
the cell is closer to the interface of its corresponding body than any other. Figure
2.2 shows three stages involved in the FBT procedure: binarisation of the image,
a distance transformation and a watershed transformation. The image captured
typically contains a noisy background. During this process, some of the edges of
the secondary body may be discontinuous and must be corrected. A morphological
filter is then used to fill holes within the bodies. This is a rather tedious stage
as it involves particle by particle filling and also knowledge of the “correct” mi-
crostructure, i.e. expert filtering also occurs. The distance transformation which is
the heart of the tessellation technique, converts a binary image consisting of fea-
ture and non-feature pixels into a greyscale image where every non-feature pixel is
assigned a grey value that approximates the distance to the nearest feature pixel
(Borgefors 1986). There are six common distance transformations namely; city
block, chessboard, octagonal, chamfer 3-4, chamfer 5-7-11 and Euclidean. It has
been shown that by using the chamfer 5-7-11, a reasonably high accuracy can be
obtained (Boselli et al. 1999, Borgefors 1986). A watershed transformation is used
to generate thin divisions between the objects (Vincent & Soille 1991).

A set of measurements relating to the spatial distributions and morphology of
the object can be obtained from tessellation. Figure 2.3 shows the definitions of

these measurements from FBT. The measurements available are:

1. Object area, (O.A)
2. Object aspect ratio, (O.A,)
aspect ratio of the object (maximum chord length divided by maximum width

perpendicular to the maximum chord length);

3. Object angle, (O.Ang)
reference from the horizontal axis with the maximum chord length of the

object (between 0 and § radians);
4. Cell area surrounding the object, (C.A)
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(a) A sample of the original microstructural image in binary format.
The grey images are thresholded in order to obtain a true representation of the binaries
from the noisy background.

= o g iaills

(b) The sample after the distance transformation.
The binary image consisting of feature and non-feature pixels is converted into
a greyscale image where every non-feature pixel is assigned a grey value
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(c) The watershed images.
This draws a thin line dividing the objects, thus defining the C.A
associated with each object.

Figure 2.2: Successive steps to obtain a Finite Body Tessellation (FBT).
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4: Cell area
(C.A)

‘ 1: Object area
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5: Cell aspect ratio
(C.4)

_6: Cell angle
(C.Ang)

7: Local Area Fraction (L. A F) = object area (1) /cell area(d)

(a) Single cell measurements
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(b) Cell and near neighbour measurements

Figure 2.3: Definitions of the FBT measurements. These describe the spatial dis-
tributions and morphology of the objects.

16



10.

11.

Cell aspect ratio, (C.A,)

aspect ratio of the cell (maximum chord length divided by the maximum
width perpendicular to the maximum chord length);

Cell angle, (C.Ang)

angle of the cell’s longest chord with respect to the horizontal (between 0 and
7 radians);

Local area fraction, (L.A.F)

area of object/area of associated cell;

number of near neighbours, (N.N.N)

number of objects sharing a cell boundary with object of interest;

nearest neighbour distance, (dasn)

the minimum edge to edge distance between the object of interest with any
of its neighbours;

mean near neighbour distance, (daean)

average of the minimum edge to edge distance between the object of interest
with all its neighbours;

nearest neighbour angle, (N.N.Ang)

the angle between the horizontal axis and the centroid of the object of interest
with its nearest neighbour (between 0 and 7 radians).

Identifying the importance of each measurement in fatigue initiation requires a

interpretable model for classification, this will be described in chapter 5. With this

knowledge, the key microstructural features that will optimise automotive materials

fatigue performance can be obtained.

2.3

The Industrial Applications

Most machine components are subjected to fluctuating stresses leading to fatigue.

In this work, we investigate the automotive materials used in camshafts and plain

journal bearing linings (Hockley et al. 1999). The motivation for investigating these

two components in automotive applications is as follows :

1.

Camshaft

The Camshaft controls the opening and closing of the poppet valves in a com-
bustion engine. Modification of its motion from sliding to rolling contact will
provide better power and fuel efficiency. However, the contacting surface of
the roller camshaft requires resistance to rolling fatigue, high strength and
ductility. Figure 2.4 shows the roller-follower design Camshaft. Mechani-
cal property understanding of the heat-treatment effects and crack initiation

within the selected material is required. For certain heat-treatments, service
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conditions may lead to multiple fatigue crack initiation sites that greatly ac-
celerate crack growth. Therefore understanding potential crack initiation sites
through evaluation of fatigue tests for a selected material is very important.

rocker arm

- - roller
Dushrog) &

A

load

Figure 2.4: The roller-follower design camshaft.

2. Plain journal bearing lining

A modern plain journal bearing lining consists of two half shells which are
clamped together within the bearing housing to support the journal between
them. Each shell comprises several layers of different materials (see Fig. 2.5).
A bearing must have a long life span. There are several factors affecting
the life span of a bearing: the loads on the bearing, the lubrication used
(hydrodynamic pressure), fit of the bearings on the shaft and in the housing,
friction coefficient of the materials and the material used, etc. The plain
journal bearing lining we are investigating here requires the production of high
output transmission and must be able to withstand the varying hydrodynamic
pressure of the journal in the automotive engine. In order to do this, it is
necessary to investigate both the loading conditions and the fatigue failure
behaviour of the bearing’s lining material.

2.8.1 FEzperimental and Testing conditions

Prior to discussing some of the results obtained by Hockley and Joyce et al at
Southampton, the two experimental testing conditions used are briefly described
here, alongside a brief discussion of the current metallurgical understanding of the

materials used in these automotive applications.
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Shell 1

Journal

Housing

Shell 2

(a) Bearing mounting (b) Plain journal bearing lining

Figure 2.5: The plain journal bearing lining mounted on a housing to support the
journal between them.

1. Camshaft

Cast iron is a cheap metallurgical substance with good mechanical rigidity and
strength under compression. The mechanical strength and toughness of cast
iron can be improved by altering the graphite flakes to a spheroidal-graphite
shape (produced by adding a small amount of either cerium or magnesium to
molten iron just before casting). The metal matrix is a complex mixture of
different microconstituents such as, ferrite, retained austenite (RA), carbides,
cementite and bainite surrounding the graphite nodules that will affect me-
chanical properties. The relative proportions of these microconstituents can
be altered by subsequent solid-state heat-treatment. Austempering (a low
temperature heat treatment carried out after a high temperature austenitis-
ing step)is used to refine the microstructure and produce a more uniform and
desirable size distribution of matrix phases. Furthermore, it relieves stress,
whilst reducing brittleness and hardness of the matrix structure. Hence,
Austempered Ductile cast Iron (ADI) can be used in the camshaft appli-
cation with appropriate adjustment of the heating parameters and material
composition.

(Hockley et al. 1999) have shown that austenitising at 950°C' for 1 hour and
austempering at 400°C' for 2 hour yields good fatigue resistance. This is due
to the coarse bainitic lath structure and increased RA content. Reducing

the austempering temperature to 250°C' increases the strength but decreases
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the fatigue resistance. This leads to a trade off between strength and fatigue
resistance. However, the wear requirements of the camshaft requires high
strength /hardness so the austempering temperature of 250°C is likely to be
used, but is known to produce multiple fatigue cracks.
Microstructural quantification provides a means of understanding fatigue
damage evolution through assessing the spatial distribution of those graphite
nodules that initiate cracks. However, there will be other effects on the me-
chanical properties due to ADI microstructure, such as:

e the volume fraction of RA that is present in the matrix;

e the shape, size and distribution of the bainite phases; and

e the presence of carbides.
The effect of these factors on crack initiation has not been taken into account.
Here, we assess only the graphite nodule morphology. This seems to be rea-
sonable as the majority of fatigue cracks (95%) were associated with graphite
nodules (See Fig. 2.6a) in the 850/250 condition.
. Plain journal bearing lining
The shell of the plain journal bearing lining studied here consists of three ma-
terial layers, namely, Aluminum-Silicon-Tin (Al-Si-Sn) alloying lining (0.244
mm), Al interlayers (0.06 & 10% mm) and Steel backing (1.505 mm). The
fatigue behaviour of the plain bearings is dependent on many complex factors.
Loading is via the oil layer separating the bearing surface from the journal.
The behaviour of this hydrodynamic oil film causes discontinuous and rapidly
changing stress fields to be set up across the bearing surface. The Al-Si-Sn
lining comes into direct contract with the hydrodynamic pressure. Hence, the
crack is likely to be initiated from this layer and it is important to investigate
the dependencies of the material /component combination that initiates these
cracks. It we seen that fatigue crack initiation in this material was exclusively
associated with the debonding of the Si phase from the surrounding matrix
(Joyce 2001). In this work, the distribution of the secondary phase of the Si

is taken into account only (see Fig. 2.6b).
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FATIGUE CRACE. DUTIATION SITES

(a) Crack initiation at spheroidal graphite nodule in 850/250°C' condition (length
of 300um). Acetate replica of polished surface. The majority of crack initiations
were observed to be from graphite nodules.

Loading Axis

Si

Sn

(b) Optical microscopy of the Al-Si-Sn alloy lining material showing spheroidised
Si distribution with recticular Sn (length of 100xm). The Sn phase occasionally
encapsulates the Si.

Figure 2.6: Optical microscopy of the automotive camshaft (ADI) and plain journal

bearing lining (Al-Si-Sn). A crack initiation point could be veried by assessing the
repica record.
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Short crack tests were carried out in both materials under a three point bend
plain rectangular bar configuration (described in section 2.1) as multiple cracks
were expected. This reduced the area of likely crack initiation sites and thus area
of crack monitoring. Interrupted cycling and acetate replication were used to mon-
itor the microstructural features initiating the fatigue cracks. A crack initiation
point could be veried by assessing the repica record. Polished plain bend bars with
dimensions of 10mm x 10mm x 70mm were used in the short crack testing for the
ADI camshaft material. For the case of the plain journal bearing lining a 80mm
x 20mm test specimen was obtained from the flat strip material produced prior to
bearing formation and the lining surface ground down to about 0.25mm. Inter-
rupted cycling and acetate replication was also used to monitor the microstructure
and the initiation of short fatigue cracks on the specimen surface. The graphite
nodule and the Si distributions for those initiating cracks and those not initiating
cracks are then assessed using the tessellation techniques described in section 2.2.
2.3.2 Preliminary Results
The experimental results are given below for each case.

1. Camshaft

In the 850/250°C condition, about 116 “crack” initiation sites and 2803 “no
crack” sites at graphite nodules were found in one sample. The surrounding
particles may affect the microconstituent formation (discussed previously)
which may also affect the crack initiation. However, 95% of these initiation
sites were due to the graphite nodules and the rest were within the surrounding
matrix. Preliminary results comparing simple means of the features obtained
from FBT, shows that initiation of cracks occurs for larger nodules of individ-
ual high O.A surrounded by a relatively low average O.A of smaller graphite
nodules (see table 2.1) (Hockley et al. 1999).

2. Plain journal bearing lining

A total of 10 regions were selected randomly for identifying areas of mi-
crostructure containing crack initiation sites. The total number of cells was

2938. Only the Si secondary phase distribution is considered here as fatigue
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crack initiation in this material was exclusively associated with the debonding
of the Si phase from the surrounding matrix (Joyce 2001). Also, the Si phase
is occasionally encapsulated by the Sn completely making the Sn distribution
difficult to assess. The cells produced by the FBT were then divided into
three populations :
i) Initiating Cells (163) - those cells containing a Si particle at which a
fatigue crack initiated.
ii) Bordering Cells (810) - those cells sharing a common boundary with an
initiating cell (i.e. near neighbours of the initiation particles).
iii) Background Cells (1965) - those cells containing a particle that is not
sharing any boundary and showing no sign of fatigue crack initiation.
Results comparing the mean and standard deviation of the FBT features
show that there is not much significant difference between the bordering and
background cells (see table 2.2). As such, the bordering and the background
cells were assumed to belong to the same class. The results further show that,
as the O.A, C.A |, djsean and L.A.F increase crack initiation is more likely to

occur (Joyce 2001).

2.4 Particle Distribution Simulation

The ability to extract detailed geometrical information on a particle-by-particle ba-
sis, and then examine such measurement information across the whole microstruc-
ture, makes tessellation a uniquely powerful approach to assess both localised (crack
initiation) and global (secondary processing effects on particle distribution) process
behaviour. Previous work at Southampton (Yang et al. 2000, Yang et al. 2001) has
been carried out to enhance understanding of the effect of random and clustered
particle distributions. A variety of two-dimensional finite-size particle distributions
have been simulated to achieve this. The approach taken can be generalised to
other systems containing low aspect ratio finite bodies of low to moderate area
fraction. The motivation of this work was that ductility and fracture toughness are
seen to decrease with increasing inhomogeneity of the reinforcement distribution

(i.e increased clustering) with many researchers indicating that particle clusters
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may provide easy crack initiation and/or propagation sites. In order to compare
the real and simulated particle distributions, it is essential to ensure that the area
fraction of the particles are the same. To further address this issue, the simulation
packages for particle distributions needs to be able to investigate the influence of
particle morphology, random and clustered (i.e microstructural characteristics).

Several microstructure characteristics were defined for microstructure simula-
tions in the previous work by (Boselli et al. 1999). The main parameters were the
definition of shape, size and spatial distribution of the objects and object orienta-
tion which can be simulated using an in-house (Yang et al. 2000) Fortran program.
Figure 2.7 shows an example of circular particles with a constant size that are :(a)
randomly distributed and (b) clustered. The location of the object is generated us-
ing a two dimensional rectangular area with a specified nominal width and height.
The percentage area fraction and the size of the object has to be determined prior to
generating the distributions. This information enables specification of the number
of objects to be simulated in the area under consideration. There are two stages
involved in order to generate each microstructure characteristic: (1) generating the
O.A and (2) generating the location of the centroids and ensuring that no over-
lapping occurs between the objects. The locations of the object centroids were
generated with a normal distribution in their x and y coordinates. For the clus-
tered distribution, a set of “parent” locations were generated based on a specified
distance being maintained between them and then a normal distribution for a spec-
ified number of “children” particles were placed locally around each parent. This
simulated particle distribution program may then be used to systematically vary
the object shape, size, orientation and spatial distribution to visualise the model
produced from our learning system. The full procedure and related results will be
described in more detail in chapter 7.

This simulated particle distribution program may then be used to systematically
vary the object shape, size, orientation and spatial distribution to visualise the
model produced from our learning system. The full procedure and related results

will be described in more detail in chapter 7.
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Description Initiating Background Overall
Mean SD Mean SD Mean SD
Object Area, (O.A) z1 (um)2 9326.8% | 2549.83 | 476.45 | 890.87 | 549.88 | 1071.70
Object Aspect Ratio, (O.A;,) z9 1.30 0.28 1.40 0.38 1.40 0.37
Object Angle, (O.Ang) z3 (rad) 0.69 0.45 0.79 0.41 0.78 0.41
Cell Area, (C.A) 24 (pm)? 12340.84 | 7628.74 | 5761.52 | 4653.25 | 6022.60 | 4973.30
Local Area Fraction, (L.A.F) z5 15.87 10.13 6.34 7.03 6.71 7.42
Number of Near Neighbours, (N.N.N) zg 7.60 2.21 5.68 1.82 5.76 1.87
Nearest Neighbour Distance, (dmin) 7 (um) 16.23 16.36 17.40 17.04 17.36 17.02
Mean Nearest Neighbour Distance, (djeqn) s (pm) | 64.81 21.08 56.71 24.16 57.03 24.09
Nearest Neighbour Angle, (N.N.Ang) zg (rad) 0.77 0.47 0.75 0.46 0.75 0.40

Table 2.1: Results obtained from the automotive camshaft ADI material. The mean and standard deviations (SD) of the FBT features between the
“crack” (initiating), “no crack” (background) and their overall distribution are shown here. Units are in micrometers and radians where applicable.
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Description Initiating Bordering Background Overall

Mean | SD | Mean | SD | Mean | SD | Mean | SD

Object Area, (O.A) 21 (um)> 12.17 | 11.54 | 622 | 6.73 | 424 | 510 | 5.23 | 6.44

Object Aspect Ratio, (O.A,) zo 1.49 | 036 | 1.50 | 0.41 | 148 | 0.50 | 1.49 | 0.47
Object Angle, (0.Ang) z3 (rad) 0.90 | 041 | 0.88 | 042 | 087 | 04 | 088 | 0.41
Cell Area, (C.A) 24 (um)? 113.65 | 58.59 | 87.59 | 53.45 | 62.46 | 43.21 | 72.23 | 49.49

Cell Aspect Ratio, (C.A;) z5 1.49 0.42 1.61 1.22 1 170 | 1.51 1.67 | 1.40

Cell Angle, (C.Ang) z¢ (rad) 0.88 | 0.42 | 0.79 | 044 | 0.77 | 0.44 | 0.78 | 0.45

Local Area Fraction, (L.A.F) z7 1048 | 6.41 | 6.98 | 534 | 6.93 | 5.73 | 7.15 | 5.72
Number of Near Neighbours, (N.N.N) zg 6.39 1.38 | 6.00 | 1.45 | 552 | 1.42 | 570 | 145
Nearest Neighbour Distance, (dpin) 29 (um) 2.61 1.87 | 2.53 | 1.92 | 1.94 1.7 2.14 | 1.88
Mean Nearest Neighbour Distance, (dmean) 210 (#m) | 7.59 2.5 7.30 | 2.64 | 6.03 | 2.56 | 6.47 | 2.66
Nearest Neighbour Angle, (N.N.Ang) z1; (rad) 0.73 044 | 0.79 | 046 | 0.83 | 045 | 0.82 | 0.46

Table 2.2: Results obtained from the automotive plain journal bearing lining material. The mean and standard deviations (SD) of the FBT features
between the “crack” (initiating), bordering, the “no crack” (background) and their overall distribution are shown here. Units are in micrometers
and radians where applicable.
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(b) Clustered distribution of the objects

Figure 2.7: A sample of the simulated particles corresponding to a circular shape
with (a) randomly and (b) clustered distributions. The particles are in black and
the background is white.
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2.5  Modelling in the Material Science Community

Artificial Neural Networks (ANN) have been notably successful in the field of mate-
rial science in tackling the problems of regression and classification. Their applica-
tions, focus mainly on metal property/process predictions (i.e. regression problems),
(Sumpter & Noid 1996, Bhadeshia 1999, Linkens & Yang 2001) have provided a good
review of the wide application of ANN to the field of materials science. Early work
on ANNSs in material science has used Multi-Layered Perceptrons (MLP). MLPs are
non-linear data driven models that have the advantage of finding the interrelation-
ships between variables without having to specify their prior relationship, but they
require a large set of training data to make the derived model robust. These re-
quirements come from the goals set, which are usually based on probability density
estimation. This requirement extends to many classical approaches for classifica-
tion, such as nearest neighbourhood, linear discriminant and parametric models
which were built based on the assumption that the data set is large. Using the
probabilistic density estimation of the data will lead to the problem of the ”Curse
Of Dimensionality” (COD) (Bishop 1995). As the input dimension increases, the
number of data required increases exponentially in order to provide the same con-
sistent result. A Bayesian framework uses the prior to overcome the problem of
COD. This is done by imposing some prior knowledge about the parameters of the
model. Mackay and Bhadeshia have done substantial work on applying Bayesian
frameworks in the field of materials science problems (Bhadeshia et al. 1995, Gavard
et al. 1996, Fuji et al. 1996). The Bayesian framework in ANN is based on its ability
to infer the model complexity from data. Furthermore, it incorporates error bars,
which represent the uncertainty involved in the model prediction. Alternatively, the
ad hoc decision of selecting the parameters in an MLP are made explicit by Gaus-
sian Processes (GP), implementing a Gaussian prior over the function space, which
the learning machine computes. (Bailer-Jones et al. 1997, Bailer-Jones et al. 1999)
compare the use of Bayesian NN with a GP model in the prediction of deformed
and annealed microstructures and also uses these approaches to model austenite

formation in steel. They concluded that in their GP model, its hyperparameters
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are more interpretable than the weights obtained in the Bayesian ANN (i.e the
weights are explicitly parameterised). Furthermore, the prediction results gained
from GP are superior to those of Bayesian ANN. A good review of Bayesian ANN
and GP can be found in (MacKay 1991, Neal 1996).

ANN outperform classical linear pattern recognition techniques as the neural net-
work is a non-linear model (Bhadeshia 1999). This non-linearity has its advantages
and disadvantages. Bhadeshia claims that the parameters in ANN, such as the de-
rived function and the associated coefficients (i.e. weights), can be revealed as rela-
tionships and interaction of the model features. (Plate 1999, Schooling et al. 1999)
point out that the ANN can be considered as a "black box” as it is difficult to under-
stand /visualise both the functions computed and the structure that is computed.
Another difficulty involved in using ANN is the problem of overfitting (leading to
poor generalization). Although this can be reduced using a cross-validation tech-
nique, it is both computationally expensive and requires a large set of data to be
available. (Linkens & Yang 2001) highlighted that a more robust model can be pro-
duced with a “Grey box” modelling approach. Grey Box modelling is where some
physical properties of the model can be incorporated into he model. A well known
example of Grey box modelling is the neuro-fuzzy model. This combines fuzzy rules
(physical understanding of the system) with an ANN (intelligent model). The in-
terpretability of the model can be obtained through assessing linguistic fuzzy rules
(Schooling et al. 1999). The advantages of Grey box modelling, as mentioned by
(Linkens & Yang 2001) are its robustness, improvement of generalisation ability and
reduction in dependence on the process data (i.e. a transparent model). There are
many successful applications of both ANN and its extension, neuro-fuzzy networks,
notably in the field of materials at both the material departments of Southampton
University and Sheffield University, Institute for Microstructural and Mechanical
Process Engineering (IMMPETUS).

Part of the theme of this thesis is to provide an interpretable model (i.e. Grey
box modelling). Our focus here is on using the SUpport Parsimonious ANalysis

Of VAriance (SUPANOVA). This approach obtains its parsimonious model (hence
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interpretability) through decomposing its model structure (i.e. the kernel function
is decomposed in the Support Vector Machine (SVM)). The SVM was developed
based on Statistical Learning Theory (SLT) which was thought to be the best ap-
proach for modelling with small sample data set in accordance to (Cherkassky &
Mulier 1998). The development of SVM and SUPANOVA will be described in more

detail in chapter 3 and 5 respectively

2.6 Classical Classification Approach - Fisher Linear Discriminant

Prior to using complex models (e.g. SVM) for a classification problem, simple
classical approaches should be attempted. From SLT, these simple approaches may
indeed outperform the more complex approaches. (This is explained in more detail
in chapter 3.1 and 3.5.2.) Therefore the next section describes a simple classification
approach - The Fisher Linear Discriminant (FLD). Discrimininant functions are
used to distinguish the differences between two or more groups of data or features in
classification problems (Bishop 1995). A typical choice of a discrimination function

is one which is linear in the input vector x and can be written in the form of:
y(x) =wix+b (2.1

where w is the weight vector b is the bias and 7' is the transpose. w can be optimally
selected so as to accommodate class overlapping by maximising the class separation
in which the decision boundary is given by y(x) = 0. In a two class problem, an
input vector x is assigned to class +1 if y(x) > 0 and to class —1 if y(x) < 0.
Linear discriminant analysis provides the basis of generalisation to non-linear dis-
crimination functions and other non-linear methods. Fisher linear discrimination
(FLD) is a classical method for classification (Fukunaga 1990). It is used to reduce
the increasing dimensionality of the input feature space by maximising the sepa-
ration between class means while minimising the class variance direction. Fisher
discrimination is “not strictly” a discriminant, but it can easily be used to con-

struct a discriminant (Cover 1965) using the idea of the least squares approach.
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Figure 2.8: The necessity of considering within class covariance for Fisher Linear
Discriminant. Projecting the mean of both classes along x; will result in large
separations and overlaps (A and B), compared to projecting the mean along x;
which will result in small separations and no overlaps (C and D).

For a two-class problem, the Fisher criterion is given by :

(p1— po 2

s(w) = L7 P 22)
Zk:l S]C

where p, = wlmy is the class mean of the projected data for class k, S; =

> wnee, W(x™) — pi)? is the within class covariance for class k and m is the mean
vector class for k£ class. It can be seen that the necessity to measure the within
class covariance here as the larger separation between the means implies good sep-
aration as there is a tradeoff between larger separation and overlapping between
classes (see Fig. 2.8). Maximisation of the Fisher criterion results in maximisation
of the separation of the projected class mean and the minimisation of total within
class variance. Therefore, the Fisher criterion maximises a function representing
the projection of the class means and hence class separation. There exists a closed

form solution to the weight maximisation as :
w o S;'(my —my) (2.3)
where S, is the total within class covariance matrix given by :

Sy = Z (x™ —my)(x" —m;)T + Z (x" — my) (x" — my)7 (2.4)

The weight vector w is a specific choice of direction for the projection of data

onto a one-dimensional space (i.e. finding the direction of the weighting vector w)
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(Rencher 1998). The weight direction is the main concern here and hence it is a
descriptive model of the training data.

In order to construct a discriminant function as in Eq. (2.1), a least squares
approach can be used to obtain the bias b. The basic idea of least squares is to
minimise the Fisher criterion J of Eq. (2.2) with respect to w. The bias b can be

expressed as :
b=-w'm (2.5)

where m is the mean of all the patterns k. Now the discriminant function is similar
to the one in a linear discriminant. In comparing the least squares and Fisher
approach, least-squares makes the output space as close as possible to the target
output while Fisher maximises the class separation in the output space. Although
the approaches in the two methods are different, the resulting weights for the FLD
coincides with the least-squares approach.

The solution to the FLD is equivalent to that of the Bayes linear classifier
(i.e. P(y|x) = p(x|]y)P(y)) when the class conditional density (i.e. p(x|y)) is
assumed to be a multi-dimensional Gaussian distribution with equal covariance
matrix and prior of its target (i.e. P(y)). At first sight, the original FLD seems not
to suffer the “curse of dimensionality” that was due to the class conditional density
estimation. It becomes clear when we consider that the mean vector m and the
class covariance matrix .S,, from the FLD are taken to be the maximum likelihood
estimation corresponding to the mean and class covariance of the Bayes approach.
Therefore, the classification approach to solve classification problems still requires
the density estimation of its data. Furthermore, the FLD is a descriptive rather
than a predictive model. The main difference between these two models is that the
descriptive model provides a description of the data while the predictive model (e.g.
Support Vector Machines (SVM), provides predictions about the data. The FLD
uses empirical data to describe the models and also focuses on getting the right
values for weights only, rather than the loss incurred from the decision function.

The use of Empirical Risk Minimisation (ERM) alone is only justifiable when we
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have a large set of data or the underlying data distribution is known. However,
in practice, the data is limited and using ERM will not in general reflect the true
distribution. This briefly describes why the classical approach is not appropriate
for classification.

Another approach to deal with large input dimensionality is to investigate the
effect of limited data. Statistical Learning Theory (SLT) was developed based
on small sample data sets in which it takes into account the capacity of the
class function which is better known as the Vapnik-Chervonenkis (VC) dimension
(Vapnik 1995). From the view point of the VC dimension, if the mapping from the
input space to the feature space allows small training error and low capacity, then
good generalisation is guaranteed. Model interpretability was developed based on
the SL'T framework based on model structure decomposition. Work done by several
authors at Southampton (Kandola et al. 1999, Christensen et al. 2001) uses this
approach for regression tasks for application to processing-property relationships in

aluminum alloys.

2.7 Summary

The importance of fatigue crack initiation has been highlighted. The FBT pro-
vides a set of features that captures the distribution of the secondary phase and the
morphology of the particle which may cause fatigue crack initiation. Further visual-
isation of the model may be achieved by using simulated particle distributions. This
work focuses on the automotive industry looking into two components and mate-
rial combinations, namely, the camshaft with ADI and plain journal bearing lining
with Al-Si-Sn. The advantages and disadvantages of ANN modelling approaches in
materials science have been described, bringing out the issue of data with limited
samples and model interpretability. The theoretical basis of classical approaches to

classification have also been outlined using the FLD.
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Chapter 3

Learning From Data

Real world data sets have a restricted amount of data. Statistical learning theory
(SLT) is perhaps the best currently available theory for finite sample statistical esti-
mation and predictive learning (Cherkassky & Mulier 1998). This chapter provides
a basic understanding of SLT and its conversion of a learning problem with a limited
number of data samples into a function approzimation estimator known as machine
learning. The main requirements for setting up machine learning are then described
in section 3.3 to 3.7. Understanding of Structural Risk Miminisation (SRM) for
implementation in paltern recognition requires understanding of both the underlying
conceptual and technical implications. These two requirements are not consistent
but have led to the assumption that an accurate probability density estimation of the
data provides a good classification model. This 1s assumed in the classical approach
of solving this problem, indicating that the classical approach is inappropriate for
small sample data set learning. As such, the Support Vector Machine (SVM) was
then constructed from the framework of the SLT. The key success of SVM lies in
using the SRM and kernel methods. The relationship between the SVM and the Reg-
ularisation Network (RN) are then highlighted in section 3.7.3, both use the kernel
method to handle the problem of dimensionality transformation but with different
ways to determine their associated parameters. The application of the SVM to tasks
such as multi-class classification and regression then follows. The need to provide
good generalisation 1s then discussed in section 3.9, describing how the parameters

mn SVM can be tuned.
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3.1 Classical Statistical Classification Approach

Pattern recognition problems can be defined as follows: given an input point x €
RN, a class decision is made by determining which region the point lies in and
providing an index for the region as the decision output, y. Classical formulation of
classification problems is based on statistical decision theory. The simplest example
is the construction of the optimal decision rule using prior probability of the target
assuming that this is known (i.e. simply assign the output label to the class with

the largest probability)

y(x) = 0if Ply=0)>Ply=1)

= 1 otherwise (3.1)

Upon observing the input, x and making the decision thereafter, provides more
information about the decision region. As such, the decision can be made based on
the posterior probability of x (i.e. replace P(y = 0) > P(y = 1)byP(y = 0|x) >

P(y = 1|x)). Expressing the posterior probabilities via Bayes theorem :

P(y = OIX) = p(X)
Ply=1jx) = p(xly =p1(2<1)3(y =1) (3.2)

where P(x|y) is the probability density/likelihood estimation of the data x for
a given class y. The accuracy of this function was then used to minimise the
misclassification error in the classical approach. We will see in the next chapter
that for imbalanced data a misclassification cost has to be incorporated into each
class and the drift of the target needs to be incorporated as well in order to make
a better prediction.

The above sets up the basis of the classical pattern recognition problem asso-
ciated with Statistical Learning Theory. Clearly, in order to solve the posterior
probability, one would be required to solve the probability density of estimation of
x (i.e p(x]y)). Much of the classical approach to pattern recognition such as Fisher

Linear Discriminant and Artificial Neural Networks all require a good estimation
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on the probabilistic density or underlying distribution on its data. An accurate
estimation of the probabilistic density requires a large set of data with respect to
its input dimension. Given that we typically have insufficient data in real world
data sets to generate an adequate density function, this approach to solving pattern
recognition problems is limited. In fact, according to (Friedman 1997), the more
commonly used loss functions for classical pattern recognition such as squared error
and entropy use the concept of density estimation. In such instances, the goal for
classification is (incorrectly) interpreted as posterior probability estimation (i.e the
P(y|x) = p(x|y)P(y)). Friedman observed that accurate estimation of the poste-
rior probability is not necessary for accurate classification. The explanation of his
observation can be derived from the statistical learning point of view (see section
3.5.2). As such, the estimation of the density function should be made redundant
and one should solve the classification directly, this leads to the motivation of a
learning machine the Support Vector Machine (SVM) which was developed based

on Statistical Learning Theory (SLT).

3.2 Statistical Learning Theory

(Vapnik 1995) suggests that when solving problems with limited data, “Do not
attempt to solve a specified problem by indirectly solving the harder general problem
as an intermediate step”.

The intermediate step referred to is the probability density estimation step de-
scribed above, the complexity of which is higher than the desired classification
problem. The classical approach uses empirical risk minimisation (ERM) indirectly
to estimate the densities, which are then used to formulate the decision rule. Under
SLT, the goal is to find a decision boundary minimising the expected risk. This is
based on the concept of Structural Risk Minimisation (SRM) that will be described
in more detail in the next section.

The classical approach to learning requires either the underlying distribution of the
data to be known or that the data set is large in order to obtain good probabilistic
density estimation to its input. This however is not the case for most practical appli-

cations. Learning from another point of view can be established from the structure
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of the data given. Such learning from data requires us to build a model from an
insufficient set of information (usually small sample data sets) in order to attain
some underlying structure of the (unknown) process and using this to achieve good
prediction performance. Given that the data set is small and its representation of
this underlying structure and also the model usually are in numerical form, from a
statistical perspective this can be cast as the problem of Function Approximation.
This setting is equivalent to using learning for multivariate function approximation
from limited data, which is an ill-posed problem. A problem is well posed when a
solution exists, is unique and depends continuously with the data set. It is ill-posed
when it fails to satisfy at least one of these criteria.

Statistical learning theory effectively describes statistical estimation for small
data samples (Cherkassky & Mulier 1998). The proponents of SLT are set using
the probabilistic dependency between the (input,output) to form a class of function
restricted by the amount of data given to handle the ill-posed problem. Then, in a

statistical learning framework, learning is an estimation of a class function :
y=f(x,a) (3.3)

The class of function is determined by its parameter . « is used to describe how
the output y is obtained and needs to be determined. The risk of obtaining this
parameter is associated with a loss function and the joint probability density func-
tion. This is the general setting of SL'T and it provides a wide range of possibilities
in learning which will be elaborated later in this chapter. A robust model for con-
structing SLT is the powerful learning machine which is a learning algorithm that
can provide accurate function approximation with good generalisation by bounding

the risk associated with the parameter.

3.3 Learning Machines

The properties that we would like the learning machine to have are : 1.) a good
estimator of the unknown function (i.e. estimating an unknown dependency from
known observation), 2.) it must be computationally efficient - to solve the problem

with a reasonable computation time and 3.) to guarantee good generalisation ability
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- to deal with problems of predictive learning (using the estimated dependency to
predict new unseen data). There are four important components that comprise
this machine : 1) the definition of the learning task (learning associated with a
loss function) , 2) an induction principle , 3) a set of decision functions and 4) an
algorithm to implement the previous 3 components. The following section describes

each component in more detail.

3.4 Loss Function And Risk Minimisation

The capacity of a set of functions, to which the solution belongs, lies in hypothesis
space and is given as f(x,a), where @ € A and A is any abstract set of parameters.
Given the hypothesis space, the best estimation of the function f(x,«) for which

the risk function associated with x is minimised is given as :
Rie) = [ £y, £x,00)p(x, v)dxdy (3.4

Where L(y, f(x,®)) is the loss function, that measures the difference between the
actual value, y and its estimates from the learning, f(x,a) given by the unknown
structure of a point x associated with its parameter «. The p(x,y) defines the
joint probability density function (PDF') since we typically do not know about the
PDF, it is possible to find an approximation according to minimising the expected
average loss. This will be described in the next section. The common three learning
problems are classification, regression and density estimation, each requiring an
appropriate loss function in order to minimise its respective expected loss function.
The definitions of each problem are briefly described as follows :
Classification For a two class pattern recognition problem, each vector x is labeled
by an output y € 0 or 1 in Eq. 3.3. The corresponding loss function is an

indicator function that measures the classification errors, given as :

Ly, f(x,)) =0 ify=f(xa)

=1 otherwise (3.5)
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If the estimation of the unknown function (f(x, «)) is the same as the labeled,
y, there is no penalty imposed. Otherwise, a misclassification cost is involved.
Regression Estimation The label of the output in this task is a real number (i.e.
y € R) and usually, it is assumed that it consists of a sum of deterministic
function (g(x) = [yp(y|x)dy) and a random error (noise) with zero mean
(i.e. y = g(x) + €) A metric representation is usually used as a tool to get the
estimate closer to the unknown estimated functions. A common loss function

for regression is the squared error :

Ly, f(x,0)) = (y — f(x,0))? (3-6)

Density Estimation The density estimation of a input vector x, has no output y
involved. If the unknown input vector belongs to the set of joint probabilistic

densities P(x,a),a € A, the loss function of the density estimation can be

written as :
L(x, P(x,a)) = —logP(x, &) (3.7)

3.5 Induction Principle

Given a limited data set, estimating the optimal function of f(x,a) exactly is not
possible. The approximated optimal function is found by using the induction prin-
ciple. The induction principle allows f(x, «) of the “true dependency” to be found
in the class of estimation function with limited data. The simplest induction princi-
ple is the so-called Empirical Risk Minimisation (ERM) principle and in statistical
learning is known as the Structural Risk Minimisation (SRM). The SRM sets the
basic framework for the learning machine known as a Support Vector Machine.
The learning machine then uses a constructive implementation of the induction

principles (Vapnik 1995).
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3.5.1 Empirical Risk Minimisation (ERM)
Minimising the risk function in Eq. 3.4 requires the joint PDF of finite data to be
known, but usually this is unknown. One can approximate it using the empirical

risk function :
4
Remp(c) =1/ L{ys, f(x, ) (3.8)
i=1

where o € A and A is any abstract set of parameters and £ is the number of data.
The selection of the decision rule is based on its empirical performance on the finite
number of training samples. This induction principle is known as the Empirical
Risk Minimisation (ERM). Using the ERM as an approximation to minimising the
risk function especially when £ is small is inappropriate. (Vapnik 1995) showed that
for the case of pattern recognition, there exists a bound on the expected risk that

holds with probability 1 — 7 :

R(0) < Reng(a) + \/ Mlog(i) + 1) - { 3.9

Where h is the Vapnik-Chervonenkis (VC) dimension of the set of decision functions
parameterised by «, and (typically n = min(—4l;, ). The VC dimension of a set of
decision functions is the maximum number of points that can be separated in all
possible ways by that set of decision functions. For a known value of h, our goal is
to make the bound as small as possible so that the best choice can be calculated.
From this existing bound, the use of ERM is justified only if a large data sample is
provided. That is, if the ratio of £/h is large, then the confidence interval (second
term in 3.9) approaches 0, then the ERM is close to the expected risk. However, if
¢/h is small, then both the terms need to be minimised. To minimise both terms,
however, requires the VC dimension of a set of decision functions to be a control
variable and at the same time should generate a simple model rather than a complex

model (relating to Occam’s Razor Principle !.)

'William of Occam (1285-1349) :“Causes Should Not be multiplied beyond necessity”
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There are two ways to solve this minimisation of the bounded problem (Cherkassky

& Mulier 1998),

1) Keep the confidence interval fixed and minimise the empirical risk. The
model structure is controlled by the number of basis functions and for a given
number of basis functions the empirical risk is minimised using numerical op-
timisation. For a given number of data samples there is an optimal structure
providing the smallest estimate of the expected risk. An example of this prin-
ciple is used in the Radial Basis Function (RBF) network commonly used in
artificial neural networks (ANN) and the regularisation network (RN).

2) Keep the empirical risk fixed and minimise the confidence interval. A
special structure (i.e. structural risk minimisation (SRM)) is required to en-
sure that the empirical risk is small for all approximation functions. Under
this, the best value from the structure is that which minimises the value of the
confidence interval. An example is the Support Vector Machine (SVM). In
accordance with (Evgeniou et al. 1999), the RN and the SVM are very similar
in their properties except the way in which their bounds are minimised. This
will be described in more detail in section 3.7.3.

As mentioned in the induction principle section, the optimal decision function
that is selected might not reflect the true unknown function. Therefore, general-
isation is used to control the set of functions f(x,«). The capacity of this set of
functions (also known as hypothesis space) controls the empirical risk achieved. A
large hypothesis space will produce low empirical risk but poor generalisation. On
the other hand, a small hypothesis space will produce good generalisation but will
not be able to describe the data variable dependency in the data. The characteristic
of the derived model generalisation ability typically has a bowl shape with respect
to the capacity of the set of functions. As such, it can be controlled by either
choosing the appropriate VC-dimension or some other embodiment of capacity in

the set of functions.
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3.5.2 Structural Risk Minimisation (SRM)

The SRM induction is an induction principle based on statistical learning. It pro-
vides a formal mechanism for choosing an optimal model complexity for limited
data. Implementation of the SRM principle depends on two concepts : the set of
approximation functions has to be a nested structure ordered according to complex-
ity (VC dimension) and the expected risk, where the sum of the empirical risk and
the confidence interval is minimised. Rigorous estimation of the prediction risk is
difficult since it is difficult to estimate the VC-dimension for non-linear functions.
This requires separation between complexity and dimensionality using a decision
function of a linear form and kernel methods (see section 3.7.2).

The confidence bound in Eq.3.9 justified the use of SRM principle. It attempts
to control both empirical risk on the training data and the capacity of the set of

decision functions to obtain the expected risk. The structure is defined as :
SiCSC..CS, (310)

Where the set of decision functions S = f(x,a),a € A and it ranks according to

their complexity as the subscribed n increases. Hence satisfying a VC dimension

that are:
hi < hy < ... < h, (3.11)

From here, the appropriate structure is selected that minimises the bound in Eq.
3.9. As such, the SRM principle defines a tradeoff between the accuracy or fitting
and complexity of the approximation based on a set of data given.
Prior to implementing SRM, it is important to notice two important issues regard-
ing its conceptual and technical implication. This important issue is extended to
learning associated with the classification task :
e The misclassification error empirical risk is binary. Hence, conceptually min-
imising it will lead to a combinatorial optimisation problem. For technical
implementation, a continuous optimisation is only used to approximate the

misclassification error.

42



e The estimation of the prediction performance is known as model selection.
The conceptual and technical implementation uses the direct misclassification
error.

The requirement for the distinction between the conceptual and technical im-
plementation leads to two different costs involved in practical implementation of
SRM. Firstly the empirical risk uses a continuous loss function (while conceptually
it uses the misclassification error - via continuous nonlinear optimisation). Sec-
ondly, the estimation of the expected risk uses the misclassification error (model
selection) (Cherkassky & Mulier 1998). This unfortunately was not obvious in the
classical approach to classification problems, leading to the interpretation of the
goal of classification problems as the probabilistic density estimation described in
section 3.1. Understanding the different basis between classical (focused on the
probabilistic density estimation of the data) and statistical learning (SRM) focused
on approaches to pattern recognition, explains why some simple methods such as
nearest neighbour distance, or linear discriminant sometimes outperform sophisti-
cated non-linear methods such as ANN (Cherkassky & Mulier 1998). For example,

e Simple classification methods such as nearest neighbour may not require a
non-linear optimisation solution (the empirical risk is minimised directly)

e If the simple methods provide the same level of empirical misclassification
in the minimisation stage as the more complex model, then the use of the
complex model may not provide a better performance as the empirical risk
estimation is an approximation of the misclassification error.

e The sensitivity of classification is less than regression, as slight changes (pro-
vided by the non-linear model based on the practical implementation) may
not have much impact on the misclassification error.

Therefore, SLT provides a good justification for the success of some classical

approaches as compared to non-linear modelling. The problem of classification is
simpler than regression and hence should be solved prior to developing regression

approaches.
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3.6 The Decision Functions

The output from the learning machine is a set of linear functions defined as :
¢
Fx) =D 0K(x,x;) +b (3.12)
i=1

where x;, 7 = 1, ..., £ are input vectors in RV, b is a scalar and « is a parameter. The
kernel Matrix K (x,x;) is symmetric (the kernel function will be described in more
detail in section 3.7.2). A linear function can be more accurately estimated than
non-linear functions. However, sometimes a linear function is not flexible enough to
represent the function, hence a non-linear function is required. In ANN non-linear
functions are used directly over the input space and then the classification is done
in the input space. This does not provide a unique solution to the problem because
the complexity constraint is not defined clearly (i.e. how many basis functions are
good enough for the estimate). We will see next that the SVM uses these linear
functions with constraint on complexity to form the set of decision functions as

above using the SRM principle.

3.7 Support Vector Machine (SVM)

Many practical applications have a set of data that are insufficient for drawing
accurate inferences. Limited data may lead to selecting a model that is too simple
(as a consequence of insufficient data). This implies that the data set is too small
to identify any complex model with certainty. Note: this is different from Occam’s
Principle for selecting a simpler model or imposing a simpler prior model. Rather,
the prediction performance of this simpler model has to be questioned. We accept
that our model might be partially wrong. A question is now raised how much we can
reliably infer from the data if given a statistical model? Support Vector Machine
(SVM) is a learning machine that was developed based on the SLT (Cortes &
Vapnik 1995). SVM comprises of two important features, namely, the use of SRM
and kernel methods. The next section will describe in more detail these two features.

This is then followed by a brief review of the regularisation network (RN) (i.e. it
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can be considered as a kernel learning machine too) and how these are related to
SVM.
3.7.1 Construction of SVM

The SVM was developed by (Cortes & Vapnik 1995, Boser et al. 1992) who imple-
mented the SRM principle into a learning machine. In SLT, the classification prob-
lem is conceptually inherently less complex than the regression estimation problem.
Therefore, a classification problem should be used directly instead of estimating the
probabilistic density function of the data. However, the technical implementation is
not that straightforward as described in section 3.5.2. This leads to a different goal
for the classical approach to a classification problem and the SLT approach. The
goal set for the classical approach requires estimation of the probability density of
the data, which may not imply a good classification rate to be obtained. On the
other hand, the goal for a SLT is to find the decision boundary minimising the
expected risk (Eq. 3.9). SVMs were therefore developed based on their conceptual
simplicity (i.e. developed for a classification problem and then extended to regres-
sion problems).

In classification, a hyperplane (usually a linear function) capable of separating the
training data without error is used. Given the training data consisting of [ samples
(X1,91), s (X0, ¥2) , X € RV y € £1 can be separated by the hyperplane decision

function :
f(x) = (w'x)+b (3.13)

where w are the weight vector coefficients and b the bias. This defines a general
hyperplane and there exists many possible solutions. In order to fix the misclassi-
fication error from the empirical risk to be as small as possible (this is the second
idea of how to minimise the bound described in section 3.5.1), it is important that
all the possible hyperplanes can be represented in the form of Eq.3.13. In order
to implement the SRM principle with the hyperplane, the VC dimension (which
measures the capacity of a set of functions) must be bounded. In accordance with

(Vapnik 1995), the bounded VC dimension, h of the set of canonical hyperplanes
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in NV dimensional space is :
h < min[R®A* N] +1 (3.14)

where R is the radius of a hypersphere enclosing all the data points and A is the
bound of weighted coefficients (i.e. || w ||< A). This effectively controls the capacity
of the function by reducing the number of possible hyperplanes. Notice the notion
of complexity and dimensionality are separated. The complexity is controlled by
the bound and it is independent of the dimensionality. In the classical approach
such as a ANN, the complexity is controlled by the number of basis functions and
it is dependent on the input dimensionality. The dimensionality is handled by the
kernels method described next. The output of the decision functions given in section
3.6 is of linear form and in SVM, it is subjected to the constraint of the canonical
hyperplane. In some practical applications, linear decision boundaries might be
inappropriate, and non-linear decisions are applied. The non-linear decision in
SVM uses the elegance of the kernel methods (denoted by K(x,x) to transform
the input vector, x into a high dimensional feature F (via prior non-linear mapping)
and then to construct the optimal hyperplane.

3.7.2 Feature Space and Kernel Functions

Linear models provide little flexibility to our model as they only use the linear
dependencies between the data. An example of this is the Fisher linear discriminant
(FLD) described in chapter 2.6, which assumes the distribution of the data to be
Gaussian, given the covariance between both classes is the same. This model can
be useful if prior knowledge about the problem is good and the estimate of the
parameters can be accurately obtained. On the other hand, non-linear models such
as ANN have been successfully used (as reported in the material science literature
(see chapter 2.5)). Their success is due to the flexibility of their structure in being
able to adapt to a wide range of functions, hence allowing a non-linear model.
(Bishop 1995) view ANN as a framework for transforming a non-linear functional
input to a set of output variables. The input vector x in the space RV is mapped

non-linearly by a function into the feature space F. The learning then proceeds
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to use this F space rather than the original input space. It is believed that by
transforming the data to a high dimensional space (i.e. F space), the data can
be separated more easily (Cover 1965). However, working in F space requires the
ability to control its complexity (in a basis function model this means controlling the
number of basis functions) leading to the same problem of dimensionality. Kernel
methods are different from the ANN approach as there is no restriction placed on
the number of basis functions used to construct the high dimensional mapping of
the input variables. Work by (Smola 1998) shows that the kernels correspond to
regularisation operators which can be used to provide a smooth mapping, hence
providing a good generalisation. This will be described in more detail in the next
section.
The solution to the above problem of complexity versus dimensionality is separated
in SVM. The complexity is bounded by the SRM principle and the dimensionality
is managed via the kernel methods which map the input vector to the F space using
only its dot products xTx . This eliminates the need to calculate the mapping into
a F space directly which will then run into the dimensionality problems.
Candidates for the kernel functions have to satisfy Mercer’s theorem (Mercer 1909).
Mercer’s theorem provides the condition for a valid Kernel to be used (i.e. it must
be positive definite).

This allows for the mapping of the dot product of the input vector, x to the F
vector (i.e. xTx — ¢(x)Th(x')) which can be done implicitly through the selection

of the kernel function as :
K(x,x) = ¢(x)Tp(x). (3.15)

where ¢(x) is the basis function. This transforms the inner product of the input
vector to a high dimensional F space known as a Hilbert space. A Hilbert space
‘H, is defined as a complete inner product space where the completeness is due to
the metric defined by the inner product and it can be thought of as an extension of
RN with a linear transformation to an infinite dimensional space. An example of

space is the well known Euclidean space. These kernels are then readily substituted
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into the SVM for both classification and regression problems.

Here are some of the commonly used kernel functions :

Polynomial Kernel - with p degree of freedom
K(x,x )= (xTx +1) (3.16)

Radial Basis Function (RBF) Kernel - with o width

[x — x'?

K(x,%) = exp(— ) (3.17)

o2

Spline Kernel - given an order of m and b nodes in a 1 dimension input, its inner

product kernel is :

K(z,z)=Y (zz) +> (z—ta)T(z —tx)7 (3.18)

b
§=0 k=1
where (z — t)y = maz((z — ¢),0) and 1y, ..., € [0,1]. For a linear spline,
(Smola 1998) show that with the order of m = 1 and an infinite number of
nodes, the kernel is :

(z,2)
2

(min(z, z'))3

K(z,z) =1+ 2z + zz min(z,z — (min(z, z7))* + (3.19)

With a IV dimensional splines, the solution for a linear spline is the product
of the N one dimensional splines.
Mercer’s theorem only provides information on which kernels can be used but it does
not provide us with information as to which kernel is best. (Vapnik 1995) views
the choice of kernel as equivalent to choosing features, ¢(x;), related to the original
inputs. He observed that the upper bound on the VC dimension is a potential

avenue to provide a means for comparing the kernels. This approach is widely used
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for feature selection (Chapelle & Vapnik 1999, Weston et al. 2000). It is important
to realise that even though a strong theoretical method might exist for selecting
the best kernel, it still requires an independent test to be used for kernel selection.
Finally, a good reference to kernel methods can be found in (Vapnik 1995).

3.7.8 SRM in Regularisation Networks and SVMs

Work by (Evgeniou et al. 1999), provides a unified view of kernel learning ap-
proaches with Regularisation Networks (RN) based on SLT, showing that the bound
used for the SVM is equivalent to that of RN. There are several notable learning al-
gorithms such as Radial Basis Function (RBF) networks, Gaussian Processes (GP)
and SVM that use kernel methods. Their main differences are how they attempt
to minimise the bound as described in section 3.5.1. Also, their approach to opti-
mising the associated parameters is different. For example using: the least square
estimation (RBF network), the duality representation (SVM), and the Most Prob-
able (MP) for GP. These correspond to parameterisation of the basis function and
the kernel representation. This section provides a brief description of how the reg-
ularisation network and the SVM are related.

The RN attempts to penalise a model’s parameters and structure by avoiding over-
fitting of data and restoring the well-posed condition for learning. Regularisation
uses prior knowledge about the desired function to make the problem a well-posed
one. The commonly used form of the priori is the “smoothness” of the function
parameters (e.g. in Eq. 3.3 the a). The smoothness is defined as lack of oscillation
behaviour of the function (e.g. two similar inputs will correspond to two similar
outputs if the function is smooth) compared with the possible function behaviour in
local neighbours of input space. The accuracy of the function estimation depends
on having enough samples within the neighbourhood to specify the smoothness
constraint. This is then inherent to the problem of dimensionality because as the
dimensionality increases the number of samples must increase exponentially to give
consistent results. This could be offset by increasing the number of data samples
falling within the neighbourhood but this is at the expense of imposing stronger

constraint. The standard minimisation of the loss function for the learning machine
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is :

£

Remy(@) = 3 3~ £(ui £5,0) + 1Q(a) (3.20

i=1
Where A is a regularisation parameter which controls the tradeoff between the
smoothness of approximation and accuracy of the approximation and @(«) is the
regularisation function that provide smoothness/constraints to f(x, ). Notice that
this is a means to minimise the bound described in section 3.5.1 (i.e. keep the
confidence interval fixed and minimise the empirical risk). Given a sequence of
positive numbers, the term Q(«) is some function that reflects the capacity of the
function (f(x, «)) and will monotonically increase. It is worth mentioning here that
there are other regularisation functions that exist such as the squared norm of «;
Q(a) =|| a ||3 (known as ridge regression) and constraining the model to stay in a
small subset of possible models (i.e min Zle L(y;, f(x, ) subjected to Q(a) < %)
(Bellman 1961). It should be noted that Q(«) lies in hypothesis space.
Classical regularisation network theory lacks practical justification when applied to
a finite set of data. (Vapnik 1995) justifies the use of regularisation techniques for
finite data by considering the approximation function (f(x,«a)) for a finite set of
data. The function has to be constrained to an appropriately “small” hypothesis
space. If the hypothesis space is large, model fitting is good but generalisation
performance is poor. This concept is then formulated by Vapnik into the terms of
the capacity of a set of functions depending on the training set size. For a small
data set, the capacity of the function space is small, whereas it becomes large for a
larger training set.
Let us summarise how the RN and SVM can be related before proceeding to describe
the implementation of SVM. For the case of the RN, the Q(«) is fixed and A is
unknown. On the other hand for a SVM, the Q(«) is unknown and A is fixed.
In order to implement the SRM bound, the @(a) must be a fixed prior. This is

equivalent to fixing the weighted coefficients w as described in Eq. 3.14.
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3.8 SVM For Pattern Recognition

For a two class separable pattern recognition case, the optimal hyperplane is de-
fined as a hyperplane associated with (w , b) in the feature space that maximises
the margin from the closest point without training error. The margin is defined
as the minimum distance from the hyperplane to the closest point. The optimal

hyperplane is then obtained by maximising the margin given by (Vapnik 1995) :

r(w,b) = ]—-V%—W (3.21)

Maximising the margin requires minimising w. Minimising this w is equivalent to
implementing a SRM. It reduces the number of possible hyperplanes while minimis-
ing the bound on the VC dimension. In order to maximise the margin, minimising

a quadratic cost function in w is appropriate :

1
Bw) =5 | w . (322)
In this way, the optimal weight w,,; obtained will provide the maximum separation
between two classes and hence the optimal hyperplane is unique. Given a training
vector as x;,% = 1,.....,£ with corresponding target y; € {—1,1}, combining the

linear discriminant function of the two different classes can be translated into :
y(wix; +0)>1 Vi=1,..,4 (3.23)

Now, the cost function is a quadratic function and the constraints are linear with
respect to w. This constrained optimisation problem is called the primal problem

and it can be solved using a Lagrange function, given as:

£
0w, b, ) = % w12 =3 alys(w i + ) — 1) (3.24)

i=1
where o; are the Lagrange multipliers. The solution to this constrained optimisation
problem is the saddle point for the function which needs to be minimised with
respect to w and b and maximised with respect to «. In order to obtain an optimal

solution for the Lagrange multipliers, the primal problem is transformed to a dual
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problem and is given as :

max w(a) = max (mixblﬁ(w, b, ). (3.25)

Then the dual problem can be solved by differentiating the Lagrangian function

with respect to w and b to be equal to 0 and is given as :

¢ ¢
1
Z 52 05 (X, X5) (3.26)
i 0.
subject to the constraint :
¢

which can be solved using Quadratic Programming (QP) with a linear constraint.
In addition, Karush Kuhn Tucker (KKT) states that the Lagrange multiplier o
and the dual function (Eq. 3.26) must be of a non-zero value. Hence, the linear

constraint in Equation (3.23) needs to satisfy this KKT condition, such that :
o (yi (Wi +0) —1) =0 Vi,.... 0 (3.28)
hence, only points with x; which satisfy
yi(wlix; +b) =1 (3.29)

will have non-zero Lagrange multipliers. These values are then called Support Vec-
tors (SVs) and are those points which are closest to the decision boundary. These
represent those points that are most difficult for the machine to assign a class.
Furthermore, the SVs represent the sparseness of the training set (due to the dual
problem solution) and will be used for prediction. Hence, the optimal hyperplane

is given as :

= (Z ;i (X, x) + b) (3.30)
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where b is the bias. The bias can be calculated implicitly or explicitly; implicitly
because some kernel functions will themselves contain the bias. The explicit bias

can be calculated as:

1
b= *“‘2" Z aiyz-(x,xi) (331)

i€Svs

It has been shown that even with the different approaches in obtaining the bias,
both still provide reasonably good results (Gunn 1998). For the case where the b
are calculated implicitly, the linear constraint in Eq. 3.27 (i.e. Zf o;y; = 0) is not

required. The optimum weight vector w can be obtained as :

i€SUs

and the margin is derived from Eq. (3.21).

The description above is based on a linear separable case or hard margin, which
implies that it is a noise free problem. However, a more realistic case will be a linear
non-separable case, as it can accommodate problems with noise and hence allow for
the classes to overlap. This can be implemented using the margin disturbed classifier
(Taylor 1998) or the soft margin approach (Cortes & Vapnik 1995). The distributed
classifier adds a constant factor to the kernel function output whenever the given
inputs are identical. On the other hand the soft margin approach defines prior, the
size of the training weight as an upper bound. In both cases, the magnitude of the
constant factor controls the number of training points that the system weights.
The soft margin approach is described in more detail as follows. Two situations can
occur in the margin : when a point falls inside the margin but in the right class (i.e.
0 < ¢ < 1) or in the wrong class (i.e. £ > 1) with respect to the optimal hyperplane
(see Fig. 3.1). The & are non-negative scalar variables known as slack variables
and are used to measure data points which lie within the margin corresponding
to its border. In this case, it requires the accommodation of some error in the

decision boundary. A non-negative scalar variable, &, can be added to the linear

53



Optimal Hyperplane, D(x)=0

Figure 3.1: SVM Non-Separable case decision boundary, slack variable, £ and mar-
gin. Three points in this figure are non-separable. The subscript 1 and 2 are
misclassified while 3 is classified correctly. The £ measures the errors with respect
to their corresponding class hyperplane. The optimal hyperplane is obtained by
maximising the margin between the class.

discriminant function in Eq. (3.23), and is rewritten as :
y(wix; +0) > 1-&Vi=1,....,0 (3.33)
subject to the constraint :
E>0Vi=1,....,¢ (3.34)

The new minimisation problem is given as the cost function :

£

8w, €)= 3 | w P +0G(Y_€0). (3.35)

i=1
G(.) is a free function except that it must be a convex function with G(0) = 0. For
o = 1, the number of errors can be counted within the margin and sometimes we
address it as the 1 norm loss function. It is possible to set ¢ = 2, this becomes a
quadratic loss function. However, o = 1 is commonly used as it is easy to interpret
(Cortes & Vapnik 1995). The C' can be considered as “prior knowledge” or a
“regulariser” of the data noise as it controls the tradeoff between the complexity

of the decision boundary and the number of errors allowed which is known as the
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capacity control. Therefore, the Lagrange function for the non-separable case is :

Z(w,b,a,f)——]lw[]2 +C’Z§Z ZO‘Z yi(wix; +b) —14+&) - Zn@

i=1 i=1
(3.36)
with 0 < a; < C and r; > 0 as the Lagrange multipliers and we want to minimise
with respect to w, b and £. Solving this problem is exactly the same as the separable
case except for the constraint of the Lagrange multiplier, «;, Eq. (3.27) which has
an upper limit of C.
What has been described so far is for the case where the decision boundary is linear.
Where a non-linear decision boundary is appropriate, the kernel described in section
3.7.2 can then attach to the input and then transform it to the feature space where
the non-linear decision is obtained.

3.8.1 SVM for Multi-Class Problems

The above binary classification problem can be extended to k-class classification
problems; k-class pattern recognition problems are usually solved using the voting
scheme method based on binary classification decision functions. In SVM, the
most commonly used is the one-against-the-rest voting schemes (Blanz et al. 1996).
That is the k™ classifier constructs a hyperplane between class k£ and the k — 1
other classes. This method requires & binary classifiers to be constructed. For
a given test point, a voting scheme (e.g. the winner-takes-all, tree voting) can
then be used to assign the class with largest positive output (assuming the output
values are real). Another approach is the One-against-One; this approach requires
k(k — 1)/2 hyperplanes to be constructed, separating each class from the other
classes and then uses the voting schemes to assign the class for a test point. This
approach was extended to incorporate tree voting schemes into the testing phase
by (Platt et al. 2000). A more natural way to solve the k-class problem is to
construct a decision function by considering all classes at once (Weston & Watkins
1998) rather than constructing the combination of binary classification rules. This
approach attempts to generalise the binary classification support vectors method

with ordering of the constraint for the hyperplane through the piecewise linear
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separation by the maximum of k linear functions. This will allow the quality of
each hyperplane to be measured individually. Weston show that the results obtained
on benchmark data sets suggest that his new approach can reduce the number of
support vectors and hence kernel computation. Furthermore with this approach,
the problem that the voting scheme may become stuck at for example a draw, is
not encountered.

3.8.2 SVM for Regression Estimation

The ideas of SVM classification can be applied to regression problems by introducing
a more robust loss function that measures the difference between the target and
the predicted values. Whilst there are a few loss functions that SVM regression
problems can accommodate, the two most commonly used are e-insensitive and the

quadratic loss function defined respectively by :

e-insensitive loss function

Cely f)) =4 for [ /0 —vl<e g
| f(x) —y| —€ otherwise

where € is a prescribed parameter, that represents the allowance for the in-
sensitivity to the error (that is error within this range is not penalised).

quadratic loss function
Lq(y, f(x)) = (f(x) —y)? (3.38)
The task of the loss function is therefore to minimise the cost function of :
1 ¢ )
(w6, €) =5 | W +CO_g+> €. (3:39)
i=1 i=1

where C is a user prescribed parameter (i.e. capacity control), and &, £* are slack
variables representing the upper and lower errors on the model output respectively.
These result in an optimisation process which leads to the well known QP problem

given for each function respectively as :
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e-insensitive loss function

( 2 3
1
—3 ZZ(“Z‘ — o) (oy — o) K (x4, %;)
i=1 j=1
maxw (o, a*) = max ¢ , (3.40)
+ ) iy —€) — o} (yi+e)
L =l J
subjected to :
OSQiSC, ’l,=1, ..... ,f
0<a;<C, i=1,...1¢
¢
D (ai—0) =0 (3.41)
t=1

making use of the KKT conditions (i.e. a*a = 0), the support vectors are then

one of the Lagrange multipliers with non-zero values. The regression function

*

is then given by f(x) = (w'x) 4+ b where w = >, o (o — ) K (x;,x) and

b= —3w[K(x,,%x;) + K(x,,%;)] where there are two support vectors for the

upper and lower values.

quadratic loss function

\

( ¢
1 * *
~3 D e — o))y — o) K (xi,%;)
. i=1 j=1
maxw (a, @*) = max { > (3.42)
a,o* o Y4 1 £
+3 (e - o Sl + o)
\ i=1 =1 /

Making use of the KKT conditions and letting £; = a; — «f. The quadratic

optimisation problem can be simplified as :

_ 1R : 1 <
b = arg rr%m 3 ZZﬁiﬂj(Xi,Xj) - ;ﬁzyz + 20 ;512 (3.43)

i=1 j=1

o7



subjected to :

£
> Bi=0 (3.44)
=1

The regression function is then given by w = >, o, . (B:) K (x;,x) and b =
—3sw[K (x,,%;) + K (x,,%;)] where there are two support vectors for the upper

and lower values.

It is possible to convert the regression task to classification. This can be achieved
by letting the target y be set as +/— 1 in Eq. 3.38. However, there is an issue
involving computing the parameters involved. For the case of the e-insensitive loss
function, we have to select the upper and lower values of the parameter €. On the
other hand, using the quadratic loss function, the sparse representation inherent
by the Dual representation for the QP (in Eq. 3.25) is unavailable now as all the

training samples are taken to be support vectors.

3.9 SVM Parameter Tuning

In the previous section we have described how SVMs are constructed and the
types of task they can perform. The next question is how to obtain SVM opti-
mal hyperparameters (e.g. capacity control and kernel parameters). A common
method for doing this is estimating the generalisation error by cross-validation
methods (such as the Leave-One Out (LOO) (Wahba et al. 1999, Chapelle &
Vapnik 1999, Joachims 2000, Herbrich 2001)), this is a time and computationally ex-
pensive approach. As such, it can be extended to the k-fold cross validation which is
more computationally desirable. Much of the work by the above authors on tuning
SVM parameter concentrates on minimising the VC-bound (to provide good gener-
alisation error), which is to approximate the VC dimension by E(R2A%(0)) in Eq.
3.14. (Joachims 2000) uses £ —a, (Chapelle & Vapnik 1999) uses the approximation
span rule on the support vectors to estimate the upper bound. The extension of the
LOO SVM to provide better generalisation is known as the Adaptive Margin (AM)
SVM (Herbrich 2001). This approach provides an automatic tuning to its margin

and it will be described in more detail in chapter 4.3.3. (Wahba et al. 1999) use
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the Generalised Approximation Cross Validation (GACV), which is a computable
proxy for the Generalised Comparative Kullback-Liebler distance (GCKL distance).

The GCKL is an upper bound for the misclassification rate, given by
GCKL()) = Eyye (3.45)

where A is the regularising parameter, £ is the number of data, f is the approximated

function, Fye is the expected true loss, 7 = 1—yf and (1), = 7 if 7 > 0 otherwise

0. While
MisClassi fication(}) = Eyryo—— (3.46)
isClassification(\) = Eyye——— .
-y f)+
where in this case the 7 = —yf and (7). = 1if 7 > 0 otherwise 0. It is note worthy

that the A is associated with the f and is used to obtain the minimised GACV and
hence GCKL.

Work by (Weston et al. 2000) views tuning the parameter as feature selection.
Instead of minimising the bound, one can also use feature selection to provide a good
generalisation performance. They use the p-norm for minimising the parameters of

the model :
min || w ||, (3.47)

subject to the constraint of Eq. 3.23. The standard SVM uses a 2-norm for min-
imising the weight parameters (i.e. 3 || w ||? in Eq. 3.22) which provides an easy
solution. (Weston et al. 2000) uses the O-norm (i.e. || w |lo= card{w;|w # 0)})
which was used directly in the learning machine. Solving this is a non-polynomial
(NP) problem. Therefore, an approximation of this NP problem is then studied.
Note : this approach has no sparse constraint and also may exhibit local minima
(but at least it can be solved using constrained gradient approaches). The useful-
ness of this approach depends on the problem at hand, for example whether the
data has a lot of irrelevant features. It requires a prespecified number of features

and therefore can be used as a feature selection algorithm to reduce the number of
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irrelevant features. (Duan & Poo 2001) use the £ — «, span rule and cross-validation
described with three sets of benchmark data samples and show that although k-
fold cross validation is computationally expensive it provides the best estimate for

generalisation error.

3.10 Summary

Given a set of data for classification, the goal set by the classical approach is inter-
preted as setting an accurate probabilistic density estimation of the data. This is
not appropriate for a classification system especially with small sample data set. As
such, learning machines known as SVMs have been developed based on SLT which
effectively describe small data sets. The SLT is the current best known theory
developed for small data set learning (Cherkassky & Mulier 1998). This chapter
provides a basic understanding of SLT and the different goals set for classical pat-
tern recognition and SL'T have been highlighted. The main components that build a
learning machine namely, the loss function, induction principle, set of decision func-
tions and an algorithm to build the machine have been described. In accordance
with SLT, the complexity of classification is lower than for the regression task, and
it should be constructed prior to the regression task. Part of the success of the
SVM is its use of the structural risk minimisation (SRM) and kernel functions. The
SRM handles the complexity of the model associated with data size and the kernel
function handles the dimensionality mapping from input space to feature space.
The relationship in SRM between the SVM and the RN has been highlighted as
both use kernel methods for learning. Their main difference is the way in which
they minimise the risk bound of the parameters involved. The SVM tasks can be
extended to multi-class classification and regression estimates and have also been
described here. Finally, tuning of the SVM parameters focuses on minimising its
expected risk bound, hence providing generalisation to the model.

In a pattern classification machine learning, a common problem is the imbal-
anced data. The following chapter will describe what modification is required for

standard learning machines to be used for imbalanced data.
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Chapter 4

SVM For Imbalanced Data

Learning algorithms used in machine learning are usually inappropriate for imbal-
anced data as they assume no sampling bias and that the misclassification cost for
both classes are the same. This chapter therefore describes why imbalanced data
is important and how to deal with it for classification problems. The conventional
classification performance criterion using the Arithmetic Mean (Amean) is biased
towards the magjority class for imbalanced data. As such, we introduce the Geomel-
ric Mean (Gmean) that is less affected by extreme values. Gmean is the point in the
Receiver operating Characteristic (ROC) which is mazimised when the classification
rate between both classes are balanced. Several SVM extension techniques are then

reviewed which offer different ways of dealing with imbalanced data for classification.

4.1 Curse of Imbalanced Data

Imbalanced data in classification can be defined as occurring when the data of one
class is heavily represented while the other is under represented. This is a very com-
mon problem seen in most practical learning problems, such as fault diagnostics,
conditional monitoring, and can be found in many fields such as medical, nuclear
processing plants and metallurgy. The data for a given minority/positive case in
most diagnostic problems is less than (or under represented) the majority /negative
case (or heavily represented). It is often difficult and expensive to obtain the mi-
nority information. As such, we have imbalanced data associated with our learning
problems. (Provost 2000) has provided a good review as to why learning problems

do not perform well with such imbalanced data, since the goal set by most learning
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approaches is to maximise the accuracy of classification rate and also the classifier
assumes that the training and testing distributions are consistent. This assumption
made by most machine learning is for computational convenience. The accuracy of
a learning problem in this case is therefore always biased towards the heavily rep-
resented class. Also, the distributions between the training and testing are usually
prespecified rather than randomly selected.

The simplest way to handle the problem of imbalanced data is to threshold the
output. For example, in a artificial neural network (ANN), the output of the model
is the posterior probability of the class membership and can be thresholded. This
is a more powerful and useful representation for classification than that provided
by networks which only provide the discriminant between classes directly (for ex-
ample Fisher linear discriminant and classical SVM). This scaling technique can
be extended to scale its weight update as well. Other techniques such as modified
sampling can be used for imbalanced data. The modified sampling techniques’ aim
is to balance the training data either by upsampling (replicating the minority class)
or downsampling (ignoring some cases in the majority class). However, with this
approach, the original distribution of data which might be useful for interpretation
is likely to be lost unless there is an appropriate criteria for selecting important
or redundant data. Another well known sampling technique similar to the Monte
Carlo approach is the Bootstrapping technique. This technique does not require
assumptions regarding sampling distribution.

Typically, the imbalanced data may require a different Misclassification Cost (MC).
The MC due to wrong classification of one class might be more heavily represented
than the other class. Usually, the minority class should invoke a higher MC because
it is the phenomenon of interest. As such, the MC for the minority is more than
the majority class. This will shift the accuracy towards preferentially classifying
minority class. The most common example of why the observed (training distribu-
tion) may not represent the target distribution is the sampling bias. The sampling
bias arises due to the training data being sampled in a way which is not completely

random (i.e. a bias from the true distribution). If we consider the case where
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we simply select the training data randomly from the actual population, then we
may arrive at the situation where one (or more) classes are under-represented for
training. For example, the prior distribution of the positive and negative classes is
P(y = +1) = 0.01 and P(y = —1) = 0.99 respectively. If we randomly select the
training data with 100 data points, we will have only 99 data points representing
the negative class with 1 data point representing the positive class. It will therefore
be impossible to achieve good generalisation performance. Instead, we can select
the training set in such a way that it is not truly random. For example, in the
standard learning machine, the assumption is made that the prior is for balanced
classes by choosing P(y = +1);, = P(y = —1); = 0.5. By upsampling the positive
class and downsampling the negative class, the classes are balanced but the true
distribution of classes is no longer guaranteed. This requires us to have a learning
procedure to adapt to the true representation of our classification algorithm more
appropriately. This analogue of the true distribution between the target for the
training and testing classes might be different. As such, it is necessary to compen-
sate for this, therefore, learning from imbalanced data incorporating two different
priors for training and testing can be formulated from Bayes theorem as follows :

Assuming that the probabilistic likelihood of the data and prior of the train class

and test class are the same :

Pir(Xly) = pre(xy)

Dir (X) = pte(x) (4.1)

and the posterior probabilities of input x for the test and train class are:

Pe(ylx) = %ﬂl
Ptr(yIX) = &W (4.2)

then putting Eq. 4.1 and Eq. 4.2 together, we get :

Pte (y
P (y

~—

—_
o
W

~—

Pie(ylx) = Py (y|x)

N’
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The optimal prediction from a testing example then becomes :

. “ Pte(y')
Pp(ylx) = argmingey  » ’
J=Ly;7#y Fir (y])

Py (y; 1) MC(y;) (4.4)

where m is the number of class and MC(y;) is the cost deal to misclassification. It
is important to incorporate MC' as the important of misclassification cost of each
class can be specified. This provides a natural way to view problems of imbalanced
data in a learning problem and will be used in section 4.3.2 to developed the Non-

Standard Situation (NSS) SVM.

4.2 Performance Criteria for Imbalanced Data

A confusion matrix is a useful tool for visualising the performance of most classifi-
cation problems. It consists of the number of points in the data set corresponding
to four categories: False Positive (FP), False Negative (FN), True Positive (TP)
and True Negative (TN). TP and TN are the correct prediction while FP and FT
are the wrong prediction. Table 4.1 is a representation of the confusion matrix for

a two class problem. Due to the curse of the imbalance of data, using standard

Target

P N

Prediction P | TP | FP
N|FN | TN

Table 4.1: Confusion Matrix

performance criteria such as the Arithmetic Mean (AMean) to assess the classifi-
cation rate of the train and test set is not applicable in this case. For example,
a system with an AMean of 50% may be dominated by one class providing 90%
whilst the other provides 10% classification rate with respect to the majority and
minority classes respectively. In imbalanced data applications, the prediction from
the minority class is usually more important as explained earlier. As such, the

above system cannot be used and an appropriate criterion has to be used.
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4.2.1 Receiver Operating Characteristic (ROC) and Geometric Mean (GMean)
Analysis

The ROC analysis was initiated from the field of signal detector theory (Egan
1975) and has been extended for use in machine learning systems to compare the
relationship between classifiers (Provost & Fawcett 1997). The ROC curve describes
the trade-off between sensitivity (T—P%%W—) and specificity ( TFT%‘JB) values which can
be obtained from the confusion matrix. The range of the ROC curve is from 0 to 1
in sensitivity and specificity and the best solution of the classification system can
be compared to the worst, with the best on the top left corner and worst on the
lower right corner. The ROC curve then allows us to represent simultaneously the
classifier performance by two degrees of freedom for a range of possible classification
thresholds using the plot of TP and FP. Figure 4.1 shows an illustration of the
ROC curve. The advantage of the ROC is that the performance of the classifier is
independent of the class distribution (i.e. the classification rate is not affected by
the majority class). Furthermore, the ROC captures, in a single graph, the various
alternatives that are available to the user as they move their criteria into higher or
lower levels.

Another way of evaluating the imbalance of data is by forcing the accuracy between
two classes to be balanced (Kubat et al. 1998). This is known as the geometric mean
(Gmean) and it is less sensitive to skew distribution than the Amean. A simple
view of the difference between AMean and GMean is that, given a set of numbers
(e.g. the classification rate), we want to represent it with a number. The question
now arises as to how these sets of numbers can be combined and be represented by a
single number? The ways to combine the set of numbers for the case of the Amean
is adding them together while for the case of Gmean the numbers are multiplied
together. The GMean is less affected by extreme values than the Amean and it is
a useful measure of the central tendency for some positively skewed distributions.
The formula for the GMean is defined as :

Gmean = f[(Bi)l/m (4.5)

=1
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where B is a set of positive numbers (which in our case, is the classification rate)

and m is the number of classes. Note that the Gmean is equal to AMean when all

the B’s are equal.

True positive rate

0 0.2 0.4 0.6 0.8 1.0
Felse positive rete

Figure 4.1: Example of a ROC curve showing the plot of TP vs FP. The curve
corresponds to different thresholds used for the classifier. The best solution of the
system can be compared to the worst with the best on the top left corner and the
worst on the lower right corner. The e which forces the classifier to have a balanced
classification between both classes corresponds to a typical Gmean in the ROC
curve.

4.3 SVM Extension Techniques

The building up of the SVM has been described in Chapter 3. The main advan-
tage of SVM is that it was developed based on the SLT which is best used to
describe small sample data sets. SVM was also developed based on classification
problems. There is a huge list of applications of SVM in a diverse range of fields
such as: image classification, 3-D object orientation, text categorisation, hand writ-
ten digital recognition etc ; a comprehensive list can be found in Isabelle Guyon’s
web page (http://www.clopinet.com/isabelle/Projects/SVM /applist.html). How-
ever, little attention has been paid to SVM in handling problems of imbalanced data.
Early work by (Veropoulos et al. 1999), impose a different MC associated with each
class. This approach is related to imbalanced data but the problem of sampling bias
which occurs with imbalanced data has not been resolved by them. (Lin et al. 2000)
then extended their work to incorporate both MC sampling bias costs for imbal-

anced data into SVM and this is called Non-Standard Situation (NSS) SVM, which
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was built using the framework of the regularisation network as described in chapter
3.7.3. Other work that relates to imbalanced data in SVM is the classification of
the microarray gene (Brown et al. 1999). They used the margin distribution ap-
proach to deal with imbalanced data and used a regularisation parameter associated
with the ratio of the class prior and the operational prior distribution. (Cawley &
Talbot 2001) uses this class prior with the soft-margin approach. Both have been
shown to produce good results in the problem that they investigated. In other tech-
niques such as Adaptive Margin (AM) SVM (Herbrich 2001) which we investigated
for imbalanced data, the margin is adapted automatically to fit each of the training
data set. The standard AM SVM is built upon the Leave-One Out (LOO) SVM.
To accept more outliers, the AM SVM is incorporated with a regulariser making
it the generalised LOO SVM. We then make modifications to the misclassification
cost incorporating sampling bias and misclassification cost into the AM SVM for
imbalanced data. The following sections describe these SVM extension techniques
in more detail.

4.8.1 Control Sensitivity (CS) SVM

The capacity control C (sometimes known as the variance of the noise data) in the
SVM is used to control the tradeoff between the complexity of the decision boundary
and the network capacity of the number of misclassification errors (i.e. how many
errors can be tolerated with the training data). By splitting the’C according to
the respective classes implies that the MC associated with each class is different.
This was originally proposed by (Veropoulos et al. 1999) and can be extended to
the use of imbalanced data as it effectively incorporates a different cost function for
each class. Note : however, in this approach the sampling bias is not incorporated.
The standard soft-margin approach for SVM can be extended to the use of Control
Sensitivity (CS) SVM, where the Lagrangian in Eq. 3.36 now has different cost

functions associated with it. This is used to accommodate the two different cost
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functions for each class and is rewritten as :

1 -
L(w,b 0, 8) = 2 Iw I +c7 z'—llyzmﬂfi He i:ﬂ%';—“ -
¢

”‘Zaz yzW Xz+b _1+£z Zrzfz (46)

gz
with 0 < ayjy;=41 < CF, 0 < py;=—1 < €7 and r; > 0 as the Lagrange multipliers.
We can extend the use of the 1-norm (i.e §) cost function to the 2-norm (i.e £2) and

the dual formulation can now be written as :

,C(Oé) == Z i T Z aza]yzyj XZ,X] 4C+ Z 617— Z o

.j=1 iy = iyi=—1

This implementation can be carried out in a standard SVM by adding the ; + and
4C_ term onto the diagonal of the kernel function with respect to their appropri-
ate classes. This approach can be viewed as implementing an asymmetric margin
classifier in order to describe the misclassification risk similar to that of the margin
distribution by (Taylor 1998).

CS SVM shows that it is possible to incorporate different cost functions associated
with different classes. However, there are now two parameters, C~ and C* which
need to be pre-specified or tuned and a way of measuring the performance for each
combination of the C’s is required. It is always difficult to determine the realistic
cost for misclassification in each class and hence, the combination of C's can be
large which results in a large computational burden.

4.8.2  Non-Standard Situation (NSS) SVM

The sampling bias is a problem that is typically inherent in imbalanced data be-
cause the data selected for training needs to be pre-specified (sampled individually)
rather than selected randomly, hence violating the random principle of sampling (all
samples are equally sampled with equal probability). This leads to the necessity of
differentiating the prior distribution for training from that for testing and incorpo-

rating the misclassification cost into the loss function for the imbalanced data. (Lin
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et al. 2000) developed the SVM for non-standard situations based on the regulari-
sation framework following (Lin 1999) and established the relationship between the
standard SVM and the Bayes theorem. Lin showed that the estimates of the SVM
from the sampling set is related to Bayes rule as sign[P(Y = 1|X = x) — 0.5] as the
number of data gets to infinity.

For the case of imbalanced data, the MC and the sampling cost can be incor-
porated into the Bayes theorem as described in section 4.1. For the case of a two
class problem, the training and testing posterior probability of the input x can be
written as :

7rt'rf+( ) 7Ttef+( ) _ 7";7%;
L e o ey o Ry Sy ey B e

where “4” and “-”are the respective class, 7 are the prior probabilities in the output
population, the subscript “tr” and “te” denote the training class and testing class
respectively, and f is the probability density of the input. This leads to the Bayes

rule for SVM to be rewritten for imbalanced data as :

: L(=1)
= PT — 4
¢(X) Slgn[ t (y]X) L(—-l) +L(+1)] ( 9)
where L’s are the imbalance modification factor (i.e L(—1) = MC*rfr, and

L(+1) = MC~m;, 7). The regularised problem for SVM is then modified to that
of minimisation problem of :
=
H(f) = 7 Z L(y)[1 — yif (x:)]+ + Al f]]2 (4.10)
i=1
where ) is a regulariser (can be thought to be equal to 2zc in the standard SVM),
[.]+ is a function such that, 7,=7 if 7 > 0 otherwise 0 (similar to that of the slack

variable & of the conventional SVM used in section 3.8 Eq. 3.33). The bias term in

the SVM is given by:

S ai(L(yi)Z_ o) (i = i K (i, xj)). (4.11)
> iz @i(L(yi) — )

The solution to the above problem can be solved using the QP similar to that

b=
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described in chapter 3.8, except now the imbalance modification factor, L’s are
required to be incorporated corresponding to the capacity control C' in the conven-
tional SVM and the regularising parameter A needs to be determined. this will be
described in more detail in chapter 5.5.

4.8.3 Adaptive Margin (AM) SVM

The conventional SVM machine fixed the margin 7 (see Eq. 3.21), to separate
between the classes. Rather than fixing this margin, Adaptive Margin (AM) SVM
adapts the margin automatically. Making the margin sensitive to each point was
first proposed by (Herbrich 2001). This is done by formulating the margin error and
the support vectors, o; to be dependent. This idea was based on the Leave-One-Out
(LOO) to provide a good generalisation bound (Weston 1999). The bound on the
expected risk in Eq. 3.9 can be obtained from the error of the sparse solutions,
which in turn is bounded by the ratio of the number of non-zero coefficients of « to
the number of training examples /.

In classical SVM, the best choice of training errors and margin depends on the
capacity control, C. In AM SVM, the C is fixed since in LOO-SVM, a soft margin is
automatically attached. This is because the algorithm does not attempt to minimise
the number of training errors - it minimises the number of points that are classified
incorrectly even when they are removed from the linear combination that forms the
decision rule (Weston 1999). (Herbrich 2001) extended the work of LOO SVM by
generalising it. This was done through adding a regulariser term to the loss margin
in the constraint. The generalised LOO uses the learning algorithm to minimise

the bound of the error directly through slack variables, £, and can be written as:

minimise é & (4.12)
yi f (%:) 12:11 — & + Ak (x4, x;)
subject to & >0
a >0 (4.13)

The significance of the regulariser, A, at each training point is :
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e if A=0, no effort has been made to make the minimisation function smooth.
It is based on the empirical risk.
e if A = oo, no effort has been made to reduce the empirical risk. It is equivalent
to kernel density estimation in each class.
e if A=1, this is the LOO SVM.
The regulariser, A, can then be used to relax the decision boundary and hence al-
lows the application to find the outliers in the data. Now the margin for separating
the class is automatically adapted. Previous approaches required a tradeoff be-
tween maximising the margin and misclassification of errors. We then extend this
approach to our application for imbalanced data by splitting the £ into two classes
associated with their appropriate loss function (i.e. the imbalanced modification

factor in Eq. 4.9). Hence, rewriting Eq. 4.12 to :

minimise  L(-1) » & + L(+1) Y & (4.14)

i=1ly=-1 i=1|y=1
subject to constraint of Eq. 4.13.

4.4 Summary

Typical learning machine algorithms are not readily usable for imbalanced data
unless some modification is made. The two important factors for imbalanced data
are the specification of the accuracy of misclassification rate and the sampling bias
which have to be considered. Also, the Gmean performance criterion is more ap-
propriate for imbalanced data as it is less sensitive to large deviation between two
outputs. SVM was developed based on SLT and SLT effectively describes statisti-
cal estimation with small samples. SVM was also developed based on classification
problems. Several SVM extension techniques that may be suitable for imbalanced
data have been described in detail in this chapter. The CS SVM was driven by im-
posing a misclassification cost for each class. The training and testing distribution
is not taken into account here. The NSS SVM then incorporates the two factors
for imbalanced data into account. The interesting thing about AM SVM is the

LOO error. However, the reason for investigating the AM SVM is due to the fact
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that the margin is adapted automatically rather than fixed. Among the techniques
reviewed, the work by done (Lin et al. 2000) called the NSS SVM seems to be more
appropriate for our imbalanced data as it has a sound theoretical background incor-
porating misclassification cost and sampling into SVM training. The imbalanced
modification factor (L’s) derived from Lin’s NSS SVM is then applied to AM SVM.

Obtaining a good classification for imbalanced data is not the end goal of a good
classification system. What would be also desirable is to understand the structure

of the derived model for interpretation.
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Chapter 5

Model Interpretation for

Classification

The ultimate goal of a classification system is the classification rate. However, it
15 often important to justify how the output is derived from the inputs and which
mput features are the essential ones. There is often a complex relationship between
wputs. The class posterior probability is a common way to assess classification
problems that provides model interpretability by specifying how confident we are of
selecting the appropriate class. Another way to view interpretability of the model
is to decompose the model structure into a simpler form and yet retain the model’s
performance. This is the approach that we have considered in this thesis to provide
model structure interpretability by enforcing sparseness of the model. The first sec-
tion describes interpretability from the classification point of view given some classi-
fication system examples and describes how this can provide interpretability. In this
work, the interpretability of our model was attempted within the SVM framework.
This starts off with the well known additive model structure. The feature selection
techniques used in SVM are also briefly described since it provides interpretability
for the model. Prior to describing the SUpport vector Parsimonious ANalysis Of
VAriance (SUPANOVA) approach, its main components, namely the use of Spline
kernels and the ANOVA decomposition function, are described relating these to the
additive model. The original work on SUPANOVA was developed for a regression
task. The final section is delegated to the implementation of SUPANOVA for clas-

sification with imbalanced data.
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5.1 Understanding the Interpretability of a Classification System

In a classification problem, the task is to assign a new input to a number of possible
labelled outputs. Learning is then the process of determining the model parameters
that provide the output on the basis of a given set of data. The performance of the
classification is based on the classification rate, which measures how well the learn-
ing algorithm is able to discriminate between the classes. In many practical appli-
cations, the output from the classifier which simply discriminates between classes
is insufficient. For example, an Artificial Neural Network (ANN) (highlighted in
chapter 2.5) is viewed as a “black box” classification tool as it is unable to provide
a clear explanation as to its output (i.e. it is difficult to interpret its parameters).
It is difficult to convince the end user that this classification is correct unless it
can provide some understanding of how this output was derived or at least indicate
how confident we are for this output compared to other classes (i.e. class posterior
probability). The class posterior probability expresses the quantity of uncertainty
in prediction while it helps to facilitate the separation between “inference” and
“decision” (Duda et al. 2000). As our investigation into the automotive material
is a two class problem, this thesis concentrates on understanding the parsimonious
representation of the classification model rather than the confidence of the model.
In classical work such as linear discriminants, the output provides information about
the projection of the input space to a one-dimensional space for classification. The
interpretability lies in the parameters of the technique that represents the pro-
jection from high-dimensional data onto a line and performs classification in this
one-dimensional space (Bishop 1995). The projection maximises the distance be-
tween the means of the two classes while minimising the variance within each class.
Although the parameters provide information about the projection, the strict as-
sumption about the model (being a multi-dimensional Gaussian distributed model
and equal covariance matrix) is not realistic for most practical applications. Other
techniques such as tree methods adaptively split the input space into disjointed
regions in order to construct a decision boundary. The regions are chosen based

on a greedy optimisation procedure where in each step, the algorithm selects the
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split that provides the separation of the class according to some cost function (a
cost that reflects the misclassification risk). Pruning methods are usually used af-
ter growing the tree for model selection. The Classification And Regression Tree
(CART) algorithm (Breiman et al. 1984) is commonly used for a binary tree split.
The binary tree structure produced by CART is easily interpretable for a moderate
number of nodes. Each node represents a rule involving one of the input variables
hence providing interpretability on how the output of the CART is derived. The
main problems with this approach are that it is sensitive to coordinate rotation, the
solution may be a local minima (due to the greedy search) and also that the region
over which local averaging occurs is highly restrictive (i.e partitioning is by a recur-
sive splitting of hyperrectangular subdomains by a plane perpendicular to a selected
input). Other partition methods exist such as the nearest neighbourhood method,
which uses the Voronoi partition (that is the distribution is the set of points in the
plane which are as close or closer to the centre of that disc than to the centre of
any other disc in the distribution). As such, the nearest neighbourhood structure
is a piecewise regression model like CART but with less restriction. The decision
about the boundary is constructed using the m data point nearest to the point of
estimate or voting scheme. The problem with this approach is its computational
burden for a large data set. Every set of training data has to be recalculated in or-
der to make a prediction. Techniques such as Learning Vector Quantisation (LVQ)
(Kohonen 1990) have been used to combat the computational issue by represent-
ing a large data set by a smaller number of prototype vectors. Another technique
similar to tree methods is the graphical model. A graphical model has the notation
for modularity - that is a complex system can be built by combining simpler parts
(Murphy 2001). The graphical model uses the theory of the graph and probabil-
ity. Probability theory links the simpler parts together to provide a whole system
which is consistent and also interfaces models to data. The Graphical model theory
provides transparent interfaces of models with highly interacting sets of variable as
well as their data structure which leads to an easier understanding of the original

high dimensional model. A common type of graphical model in machine learning is
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the direct graphical model sometimes known as a Bayesian network (Pearl 1998).
In probabilistic reasoning, random variables represent an event or an object. The
aim is to compute their joint probabilities given the random variable of the current
state of the world, however making each and every combination is combinatorially
expensive. As such, the Bayesian network recognises that certain random variable
pairs may be uncorrelated once information concerning some other random vari-
ables is known. This allows us to reduce the chain rule size by eliminating the
conditional independence for probabilistic terms while explicitly keeping the joint
probability.

However, most techniques described so far are based on setting the initial goal that
requires good density estimation. This has been described in the earlier chapter
3.5.2 as a misconception between conceptual needs and technical interpretation.
There are many other classification techniques yet to be discussed here, for exam-
ple Bayesian Neural networks which use the evidence framework to select important
features. This is done via adding a hyperparameter into each input feature which
provides information about the importance of each input feature in the model.
Neuro-fuzzy networks use linguistic explanations for modelling. All this work may
provide us with an understanding of the output of the classification which is an

important issue for the classification problem.

5.2 Interpretability in SVM via Model Structure

A complex model is typically difficult to interpret. This inability to interpret the
model can lead a complex model to be described as a “black box” system. It is
therefore important to be able to provide a simpler or parsimonious model to yield
interpretability of the model structure. This principle was stated by Occam, that
design should take into account the simplicity of the model in addition to good pre-
dictive performance. The bound on the expected risk from the SVM can be used
as a guide to feature selection in SVM, hence providing an interpretable model.
Work done by (Weston et al. 2000) uses the 0-norm on the weights to provide di-
rect feature selection for SVM. This approach of feature selection is to reduce the

number of features used and also preserve or improve the discriminative ability of
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the classifier at the same time. It is important because it affects the running time
requirements and interpretation issues imposed by the problems. In this thesis, the
model structure approach has been focussed upon to provide interpretability to the
model by decomposing the model into simpler terms, hence providing interpretabil-
ity for a high dimensional input problem.

The additive model is an attractive framework that has been used to establish the
generalisation of linear models (Hastie & Tibshirani 1990). This additive model was
used to avoid the dimensionality problem. (Rasmussen 1996) has shown that the
additive model has many successes when used in the learning machine community.
His work concentrates on the predefined nature of additive models and determines
whether it can capture the properties of the physical data. Additive models are
useful because they are a superposition of one-dimensional functions. As such the
effect of different variables can be examined separately. With such properties, this

model is attractive as it provides easy interpretation of the model. A simple additive

model is:
) =Y fiz) (5.1)

where N is the number of input dimension, x is the input vector and f; are the uni-
variate functions. A sparse representation of the model structure can be enforced
on the additive model. This has been used in the signal processing community to
decompose any signal into a linear expansion of waveforms (waveforms are discrete
time signals with specified length) (Mallat & Zhang 1993). A large number of basis
functions that were linear superpositions were built and weighted coefficients were
associated with each basis function. Picking out the important basis function or
sparse representation from this large number of basis functions (known as the Dic-
tionary) requires an enforcement of the weight associated with each basis function.
This is related to a learning problem by minimising the following expected cost

function :

Ela] = ﬁ(f(X),Zaj@(X)) + A all (5.2)
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Where L is the loss function between the approximation and the sparse represen-
tation, 0-norm counts the number of non-zero values of a, A is a parameter that
measures the tradeoff between sparsity and approximation (or is chosen as propor-
tional to the noise) and J is the number of basis functions, ¢;(x). Therefore, a large
value of A implies a more sparse representation or more coefficient a’s become zero.
The loss function needs to be inferred from the given data set and is known as the
empirical risk minimisation (as described in chapter 3.5.1). Typically, it uses an em-
pirical approach with a convex loss function (i.e. min § Zle(yi — 7 a;0i(x))?).
Note : this minimisation assumes that the true function or the target y is corrupted
by additive noise. The problem with this additive model is that the 0-norm of the
coefficient is a non-polynomial hard problem to solve because it requires a search
through all the combinations (Chen et al. 1999). Therefore, an alternative is to use
a greedy method to estimate the cost function or different norms to enforce a sparse
representation. The early work uses the greedy method known as “matching pur-
suit”. It starts with an initial approximation scheme with a square error loss, and
the basis functions are added iteratively to the model. It is note worthy that this
is similar to that of a Radial Basis Network for given Gaussian basis function and
the same number of basis functions. The use of 2-norm for minimizing coefficients
was implemented in the Method of Frames (MOF) (Daubechies 1992) in wavelets.
This approach has computational advantages, however, sparsity is not preserved.
(Chen et al. 1999), used the 1-norm (which is the summation of the absolute value
of the coefficients) instead of an approximation to the 0-norm or 2-norm, and this
is known as Basis Pursuit De-Noising (BPDN). The computation cost for BPDN
is still expensive, even with linear programming as obtaining its goal minimum
requires a computation of all terms in the dictionary term.

In SVM, the kernel is a tool used to map the input dimensional to a high non-
linear feature space. Attempts to decompose the associated kernels used in SVM
is to provide a sparse kernel and hence, an interpretable model. Here, we have
described how a sparse kernel can be obtained by enforcing different 1-norms to the

kernel coefficient. Several kernels are described in Chapter 3.7.2. Not all kernels
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fit nicely into this additive model framework. Next, we describe how the SVM can
obtain its model interpretability using the unique properties of the spline kernel
and the Reproducing Kernel Hilbert Space (RKHS) enabling their tensor products

to be produced.

5.3 Spline Kernels and ANOVA Decomposition Functions

Splines are good for modeling due to their ability to approximate arbitrary func-
tions, shown by (Wahba 1990). It provides a natural and flexible approach to density
estimation which has been shown to couple well with data that are sparse. Splines
are not parametric in a function form, but they can be written as a linear combina-
tion of basis functions that usually have a polynomial representation. B-splines are
computationally advantageous and favorable when a rule base is described (Brown
& Harris 1994) and are widely used in neuro-fuzzy networks. However, (Gunn 1999)
has observed experimentally that they have the tendency to oscillate. While infinite
splines have no oscillation problem, there are no scales involved. Hence, no param-
eter has to be determined, making it very attractive. This motivates the use of
spline kernels within the ANOVA framework, as the ANOVA decomposition would
produce a magnitude of such parameters which need to be determined. The simple
first order spline kernel with infinite nodes, which passes through its origin, is a
piecewise cubic with knots located at a subset of the data given as in Eq. 3.19.
Kernels can be constructed from their tensor products of other kernels. As such,
extended kernel functions can be constructed from the additive sum in terms of a
Mercer theorem (described in more detail in the next section). This enables the
learning problem with an additive spline model to become :
N

F(x) = Y w(> K(z},2')) (5.3)
J4

= Z(ZWEK(Q%’“#)
=1 ¢
= ) fi(a)

j=1
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W«hefe £ is the number of samples, IV is the number of input dimensions, w is the
weight associated with each univariate spline kernel. This then forms a learning
problem which is an additive model where f(x) is estimated through adding each
f(z) associated with a univariate term. A special case of the additive model focuses
on building up the model with a univariate (i.e f(z1,...,zn) = fo + fi(zl) + ... +
fn(zwn) satistying fx(0) = 0 for all variables of N). The interactive model was not
considered in this special case of the additive model (Chen et al. 1999) as such,
it suffers from approximation errors. Let us consider a 2 dimensional integral to

illustrate their interactive terms :

fO = f(0,0)
f1(371) = /f(xl,fﬂz)d%——fo

fo(z2) = /f(xlaxZ)dxl—fO
f12(331,$2) = f($17$2)— /f(l‘l,l’Q)dl”z“ /f(931,932)d$1+f0

f(@1,22) = fo+ filz) + fo(2) + frz(z1, 22) (5.4)

This decomposition can be viewed as a functional version of the statistical method-
ology Analysis Of Variance (ANOVA). The curse of dimensionality will exist in this
instance when the order of interaction increases. In most instances, we are inter-
ested only in the low interaction terms since they can be more easily interpreted.
Hence, a term that enforces a sparse representation of the model (e.g. BPDN) can
be incorporated to provide a interpretable model. Putting the flexibility of the
spline and the decomposition of the ANOVA function into additive components to-
gether with an enforcing term for sparse representation leads to the SUpport vector

Parsimonious ANOVA (SUPANOVA) (Gunn 1999).

5.4 SUpport vector Parsimonious ANOVA (SUPANOVA)

The ANOVA kernel has been used by (Stitson & Weston 1996) and has shown good
performance. ANOVA kernels have been used in this thesis, electing the sparse
ANOVA kernel will produce a parsimonious model, which has a sparse structural

representation, and yet is flexible enough to retain the model representation (i.e.
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preserve generalisation as well). Understanding the model structure provides a good
understanding of the selection of inputs. This is an important issue in any learning
problem and it has often been neglected in classification problems or is considered
in terms of class posterior probability (e.g. in ANN applications). The sparse model
provides easy interpretation with a smaller number of interactive terms (through
decomposition of the model). The ANOVA kernel can be incorporated into the
SVM framework with an enforcing term to choose a parsimonious model and can

written as :

¢
fx) = Zai ZajKj(xi,X); subjected to a; > 0 (5.5)

i=1 j
where the kernel, K; is associated with a weighted term, a;, and j is the number
of basis functions. The enforcing term for transparency can then be introduced by
careful selection of each weighting term for each kernel (sparse selection). As has
been noted in section 5.2, there are several enforcing terms (i.e norms) that can
be employed. It has been argued that the BPDN is more appropriate in this case,
leading to modification of the constraint of a; in the above equation to a 1-norm
(similar to Eq. 5.2 except that it uses 1-norm). The spline ANOVA kernel uses
the infinite spline as it is flexible and has no scale term to be determined. Further-
more, the additive representation of the ANOVA model structure is advantageous
as the higher order interactive terms can be ignored, hence leaving small subsets
of ANOVA which can be easily visualised. This provides a parsimonious model
as opposed to neural networks where the structure of the network is in itself very
difficult to interpret. The ANOVA kernels that can be used in SVM must satisfy
the Mercer condition, and is stated as :

e if K1 and K2 are positive definite then K1 + K2 and K1 x K2 are positive

definite.
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Then a multivariate ANOVA kernel can then be written using the tensor product
of a univariate plus a bias term,

N

K(u,v) = H(1+k(ui,vi))

=1

- 1+ Z E(us, v:) + > E(us, vi)k(uz, v5) + oo+ [ [ K(us, 05) (5.6)

i=1 i<j i=1
Note that each of the additive terms has its own property, since k; and k, can be
expressed individually and it is also similar to that expressed in Eq. 5.4 for the case
of a 2-dimensional problem. In built up ANOVA kernels, a univariate is required to
satisfy fy(0) = 0 for all variables. This means that the univariate terms will pass
through zero and the bivariate and other higher terms will also be constrained to
be zero along their axes. As a result, this parsimonious model will favour smaller
order terms rather than higher ANOVA terms.
The approach to obtain the model structure is different from the CART algorithm.
CART uses a greedy search to provide flexible basis functions using a partitioning
approach. However, they may be entrapped locally. Here, we are using the full
model and we look into the subsets rather than at the subsets to build the full
model. However, the potential problem with any additive model is when the model
itself contains high dimensional interactions, whereby the transparency would not
be apparent. However the interactive terms can be restricted by a regulariser, A
(Eq. 5.2), although this may provide an interpretable model at the expense of

structural integrity.

5.5 SUpport vector Parsimonious ANOVA (SUPANOVA) for

Imbalanced Classification

In dealing with imbalanced data, incorporating a modified class dependent mis-
classification cost function and sampling bias is required for the SVMs described
in Chapter 4. The misclassification cost for each class can be implemented in the
capacity control, C (i.e. C* and C~ for the respective class) as in Control Sensi-
tivity SVM (Veropoulos et al. 1999). This can be extended to imbalanced data by

imposing a heavy penalty on a skewed class. As such, the sampling bias needs to
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be incorporated as given in the case of (Lin et al. 2000) for non standard situation
(NSS) SVM. The difference lies in the fact that (Lin et al. 2000) use the regulari-

sation network and we are using the classical SVM approach. The differences are
highlighted here :
e Standard SVM

¢
1
CY &+ 3 | w|” (5.7)
=1

e Regularisation Network SVM

V4
S L&+ £ Ik (5.8)

|

Comparing the above two equations :

. L(yi)
C==; (5.9)

where L(+1) = MC~ w7 and L(—1) = MC™¥r}m,, are the imbalanced modified
factor given in Eq. 4.9 where MC are the misclassification costs. It should be noted
that the ratio of the L is affected by the A. The exact value of L(1) and L(—1)
is not important as opposed to its ratio as the optimum decision is based on the
sign of the posterior of the training minus the L’s ratio (see Eq. 4.9). This is a
reflection of the threshold imposed for the decision boundary. The geometric means
(Gmean) were then used to obtain the true classification rate of the positive and
negative class of the classifier. This was found to be the best approach to deal with
imbalanced data although our previous work was based on using the misclassifica-
tion cost alone and finding the two different misclassification costs through trial and
error (Lee et al. 2001b, Lee et al. 2001d, Lee et al. 2001a). This approach provides
a more natural way to allow for the imbalanced data in SVM.

The above described approaches deal with the problem of imbalanced data. This
work is extended to provide an interpretable model using the SUPANOVA. A fast

way of converting the SUPANOVA from regression applications to classification
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problems was described in (Lee et al. 2001¢e). This was done by altering the model
selection from being based upon Mean Square Error to classification rate. This the-
sis however, reformulates the regression task to a classification task by changing the
quadratic (regression) to a hinge loss function for regularisation. The SUPANOVA
technique allows for an additive decomposition of low dimensional kernel models to
be recovered, enhancing model visualization. This is a difficult task and is decom-
posed into 4 stages similar to those of the regression, except that the loss function
and the model selection are changed. It is noteworthy that, prior to proceeding, the
form of the univariate kernel must be chosen. There are many kernels that can be
employed, such as Radial basis functions, polynomials, splines. However, there are
additional parameters within many of these kernels that must be determined, there-
fore, whilst they provide increased flexibility for the model, a significant additional
cost is introduced. A spline kernel has been used here as it does not require any
additional parameters to be determined and it does have the ability to approximate
any function with arbitrary accuracy (Wahba 1990).
The stages involved in SUPANOVA for classification of imbalanced data are :
1. Model Selection

a good generalisation estimate from the SVM based on GMean provides the

value of the two different imbalanced modified factor L’s for each class as

described in Eq. 5.9.

2. ANOVA basis selection;
using the values of L’s in model selection, Lagrange multipliers, 0 < o < L(y;)
are obtained. The decision function (below) is decomposed into all its possible

sub-components assuming all the a’s to be 1.

f(x) = Z Q;Y; Z a; K;(x;,%) (5.10)

where o; > 0 are the Lagrange multipliers, y; are the targets, a; are the
weighted model coefficients £, n is the number of training patterns and m is

the number of additive kernels used in the model.

84



3. Sparse ANOVA selection;
this reduces the number of model coefficients, a; > 0 from stage 2 by a 1-norm
imposed on the additive model coefficients. The solution to a quadratic loss

function is then given as :

min ||y — @a [3 +A [ alh,

5 ,
= mina®® ®a + (A1 — 2y7®T)a subject to a; > 0 (5.11)
a
equation and for the case of the hinge loss function by :

min || y — @a [j1p +A || a | (5.12)

R [ —diag(y™)® —I 0 | [ -1 ]
Al a —diag(y™)® -1 0 a -1
min [ L(+1) ¢ | subject to -1 0 O £ | <
Sy | Le 0 1 o |]e
» O —.I o L -

where y; is the target, ® is the ANOVA basis matrix obtained, A is the struc-
tural regulariser and — denotes a vector of size 2%V and £ and £* is the slack
variable that measures the distance of a point from the optimal hyperplane
corresponding to its respective class (i.e. maz(1 — y;®a,0)). Hence providing
interpretability through the additive kernel function.

4. Parameter selection

using only those coeflicients selected in stage 3, reconstruct a new model using.
£ m

fx) = Sign(z o5 Ys Z a; K;(x;.x)) (5.13)
i=1 j

5.6 Summary

Class posterior probability and model structure are two different ways to provide
interpretability to a classification model. Several model structures used in classifi-
cation such as CART and graphical models have been described. However, such an

approach requires a good estimate of the model’s posterior density leading to the
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curse of dimensionality. A way to deal with this problem is to use the SLT. This is
the basis of the ANOVA kernel used in SVM which decomposes the structure model.
The conventional Support Vector kernel uses the full kernel and has a complex in-
terpretation. The sparseness in the kernel is enforced in the kernel coefficients and
can be obtained using the p-norm on the coefficients, hence enforcing sparseness
of the model structure which is the kernel in the feature space. Furthermore, the
contraction of the ANOVA kernel has a constraint where all the univariates must
pass through its origin which also means that all other higher order terms are con-
strained to be zero along their axes. As such, this favours selection of the lower
order terms. Not all kernels fit nicely into these frameworks. The spline kernel
is flexible in approximating arbitrary functions and has no scale parameter and is
a good choice. The SUPANOVA was then developed for decomposing the model
structure of the kernel in SVM for regression. In this thesis, we extend its use for
classification of imbalanced data using 4 stages similar to that of regression except
that the loss function is altered to a hinge loss function and the appropriate mis-
classification cost with the training and testing target distribution is incorporated.
The performance selection is also altered based on the geometric mean which is
less sensitive to big differences between the classification rate between each class.
This approach provides an enforced sparseness of the kernels in the feature space
to provide model structure interpretability. As such, the important input features

distinguishing between classes can be recovered.
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Chapter 6

Data Analysis

The importance of understanding why fatigue crack initiation occurs in component
materials used in the automotive industry has been highlighted in Chapter 2. In this
thesis, we investigate fatigue crack initiation in automotive camshafts and plain
journal bearing linings. The problem that we first encounter is that of a small set of
data which is imbalanced. Difficulties involved in dealing with imbalanced data and
how to deal with these difficulties are looked at in Chapters 8 and 4. In order to
understand the model selected, Chapter 5 describes the decomposed model produced
using SUPANOVA. This chapter is divided into two main sections dedicated to the
analysis of each set of data. With the camshaft data, we attempt to use several SVM
extension techniques to deal with imbalanced data. Then, by using this model (i.e.
the best model), we attempt to provide model interpretability. The features selected
are then compared with the metallurgists’ understanding of the mechanics of the
system. The same approach is then applied to the Al-Si-Sn plain journal bearing

lining fatigue data.

6.1 Automotive Camshaft Material - Austempered Ductile Iron
(ADI)

6.1.1 Model Specification

The ADI materials data set for the automotive camshaft application contains a total

of 2923 examples of which 116 samples are crack initiation sites (“Crack” class) while

2807 samples did not act as crack initiation sites (“No Crack” class). These data

were obtained from a FBT of ADI which has been described in chapter 2.2. A set of
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nine measurements relating to the spatial distributions and measures of the object
(graphite nodules) were obtained from the tessellation. This set of nine features
describes the prior domain knowledge of the microstructural distribution, e.g. the
morphology of the secondary particles. The features measured for each graphite

nodule which are used for learning are generated from the following measurements:

Object area, (O.A)

Object aspect ratio, (O.A;)

Object angle, (O.Ang)

Cell area surrounding the object, (C.A)
Cell aspect ratio, (C.A;)

Cell angle, (C.Ang)

Local area fraction, (L.A.F)

number of near neighbours, (N.N.N)
nearest neighbour distance, (dasn)
mean near neighbour distance, (dasean)
nearest neighbour angle, (N.N.Ang)

o

O 0ON O W

et fd

See also Fig. 2.3 from chapter 2.

Prior to using the different approaches to classify the graphite nodules, the input
features are normalised. This will ensure that the input feature is restricted to a unit
domain and so provides no bias for each feature. Here we normalise the data to be
between 0 and 1. Upon normalising, the data is ready to be partitioned into training
and testing sets. The emphasis here is to use at least 75% of the “crack” class for
training as it is the minority class and understanding why cracks are initiated is our
main interest. Due to the extensive analysis time required to compute for a large
set of data, 700 samples from the “no crack” class were randomly selected for the
classification exercise. As such a set of imbalanced data with “crack” samples = 90,
and “no crack” samples = 700 were used as our training sets. The rest of the data
from both classes are then used for testing. The selection of the training set in each
case is then repeated five times with random selection of the data each time. This
was designed to assess the effect of data selection on the models produced. The
average Geometric mean (Gmean) was then used to assess the overall performance
of each technique and the Gmean variance is used to measure the confidence in the
model selected as it refiects the dependency of the model on the data set selected

for training and testing.
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6.1.2 Classical Approach Results

Work done previously by (Hockley et al. 1999) uses simple averaging techniques
(i.e. comparison of means and standard deviations - see table 2.1) and visualisation
of the histogram plots to assess the difference between crack initiating graphite
nodules and those that do not act as crack initiators. We have first extended the
use of the simple linear discriminant technique described in chapter 2.6 to the data.
Although this is a linear model, it provides feature selection by maximising the
class separation. Furthermore, a linear classifier is less sensitive to noisy data and
no complicated optimisation is required as discussed in chapter 3.5.2. Table 6.1
shows the results obtained from the Fisher Linear Discriminant (FLD) features
using all nine features and just three features (the O.A, z;, the C.A, z, and the
L.A.F z5). These three features were selected as important by prior analysis based
on simple averaging techniques by Hockley et al. The results show that the FLD
model is biased in both cases towards the “no crack” class (i.e. the classification rate
is dominated by the “no crack” class). Although, we have identified the successful
prediction of the “crack” class as being important, we also need to consider the
tradeoff for the “No Crack” class. For example, the model is useless if it can classify
99% of the “Crack” class correctly but only 1% classification for the “no crack”
class. Our target was set through discussion with the metallurgists as achieving
a successful classification rate of at least 70% for both classes. The geometric
mean provides a more suitable measurement of successful prediction for which the
performance in predicting both classes is high only when they are reasonably equally
well predicted.

Table 6.1 also demonstrates that using the Arithmetic mean (Amean) technique
for measuring classification performance for imbalanced data is inappropriate. The
Amean technique does not reflect the difference between the classification rate of the
“crack” class (TP) and the “no crack” class (TN)(e.g. the Amean for using all the
9 features and using the 3 features are fairly similar but the difference between both
classes’ classification rate using all 9 features is 0.51 (i.e. 0.88-0.37) while for the

3 features is 0.77 (i.e. 0.99-0.22)). Therefore the use of Gmean clearly shows that
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the results from using all 9 features gives a better representation of the skewness in
prediction between the two classes. Lastly, the results show that using more features
could enable us to obtain a better classification performance based on either Amean
or Gmean. This shows that the 9 features contain more information than just using
the three features identified by simple inspection, although the Gmean variance is

higher than when using the 3 features.

No. of Feature | TP | TN | Amean | Gmean | Gmean(variance)
F9, All 0.37 1 0.88 | 0.62 0.57 0.0412
F3, z1,x4,25 | 0.2210.99 | 0.61 0.49 0.0312

Table 6.1: Result from Fisher Linear Discriminant (FLD). TP and TN denote the
true classification rate for the “crack” and “No Crack” class respectively. This model
is biased towards the TN class, the Gmean is less sensitive to a skew distribution
of the classification rate and it can be seen that using all nine features obtained a
less skewed result and a better overall classification rate.

Linear Discriminant analysis provides an initial statistically based analysis prior
to generalising with more complex nonlinear modelling approaches. The linear
approach may miss key features of the data which can only be represented using
nonlinear approaches. Furthermore, the FLD provides a description of the data
rather than predicting unseen data that might also be useful. Last but not least, it
requires density estimation of the input which may not be appropriate for a given
limited number of data, as described in chapters 2.6 and 3.1. As such, a non-
linear approach known as SVM has been investigated. SVM have gained success in
recent years for many classification and regression problems (Burges 1998, Smola
1998). SVM was developed from the “Statistical Learning Theory” (SLT) which was
thought to effectively describe statistical estimation with small samples (Cherkassky
& Mulier 1998). Another important feature of SVM is its substitution of the kernels.
This eliminates the problem of the input dimensionality that FLD has. Next, we will
describe the results obtained using the SVM and its extension techniques described

in chapter 4.3.
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6.2 SVM Results

Our initial approach was to use the standard SVM, Adaptive Margin (AM) SVM
and SVM for regression to deal with the imbalanced data set. The results are
summarised in Table 6.2. Two kernels, namely the spline and Radial Basis Function
(RBF) were used. Spline kernels were used because of their flexibility and there
is no free parameter to be determined. Furthermore, it can be easily incorporated
with a parameter to enforce sparseness in the model interpretability (as discussed
in chapter 5.3). On the other hand, RBF kernels require the width (o) to be tuned.
The capacity Control, C, was sampled logarithmically on [0.01, 10000] for both
classes (i.e. the “crack” and “no crack” class). The results from the standard SVM
show that with C of both classes allowed to be rather high (i.e. C* and C~ are
1000) the spline kernel obtains a Gmean classification rate of 0.58 with a variance
of 0.0312. On the other hand, the RBF with ¢=0.5 obtains a similar Gmean of 0.59
with a variance of 0.0354. We have used o = 0.1,0.5,1.0 and see that ¢ =0.5 gives
the best results. Again, the C is rather high here, indicating that a large amount

of smoothness is required.

Classification Performance TP TN GMean
Approaches Kernels (Variance)

FLD - 0.37 0.88 0.57
0.0412

SVM Spline 0.36 0.94 0.58
C* = 1000 C~ =1000 0.0312

RBF (0=0.5) | 0.39 0.90 0.59
C* = 1000 C~ = 1000 0.0354

AMSVM Spline 0.32 0.91 0.54
A=20 A=10 0.0241

RBF (0.5) | 0.32 0.92 0.53
A=10 A=0 0.0416

Regression SVM Spline 0.38 0.91 0.59
C* = 10000 C~ =10000 0.0158

Table 6.2: Summary of the best test results obtained by averaging the set of five random
data set selection samples with Fisher Linear Discriminant (FLD) techniques and standard
SVM with various extension techniques for the imbalanced data set. TP and TN are the
true classification rate for “crack” and “no crack” classes respectively.

Rather than keeping the margin fixed in the classical SVM, we make the margin
automatically adapt to its data. The margin can be relaxed by having a regularising

parameter A and this was varied from 0 to 10. This was the approach taken by
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Adaptive Margin (AM) SVM, also known as Generalised LOO SVM described in
chapter 4.3.3. The results indicate that no smoothness (i.e. A=0) is necessary in
order to obtain a good solution. This approach did not provide enough flexibility for
imbalanced data as it only gave a Gmean of 0.54. The advantage of this approach
is that the optimal parameter (A\) can be obtained from the training set alone (i.e
it is the generalised LOO method). Next, in the regression SVM case, we allow
the target y to be a step function and alter the model selection for a regression
task (i.e. mean squared error) to the misclassification cost. This provides a quick
way of converting the regression problem in SVM into a classification problem.
A quadratic loss function (see chapter 3.8.2) is used in this case as there are no
parameters to be tuned. However, a sparse representation is no longer available. A
fairly similar result was obtained with that of the standard SVM but the variance is
lower with a higher regulariser required (i.e. C’s = 10000). This may be due to the
loss function and because the model selection reflects a different cost. No attempts
were made to use the RBF as the above results show similar performance, and also
it is an extra parameter requiring tuning making it computationally less efficient.
In summary, our initial attempts show that all the approaches (FLD and SVM)
have a bias towards the “no crack” class with a classification success rate of at least
0.88, whereas the “crack” class has a far lower classification success rate of 0.32-
0.39. Also, a high capacity (i.e. large smoothness) is required for the case when the
margins are fixed (i.e. standard SVM and SVM for regression). However, when the
margin is automatically adapted, it shows that no smoothness is required to obtain a
good solution. This may show the flexibility of the adaptive margin approach. The
variance of the FLD on Gmean is higher than that of the SVM approaches, although
the average Gmean values are comparable. This leaves doubts as to the stability
of the classification based on classical FLD as it appears to be more susceptible to
data set selection than the SVM approaches. The testing results for modified SVM
approaches dealing with imbalanced data are summarised in Table 6.3. Our first
attempt to deal with imbalanced data is to make it almost balanced. As such, we

further downsampled the majority class (i.e. “no crack”) from 700 to 120: Note: we
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(a) Balanced data set (b) Imbalanced data set

Figure 6.1: The plots of the GMean result of the CSSVM result used for balanced
and imbalanced data. C1 and C2 denote the “crack” and “no crack” class capacity
control and x1 and x2 denotes the order of the C’s value. The plots show that for
the case of imbalanced data, the capacity control has to be penalised differently
in order to obtain good results. This is demonstrated by the higher value of the
Gmean for the balanced case lying on the diagonal axis while for the imbalanced
case it is off the diagonal axis.

simply took the first 120 from the 700 previously randomly selected data. The set
of C’s used are the same as in the previous set. Results have shown improvement,
increasing the Gmean result by at least 0.09. Also, the variance is greatly improved.
However, the results obtained between the 2 kernels are very different (in terms of
both classification rate and capacity control) compared to using the imbalanced
data set. Identifying the kernel to be used is therefore an important issue in this
approach. Although the results of the reduced set of data provide good results, the
classification rate for the TP (crack) is less than 0.70 which is less than we have
identified as a good classification rate (through discussion with the fatigue experts
who provided the original data). Furthermore, the importance of the kernel used is
highlighted therefore making it another tuning parameter to be considered. Next,
we attempt to use the CS SVM (described in chapter 4.3.1) on imbalanced data
in order to impose different misclassification costs. The capacity control is now
two dimensional rather than one dimensional (i.e we have capacity control sampled
logarithmically on [0.01,10000]?, producing 49 models for selection). The Gmean
was observed to have out-performed the SVM using balanced data and the variance
is also smaller (i.e we are more confident in our model which is less susceptible to

data set selection) with both classification rates well above 0.70. We observe that
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the ratio between the misclassification cost is 10 times (i.e. %; = & = 10. This
could coincide with the ratio of the data sets used (i.e. -Zackdass. — 700  g)
ocrackclass 90

Figures 6.1 a and b, show 2D plots of the Gmean results for the balanced and
imbalanced data set. It can be seen that for the case of the balanced data set, the
highest value of Gmean lies along the diagonal axis (i.e. C* = C~) while for the
case of the imbalanced data this shifts towards the crack class.

The use of the spline kernel and the RBF (0=0.5) kernels for the case of imbal-
anced data seem to provide similar solutions. As such, we will concentrate on using
the spline alone. It will become clearer that the use of this kernel provides a further
advantage when dealing with model interpretability as described in chapter 5.3,
which has formed the basis for SUPANOVA. The analogue of using two different
C’s is derived by imposing a different misclassification cost. A misclassification cost
ratio of 8 seems to be unrealistic compared with values quoted in the literature of
2-5 at most. The Non-Standard Situation (NSS) SVM approach provides a natural
way of dealing with imbalanced data. It incorporates the imbalanced data into 2
important components : the misclassification cost (MC) and sampling bias (7) as
described in chapter 4.1 and 4.3.2. The associated values for this approach used in

this case can be shown as :

= -Z% T = %% (6.1)
T = ;—g—g 5= -z—-i-g—é (6.2)
L(+1) = MC r; 7}
= 0.0108MC~ (6.3)
L(-1) = MCtrir;
= 0.1125MC* (6.4)

substituting the imbalanced modified factor L’s for the case of standard SVM (see

Eq. 5.9) and assuming the smoothness parameter to be (A = 1075), the C of the
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SVM is modified to :

L(=1)
2nA
0.1125MC*
2(790)(10-5)
= T7.12MC* (6.5)

c*t =

L(+1)
2nA
0.0108MC~

2(790)(10-5)
= 0.69MC~ (6.6)

Notice that the magnitude of the ratio between the capacity control is controlled
by A, a smoothness parameter.

The MC for the crack class was varied between [1 and 2] and the A is varied
between [107%,1075,107%]. Our results show that with no heavy MC imposed on
the “crack” class (i.e. using only the factor of sampling bias), a Gmean of 0.74
with variance of 0.0106 and the classification rate of both classes are at least 0.74.
When the misclassification cost of the “crack” class was directly imposed twice,
the classification rate of the crack class increased but the Gmean is reduced. As
for the case of the varying A (which is the regulariser parameter in the RN, see eq.
4.10), we find that there is no significant effect on their results. However, the results
shown here are based on A = 1075, The idea of imposing MC and sampling bias was
extended to the AM SVM and regression SVM. The results from the extended AM
SVM indicate that the LOO SVM (i.e. A=1) provides a good solution. However,
a slight increase in allowing generalisation for the crack class (i.e. A=4) improved
the Gmean and its variance. The extended regression also performed much better
than the original regression SVM with a Gmean of 0.72.

In conclusion, the above results show that most of our extended approaches do

provide a reasonably good Gmean performance. Therefore, for imbalanced data, it
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Classification Performance
Approaches Kernels TP TN GMean
(Variance)
SVM Spline 0.68 0.76 0.72
C* = 1000 C~ =1000 | 0.0107
balanced data RBF (0=0.5) 0.56 0.83 0.68
Ct=1 c—=1 0.0187
CSSVM Spline 0.71 0.78 0.74
Ct=1 C~ =01 0.0078
With  Ll-norm | RBF (0=0.5) 0.76 0.79 0.75
Error Cct=1 C-=0.1 0.0040
NSS SVM Spline 0.74 0.75 0.74
(A=10"5,MC=1) | C* =7.12xMC |C~ =0.68 | 0.0106
Spline 0.85 0.60 0.71
(A=10"°MC=2) | Ct =712xMC | C~ =0.68 | 0.0071
Extended Spline 0.74 0.73 0.73
AMSVM (A =1,MC=1) Ct=712xMC | C~=0.68 | 0.0069
Spline 0.76 0.73 0.75
(A =4,MC=1) Ct=712xMC | C~=0.68 | 0.0036
Extended SVM | Spline 0.71 0.72 0.72
(Reg) (MC=1) Ct=712xMC | C~ =0.68 | 0.0078

Table 6.3: Summary of the best test results by averaging the results of five random
selection data set samples using different techniques to handle the problems of imbalanced
data. TP and TN are the true classification rates for “crack” and “no crack” classes

respectively.

is necessary to incorporate the sampling bias and if necessary, a higher misclassifi-
cation cost for the minority class. The ratio of the factors for imbalanced data for
CS SVM for the “crack” class and the “no crack” class is 10 while in NSS SVM
it is 10.47 (i.e. g:—é—%). They are fairly similar (however, a good result requires fine
tuning) and are the key factors required for this imbalanced set of data. The devel-
opment of the NSS SVM may provide a rough guide to the ratio of the factors for
imbalanced data. In this instance, it has been shown that the heuristic approach
of the CS SVM outperforms the NSS SVM with its somewhat lower variance for
the GMean. As such, it was this model that we used as a basis for further work
although it must be acknowledged that the decision has been made based on slight
differences only) . This model structure was decomposed for model interpretation

purposes. It is noteworthy that although the modified AM SVM can be used, it is

however computationally expensive (i.e. with the kernels involved in the constraint
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Eq. 4.18).
6.2.1 Results and Discussion for Model Interpretability
The previous attempts using a set of five randomly selected data set samples pro-
vided an assessment of which is the more appropriate approach for imbalanced data.
Having identified the most acceptable performance (CS SVM) (i.e. rating the fac-
tors for taking imbalanced data into account (associated with misclassification cost
and the sampling bias)), the SUPANOVA approach was then used on the CS SVM
to generate model interpretability. In this case, we now increase the number of ran-
domly selected training data sets to ten. The parameters that we use for the model
structural regulariser A are set in the range of [0.05,0.1-1] with increments of 0.1.
The number of input components selected as represented was based on its occur-
rence more than five times out of the ten in the models generated on the randomly
selected sample sets. In this approach, we use the hinge loss function which provides
a more natural way of dealing with classification as the loss function for the MC
and the model selection are the same. Our initial work (Lee et al. 2001¢) did not in-
corporate the modification factor L into the ANOVA basis (Eq. 5.12). Thus, there
is an inconsistency in the loss function between the CS SVM and the SUPANOVA.
As such, a better result is obtained when both loss functions are consistent. The
complete description of the SUPANOVA for imbalanced data classification can be
found in chapter 5.5. By using the full kernel, we obtain a Gmean of 0.74 and a
variance of 0.0202. An increase in A reduces the number of components selected.
However the Gmean variance increases. The results show that when A = 0.4, a
sum of 6 subcomponents provide a reasonable Gmean and Gmean variance. With
the increase values of A, the number of subcomponents selected reduced to only
one and the Gmean results are bad. Tables 6.4 and 6.5 show the summary of the
modelling results and the input components selected by the SUPANOVA for the
ADI material.

The plots from Fig. 6.2 show the trends of the 6 components obtained from our

SUPANOVA model and are described as follows :
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Approaches TP TN GMean Components
Variance
SUPANOVA 0.72 0.77 0.74 512
Classifications [[C*t =1.0 C- =01 0.0202 A=0
0.71 0.76 0.73 13
Ct=1.0 C- =01 0.0247 A=0.05
0.70 0.77 0.72 6
Ctr=1.0 C- =01 0.0282 a=0.4

Table 6.4: Summary of results from SUPANOVA. These results are based on averag-
ing 10 randomly sampled data sets and the number of input components identified
are based on occurrence more than 5 times out of 10. Note: the A here are used to
enforce sparseness of the components rather than acting as a regulariser parameter

as in SVM.
Components Occurrence | Consistency Remarks
bias 10 YES -
C.A, 10 YES As C.A increases, cracks are
T4 likely to initiate
L.AF, 10 YES As L.A.F increases, cracks are
Ts likely to initiate
N.N.N, 6 YES As N.N.N increases, cracks are
Te likely to initiate
O.Ang & dinin 8 YES As both components increase,
z3 Q) 7 cracks are unlikely to initiate
dprean @ N.N.Ang 6 YES As both components increase
g Q) Tg to a threshold, cracks start to

initiate

Table 6.5: SUPANOVA components selected and their occurrence in the classifi-
cation task. (X) denotes Tensor product. “Consistency” refers to similar trends
observed in the SUPANOVA terms.

e Univariate: Large cell area (C.A) (100% selection), high local area fraction

(L.A.F) (100% selection) and a large number of near neighbours (N.N.N) (60%

selection) are all shown to identify a graphite nodule that initiates a fatigue

crack.

This can be interpreted as large graphite nodules of high L.A.F (i.e. with local

clustering from a lot of N.N.N) acting as fatigue initiation sites. The fact that

the classification has identified C.A rather than object area (O.A) explicitly

is intriguing. Due to the FBT process, the cell area (C.A) is directly linked to

the O.A (as the cell is defined as always larger than the O.A). The condition

that both increased C.A and L.AF (i.e.

0.A
C.A

) give rise to preferential crack

initiation can be satisfied by considering a large O.A as identifying a crack
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Figure 6.2: An example of plots with the components selected versus the output of
SUPANOVA for classification with imbalanced data. Bias and 5 other components
being selected as significant factors causing fatigue crack initiation. The tessellation
measurements (already normalised) form the x-axis and x-y axes, whilst on the y-
axis or z axis, the scales values act as an indicator of crack initiation (i.e a negative
value denotes a crack initiation and positive value denotes a crack not initiating).

initiating nodule. The interdependency of the features measured by the FBT
is a function of the geometry of 2 phase microstructures. In real life cases

many of these input parameters vary and despite the imposed transparency
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afforded by the SUPANOVA decomposition, some ambiguity as to the key
features causing fatigue initiation remains. As detailed later in chapter 7,
this can be further explored by producing simulated microstructures where
the input features can be varied in a more systematic way and the resultant
predictions produced by the classification models assessed. So, in considering
the univariate, a reasonable initial interpretation would be that large graphite
nodules of high L.A.F (i.e. with local clustering provided by a larger than
average N.N.N) will act as crack initiators.

Bivariate: Two bivariates have been identified: Object Angle (O.Ang) and
nearest neighbour distance (dpmi,) (80% selected) and Mean near neighbour
distance (dmean) and nearest neighbour angle (N.N.Ang) (60% selected) (See
Fig. 6.2d and e).

The O.Ang defines the angle between the object major axis and the loading
axis, the larger the O.Ang the closer the object’s major axis is to perpendicular
to the loading axis (see Fig. 6.3). In the case of the graphite nodules the aspect
ratio is close to 1 (i.e. the mean and standard deviations for “crack” class
is 1.30 and 0.28, and for “no crack” class is 1.40 and 0.38 respectively) as
the nodules are reasonably spherical, so a link to O.Ang is initially surprising.
Considering the bivariate dependence between O.Ang and d,;, it appears that
for a far away nearest neighbour (N.N), a high O.Ang (i.e. object major axis

perpendicular to the loading axis) leads to a graphite nodule not initiating a

crack.
Loading axis L oading axis
o -
Object =" o Obiectf"”'.
a) Object Angle Small b) Object Angle Large

Figure 6.3: The alignment between the object angle and the loading axis.

The N.N.Ang is defined as the angle between the loading axis and the line

connecting the centre of the N.N object of interest. Thus, if N.N.Ang is
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high the N.N lies perpendicular to the load axis, and if the N.N.Ang is low,
the N.N is parallel to the object of interest in line with the loading axis -
as shown in Figure 6.4. Now, considering the bivariate dependence between
dmean and N.N.Ang, it appears that with increasing dyeqn (i-e. further apart
near neighbours) and increase in N.N.Ang (i.e. the N.N. particle becoming
closer to being perpendicularly aligned to the object of interest) leads to an

increased likelihood of the graphite nodule initiating fatigue.

Loading Axis L oading Axis
- .
.———— Neates Neighbow
Object Nearest Neighbour
‘\ Object
a) Nearest Neighbow Angle Small b) Nearest Neighbour Angle Large

Figure 6.4: The alignment of the nearest neighbour angle with respect to the object
and its loading axis.

The dypean and d;, relate to the spacing between the graphite nodule inter-
faces - averaged for all near neighbours and for the N.N respectively. The
dmean Value depends on many factors, including N.N and their spacing, and
can be considered to reflect clustering (although not unambiguously), and
a high d,eqn, may be considered to reflect a relatively unclustered situation,
which may allow the positioning of the N.N. to be more influential in affecting
the central graphite nodule. The N.N particle appears therefore to have two
possible effects (from inspection of the SUPANOVA trends) if it is far away
and the central graphite nodule’s major axis is perpendicular to the loading
axis, then the nodule is not likely to initiate a fatigue crack. If the average
N.N spacing is high (again, relatively unclustered) then the N.N particles po-
sitioning may be more influential and if it is perpendicularly aligned above or

below the central graphite nodule, this appears to promote cracking.
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Attempting to consider all these variables, it seems that large nodules in a locally
clustered environment with many near neighbours are likely to initiate cracks. If
the situation is less clustered, then a N.N particle aligned perpendicularly above
the central graphite nodule may promote cracking. If the O.Ang is perpendicular
to the loading axis and yet the N.N is distant then the graphite nodule is unlikely
to initiate a fatigue crack.

We can try to explain these trends in the following way. The graphite nodules
have a significantly lower effective Young’s modulus than the surrounding matrix,
decohere easily and may be considered to act as holes in a mechanical sense. The
predominantly spherical nature of the nodules indicates that size increase will not
increase the local stress concentration factor, although the larger graphite nodules
will give a larger sampling volume of potential initiation points. Local clustering
around such larger graphite nodules (as identified by the classifier) may be expected
to superimpose local particle stress fields, raising the peak stress levels. The more
complex bivariate relationships are somewhat harder to assess. The O.Ang defines
the angle between the loading axis and the major axis of the nodule and if this
is high the major axis of the nodule is closer to perpendicular to the tensile axis
(which might be expected to promote cracking). However this, combined with a
relatively furthest N.N might be expected to minimise superimposition of local par-
ticle stress fields, and hence make these nodules less likely to act as crack initiation
sites. Given the low aspect ratio of the nodules (they are effectively spherical) cor-
relations with O.Ang are surprising. When the near neighbours are relatively far
away or fewer in number, then the positioning of the N.N appears important, with
a perpendicularly oriented N.N making a nodule more likely to crack. The cracks
initiate perpendicular to the loading axis and so superposition of local stress fields
between the N.N in a perpendicular orientation may promote cracking. The two
univariate components (i.e. the C.A and L.A.F) tally with the finding of (Hockley
et al. 1999). Here, we have picked up an extra component, that is the N.N.N which
may be an important component. With SUPANOVA, we are also able to pick up

higher order interactions that are not easily identifiable through simple means of
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visualisation. These interpretable classification results allow us to start to assess
the relationships that give rise to crack initiation and hence eventually to identify
optimised microstructures with good fatigue resistance for the camshaft applica-
tion. Further assessment of these results are considered in chapter 7 - where the
model predictions for simulated particle distributions are examined. an analysis of
scales (and distributions in scale) would be valuable, along with comparison against
various mechanical analyses that exist of 2 phase materials, however, a thorough

investigation of these points is beyond the scope of the current work.

6.3 Automotive Plain Journal Bearing Lining Material -
Aluminium-Silicon-Tin (Al-Si-Sn)

6.8.1 Model Specification

The plain journal bearing lining fatigue initiation assessment used a total of 10
observation regions which were selected randomly from microstructure containing
crack initiation sites as discussed in section 2.3. The total number of cell was
2938, with silicon (Si) being identified as the primary initiating phase. The cells
produced by the FBT were initially divided into three populations: initiating Cells
(with 163 cases); bordering Cells (with 810 cases surrounding the initiating sites)
and background Cells (with 1965 cases). Results by (Joyce 2001) comparing the
mean and standard deviation show that there is little significant difference between
the bordering and background cells (see table 2.2). As such, the bordering and
the background cells are considered here to belong to the same class. Once again,
we have a two class classification problem as in the case of the previous camshaft
application. We now have a total of 2938 examples of which 163 samples are crack
initiation sites (“Crack” class) while 2775 samples do not act as crack initiation
sites (“No Crack” class). There are altogether 11 features used for this example
(as seen in Table 2.2). The two extra features extracted from the FBT are the
Cell Aspect Ratio (C.A,) and Cell Angle (C.Ang). In this application, the tensile
axis was vertical, so a large O.Ang corresponds to particles aligned parallel to the

loading axis. Note: this difference for the case of ADI, where the tensile axis was

horizontal.
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The data are normalised between 0 and 1. The data are partitioned into the training
and testing sets consisting of 1200 (“no crack”) and 120 (“crack”) data in the
training sets, and the rest are used for the testing set. These are randomly selected
and the data set partitioning was repeated 10 times to provide good generalisation
for our model. We have again chosen to use 75% of the crack data for training.

”

The reason for using more of the data collected for the “no crack” class compared
with the ADI application (1200 compared to 700) is because we are combining two
populations in the Al-Si-Sn case (background and bordering). If we randomly took
700 samples, then they might predominantly come from either class. Hence the need
to ensure reasonable representation from both classes. Again, the average Gmean
(based on averaging 10 models) was then used to assess the overall performance of
each technique and the Gmean variance is used to measure the confidence in the
model selected as it reflects the dependency of the classification on the data set
selected for training and testing.

6.3.2 Results and Discussion

The previous application of the CS SVM and the NSS SVM on ADI showed good
prediction results. These approaches were then extended to this new set of data
(Al-Si-Sn). A set of capacity controls similar to those used in the ADI case were
used with the spline kernel. The results show that with (C* = 10, C~ = 1) a
GMean of 0.72 was obtained. A set of regularisers A = [107%,107%,107%] with
MC* =[1,2,3,4,5] were used in the NSS SVM. The imbalanced factors L were
calculated and the corresponding capacity control obtained as C* = 3.35MC* and
C~ = 0.92MC~ for the case when A\ = 1075, Table 6.6 summaries the results of the
CS and NSS SVM. Results show that a misclassification cost of 3 is required to be
imposed on the “crack” class in order to obtain a Gmean of 0.70. The imbalanced
modification factor for the NSS SVM is 10.92 while for the CS SVM is 10. The
variance obtained is similar to that of the CS SVM. As such, the CS SVM model
was again selected for the SUPANOVA to provide model interpretability. In both
applications we have assessed, we have shown that the NSS SVM can provide a

rough guide for the value of the imbalance modification factor L. However, fine
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tuning may be required. The model structure regulariser A\ we obtained here varied
from 0-20 and results show that A = 15 yields the best result as shown in Table
6.7. A set of 6 components were obtained with reduced Gmean of 0.70 compared
to 0.72, but with a slightly lower Gmean variance. The fact that a higher model
regulariser is required is due to the fact that the capacity control used here is
larger than the case of the ADI (i.e. ADI - [CT = 1.0, = 0.1] and Al-Si-Sn -
[Ct =10, = 1.0] ). The components picked up and consistency of the input

components being selected are presented in table 6.8.

Approaches TP TN GMean
Variance
CS SVM 0.73 0.71 0.72
Ct=10 Cc—=1 0.0185
NSS SVM 0.27 0.87 0.40
MC=1 Ct=3.35xMC | C~ =0.92 0.0439
NSS SVM 0.69 0.70 0.70
MC=3 Ct=335xMC | C~=0.92 0.0184

Table 6.6: Summary of the test results for Al-Si-Sn results from CS and NSS SVM. This
shows that a misclassification penalty of 3 must be imposed for the crack class in the NSS
SVM in order to obtain a good classification. The Gmean of the CS SVM is better than
the NSS SVM.

Approaches TP TN GMean Components
Variance
SUPANOVA 0.73 0.71 0.72 2048
Classifications Ct =10 C-=1 0.0185 A=0
0.69 0.71 0.70 6
Ct =10 C- =1 0.0136 2=15

Table 6.7: Summary of the test results for Al-Si-Sn results from SUPANOVA for clas-
sification. These results are based on averaging the predictions based on 10 randomly
sampled data sets and the number of components identified are based upon occurrence
more than 5 times out of 10.

Figure 6.5, shows the plots of selected examples of the input components. The
univariate plots of the C.A and L.A.F. show that as both values increase, the
chances of crack initiation also increase. The occurrence of the two univariates are
100% (i.e. 10 models out of 10 selected these two components). There is a slightly
different trend in one of the L.A.F plots (as shown in Fig. 6.6a) as it is a concave
shape trend (lowest at 0.40). However, the C.A area trend consistently indicates

that crack initiation occurs as C.A. gets larger. The bivariate plot for the O.Ang
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Figure 6.5: An example of plots with the input components selected versus the
output SUPANOVA for classification with imbalanced data. Bias and 5 other com-
ponents have been selected as significant factors causing fatigue crack initiation.
The tessellation measurements (already normalised) form the x-axis and x-y axes,
whilst on the y-axis or z axis, the scales values act as an indicator of crack initiation
(i.e a negative value denotes a crack initiation and positive value denotes a crack

not initiating).
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Components Occurrence | Consistency Remarks

bias 10 YES -

C.A 10 YES As C.A. increases, cracks likely
T4 to initiate

LAF 10 NO As L.A F. increases, cracks likely
T7 to initiate

0.Ang Q C.Ang 8 NO Simply (varying functions) diffi-
z3 Q) 6 cult to explain

LAF Q dmnean 6 YES As both components increase,
z7 Q) z10 cracks likely to initiate

0.Ang @ dasin @ N.N.Ang 8 YES As the three components in-
3@ 29 Q 711 crease, Cracks unlikely to initiate

Table 6.8: SUPANOVA components selected, their occurrence rated out of 10 and consis-
tency in classification task. ) denotes Tensor product. “Consistency” refers to similar
trends observed in the SUPANOVA terms.

and C.Ang shows a complex trend which indicates a large O.Ang and C.Ang are
likely to initiate a crack. The selection of the occurrence of this component is 80%.
However, one of the plots (shown in Fig. 6.6b) has a different shape but it too
shows that as the O.Ang (increases independent of C.Ang), the chances of crack
initiation increase. The next bivariate plot selected in Fig 6.5d is the L.A.F. vs
darean- A hyperplane of concave shape is seen along the diagonal of both increasing
axes (i.e. as both features increase). This indicates that there is a threshold value
(i.e. approximately 0.5 for both directions) for these two features. Beyond this
threshold, cracks are more likely to initiate. The confidence about the importance
of this bivariate component selected is less as it only has an occurrence of 60%.
The trivariate relationship selected consists of O.Ang, das, and N.N.Ang with an
occurrence of 80%. This plot simply indicates that as all three features increase,
the chances of crack initiation decreases.

In summary, an increase of both C.A and L.A.F indicates that the object is
large (as discussed in the ADI section). A large Si particle is more likely to cause
cracks because of the increase of local matrix strain around the large hard/stiff
particles. (It is noteworthy that in the Al-Si-Sn case, the initiating particles have
a significantly higher stiffness than the surrounding matrix, in contrast to the ADI
case.) The bivariate plot of the O.Ang and C.Ang implies that the Si particles
(which have a slightly higher Mean O.A, (1.49 compared to ADI 1.40) when locally
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Figure 6.6: The inconsistency of the trends obtained for Local area fraction and
also the Object Angle and Cell Angle as opposed to those obtained from Figure 6.5

aligned parallel to the loading axis are more likely to cause crack initiation.

The other bivariate function obtained is the L.A.F and the dpseqn, cracks being
likely to initiate as both increase. This may describe a relatively large Si particle
which is relatively isolated (i.e. large dpseqn, but large O.A to still give large L.A.F).
There will be little stress/strain shielding from neighbouring Si particles. Therefore,
cracks are perhaps more likely to be initiated if both components increase. Finally,
the trivariate plot indicates that as the O.Ang, ds, and N.N.Ang increase, crack
initiation is unlikely (shown schematically in Fig. 6.7). The large das;, can perhaps
be considered to indicate a situation where any local stress/strain field overlapping
between the N.N is minimised hence making crack initiation unlikely.

.—"’ Nearest Neighbow

- Duin, Large

.\ Object

Nearest Neighbour Distance Large

Loading
Axis

Figure 6.7: Schematic representation of the extreme of the trivariate function (i.e.
O.Ang, dpsin and N.N.Ang) that indicates crack initiation unlikely.

Further investigation of these possibilities of crack initiation using Finite Ele-
ment Analysis (FEA) simulations of idealised examples is necessary and ongoing
within the Materials Research Group. It is also necessary to try and systematically

vary the parameters selected by the SUPANOVA decomposition for self-consistent
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particle distributions to assess those features of particle distributions which will give
rise to increased fatigue initiation. The simulated particle distributions described in
Chapter 7 have been used for both the ADI and Al-Si-Sn SUPANOVA classification
models to further enhance the interpretability offered and to provide indications of

more fatigue initiation resistant microstructures.

6.4 Summary

The present data can be dealt with in the standard SVM by incorporating a factor
for imbalanced data that was derived from imposing different misclassification costs
for each class and sampling bias. The NSS SVM provides us with a rough guide
of the ratio required for the capacity control used in SVM between both classes.
However, a better result can be obtained with fine tuning. The interpretability of
the model was provided by decomposing the model structure. This was used in the
original SUPANOVA for regression tasks. Here, we extend its use for the case of
imbalanced data for classification. There were six important components selected
in each data set investigated out of the possible 512 (ADI) and 2048 (Al-Si-Sn). A
larger regulariser, A, is required to obtain the smaller set of components required.
Finally, the sets of components selected show qualitative correlation with known
metallurgical factors as important factors which initiate fatigue cracks. These com-
ponents selected are inter-related. As such, it is necessary to vary them systemati-
cally in order to enhance our understanding. This is done via the simulated particle

distributions which will be described in the following chapter.
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Chapter 7

Simulated Data Analysis

The important input components needed to classify fatigue initiation sites have been
picked up by our SUPANOVA model. However, the components selected are inter-
related and it is difficult to unambiguously determine the key particle distribution
characteristics that promote failure. This chapter describes the particle simulations
that were used to systematically vary the key input components within self-consistent
particle distributions. The results from these simulated data sets enhance the inter-
pretability offered by the SUPANOVA model and provide indications of more fatigue
initiation resistant microstructures in both ADI and Al-Si-Sn bearing lining alloys.
The first section describes the selection and justification of the simulated data sets.
This is then followed by a detailed description of the procedure required for the spec-
ification of the simulated data. The descriptive enhancement offered by the simu-
lated data for the ADI and Al-Si-Sn SUPANOVA models is investigated. Finally,
the results obtained from the SUPANOVA model and the simulated distributions are

described.

7.1 Selection and justification of the simulated data sets

Varying individually each component of the FBT features is a very difficult task
as all the components are inter-related. However, we can vary various parameters
such as the object shape, size, angle and distribution which can be fixed/varied in
a systematic fashion to allow clearer visualisation of the trends identified by the
SUPANOVA technique. Let us summarise the components identified for the two

automotive materials selected from the SUPANOVA model. For the case of the
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ADI: Cell Area (C.A), Local Area Fraction (L.A.F), Number of Near Neighbours
(N.N.N), Object Angle (O.Ang) Vs Nearest Neighbour distance (djs;,) ; Mean Near
Neighbour Distance (dpseqn) Vs Nearest Neighbour Angle (N.N.Ang) are selected
as important components. For the Al-Si-Sn: C.A, L.A.F, O.Ang Vs Cell Angle
(C.Ang); L.A.F Vs dpean and O.Ang Vs dps, Vs N.N.Ang are selected.

In considering all these variables, we have attempted to identify a consistent set
of particle distributions which vary these parameters systematically. By varying
the inputs systematically, although variables remained within each individual input
range, the input combinations may cover high dimensional input space where there
was no original training data. As such, these simulations are further interrogations
of the model produced. This attempt is summarised in Table 7.1 for ADI and in
Table 7.2 for the Al-Si-Sn case. To identify these distributions we have adopted
the following notation: e.g. ARCE-f where the first letter indicates the material
used (A stands for ADI, B for Al-Si-Sn), the second letter indicates the object
distribution (R stands for random, C for clustered), the third letter indicates the
object area (O.A) (C stands for constant, V for varying), and the last letter indicates
the shape of objects at angle 6 (C stands for circular, E-8 stands for ellipse shapes
at angle 8 to the loading axis). If we consider the univariates chosen for ADI (Fig.
6.2a-c), we need to try and assess whether the dependence on C.A and L.A.F in
fact reflects a large object size. By fixing the objects to be circles of equal size and
varying their distribution (random compared with clustered) we can vary the C.A
and L.A.F independently of object size and angle (ARCC and ACCC). We can then
bring in the effect of object size by taking the random and clustered distributions,
but now varying the object size (ARVC and ACVC). The N.N.N is hard to vary
independently, but considering the 4 distributions already identified, it is likely that
we will get the largest N.N.N for small objects which are locally clustered.

If we now go on to consider the two bivariate functions (Fig. 6.2d-e), we want
to assess O.Ang Vs dagiy and dpgeen Vs N.N.Ang. To assess the bivariate function,
first we need to consider ellipses (where we have taken the mean aspect ratio) with

the two extremes of O.Ang imposed on the particle distribution. In our case, we
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have aligned the ellipses parallel to and perpendicular to the loading axis. By
considering both random and clustered distributions of constant size ellipses with
parallel or perpendicular alignment (ACCE-0° and ARCE-0°, and ARCE-90° and
ARCE-90° respectively) we should be able to assess the bivariate function in Fig.
6.2d. To vary dpfeqsn and N.N.A simultaneously (Fig. 6.2¢) a further consideration
of ARCC and ACCC may be helpful as the clustered distribution will have a smaller
dasean from the parent particles (methodology detailed later). N.N.Ang is difficult
to systematically vary. A final “complex” set of particle distributions of varying
sized ellipses at varying angles in both random and clustered distributions have
also been considered to provide an overview of the simulated data set ARVE-0 and
ACVE-0.

If we consider the Al-Si-Sn system as summarised in Table 7.2 and Fig. 6.5a-e
a similar set of particle distributions can be considered that will also assess the
various input dependencies revealed by the SUPANOVA decomposition. In all,
10 simulated particle distributions have therefore been considered for each case:
circular objects of constant and varying size in random and clustered distributions,
e.g. ARCC, ACCC, ARVC and ACVC, constant sized ellipses at 90° and parallel to
the loading axis in random and clustered distributions: e.g. ARCE-0°, ACCE-0°,
ARCE-90° and ACCE-90°. Finally, 2 more complex particle distributions have been
considered consisting of ellipses of varying size and object angle in both random and
clustered distributions (e.g. ARVE-8 and ACVE-#). These last 2 distributions are
more realistic and give an overview of the model predictions for fatigue initiation
sites. The procedure to produce these 10 simulated particle distributions is now

described in the following section.
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Components Shapes Related to Simulated parameters Notes
Cell Area (C.A) Circular Object Size 1. Fix Object Area (0.A) + Random Distribution (ARCC) Clustering may be used as a
& + (APP A1, fig 1) tool to vary the L. AL F
Local Area Object distribution | 2. Fix O.A -+ Clustered Distribution (ACCC) (APP AL, fig 2) (if objects are close L.AF
Fraction (L.A.F) 3. Vary O.A + Random Distribution (ARVC) (APP Al, fig 3) likely to be high —
4. Vary O.A + Clustered Distribution (ACVC) (APP Al, fig4) | independent of object size)
Number of Near Circular Object distribution | 5. Fix O.A + Random Distribution (ARCC) It is very difficult to simulate
Neighbours 6. Fix O.A + Clustered Distribution (ACCC) this independently.
(NN.N) 7. Vary O.A + Random Distribution (ARVC) Depends on clustering and
8. Vary O.A + Clustered Distribution (ACVC) size of object,
Object Angle Ellipse Object distribution | 9. Fix O.A + Random Distribution + Angle 90 (ARCE-90°) Two extremes of O.Ang have
(0.Ang) (With angle + (APP Al fig 5) been considered.
VS between Object Angle 10. Fix O.A + Random Distribution + Angle 0 (ARCE-0°)
Nearest Neighbour | loading axis) (APP A1, fig 6) Clustered ~ should have a
Distance (dwin) 11. Fix O.A + Clustered Distribution + Angle 90 (ACCE-90°) | Smaller dyn.
(APP Al, fig 7)
12. Fix O.A + Clustered Distribution + Angle 0 (ACCE-0°)
(APP Al, fig 8)
Mean Near Circular Object distribution | 13. Fix O.A + Random Distribution (ARCC) N.N.Ang is hard to
‘Neighbour 14. Fix O.A + Clustered Distribution (ACCC) independently vary
Distance (dyean) 15. Vary O.A + Random Distribution (ARVC) systematically.
Vs 16. Vary O.A + Clustered Distribution (ACVC) Clustered - should have a
Nearest Neighbour ’ ’ smaller dyean established from
Angle (N.N.Ang) the parents.
The duean could be affected
by the N.N.N.
Overall view Ellipse Object Size 17. Vary O.A + Vary object Angle +Random Distribution Provides overview of the
+ (ARVE-6) (APP Al, fig 9) simulated data set
Object Distribution | 18, Vary 0.A + Vary object Angle + Clustered Distribution
(ACVE-6) (APP Al, fig 10)

Table 7.1: Description of particle distributions produced to assess the input components identified by the SUPANOVA decomposition for the ADI
cases (see Fig. 6.2 a-e). The notation used here is as follows: e.g. ARCE-6 where the first letter indicates the material used (A stands for ADI),
second letter stands for object distribution (R stands for random, C stands for clustered), third letter stands for object area (C stands for constant,

V stands for varying), and the last letter stands for shape of objects at angle 8 (C stands for circular, E-8 stands for ellipse shapes at angle @ to the
loading axis). The particle distributions of this simulated data can be referred to in Appendix A.
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Components Shapes Related to Simulated parameters Notes
Cell Area (C.A) Circular Object Size | 1. Fix Object Area (O.A) + Random Distribution (BRCC) Clustering may be used as a
& + (APPBI, fig 1) tool to vary the L.A.F (if
Local Area Fraction Object 2. _Fix O.A + Clustered Distribution (BCCC) (APP B, fig 2) objects are close, L.A.F is
(L.AF) distribution | 3. Vary Q.A + Random Distribution (BRVC) (APP B1, fig 3) | likely to be high — independent
4. Vary O.A + Clustered Distribution (BCVC) (APP B1, fig 4) | of object size)
Object Angle (O.Ang) Ellipse Object 5. Fix O.A + Random Distribution + Angle 90 (BRCE-90°) Two extremes of the O.Ang
VS (With angle | distribution (APP B, fig 5) have been considered.
Cell Angle (C.Ang) between + 6. Fix O.A + Random Distribution + Angle 0 (BRCE-0°)
loading Object (APP B1, fig 6) Cell Angle depends on the
axis) Angle 7. Fix O.A + Clustered Distribution + Angle 90 (BCCE-90°) object distributions.
(APPBI, fig 7)
8. Fix O.A + Clustered Distribution + Angle 0 (BCCE-0°)
(APP B1, fig 8)
LAF Circular Object Size | 9. Fix O.A + Random Distribution (BRCC) L.AF is related to object size
Vs + 10. Fix O.A + Clustered Distribution (BCCC) while duem distribution is
Mean Near Neighbour Object 11. Vary O.A + Random Distribution (BRVC) affected by the number of near
Distance (dmean) distribution | 1o Vary O.A + Clustered Distribution (BCVC) neighbours hence, object
distribution must be varied.
O.Ang Ellipse Object 13. Fix O.A -+ Random Distribution + Angle 0 (BRCE-90°) It is hard to independently
VS (With angle | distribution | 14, Fix O.A + Random Distribution + Angle 90 (BRCE-0°) vary systematically.
Nearest Neighbour between + 15. Fix O.A + Clustered Distribution -+ Angle 0 (BCCE-90°) Therefore, by fixing the object
Distance (din) loading Object 16. Fix O.A + Clustered Distribution + Angle 90 (BCCE-90°) angle to the 2 extreme values,
Vs axis) Angle we investigated the effect of
Nearest Neighbour dwmin and N.N.Ang. The dmean
Angle (N.N.Ang) distribution could reflect the
number of near neighbours,
hence, object distribution
considered.
Overall view Ellipse Object Size | 17. Vary O.A + Vary object Angle +Random Distribution Provides an overview of the
+ (BRVE-0) (APP B1, fig 9) simulated data set
Object 18. Vary O.A + Vary object Angle + Clustered Distribution
Distribution (BCVE-9) (APP B, fig 10)

Table 7.2: Description of particle distributions produced to assess the input components identified by the SUPANOVA decomposition for the
Al-Si-Sn cases (see Fig. 6.5 a-e). The notation used here is as follows: e.g. BRCE-6 where the first letter indicates the material used (B stands
for Al-Si-Sn), second letter stands for object distribution (R stands for random, C stands for clustered), third letter stands for O.A (C stands for
constant, V stands for varying), and the last letter stands for shape of objects at angle 6 (C stands for circular, E-@ stands for ellipse shapes at
angle @ to the loading axis). The particle distributions of this simulated data can be referred to in Appendix B.



7.2 Procedure and Specification for Simulated Data

The features selected by the SUPANOVA for imbalanced data can be explored and
visualised further with the help of the simulated data. Chapter 2 has described the
use of a particle simulation created by (Yang et al. 2000, Yang et al. 2001). We
have identified a set of model particle distributions for both the ADI and Al-Si-Sn
applications. The procedure and specification to produce these are now described

in more detail.

1. A 2 dimensional rectangular field with nominal width of 1014 pixels/units and
height of 653 pixels/units was specified.

2. In order to provide a realistic simulated data set, the Volume Fraction (VF)
and hence the average area fraction (AF) of secondary phase particles found
in the original data set and the simulated data set must be consistent. The
secondary phase particles for the ADI are graphite nodules and for the case of
the plain journal bearing are Si particles, both of which are roughly spherical
in shape. Once the AF is known, a number of objects can be specified to fit
into the simulated image area with the appropriate radius. In the case of the
ADI, the average radius of the particles was then used to calculate the number
of particles with respect to the nominal width specified. In the case of the
Al-Si-Sn alloy, the average radius of the particles was much smaller, and so the
nominal image area was effectively reduced to 101.4 by 65.3 pixel/unit to keep
the number of particles considered in the simulation to a reasonable number.
However, if the particles are very small in the simulation, then significant
rounding errors due to pixel resolution will be present. As such, the scale is
effectively magnified by ten times. The procedure for calculating the number
of particles in each case is given briefly below.

ADI

0.4
Ap = S CA

= (0.0913
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Average Radius, R = 13 u/units
Number of Objects in the field = 1014x853x9.0913 113

Al-Si-Sn

0.4
Ap = %C.A

= 0.0723

Average Radius, R = 1.28 p/units (We magnified it by 10 times, therefore
taken as 12.8 p/units)
Number of Objects in the field = 1014x853x0.0723 —q9
3. Once the number of particles in the image area has been defined, the size,
shape and distribution of the objects can be varied as follows :
e Circular objects with uniform or exponential size distribution (defined
around a mean value)
e Elliptical objects with uniform or exponential size distribution (defined
around a mean value)
Note: For a given area, the circle can be converted to an ellipse shape.
This is given as : area of circle (IIXR?) = area of Ellipse (IXAXB)
where A and B are the length of the major axis and length of the minor
axis of an ellipse. A/B is the aspect ratio of the ellipse which is a feature
obtained from the FBT. The mean A, for ADI = 1.41 and for the Al-
Si-Sn alloy = 1.49. Therefore, with this information available an object
with a circular shape can be converted to a ellipse.
e Elliptical objects with varying angles of the particle major axis to the
loading axis
4. The centroid of the objects are then generated in the form of a random or
clustered distribution. It is important to note that a strict constraint is im-
posed that the objects generated should not overlap (for a given shape, size
and orientation) with each other.
Random - The centroids of the objects are generated using a random number

generated with a repeatable sequence.
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Clustered - A set of “parent” centroids are generated which are at least 200
units/pixels away from each other. In the ADI - 11 parents were defined
, in the Al-Si-Sn - 9 parents.

The average number of “children” associated with each parent can be
calculated based on the number of parents that have been specified. In
ADI - 10 children per parent, in Al-Si-Sn = 10 children per parent, thus
allowing approximately 110 particles in total in the ADI and 90 particles
in total in the Al-Si-Sn

The centroid of each child is based on the variance of the x and y co-
ordinates specified with reference to its parent. For both the ADI & the
Al-Si-Sn - x-axis variance =80, y-axis variance = 50.

Note : this clustering is a global clustering and is defined as such based
on work done by (Yang et al. 2001). They systematically defined a global
clustering effect from d,;,c., measurements obtained from the standard
deviation divided by its mean (i.e. COVypean = ﬁ%). If this
value is greater then 0.364:0.02, this unambiguously indicates a clustered
distribution.

5. The O.Ang can be fixed to be parallel, perpendicular or random with respect
to the (horizontal) loading axis.

6. Upon obtaining the relevant parameters (i.e. for circular objects - x and y
coordinates and object radius; for ellipses - x and y coordinates, A and B
chord lengths of the ellipse) these values are then digitised to produce the
simulated images.

7. The tessellation analysis was then applied to the simulated image. The edge
objects are eliminated as they are insufficiently defined in terms of near neigh-
bours, C.A etc. However, it is important to ensure that the remaining AF
remains within £10% of its original value. Furthermore, for the case of ran-

dom and clustered distributions of the objects, the value of the COVynean

must be retained.
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8. The cells generated from the tessellation were then labelled for later identifi-
cation.

9. The tessellated information from this simulated data were then used as a test
set for the 10 SUPANOVA classification models produced on the ten data set
training-testing random positions. Prior to using it as a testing set, the data
is normalised against the original data using its mean.

10. The consistency of initiation site selection was then assessed for each simulated
distribution, and a clearer understanding of the importance of each component
selected by the SUPANOVA approach achieved (as discussed in the following

section).

7.3 Use of Simulated Data to Enhance Visualisation

The two extreme examples of the simulated data cases can be seen in Fig. 7.1. The
complete set of figures referred to in this section have been collated in Appendix A
(APP A for ADI) and Appendix B (APP B for AL-Si-Sn). APP A1, Figures 1-10
show the simulated particle distributions and their associated tessellation cells in
ADI. The consistency of initiation site identification by the 10 SUPANOVA models
is given by the degree of contrast for a given particle, i.e. a white particle is never
identified as initiating a crack (0/10) whereas a dark grey particle is always identified
as a crack initiator (10/10). Those that were selected less than 5 times were not
considered (allocated to the 0/10 group) and also, the boundary objects are not
considered as they do not provide a full set of feature information. A similar set of
figures were obtained for the case of the Al-Si-Sn (APP BI, Fig. 1-10). Tables 7.3
and 7.4 summarise the mean and standard deviations for each tessellation feature
for all the simulated data sets for ADI and Al-Si-Sn respectively. It includes each
of the simulated distributions and the breakdown for the “crack” and “no crack”
classes for the original data distribution. The “crack” and “no crack” population
distributions for each univariate of interest have also been systematically compared
in histogram form for each simulated particle distribution. Appropriate bivariate

plots of the two classes have also been considered. The results of these comparisons
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are summarised in table 7.5 a,b,c (for ADI) and 7.6 a,b,c,d (for Al-Si-Sn) and are

also discussed below.

a.) ADI, random object distribution, constant b.) ADI, clustered object distribution, varying object
area, circular shapes. area ellipse shapes at angle  to the loading axis.

Figure 7.1: a & b are examples showing the two extreme cases for the simulated
data set. a.) is a simple simulated data set where the object shapes are round
(hence no O.Ang effect), O.A is fixed, with object distribution random. b.) is a
more complex simulated data set where the object shapes are now ellipses (hence,
O.Ang is a variable), O.A is varied, object distribution clustered.

7.8.1 Automotive Camshaft - ADI

Univariate Discussion (C.A,L.A.F,N.N.N)

The class means and histogram comparisons for ARCC (R is random distribu-
tion, C is constant O.A, and the next C is circular object) indicate that the “crack”
class tends in fact to have a smaller C.A and a larger L.A.F (see Table 7.3 and APP
A2.1, Fig. 1 and 2). If the clustered version of this particle distribution ACCC is
now considered, a similar trend is observed. It should be noted that although differ-
ences in the mean values of these univariates are observed, the standard deviations
(S.D) are relatively high. More initiation sites (10/10 cf. 0/10) are also predicted
in the clustered than the random distribution (i.e APP Al, Fig. 1 ( ARCC- 17%)
and APP Al, fig 2 (ACCC-33%)). If we now vary O.A for both the random and
clustered distributions (ARVC and ACVC) we can see that the “crack” class tends
to have a larger O.A, C.A and L.A.F (APP A2.1, Fig. 3,4,5). In the more clustered
case, the trend with C.A is less clear cut (APP A2.1, Fig. 6), however the mean
and S.D values indicate that the “crack” class tends to have a larger value (table
7.3). More initiation sites are again predicted for the clustered case (APP Al, Fig.
3 (ARVC-28%) and APP Al, Fig. 4 (ACVC-36%)) although it is less clear cut.
Considering these 4 simulations for the case of the N.N.N, given that the O.A is
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fixed and the object distribution is random (ARCC), it is difficult to assess the
class distribution (APP A2.1, Fig. 7). The “crack” class appears to be associated
with either lower or higher values of the N.N.N compared to the “no crack” class.
However, when the object is clustered (ACCC) the “crack” class is observed to have
more N.N.N (APP A2.1, Fig. 8). If we now vary the O.A (ARVC and ACVC), a
clearer view can be seen as the “crack” class has more N.N.N (APP A2.1, Fig. 9).
In summary, assessing the simulated data to consider the univariate dependencies
revealed by SUPANOVA shows that for the basic microstructural parameters cov-
ered by these simulations, a large C.A is not a good “crack” indicator. A large
L.A.F is a better indicator for ADI fatigue crack initiation. This is more clearly
shown when the O.A is varied (ARVC and ACVC). The effect of the N.N.N is shown
more in the clustered object distribution (ACCC and ACVC) although this effect
is less clear cut, once O.A is also varied, and the L.A.F effect outweighs it to some
extent.

Bivariate Discussion (O.Ang and dazin, darean and N.N.Ang)

Now, let us consider the bivariate case for the O.Ang and the dus,. The object
shape now has changed to an elliptical shape so as to incorporate the two extreme
angles involved in the O.Ang (i.e parallel (ARCE-0-ACCE-0) and perpendicular
(ARCE-90 and ACCE-90) to the loading axis). Considering the case when the
O.Ang is set perpendicularly (ARCE-90 and ACCE-90) to the loading axis, it was
observed that the “crack” class has a smaller dps;, (APP A2.1, Fig. 10). This tallies
with our SUPANOVA model which indicates that a large O.Ang with large dpsn
is unlikely to initiate cracks. This observation was not clear for the case when the
O.Ang is parallel (ARCE-0 and ACCE-0) to the loading axis (APP A2.1, Fig. 11,
12). Comparing the object clustering effect, we observed that more crack initiation
was seen when the O.Ang is set parallel to the loading axis (APP Al, Fig. 6
(ARCE-0 (51%)) , APP A1, Fig. 8 (ACCE-0 (56%)) compared to APP Al, Fig. 5
(ARCE-90 (23%)) , APP Al, Fig. 7 (ACCE-90 (38%))).

The dpsean and N.N.Ang is very difficult to vary systematically. However, the

dasean is related to the object distribution. As such, the previous four sets of
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simulated data (ARCC,ACCC,ARVC,ACVC) were further used in this bivariate
analysis. Given the O.A is fixed and the objects are randomly distributed (ARCC),
the “no crack” class tends to lie on the lower side of the hyperplane as dpse., and
N.N.Ang increase proportionally (APP A2.3, Fig. 13). This is reflected in our
SUPANOVA model where a threshold value is seen beyond which cracks will start
to initiate (Fig. 6.2e). When the object distribution is clustered (ACCC), the “no
crack” class tends to lie in the middle value of the dpjeqn, With a relatively small
N.N.Ang (APP A2.3, Fig. 14). When the O.A is varied (ARVC and ACVC), it
becomes more difficult to assess the trends (APP A2.3, Fig. 15).

Validation Data set Discussion

The final two simulated data sets used were the ARVE-6 (Object distribution
random, varying O.A and ellipse in shape at 6 angle w.r.t the loading axis) and
ACVE-6 (Object distribution clustered, varying O.A and ellipse in shape at 8 angle
w.r.t the loading axis). This resembles more closely the original data set. Large
0.A, C.A, L.A.F and N.N.N and small djy;, tends to initiate cracks (APP A2.4, Fig.
16,18,19,20,21). The effect of the O.Ang shows that the crack class has a smaller
O.Ang (APP A24, Fig. 17, 24). It is difficult to assess the effect of the mean
near neighbour distance (APP A2.4, Fig. 22, 25). For the case where the objects
are clustered, the “crack” class dpreqn 18 either relatively high or low. This might
reflect the threshold we obtained from the SUPANOVA model (Fig. 6.2¢). It is
also observed that the mean value for the “crack” class is fairly similar for the case
of the object being randomly distributed but higher for the case when the object is
clustered (table 7.3). However, the value for the S.D is high in both cases for the
“crack” class. Assessing the N.N.Ang becomes more difficult when the O.A is set to
vary (APP A2.4, Fig. 23,26). Here, again, we see that when the object distribution
is clustered more cracks are initiated (APP Al, Fig. 9 (ARVE-8 (37%)) and APP
Al, Fig. 10 (ACVE-0 (41%))). The univariate analysis from this simulated data
tallies with that of the model produced. This is reflected clearly when the O.A
varies. However, the S.D values for the “crack” class are high for the components,

O.A, C.A and L.A.F. This may indicate that there are also other factors affecting
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the crack initiation other than those of the univariates such as bivariates and other
combined object distribution effects. The bivariates are somewhat difficult to assess
since the O.Ang and object size were varied simultaneously (APP A2.4, Fig. 27,
28).

ADI Conclusion

In summary, the simulated data set provides further understanding of the SU-
PANOVA model, as shown in Table 7.5a-c. For example, when the O.A is varied,
better understanding is obtained of the role of O.A, C.A and L.A.F (see point no.
3,4,7,8 in table 7.5a and Fig. 7.2). We can also assess the effect of the object dis-
tribution (see points 1,2,3,4 (table 7.5a) and 1,2,3,4 (table 7.5b) and also Fig. 7.3).
This serves as an example for the univariate components. For the bivariate case,
by fixing the O.A, a better understanding of the relationship between the djsean
and N.N.Ang is provided (see points 5,6 (table 7.5b) and Fig. 7.4). Also, by fixing
the O.Ang to the two extreme cases (i.e. parallel or perpendicular to the loading
axis) a better understanding of the effect of O.Ang is obtained (points 1,2 (table
7.5b) and Fig. 7.5), with more initiation being found for the case where the ellipses

major axes are parallel to the loading axis.
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cal

_Particles Distribution O.A O.A, 0O.Ang C.A LAF N.N.N Autin OMean N.N.Ang
Mean (S.D) Mean (S.D) | Mean (S.D) Mean (S.D) Mean (8.D) | Mean (S.D) | Mean (5.D) Mean (S.D) Mean (5.D) [ No. of objects [ COVamean
Origin COM 549.88 (1071.70) [ 1.40(0.37) | 0.78(0.41) | 6022.60 (4973.30)| 6.71(7.42) | 5.76(1.87) | 17.36 (17.02) | 57.03(24.08) | 0.75 (0.40) 2923 0.42
Crack 2326.89 (2549.83) | 1.30(0.28) | 0.69(0.45) |12340.84 (7628.74)| 15.87 (10.13)] 7.60(2.21) | 16.23 (16.36) | 64.81 (21.08) | 0.77 (0.47) 116
NoCrack 476.45 (890.87) 140(0.38) | 0.79(0.41) | 5761.52 (4653.25)| 6.34(7.03) | 5.68(1.82) | 17.40(17.04) | 56.71 (24.16) | 0.75 (0.46) 2807
ARCC COM 540.00 (0) 1.05 (0) 0.78 (0) 5665.92 (2150.07) | 11.08 (4.64) | 5.61(1.11) | 18.63 (11.91) [ 54.24 (17.93) | 0.75 (0.41) 80 0.33
Crack 540.00 (0) 1.05 (0) 0.78 (0) 4683.26 (2953.82) | 15.68 (7.54) | 5.93 (1.82) | 11.92 (10.05) | 46.42 (28.03) | 0.81 (0.43) 14
NoCrack 540.00 (0) 1.05 (0) 0.78 (0) 5874.37 (1902.99) | 10.10 (3.04) | 5.55 (0.90) | 20.05(11.85) | 55.90 (14.75) | 0.73 (0.41) 66
ACCC CcoM 536.00 (0) 1.01 (0) 0.78 (0) 5507.90 (3159.27) | 13.00(7.10) | 5.69(1.20) | 12.58 (9.02) | 51.65(25.22) | 0.81(0.47) 78 049
Crack 536.00 (0) 1.01 (@) 0.78 (0) | 5468.08 (4769.19)| 16.95(3.82) | 6.00(1.39) | 10.71 (8.33) | 49.50(36.45) | 0.79 (0.44) 26
NoCrack 536.00 (0) 1.01 (0) 0.78 (0) 5528.98 (1882.00))| 10.91(3.82) | 6.53(1.06) | 13.58(9.29) | 52.78 (16.88) | 0.82 (0.49) 52
ARVC COM 497.11 (415.62) 1.05(0.05) | 0.80(0.36) | 5966.34 (2759.12)| 8.25(5.64) | 5.65(1.25) | 21.09 (13.13) | 59.60 (19.37) | 0.85 (0.48) 81 0.33
Crack 989.39 (364.85) 1.03 (0.02) 0.79 (0) 7631.44 (2718.32) | 14.24 (5.76) | 6.70(1.06) | 17.86 (12.61) | 60.71 (18.86) | 0.74 (0.52) 23
NoCrack 301.90 {233.45) 1.06 {0.05) 0.78 (0) 5306.04 (2504.02) | 5.88(3.41) | 5.24 (1.06) | 22.37 (13.22) | 59.16 (19.72) | 0.89 (0.45) 58
ACVC COM 530.82 (505.15) 1.05(0.04) | 0.75(0.34) | 5429.42 (3554.30) | 11.75(9.54) | 5.53 (1.54) | 16.61(14.53) | 51.82(26.15) [ 0.83 (0.47) 76 0.5
Crack 987.14 (553.61) 1.03 (0.02) 0.79 (0) 6080.02 (4246.01) | 20.23 (9.75) | 6.46 (1.64) | 12.99 (13.15) | 45.88 (23.56) | 0.95 (0.43) 28
NoCrack 264.63 (186.30) 1.06 (0.05) 0.78 (0) 5049.91 (3066.44) [ 6.81(4.77) | 4.98(1.19) | 18.72 (15.00) | 55.28 (27.19) | 0.76 (0.49) 48
ARCE-90 COM 554.95 (0.39) 1.44 (0) 1.51 (0) 5777.49 (2093.07) | 11.13(4.69) | 5.68(1.40) | 18.68 (13.68) | 54.83 (18.12) | 0.87 (0.42) 77 033 |
Crack 555.00 (0) 1.44 (0) 1.51(0) 5235.81 (2946.71) 1 13.77 (6.55) | 6.22 (1.93) 7.96 (6.80) 55.70 (25.77) | 0.90 (0.44) 18
NoCrack 554.95 (0.39) 1.44 () 1.51 (0) 5942.72 (1754.06) | 10.33(3.66) | 5.51(1.17) | 21.95(13.61) | 54.57 (15.34) | 0.86 (0.42 59
ARCE-0 COM 553.95 (0.32) 1.52 (0} 0.00 (0) 5666.50 (2609.62)| 12.03(5.7) | 5.77(1.09) | 16.86 (12.75) | 54.55(18.39) | 0.75(0.48) 82 0.34
Crack 553.98 (0.15) 1.52 (0) 0.00(0) 5673.08 (3231.99) | 13.34 (7.19) | 6.00(1.08) | 17.09 (15.14) | 55.54 (25.41) | 0.93 (0.41) 42
NoCrack 553.95 (0.32) 1.52 (0) 0.00(0) 5659.58 (1778.35) | 10.66 (3.04) | 5.53(1.06) | 16.63 (9.81) | 53.52(13.52) | 0.56 (0.48) 40
ACCE-90 CcoM 555.00 (0) 1.44 (Q) 1.51(0) 5735.28 (3467.91) | 13.38 (761) | 5.86(1.13) | 15.78 (12.22) | 51.49(25.36) | 0.92 (0.43) 77 0.49
Crack 554.97 (0.19) 1.44 (0) 1.51 (0) 5079.43 (4397.40) | 17.94 (9.81) | 5.93(1.25) | 10.74(8.79) | 46.41(32.45) { 1.05(0.41) 29
NoCrack 555.00 (0) 1.44 (0 1.51(0) | 6131.51(2738.82)] 10.62(3.96) [ 5.52(1.03) | 18.82 (13.05) { 54.57 (19.66) | 0.83 (0.43) 48
ACCE-0 COM 553.79 (1.20) 1.52 (0.02) 0.00(0) | 5487.24(3378.21) 14.71(9.54) | 5.63(1.27) | 15.51(13.03) | 49.46 (27.79) | 0.73 {0.40) 78 0.56
Crack 553.39 (1.57) 1.51 (0.03) 0.00(0) 5297.37 (4195.71) | 17.77 (11.46)| 5.89(1.45) | 14.39(13.59) | 47.68 (33.73) | 0.72(0.38) 44
NoCrack 553.79 (1.20) 1.52 (0.02) 0.06 (0) 5732.96 (1892.05) | 10.75 (3.53) | 5.29(0.91) | 16.96 (12.31) | 51.77 (17.58) | 0.75 (0.44) 34
ARVE-g COM 581.1(535.8) 1.45 (0.08) 0.8(0.44) | 6133.76 (2981.07)| 9.56 (7.20) | 5.78(1.34) | 19.09 (14.73) | 58.46 (19.93) | 0.84 (0.42) 78 0.34
Crack 1083.62 (563.08) | 1.44(0.05) | 0.75(0.44) | 7927.56 (3028.83) | 15.49 (8.02) | 6.62(1.29) | 14.90 (14.14) | 59.38 (22.96) | 0.88 (0.47) 29
NoCrack 283.69 (180.87) 1.45(0.10) | 0.83(0.44) | 5072.11(2410.36) | 6.06 (3.45) | 5.29(1.10) | 21.58 (14.64) | 57.92 (18.13) [ 0.81(0.40) 49
ACVE-9 COM 565.47 (2.58) 1.47(0.04) | 0.89(0.45) | 5868.18 (2123.59) | 10.75 (4.24) | 5.67 (1.13) | 18.11(12.91) | 55.97 (16.64) | 0.82(0.46) 85 0.43
Crack 907.63 (541.30) 1.43(0.06) | 0.62(0.42) | 6791.68 (3674.81) | 16.12(8.80) | 6.69 (1.51) | 12.11 (12.65) | 55.16 (25.51) | 0.89 (0.47) 35
NoCrack 248.96 (193.49) 146 (0.12) | 0.90(0.42) | 4203.78 (2367.22) | 7.07(5.03) | 5.10(1.30) | 14.94 (12.02) | 48.44 (18.67) | 0.84 (0.47) 50

Table 7.3: Summary of the mean and standard deviation (S.D) values of the simulated data sets and the original data set “Origin” for the ADI.
COM denotes the complete set of simulated data. “crack” and “no crack” class denotes the breakdown of their class distributions. NOTE: the

values of the boundary cells are not considered here and some slight rounding errors may appeared, this is due to conversion from simulated data
to FBT data.
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Components Simulated parameters Results Summary
Cell Area 1. Fix O.A + Random Crack class tends to have a smaller C.A (APP A2.1, fig 1) and Our simulation has shown
(C.A) Distribution (ARCC) larger L A.F (APP A2.1, fig 2) consistently that purely
Loca% Area 2. Fi.x Q.A + Clustered Crack class tends to have a smaller C.A and larger L. A.F f:on.sidering a large.Cl.A as an
Fraction Distribution (ACCC) More Cracks were initiated for clustered case indicator for cragk initiation, is
(LAF) (17% Random (APP Al. fig 1) Vs 33% Clustered (APP Al fig 2)) not a true reflection of the
3. Vary O.A + Random Crack class has larger O.A, C.A and L.A.F (APP A2.1, fig 3,4,5 situation. This may be partly due
Distribution (ARVC) respectively). to the high standard deviation
4. Vary O.A + Clustered Crack class has larger O.A (S.D) obse.rv.ed (table 7.3).
Distribution (ACVC) C.A is difficult to assess (APP A2.1, fig 6), but the mean values However, it is true that asvthe
show that the crack class tends to have larger C.A (table 7.3) LAF gets .la}rger a crack is more
Crack class has a larger L AF hlfely o 1mtfate. .
More cracks were initiated for clustered case Higher consistency (i.e. more
(28% Random (APP 1, fig 3) Vs 36% Clustered (APP 1, fig 4) ) 10710 cases) of larger O.A
causing crack initiation were pick
up when the object size is varied.
Clustering tends to result in more
crack initiation sites occurring.
Numberof | 5. Fix O.A + Random It is difficult to assess which class distribution is more significant, It is interesting to see that when
Near Distribution (ARCC) but the crack class appears to have either fewer or more N.N.N than the O.A is varied, the
Neighbours the no crack class (APP A2.1, fig 7). The mean value for both class significance of the N.N.N in the
(N.N.N) are similar but the crack class has higher S.D value (table 7.3). crack class is highlighted more
6. Fix O.A + Clustered Crack class has more N.N.N. The crack class has higher mean and easily. This might be due to the
Distribution (ACCC) S.D values (APP A2.1, fig8). effect of the significance of the
large objects and hence the larger
7. Vary O.A + Random Crack class has more N.N.N and this becomes more apparent when LAF.
Distribution (ARVC)) the O.A is varied (APP A2.1, fig 9) Crack class has more N.N.N.
8. Vary O.A + Clustered Crack class has more N.N.N and this become more apparent when Another indication of clustering
Distribution (ACVC) the object size is varied. effect.

Table 7.4a: Summary of results for ADI obtained from the simulated data set produced to enhance model interpretability.




gzl

Components

Simulated parameters

Results Summary
Object Angle Fix O.A + Random The dmin for crack class is smaller (APP A2.2, fig 10) When the O.Ang is
(0.Ang) Distribution + Angle 90 Crack initiation sites are 23% of particles (APP Al, fig 5). perpendicular to the loading
Vs (ARCE-90°%) axis, crack initiation is less
NI;Iieger::.xr Fix O.A + Random The mean value for dusi for both classes are very similar (see likely compared to when it is

Distance (dmin)

Distribution + Angle 0
(ARCE-0%)

table 7.3, crack value is 17.09 and no crack value is 16.63 and
also APP A2.2, fig.11)

Crack initiation site are 51% of particles (APP Al, fig 6)

Fix O.A + Clustered
Distribution + Angle 90
(ACCE-90°)

The dwmin for the crack class is smaller
Crack initiation site are 38% of particles (APP Al, fig 7)

Fix O.A + Clustered
Distribution + Angle 0
(ACCE-0°)

The mean value for dwi for both classes are very similar (see
table 7.3, crack value is 14.39 and no crack value is 16.96 and
also APP A2.2, fig.12)

Crack initiation site are 56% of particles (APP Al, fig 8)

parallel. Furthermore at 90°
angle, the mean and S.D value
of the dwmin for the no crack
class is higher than the crack
class (table 7.3).

Our SUPANOVA model
suggests that large O.Ang,
with large dwin will not initiate
cracks. This is reflected here
for self-consistent particles
distributions.

Mean Near Fix O.A + Random The no Crack class tends to lie on smaller value of N.N.Ang For a given fixed O.A with
Neighbour Distribution (ARCC) (APP A2.3, fig 13) object distribution being
Distance Fix O.A + Clustered The no Crack class tends to lie on middle values of dmew With random, a distinction can be
(dgﬂ;;") Distribution (ACCC) small N.N.Ang (APP A2.3, fig 14) made between the crack and no
Nearest Vary O.A + Random It is difficult to assess the effect due to varying O.A (APP c1"ack. classes (at l?aSt from the
Neighbour Distribution (ARVC) A2.3. fig. 15). bwarlfte plots) with the “no
Angle Vary O.A + Clustered It is difficult to assess the effect due to varying O.A crack” class tending to lie on
(N.N.Ang) Distribution (ACVC) smaller value of N.N.Ang. For

the case of when the object are
clustered, the “no crack” class
tending to liec on middle values
of dMean With small N.N.Ang.

Table 7.4b: Continued from Table 7.5a.
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Components

Simulated parameters

Results

Summary |

Overview

1. Vary O.A + Vary object
Angle +Random
Distribution (ARVE-0)

Crack has large O.A (APP A2 4, fig 16)

Crack class has smaller O.Ang (APP A2 4, fig 17)

Crack has large C.A (APP A2.4, fig 18)

Crack has large L.A.F (APP A2.4, fig 19)

Crack has large N.N.N (APP A2.4, fig 20)

Crack has smaller dmin (APP A2.4, fig 21)

The crack class dmean is either on the large value or the small
value side). Its S.D is also higher than the no crack class (table
7.3). While the no crack class are more centered around the
middle value of the duean. (APP A2.4, fig 22).

Difficult to assess the N.N.Ang (APP A2.4, fig 23).

Crack initiation sites are 37% of particles (APP Al, fig 9).

2. Vary O.A + Vary object
Angle + Clustered
Distribution (ACVE-0)

Crack has large O.A

Crack class has smaller O.Ang (APP A2 4, fig 24)

Crack has large C.A

Crack has large L.AF

Crack has large NN.N

Crack has smaller dwin

Difficult to assess the dmean (APP A2.4, fig 25). The mean
values indicate that crack class has larger dmean with high S.D
(table 7.3).

Difficult to assess the N.N.Ang (APP A2.4, fig 26).

Crack initiation sites are 41% of particles (APP A1, fig 10).

Varying the O.A leads to ]
more consistenct
identification of initiation and
also easier identification that
a large object, large C.A and
large L.AF initiate a cracks.
However, their S.D are higher
than the no crack class which
indicates others factors such
as those of the bivariates and
the clustering effect also
contribute to crack initiation.
The univariate tallies with
that of the model produced.
The bivariate is more difficult
to visualise as now the
complexity between each
features varies (e.g. APP
A2.4, fig 27 and 28).
Clustering causes more crack
initiation.

Table 7.4c: Continued from Table 7.5a.



Histogram of L.A.F
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Figure 7.2: The histogram of L.A.F. When the O.A are fixed (a), it is difficult to
see the effects of “crack” initiation as compared to the case when the O.A is varied
(b). From (b), the “crack” class appears to have a positive correlation with L.A.F.

Similar trends were observed for C.A and O.A.

Chances of Crack init:ation
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a.) ADI, random object distribution, constant
area, circular shapes.

b.) AD], clustered object distribution, constant area,
circular shape.

Figure 7.3: Given that the O.A are fixed and the object shape is circular (i.e. no
effect of O.Ang), it appears that the clustered (b) object distribution has more

“crack” initiations than the random (a) case.
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Bivariate plots of N.N.Ang Vs djsean
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Figure 7.4: The bivariate plot of N.N.Ang and dpfesn- When the O.A is fixed (a),
the “no crack” class lies on the right hand side of the hyperplane (i.e. if you draw a
diagonal line between (0,0) and 120,1.4). Given the O.A as fixed and the objects are
randomly distributed (ARCC), the “no crack” class tends to lie on the lower side
of the hyperplane.This implies that as djse., and N.N.Ang increase proportionally
cracks are unlikely to initiate. When the O.A is varied it became difficult to see the

trends.

Chances of Crack initation

b.) AD], fixed object area, clustered object distribution,
constant object area, ellipse shapes parallel to the
loading axis.

a.) AD], fixed object area, clustered object distribution,
constant object area, ellipse shapes at angle 90° to the
loading axis.

Figure 7.5: Shows the effect of O.Ang. When the O.A is fixed and the object
distribution is clustered, more “crack” initiations are observed when the O.Ang is
parallel (b) to the loading axis than the case when it is perpendicular (a). Similar
trends were observed for the case when the object distribution was random.
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7.8.2  Automotive plain bearing lining -Al-Si-Sn

Univariate Discussion (C.A,L.A.F)

Again, let us consider the univariates case (i.e. C.A and L.A.F) first. For a
given fixed O.A with random or clustered distribution, (i.e. BRCC & BCCC), the
crack class C.A and L.A.F tends to fall either on low or high values (APP B2.1, Fig.
1,2,3,4 compared to the “no crack” class). Further analysis of the mean and S.D
values indicates that the C.A appears to be larger for crack initiating Si particles
(table 7.4). For L.A.F, the analysis of the mean and SD is less clear (i.e. for the
BRCC distribution, they are fairly similar for both classes while in BCCC, the
“crack” class is higher). However, it is clear that when the objects are distributed
randomly, there is less crack initiation compared to clustered distributions (APP
B1, Fig. 1 (BRCC - 10%) and Fig. 2 (BCCC - 30%)). Upon the O.A being varied
(i.,e. BRVC and BCVC), it can be seen that large O.A, C.A and L.A.F tends to
initiate cracks (APP B2.1, Fig. 5,6,7). However, the effect of object distribution
on “crack” initiation is less obvious (APP B1, Fig. 3 (BRVC - 33%) and Fig. 4
(BCVC - 35%)).

Bivariate Discussion (O.Ang and C.Ang, L.A.F and djzean)

Now, let us consider the bivariate analysis for O.Ang versus C.Ang. The ellip-
tical shapes with two extreme O.Ang situations were used in this case, the object
being perpendicular to the loading axis (i.e. BRCE-90 and BCCE-90) and parallel
to the loading axis (i.e. BRCE-0 and BCCE-0). When the O.Ang is set to be
parallel to the loading axis, the “crack” class has large C.Angs (APP B2.2, Fig.
8) and more cracks are observed (APP B1, Fig. 5 and 7) than when the O.Ang
is perpendicular to its loading axis (APP B1, Fig. 6 and 8). When the object is
perpendicular to its loading axis, the effect of C.Ang is difficult to assess as the
“crack” class is distributed on its low and high values (APP B2.2, Fig. 9). This
effect coincides with the SUPANOVA model (Fig. 6.5¢ and Fig. 6.6b) as we can
see that the “crack” class tends to be on the high side of the O.Ang and is well
distributed along the C.Ang (i.e in Fig. 6.5¢ the C.Ang is large and in Fig. 6.6b the
C.Ang is small). When the objects are clustered (BCCE-90), the effect of C.Ang is
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more difficult to assess (APP B2.2, Fig 10). The effect of crack initiation related
to the object distribution in this case is not clear (i.e. APP BI1, Fig. 5 (BRCE-0
(61%)), APP B1, Fig. 7 (BCCE-0 (62%)) compared to APP B1, Fig. 6 (BRCE-0
(18%)), APP B1, Fig. 8 (BCCE-90 (22%))). Next, consider the bivariates of L.A.F
versus dpzean- Given that the O.A is fixed (BRCC and BCCC), we observed that
the “crack” class lies in the region where it has a small L.A.F with high dpeq, or
large L.A.F with low dpfean (APP B2.3, Fig. 11). This might be a reflection of
the threshold effect from our SUPANOVA model (see Fig. 6.5d). Once the O.A is
varied (i.e. BRVC and BCVC), the trends for the “crack” class are clearer and it
has now shifted upwards with higher dpseq, and high L.A.F (APP B2.3, Fig. 12).
We observed further that there is an inverse correlation (as might be expected)
between the L.A.F and dpseq, which is approximately exponential for both classes.

Trivariate Discussion (O.Ang and dj;, and N.N.Ang)

Now consider the trivariates for the O.Ang, dain, and N.N.Ang. In this simula-
tion the O.A and the O.Ang is fixed, to simplify the analysis. The O.Ang is again
fixed as perpendicular or parallel to the loading axis. As such, we investigated
the other two components (dp;, and N.N.Ang) using the bivariate plots. It was
observed that when the O.Ang is parallel to the loading axis (BRCE-0, BCCE-0)
the “crack” class tends to have a small dps;, (APP B2.4, Fig. 13 and 15) ranging
from 0-2.5. This is further shown in APP B2.4, Fig. 16 indicating that the “crack”
class has a smaller N.N.Ang. On the other hand, when it is perpendicular to the
loading axis (APP B2.4, Fig 14, 17) the daz, are well distributed. The analysis
when the O.Ang is perpendicular to the loading axis (i.e. BRCE-90 and BCCE-90)
show that the “crack” class has larger dps, - The model from SUPANOVA (Fig.
6.5¢) indicates that as O.Ang, dps, and N.N.Ang gets larger, cracks are unlikely
to initiate. Within our 0° particle simulation this can be seen to be true, although
crack initiations are more prevalent for the distribution as a whole.

Validation Data set Discussion

The overview of this simulation set was a distribution with an elliptical shape

object with varying O.A, O.Ang, random (BRVE-8) or clustered (BCVE-8). It
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was observed that in this more realistic distribution which is closer to the original
distribution, the “crack” class has large O.A, O.Ang, C.A, C.Ang, L.A.F, more
N.N.N and smaller N.N.Ang. Although the O.Ang for the clustered object is difficult
to assess in its histogram plot (APP B2.5, Fig. 23), the mean and S.D values show
that “crack” class value is higher (Table 7.4). When the object distribution is
random (BRVE-0), the effect of dps, (APP B2.5, Fig. 18) and dafeqn, (APP B2.5,
Fig. 19) is difficult to distinguish even by considering their mean and S.D values.
However, when the object distributions are clustered (BCVE-0) the value of these
two features becomes small for the “crack” class. It is also worth noting that in this
instance, the C.A, is now fairly similar for both classes as the objects are clustered
(APP B2.5, Fig. 24). The effect on numbers of crack initiation sites of object
distribution is not clear here (APP B1, Fig. 9 (BRVE-6, random 28%) and Fig. 10
(BCVE-0, clustered 24%). However, it implies that O.A and hence object size are
important for crack initiation.

Let us now consider the case of bivariate and trivariate components. The bivari-
ate plot for both (random or clustered object distribution) shows that the “crack”
class has large C.Ang value above 0.8 = 46° (APP B2.5, Fig. 20 and 25). For the
case of the bivariates between dpeqe, and L.A.F, it can be seen that the classes can
be separated by an approximated curve with “crack” class on the higher side of
the curve (i.e. low dpzn, and high L.A.F). On further observation, when the ob-
jects are clustered (APP B2.5, Fig. 26) the “crack” class tends to have large L.A.F
compared to the randomly distributed population (APP B2.5, Fig. 21). The vari-
ation in trivariate components (O.Ang, N.N.Ang and d,;,,) are considered via the
bivariate plots between the N.N.Ang and djy;, for the two fixed O.Ang conditions.
For randomly distributed objects (BRVE-#) and large O.Ang, the bivariate plots
of N.N.Ang and djy;, show that the “crack” class tends to have smaller N.N.Ang
(APP B2.5, Fig. 22) mostly below value of 1 & 58°). This tallies with our SU-
PANOVA model which indicates large O.Ang, large ds, and large N.N.Ang make
crack initiation unlikely. For the case when the objects are clustered (BCVE-0),

the effect of O.Ang is difficult to distinguish between classes (as discussed earlier).
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However, the bivariate plot of N.N.Ang and d;;, show the “crack” class tends to
have smaller dy;, (APP B2.5, Fig. 27).
Al-Si-Sn Conclusion

In summary, once again, we see that by fixing the O.A, we see the importance of
the object distribution (i.e. clustered distribution is likely to have more cracks (Ta-
ble 7.6a points 1 and 2). By varying the O.A, the clustering effect is overshadowed
by the object size, hence L.A.F becomes more important. As such, large O.A, C.A
and L.A.F (table 7.6a, points 3 and 4) are likely to initiate cracks. Furthermore,
with the O.A being a varying parameter, we see that there is an exponential rela-
tionship between L.A.F and dpseqan (table 7.6b points 1-4 and Fig. 7.6). The O.Ang
is assessed by varying between the two extreme values (i.e. perpendicular (BRCE-
90, BCCE-90) or parallel (BRCE-0, BCCE-0)) to the loading axis. Results show
that as the O.Ang is parallel to the loading axis, more crack initiation is observed
(table 7.6a points 5 and 7) as compared to those perpendicular to the loading axis.
Also, when the O.Ang is parallel to the loading axis, it was observed that the dp,

was low in order to initiate cracks (table 7.6b, points 5 and 7 and Fig. 7.7) when

the O.Ang are large.
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eel

Particles Distribution OA O.A O.Ang CA C.A C.Ang LAF N.NN dyin Amean N.N.Ang No.of |COVomes
Objects

Mean (S.D) | Mean (S.D) | Mean (S.D)| Mean (S.D) | Mean (S.D)| Mean (S.D} | Mean (S.D) [ Mean (S.D) | Mean (S.D) | Mean (S.D) | Mean (S.D)
Origin COM 5.23 (6.44) | 1.49(0.47) | 0.88(0.41) | 72.23(49.49) | 1.67 (1.40) | 0.78 (0.45) | 7.15(5.72) | 5.70 (1.45) | 2.14(1.88) | 6.47 (2.66) | 0.82(0.46) | 2938 | 0.41

Crack [12.17(11.54)| 1.49(0.36) | 0.90(0.41) | 113.65 (58.60)| 1.49(0.42) | 0.88 (0.43) | 10.48 (6.42) [ 6.39(1.39) | 2.61(1.87) | 7.59(2.50) | 0.73(0.44) | 163
NoCrack | 4.82(5.75) | 1.49(0.48) | 0.87(0.41) | 69.80 (47.81) | 1.68(1.43) | 0.78(0.45) | 6.95(5.62) | 5.66 (1.44) | 2.12(1.79) | 6.40(2.65) | 0.82(0.46) | 2775

BRCC | cOM 5.36 (0) 1.01(0) 0.81(0) | 71.02(30.24) | 1.54 (0.38) | 0.82(0.44) | 9.16 (4.25) | 5.67 (1.18) | 2.38 (1.64) | 6.40(2.14) | 0.68(0.42) | 56 | 0.33
Crack 5.36 (0) 1.01(0) 0.81(0) | 81.03 (48.63) | 1.82(0.42) | 1.15(0.37) | 9.23 (5.31) | 6.50 (1.38) | 1.81(2.23) | 7.89 (3.31) | 0.47 (0.40) | 6
NoCrack |  5.36 (0) 1.01(0) 0.80 (0) | 69.98 (28.14) | 1.52(0.37) | 0.78 (0.44) | 9.15 (4.18) | 5.59 (1.14) | 2.44 (1.58) | 6.25(1.97) | 0.70 (042) | 58

BCCC | coMm 5.36 (0) 1.01(0) 0.81(0) | 67.88 (50.42) | 1.55(0.48) | 0.71(0.46) | 11.97 (7.14) | 5.75(1.19) | 1.84 (1.33) | 5.80 (3.14) | 0.95(0.42) | 63 | 0.54
Crack 5.36 (0) 1.01(0) 0.81(0) | 89.32(79.15) | 1.40 (0.31) | 0.92(0.36) |13.98 (10.84)| 5.84 (1.42) | 1.91(169) | 6.80 (4.84) | 0.77 (0.47) | 19
NoCrack |  5.36 (0) 1.01(0) 0.81(0) | 58.63 (27.42) | 162(0.53) | 0.62(0.48) | 11.10 (4.67) | 5.70 (1.09) | 1.81(1.17) | 5.36 (1.94) | 1.02(0.38) | 44

BRVC | COM | 4.80(4.24) | 1.06(0.05) | 0.76 (0.36) | 65.76 (33.29) | 1.62 (0.46) | 0.81(0.47) | 7.36 (5.33) | 5.68 (1.32) | 2.15(1.76) | 6.53 (2.06) | 0.68 (0.45) | 65 | 0.32
Crack | 9.15(4.37) | 103(0.02) | 081(0) | 61.53(36.66) | 1.55(0.46) | 0.82 (0.47) | 12.59 (5.31) | 6.14 (1.08) | .91 (1.45) | 6.64 (2.06) | 0.75(0.47) | 22
NoCrack | 2.58(1.72) | 1.07(0.06) | 0.80(0) | 57.68(28.62) | 1.66 (0.45) | 0.81(0.48) | 4.68(2.73) | 5.44(1.39) | 2.27 (1.80) | 6.48 (2.08) | 0.64 (0.44) | 43
BCVC | com [ 4.70(3.93) | 1.06(0.05) [ 0.77(0.39) | 68.82 (42.33) | 1.65(0.43) | 0.86(0.42) | 9.04 (8.47) | 5.77 (1.45) | 1.98 (1.37) | 6.21(2.91) | 0.75(0.40) | 62 | 047
Crack | 822(4.46) [ 1.03(0.02) | 0.81(0) | 91.42(51.42) | 1.51(0.34) | 0.82(0.45) [13.83 (11.16)] 6.73 (1.49) | 1.79 (147) | 7.02(3.73) | 0.66(0.33) | 22
NoCrack | 276 (1.61) | 1.07(0.06) | 0.80(0) | 56.39(30.55) | 1.72 (0.46) | 0.88 (0.40) | 6.40 (5.01) | 5.25(1.15) | 2.08 (1.32) | 5.7 (2.29) | 0.79(0.44) | 40
BRCE-0| COM | 555(0.01) | 144(0.01) | 151(0) | 72.90(35.79) | 1.43(0.32) | 0.92(0.38) | 9.85(5.40) | 5.81(1.17) | 2.09 (1.82) | 6.27 (2.12) | 0.85(043) | &7 | 0.34
Crack | 6.55(0.01) | 1.44(0.01) | 1.51(0) | 69.71(38.53) | 1.40(0.28) | 1.08 (0.30) | 10.85(6.22) | 5.51 (1.01) | 1.60(1.72) | 6.02(2.51) | 0.66 (0.40) | 35
NoCrack | 555 (0.01) | 1.44(0.01) | 1.51(0) | 77.98(31.13) | 1.48(0.36) | 0.66 (0.35) | 8.27 (3.28) | 6.27 (1.28) | 2.87 (1.74) | 6.68(1.97) | 1.15(0.29) | 22
BRCE-90] COM | 554(001) | 152(0) 0.00(0) | 72.91(34.46) | 1.52(0.37) | 0.64(0.39) | 9.57 (5.06) | 5.67 (1.11) | 2.07 (1.65) | 6.46 (2.26) | 0.69 (0.43) | 63 0.35
Crack | 5.54(0.01) | 1.52(0) 0.00 (0) [115.10 (49.46)| 1.54 (0.47) | 0.55(0.40) | 7.87 (8.26) | 5.81 (1.25) | 3.20 (2.13) | 8.61(2.82) | 0.66 (0.43) | 11
NoCrack | 5.54 (0.01) | 152 (0) 0.00(0) | 63.63(21.62) | 1.52(0.35) | 0.66(0.39) | 9.95(4.08) | 5.64(1.08) | 1.83 (1.44) | 5.99(1.83) | 0.69 (0.43) | 50
BCCE-0| cOM 5.55 (0) 1.44 (0) 1.51(0) | 71.07 (39.13) | 1.55 (0.40) | 0.88 (0.46) | 10.00 (4.76) | 56.77 (1.10) | 1.97 (1.62) | 6.16 (2.55) | 0.84 (0.50) | 61 0.41
Crack 5.55 (0) 1.44 (0) 1.51(0) | 68.83(40.15) | 1.61(0.45) | 1.13(0.33) | 10.46 (4.90) | 56.76 (1.20) | 1.68 (1.63) | 6.02(2.63) | 0.66(046) | a8
NoCrack | 5.55 (0) 1.44 (0) 1.51(0) | 74.77 (37.97) | 1.46 (0.26) | 0.48(0.33) | 9.25(4.52) | 5.78 (0.95) | 2.43 (1.58) | 6.37 (2.44) | 1.14 (0.41) | 23
BCCE-90| COoM | 5.54(0.01) | 1.57(0.01) | 0.00(0) | 73.20 (57.40) | 1.54 (0.39) | 0.69 (0.42) | 11.91 (8.02) | 5.60 (1.15) | 2.07 (2.01) | 6.03 (3.23) | 0.7 (0.45) | 59 | 0.65
Crack | 5.54(0.01) | 1.51(0.01) | 0.00(0) |139.41(88.30)| 1.45(0.21) | 0.67 (0.35) | 9.54 (11.78) | 6.38 (1.33) | 4.04 (2.99) | 9.57 (4.74) | 0.96 (0.51) | 13
NoCrack | 5.54 (0.01) | 1.51(0.00) | 0.00(0) | 54.49(23.31) | 1.57 (0.42) | 0.69 (0.44) | 12.59 (6.62) | 5.50 (1.03) | 1.51(1.18) | 5.04 (1.90) | 0.72(0.42) | 46
BRVE-6| COM | 4.80(4.94) | 1.52(0.11) | 0.79(0.50) | 67.26 (30.37) | 1.44 (0.29) | 0.69 (0.48) | 7.48 (6.32) | 5.72 (1.24) | 2.30 (1.68) | 6.44 (2.29) | 0.92{0.46) | 64 | 0.36
Crack | 10.04 (6.21) | 1.49(0.05) | 0.97 (0.47) | 91.82(27.44) | 1.40(0.17) | 1.05 (0.46) | 12.09 (7.63) | 6.39 (0.92) | 2.38 (1.56) | 6.60 (2.09) | 0.81(0.46) | 18
NoCrack | 2.75(2.06) | 1.54(0.12) | 0.71(0.50) | 57.65(25.91) | 1.45(0.33) | 0.55(0.42) | 5.67 (4.69) | 5.46 (1.26) | 2.27 (1.74) | 6.38 (2.38) | 0.97 (0.46) | 46
BCVES | COM | 467(4.96) | 153(0.11) | 0.67 (0.45) | 59.53 (34.09) | 1.63(0.45) | 0.75 (0.47) | 8.80 (6.85) | 5.61 (1.21) | 1.71(1.55) | 5.77 (2.45) | 0.84 (044) | 66 | 042
Crack | 11.30(5.95) | 1.53(0.04) | 0.72(0.46) | 69.54 (25.47) | 1.61(0.42) | 0.98(0.44) | 16.28 (5.40) | 6.25 (1.39) | 1.84 (0.89) | 5.08 (1.47) | 0.79(0.47) | 16
NoGrack | 2.55(1.72) | 1.53(0.12) | 0.66 (0.45) | 56.33 (36.06) | 1.63 (0.46) | 0.68 (0.46) | 6.40 (5.41) | 5.40 (1.09) | 2.07 (1.61) | 5.99 (2.66) | 0.86 (0.43) | 50

Table 7.5: Summary of the mean and standard deviation (S.D) values of the simulated data sets and the original data set “Origin” for Al-Si-Sn.
COM denotes the complete set of simulated data. “Crack” and “no crack” class denotes the breakdown of their class distributions. NOTE: the

values of the boundary cells are not considered here and some slight rounding errors may appear, this is due to conversion from simulated data to
FBT data.
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Components

Simulated parameters

Results

Summary

Cell Area
(C.A)

&
Local Area
Fraction
(L.AF)

¢ (iven a fixed O.A, the effect
of the cell areaand L.AF is
difficult to asses. However,
object clustering tends to
initiate more cracks.

®  When the O.A is varied, the
clustering effects seems to be
shielded by the effect of the
LAF.

® Higher consistency (i.e. more
10/10 cases) of larger O.A
causing crack initiation were
picked up when the object size
is varied.

Object
Angle
(0.Ang)
Vs

Cell Angle
(C.Ang)

1. Fix O.A + Random The crack class appears to have low and high values of the
Distribution (BRCC) C.A (APP B2.1, figl) . The mean and S.D value of the crack
class is larger (table 7.4).
The crack class appears to have low and high values of the
L.A.F (APP B2.1, fig2) . The mean value of both class are
fairly similar with crack class having a higher standard
deviation (S.D) (table 7.4).

2. Fix O.A + Clustered Similar observation as for BRCC was made for the case of
Distribution (BCCC) the C.A (APP B2.1, fig 3).

Similar observation as for BRCC was made for the case of
the L.A.F (APP B2.1, figd). However, the mean and S.D
values are observed to be higher for the crack class.

Given that the O.A are fixed, more cracks were initiated
for the clustered case (i.e. Random (BRCC) - 10% (APP Bl,
fig 1) and Clustered (BCCC) — 30% (APP B1, fig 2)

3. Vary O.A + Random Crack class has large O.A, C.A and L.A.F (APP B2.1, fig
Distribution (BRVC) 5,6.7).

4. Vary O.A + Clustered Crack class has large O.A, C.A and L.AF similar to that
Distribution (BCVC) observed in BRVC.

The number of cracks initiated is not significantly different
between both simulations when the O.A varies (i.e. Random
(BRVC) -~ 33% (APP Bl, fig 3) and Clustered (BCVC) - 35%
(APP B1. fig 4).

5. Fix O.A + Random The crack class has large C.Ang (APP B2.2, fig 8).
Distribution + Angle 0 Crack initiation sites are 61% of particles (APP B1, fig 5).
(BRCE-0°)

6. Fix O.A + Random The crack class appears to have more low and high values of
Distribution + Angle 90 the C.Ang (APP B2.2, fig 9) .

(BRCE-90°) Crack initiation sites are 18% of particles (APP B1, fig 6).

7. Fix O.A + Clustered The crack class has large C.A.

Distribution + Angle 0 Crack initiation sites are 62% of particles (APP Bl, fig 7).
(BCCE-0%9)

8. Fix O.A + Clustered It is difficult to assess which class distribution is significant in

Distribution + Angle 90 C.Ang (APP B2.2, fig 10). The mean and S.D values for both

(BCCE-90°)

classes are fairly similar (table 7.4).
Crack initiation sites are 22% of particles (APP B1, fig 8).

When the O.Ang is parallel to the
loading axis, crack initiation is
more likely to occur than when it
is perpendicular.

The effect on crack initiation of
the object distribution is not clear
(i.e. BRCE-0 - 61% , BCCE-0 —
62% and BRCE-90 - 18%,
BRCE-90 -22%)

The effect seen here that crack
class tends to have either low or
high values of the C.Ang is
reflected in our SUPANOVA
model (fig 6.5¢).

Table 7.6a: Summary of results for Al-Si-Sn obtained from the simulated data set produced to enhance model interpretability.
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Components Simulated parameters Results Summary
LAF 1. Fix O.A + Random ® There appears to be an inverse relationship between L.AF The relationship between the
Vs Distribution (BRCC) and dwmean as the crack class appears to lie on a slightly higher L.AF and dmea can be seen to
Mean Near line (APP B2.3, fig 11) (i.e. for a given L.A.F, dmean slightly be an inverse exponential (APP
Neighbour higher) B2.3, fig 11 and fig 12).
Distance (dmean) | 2. Fix O.A + Clustered | ®  Similar to that observed in BRCC. Given a fixed O.A, the crack
Distribution (BCCQC) class either lies on the region
3. Vary O.A +Random [ e The dwmen for the crack classes has now shifted to higher where it has small L.A.F with
Distribution (BRVC) values (APP B2.3, fig 12) large dmean Or high L.AF with
4. VaryO.A+ e Similar to that observed as in BRVC. low duean.
Clustered When the O.A is varied, both
Distribution (BCVC) dmean and LA F for the crack
class has now shifted to higher
values. This is due to the
increase in large L.A.F, which
is likely to be attributed to
larger objects.
O.Ang 5. Fix O.A + Random ¢ The bivariate plot between N.N.Ang and dmi, shows that the When the O.Ang is set parallel
Vs Distribution + Angle crack class tends to have low dwmin (APP B2.4, fig 13). to the loading axis, the crack
Nearest Neighbour 0 (BRCE-0%) class has low dwmin (range from
Distance (dwin) | 6. Fix O.A +Random | The bivariates plots between N.N.Ang and dy, show that the 0-3).
Vs Distribution + Angle crack class dwi are well distributed (APP B2 .4, fig 14). On the contrary when the
Nearest Neighbour 90 (BRCE-90°) O.Ang is set perpendicular to
Angle (N.N.Ang) | 7. Fix O.A+ Clustered | e The bivariate plot between N.N.Ang and dyin shows that the the loading axis, the clustered
Distribution + Angle crack class again has low dwuin (APP B2 4, fig 15). Further objects show that the crack
0 (BCCE-0°) observation of the histogram plot of N.N.Ang distribution class has dui are well
shows that the no crack has larger values (APP B2.4, fig 16). distributed.
8. Fix O.A + Clustered | e From the SUPANOVA model,

Distribution + Angle
90 (BCCE-90°)

The bivariates plots between N.N.Ang and dmi, show that the
crack class has large dmis (APP B2.4, fig 17).

it can be seen that as the O.Ang,
dwmin and N.N.Ang get larger,
crack initiation is unlikely.

Table 7.6b: Continued from Table 7.6a.
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Components

Simulated parameters

Results Summary
Overview 1. Vary O.A + Vary object Crack class has a large O.A It is clear that the crack class has
Angle +Random Crack class has a large O.Ang

Distribution (BRVE-8)

Crack class has a large C.A

Crack class has a small Cell Aspect Ratio (C.A,)

Crack class has a large C.Ang

Crack class has a large L.A.F

Crack class has more near neighbours (N.N.N)

It is difficult to assess both class distributions of the din
(APP B2.5, fig 18) even with the mean and S.D values
(table 7.4).

It is difficult to assess both class distributions of the duean
(APP B2.5, fig 19) even with the mean and S.D values
(table 7.4).

Crack class has smaller N.N.Ang.

28% crack initiation sites observed (APP B, fig 9)

The bivariate plot for C.Ang and O.Ang show that the crack
class tends to have large C.Ang (APP B2.5, fig 20)

The bivariate plot for dmen and L.AF tends to show that as
the dwvean decreases, the L.AF increases and this relationship
occurs at higher dwmean values for the case of the crack class
(APP B2.5, fig 21)

The bivariate plot for N.N.Ang and dwmi» show that the crack
class tends to have smaller N.N.Ang (APP B2.5, fig 22).

large O.A, O.Ang, C.A, C.Ang,
L.A.F, more NNN.N and a
smaller N.N.Ang.

When the object distribution is
random, the dmi, and dyveas are
difficult to assess. However,
when the object distribution is
clustered (BCVE-8), the crack
class has smaller dwin and smaller
dmean. This also produces a
similar C.A, for class,

Upon varying the O.A, the
clustered distribution does not
necessarily have more crack
initiations observed. This implies
that the O.A is a more important
factor than any clustering effect
(BRVE-0 - 28% and BCVE-0 -
24%)

The bivariates for the C.Ang and
O.Ang show that the crack tends
to have large C.Ang (value
above 0.8 which is
approximately 45°) and between
dmean and L.AF an inverse
relationship at higher duvcan
values for the case of the crack
class.

The bivariate plot for N.N.Ang
and dmin for the random object
distribution show that the crack
class tends to have smaller
nearest N.A.Ang while for the
case of the clustered object
distribution , the crack class was
observed to have small dyp,

Table 7.6¢: Continued from Table 7.6a.
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Components

Simulated parameters

Results Summary
1. Vary O.A + Vary object ® Crack class has a large O.A ® Sec Above
Angle + Clustered e Ttis difficult to assess both class distributions for the O.Ang

Distribution (BCVE-9)

(APP B2.5, fig 23). The mean values suggest that the crack
class has a larger O.Ang (table 7.4).

Crack class has a large C.A

It is difficult to assess both class distributions for C.A; (APP
B2.5, fig 24) even the mean and S.D values are fairly similar
(table 7.4).

Crack class has a large C.Ang

Crack class has large L.AF

Crack class has more N.N.N

Crack class has smaller dusin

Crack class has smaller duean

Crack class has smallerN.N.Ang.

24% crack initiation sites (APP B1, fig 10)

The bivariate plots for C.Ang and O.Ang show that cracks
tend to have large C.Ang (APP B2.5, fig 25)

The bivariate plots for dmeas and L.A.F show that as the dmean
decreases, the L.AF increases and this relationship occurs at
higher dmen values for the case of the crack class (APP B2.5,
fig 26)

The bivariate plots for N.N.Ang and dmi, show that the crack
class tends to have smaller dmin (APP B2.5, fig 27).

Table 7.6d: Continued from Table 7.6a.
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Figure 7.6: The bivariate plots of djseqsn and L.A.F. Their relationship can be seen
as an inverse exponential trend. When the O.A is fixed (a), this relationship is not
obvious as compared to the case when O.A is varied (b.)
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Figure 7.7: The bivariate plots of N.N.Ang and dps,. a.) when the O.Ang is
parallel (or large O.Ang) to loading axis, the “crack” class tends to lie on small
dprin (range between 0-2.5). b.) when the O.Ang is perpendicular (or small O.Ang)
to loading axis, the “crack” class tends to be well distributed along dps;,
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7.4 Relationship between the results from SUPANOVA model and

simulated data

Chapter 6.2.1 and 6.3.2 provides a detailed description of the results obtained from
the SUPANOVA model. The previous section in this chapter described the results
from our simulated particle distributions. Now, let us compare the two sets of
results together in each application (i.e. ADI and Al-Si-Sn).

ADI

Let us begin with ADI. The effect of the univariate components selected from
the SUPANOVA is fairly clear cut. It shows that as C.A, L.A.F, N.N.N gets larger,
cracks will initiate. From the simulated data, we can see that the effect of C.A is
not independent of O.A and L.A.F sizes as when O.A is held constant, the large C.A
no longer predicts crack initiations (see App A2.1, Fig. 1). Although inspection of
means indicates the crack class tends to have a large C.A, the standard deviation is
very high, thus large C.A alone does not uniquely specify crack initiation as shown in
our simulation. For the case of the L.A.F, the SUPANOVA model results tallies with
our simulated model (see App A2.1, Fig. 5), as we can clearly see that large L.A.F
tends to initiate cracks. The final univariate is the N.N.N. Again, the SUPANOVA
model results tally with our simulated model as we can see that clustering (see App
A1, Fig. 2) initiates more cracks than randomly distributed objects (see App Al,
Fig. 1). Furthermore, we observed from the simulated data set that when the O.A
is fixed, the significance of the clustering effect can be visualised easily.

The bivariate component from the SUPANOVA model indicates that as O.Ang
and dpz, gets larger, cracks are less likely to initiate. The simulated data tallies
with this finding (i.e. when the O.Ang is perpendicular to the loading axis (APP
A1, Fig. 5), cracks are unlikely to initiate compared to those that are parallel
(App Al, Fig. 6)). Finally, the bivariate plot of dasean and N.N.Ang from the
SUPANOVA model indicates that as both N.N.Ang and dpse., are large, cracks
are likely to initiate. The dpseq, value depends on many factors, including N.N.N
and their spacing, where it can be considered to reflect clustering (although not

unambiguously) and a high dpse., may reflect a relatively unclustered situation,
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which may allow for the positioning of the N.N to be more influential in affecting
the central graphite nodule. Our simulated data indicates that when the object is
randomly distributed (App A2.3, Fig. 13) the “crack” class have a large N.N.Ang.
Al-Si-Sn

The above analysis for the univariate components (i.e. the C.A and L.A.F)
in the ADI is also applicable to the case of Al-Si-Sn. Next, we will examine the
bivariate and trivariate components for the Al-Si-Sn. The bivariate plots of O.Ang
and C.Ang from the SUPANOVA model shows a complex non-linear trend which
indicates a large O.Ang and C.Ang are likely to initiate cracks (Fig. 6.5¢c). Our
simulated data tallies with this finding, as we observed that as our O.Ang is set to
be parallel to the loading axis (i.e. large), cracks are more likely to initiate (App
B1, Fig. 5 and 7) compared to those that are perpendicular (App B1, Fig. 6 and
8). Also, we observed that when the O.Ang is set to be perpendicular to the loading
axis, the “crack” class lies on either low and high values of C.Ang. These trends
can be observed in the SUPANOVA figure 6.5.

For the next bivariate plot of L.A.F and dpseqn from the SUPANOVA model, a
hyperplane of a concave shape is seen along the diagonal of both increasing axes
(i.e. as both features increase) indicating a threshold (see Fig. 6.5d) for these two
features. This threshold effect can be seen in our simulated data (App B2.3, Fig.
12), indicates that the “crack” class has large dpseqn- The trivariate components
selected by SUPANOVA indicate that as all inputs increase (i.e. O.Ang, dpsy, and
N.N.Ang) it is unlikely to initiate cracks (Fig. 6.5¢). This trend can be observed
from our simulated data (App B2.4, Fig. 13).

Conclusion

The relationship between the results obtained from the SUPANOVA models
mostly tallies with that of the simulated results accept for the case of the C.A. The
SUPANOVA model indicates that large C.A tends to initiate cracks. On the other
hand, we observed from our simulated model when the O.A is fixed large C.A does
not necessarily initiate cracks. A better indication of crack initiation would be the

L.A.F. Clustering in particle distributions has generally been shown to promote
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crack initiation. Another example which is interesting is the O.Ang. When the
O.Ang is parallel to the loading axis, we see that for both cases (ADI and Al-Si-Sn),
crack initiation is more likely to occur compared to when the O.Ang is perpendicular
to the loading axis. This is somewhat counterintuitive, as if crack initiation occurred
by particle cracking, we might expect a particle aligned perpendicular to the tensile
axis to crack more easily. However, in these 2 cases, the initiation mechanism
is via decohesion, which appears promoted for interfaces aligned parallel to the
loading axis. Decohesion may occur by a combination of peak tensile stress, peak
hydrostatic stress and strain accumulation effects which may be affected differently

by particles shape.

7.5 Summary

The FBT components selected by the SUPANOVA decomposition identifying crack
initiation sites are inter-related and it is difficult to simulate variations in them sys-
tematically. However, we can use particle simulations which provide self-consistent
distributions to assess those components which give rise to increased fatigue ini-
tiation. Four parameters in the particle simulations were varied systematically,
namely, the object shape, the O.A, the object distribution and the O.Ang. The
object shape allows the effect of the O.Ang to be eliminated (i.e. when it is cir-
cular in shape, there is no O.Ang). The O.A allows the effect of object size to
be assessed and helps to identify which of the linked parameters (C.A, L.A.F) are
determining initiation (i.e. L.A.F and not C.A). The object distribution allows the
effect of clustering to be assessed. Finally, the O.Ang has been assessed for the
two extreme situations, perpendicular to the loading axis or parallel to the load-
ing axis. Varying this parameter systematically provides a better interpretability
to our model produced by the SUPANOVA. For example, a fixed O.A shows the
effect of clustering (i.e. clustering tends to lead to more cracks). When the O.A
is varied, the significance of the clustering effect is shielded or outweighed by the
effect of large objects. This is seen in both our data sets, given that they are quite

different mechanical situations (soft particles in a hard matrix (ADI) and vice versa
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(Al-Si-Sn)) this is intriguing, although it should be noted that a decohesion mech-
anism of fatigue initiation has been proposed for both cases. These are specific
examples of how we have used systematic variations in simulated particle distri-
butions to further assess the SUPANOVA classification model. Our analysis goes
on further to make comparisons between the results obtained from the application
of the SUPANOVA classification model to the simulated particle distributions and
the input terms selected by the SUPANOVA model. These trends observed in the
SUPANOVA model tally with most of the simulated data set except for the C.A.
The simulated data shows that only large C.A with large L.A.F are the true fatigue
crack initiation factors. O.Ang shows the same effect in the two applications consid-
ered, where particles with their major axis oriented parallel to the loading axis are
more likely to initiate cracks. Generally speaking, similar relationships have been
identified for the two applications - e.g. C.A, L.A.F. In both cases, more clustered
particle distributions are predicted to initiate more fatigue cracks, as indicated by
L.A.F, N.N.N dependencies. There are clearly more parameters within the particle

simulation packages to be investigated in future work.

142



Chapter 8

Conclusions and Future Work

Most machine learning requires modifications to the cost function to incorporate
misclassification costs and sampling bias costs in order to be used appropriately for
imbalanced data. Their performance criteria (e.g. Amean or Gmean) may also
be altered to be less sensitive to the skewness distribution of the classification rate
(Gmean being more appropriate than Amean). A classification model with good
prediction tends to be complex and therefore difficult to interpret. Interpretation
15 valuable in identifying which features are important in classifying behaviour and
hence may help in identifying optimisation criteria. A parsimonious model can be
made by model structure decomposition and sparse selection, hence providing an
interpretable model. The SUPANOVA approach uses a spline kernel and ANOVA
decomposition followed by a sparse selection of ANOVA terms to provide model
interpretability. (Kandola et al. 1999, Christensen et al. 2001, Gunn 1999) have
successfully applied SUPANOVA for regression tasks in various materials science
applications. We extend this work to the case of classification with imbalanced data

to materials science fatigue failure problems.

8.1 Summary of Work

This thesis focuses on (1) the classification and hence prediction of crack initia-
tion sites in two automotive materials systems (2) producing an interpretive model,
hence developing a new understanding of the relationship between the input features
obtained from Finite Body Tessellation (FBT) and fatigue initiation. Two sets of

fatigue initiation data which were obtained from automotive materials, (camshaft
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(ADI) and plain journal bearing lining (Al-Si-Sn)), and using SUPANOVA devel-
oped for classification of imbalanced data. As in many real world problems, the
crack initiation data was smaller than the “no crack” majority class. The results
show that the extended approach for SVMs requires a sampling bias and if neces-
sary, a higher misclassification cost for the minority class for a set of imbalanced
data. The ratio between the imbalanced modification factor (i.e. L’s) is an impor-
tant parameter. The results from the Non-Standard Situation (NSS) SVM provide
a good guide to the necessary ratio of the L’s. However, fine tuning is required
to obtain better results. In both data sets, a successful classification rate of both
classes of at least 0.70 was obtained. The structure of this classification model is
then decomposed to provide a parsimonious model to aid model interpretability.
This is done using the SUPANOVA for classification for imbalanced data. The
parsimonious model comprises a sum of subset components (6 components for both
applications) which were selected out of a possible 512 and 1024 combinations for
the ADI and the Al-Si-Sn respectively. The trends of the 6 input components se-
lected by the model have been assessed in terms of the mechanistic understanding
they provide for the fatigue initiation phenomena. Here, it has been possible to
consider significant bivariate and trivariate interactions in addition to univariate
effects which could also be picked out by simple approaches such as observing their
means, standard deviations and simple visualisation plots. A simulated data set
was then used to further visualise the effects and interrelationships of these 6 com-
ponents selected for each case. For example, in both cases, the univariate function
selected by our model, which shows that a large cell area (C.A) promotes crack
initiation, has been further examined. It has been shown that it is not a good
indicator of crack initiation by itself. It is necessary for both a large C.A and a
large L.A.F to be present to initiate cracks. As such, this work has successfully
picked up some of the significant features of the particle distributions that lead to
fatigue initiation in these materials (e.g. clustering) allowing further optimisation
of these microstructures by considering the model predictions on simulated particle

distributions. There is a diversity of real world applications with similar problems,
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(i.e. with imbalanced data where parsimonious models are desirable, as opposed to

complex models). The work, therefore has a broad-based application potential.

8.2 Future Work

There are several areas of future work that can be extended from this research from
both the modelling and materials point of view. They are listed as follows :

From the modelling point of view :

e The current work uses misclassification cost and sampling bias to tackle the
problem of imbalanced data. Other approaches, such as clustering (e.g. Learn-
ing Vector Quantisation (LVQ) as described in chapter 5.1) can be used sys-
tematically to reduce the number of majority class samples. The reason for
not using more data from the majority class in this work has been to enable
computation efficiency.

e Rather than reducing the number of data which may lead to less true rep-
resentation of our data distribution, a faster algorithm could be used. Work
has already been carried out in the image processing field to increase com-
putational efficiency in SVM such as chunking algorithms which essentially
breaks the large data set into smaller subsets which are then combined (Osuna
et al. 1996). The SVM is trained with an algorithm that starts with an ar-
bitrary subset/’chunk’ of training data, those support vectors are used to
construct the hypothesis on the remaining training data and the points that
violate the KKT conditions are added to the previous support vectors of the
previous system to form a new chunk. A stopping criteria is then used to stop
this procedure.

e The current work on SUPANOVA for imbalanced data requires four stages, de-
scribed in chapter 5.5 and the best classification rate is obtained in a heuristic
way. The classification rate used is based on the Geometric Mean (GMean). It
would be interesting to incorporate this model selection into the loss function

and then optimising the model can be done automatically.
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e Setting the output of the SVM for classification to be probabilistic is ad-
vantageous as it allows for confidence in the determination of class member-
ship. A brief description of work done based on probabilistic SVM follows.
(Vapnik 1995) (decompose the feature space), (Wahba et al. 1999) (logistic
link function), (Platt 2000) ( logistic link function with sparse representa-
tion in place) and several authors (Sollich 2000, Kwok 1999, Seeger 1999)
use the Bayesian framework. With a Bayesian framework, the training of
SVM can be viewed as maximising posterior (MAP) solution to an inference
problem (Kwok 1999). The problem associated with a Bayesian approach for
probabilistic SVM lies in the difficulties involved in trying to normalise the
prior (note: SVM prior is simply a Gaussian Process over latent function)
(Sollich 2000). Recent work by (Tipping 2000) uses a unique prior defined by
its data size and location of the training input. This is known as the relevant
support vector machine. (Herbrich et al. 2001) eliminate the SVM prior to
normalising using the Bayes point SVM. In this work, the prior is replaced
by a spherical one (i.e. ||w|| = 1 uses only the spatial direction of the weight
vectors which is important for classification).

e Transforming the SVM output to a probabilistic term and then using the SU-
PANOVA for decomposition would provide more meaningful interpretability
of the value of the output (e.g. in the plot of the components selected, the y
axis is an indication function where the absolute value has no significance but

we use the “sign” to provide interpretability to our model (i.e. a implies

crack initiation and a“+” implies no crack initiation)).

From a metallurgist’s view point :

e The discussion of the work here assumes that particles spacing has no direct
effect on the matrix properties, however in the case of ADI the graphite nodule
spacing may affect local concentration profiles and hence matrix properties
which should be considered in further analysis.

e The difficulties of simulating the local clustering distribution of the particles

(i.e. the near neighbour and its angle) is a current pit fall of the particle
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simulation process. It would be interesting to incorporate simple algorithms
so that specific location (e.g. N.N.Ang can also be specified) of the particles
can be simulated.

e The Finite Body Tessellation (FBT) captures information on the distribution
of the secondary phase and the morphology of the particles. This gives us
our prior knowledge of the features that initiate fatigue cracks in our two sets
of automotive material. Other techniques such as Finite Element Analysis
(FEA) can also be used to investigate fatigue crack initiation. FEA requires
prior knowledge of the material properties (e.g. Young’s modulus of the indi-
vidual /surrounding particles and their elastic-plastic material properties) and
their testing condition (i.e. loading condition) to be specified correctly in or-
der to obtain an accurate analysis. The analysis obtained from the FEA can
provide insight into the local stress-strain fields indicating the region where,
for example, when the strain is high and crack initiation is likely to occur.
The FEA can then be compared with the SUPANOVA model predictions to
confirm whether the particles selected experience the stress-strain conditions
that will initiate fatigue cracks. This will provide independent correlation of
the SUPANOVA model predictions.

e Our work on Al-Si-Sn assumes that the background and bordering secondary
particles of the Si are the same. As such, only two classes are required to be
classified as “crack” or “no crack” class. It might be interesting to investigate
the effect of the bordering secondary particles, hence making a three class
classification problem. A brief description about multi-class SVM can be
obtained from chapter 3.8.1.

These are some of the areas that are worth investigating further, based on the

results from this research work, although these ideas are not exhaustive.
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Appendix A

ADI

A.1 Simulated Particle Distribution and their associated

tessellation cells
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Figure 1: ADI, random object distribution, constant object area,
circular shapes.
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Figure 2: ADI, clustered object distribution, constant object area,
circular shapes.
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Figure 5: AD], fixed object area, random object distribution, constant object area,
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Figure 6: AD], fixed object area, random object distribution, constant object area,
ellipse shapes parallel to the loading axis.
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Figure 9: ADI, random object distribution, varying object area,
ellipse shapes at angle 0 to the loading axis.
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A.2 Analysis of the Simulated Particle Distribution
A.2.1 Analysis of the Cell Area (C.A), Local Area Fraction (L.A.F), Number of Near Neighbour (N.N.N)
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Fin 19 Histogram plots of ARVE-8- L AF

Fig 18 Histogram plots of ARVE-8- Cell Area
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Appendix B

Al-Si-Sn

B.1 Simulated Particle Distribution and their associated

tessellation cells
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Figure 1: Al-Si-Sn, random object distribution, constant object area,
circular shapes.

Figure 2: Al-Si-Sn, clustered object distribution, constant object area,
circular shapes.
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Figure 3: Al-Si-Sn, random object distribution, varying object area,
circular shapes.

Figure 4: Al-Si-Sn, clustered object distribution, varying object area,
circular shapes.
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Figure 5: Al-Si-Sn, fixed object area, random object distribution, constant object area,
ellipse shapes parallel to the loading axis.
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Figure 6: Al-Si-Sn, fixed object area, random object distribution, constant object area,
ellipse shapes at 90° to the loading axis.
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Figure 8: Al-Si-Sn, fixed object area, clustered object distribution, constant object area,
ellipse shapes at 90° to the loading axis.
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Figure 9: Al-Si-Sn, random object distribution, varying object area,
ellipse shapes at angle 0 to the loading axis.

Figure 10: Al-Si-Sn, clustered object distribution, varying object area,
ellipse shapes at angle 9 to the loading axis.
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B.2 Analysis of the Simulated Particle Distribution
B.2.1  Analysis of the Cell Area (C.A) and Local Area Fraction (L.A.F)
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Fig 4 Histogram plots of BCCC - LAF

Fig 3 Histogram plos of BCCC - Cell Area
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