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Development of chlorophyll a prediction algorithms
for hyperspectral CASI imagery using neural networks

by Isabel M J Sargent

This research addressed the problem of predicting chlorophyll a from remotely sensed
imagery in waters which contain suspended sediments, dissolved organic pigments and
over which lies an inhomogeneous atmosphere. Image and in situ data were obtained
for the North Norfolk Coast region of the United Kingdom. These data were inves-
tigated for sources of error and noise and were found to be contaminated by several
signals stronger than that of chlorophyll a. To determine whether a non-linear and
more complex regression model was more applicable than conventional linear tech-
niques to predicting chlorophyll a in Case 2 waters, the technique of neural network
regression was compared to conventional linear regression techniques and was found
to give more reliable results. Moreover, information was taken from the training and
accuracy of linear and non-linear prediction models to infer details about the relation-
ship between chlorophyll a and spectral data in this environment. Several techniques of
feature selection were used to determine which regions of the spectrum were useful for
predicting chlorophyll a, given the type of model used. The non-linear neural network
feature selection technique consistently selected the noisy blue and near-infrared bands

that were rejected by the linear feature selection techniques.

This research clearly demonstrates the applicability of the neural network technique
to predicting chlorophyll a. Also, using the novel investigative techniques described
in this thesis, new information has been gained about the regions of the spectrum
that are useful to the development of robust chlorophyll a prediction models. Unlike
previous studies using neural networks, this research used data with a high level of
noise and strong effects from environmental factors - a realistic data set. The findings
are therefore highly relevant to all remote sensing investigations of the chlorophyll a

content of water.
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Chapter 1

Introduction

1.1 Background

This thesis describes research into measuring the chlorophyll content of coastal waters,
using remotely sensed spectral data and neural networks. Although much previous
work has developed reliable methods for the open ocean, the conditions in the coastal
margin are far more complex and have therefore attracted a great deal of investigation

over recent years.

At the interface between the continents and the oceans, the coastal zones of the world
are of vital importance to both terrestrial and marine, biological and chemical cycles
(Mackenzie et al. 1991; Wollast 1993). As awareness of the impact of human activity
on our environment from local to global scales has developed, the importance of the
coastal regions has been recognised. Although coastal waters account for only 0.5 % of
the global ocean’s volume, they account for about 14 % of the global ocean productivity
due to nutrient inputs from terrestrial systems via rivers and from bottom waters via
currents and upwelling. Also, with about 60 % of the world’s population living within a
band between 200 m below sea-level to 200 m above sea-level, these waters are the most

threatened by contamination and pollution by human activities. In turn, the response
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of the coastal ecosystems to pollutants and environmental change can threaten these

human activities (Cracknell 1999; Doerffer et al. 1999; Downing et al. 1993).

A global environmental issue that has received a great deal of attention over recent
years is climate change. A major concern is that the emission of carbon dioxide (CO,)
from human activities may be enhancing the natural greenhouse effect that heats the
Earth. As the basis of the ocean food chain, phytoplankton use solar energy to fix
carbon. The réle of phytoplankton in the removal of CO, from the atmosphere is
debated (Miller et al. 1995; Downing et al. 1993; Wollast 1991) but attempts to model
the change in climate resulting from changes in COs have produced wildly differing
results (Mitchell et al. 1987). It is therefore important that accurate estimates of the

quantity and distribution of phytoplankton be available to climate modellers.

There has also been a great deal of concern about the effects of human activity on the
health of the ocean. Many coastal regions have elevated quantities of nutrients as a
result of runoff from terrestrial and marine agriculture, the disturbance of soils in river
basins, industrial processes, tourism, marine agriculture and the suppression of riverine
nutrient uptake caused by pollution (Smetacek et al. 1991). The resulting increase in
algal growth, called eutrophication, threatens fisheries and tourism, and may result
in a permanent loss of vital ecosystems. The ability to monitor for the presence of
phytoplankton blooms can therefore both aid in the detection of pollution and provide

warning of the bloom hazard itself (Environment Agency 1997).

Satellite and airborne remote sensing is the only method by which broad and contiguous
regions can be sampled efficiently. In a region as dynamic as the coastal zone the use
of remote sensing for monitoring change is crucial. Remote sensing is a useful tool
where a study site is too vast or too remote to be studied adequately ‘on the ground’.
Since few measurements other than the spectral information may be made under most
circumstances, algorithms using remote sensing data are usually based on inferences

using the imagery alone.

The phytoplankton concentration in the surface of the oceans is usually estimated from
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the spectral signature of the chlorophyll pigments it contains. These pigments have
a distinctive pattern of absorption throughout the spectrum. However, this signature
becomes hard to detect in regions where non-organic sediments and other pigments
occur in the water. In coastal regions, the spectral signal can be dominated by light
backscattered by inorganic particles. Pigments formed by the breakdown of organic
matter are also prevalent in coastal waters and the spectral signature of these can
be very similar to that of chlorophyll. Coastal regions are often near to regions of
human settlement and sources of wind-borne particles. Therefore, in addition to the
influences of other water constituents, the spectral signal detected in coastal regions
can be strongly affected by particles in the atmosphere. Owing to the mixture of
influences on the atmosphere at the coast, the distribution of these aerosols is often

not uniform, making it difficult to correct for atmospheric effects.

The most common method used to determine the quantity of chlorophyll in water
from spectral data is the colour ratio technique. This is an empirical method whereby
the ratio of a chlorophyll-sensitive waveband to a less chlorophyll-sensitive waveband
is regressed against chlorophyll concentration. Another empirical method that has
shown great potential over recent years uses chlorophyll fluorescence at 685 nm to
predict chlorophyll concentration. A third method that has popularly been used over
recent years, models the radiative transfer within water containing known constituents
have been developed. Inversion of these models provides a method of prediction of

chlorophyll content from measured spectral information (Rast et al. 1999).

The research presented here aimed to investigate more deeply the detection of chloro-
phyll in remote sensing imagery where the dominant spectral signal was from envi-
ronmental factors such as the atmosphere and suspended sediments in the water. The
empirical approach was used to derive chlorophyll prediction algorithms. The data that
were used were collected over a coastal region impacted by inorganic sediments and
dissolved pigments and also covered by an inhomogeneous atmosphere. A thorough in-
vestigation of the information content of the data found noise from many sources to be
present. Several feature selection techniques were used to determine useful wavelengths

for predicting chlorophyll concentration. Linear and non-linear models of varying com-
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plexity were developed for predicting chlorophyll from spectral information using both
conventional regression and neural network approaches. Finally, the findings of the
different techniques were drawn together to derive a more complete understanding of
the linearity and complexity of chlorophyll-spectra relationship across the visible and

near-infrared (NIR) spectrum in Case 2 waters.

1.2 QOutline of thesis

The remainder of this chapter details how other research has estimated the chlorophyll
content of water using remote sensing. Much previous work has concentrated on finding
the best single feature to predict chlorophyll concentration. However, the complex
way in which the optical elements of the scene interact indicates that several spectral
features are necessary to characterise the nature of the chlorophyll-spectra relationship.
The model used to relate spectral information to chlorophyll is also addressed. The
non-linearity and complexity of this relationship suggests that current linear regression
techniques are inadequate. Therefore, the research presented here develops non-linear
models for predicting chlorophyll. Neural networks have produced many valid results
in remote sensing studies, which are relevant to the current problem. Short reviews
of empirical modelling techniques and neural networks in remote sensing are provided.

The aims of this research are set out at the end of this chapter.

Obtaining suitable sets of spectral and in situ data for detecting chlorophyll in water
can be a difficult task because rarely are ship-board and remotely-sensed measurements
taken at the same time and place. Few photons are reflected back to the sensor from
the water and so the remotely sensed signal is subject to high levels of noise. It is
important that the nature of this noise is understood before the data are used for
predicting chlorophyll. Chapter 2 describes how the data used in this research were
obtained and calibrated. Various techniques were applied to investigate the suitability
of these data for predicting chlorophyll and to highlight any potential problems with

the data. Previous studies using neural networks for predicting chlorophyll used data
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sets, which were not typical of those used for water quality monitoring in the UK. This
is the first study to demonstrate the applicability of the neural network technique to a

data set, which has a typical level of contamination by oceanic, atmospheric and sensor

effects.

Before the use of neural networks is introduced in this research, chapter 3 describes
their operation and discusses issues relevant to their implementation. This begins from
an understanding of the familiar technique of multiple linear least-squares regression
and demonstrates that the neural networks used in this research are an extension of this
simple method. Thus, the two techniques may be directly compared. Both techniques
allow many models to be developed such that a thorough comparison of model inputs,
structure and accuracy may be easily achieved. However, few studies have used these

regression algorithms to their fullest potential.

This research was undertaken in two parts. Firstly a primary study was performed
to assess the validity of the techniques that have been proposed. The methods used
to assemble the data and regress the spectral inputs against chlorophyll using both a
linear least-squares method and a neural network approach are described in chapter
4. The results of the primary study are also presented in this chapter and carefully
assessed taking into account not only the accuracy with which chlorophyll predictions
were made using the models but also aspects of model design and inferences that may

be made about the relationship between chlorophyll and spectra.

The second part of the research is then described in chapters 5 and 6. Here, the method
of the primary study was refined to extract more information about the relationship
between chlorophyll and spectra by using several different methods of selecting spectral
features. Although feature selection is a well-researched technique, it is unusual for
ocean colour research to apply automated techniques for finding useful spectral bands.
Yet these techniques have the potential to highlight extremely useful combinations of
bands that may otherwise have been ignored. Using several different sets of inputs,
multiple regression and neural network regression are then applied to the data to make

a more rigorous test of the validity of the neural network model that had been proposed.
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Chapter 7 then discusses the findings of both the primary and secondary studies with
reference to the knowledge about the data that had been gained in chapter 2. A
summary of the research and the conclusions relating to the project aims are then

presented in chapter 8 with recommendations for future work in this field.

The approach taken to analysing the results of this research was a practical and infor-
mative way of extracting new understanding about the relationship between remotely

sensed data and chlorophyll in Case 2, coastal waters.

1.3 Detecting chlorophyll in remotely sensed im-

agery

When light from the sun enters a medium, it interacts with the molecules and particles
therein and its characteristics are altered. The light measured above a water body
has been attenuated by absorption and scattering within the atmosphere and as it
crosses the water surface. The constituents of the water and reflection from a shallow
sea-bed further attenuate the light before it passes back through the surface and the
atmosphere to the sensor. Scattering and absorption have varying effects throughout
the spectrum depending on the material involved. Remote sensing aims to determine

the nature of these materials in the scene from the spectral information gathered from

it.

Three decades ago, Clarke et al. (1970) first explored the use of remote sensing for
detecting chlorophyll in natural waters. They compared airborne spectrometer data
with in sttu chlorophyll data and found a decline in backscattered blue light relative

to green light as the chlorophyll increased.

Phytoplankton contain a combination of pigments that are principally used to absorb
light for photosynthesis. Of the three chlorophylls, a, b and ¢, chlorophyll a is the
pigment common to all species of phytoplankton (Fischer and Kronfeld 1990). It has
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Figure 1.1: Absorption spectrum of chlorophyll a in water averaged from measured

spectra of algae grown in culture (from Morel 1988)

a distinctive absorption signature in water (figure 1.1) showing absorption in both the
blue and red wavelengths. There is a maximum reflectance in the green and NIR
wavelengths, resulting in the green hue experienced by the human eye. A chlorophyll
breakdown product, phaeophytin a, cannot be distinguished spectrally from chloro-
phyll a and so any spectral measurement of chlorophyll a in water is actually the sum

of the two pigments (Gordon et al. 1980).

Absorption of light by water increases with wavelength. At 690 nm, the absorption be-
gins to increase rapidly such that very little signal is detected beyond 720 nm (Malthus
1997).

Above the water’s surface, a sensor measures the water-leaving radiance. Here, the
reflectance from the water constituents has been altered by passing through the air-
water interface. Under calm conditions and at a viewing angle of less than 48.8° to
the vertical, the signal that is detected above the water surface has been affected little
by passing through the water surface. However, as the roughness of the surface or the

viewing angle increases, more of the signal is reflected downwards at the interface (Kirk
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1994).

As the height of the sensor increases, the influence of the atmosphere becomes greater.
Much of the contribution by the atmosphere is the scatter of light into the path of the
sensor. Scatter by molecules, Rayleigh scatter, is greatest at shorter wavelengths. The
contribution from this can be approximated if the illumination and observation angles
are known. The contribution by scattering from aerosols is more complicated however,
because knowledge of the aerosol type and optical thickness is required (Antoine and
Morel 1999). The signal is also subject to absorption by molecules within the atmo-
sphere. Principal absorption bands are caused by water at 644-660 nm and around
710 nm, and by oxygen absorption around 687 nm and 760 nm (Fischer and Schliissel
1990; Gower et al. 1984). Some absorption by aerosols also occurs. Again this is
difficult to predict because the type of aerosol must be known. Aerosols resulting from
industrial processes may be quite common in some coastal regions and can be strongly

absorbing (Gordon et al. 1997).

The sensor also receives radiance resulting from specular reflectance at the sea surface,
known as sun-glint. This changes with the viewing and illumination geometry as with
the reflection of upwelling radiance at the underside of the air-sea interface. Therefore,

roughening of the sea surface causes an increase in sun-glint (Gordon 1997; Fraser et al.

1997).

Since the work of Clarke et al. (1970), a common method of determining the chloro-
phyll a content of water has been to use the ratio of the detected radiance in the blue
region of the spectrum with that detected in the green. The ratio is a comparison
of the region of absorption in the blue with the region of increased reflection in the
green. As the chlorophyll a in the water increases, the radiance in the absorption band
decreases and so a decrease in the blue-green ratio indicates an increase in the amount

of chlorophyll a (Kirk 1994).

Principally, two blue-green ratios have been used to determine chlorophyll a. The first

uses measured radiance at 443 nm over that at 550 nm and when the chlorophyll a
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concentration gets so high that the absorption at 443 nm is near-absolute, radiance at
520 nm over that at 550 nm. As chlorophyll a concentration increases, the band of
absorption around 443 nm becomes broader and hence absorption can be detected at

520 nm (Gordon and Morel 1983; Kirk 1994).

The remote sensing instrument, the Coastal Zone Color Scanner (CZCS), was launched
in 1978 on the Nimbus-7 satellite. Throughout the seven years of its operation, both
blue-green ratios were used to determine the concentration of chlorophyll in the global
ocean. Studies, such as Gordon et al. (1980) found that a linear regression of this ratio
against chlorophyll a concentration could be derived from ship-board measurements
and applied to CZCS imagery very successfully. However in their seminal work, Clarke
et al. (1970) also noted anomalies in the relationship between ocean colour and chloro-
phyll a, which they thought likely to be due to other constituents in the water, the
water surface or the atmosphere. Although the blue-green ratio, rather than a measure
at a single wavelength, does compensate for the effects of other materials in the water
and the atmosphere (Gordon et al. 1980), many studies have found that inorganic
sediments and coloured dissolved organic material (CDOM) in the water have had a
strong influence on the light detected above certain waters (Morel and Gordon 1980;

Mittenzwey et al. 1992; Han 1997).

Inorganic sediments are carried into the coastal zone by rivers or are resuspended by
wave and current action at the coast (Williams et al. 1998). Where present, inorganic
particles are usually the principal influence on water-leaving radiance because they
scatter light within the water column and back to the sensor (Kirk 1994). The spectral
profile of this scatter depends on the size and mineralogy of particles (Novo et al. 1989;
Han et al. 1994). Generally speaking however, a brightening at all optical wavelengths
is usually detected (Moore 1978). Some absorption of light may occur which is also

very dependent on the mineralogy of the sediment (Han and Rundquist 1994).

CDOM consists of the pigments formed by the breakdown of organic matter. Some of
this pigment is formed in the ocean by the breakdown of plankton but much is carried

to the coastal zone by rivers. The major influence of this pigment on the received
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spectral signal from the water surface is in absorbing light in the shorter wavelengths
(Ferrari et al. 1996). The absorption of light decreases in an approximately exponential
manner with increasing wavelength (Bolgrien et al. 1995). This results in a bias to
the backscattered light towards the green and red wavelengths and, since the water
absorbs more strongly in the red, the result can appear yellow to the human eye,
hence the name often given to this pigment - gelbstoffe or yellow substance (Taylor
and Smith 1967; Dekker 1993). Dissolved organic pigments do not always co-vary with
chlorophyll a and, since they also absorb strongly at 440 nm they can result in an

under- or over-estimation of the chlorophyll concentration (Carder et al. 1989).

To account for the complicating effects of water constituents other than chlorophyll q,
radiative transfer models have been developed to model the effect of absorbing and
scattering materials on the light entering the water (e.g. Fischer et al. 1986; Carder
et al. 1991; Aiken et al. 1995b; Kondratyev et al. 1998). If the specific absorptions,
the concentrations and the scattering characteristics are known for each substance in
the water, then many of these studies have shown that the models reproduce measured
spectral radiances accurately (Morel and Prieur 1977; Prieur and Sathyendranath 1981;

Sathyendranath et al. 1989).

These models can then be used to produce spectral data for a wide-enough range of
water-quality conditions, so that ocean colour algorithms may be developed and tested
(e.g. Sathyendranath et al. 1989). Alternatively, the models can be inverted to develop
ocean colour algorithms directly. To invert such a model the specific optical properties
of all the water constituents in the model must be known (Morel 1980; Morel and
Gordon 1980; Doerffer and Fischer 1994) for all wavelengths (Sathyendranath et al.
1989). Therefore, the spectral dependence of these optical properties is often assumed

to obey a simple law (Morel and Prieur 1977).

By comparing measurements of turbidity and pigment content and in-water spectral
measurements with modelled spectral values, Morel and Prieur (1977) were able to
investigate the origin of the observed spectra. They showed that the scattering of light

was at least as influential in determining the blue-green ratio as pigment absorption.
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Their research separated green waters into Case 1 and Case 2 waters. In Case 1 waters,
they noted a clear minimum in reflectance at 440 nm that developed as the chlorophyll
in the water increased. For these waters, the water-leaving radiance is a product only
of phytoplankton pigments. However, they found that the minimum at 440 nm was
not visible in turbid Case 2 waters. Here the spectral signature is strongly affected
by CDOM, by suspended sediment, or by both. The waters around the coast of the

United Kingdom have been classed as Case 2 waters.

Mitchelson et al. (1986) found a significant difference between the blue-green ratio to
chlorophyll slopes for Case 1 and Case 2 waters and proposed a general blue-green ratio
algorithm for determining chlorophyll a in Case 2 waters. However, different studies
have found that such algorithms are very location- and season-specific (Environment
Agency 1997) and that no general algorithms can be produced using this ratio for use

in Case 2 waters (Carder et al. 1989; Tanis and Pozdnyakov 1995).

In addition to the influence from water constituents, these coastal areas are often
subject to non-uniform atmospheric effects, particularly when near industrial or urban
zones, which increase the aerosol load of the atmosphere (Tassan and Ribera d’Alcald
1993). Most of the work that has developed empirical relationships between remotely
sensed reflectance and chlorophyll a has emphasised the need to correct for atmospheric
influences (e.g. Gordon et al. 1980; Morel and Prieur 1977). This is because, due to
the high absorption of the water itself, the radiances measured over water are very low.
Over very clear, deep water, the scatter of light within the atmosphere can account for
up to 95 % of the measured signal (Moore 1978). However, over more reflective waters,

the contribution from the atmosphere is a little reduced.

Although a popular choice for chlorophyll a detection, the blue wavelengths have been
found to be noisy as a result of sensor effects (Dekker et al. 1992a; Dekker et al.
1992b) and atmospheric effects (Aiken et al. 1995b). Lathrop and Lillesand (1986)
also considered that the poor correlation between the blue Thematic Mapper band
and water constituents was possibly because this band represented the integrated sig-

nal from deeper within the water body than the reference measurements of the water
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constituents. Recently, Kondratyev et al. (1998) demonstrated how six different blue-
green and green-green ocean/marine algorithms became unusable as soon as the water
column became enriched with sediments and/CDOM for lake waters. Malthus et al.
(1996) noted that at shorter wavelengths the signal is subject to a mixture of absorption
and scattering effects from photosynthetic pigments, suspended sediments and CDOM.
The response in the longer wavelength bands was however, dominated by phytoplank-
ton pigments. Workers have therefore tried to find other regions of the spectrum from

which to obtain information about the chlorophyll a content of the water.

Other efforts to detect chlorophyll used radiance in the NIR band, where there is also
a band of absorption by chlorophyll a. Bukata et al. (1974) found that there was
a relationship between reflectance in the NIR and the logarithm of chlorophyll con-
centration. Because CDOM absorption is minimized at longer wavelengths and the
effect of suspended sediment on water-leaving radiance is approximately the same for
wavelengths longer than 600 nm (Quibell 1991), some studies have suggested the use of
band difference and band ratio algorithms which utilise reflectance in the green, red and
NIR wavelengths (Rundquist et al. 1996; Hoogenboom et al. 1998). Mittenzwey et al.
(1992) found that red wavelengths are most sensitive to changes in phytoplankton.
They suggest a NIR to red ratio which seems to work well for waters with a medium
to high chlorophyll a concentration. When looking at the validity of using Airborne
Thematic Mapper data for assessing inland water quality, Malthus et al. (1996) also
found that a ratio of bands in the red and NIR had the best correlation with chloro-
phyll a. However, Han et al. (1994) found that the rate of increase in reflectance with

an increase in the level of sediment was not the same for all wavelengths, even in the

red and NIR.

The early remote sensing instruments required broad spectral bands to ensure that
enough radiation was collected for the signal to be detected. As sensor technology
has advanced so instruments have been developed that can collect data for much nar-
rower wavebands. Hyperspectral instruments have allowed near-complete spectra to
be collected, so that narrow features in the spectrum, such as absorption bands, may

be identified and interpreted. Airborne remote sensing instruments are now available
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with approximately the 10 nm spectral resolution recommended by Morel and Gordon
(1980), Dekker et al. (1992a) and Dekker et al. (1992b). With many more bands of

information, features in the spectrum other than band ratios and differences may now

be computed.

One feature extracted from hyperspectral data is the derivative of the spectrum, usually
near a region of particular interest. This technique determines the rate of change of the
measured spectrum with wavelength and so can be used to highlight peaks and troughs
in the spectrum, or indeed points of inflection. Where reflectance was not highly cor-
related with chlorophyll ¢ and especially for data that are affected by the atmosphere,
Malthus and Dekker (1995) found that the first derivatives of the measured reflectance
had a high correlation with chlorophyll a concentration, particularly in the red wave-
lengths. Building on this work, Farrington et al. (1994) found that, the first derivative
spectra of the measurements from an airborne and a surface platform were very similar
whereas the subsurface reflectance calculated from both these platforms showed shifts
in magnitude. This indicated that more robust algorithms could be derived from the
derivative spectrum. Rundquist et al. (1996) found that the first derivatives near 500,
700 and 800 nm had a good correlation with chlorophyll a concentration. In particular,
they found that the derivative at 690.7 nm compared very favorably with a NIR to red
ratio. Fraser (1998a) found that peaks in the first derivatives near 429 and 695 nm
were likely to be particularly useful for chlorophyll a prediction. Goodin et al. (1993)
found that a difference between the peak in the second derivative at 695 nm and its

trough at 660 nm was very stable to changes in the sediment content of water.

Neville and Gower (1977) considered that the effects of the atmosphere and of partic-
ulates in the water cannot be simply removed by ratios such as the blue-green. This is
because the wavelengths being used are situated far apart in the spectrum and so it is
likely that these effects are likely to be different at each wavelength. Therefore, they
introduced the idea of measuring chlorophyll a using the peak in spectral response at
685 nm. This peak is thought to be due to chlorophyll fluorescence (Gitelson 1992),
which results from the re-emission of energy that has been absorbed at about 675 nm

(Rundquist et al. 1996; Gitelson 1992). Only about 1 % of light absorbed by photo-
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synthesising plankton is lost by fluorescence (Kirk 1994) but an increase in fluorescence
may be observed to accompany an increase in chlorophyll a (Lorenzen 1966). However,
there is still some discussion about whether the detected peak is due to fluorescence or
is the result of a combination of high-scattering of light and absorption of chlorophyll
at 670 nm (Gower et al. 1999).

The height and width of the fluorescence feature is expected to increase with an increase
in chlorophyll a. Therefore, by measuring these dimensions an estimate of the amount
of chlorophyll @ may be made. The height of the observed peak has been found to have
an approximately linear relationship with chlorophyll a concentration in the range from

1 to 20 pugl~t (Gower et al. 1999).

By simulating the typical responses of coastal waters, Fischer et al. (1986) compared
the blue-green ratio to three fluorescence features. They concluded that the blue-green
ratio was ‘useless’ for predicting chlorophyll o in these conditions. However, all the
fluorescence features could be used. Their fluorescence features were: 1) the difference
between reflectance at 685 nm and 670 nm - the wavelengths of chlorophyll a fluores-
cence and absorption, respectively, 2) the height of the reflectance above a straight line
joining reflectance at 645 and 725 nm, and 3) the height above a straight line joining
reflectance at 645 and 670 nm - again this accounts for chlorophyll a absorption at
670 nm. Several fluorescence line height (FLH) algorithms have been derived that use
features similar to the latter two fluorescence measures of Fischer et al. (1986) (e.g.
Fischer and Kronfeld 1990; Gitelson 1992; Gitelson et al. 1994). The usual method for

determining FLH is demonstrated in figure 1.2.

Not only does the peak of measured response at 685 nm increase with an elevation of
chlorophyll a concentration, but several studies have also found that the peak appears
to move to longer wavelengths as chlorophyll @ increases. This is due to a broadening
of the 675 nm chlorophyll a absorption band (Gitelson 1992; Matthews 1994), to
sediments in the water, to phytoplankton maturity or to stress (Matthews and Boxall

1994).
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Figure 1.2: Diagram of FLH measurement. A straight baseline is drawn between the
response at two wavebands (here, 675 and 732 nm as used by Gitelson 1992) and
the height of the spectral response above this baseline at the fluorescence waveband

(685 nm) is measured.

The fluorescence peak is in a wavelength region not greatly affected by Rayleigh scatter
within the atmosphere (Gower et al. 1984). Unfortunately attenuation of light by water
is much stronger at red wavelengths, which can result in a very weak fluorescence signal
(Malthus 1997). As a result, the detected fluorescence signal originates only in the top
2 m of the water (compared to the top 5 m for shorter wavelengths) and hence is
not a good indicator of chlorophyll a in the majority of the euphotic zone (Fischer
and Kronfeld 1990). Fischer and Kronfeld (1990) also found that the FLH feature is
affected by very turbid water. Surface reflectance has also been found to strongly affect

this signal (Neville and Gower 1977).

Fischer and Schliissel (1990) created a radiative transfer model to assess the impact of
the atmosphere on the detection of the fluorescence signal through it and concluded
that the signal could be detected if the sensor had a spectral resolution of 5 nm.

However, few remote sensing instruments have such fine spectral resolution and, for
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ocean colour applications, it is possible that the signal received within such a narrow

wave band will be too low to keep the signal to noise ratio above their recommended

1000:1.

Fluorescence is a measure of the physiological state of the phytoplankton (Sathyen-
dranath et al. 1989). This results in a high variability of the fluorescence signal in
response to changes in environmental conditions such as nutrient levels and light avail-
ability (Bricaud et al. 1995). Ocean colour, on the other hand, is affected by the
physical characteristics of the phytoplankton population such as cell size and shape

(Bukata et al. 1991).

Studies trying to quantify chlorophyll ¢ using its spectral signature have found that
blue wavelengths are noisy and strongly affected by CDOM. Red wavelengths (including
fluorescence) are absorbed by water and/or affected by scatter by both sediments in
the water and aerosols in the atmosphere. Fluorescence itself has a very low signal
which can have a variable response to chlorophyll a concentration. The single feature

algorithms have been found to hold too little information for accurate chlorophyll a

detection.

Morel and Prieur (1977) recommended that where other pigments and suspended sed-
iments are present many more spectral features are required to determine how much
chlorophyll a there is in the water. For example, Carder et al. (1991) found that the
CDOM to chlorophyll ratio had a profound impact on upwelled radiance at 443 nm.
Degradation products absorb more strongly at 412 nm whereas chlorophyll absorbs
more strongly at 443 nm. Therefore, they suggested separating CDOM with a band at
412 nm and using this in ratio with a green band (they used the SeaWiF$S (Sea-viewing
Wide Field-of-view Sensor) band at 565 nm) with another ratio of 443 to 565 nm.

Gower et al. (1984) and Fischer et al. (1986) have suggested that the entire visible
and some of the NIR spectrum would be required to determine chlorophyll a in Case 2
waters. However, owing to the volume of data to be collected, this is usually imprac-

ticable. Also, since many wavelengths are highly correlated, much of the information
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is redundant. Studies have begun to determine those wave bands which together hold
as much information as the entire spectrum. Sathyendranath et al. (1989) used a
model of ocean colour to find a group of five wave bands, centred at 400, 445, 520,
565 and 640 nm, which held almost as much information as the whole spectrum. This
group appeared to be as successful at predicting chlorophyll a, suspended sediment
and CDOM as the whole spectrum. Dekker et al. (1992a) and Dekker et al. (1992b)
defined 9 bands in the 500-800 nm part of the spectrum with a minimum band width
of 10 nm which provided almost all the information of the whole spectrum. Using
multiple regression analysis, Wernand et al. (1997) found a group of 5 wavelengths

from which the whole spectrum could be reconstructed.

When many fine bands of spectral data have been measured, it is often found that
these bands are highly correlated. A transformation of such data has been used in
several studies to reduce this correlation between features and to reduce the number
of features used. Principal component analysis is a popular method by which this is

achieved. This is described in more detail in section 2.7.4.

Using principal component analysis, Doerffer (1981) found two characteristic vectors of
data acquired over the northern North Sea. The first of these had negative correlations
with blue wavelength and positive correlations with the region around 685 nm and so
was interpreted to represent chlorophyll a. The second was interpreted to represent
sediment. Similarly, Gower et al. (1984) used eigenvector analysis to determine which
parts of the spectrum contained the most useful information for deriving chlorophyll a
concentration. They found that it is the absorption and scattering of phytoplankton
that correlate with the response in the blue-green region of the spectrum and that the

information in the red region of the spectrum was mostly found in the fluorescence

feature.
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1.4 Regression analysis

In modelling problems there are three elements for consideration, the inputs, the out-
puts and the model which relates them. In the case of this research, measures of the
inputs (the spectral measures) and the outputs (the concentration of chlorophyll a)

will be used. Therefore, the research aims to develop the optimal model to relate them

(Brown et al. 1994).

Morel and Gordon (1980) described three different approaches to development of mod-
els which predict chlorophyll a from spectral information: empirical, semi-analytical
and analytical. The empirical method statistically relates a small set of measured
chlorophyll a values to measured spectral values and then applies the algorithm to
further spectral values. The semi-analytical method determines the optical effects of
materials that co-vary with chlorophyll and those that do not. These are then statis-
tically related to the measured water constituents. The analytical method develops a
radiative transfer model by computing the optical consequences of water constituents.
The model must then be inverted to determine the concentrations of constituents that
produce a measured spectrum. Whilst developing algorithms for use with SeaWiF$S
data, several semi-analytical and empirical algorithms were tested. The empirical al-

gorithms were found to produce the more reliable predictions (Maritorena et al. 1997).

Much knowledge of the water body in question needs to be obtained for the two an-
alytical methods. One of the most common uses for chlorophyll a prediction in the
UK is for identifying water quality, particularly algal blooms, to enable rapid response
by fisheries, environment agencies, etc. (Environment Agency 1997). Therefore the
relatively straightforward empirical method is commonly favoured. This method usu-

ally uses the least squares regression approach to find the straight-line fit between the

feature and chlorophyll a.

Most empirical algorithms developed to predict chlorophyll a concentration from water-
leaving spectra assume a linear relationship. However, this assumption has often been

found to be untenable over all but the shortest ranges of chlorophyll a concentration
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(Sathyendranath et al. 1989). Also, the optical signature has been found to be very
complex (Bukata et al. 1991; Sathyendranath et al. 1989). This is due to the interac-
tion between the optical signatures of the water constituents and the optical properties

of the water itself (Sathyendranath et al. 1989; Fischer and Kronfeld 1990).

The features used as an input to a model are recognised as one of the most important
aspects of the model. No matter how complicated a regression model is, it will not
extract information that is not there in the features. Thus much of the work aimed at
developing algorithms to predict chlorophyll a has concentrated on finding the ideal
features to regress against chlorophyll ¢ and little work has concentrated on finding
a more applicable model for the data. However, the linear model often used to relate
the spectral information to chlorophyll a is inappropriate for Case 2 waters (Bukata
et al. 1991). A non-linear and rather more complex model would be better (Keiner
and Yan 1998) but this may require input features that have not been considered for
linear models. Neural networks present a method by which a non-linear function may

be optimally modelled without any advance knowledge of the data structure.

Spectral data that are collected over a coastal region are the product of a number of
processes within the atmosphere and water and are likely to be affected by instrumental
error. Since chlorophyll a is the only measure from the scene, the user experiences these
effects as variability in the spectral response that is not attributable to chlorophyll a.

Neural networks have been shown to be more robust to such noise in data (Paola and

Schowengerdt 1995a).

Clearly, neural networks have the potential to overcome the difficulties experienced
when prescribing the right model for the data set. Many remote sensing applications
have used neural networks to solve scene modelling problems. The following section

gives a quick overview of the use of neural networks with remotely sensed data.
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1.5 Neural networks in Remote Sensing

Neural networks are a simple, iterative method of developing algorithms that relate
two sets of variables. These algorithms may be linear or non-linear, and of varying
complexity. The technique is therefore ideal for investigations in which linear and
non-linear, and simple and complex algorithms are to be compared. The operation of

neural networks is described in detail in chapter 3.

Algorithms used to derive information from remotely sensed imagery are of two main
types. Regression algorithms, such as those described in the previous section, predict
the values for a continuous variable for a given set of observations (inputs). Other
algorithms assign observations to discrete classes, rather than regarding them as a
continuous variable. These algorithms are known as classifiers and have been the most

popular application of neural networks in remote sensing (Paola and Schowengerdt

1995b).

Early classifications using neural networks divided the image into ‘pure’ classes, usu-
ally by assigning each pixel to one single surface type (for example Hepner et al. 1990;
Benediktsson et al. 1990; Heermann and Khazenie 1992). More recently, image clas-
sifications have been performed which distinguish the spectral classes within so-called
‘mixed pixels’. These so-called ‘fuzzy’ classifications produce fraction images which
show, for each class, the fraction of each pixel which is covered by that class (Adams

et al. 1986; Atkinson et al. 1997; Foody et al. 1997, FLIERS 1999).

Some studies have found that the mixtures of class spectral information may be non-
linear and have recommended that neural networks be used for spectral unmixing rather
than alternative linear methods (Foody et al. 1997). Initially, neural networks used for
unmixing pixels were trained using pure examples (endmembers) of the class spectra
(Civco 1993; Warner and Shank 1997a) but better results have been achieved using
examples of mixed spectra to train the network (Foody 1996; Foschi and Smith 1997;
Clark and Canas 1995). The function defined by the neural network to determine class

proportions using spectral information is a regression function (Lewis et al. 1998).
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The pixels in marine imagery are intrinsically a mixture of several different signals. It is
therefore logical to extend the technique of spectral unmixing to the spectra measured
over water. This concept was first tested on estimating the suspended sediment con-
centration of water using endmembers derived in the laboratory (Mertes et al. 1993)
with successful results. If the mixing of signals is not linear, it is logical to ‘unmix’ this

signal using a non-linear technique, such as neural networks.

Although many radiative transfer models assume simple spectral dependence laws these
are unlikely to exist. Hence, Morel and Prieur (1977) suggested the use of some iterative
fitting algorithm. Neural networks were recommended by Peters et al. (1998) to invert
the increasingly complex radiative transfer models demanded by the use of imaging
spectrometry. A practical application of this recommendation has been carried out
recently by Schiller and Doerffer (1999). They used a model to reproduce the top-
of-atmosphere reflectance over Case 1 and Case 2 waters and from this derived a
set of data for a comprehensive range of phytoplankton, suspended sediments and
CDOM concentrations. These data were then used to train a neural network, the
trained network thus emulating the inverted model. In a similar study, Buckton et al.
(1999) trained a neural network on data derived from a model incorporating oceanic,
atmospheric and instrument effects. They found that even when the data contained
noise from a number of sources, the retrieval of water constituents was within what

they considered an acceptable accuracy for Case 2 waters.

An alternative method is to use the neural network as a specialist predictor of one water
constituent, rather than of all the constituents. This method is equivalent to producing
empirical models for predicting chlorophyll ¢ from an ocean colour or fluorescence
feature. Four studies have investigated the potential for using neural networks for
chlorophyll a detection. The first, Keiner and Yan (1998), compared neural network
regression with linear and log-linear regression of the three visible Thematic Mapper
bands on chlorophyll a. A great improvement was noted with using the neural network
method. The second study, Keiner and Brown (1999) used the SeaWiFS Bio-optical
Algorithm Mini-workshop (SeaBAM) dataset. The neural network outperformed all

the empirical and semi-empirical algorithms from SeaBAM. Recognising the value of
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previous works using both model-derived and simulated space-borne imagery, Gross
et al. (1999) and Gross et al. (2000) have also used a neural network to develop
models for predicting chlorophyll a concentration. This work used data derived from
the model of Morel (1988) and simulated SeaWiF§S data with realistic noise added. In
this work it was found that neural networks that have been trained with noise were

highly robust to noise and outperformed polynomial models based on blue-green ratios.

Although highly relevant, none of these studies adequately addressed the problem of
chlorophyll a prediction in Case 2 waters. Thematic Mapper data are expensive to ob-
tain in the UK and have too broad a spectral resolution to show any of the important
chlorophyll a features (Dekker et al. 1992a). Because they are largely based on extrap-
olated information, the SeaBAM data do not have realistic noise levels. They are also
largely of Case 1 regions (Maritorena et al. 1997). The data derived from the model
of Morel (1988) and the simulated SeaWiFS data used by Gross et al. (1999) were all
for Case 1 waters only. It is evident that these studies using neural networks need to
be extended and applied to hyperspectral data containing noise and contamination of

the chlorophyll @ signal with the atmosphere and other water constituents.

1.6 Aims

The initial premise of this research is that when the remotely-sensed spectrum is con-
taminated by the signal from inorganic sediment and non-chlorophyllous pigments, the
relationship between chlorophyll a and spectral values may be noisy and become non-
linear and complex. Although the fluorescence signal has been found to have a more
linear relationship to chlorophyll a, this feature can be noisy, difficult to find and does

not give information about more than the first few metres of water.

A wealth of features may be extracted from remote sensing data for prediction of
scene characteristics and it is likely that several features will be needed to predict

chlorophyll @ in Case 2 waters. Recent studies into the use of neural networks for
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calculating chlorophyll a concentration have shown promising results but there is a
need to extend this work to the type of data that would be used for water quality
studies in the UK. The present research will use a data set that was obtained for the
purpose of determining chlorophyll a in a region of mixed coastal waters. Previous work
using such data has demonstrated the difficulties with using conventional algorithms
for determining chlorophyll a concentration (Environment Agency 1997; Hill 1998) and

has indicated the desirability of using non-linear multiple regression techniques.

The present research investigates the potential for improving empirical methods of
predicting chlorophyll @ by using neural networks. The research will also use realistic
data similar to those regularly used by organisations such as the UK Environment
Agency, so that the results will be relevant to all bodies concerned with monitoring
chlorophyll @ in coastal waters. Usually, hyperspectral airborne data are used for
such studies. These data have a high spatial resolution as well as a high spectral and
radiometric resolution. Often many of the spectral measurements are discarded and
only a few of the narrow bands used to determine chlorophyll a. Feature selection
and model selection will be performed and the response of the neural network to new
configurations examined. This can provide a great deal of information about the data
and can help describe the nature of the relationship between chlorophyll a and spectral
information. The approach shall be highly analytical, applying mathematical and
image processing techniques to the complex problem of detecting chlorophyll a in Case 2

waters. By interpreting the results at each stage, this research aims to determine:

1. The separability of the chlorophyll a spectral signal in the presence of other

environmental factors and sensor noise
2. The severity of the contaminating signals and noise

3. The applicability of neural networks to predicting chlorophyll a concentration

from spectra contaminated by other environmental factors and sensor noise

4. A comparison of conventional linear regression and neural network regression

techniques
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5. The nature of the relationship between chlorophyll a and different regions of the

spectrum

6. The identification of the most appropriate spectral regions for the prediction of

chlorophyll a concentration
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Data preparation

2.1 Introduction

The first part of this chapter describes how the data were prepared for use in the
research. The second part describes a number of preliminary analyses that were per-

formed with the aim of understanding the data before their use.

A key aspect to this research was that it should use data that were typical of those
that have been and that shall be used for environmental investigations of the coastal
zone. To the analyst with no immediate access to remote sensing instruments and
survey vessels, obtaining a suitable data set can pose difficulties. Section 2.2 describes
potential sources from which data were sought for this research. The data obtained
for this research are then discussed in section 2.3. The preprocessing of the data is

described in sections 2.5 and 2.6.

It is important that the quality of the data is fully understood before undertaking an
analysis. In so doing, the potential of the data to provide enough information for the
task as well as the restrictions imposed by the data, may be determined. A typical
data set is far from perfect however, and so a thorough investigation of its sources of

error was undertaken. This examined sensor noise (section 2.7.5), atmospheric effects
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(section 2.7.6) and errors due to co-registering the image and in situ data (section 2.7.7).

2.2 Acquisition of data

Supervised methods of developing regression algorithms require sets of input and out-
put patterns. That is, paired sets of observations of the phenomenon which is to be
predicted and the information from which is it to be predicted. In this case, chloro-

phyll a was to be predicted from remotely sensed imagery.

Remote sensing is particularly useful for oceanographic purposes because it is often
difficult to take an adequate amount of samples directly from the ocean for a valid
study of a subject. However, this inaccessibility is notorious for causing problems with
obtaining viable data sets for investigations such as that presented here. Many cruises
take in situ water measurements and many satellites and aircraft carry sensors over
regions of the ocean but few of these activities coincide. A significant portion of this
research entailed tracking down a suitable set of in situ and image data for the research.
Since the findings of this search may be of relevance to other works, a brief summary

is given here.

For a decade since the demise of the Coastal Zone Colour Scanner (CZCS) in 1986
there were no space-borne sensors which were optimised for ocean applications. Sen-
sors which were recently launched were investigated. The Modular Optoelectronic
Scanner (MOS) was launched in March 1996 and is still operating and data is avail-
able from DLR, the German centre for air- and space-research. The Ocean Colour
and Temperature Scanner (OCTS) data is available from NASDA (the Japanese space
agency) for August 1996 to June 1997. The Sea-viewing Wide Field-of-view Sensor
(SeaWiFS) was launched in August 1997 and is still operational with data available
for download from the satellite receiving station at Dundee. Imagery from all these
sensors was downloaded from the internet. Unfortunately, no in situ data were located

for any of the imagery during the data acquisition period of this research.
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In situ data were sought from the British Oceanographic Data Centre (BODC). Their
advice was to find suitable imagery and contact them to find out if cruise data were
available. The Reports Of Oceanographic Cruises and Oceanographic Programmes
(ROSCOP) database was also searched for suitable data. Unfortunately, due to the
time taken to process cruise reports, not until late into this research did the database

hold information about cruises sailing after the launch of any of the above sensors.

To secure a valid in situ/imagery data set it is necessary to time cruises for satellite
overpasses or send airborne sensors out during scheduled cruises. Because there are
a number of factors which can prevent in situ data from being collected for specific
time periods of cruises, the latter scenario is usually the most reliable. The data finally
secured for this research were collected in this way - three flights were made over the

path of a cruise which regularly sampled the coastal waters of the UK.

2.3 Description of the data

The Environment Agency’s National Centre for Environmental Data and Surveillance
have an archive of imagery and in situ samples. These data were originally obtained for
their Case Study 1 (Environment Agency 1997). From this, one location was chosen

for this research which will be referred to as Norfolk 30/05/96.

These data comprised three 72 band Compact Airborne Spectrographic Imager (CASI)
images (see figure 2.1) of approximately 20 m spatial resolution in enhanced spectral
mode (the details of the bands are shown in appendix A). These had been flown at
about 3000 m over the north Norfolk coast on 30th May 1996 and each image con-
tained a small portion of land for the purpose of geometric correction (section 2.7.5).
Concurrent with these over-flights, a cruise followed the coastline taking continuous flu-
orescence measurements by pumping sea-water into a fluorometer. This flow-through
fluorometer emits light at 440 nm and detects light at the 685 nm chlorophyll a fluo-

rescence band. At about 606000 m east, the cruise also diverted to take measurements
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on a transect that was perpendicular to the main cruise direction. Several samples of
water were also taken along the cruise track. The water samples were processed in the
laboratory to determine the chlorophyll a concentration of the water in pg{™'. These

data conform to the quality standards set out by the Environment Agency, which are

detailed in Environment Agency (1997) and summarised in table 2.1.

Table 2.1: Environment Agency data quality requirements

Data

Quality criteria

Laboratory

Date, time and location of sample must be known

Extreme values (> 20pg /™) must be checked with the laboratory

At least 7 samples must be spatio-temporally associated with
the fluorometer measurements and

at least 6 of these must have values greater than the laboratory

limit of detection

Fluorometer

Date, time and location of measurement must be known

Data must be free of noise

At least 10 fluorometer readings must be recorded within 250
metres of each laboratory sample site and

within 30 minutes of the laboratory sample being taken

At least 15 km of continuous track fluorometric readings must

lie within the geographical region of the CASI imagery

CASI image

Date and time of image must be known and images must be
geometrically corrected
Edge brightening and glint must be minimal

Images should be free of cloud

General

The chlorophyll a concentrations in the region should vary by

at least 4ug ™! over a 10 km stretch of water

The Norfolk 30/05/96 data contained the laboratory measured chlorophyll a for 17

water samples. This information was used to calibrate the 3142 fluorometer measure-
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ments. The calibrated fluorometer data were used as a measure of chlorophyll a. This
calibration is described in section 2.5. No ground measurements of downwelling ir-
radiance were made in situ and so radiance measurements could not be converted to

reflectance. Thus image spectral measurements shall be referred to as digital numbers

or DN.

2.3.1 The location of the research

The north Norfolk coast is located in the eastern region of the UK. The region of the
research faces north and north-east into the North Sea (see figure 2.2). The north
Norfolk coast is designated a Heritage Coast and Area of Outstanding Natural Beauty
because of its exceptional scenic qualities. The region also contains a Ramsar site (wet-
land of international importance) and Special Protection Area, both of which commit
the UK to conserving the habitats in the region (Barne et al. 1995). The region is
affected by a plume of sediment during parts of the year although around the time the
data were collected (May) the plume becomes discontinuous (Dyer and Moffat 1998).
Also, the North Sea has been found to have high levels of coloured dissolved organic

matter (CDOM) (Morel and Gordon 1980).

The regime of the north-facing coast tends to be that of sediment deposition (Dyer
and Moffat 1998) as is demonstrated by the spit features and marshes from Brancaster
Bay to Blakeney Point. From Sheringham eastwards the north-east coast has a more
erosional regime as demonstrated by the cliffs at Cromer. North-easterly and southerly
winds occur in equal amounts at the time of year when the data were collected. East
of 600000 m, the water is aroundv 10 m deep within the region of the images. West of
600000 m, the water is shallower (Barne et al. 1995). April to May is the time of a
phytoplankton bloom although it is likely that this bloom will have receded somewhat
by the time of sampling (the end of May). The recession of a phytoplankton bloom can

result in increased levels of CDOM as the organic matter breaks down (Carder et al.

1989).
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Figure 2.1: CASI data used for this research with bands 6 (441 nm), 20 (540 nm) and 41 (689 nm) set to blue, green and red,
respectively. From left to right the images are 1877, 1876 and 1875.
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Figure 2.3: The locations of the three images are shown here with the location of the

in situ cruise samples superimposed.

2.3.2 Description of CASI imagery

CASI is a aircraft-mounted pushbroom spectrographic imager. Light entering the de-
tectors is collimated and then dispersed into wavelengths onto a charged coupled device
(CCD) array for which the rows represent the image rows and the columns represent
the spectral bands (Babey and Anger 1989; Keller and Fischer 1998). The CCD ar-
ray creates the digital output, which is then recorded onto magnetic tape ready for

processing.

CASI was designed to be convenient and inexpensive to operate whilst providing high
sensitivity and resolution (Babey and Anger 1989). It has the ability to change the
spectral and spatial configuration to suit the intended use. Three modes are available:
spatial mode, spectral mode and enhanced spectral mode. Spatial mode has full spatial
coverage but only about 15 spectral bands in the range 400-920 nm. Spectral mode
has full spectral coverage of 288 spectral bands but the sampled pixels do not give con-
tiguous spatial coverage. Enhanced spectral mode allows contiguous spatial coverage
with the possibility of a large number of spectral bands produced by combining bands

in the full set of 288.
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The spatial resolution of the imagery is determined by a number of factors. The width
of the pixel is determined by the field of view and the altitude of the sensor. Typically,
at a height of about 3000 m, the pixels have a width of about 4 m. The length of
the pixel is determined by the speed of the aircraft and the data integration time.
In spatial mode the integration time can be short enough to ensure square pixels.
As the number of desired bands increases, the integration time needs to increase to
ensure that enough photons are collected. Thus, the pixels of the enhanced spectral
and spectral modes are longer in the flight direction. For example, the 72 band set
used in this research would have had an original pixel size of about 4 x 15 m. During
geometric correction the data are resampled such that the pixels may be considered
square although some loss of resolution is incurred (Andrew Wilson, NERC Centre for
Ecology and Hydrology, personal communication; Kyle Brown, Environment Agency,

personal communication). These data were resampled to 20 x 20 m.

2.4 Software used for this research

Geometric correction of the imagery was performed by staff at the Environment Agency’s
Centre for Environmental Data and Surveillance within the PCIWorks toolkit for which
CASI data are formatted. Images were then imported into ERDAS Imagine and ENVI
for image processing and extraction of spectral values (section 2.6). Calibration of
in situ samples, least-squares regression and analysis of point-data and results were
performed within Matlab. The FLIERS SFT2.0 software (Lewis 1997) was used for

neural network algorithm training and testing.

2.5 Calibration of the fluorometer data

Since Lorenzen (1966) many cruises have measured in vivo fluorescence to determine
the in situ chlorophyll a content of water (for example, Neville and Gower 1977; Steele

and Henderson 1979; Gordon et al. 1982; Strutton et al. 1996; Strutton et al. 1997).
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These data are quick to obtain and thus enable many measurements to be made within
a reasonable time-window of the aircraft over-pass. Alternative methods use only
laboratory processed samples of sea water, which are time consuming to collect and
so often result in too few samples per image to be viable. A recent study by Nieke
et al. (1997) found that in vivo fluorometer detection of chlorophyll @ compared well

to standard laboratory as well as laser detection methods.

Chlorophyll a fluorescence is a measure of the reaction of the pigment to the light
source. This is a product of its physiological condition. It is therefore a particularly
suitable measure of chlorophyll a for studies interested in primary production. If
quenching (where the turbidity of the water is high and much light is absorbed) does
not occur and there is no scattering of light by particles in the water, the relationship
between fluorescence and chlorophyll a is linear (Lorenzen 1966; Yentsch and Menzel
1963). Variation in the measured fluorescence can be caused by many factors including
the configuration of the instrument, the physiological state of the phytoplankton and
the phytoplankton species and even the time of day (Estrada et al. 1996). It is
not possible to determine all these factors in vivo so some error in determining the
chlorophyll a concentration may be expected (Cunningham 1996; Hanelt 1996; Carder
et al. 1989). Additionally, some error is expected in the determination of chlorophyll a
in the samples taken for the calibration of the fluorometer measurements because it is
not possible to remove all accessory pigments or ensure that identical techniques are

employed in all laboratories (Gieskes and Kraay 1983; SCOR-Unesco 1966; Aiken et al.
1995b).

The fluorometer measurements were calibrated to chlorophyll a in ugl™' using the
17 water samples which had been processed for chlorophyll a. It was assumed that
a linear relationship existed between the fluorometer readings and the chlorophyll a
concentration of the water and that the relationship remained constant throughout the

cruise (Yentsch and Menzel 1963; Holm-Hansen et al. 1965; Lorenzen 1966).

A fluorometer reading was found for each laboratory datum using the time fixes pro-

vided with both sets of measurements. Four of the laboratory data were discarded
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because no fluorometer reading could be found within a short time interval, or because

no fix had been provided.
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Figure 2.4: Calibration of the fluorometer data using the laboratory water samples.

A first-order polynomial was fitted to the remaining 13 data points using the least

squares method. The relationship
fluoro = 4.342Chla + 9.403 (2.1)

was found where fluoro indicates the fluorometer reading and Chla indicates the chloro-

phyll a concentration in pgl™!. Inverted, this produced the calibration
Chla(ugl™") = 0.230 fluoro — 2.163 (2.2)

as illustrated in figure 2.4. This relationship was used to calibrate all 3142 data points

to chlorophyll a in pugl=!.

The correlation of this calibration is 0.664 which is significant to within the 10 %
level. A better correlation would be desirable if absolute chlorophyll a predictions were

needed. However, it was intended that this research make a comparison of algorithms
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for predicting fluorometer-measured chlorophyll a. This measure will be referred to as

chlorophyll a from this point forward.

2.6 Extraction of spectral information

It is common to use some form of averaging window when extracting information from
images of water scenes (for example Doerffer et al. 1989; Malthus and Dekker 1995).
This is intended to smooth out noise and/or account for current and tidal effects and
uncertainty in the registration of images to sample points. However, the research should
account for the underlying scale of variation of chlorophyll a in the water which is often

of the order of a few tens of metres in coastal regions (Steele and Henderson 1979).

A moving window was chosen that found for each pixel the weighted mean for a win-
dow around that pixel. The pixels within this window were weighted using a two-
dimensional Gaussian function such that the mean was biased towards values in the
middle of the window. Such an averaging window smoothes out the noise in the data
whilst giving priority to the measurements made nearest to the location of the pixel.
Initially, this was assessed for several window sizes. This assessment was performed
only for image 1876 as it would have been too computer intensive to have used all three
images. The original research using these data (Environment Agency 1997) performed
this correlation test for a FLH calculated from the imagery and using a window size of
up to 21 by 21 pixels. Window sizes above 21 by 21 pixels were considered too large to
be valid. This window size represented an area of approximately 420 m? on the ground.
The digital numbers in several image bands for several different moving window sizes
were calculated and compared to the chlorophyll @ measurements using the correlation

coeflicient: B B
Z?:l(Chli — Chl)(DN; — DN)

p= = =
Vi (Chls — Chi)? S, (DN; — DN)?

where DN; and Chl; are the tth digital number and chlorophyll ¢ measurement re-

(2.3)

spectively, DN and Chl are the means of these observations and n is the number of

observations. This measure indicates the amount of association between the chloro-
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phyll a concentration and the spectral measurements.
Table 2.2 gives the values for these coeflicients for various window sizes.

Table 2.2: Correlation coefficients for different moving window sizes around fluorome-

ter data points

Weighted mean for CASI band:
>t 15 20 30 40 60 ut

110.5080 0.5323 0.6863 0.6852 0.4318 0.5687
7 10.6502 0.6305 0.7114 0.7267 0.5410 0.6520
11 1 0.6483 0.6339 0.7103 0.7265 0.5468 0.6531
151 0.6477 0.6352 0.7096 0.7270 0.5515 0.6542
211 0.6463 0.6364 0.7090 0.7273 0.5540 0.6546

I Size of sides of window in pixels (one pixel has an edge of
approximately 20 m).

I Mean correlation coefficient for each window size.

Band 40 (682 nm) is the band closest to the fluorescence peak and hence the corre-
lations with the fluorometrically-derived chlorophyll a concentration are the highest.
Generally, as the window size increased, there was an increase in the correlation of
chlorophyll a measurements with spectral data obtained from the window. This in-
crease was consistent with the findings of the Environment Agency in their study using
this data (Environment Agency 1997) and, although the increase in the mean values
was not statistically significant, a moving window of 21 by 21 pixels was selected for

comparability with their work.

The spectral data used in the rest of this research was then extracted from the imagery
using the weighted mean method and a window of 21 by 21 pixels. The three sets of
spectral values, corresponding to the three images, were then concatenated. Because

the images 1876 and 1877 overlapped, some data points were removed by giving priority
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to the data which had a shorter time interval between the over-flight and the in situ
sampling. This resulted in pixels from image 1877 being chosen where they coincided

with pixels in image 1876.

Several more data points were removed because they fell outside of the image range
and others were removed because the window around the data point lay partly outside
the image. This resulted in 2300 chlorophyll ¢ measurements (calibrated fluorometer

readings) with corresponding spectral readings in each CASI band.

2.7 Pre-study analysis of data

Some preliminary analyses were performed to enable a full knowledge of the data. This
involved determining some basic statistics of the data and using cluster analysis and

principal component analysis to determine the information content of the spectral data.

It is widely acknowledged that spectral data collected over water surfaces is subject to
high noise levels. This is because the signal received from the water body itself is so low
that any other source of interference can have a significant impact. These impacts can
be dependent on the wavelength and region of the image. Further analyses assessed

the potential sources of error in the data.

2.7.1 Statistical analysis of the data

The chlorophyll a data ranged in value from 3.12 pgl™! to 22.61 pgl~! with a mean
value of 8.96 ugl~!. A histogram of chlorophyll a values is shown in figure 2.5. Much
of the data had chlorophyll a concentrations of between 5 and 7 pg ™! with over 1000

points having values in this range. There were also two lesser peaks in chlorophyll a

values at about 13 pugl™! and 21 pgl™'.

The mean spectrum and the standard deviation of the spectral values were determined
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for each image (figure 2.6). The mean spectra displayed a typical peak in the blue and
green wavelengths (refer to appendix A for a description of wavelengths correspond-
ing to each band) and a sharp decline as water-absorption increases towards longer
wavelengths. A narrow trough was visible at approximately 440 nm (band 6), which
corresponded to the chlorophyll a absorption band here (Wrigley et al. 1992). Several
peaks and troughs were visible in the blue and green region, which corresponded well
between images. Troughs at bands 45 (718 nm) and 51 (761 nm) were well defined
and probably resulted from atmospheric water (Fischer and Schliissel 1990) and oxy-
gen (Wrigley et al. 1992) absorption, respectively. The standard deviation of these
spectra ranged from around 500 DN in the blue to about 100 in the NIR. Although
the overall shape of the spectra were the same, there was some difference between the
spectral values of the three images with 1875 having the highest values and 1877 having
the lowest values. This may be a consequence of some environmental factor such as
increased scattering by the atmosphere or suspended sediment, which caused overall
brightening in some images more than others, a decrease in the sensitivity of the sensor
throughout the course of the flight or even differences in the calibration of each image.

No adjustment was made to the image values to reduce these differences between the

images.

2.7.2 Correlation analysis of the data

Figure 2.7 illustrates the correlation (equation 2.3) found between each CASI band and
chlorophyll a. With 2300 data points all correlations above ~ 0.1 may be considered
to be significant. The highest correlations were in the red wavelengths, particularly
around 689 nm (band 41). The lowest correlations were for bands 1 to 4 (401 to
427 nm). Band 72 (914 nm) had the only negative correlation with chlorophyll a at
-0.73. This was found to be because quite a few values were very low or zero and
these tended to correspond to the higher chlorophyll a concentrations. This was not
observed in any other band and was due to some error with the calibration of the

imagery. Without these values, band 72 had a correlation of 0.35 to chlorophyll a
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Figure 2.5: Histogram of chlorophyll a concentration. The mode of the values was

between 5 pgl~! and 7 ugl™t.

concentration. All the data points, including those with zero values in band 72 were

kept in the data set.

Many chlorophyll a detection algorithms use a ratio of two bands. The correlation of
each 2-band ratio with chlorophyll a is plotted in figure 2.8. The highest correlations
were for the ratio of bands 41 (689 nm) to 39 (675 nm) and for bands 29 (604 nm) to

27 (589 nm) and for ratios of longer red wavelengths with green wavelengths.

The correlation between the bands was also assessed. Figure 2.9 illustrates this. Most
wavebands had a high correlation with each other. The lowest correlations were for blue
wavelengths and band 72 with the rest of the spectrum. A distinct boundary between
the visible and the NIR was apparent as comparatively low correlations between bands

of the two spectral regions.
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Figure 2.7: The correlation of CASI bands 1 to 71 with chlorophyll a. Band 72 had a

correlation coefficient of -0.73 (see text).

2.7.3 Cluster analysis of data

To assess whether there was enough information in the spectral bands for prediction of

chlorophyll @, an initial visual technique was used. This examined the clustering in the
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feature (band) domain of data representing similar chlorophyll a concentrations. This
entailed extracting spectral measurements for data points with short ranges of chloro-
phyll a concentration and plotting them in two-dimensional feature space. Figure 2.10
demonstrates this for two pairs of bands. In these figures, each short spectral range

is represented by a different colour such that the progression of data points in feature
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space can be followed as the chlorophyll a concentration increases.

Figure 2.10a shows a typical example for much of the Norfolk 30/05/96 data. Curvi-
linear features are visible which may have been due to changes in chlorophyll a along
the cruise track and which correlated with gradual changes in spectral values due to
atmospheric, oceanic or sensor effects. Such features were not so evident when plotting
short ranges of chlorophyll a against bands 10 (469 nm) and 70 (899 nm) in figure 2.10b.
From these figures it was evident that clustering of similar chlorophyll a values does
occur in feature space but with a change in chlorophyll a (as represented by a change
in colour) the change in location of the cluster in feature space was not uniform. This
indicates the complexity and non-linearity of the relationship between chlorophyll a

and spectral values.
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Figure 2.10: Cluster analysis of data. These figures demonstrate how well data with

similar chlorophyll a concentrations cluster together in feature space.

The covariance matrices for each range of chlorophyll a concentration were also calcu-
lated. The trace of these was taken as a measure of the overall variance within each
chlorophyll a range and those with a high variance were investigated further by find-

ing two bands in the covariance matrix with a high covariance and plotting the data
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points against these bands. This technique highlighted a number of anomalies in the
data. The data points in the range 6-7 pgl~! displayed two distinct clusters in feature
space for which one cluster had higher spectral values for both bands. The data points
from these two clusters were plotted according to their geographical positions and the
clusters were found to correspond to images 1877 and 1875. The values in image 1877

had the higher spectral values, as was found in section 2.7.1.

Other ranges of concentrations with high variances were 11-12 ug!~! and 15-16 ugl=*.
Distinct clusters were found in these ranges in spectral space, which corresponded to
distinct clusters in geographical space. These highlighted patches of brighter values
to the west of image 1877 at about 577000 m east (see figure 2.11) and also in image
1875 at 630000 m east. These bright patches may have been due to haze, or a highly
reflective suspensoid, reflection from the bottom or sun-glint on the water surface.
Cluster analysis highlighted these bright regions because, by choosing small ranges of

chlorophyll a concentration, very localised areas in the data were being analysed.

2.7.4 Principal component analysis of the data

Principal component analysis (PCA) transposes the data, X onto a new set of axes
such that the maximum variance in the data is projected onto the minimum number
of axes:

Y =0X (2.4)
where Y is the transposed data and ® the matrix of transform vectors. Fischer (1985)
used principal component analysis to determine how many independent optical com-
ponents of the water could be detected given variation in scattering and absorption by
sediments and the atmosphere. Fischer (1985) used a radiative transfer model to gener-
ate the data and so were able to control effects such as sensor error. With measurements
at 6 wavelengths they found that at most two water substances caused a significant
change in spectral information. Also, using model-generated data, Sathyendranath
et al. (1989) found that enough orthogonality existed between suspended sediments,

chlorophyll and yellow substance to permit their retrieval at least in some cases. They
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Figure 2.11: Identifying anomalies in the spectral data with cluster analysis. The left
figure shows data points for image 1877 with chlorophyll a concentrations between
11 and 12 pgl™* and 15 and 16 pgl~! plotted in feature space defined by bands
15 (504 nm) and 25 (575 nm). The two clusters that are found for each range of

chlorophyll a are displayed with different symbols. These same clusters are then

plotted in geographic space in the right figure.

found that the first principal component was highly correlated with suspended sedi-
ments. Gower et al. (1984) found that the 2nd and 3rd principal components of their
reflectance spectra, collected off the coast of Canada, related to chlorophyll. Fischer
et al. (1986) found the 2nd principal component of their model-derived data correlated
to chlorophyll if CDOM was not present. However if CDOM was present, the 2nd
principal component correlated with CDOM and chlorophyll with the 4th principal

component.

A similar technique, factor analysis (Comrey 1973; Otsu 1984; Cooley and Lohnes
1971), identifies correlations between factors (eigenvectors of the correlation matrix)
and variables. Using this technique, Doerffer (1981) found two eigenvectors in 16-band
airborne sensor data from the northern North Sea the first of which corresponded to

chlorophyll and the second to sediment. However, when applying factor analysis to
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the covariance matrix, Doerffer et al. (1989) found that neither chlorophyll a nor
Gelbstoffe signals could be separated out from Thematic Mapper measurements made
over the sediment-rich German Bight waters of the North Sea. Their principal factors
corresponded to suspended sediments, atmospheric turbidity and temperature. This
second study had fewer than half the number of spectral bands of the first and this

may explain why the more complex chlorophyll a signal could not be separated.

An assessment of the principal components of the Norfolk 30/05/96 data was under-
taken to provide an insight into the linearly separable components of the data. Princi-
pal component analysis may be performed using a number of techniques. Usually the

eigenvectors of the covariance matrix, ¥ x are found such that
Yx = ®Xyd . (2.5)

With the restriction that Y is orthogonal, ¥y is a diagonal matrix describing the
variance of the data along each transpose axis. These are the eigenvalues corresponding
to the vectors in ®. Sometimes the eigenvectors are determined for the correlation
matrix of the data. A less common method uses singular value decomposition (SVD).

In this case the matrices U, S and V are found such that
X =USV*". (2.6)

The columns of U contain left singular vectors of X, which are the unit eigenvectors of
X X! (which may be equated with the matrix of covariance between the data points)
and the rows of V are the right singular vectors of X or the unit eigenvectors of
XX (which may be equated with the matrix of covariance between the variables).
S contains the square roots of the eigenvalues of X, known as the singular values of
X . The principal components are found from U % S (= (V*)7'X). This method was
used by Buckton et al. (1999) to produce features for input to a neural network for

predicting oceanic constituents.

The standard method was found to produce some principal components that are less
noisy than those with a higher eigenvalue. This is an effect that has been found with

high dimensional data with highly correlated bands (Green et al. 1988; Lee et al
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1990). The SVD method produced some more useful principal components that shall

be presented here.

The principal components of the Norfolk 30/05/96 data were normalised and their val-

ues plotted according to a grey scale (figure 2.12a). A visual inspection of these showed
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that the first five principal components varied steadily over space whereas the higher
order principal components were very noisy. Because the bands were highly correlated
with each other, it was expected that much of the variance in the data should be ac-
counted for by very few principal components. This was supported by the magnitude
of the first few eigenvalues compared to the majority of the eigenvalues (figure 2.12b),
which indicated that the first 5 principal components accounted for 96 % of the vari-
ance. These first five components may have represented uncorrelated elements in the
scene which change the spectral characteristics of the data. The correlation coefficients
between all the principal components and chlorophyll a were calculated (figure 2.12¢)
and the third principal component was found to have a very high correlation coefficient

of 0.77.

The spectral dependence of the principal components was found by inspecting the
eigenvectors (figure 2.13). The eigenvector corresponding to the largest eigenvalue
echoed the shaped of the mean spectra for the images (figure 2.6). If the first principal
component was to be correlated with some element of the scene it would have been one
that had an equal effect throughout the spectrum such as suspended sediment, bottom
reflectance or sun-glint. Inspection of the first principal component (see also figure
2.22a) found peak values that correspond to brighter regions in the imagery, particu-
larly at 577000 m east and 630000 m east. These were the same bright regions that
were highlighted by cluster analysis of chlorophyll a concentration ranges 11-12 pg{™*
and 15-16 pugl~! in section 2.7.3. Lesser peaks throughout this principal component
corresponded to brighter regions in the images, the origin of which was difficult to
determine. Again, it was possible that this effect was due to atmospheric haze or to
particulates in the water that were increasing the scatter into the sensor. Alterna-
tively, it was possible that changes in the attitude of the sensor resulted in increased

reflectance from the surface of the water or transmission through the atmosphere.

The second eigenvector had large negative values in the blue region of the spectrum
indicating that the second principal component was dominated by these wavelengths.
The manner in which the values in the eigenvector approached zero with increasing

wavelength was similar to the shape of the absorption curve of CDOM and so the
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second principal component may have corresponded to this water constituent. This

characteristic was very similar to the second eigenvector found by Sathyendranath

et al. (1989). Very low values were observed in the second principal component (see

also figure 2.22b) at 586000, 632000 and 648000 m east.

The third eigenvector, corresponding to the principal component that correlated most

with chlorophyll a, and the fifth and sixth eigenvectors had a shape similar to the

chlorophyll a absorption spectrum with peaks in the blue and red and a deep trough in

the blue-green and green. However, the shape of the fourth eigenvector was similar to

the chlorophyll a reflectance spectrum and it may have been that these four principal

components represented changes in pigment concentrations in the water.

1st eigenvector

3rd eigenvector

5th eigenvector

2nd eigenvector

10 20 30 40 50 60 70

4th eigenvector

10 20 30 40 50 60 70

6th eigenvector

Figure 2.13: The eigenvectors corresponding to the six highest eigenvalues. The values

of the vectors (the coefficients of the principal component transform) are plotted

against the band number.
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All the principal components showed a large range in values at 606000 m east, the region
where the cruise took a transect perpendicular to the main cruise direction (section 2.3).
The 3rd, 4th and 5th principal components are directly compared to chlorophyll
concentration in figure 2.14. Although highly correlated with chlorophyll a, these
principal components clearly do not follow the same pattern as chlorophyll a over the

track of the cruise.
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Figure 2.14: Chlorophyll a concentration and the values of the third, fourth and fifth

principal components multiplied by 10.

Owing to the high values of the first two principal components, these were identified as
indicators of factors that would result in error in the prediction of chlorophyll a. The
PCA technique is linear and thus non-linear elements in the data may not be separated
using this technique. Therefore, the presence of chlorophyll ¢ may have been intrinsic

in more than one of the lower order principal components.



Chapter 2 Data preparation

51

2.7.5 Sensor effects

The pitch, roll and yaw of the aircraft can have a significant effect on pushbroom
scanners and this effect can be different for each line of the image. CASI data are
provided with data from the onboard vertical gyroscope (which accounts for pitch and
roll) and Global Positioning System (GPS) data, which account for changes in position.
Cosandier et al. (1992) found that standard CASI geometric correction using these two
sources of information worked well where the surface was flat, as is a water surface. The
data were obtained already geometrically corrected by the Environment Agency. This
entailed using the gyroscope and GPS data to correct the image and then performing
a secondary, manual correction using information from the scene. This resulted in an
error of correction of around 10 m towards the coast, which increases away from the

coast (Rebecca Allen, Environment Agency, personal communication).

The most noticeable sensor effect in this imagery was a brightening and darkening of
whole rows or columns of the image data prior to the application of the 21-pixel win-
dow (section 2.6) (figure 2.15). Striping occurs in all imagery collected from surfaces
of low reflectance (Bagheri et al. 1998). It was thought that the brightening of certain
rows was caused by a subtly changing row integration time as the aircraft passed over
the scene or perhaps by fluctuations in power supply (Bizzi et al. 1996). However, the
variation was not consistent across the wavebands. This indicated that the changes
were possibly occurring whilst the light signal was being separated by the reflection
diffraction grating into wavebands before being recorded. There was a similar, appar-
ently random variation in the values of whole columns, which was likely to be due to

particular Charged Coupled Devices within the array that registered slightly erroneous

light levels.

The contribution by the row and column variation to the overall variation in the data
was quantified from ungeometrically corrected images as follows (see figure 2.16). For
the image (1 in figure 2.16), the mean value for each row (or column) was calculated for
each band to produce the ‘row-mean’, 4, (‘column-mean’; B). The difference between

this value and the mean of the surrounding row-means (column-means) was then de-
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Figure 2.15: Variation in digital numbers (DN) for whole rows or columns shown in

bands 70, 6 and 1 = red, green and blue. Here the grey levels for each band have been

stretched from 0 to 255 for this section of the image to enhance the effect.

termined (‘row-difference’; ¢/‘column-difference’; p). It was found that the local mean
of row-means was very similar for 5 to 21 rows (columns) and so the row-difference
(column-difference) was calculated within the locality of 21 rows (columns). The result

was a matrix that is 72 (the number of bands) by the number of rows (columns) of the

image.

The row-mean matrix was analysed per-row, r (along the flight direction) and per-
band, E. No structure was found along the flight direction but a clear variation in this
noise effect was found by averaging the row difference for each band. The dotted line
in figure 2.17 shows how variation that occurred from one row to the next varied with
the image band in the original images. The maximum mean difference between a row
and its surrounding rows for the original image was about 45 digital numbers for the
shortwave blue bands. The minimum mean difference was about 6 digital numbers.
With a standard deviation of between 400 and 600 DN for the blue wavelengths (fig-
ure 2.6) this accounted for as much as 6 percent of the standard deviation at these
wavelengths for the original images. As the signal declined at longer wavelengths the
contribution from row-to-row variation to the standard deviation approached 25 per-
cent. By passing the window over the image, (section 2.6) the effects of this noise were

greatly reduced as shown by the solid lines in figure 2.17. The variation from row to
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Figure 2.16: This figure illustrates how the row and column variation in the images

was assessed. This is explained fully in the text on page 51.

row in the image was now found to account for a maximum of 3 % of the standard

deviation.

A similar analysis was performed on the column-mean matrix. One effect was apparent
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Figure 2.17: The mean difference between the mean value for a row and its surrounding
20 rows is shown in the left plot (a) against band number. The dotted line shows
this noise before the 21-pixel moving window was applied and the solid line shows the

effect of the noise after the moving window was applied.

across the flight direction (u in figure 2.16) but this is more relevant to section 2.7.6
and so will be discussed there. Per-band (¢ in figure 2.16), this matrix showed a similar
effect to the row-mean matrix (figure 2.18). However, more noise was evident in the
near-infrared. This noise accounted for approximately three to seven percent of the
standard deviation at blue wavelengths, dropping to around three percent for green
and red wavelengths and then rapidly increasing in the near-infrared from five percent
to almost 50 %. Again, applying the moving window to the image data reduced this

noise effect to only a few percent.

2.7.6 Atmospheric, surface, bottom and adjacency effects

The greatest contribution to radiance received over water is usually from the atmo-
sphere. Rayleigh scatter from molecules and Mie scatter from aerosols adds radiance

throughout the spectrum, although it is wavelength-dependent. By flying an aircraft
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Figure 2.18: The mean difference between the mean value for a column and its
surrounding 20 columns is shown in the left plot (a) against band number. The dotted
line shows this noise before the 21-pixel moving window was applied and the solid line

shows the effect of the noise after the moving window was applied.

at different heights over the same stretch of water, Gower and Borstad (1981) found
that the atmosphere contributes 0.4 % to the radiance at 440 nm for every 100 m and
0.15 % at 560 nm (also Singh et al. 1997). The variations in radiance caused by the
atmosphere can be greater than the variations caused by water constituents (Quenzel

and Kaestner 1981).

Many authors insist that atmospheric effects must be corrected for if the chlorophyll a
signature is to be extracted (e.g. Hoogenboom et al. 1998; Gordon 1997). The most
popular method by which this is achieved is dark-pixel subtraction whereby the water-
leaving radiance is assumed to be zero in the NIR (e.g. Antoine and Morel 1999; Moore
1978). The measured value at these wavelengths is then solely due to the atmosphere
and this radiance can be subtracted from all bands. However, in turbid waters it
cannot be assumed that the radiance is zero because NIR light can be backscattered
by sediments in the water (Gordon 1981; Peters et al. 1998). Other methods for

correcting for atmospheric effects are based on models (for example Land and Haigh
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1996; Gordon et al. 1997). However, without ground truth measurements these are

hard to specify or verify (Lazar et al. 1998).

Atmospherically corrected formats of images 1875-1877 were available for this research.
These data were processed using the atmospheric correction algorithms developed by
Plymouth Marine Laboratory as part of the COAST project (Aiken et al. 1995a).
This required subsampling the 72 channel imagery to 15 channels of up to 25 nm
width before applying the algorithm. With these data, it was found, in some pixels,
that the fluorescence peak around 685 nm became more prominent as a result of this
correction. However, the data were extremely noisy with many pixels having zero
values in one or more bands. A previous study using these data had found a reduced
accuracy for chlorophyll a algorithms developed from it (Environment Agency 1997).
It was decided that only the original imagery would be used for the research, since
this would allow the exploration of algorithms that did not require the extra stage of

atmospheric correction.

The most dominant atmospheric effect in this data was brightening towards the edges
of the image (figure 2.19). This was due to the increased path length of the radiance
received as a result of the increased viewing angle over the scene at the edges of the
scanner. This tended to be slightly greater along the north edge of the images than the
south, possibly due to the interaction of viewing and solar zenith angles causing greater
scatter into the sensor from the atmosphere on one side. In addition, the CASI sensor
has an asymmetric field of view such that nadir is found some columns away from the
centre column of the image. This results in a greater viewing angle at one edge of
the image than the other (Andrew Wilson, NERC Centre for Ecology and Hydrology,

personal communication).

Using the column-mean method described in section 2.7.5, it was found that this effect
is most prominent with the shortest wavelengths and was negligible beyond ~560 nm.
Figure 2.20 illustrates how the average spectral value per image column varies across
the image and with wavelength. For the blue and green wavebands the average digital

numbers were highest to the north of the scanline, declined steadily towards the centre
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and began to increase to the south of the scanline for all three images. At the south
of the scanline the mean values for all images tended to drop off because the values
of the land pixels had been set to zero. In the image with the least land (1877) the
mean digital numbers increased towards the south following a smooth curve, although
the values did not approach the high values that were found to the north. At the very
edge of the images the increase in spectral values in the blue wavelengths was as much
as 1000 digital numbers. This was a very significant effect on the imagery because it
was greater than the standard deviation of the imagery. However, correction of this
brightening would be relatively simple as the brightening was a function of column
number and appeared to fit a quadratic-like function. The ENVI image processing
package (only available very late on in the research) provides a simple tool for correcting
such brightening. This increased radiance had little effect upon the spectral data at
the 2300 data points because these were largely located along the centre columns of
the images. Only the transect of measurements at 606000 m passed into this region of

increased DNs.
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Figure 2.19: The blue bands, in this case band 4 (427 nm), show clearly the changes in

spectral values across the scanline, here shown for part of the geometrically corrected

image 1877.

Another effect common in images over water is sun- and sky-glint. This is specular
reflection from the water surface and so depends on the interaction between illumi-

nation and viewing geometry as well as the clarity of the atmosphere (which affects
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strate how the mean spectral value
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(c) Image 1877

the brightness of the sky). Because the viewing angle is important, the effects of glint
may change with the attitude of the sensor platform during image acquisition (Wrigley
et al. 1992). Glint is particularly common where the surface is roughened by winds
because the area of surface that reflects light straight to the sensor is increased. The
overall effect of glint on spectral measurements is to brighten values across the spec-
trum. Tassan (1981) found that sun-glint was a high source of error in chlorophyll a
prediction although sky-glint is usually not significant enough to necessitate its cor-
rection (Moore 1978). Sturm (1981) and Fraser et al. (1997) provide methods for

correcting for glint but, as with atmospheric correction, these require knowledge of the
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atmospheric, meteorologic and oceanographic conditions at the time of sampling.

Reflection from the bottom of the sea has been identified as a source of error in shallow
waters. Gould and Arnone (1997) found that bottom reflection was significant in
their data and Fraser (1998a) and (1998b) found that error in their turbidity and
chlorophyll a predictions was partly due to bottom reflection and this error varied
with the bottom sediment type. Lee et al. (1994) derived an expression for the remote
sensing reflectance received from the bottom as a function of the bottom albedo, the
water depth and its absorption coefficient and Pérez-Ruzafa et al. (1996) proposed a
model from which the chlorophyll a content of water may be determined even when
the water is shallow and the bottom is covered in meadows of macroalgae. East of
600000 m in the Norfolk 30/05/96 site, the water depth quickly descends to greater
than 10 m. To the west the water is shallower and some possibility of bottom reflectance

was considered.

The point spread function of the sensor and scattering within the atmosphere deter-
mine from where in the scene and with what weighting photons are collected for each
pixel. This usually results in a bias towards the central region of the pixel which de-
creases towards the edge of the pixel, with a few photons being gathered from the
areas represented by adjacent pixels (Justice et al. 1989; Fisher 1997). Brightening
of spectral values close to land is often attributed to reflection from the bottom sed-
iments, however, it can also result from light being gathered from nearby regions of

land (Reinerman and Carder 1995).

Haze in the atmosphere, or surface or bottom effects may have caused the bright regions
at 577000 m and 630000 m that were highlighted by cluster and principal component
analysis. Without in situ measurements, it was difficult to determine which were the
strongest influences on the data. Yet, the potential for error in chlorophyll a predictions

due to these factors was recognised.
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2.7.7 Errors due to co-location of data

A great deal of effort was made to ensure that the image and in situ data sets were well
registered to each other. However, error may have been introduced at any stage in the
registration. For example, the instruments giving readings for the locations of in situ
samples and the GPS and gyroscopic instruments giving information about the location
of the aircraft during image acquisition may have some slight error. The Environment
Agency CASI used a ’differentially corrected” GPS receiver using a commercial signal.
There can be some time delay in receiving this signal and so a certain amount of error
in positioning was expected (Kyle Brown, Environment Agency, personal communica-
tion). More error may occur because water samples used for calibrating the fluorometer
and the fluorometer itself were not read from the same parcel of water, or represent
samples of different sizes in the parcel of water. Image geometric correction is not
perfect and some pixels may not have represented the correct region of the water body,
especially away from the coast where the geometric correction is less certain. Also, the
sample represented by a pixel is not the same volume as the parcel of water represented
by the fluorometer measure at the same location. Errors such as these were treated as
noise in the data because very little could be done to mitigate for them. One source
of co-locational error that was investigated further was that due to the movement of

water between sample from ship and aircraft.

2.7.7.1 Tidal and current effects

Unlike terrestrial remote sensing, the scene of marine remote sensing is constantly
moving as a result of currents within the water. This results in error in the co-location
of image and in situ measurements where these have not been sampled at the same time.
Although much effort was made to ensure that the samples were taken concurrently the
greater speed of the aircraft meant that the images were sampled within a few minutes
whereas the same region in the water took up to four hours to sample. Table 2.3

demonstrates the differences in the times of the samples.
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Table 2.3: Table showing the difference in the times that the images and the in situ

measurements were sampled.

Image Time of | Time of in situ | Greatest time | Least time
number flight samples for difference difference
(GMT) | region of images | (hrs:mins) (hrs:mins)
1875 start | 14:41 10:46
3:56 2:11
finish | 14:49 12:41
1876 start | 14:55 12:44
2:10 0
finish | 15:02 16:07
1877 start | 15:16 15:42
2:57 0:50
finish | 15:26 18:22

(in situ sample points did not always correspond to very edges of images)

The images covered a region only 8 km out to sea. Currents are driven by waves
nearshore and by tides offshore (Kieran Millard, HR Wallingford, personal communi-
cation). Thus, ideally current measurements would have been gathered simultaneously
to the data so that the motion of the water between in situ and aircraft sampling could
be calculated and possibly corrected for. Several sources were contacted regarding such
measurements including the Environment Agency, the companies involved with Bacton
Gas Terminal (BP-AMOCO, Shell, Phillips, British Gas and Interconnector), Anglian
Water, Great Yarmouth Coast Guard, EMC and GeoTeam and who had worked on

a pipeline to Bacton during 1996 but data that were available were not suitable for

correcting the in situ data.

Using the Admiralty tidal stream atlas and the Admiralty tide tables (Great Britain
Ministry of Defence Navy Hydrographic Department 1976; Great Britain Hydrographic
Department 1996) the tidal currents were estimated (table 2.4). At the beginning of
the in situ sampling of the region of image 1875 the tidal currents were flowing from

the east-south-east at a speed of 1.5 knots. The currents were in the same direction,
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Table 2.4: The tidal currents at the time of sampling
time | speed (knots) | speed (ms®) | direction (clockwise from north)
70:00 1.5 0.77 285°
11:00 | 1.4 0.72 285°
12:00 | 1.1 0.57 270°
13:00 | ~0.6 ~0.31 270°
14:00 | O 0 270°
15:00 | 0.9 0.46 105°
16:00 | 1.6 0.82 105°
17:00 | 1.9 0.98 105°
18:00 | 1.6 0.82 105°

slowing to 1.4 knots during the ship sampling of the middle of the region of image 1875.
As the ship moved into the region of image 1876 the currents were slowing to about
1.1 knots from the east and the water became slack during the time that the middle of
this region was being sampled. As the ship passed into the region of image 1877 the
currents were from a west-north-west direction at a speed of 0.9 knots. The currents
remained in the same direction increasing to a speed of 1.9 knots and then declining,
as the ship headed west. During the overflights of images 1875 and 1876 (whilst the
ship was in the region of the centre of image 1876) the currents were slack increasing

to 0.9 knots from a west-north-west direction during the acquisition of image 1877.

Using the Admiralty tide information, the relative velocity between corresponding
parcels of water sampled in situ and from the aircraft was calculated (figure 2.21).
The Matlab code for this is given in appendix B. The resulting distance between the
sampled parcels of water was quite large - up to 8 km to the west of the region and
14 km to the east. However, because the images represent only up to 8 km from shore,
the speed of the tidal currents will have been reduced by friction at the coast. They
are also significantly lower than the maximum tidal current speeds calculated by Sager

and Sammler (1968). Therefore, although tidal currents were considered to be a source
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of error in these data, they were not thought to be as influential as the Admiralty tide

calculations suggest.
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Figure 2.21: The maximum relative distance between corresponding parcels of water

sampled in situ and from the aircraft, for every hundredth sample point.

2.7.8 Total error in data

The previous sections have detailed a study that was made of a number of factors
which may have influenced the relationship between chlorophyll ¢ and spectral values.
A number of effects were identified and these are summarised in table 2.5. A moving
window was applied to the data to remove the effects of sensor noise and possible prob-
lems with co-registering data. However, it was not possible to correct for other effects
in a simple manner because such correction required reliable information about envi-
ronmental factors such as water constituent concentration, water depth, atmospheric
and meteorological conditions and the current velocities. It was considered important

to bear these effects in mind when developing the chlorophyll a prediction models.

In the subsequent analysis the presence of these various causes of error were consid-
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ered. However, regions of the spectrum and geographical regions that were strongly
affected by these factors were retained in the data to determine the overall effect on
the prediction of chlorophyll a. Figure 2.22 shows the first two principal components
plotted against the easting of the corresponding data point for easy reference during

the assessment of error.
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Figure 2.22: The spatial dependence of sources of error. If the first two principal
components are considered to indicate the presence of factors in the scene that may
cause error in chlorophyll a prediction, (a) and (b) show how these factors change

over the course of the cruise transect.

Summary of chapter 2

There are many sources of image and in situ oceanographic data. However, it is
often difficult to obtain data that coincide. The data used in this research required
some preprocessing to determine the chlorophyll a concentration and spectral measures
corresponding to each cruise data point and the methods used to process these data

have been presented in this chapter.
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The data were assessed for their relevance to predicting chlorophyll a from spectral
information using cluster analysis and principal component analysis. It was found that
there was a change in spectral value with chlorophyll a although it was clear that other

factors dominated the spectral signal that was detected.

The data were assessed for factors such as image sensor noise, atmospheric effects and
the effects of co-registering the in situ and image data. In particular, the data displayed
some significant sensor and atmospheric effects as is typical for oceanographic data.
In previous studies extensive steps have been taken to correct for this but correction
can introduce its own error if it is undertaken without accurate information about the
sources of error. The movement of water between the in situ and spectral sampling
was estimated using Admiralty tide information. However, it was considered that this
would be the maximum effect of currents as they would be reduced by friction so close

to the shore.

A moving window was applied to the spectral data to mitigate sensor noise and current
effects. No atmospheric correction was undertaken, however, rather it was intended
that algorithm development should attempt to produce algorithms that were robust to

the errors that had been identified.

The detailed analysis of error in the data that has been described here is fundamental
to the research that is detailed in the following chapters. It also represents one of the
novel aspects of this research because the techniques used to investigate these data

have not been used in previous ocean colour research.



Table 2.5: Effects of environmental factors that were identified in the data.

cause

how identified

dependence

severity

bright patches
spectral  variance  not
caused by chlorophyll a

edge brightening

row/column noise

tidal current effects

cluster analysis

principal component anal-

ysis
means of image
columns/PCA

means of rows or columns

spatial/a little spectral

spatial

spatial and spectral

spectral

spatial

significant increase in spectral values

a dominant effect on spectral values

little effect on data points

minimised by using moving window

possibly very severe at the far west and
east of the data but the proximity of
the coast is likely to have reduced the

velocity of the currents
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Chapter 3

Multiple regression techniques

3.1 Introduction

Regression analysis requires two important design decisions - the choice of the best
features for input and a balance in the model between complexity and generalisation
(Brown et al. 1994). This chapter describes the two types types of algorithms that
were used to develop models in this research - multiple linear least-squares regression
and non-linear neural networks. These two methods were compared in the research
presented here to determine if the neural network technique would produce models that
were more accurate than the more conventional multiple linear regression technique.
The two techniques are related and this chapter begins by describing the linear method
and then expanding on this to explain neural networks. Finally, some specific points

about using neural networks are detailed.
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3.2 From multiple linear regression to neural net-

works

To perform a linear least squares regression, the vector of coeflicients, 3, of the input
vector x is identified which allows the prediction of the output y. For a regression with

n input features, the expected value of y given the inputs x is calculated as
E(ylx) = 6o + Biwy + - + Bun . (3.1)

In matrix notation, if X is a p X (n + 1) matrix of input features with all elements in
the first column having the value of 1 (to determine the offset, ;) and the following
columns having the values of all other input features x for p observations and y is the
p X 1 vector of measured output values for each of the p observations, then the model

may be expressed as

y=Xg+E&. (3.2)

£ is a vector of the error of the model

& = %Z@q yq)Q
= by X0 (v - Xp) (3.3)

where y, is the measured output for observation ¢ and §, is the output predicted for
the gth set of inputs. This error changes with § and so the minimum may be found

using differentiation by satisfying

sl —XB8) 'y -XB)] =0
= —2XTy + 2(XTX)8 (3.4)

The best approximation of 3, assuming that X7 X is nonsingular, is therefore (Myers
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1986)
g =X"X)"'XTy . (3.5)

which is the linear, least squares solution and thus minimises the sum of squares error.

A feed-forward neural network regression algorithm may be visualised as rows of nodes
interconnected with layers of weights. In a single layer of the network, each node (3) in
the first row is connected to each node (j) in the second row by a weight. The value
arriving at node j is calculated by weighting all the outputs from the previous layer

and adding them together
i=1

where w;; is the weight connecting node z; in the first row with o; in the second row
and b is the bias (offset). The value is then passed over an activation function such as a,
sigmoid, hyperbolic tan (tanh) or linear function. The simplest neural network of this
type has only one layer of weights connecting two rows of nodes and is usually referred
to as a single layer perceptron (SLP) (figure 3.1). If this has linear activation functions
at the output nodes then the result is a linear model. Such a network is optimized to a
set of observed inputs and outputs during the training process that minimises an error
function. During this, the error (equation 3.3) of the predicted output is iteratively

minimised. The expansion of equation 3.6 is
05 = b + W15T1 + e+ WnjiTy - (37)

Because o; is the expected value of y given the inputs, z, equation 3.7 is equivalent
to equation 3.1. Since during training, the sum of squares error is being minimised,
an optimized linear neural network produces the same algorithm as the linear least

squares method (equation 3.1).

A more complex network is produced by interconnecting more than two rows of nodes
with layers of weights to produce a multilayer perceptron (MLP). A two layer MLP
(figure 3.2) has one hidden set of nodes at which the weighted sums of the input layer
are passed over an activation function. The resulting outputs from the hidden nodes

are then weighted in the second layer and summed at the output nodes before being
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u

Wy

b

Figure 3.1: A single layer perceptron with three inputs, one output and a bias term.

passed over another activation function. At each output o of a two-layer network the

resulting value is therefore calculated as

o= G (Z w]-khj + bk> (38)
j=1
where h,j = F (Z Wi T4 + bj>
i=1

Here, z; is the value at the input node ¢ of n inputs, h; is the value output from the
hidden node j of m hidden nodes, w;; is the weight connecting nodes ¢ and j and b
is the bias for layer . F(:) and G(-) are the activation functions for the hidden and
output sets of nodes, respectively. In this case it is assumed that the same activation

function is applied at all the nodes in the same row.

In effect, the input information is being transformed from n-dimensional input space
to m-dimensional space in the hidden layer and then again to o-dimensional output
space. This allows non-linear functions to be modelled. An increase in complexity is
gained by adding hidden nodes or adding layers to the network. However, it is worth
emphasising that the neural network is still converging towards a range of mean values
for the data set, rather than modelling the transfer within the scene. The method by

which the transformation is achieved by back-propagation of the error is described in



Chapter 3 Multiple regression techniques 71

by
Y wigzs + by 2 wizzi + by 3 wirz by
F(X) F(X) FX)
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Figure 3.2: A multilayer perceptron with three input nodes, four hidden nodes and

one output. Notation is the same as in equation 3.8

the following section.

3.2.1 The back-propagation rule

The network is trained with patterns of known inputs (z) and outputs (y). The inputs
are fed forward through the network (equation 3.8) and the error calculated (equation
3.3) (Rumelhart et al. 1986). The network is optimized to find the best function to fit
the training data set by iteratively updating the weights according to the error of the

prediction of y. Each weight w;; is changed by an amount Aw;; which is proportional
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to the local error gradient in weight-space 2%
ij
o0&
Awij = — 3.9
wU na'wz] ( )

where 7 is the learning rate which controls the magnitude of each weight change. If z;
is the output from node i, a; is z; weighted by w;; and H;(-) is the activation function

applied to node ¢ such that

4 = Hilar) (3.10)
a; = Zw”zz + b, (3.11)
=1

we can use the chain rule to calculate the value of 5‘3%:

]

e = 0% (3.12)
o0&

where ¢ :521-; (3.13)
Baj

and 2 = B (3.14)

0; can be viewed as the error at node j and it is this that is fundamental to the

calculation of the weight adjustment (from equations 3.9 and 3.12):

To adjust the weights in the final layer, §; is simply calculated using the error at the

output of the network. Firstly, the chain rule is used to expand equation 3.13 to

68 azk
el 3.16
5k 8Zk a&k ( )
From equation 3.10 it can be seen that
5zk
AL V) 3.17
aak Hk(a’k) ( )
and thus:
, o€

Therefore, where a linear activation function is used for the output nodes, the change

in weights is calculated using

Ok =Tk — Yk - (3.19)
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d; is determined for any hidden node, j using the chain rule such that

08 s OE bay

= 5 = 2= b0, (3.20)

0;

Since ar = H;(a;)w;; and using equation 3.13, equation 3.20 can be re-written to
obtain the formula for calculating § for any hidden node:
n
65 = Hjla;) Y widy . (3.21)
k=1
This formula defines how much of the error at the output is contributed to by the
values calculated at each hidden node. If, as in the research presented here, a two-layer
network were trained with a hyperbolic tan (tanh) function as the activation function

in the hidden layer, this formula becomes
5]‘ = (1 - yl%) ijkék . (322)
k=1

By adjusting the weights in this way, the network is performing gradient descent
optimization - it is descending down the error surface in weight space. This feed-
forward /back-propagation process is repeated, iteratively adjusting the weights, until
either a predetermined number of iterations are reached or the reduction in error with
each iteration is below a desired amount. The full derivation of this is given in Bishop

(1995), Haykin (1994) and Rumelhart and McClelland (1986).

3.3 Specifics of neural network training

The function derived during training is an empirical estimation of the relationship
between the inputs and outputs. A balance must be struck between finding a function
that fits the training data well and producing a function that will fit all subsequent
data well. Where p is the number of training patterns and the matrix of measured

inputs is X the solution to the regression problem is therefore:

y =s(X,w*) + & (3.23)
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y is the set of desired outputs, w* is a vector of unknown optimal weights, £ is the
error and s(X, w) is the mean value of y in response to X (Steppe et al. 1996). This
emphasises that the regression coeflicients (weights) of the neural network, like other
least-squares regression techniques, determine the expected value of the desired outputs

for a given range of input values.

As with all regression techniques, deriving a good generalisation is dependent on the
data used. The neural network is trained on a limited set of data which, as with any set
of real data, will not encompass the full range of possible patterns existing in nature.
The temptation with training is to strive to achieve the lowest training error. However,
because overly complex networks may be built, there is a danger that the training will
fit the network precisely to the training data but will predict new data poorly. This
results in a loss of generality (and the network will not accurately predict the testing
patterns). Over-fitting may be avoided by keeping the complexity to a minimum and
using a validation data set during training to determine when the error for this set

begins to deviate from that of the training set.

A good generalisation gives the neural networks a robustness to noise in the data that
other methods do not have (for example, Clark and Cafias 1995). This is important
with hyperspectral ocean colour data which is subject to strong noise effects as was
demonstrated in chapter 2 particularly at the shorter wavelengths where a great deal

of useful information is held (Moore 1978; Sathyendranath et al. 1989).

Neural networks are often said to be a non-parametric method of determining regression
functions but in practice are actually semi-parametric. Many traditional methods of
determining relationships, including least-squares analysis, rely on some assumption of
a normal distribution. Where such a distribution is not present, the assumptions of
these measures are not valid (Paola and Schowengerdt 1995a). Non-parametric models
may be used when the distribution of the data is not normal or is unknown. However,
neural networks usually require some parametric assumptions in training, such as using
the assumption of a normally distributed output error, in order to specify the model by

which the error is minimised. In this case the error is reduced using the least squares
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method, that is by minimising the square of the error (equation 3.3).

The technique of neural network regression has been considered for the development
of chlorophyll @ prediction algorithms because it has a number of advantages over
other methods. As has already been discussed, many studies have found that the
chlorophyll a-spectra relationship is non-linear. Neural networks offer a simple method
of finding the optimal non-linear model to fit the data. The neural network has the
advantage over least-squares curve fitting in that it does not require prior understanding

of the curvature or the complexity of the regression to be performed (Bishop 1995).

Neural networks are also useful when a number of different data types are to be used.
Multisource information presents problems with more traditional techniques because
the statistical properties and scales of the different data types can cause a bias in the
resulting algorithm. A neural network however, will assign automatically reliability
factors to each input during training in that it will find the combination of weights
that will use optimally all the input information (Benediktsson et al. 1990; Civco
and Waug 1994). However, when using data of various scales, the user should be
aware that a certain amount of the initial training of the neural network is concerned
with adjusting the weights to the scale of the data being used and so training may take
longer. The current research uses only spectral information as an input to the algorithm
but this can have different ranges. There is the potential for other information, such as
measures of the atmospheric and sedimentary contribution to the image, to but used

as inputs to a neural network .

Furthermore, using neural networks, a number of comparable algorithms of varying
complexity may be developed alongside each other. This is very relevant to the current
problem because the non-linearity and complexity of the relationship between chloro-
phyll a spectral data has not been determined. Using neural networks is thus a useful
method to determine the characteristics of the problem and enables greater insight for

future work. However, some key problems inherent in the neural network method need

to be addressed.
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It has been said that neural networks are particularly useful in studies for which not
all the training data are available at one time because the network may be re-trained
easily when new information becomes available (Schiller and Doerffer 1999). However,
other techniques (such as the k-nearest neighbour technique) are better for this purpose
because the neural network actually has to be completely retrained with all available

data, to ensure that model is re-optimised.

Firstly, the error may be described as a surface in weight-space, such that, as we change
the weights the output error increases or decreases. The gradient descent learning rule
aims to follow the error surface towards a minimum value. This can result in a non-
optimal solution however, if the network converges on a minima in the error surface
which is not the global minimum (Paola and Schowengerdt 1995a). A solution to this
would be to run each training several times with different initialisation weights, to
ensure that the network always converges on the same solution, or to find the best

solution.

Secondly, a problem often reported with pattern recognition problems is known as the
‘curse of dimensionality’. This describes the poor response of a recognition system
when presented with too many input features. For every possible combination of input
and output values, enough sets of training input and output data are required by the
regression function during training to model the relationship well. As the number of
input features increases, there is an exponential increase in the number of example
patterns required by the training algorithm to derive a prediction of the output. With
a limited training data set, some input-output patterns may be under-represented and
the training algorithm will not succeed in finding a reliable solution. This can be
avoided by using only a limited number of inputs by employing feature extraction

and selection techniques. It was clear that with 72 input bands some form of feature

selection would be necessary.
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Summary of chapter 3

The development from using the linear least-squares technique to determine the regres-
sion coefficients to that using a neural network technique has been presented. The two
techniques are easily compared because they derive the regression model by minimis-
ing the mean square error. Both techniques can have one or more input variables, the
neural network technique can produce linear (SLP) or non-linear (MLP) models, with
the linear models being identical to those developed using the standard least squared
method. Neural network-derived models can be of varying complexity. Their advan-
tage is that any number of inputs with any scale may be used and many linear and
non-linear models of varying complexity may be developed for comparison. The im-
portance of considering the assumptions made in the process of model fitting, i.e. that
the output error has a normal distribution and also the need for a balance between
a model fitting the training data and the generality of the model, were highlighted.
Finally, the volume of data was addressed. So that a sufficient number of training
examples is provided to the function, it was considered to be impossible to regress all

72 input bands against chlorophyll a.

The multi-layer perceptron attempts to determine the regression coefficients iteratively
and allows non-linear functions to be developed. This approach uses gradient descent
to find the minimum in the error surface. Whilst this may not be a global minimum and
a problem of over-fitting the model to the training data exists, methods for avoiding

these drawbacks are simple to implement.

The research presented here explicitly chose the neural network technique of regression
because the results would be directly comparable to the more common method of linear
least squares regression. In so doing, the research would be able to investigate more
thoroughly than previous studies using neural networks the nature of the relationship
between chlorophyll a and spectral information by investigating the structure of the

models used for the regression.



Chapter 4

Primary study

4.1 Introduction

A primary study was performed to assess the validity of the neural network regression
technique and to identify any refinements to the techniques that may be required.
This investigated whether straight-forward chlorophyll a prediction models could be
used with the Norfolk 30/05/96 data. A simple selection of spectral features was
undertaken (section 4.2), the data were divided into training, validation and testing
sets (section 4.3) and then a training (4.4) and testing (4.5) of conventional linear least
squares- and neural network-derived models was performed. All aspects of the training
of the neural networks and test results were used to draw conclusions about the nature

of relationship between chlorophyll ¢ and spectral information.

4.2 Extracting a subset of spectral features

With the CASI hyperspectral data, a large volume of information was available. This
was reduced by picking out a number of spectral features with which to develop the

models. Bands were chosen from each section of the spectrum - blue, green, red and
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near infra-red (NIR) - according to their correlation with chlorophyll a (figure 2.7),
their correlation as ratios with chlorophyll a (figure 2.8) in the training set, their
correlation with each other (figure 2.9) and also with bands close to known features in
the spectrum were considered. This resulted in a subset of eight bands being extracted

from the training, validation and testing sets. These bands, and the basis by which

they were chosen, are detailed in table 4.1.

Table 4.1: The subset of eight bands that were chosen for model development

band wavelength |

number | (nm) comments

6 441 (blue) Close to chlorophyll a absorption peak and had one
of the highest correlations with chlorophyll a in the
blue.

20 540 (green) Close to green reflectance peak and was within a
minima in the correlation of green wavelengths with
chlorophyll a . One of the better correlations with
chlorophyll a as a ratio with band 6.

27 589 (green-red) | Ratio of band 27 and 29 gave the highest correlation
with chlorophyll @ of the whole training set.

29 604 (red-green) | Ratio of band 27 and 29 gave the highest correlation
with chlorophyll a of the whole training set. Low
response to chlorophyll a.

39 675 (red) Chlorophyll a absorption peak. Also one of highest
correlations of ratios (with band 41).

41 689 (red-NIR) | Good correlation with chlorophyll a as single band
and in ratio with band 39.

44 711 (NIR-red) | Highest red band correlation with chlorophyll a .
Close to peak in reflectance.

47 732 (NIR) Low correlation with chlorophyll a in the NIR.

fsee appendix A for full details of wavebands
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The fluorescence feature near 685 nm was also extracted. This was the same feature
as was measured by the flow-through fluorometer although in this case it was solar-
induced. The peak was not very clear in the CASI spectra but a drop in reflectance was
almost always evident from band 40 (682 nm) to band 41 (689 nm). This was probably
due to absorption by oxygen at 687 nm (Fischer and Schliissel 1990). The fluorescence
line height (FLH) feature is usually measured above a baseline described by two bands
on either side of the peak (see equation 4.1 and figure 1.2). Several baselines were tried
and the correlation coefficient of the FLH measurement with chlorophyll a was used to
determine which FLH measurement would be used in model development (table 4.2).
The correlation of the FLH and chlorophyll a should be high and linear since they are
both measuring the fluorescence efficiency of the chlorophyll.

Ly, ()\2 - /\F) -+ L,\z()\p - /\1)

i (4.1)

F =Ly~

where F is the fluorescence band,
1 and 2 are the first and second baseline bands,
L, 1is the radiance at band n and

n

A, is the wavelength of band n.

The baseline described by bands 39 and 47 (Gitelson92) had the highest correlation of
0.7282 and so was chosen for the rest of this research. This feature was subsequently

calculated for the validation and testing sets.

4.3 Dividing data into training and testing sets

Three sets of in situ and spectral measurements were produced by dividing the data
randomly. Because there were over 2000 data points available, a large training set
could be constructed from only 30 % of the data, and a validation set from 20 % of
the data. This allowed a very large testing set (50 %) to be created thus ensuring that
the accuracy tests were valid. The training set was to be used to create both types of

regression model, the validation set was to be used in training the neural networks and
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Table 4.2: Trials of different Fluorescence Line Height measurements. FLH was
measured at band 40 (centred on 682 nm) above a straight baseline described by two

bands in the spectrum.

name of baseline baseline | correlation
FLH measure | reference wavelengths! | bands | coefficient
Gitelson92 (Gitelson 1992) 675 730 | 39 47 | 0.73
Gitelson94a | (Gitelson et al. 1994) 650 715136 45 0.53
Gitelson94b | (Gitelson et al. 1994) 670 730 | 38 47 | 0.72
FischerK90a | (Fischer and Kronfeld 1990) | 645 725 |35 46 | 0.56
FischerK90b | (Fischer and Kronfeld 1990) | 645 670 | 35 38| 0.67

fsee appendix A for full details

the testing set was for testing the accuracy of the models.

By dividing the data using a random method, the statistical properties of the training,
testing and validation sets were very similar. A subset of the validation set was chosen
arbitrarily for validation of the neural network during training (this is described in
detail in section 4.4.2) so that, if the network was to reduce the training error by
predicting the mean chlorophyll a for every pattern and so over-fitting to the training

data, then an increase in error would be evident for the validation set.

These sets are summarised in table 4.3 and their distributions are shown in the his-

togram in figure 4.1.

4.4 Deriving the model coefficients

Both the simple linear regression and the neural network models were produced using
the Norfolk 30/05/96 training data. The testing data were kept aside to test the models

(section 4.5). The neural network also required the validation set to determine the value
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Figure 4.1: Histogram of the training, validation and testing sets for the primary study
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Table 4.3: Statistics of the data sets which were used to train and assess the models

in the primary study.

chlorophyll a (ugl™!)
proportion standard
set of data | minimum maximum mean deviation
training 30 % 3.15 22.62 8.86 4.63
validation 20 % 3.14 22.16 9.02 4.76
arbitrary validation set ~4 % 3.14 7.03 5.50 0.86
testing 50 % 2.91 22.60 8.98 4.73

of some of the parameters in its architecture. The following two sections describe,
first, the determination of the coefficients for the simple linear models and second, the
method by which the neural network model coefficients were derived. The technique of
finding the model coefficients is commonly called ‘training’ in neural network literature.

This term will be used for both methods of finding model parameters.

4.4.1 Training the simple linear models

It is common to use models with a single input in studies which determine the amount
of chlorophyll a in water. Using the subset of bands defined in section 4.2, several
sets of band ratios were produced. These were either based on ratioing a chlorophyll a
absorption band with a region of the spectrum which had low correlation with chloro-
phyll a or on ratios that were found to have a high correlation with chlorophyll a (as
described in table 4.1). Least squares regression was used to produce a linear approxi-
mation of the relationship feature = f(Chl) for each feature using equation 3.5. This
was then inverted to produce the model which would predict chlorophyll @ concentra-
tion from the ratios (Chl = Gradient x feature + Intercept). The resulting linear

models are summarized in table 4.4 and illustrated in figure 4.2.
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Table 4.4: The inverted least-squares regression model of the chlorophyll a to spectra

relationship
correlation
feature description | with chl @ | gradient | intercept
: band 6
blue-green ratio T 0.13 489.13 | -484.89
red-NIR ratio bang 21 0.16 584.26 | -746.27
: band 39
red-green ratio 1 band 20 0.50 554.99 | -303.25
: band
red-green ratio 2 banc. 22 0.77 480.75 | -439.25
red-red ratio bond 2 0.74 795.49 | -632.06
FLH see section 4.2 | 0.73 0.99 -19.34

4.4.2 'Training the neural networks

A single-layer network (figure 3.1) and a two-layer network (figure 3.2) were chosen for
this research. A single-layer network can only model linear functions; this architecture
was used to test whether a linear function was an adequate model. A network with two
or more layers can model increasingly complex non-linear functions. Various spectral

features were chosen as inputs. The output of the network was always chlorophyll a

concentration in pg {1t

Training a multilayer perceptron can prove complicated because there are many adjust-
ments that can be made to the network to improve the training. Several preliminary
trainings were performed and tested against the validation set and, based on the out-
comes, assumptions were made as to the best activation functions and learning rate to
be used throughout the course of this research. For the two-layer network, a hyperbolic
tan (tanh) activation function was used at the hidden nodes and a linear function used
at the output nodes. A tanh function is a sigmoid that scales the data from -1 to 1.

For both types of network, the learning rate remained 0.001 throughout this research.

A smaller set of spectral features than for the linear regression model was used to train
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the neural networks. These features were: bands 6 (441 nm), 20 (540 nm), 41 (689 nm)
and the FLH measurement. The features were taken from the three main regions of the
visible domain - blue (band 6) green (band 20) and red (band 41). This combination
of four features allowed the exploration of the characteristics of these regions of the
spectrum and of the FLH feature. With only these four features, 15 combinations
of inputs were possible. The number of nodes in the hidden layer was varied for each
possible combination of input. The possible numbers of nodes were: zero (the one-layer
network), two, six or 10. By manipulating only these two parameters of the network,

60 networks were set up for training.

The naming convention for these networks will be slp + number of inputs + code (for
single layer networks) or mlp + number of inputs + number of hidden nodes + code
(for multi-layer networks) where the code signifies the combination of inputs used and
is specific to the number of inputs. For example, milp36a has three inputs of the a
combination (bands 6, 20 and 41) and six hidden nodes. When discussing a number of
neural networks with similar characteristics the wild card * shall be used. For example
all 1-input, 2-hidden node networks will be referred to as mip12* The names of all the
networks and the number of iterations to which each of the 60 networks was trained

to is given in table 4.5.

The neural networks were trained with the training data set. The ‘arbitrary’ validation
data set was then used to estimate the ideal number of iterations for training the
networks as follows. At the end of each iteration the arbitrary validation data points
were passed through the network and the output error of this was calculated. Because
the network weights were adjusted by the back-propagation of the training set only, it
was expected that the validation error would decrease for a number of iterations, then
increase when the network began to over-train. The number of iterations at which the

validation error was minimised was then assumed to be the ideal number of iterations.

The 60 networks were all trained for 2000 iterations and then retrained to the number
of iterations at which the validation set displayed the minimum error. These networks

were then used to compare the models developed using a neural network model, to



Chapter 4

Primary study

87

those using linear regression.

key to table 4.5

network name ..........
input features ..........

number of hidden nodes

training MSE at 2000 ..

validation MSE at 2000

lowest validation MSE at:

training MSE here ......

validation MSE here . ...

correlation .............

see section 4.4.2, page 86

the features used as inputs to the networks

the number of hidden nodes. 0 indicates a 1-layer
neural network

the mean squared error of the training set at 2000

iterations
the mean squared error of the validation set at

2000 iterations
the number of iterations at which the validation

MSE was lowest
the MSE of the training set at which the validation

MSE was lowest

minimum validation MSE achieved for this train-
ing

correlation between the predicted and measured
test set values. This is explained in section 4.5
the root MSE between the predicted and measured

test set values. This is explained in section 4.5

Table 4.5: Training and results of linear and non-linear neural networks in the primary

study.
number training | validation | lowest training | validation

network | input of hidden | MSE MSE validation | MSE MSE corre-

name features | nodes at 2000 | at 2000 MSE at: here here lation | RMSE
slpla 6 0 17.157 3.383 13 17.2314 | 3.1208 0.4919 | 4.1362
slplb 20 0 17.4713 | 5.3474 10 18.063 4.3608 0.4635 | 4.2796
slple 41 0 14.3462 | 5.304 16 14.3744 | 5.235 0.611 3.7548
slpld FLH 0 10.0575 | 10.9864 7 13.2581 | 7.673 0.76 3.5307
mlpl2a | 6 2 0.6105 0.0664 172 0.6591 0.0366 0.6277 | 3.6828
mlpl2b | 20 2 0.7282 0.3039 110 0.7171 0.2227 0.5701 | 3.8896
mlpl2c 41 2 0.4263 0.4388 10 0.6403 0.2274 0.6732 | 3.6924
mlpl2d | FLH 2 0.3633 0.4804 7 0.5442 0.4456 0.7667 | 3.3970
continued on next page




Chapter 4

Primary study

88

table 4.5 continued from previous page

number training | validation | lowest training | validation

network input of hidden | MSE MSE validation | MSE MSE corre-

name features nodes at 2000 | at 2000 MSE at: here here lation | RMSE
mlpléa 6 6 0.6219 0.1056 115 0.663 0.0338 0.6259 | 3.6916
mlpl6b 20 6 0.7402 0.3239 131 0.7164 0.2184 0.5709 | 3.8882
mlpl6e 41 6 0.4257 0.4366 8 0.6448 0.2211 0.657 3.7030
mlpl6éd FLH 6 0.3618 0.491 6 0.5097 0.4526 0.766 3.2639
mlplifa | 6 10 0.6192 0.0983 115 0.6655 0.0332 0.6248 | 3.6961
mlpll10b | 20 10 0.7288 0.3031 99 0.7183 0.2217 0.5689 | 3.8956
mipli0c | 41 10 0.4256 0.4351 6 0.6847 0.2269 0.6346 | 3.8236
mlpll0d | FLH 10 0.3618 0.4893 4 0.5774 0.4591 0.7626 | 3.5049
slp2a 6,20 0 16.9167 | 3.6551 14 16.9654 | 3.4699 0.4998 | 4.1108
slp2b 6,41 0 14.3617 | 5.1752 14 14.4894 | 4.7835 0.6105 | 3.7746
slp2c 6,FLH 0 9.9126 8.8655 9 11.2301 6.9917 0.7675 | 3.2252
slp2d 20,41 0 10.5211 9.6166 12 13.4466 | 4.4229 0.6659 | 3.6343
slp2e 20,FLH 0 10.0518 10.8472 8 12.1063 | 7.8029 0.7611 | 3.3637
slp2f 41,FLH 0 9.8724 9.2292 9 11.2888 | 7.6961 0.7686 | 3.2352
mlp22a 6,20 2 0.6067 0.1025 463 0.633 0.0735 0.6455 | 3.6140
mlp22b 6,41 2 0.2488 0.0618 >2000 0.2488 0.0618 0.8789 | 2.2840
mlp22c 6,FLH 2 0.3192 0.2434 8 0.5094 0.2328 0.7701 | 3.2432
mlip22d 20,41 2 0.3764 0.3987 3 0.6726 0.2214 0.629 3.7893
mlp22e 20,FLH 2 0.343 0.488 8 0.5188 0.3244 0.7637 | 3.2889
mlp22f 41,FLH 2 0.291 0.4152 5 0.4857 0.2894 0.7915 | 3.1753
mlp26a 6,20 6 0.4769 0.0684 1780 0.4984 0.0634 0.7306 | 3.3269
mlp26b 6,41 6 0.231 0.0598 1351 0.2369 0.0587 0.8845 | 2.2447
mlp26¢ 6,FLH 6 0.2208 0.0634 >2000 0.2208 0.0634 0.8959 | 2.1290
mlp26d 20,41 6 0.3721 0.3799 5 0.7023 0.2223 0.6074 | 3.8786
mlp26e 20,FLH 6 0.3184 0.5135 5 0.5617 0.3434 0.7617 | 3.4378
mlp26f 41,FLH 6 0.2782 0.3973 4 0.4854 0.3006 0.7797 | 3.1578
mlp210a | 6,20 10 0.4907 0.0881 >2000 0.4907 0.0881 0.7554 | 3.2873
mip210b | 6,41 10 0.2283 0.0586 >2000 0.2283 0.0586 0.8929 | 2.1876
mlp210c | 6, FLH 10 0.2243 0.0727 >2000 0.2243 0.0727 0.8934 | 2.1556
mip210d | 20,41 10 0.3727 0.3644 5 0.7058 0.2158 0.5959 | 3.8876
mlp210e | 20,FLH 10 0.3189 0.5102 4 0.5248 0.3261 0.7588 | 3.2988
mip210f | 41,FLH 10 0.282 0.4218 4 0.5509 0.3027 0.7656 | 3.3938
slp3a 6,20,41 0 9.4785 6.283 15 12.4302 | 3.3058 0.7009 | 3.4720
slp3b 6,20,FLH 0 9.8235 8.6167 9 11.1597 | 6.8509 0.7698 | 3.2130
slp3c 6,41,FLH 0 9.8632 8.7347 10 10.7658 | 7.4115 0.7693 | 3.1549
slp3d 20,41,FLH | 0 8.7713 11.5411 9 10.9406 | 8.2164 0.7781 | 3.1821
mlp32a 6,20,41 2 0.1624 0.1262 >2000 0.1624 0.1262 0.9278 | 1.7694
mlp32b 6,20,FLH 2 0.2052 0.1264 >2000 0.2052 0.1264 0.9175 | 1.9356
mlp32¢c 6,41,FLH 2 0.1621 0.1017 >2000 0.1621 0.1017 0.9305 | 1.7569
mlp32d 20,41,FLH | 2 0.2832 0.4344 7 0.5264 0.2718 0.7752 | 3.3213
mlp36a 6,20,41 6 0.1432 0.1136 >2000 0.1432 0.1136 0.9347 | 1.6871
mlp36b 6,20,FLH 6 0.1341 0.1478 518 0.1803 0.1035 0.923 1.8451
mlp36¢ 6,41,FLH 6 0.1164 0.0803 >2000 0.1164 0.0803 0.9526 | 1.4620

continued on next page
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table 4.5 continued from previous page

number training | validation | lowest training | validation

network input of hidden | MSE MSE validation | MSE MSE corre-

name features nodes at 2000 | at 2000 MSE at: here here lation | RMSE
mlp36d 20,41,FLH 6 0.2548 0.3638 4 0.533 0.2613 0.7564 | 3.3377
mlp310a | 6,20,41 10 0.1322 0.0876 >2000 0.1322 0.0876 0.9398 | 1.6180
mlp310b | 6,20,FLH 10 0.134 0.1658 631 0.1908 0.1408 0.9246 | 1.8115
mlp310c | 6,41,FLH 10 0.109 0.0583 >2000 0.109 0.0583 0.9538 | 1.4498
mlp310d | 20,41,FLH 10 0.2577 0.3532 4 0.5253 0.2688 0.7528 | 3.2994
slpda 6,20,41,FLH | 0 8.2217 8.1801 10 10.2596 | 7.2131 0.785 3.0689
mlp42a 6,20,41,FLH | 2 0.1279 0.0989 >2000 0.1279 0.0989 0.9464 | 1.5410
mlp46a 6,20,41,FLH | 6 0.0813 0.0459 >2000 0.0813 0.0459 0.9669 | 1.2117
mlp410a | 6,20,41,FLH | 10 0.0694 0.0279 1640 0.0746 0.0269 0.9685 | 1.1838

4.5 Results

The models developed in the previous section were tested by comparing their predic-
tions of test set chlorophyll ¢ values with the measured values. Two measures were
used for this comparison. The first is the correlation between the predicted output and
the desired output (this was calculated as in equation 2.3 but is reiterated here)

Z:l (Yg — 9)(9q — %7/)

p= =
Vbl — 920, (G, — 9

where y, is the gth point in the testing set, g, is the prediction for this point, ¥ is the

(4.2)

mean of chlorophyll ¢ measurements in the testing set, § is the mean of the predictions
of these measurements and p is the number of data points in the testing set. This

measurement is the normalized covariance of the predicted and desired values.

The second measure is the Root Mean Squared Error (RMSE) which was calculated as

= | a2 (43

it

This measured the accuracy of the results and increased with the error of the prediction.
Because both linear least-squares regression and neural network regression train by
minimising the mean squared error, these models always try to predict the mean output

value given the inputs values. When presented with a set of data for which they are
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poorly specified, the models will tend to predict values near the mean for the whole
training set. Where the training and testing data have similar statistical characteristics,
a model that predicts only the mean value of the data can be identified by predictions

with a RMSE that is approximately equal to the standard deviation of the desired

values.

4.5.1 Testing the simple linear models

As can be seen in figure 4.2, the relationship between band ratios and chlorophyll a,
as measured by the fluorometer, was quite complicated. The blue-green and red-NIR
ratios were particularly non-linear, displaying filaments of data points. For these two
relationships the geographical position of the data points in the filaments were plotted

(figure 4.3).

From these plots, there appeared to be a number of regions in which the relationship
between spectra and chlorophyll a concentration was different. These may have been
caused by environmental factors such as sediment or CDOM in the water, wind rough-
ening of the surface causing glint or foam or atmospheric effects, such as haze. The
tiny region characterised by the green filament in the plot of blue-green ratio against
chlorophyll a concentration corresponded to the region in all the principal components
for which a great range in values was noted in section 2.7.4. The red region in this plot
corresponded to the region in which a peak in values was found in the first principal
component. Because the two ratios did not appear to display the same division of

regions, it was thought that each was affected by a different environmental factor.

The other three ratios were better distributed around the line of the model. The
red-green ratio 1 showed a slight separation of data points into regions in the plot

(figure 4.2), perhaps again as a result of environmental effects. The red-red ratio

appeared to have the most linear ratio-chlorophyll a relationship.

The FLH measure was a special case since it was considered to be similar to the
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Figure 4.3: Different water bodies within the Norfolk region. The coloured filaments

in the ratio-chlorophyll a plots are plotted geographically along the cruise transect.

chlorophyll a measure (as this was measured using the fluorometer). The gradient of

this relationship was indeed nearly 1:1, however there was quite a large offset of about

40 % of the FLH measure and the relationship appeared slightly non-linear. These

deviations from the 1:1 relationship illustrated the interference in the system caused

by other water constituents, the water surface and the atmosphere.

Table 4.6 gives the correlation and RMSEs of the chlorophyll a values predicted by

the linear models. There was quite a distinction between the performances of the first

three models and second three models. The blue-green, red-NIR and red-green 1 ratios
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did not perform well, the first two had error values which indicated that predicted
chlorophyll a was well outside the range of measured values. The second red-green
ratio, the red-red ratio and the FLH measure gave the better results, with errors
below the standard deviation of the chlorophyll a for this set (4.73 ugl™') and good
correlations. These models were based on features which were close to each other in the
spectrum. As pointed out by Neville and Gower (1977) the effects of the atmosphere,
CDOM and suspended sediment can be found to be approximately uniform over a
short spectral range. Therefore the better performance of the second red-green ratio,
the red-red ratio and the FLH measure may have been because they were measured

over a short spectral range.

Table 4.6: The correlation and RMSE for the inversion of linear least-squares models

Feature P €

blue-green ratio | 0.16 | 34.78
red-NIR ratio 0.16 | 27.90
red-green ratio 1 | 0.50 | 8.40

red-green ratio 2 | 0.76 | 4.09
red-red ratio 0.76 | 4.28
FLH 0.76 | 4.27

p = correlation, ¢ = RMSE

4.5.2 Comparison of both types of linear models

The results in the previous section were compared to the linear neural network results
(tables 4.6 and 4.7). Two of these models were directly comparable - the FLH least-
squares models with slp/d and the blue-green ratio models with sip2a. The correlations
for the FLH linear least-squares model and the slpZd model were the same but the
neural network produced a lower error. The blue-green ratio did not perform at all
well compared to slp2a. The error of the slp2a model prediction was just less than

the standard deviation of the testing set. Although none of the other linear neural
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networks were directly comparable, it was clear that those with more than one input

performed better than the least-squares models. This indicates that the problem has

a greater level of complexity than one input can resolve.

Table 4.7: The correl

ation and RMSEs for the linear neural network

network | features P €

slpla, blue 0.49 | 4.14
slplb green 0.46 | 4.28
slplc red 0.61 | 3.75
slpld FLH 0.76 | 3.53
slp2a blue, green 0.50 | 4.11
slp2b blue, red 0.61 | 3.77
slp2c blue, FLH 0.77 | 3.23
slp2d green, red 0.67 | 3.63
slp2e green, FLH 0.76 | 3.36
slp2f red, FLH 0.77 | 3.24
slp3a blue, green, red 0.70 | 3.47
slp3b blue, green, FLH 0.77 | 3.21
slp3c blue, red, FLH 0.77 | 3.15
slp3d green, red, FLH 0.78 | 3.18
slpda blue, green, red, FLH | 0.79 | 3.07

p = correlation, e = RMSE

4.5.3 Comparison of linear and non-linear neural network mod-

els

Here, the neural network models were used to compare the effect that altering different

neural network parameters had on the final prediction. From this it was possible to

draw conclusions about the nature of the data. Table 4.5 gives the correlation and

RMSE for all 60 networks.

Table 4.8 summarizes these data by finding the mean
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correlation and RMSE for networks with a given number of inputs, number of hidden

nodes, input feature or combination of features.

Table 4.8: These tables summarize the goodness of the neural network predictions for

Norfolk 30/05/96.

number number of

of inputs | > | wup | ue ul hidden nodes | > | wup | ue uL

1 16 1 0.64 | 3.74 | 51.81 0 15 10.68 | 3.54 | 11.00

2 24 1 0.74 | 3.21 | 571.50 2 151 0.77 | 296 | 719.87

3 16 | 0.86 | 2.39 | 950.44 6 15 10.79 | 2.82 | 795.13

4 4 1092 | 1.75 | 1412.50 10 1510.79 | 2.83 | 834.13

input input

includes includes

band Sl oup | pe uZ bands Sl wp | pe ul

blue 32 | 0.81 | 2.59 | 1090.22 blue, green 16 | 0.83 | 2.42 | 1192.50

green 32 10.75 | 3.01 | 609.66 blue, red 16 | 0.88 | 2.12 | 1440.00

red 3210.79 | 2.82 | 723.63 blue, FLH 16 | 0.88 | 2.15 | 1177.19

FLH 32 1 0.83 | 2.74 | 591.56 green, red 16 | 0.80 | 2.74 | 732.44
green, FLH 16 | 0.83 | 2.65 | 553.56
red, FLH 16 | 0.84 | 2.56 | 731.63

>~ = The number of networks’ results that the mean correlation and RMSE were
calculated from (see table 4.5), up = Mean correlation coefficient, ue = Mean RMSE

pZ = mean number of iterations at which the validation set had reached minimum

The top left table in table 4.8 shows how the average correlation, RMSE and number
of iterations required during training changed with the number of input nodes. There
was a very clear increase in correlation and decrease in error with more input features,

indicating that each input added more useful information. With the increase in inputs,
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there was an increase in the number of weights in the network. This was reflected by

the requirement for more iterations for the network to find minimum error.

The top right table compares the number of hidden nodes. Where no nodes were used
(a one-layer network), the predictions were not as good. A marked improvement is
apparent for the two-layer networks and those networks with 6 hidden nodes resulted
in slightly better prediction than those with 2 hidden nodes. However, no more im-
provement in prediction resulted from having 10 hidden nodes. Again the increase in
the number of hidden nodes caused the networks to require, on average, more iterations

to train.

The two bottom tables indicate the effect that particular bands have on the outcome
of the model and whether certain bands complement each other in the model. The
greatest difference here was that band 20 (green) did not appear to contribute as much
to the model as the three other bands. Band 6 (blue) in combination with FLH or
with band 41 appeared to produce much better models than any other combinations
of features. The number of iterations required was particularly high when the blue
band was included in the inputs. This indicated that this input had a more complex

relationship with chlorophyll a.

The best correlations and error values were always achieved for the networks with
all four inputs, indicating that it was the inputs that had the greatest effect on the
resulting model. The best network overall was the most complex one using all four

inputs and 10 hidden nodes.

Figure 4.4 shows the regression functions derived by the neural network when only one
input was used for the four different configurations of hidden nodes. The shape of the
non-linear models closely resembled the tanh activation function used in the hidden

nodes. Greater non-linearity was apparent for the blue and green bands and the FLH

was most linear.

Figure 4.5 illustrates the distribution of the error of prediction for all the networks.

In most cases the error was roughly symmetrical about zero. The most skew error
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Figure 4.4: The regression functions derived by the neural network for one-input

networks

distributions (slpla - ¢, slp2a - b, slp2d, slp8a and the mip2*ds) did not have FLH
as an input. This was particularly apparent with the linear networks. Many of the
non-linear networks had a leptokurtic error distribution (with a high peak compared
to width) which was symmetrical about zero. This was particularly evident for the 3-
and 4-input networks and also the 2-input networks with the b combination of inputs
(bands 6 and 41), reflecting the finding on table 4.8 that it was the combination of
inputs that contributed most to prediction accuracy. The non-linear 3-input networks
with the d-combination of inputs performed poorly compared to other non-linear 3-
input networks. This input combination did not contain the blue band and so was

another indicator of the value of this band.
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Figure 4.5: Distribution of prediction error. The histograms show the distribution of

the error of chlorophyll a as predicted by each of the neural network models.

Figure 4.6 shows the values predicted by the neural networks plotted against the mea-
sured values. Many of the networks, particularly the one-input networks, milp2*c-f and
mip3*d did not show a good one to one relationship. These networks tended to predict
a value of around the mean for the training set (8.86 ug{™'). Therefore, even those
predictions with an error that was less than the standard deviation of the data were
not very reliable. For some of the other networks especially those with three or four

inputs, the values are reasonably well distributed around the one to one line.

Another indicator of the importance of the combination of inputs was that, if networks

with the same architecture (number of inputs and hidden nodes) were ranked according



Chapter 4 Primary study 98
slpla slplb slplc slpld mlpl2a mlpl12b
20
10 ;
0
mlpl2c mlpl2d mlpl6a mlpl6b mlpl6e mlpl16d
20
10 :
’ mlp110 mlp110 mlpl110 mlpl110 slp2a slp2b
20
10 H
’ slp2c slp2d slp2e slp2f mlp22a mlp22
20
10 'I i : v. '
’ mlp22c mlp22d mlp22e mlp22f mlp26a mlp26
20 n,
10 , , 4
’ mlp26¢ mlp26d mlp26e mlp26f mlp210 mlp21
& 90 18 4
5,
ks mlp210 mlp210 mlp210 mlp210 slp3a slp3b
= 20
3 ; W
3 10 H (0 ' [}
g
= o
g slp3b slp3d mlp32 mlp32 mlp32 mlp32d
20 " 0.
. d
mlp36 mlp36 mlp36 mlp36d mlp31 mlp310
20 . '. . ()
0] g / L . '
’ mlp31 mlp310 slpda mlp42 mlp46 mlp41
20| o \
10
[} ' ? [
00 10 20 10 20 ] 10 20 ¢} 10 20 0 10 20 0 10 20
measured chlorophyll a

Figure 4.6: Measured versus predicted chlorophyll a values in the primary study

to their output error, then it was generally found that networks with the same input

features had the same rank. The main exceptions to this were the linear networks for
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which the best ranking networks were always those with FLH or FLH and band 6 as

inputs.

One of the linear regressions and three of the trained networks were used to predict the
chlorophyll a for the whole of the Norfolk 30/05/96 image data (figure 4.7, page 103)
For much of the center of the images, the linear regression with the blue-green ratio
(figure 4.7(a)) predicted chlorophyll @ concentrations of zero or below. This image
clearly showed that the brightening at the edges of the CASI images has a very strong
effect on this linear regression model as very high chlorophyll a concentrations were
predicted for the edges of the images. The neural networks were mip22b with bands 6
and 41 as inputs and 2 hidden nodes, mip36¢ with bands 6 and 41 and FLH as inputs
and 6 hidden nodes and mip4{10a with all four inputs and 10 hidden nodes. The range
of chlorophyll ¢ predictions was not extreme for most of these images. Overestimates
may have occurred in the north of the region, possibly where edge brightening had
affected the images. Very few of the training or testing data points were affected by
edge brightening because the cruise was located along the centre columns of the images.
Therefore, this effect was not explicitly corrected for by the models during training.
The two more complex networks appeared a little more sensitive to noise in the images
whereas mlp22b (two inputs, 2 hidden nodes) produced a much smoother chlorophyll a

prediction.

4.6 Discussion of results of primary study

From this primary analysis of the Norfolk 30/05/96 dataset it was clear that conven-
tional techniques of linear regression of band ratios were not adequate for the prediction
of chlorophyll a from these data. The inverted least-squares analysis was a very simple
method of producing models which predicted the chlorophyll a in the water from light
detected above the water. The neural networks were rather more complicated to train
but were found to be a simple way of combining several features and of developing

non-linear regression models. Also, the results of the different network architectures
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allowed some insights into the nature of the data being modelled.

The simpler networks reached a validation error minimum much sooner than the more
complex networks. A training neural network will always produce a linear model in the
initial iterations. Those networks which required the fewest iterations tended to have
FLH as an input. Those networks which required the most training iterations tended
to have blue band 6 as an input. This indicated that FLH had a near-linear relation-
ship with chlorophyll a and that blue had the most non-linear. From the improved
performance with the two-layer networks, it appeared that a non-linear relationship
did exist between all ocean colour features and chlorophyll a, which explained the poor

performance of the linear regression functions.

For the two-layer networks, the number of hidden nodes did not have a great impact
on the prediction, even when there were fewer hidden nodes than inputs, (for example
milp32* and mip{2*). This indicated that, although a non-linear model was necessary
a particularly complex one was not. However, it was found that different signatures
did occur in different localities (figure 4.3) when observing the blue-green and red-NIR
ratios. This fitted with the findings in chapter 2 that a number of influences on the
spectral data, other than chlorophyll a, varied geographically. The complexity may
have occurred in only certain parts of the spectrum. This was reflected by the increase

in the number of iterations required by the blue input band to reduce the prediction

€error.

Perhaps the strongest agreement found from other studies was that it was the choice
and combinations of inputs to the models that had the most significant effect on their
outcome. With the non-linear networks, particular combinations of inputs consistently

performed better than others.

As has been found in several studies, the FLH measure gave good predictions for the
linear regressions. As was expected, the relationship between this and the chlorophyll a
measure (which was based on fluorescence measurements) was the most ‘linear’ because

the single-layer networks which had FLH as an input always gave better results than



Chapter 4 Primary study 101

other single-layer networks. This idea of linearity was supported by the short training

time required by networks with FLH as an input.

The performance of the blue band 6, was more of a surprise. Recent studies have
avoided this part of the spectrum because of noise or the interference of other water
constituents and the atmosphere (e.g. Dekker et al. 1992a). This study confirmed
that in the original image data the blue band was noisy and the complex relationship
between shorter wavelengths and chlorophyll a was highlighted by the plots of blue-
green ratios against chlorophyll a (figure 4.2) and blue against chlorophyll a (figure
4.4). However, band 6 provided good predictions as an input to non-linear and complex

regressions.

It was noted that neither the blue-green ratio model (figure 4.2) nor the blue-input
neural network (figure 4.4) found a negative slope between the spectral feature and
chlorophyll a. This indicated that the absorption of blue wavelengths by chlorophyll a

was not being detected. Other studies have found a similar effect in the coastal zone

(e.g. Fischer et al. 1986).

Although the green band, band 20, did not perform well, the four-input networks
always performed better than any others. This indicated that this band did contribute
some information to the predictions. With the increase in accuracy of prediction,
which occurred with more inputs, there was no tail off in the increase in accuracy
indicating that each band contributed information to the prediction. The FLH feature
consistently gave good predictions and was the most suitable of all the features when
only linear modelling was possible. The blue wave band appeared to have the most
non-linear relationship to chlorophyll a, this relationship was strong and so the blue

wave band enabled some good predictions of chlorophyll a.

A factor that was not tested in the neural network models was whether the closeness
of features played a réle in improving these regressions. Of the other linear regressions,
those ratios produced from spectrally-close wave bands gave better performances. This

is an issue worth exploring in future studies.
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The results showed that, even in an environment contaminated by atmospheric effects,
suspended sediment and CDOM, it was still possible to detect chlorophyll @ in the
Norfolk 30/05/96 imagery. The effects of this contamination was notable by the need
for several sources of information (wavebands) and non-linear models. The potential
of the neural network technique had been verified such that the research could be
expanded to investigate further the issues found to be most important to the prediction

of chlorophyll a.

Summary of chapter 4

The primary study showed that there is a need for better models than the single-ratio
linear models that are often used for Case 2 waters. Increasing the number of inputs
gained increased accuracy in prediction and certain inputs were found to contribute
more to the accuracy than others. The features that performed well depended on the
model being used. The FLH performed well with the linear models but the blue band
performed best with the non-linear models. The non-linear models performed better
than the linear models. The symmetrical error distribution demonstrated by most of
the neural networks indicated that these models were well-specified and that neural

networks were a valid method of defining non-linear chlorophyll a prediction models.

The technique of comparing the performances of different neural network architectures
that has been described in this chapter is a novel use of neural networks and has
produced some new insights into problem of predicting chlorophyll a from spectral
data that has been collected over Case 2 waters. In particular, it has been shown that
non-linear but not very complex models predict much better than simple linear models.
Also, the number and type of input has been found to be the most important aspect
to creating good chlorophyll a prediction models. This second point was investigated

further, as described in the following chapter.
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Figure 4.7: One of the linear re-
gressions and three of the trained
neural networks were used to pro-
duce the following three images.
These neural networks increase in
complexity:

milp22b with two inputs (bands 6
and 41) and two hidden layers
mlp36¢c with three inputs (bands 6
and 41 and FLH) and six hidden
nodes

mlp410a with four inputs (bands
6, 20 and 41 and FLH) and 10
hidden nodes.

(a) Linear regression of the blue-green ratio

ngl=1

«0
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ngl=?t

(b) mip22b at 2000 iterations (c) mip36c at 2000 iterations
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Chapter 5

Development of method

5.1 Introduction

In the primary study it was demonstrated that increasing the number of inputs to
the model produced more accurate predictions of chlorophyll a. It was also found that
certain inputs provided more useful information to the model than others. This chapter
describes three methods of selecting features for the prediction of chlorophyll ¢ and

then shows how models were developed with the chosen sets of features.

5.2 Creating a training, validation and testing set

A different approach was used to select the data in this secondary study. It was
considered that having a large number of training data points with very similar values
(figure 2.5) may bias the models during training. Therefore the new training set was
selected so that the chlorophyll a concentrations within this set were evenly distributed
throughout the range of values. This was achieved by first dividing the data randomly
into training, validation and testing sets containing respectively 673, 469 and 1158 data

points (table 5.1).

106
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Table 5.1: Statistics of the data sets which were used to train and assess the models

in the secondary study.

chlorophyll a pgl=!
proportion standard
set, of data | minimum maximum mean deviation
training 30 % 3.14 22.22 8.96 4.75
selected training set ~4 % 3.14 22.10 12.69 5.57
validation 20 % 3.17 22.59 9.09 4.91
testing 50 % 3.40 22.61 8.91 4.62

One hundred data points were then selected from the training set by finding the data
points with nearest chlorophyll a concentration to values spaced evenly through the
range of the training data set. The resulting set had a similar range to the training,
validation and testing sets but the mean value was much higher and the standard

deviation was increased. This new set will be referred to as the training set from this

point forwards.

5.3 Feature selection

As was demonstrated in the primary study, the selection of the input bands was the
most important factor in improving the chlorophyll a prediction. Particular bands gave
better results than others, although combining all four inputs gave the best results. It

was therefore important that the features for model development be carefully chosen.

Hyperspectral data provides many bands of fine spectral resolution. However, it is not
possible computationally to use all these bands as inputs to the model (Dekker et al.
1991). Nor would we want to, since each band multiplies the curse of dimensionality

(section 3.3) and including irrelevant and redundant bands can often result in a poorer
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model (Myers 1986; White 1992). Therefore it may be considered that there is a lower

and an upper limit to the number of features which would produce a good regression.

The practice of feature selection is well documented and, over recent years, several new
techniques of selecting features have been developed. Much of the work into feature
selection for remotely sensed images has concentrated on choosing features for classifi-
cation (e.g. Richards 1995; Mather 1996; Piramuthu 1996). Feature selection methods
that are more generally applicable to regression problems are available however. There
are two parts to feature selection algorithms, the first is the method of assembling
sets of features for testing and the second is the metric that is used to test the sets of

features (Bishop 1995).

Selected bands may be ‘narrow’ or ‘broad’. Narrow band selection picks individual
bands from the original image whereas broad band selection combines original bands.
Narrow bands are sensitive to narrow features in the spectrum such as absorption
features. However, these bands are subject to noise and so, often, broad bands may be

favoured.

Transforms of the data such as principal component analysis (section 2.7) (Otsu 1984;
Benediktsson and Sveinsson 1997; Malki and Moghaddomjoo 1991)) and similar tech-
niques (Singh and Harrison 1985; Roger 1996; Karhunen ef al. 1997) are often used
to reduce the dimensionality of the data. These methods order the features according
to the variability in the input data that they explain. Such transforms are optimal in
the sense that, in selecting the lowest order eigenvectors, the mean squared error be-
tween the original data and the transformed and reduced data is minimised. However,
on their own these new features do not provide much information about the spectral

dependence of the model (Fukunaga and Koontz 1970).

Research such as that by Townshend (1984) have selected those original wavebands
that contribute most to the lowest order eigenvectors or have selected broadband re-
gions corresponding to the lowest order eigenvectors (Price 1990). Conversely Csillag

et al. (1993) have removed those wavebands which contribute most to the highest
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order eigenvectors. The transform resulting from principal component analysis is very
dependent on the data set used (Eklundh and Singh 1993) and the inclusion of features
such as land, clouds or even sensor effects can result in axes orientated very differently

to the direction expected.

Because transforms that are based on variance are not always relevant to high dimen-
sional data (page 46), Green et al. (1988) and Lee et al. (1990) developed transforms
that are based on the signal to noise ratios of each band. Since noise is considered to
have little or no spatial autocorrelation, other feature selection methods are based on
the spatial autocorrelation of image bands (Warner and Shank 1997b; Warner et al.
1999). Although popular, unsupervised feature selection methods do not provide a
measure of the performance of the subsequent model because they do not account for
the relationship between the spectral data and the variables that are to be predicted

from them.

In the circumstances of studies such as this, where model outputs are available, features
should be selected according to their suitability to predicting the output. Two new
metrics are now available as a basis on which to select subsets of features - correlation
of the model outputs with the sets of features and the ability of the features to predict
a set of outputs from a new set of inputs (respectively, these metrics are equivalent to
measures of class separability and classification accuracy commonly used for feature

selection in image classification studies).

As has been demonstrated by Elashoff et al. (1967) and Cover (1974) the best subset
of features is not necessarily made up of the best individual features. Therefore the
feature selection methods should select features which ‘work together’ well. There are
2¢ — 1 possible subsets of features in a data set of d features. It clear is not feasible to
test all these possible subsets with hyperspectral data. The number of possible subsets

is reduced to if the desired number of features in the subset, d is known (Bishop

d!
(d—d)'d!
1995) but this may still be too many subsets to compare.

If the number of desired features is not known, it is necessary to find a sequential
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method of selecting feature subsets. Two main approaches to this are forward selection
and backward elimination. Forward selection begins by choosing the best single feature
(according to the chosen metric) and then determining which feature works best with
the first feature. Features are added sequentially until some stopping criterion is met,
for example at the iteration when the improvement in the metric is not statistically sig-
nificant. Backward elimination begins with the entire feature set and removes features

one by one until some stopping criterion is met.

This research looked into the many possible features which may be extracted from
a spectral image data set. A remote sensing image may be considered as a three-
dimensional block of information with measurements in one spectral and two spatial
directions. Depending on from which orientation this image is viewed, a number of
different types of features may be extracted. These include broad bands, band ratios
and differences, spectral derivatives and transforms of the data onto new axes. Spatial
features have also been considered as it has been shown that the presence of phyto-
plankton results in a spatial structure which is different from that of tracer features

such as sediment and temperature (see section 8.2).

In line with the aims of this research the choice of input was kept simple. The original
spectral bands in the images were investigated for input which made the resulting
models more generally applicable (Paola and Schowengerdt 1995b). These bands were
narrow and better for the retrieval of information about fine features in the spectrum
(Malthus et al. 1996). The FLH feature was shown to have a linear relationship with
chlorophyll a, however this feature is more suited to high concentrations of chlorophyll a
(Sathyendranath et al. 1989) when the water is not too turbid (Fischer and Kronfeld
1990). This feature was not used for the rest of the research although its value for

predicting chlorophyll e was recognised.

Since the models were to be developed using neural networks as well as a more conven-
tional technique, many methods of feature selection were not so relevant. For example,
if the selection procedure were to be based on a measure of a feature’s linear corre-

lation to chlorophyll a then the purpose of using a non-linear neural network would
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be negated. Several methods of feature selection have been developed for use with
neural networks but they are often highly computer intensive. Linear feature selection

methods can be simpler to use.

The three methods chosen for this research used information about the output from
the model to select features. The first method (section 5.3.1) used the wealth of
knowledge about chlorophyll @ in water and about the environmental conditions of
Case 2 locations to select spectral features. This is the method commonly used in the
design of new sensors. The second (section 5.3.2) and third (section 5.3.3) methods were
a linear and a non-linear method which tested the accuracy of the models’ predictions
to determine the features to remove. Stepwise methods are useful for highlighting sets
of features that work well together that may not have been identified by a study of the
spectral characteristics of chlorophyll a alone. Such methods are not commonly used

in studies of ocean colour. Also, these methods are more relevant to feature selection

from hyperspectral data.

5.3.1 Hand-picking features based on other chlorophyll a stud-
ies (HPFS)

Much work has already been undertaken into the most useful wavelengths for predicting
chlorophyll a. Section 1.3 outlined much of this work. Before undertaking an intensive
feature selection process, it was worth utilising these findings to construct a set of
features for inputs to the models. The research was broadly separated into the following

three areas:

1. Research in specific features for chlorophyll a prediction. Many of these features

were discussed in section 1.3 (summarised in table 5.2).

2. Research into those features which are affected by other environmental factors

such as the atmosphere or CDOM. These features may be used to correct for the

%6? 35?’
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effect of this factor or should be avoided (summarised in table 5.3).
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3. Research into reconstructing the measured spectrum from as few measured wave-
bands as possible. Some workers have determined which wavelengths are the
most useful for reconstructing a spectrum detected over a water body containing
chlorophyll a. These features are the ones that are typical of the responses of the

spectrum to changes in the constituents in the water (summarised in table 5.4).

This method of feature selection shall be known as hand-picking feature selection or

HPES.

Table 5.2: Features used for detecting chlorophyll in water

Citation Type of Wavelengths | Situation Comment
feature (nm)
Gordon et al. 1980 ratio 443 / 550 Gulf of Mexico | CZCS algorithm for low chloro-
phyll a concentration
Gordon et al. 1980 ratio 520 / 550 Gulf of Mexico | CZCS algorithm for high chloro-
phyll a concentration
Tassan 1981 difference | 440 - 550 model Difference algorithm per-
formed better than ratio of
same bands and overcame
some problems of sun glitter,
foam and atmospheric
effects
Giannini 1981 difference | 585 - 662 coastal waters Preliminary study, possibly
low sediment
Mitchelson et al. 1986 ratio 440 / 550 Irish Sea All algorithms empirically
Case 2 waters derived for Case 2 waters
were statistically similar
Mittenzwey et al. 1992 | ratio 705 / 670 inland waters Least sensitive to other sub-
stances in the water. Based on
a comparison between labora-
tory and in situ measurements
Goodin et al. 1993 raw band | 720 experimental As sediment varies reflectance
tanks at this wavelength remains
constant
Talcott 1995 ratio 485 / 570 coastal waters Landsat TM data
Aiken et al. 1995b ratio 490 / 555 ocean in situ Ratio responds best to range
spectral of chlorophyll a levels (where
continued on next page
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continued from previous page

Citation Type of Wavelengths Situation Comment
feature (nm)

measurements carotenoid pigments co-vary
and modelled with chlorophyll a
spectra

Pérez-Ruzafa et al. 1996 | ratio 443 / 560 oligotrophic Use natural log of attenuation
lake water coefficients

Rundquist et al. 1996 ratio maximum NIR/ | experimental When chlorophyll a

minimum red tanks, no concentration is
sediment low
Rundquist et al. 1996 15¢ derivative | 690.7 experimental ‘When chlorophyll a
tanks, no concentration is
sediment relatively high
Hoogenboom et al. 1998 | ratio ~530/ 600 model of North | Sensitivity of this combination
Sea water not changed by addition of
tripton
Fraser 1998a 1%t derivative | 429 and 695 inland waters Peak in derivative at these

wavelengths corresponds to
steep reflectance slopes

associated with chlorophyll a

Table 5.3: Features used for determining the influence of other factors

Citation Substance Wavelengths (nm) | Situation Use to correct for
or avoid?

Abbott et al. 1994 CDOM 412 oceanic and coastal correct for

Wrigley et al. 1992 waters

Carder et al. 1991

Morel and Gordon 1980 CDOM 400 Case 2 waters correct for

Morel and Gordon 1980

atmospheric aerosol

880 + at least
2 other bands in
the NIR

Case 2 waters

correct for

Morel and Gordon 1980 turbidity 610 Case 2 waters correct for
Aiken et al. 1995b atmosphere 412 ocean in situ spec- avoid
tral measurements and
modelled spectra
Dekker et al. 1992a noise < 500 nm inland waters avoid
Sathyendranath et al. 1989 | CDOM 400-430 model with sediment correct for
and CDOM
Singh et al. 1997 atmospheric aerosol | 760 inland waters correct for
Gordon et al. 1980 atmosphere 670 Gulf of Mexico correct for
Mittenzwey et al. 1992 bottom reflectance < 550 inland waters avoid

continued on next page
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continued from previous page

Citation

Substance

Wavelengths (nm)

Situation

Use to correct for

or avoid?

and CDOM

Pérez-Ruzafa et al. 1996

bottom reflectance

443 / 560 ratio

shallow coastal waters

correct for

Quibell 1991

sediment

~665 minus ~710

experimental tanks

correct for

WrigleySKFCM92

citing NASA 1982

sediments 620

coastal waters

correct for

Table 5.4: Bands used for reconstructing spectrum

Citation

Method used

Situation

Wavebands (nm)

Wernand et al. 1997

Multiple regression analysis

coastal water

412, 492, 556, 620 and 672

Sathyendranath et al. 1989

Eigenvector analysis

model of Case 2 water

400, 445, 520, 565 and 640

Dekker et al. 1992a
Dekker et al. 1992b

Knowledge-based method

inland water

510-530, 555-575, 590-610,
620-640, 645-655, 660-670,
670-685, 695-715 and 770-800

5.3.2

Multiple linear regression feature selection (MLFS)

See table 5.5 on page 115 for a glossary of the notation used in this section.

The linear multiple regression model was used to select features for regression. This

was performed using a backward elimination technique. At each iteration, this method

removes one feature and compares the error of the resulting prediction with that of

the original set to determine if there is any decrease in accuracy. This is achieved as

follows:

1. Using equation 3.5, the regression coefficients () were determined from the train-

ing set for the full set of I, inputs

2. The 3 were then used to make predictions of chlorophyll ¢ from the validation

set with the full set of inputs

3. The mean squared error £, was determined for these predictions with the full set

of inputs
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Table 5.5: Notation used in description of multiple regression feature selection method

Symbol Description

I Number of inputs in the full feature set

I Number of inputs in the reduced feature set

&y Minimum error achieved for full configuration

E_ Minimum error achieved for reduced configuration

Ptrain  Number of patterns in the training data set

Puvalid Number of patterns in the validation data set

P Ptrain + Pvalid

df+ Degrees of freedom for the full configuration

df-. Degrees of freedom for the reduced configuration

T; Measurements in band ¢

Tg_ Band which, when removed from the I, inputs results in

the lowest error for all the I, sets of I inputs

4. Stages 1 to 3 were then repeated I, times, each time with a reduced set of I_

inputs where I_ = I, — 1, produced by removing band z;

5. The lowest error achieved at stage 4, £_ by removing band z¢_ was then compared
to £, to determine if £_ — &, < 0. If this was the case, zg_ was removed from

the data, I, was set to I_, i set to ¢ — 1 and &, set to the value of £_

6. Stages 4 and 5 were repeated until the removal of any more bands resulted in

E_—E.>0

The criterion used to determine whether £ — £, < 0 was a statistical one. Clearly,
with noise in the system, slight variations in the error may not have been statistically
significant. The statistical function allowed natural variation in the error due to noise to
be distinguished from that caused by real alterations in the model. This was achieved in

this function by assuming that the error was normally distributed and hence its natural
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variation could be determined. This assumption was reasonable, as was demonstrated

in the primary study.

This was tested by comparing the test statistic L where

L= (5.1)

to the corresponding values in the f-distribution for the numerator degrees of freedom
df_ — df+ and denominator degrees of freedom df, for the significance level of 95 %.

The hypothesis being tested was

and the alternative hypothesis was

Hy:RB=0 (5.3)

where (8 was the vector of coefficients of the model and R was a vector of zeros and a
one at the position corresponding to the coefficient being tested. At each iteration the
coefficient corresponding to the band zg_ was being tested and when £_ — &, < 0 (the
prediction with one fewer inputs was at least as good as with all the inputs) the null

hypothesis was rejected.

The degrees of freedom were the number of patterns used to train the algorithm minus
the number of constrictions placed on the data. In this work two sets of data were
used to train the networks, Ptrain and Pvalid, and so the number of patterns P =
Ptrain~+ Pvalid. The number of constrictions placed on the data were the (3 regression
coefficients (including the intercept), therefore df . = P—1_+1,df, = P—1, +1 and

since at every iteration, I, = 1_+ 1, df_ —df, = 1.

This method of feature selection shall be known as multiple regression feature selection

or MLFS.
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5.3.3 Neural network feature selection (NNFS)

See table 5.6 for a glossary of the notation used in this section.

Table 5.6: Notation used in description of neural network feature selection method

Symbol Description

s Number of networks used throughout the function

Ji Number of hidden nodes in the full model configuration

J_ Number of hidden nodes in the reduced model configuration
I, Number of inputs in the full feature set

I_ Number of inputs in the reduced feature set

Er Minimum error achieved for full configuration

E Minimum error achieved for reduced configuration

Ptrain  Number of patterns in the training data set

Puvalid Number of patterns in the validation data set

P Ptrain + Puvalid

U Number of weights

df+ Degrees of freedom for the full configuration

df - Degrees of freedom for the reduced configuration
T; Measurements in band :

The technique chosen here was originally described by Steppe et al. (1996) and was an
extension of the method described in section 5.3.2. This method was chosen because it
was specifically designed to select features for neural network models. Moreover, this
technique, which shall be referred to as the neural network feature selection method also
determined the number of weights required for the selected input features. The method
was a backward elimination technique which begins with all the input features and
carefully selects features for removal as with the multiple regression feature selection.

This was achieved using the following procedure:

1. Several (s) networks with all the I, inputs to be assessed and maximum number
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of hidden nodes J, were initiated with randomised weights. This was to allow for
the possibility that certain initialisations of weights would result in the network
converging on a non-global minimum. It was assumed that s was enough networks

to ensure that at least one would converge on the global minimum.

2. The s networks were trained until each was deemed to have converged (using,
for example, the validation set error as in the primary study or a maximum
number of iterations stopping criterion). The training sum squared error was
then assessed for each of the s networks and the minimum was taken to be the

overall training error &£;.

3. The s networks were then re-initiated and trained with one fewer hidden node
(J_ hidden nodes). The minimum error of these networks £_ was sought and this
was compared to £, to determine if £_ — &, < 0. If the current training error £_
was equal to or less than the previous training error, the new model configuration
was accepted and £, was set to £_ and J, = J_ . If £. > £, the new model
was rejected. The assumption was that with this configuration of inputs, the J+

hidden nodes were required to adequately specify the model.

4. The s networks were then re-initiated and trained but this time one input was
removed to leave I_ inputs. This step was repeated I, times with each input
being withheld in turn. This resulted in a s x I, matrix of errors in which
the lowest error, £_, corresponding to the removal of feature z¢_, was located.
Again £ was compared to £, to determine if £. — &, < 0. If this was true,
the accepted network configuration was that with feature z¢_ rejected leaving

I, = 1_. Otherwise all I, features were retained within the model.

5. Stages 3 and 4 were repeated until no change was made to I, or J.. The resulting
configuration was considered to be that with the optimal inputs and number of

hidden nodes for solving the problem.

Again, £_ — £, < 0 was tested by comparing L (equation 5.1) to the f-value. This

tested the hypothesis:
Hy: Rw* #0 (5.4)
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and the alternative hypothesis was
Hy: Rw" =0 (5.5)

where w* was a vector of optimal weights derived for the model with I inputs and J,
hidden nodes. R is a vector of zeros and ones where the ones are in the locations that
correspond to the weights in w* which were connected to the hidden node or input node
that was being tested. Therefore, the test determined whether the weights connected

to the input or hidden node of interest were equal to zero.

In the case of the neural network, the restrictions on the residuals were the weights
(including biases) as these were equivalent to the coefficients of regression in the mul-
tiple regression problem. Thus, if the number of weights, u,= J(I + 1) + (J + 1)
(for a one-output network) then df; = P — u. When a hidden node was removed

df- = P — (u— (I+ +2)) and when an input was removed df_ = P — (u — J,).

This method of feature selection will be known as neural network feature selection or

NNFS.

5.3.4 Initialisation conditions

So that the degrees of freedom were a positive value it was necessary that the number
of weights in the network were fewer than the number of patterns training the network.
Therefore, this restricted the number of inputs and hidden nodes in the network. All 72
wavebands could not be applied to this algorithm. Instead, the bands were separated
into nine subsets, labelled A to I, with the wavebands spaced evenly throughout the
spectrum (table 5.7). It was recognised that this removed the opportunity to test
whether including adjacent bands in the models enabled a better correction for the
effects of environmental factors on the spectral values. To enable a direct comparison
with the neural network feature selection sets and the models derived from these sets,
the multiple regression feature selection technique was initiated with the same subsets,

A to 1. Because the number of model coefficients was fewer for the MLFS method, it was
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also possible to initiate this feature selection technique with all 72 image bands. The
neural network feature selection method was initiated with each of these nine subsets
of features and 18 hidden nodes. For each iteration of the function, 10 networks were

trained, that is s = 10, and each network was trained for 4000 iterations.

Table 5.7: CASI bands in each of the 9 subsets used for the neural network feature

selection method

Subset Band numbers

1, 10, 19, 28, 37, 46, 55, 64
2, 11, 20, 29, 38, 47, 56, 65
3,12, 21, 30, 39, 48, 57, 66
4,13, 22, 31, 40, 49, 58, 67
5, 14, 23, 32, 41, 50, 59, 68
6, 15, 24, 33, 42, 51, 60, 69
7,16, 25, 34, 43, 52, 61, 70
8, 17, 26, 35, 44, 53, 62, 71
9, 18, 27, 36, 45, 54, 63, 72

- nm e "M " g Q woe

5.4 Model development

The selected features were to be related to chlorophyll a using a model. In the primary
study it was seen that even linear neural networks perform better than simple linear
least-squares regression if more than one input is used. Multiple linear least-squares
regression is equivalent to linear neural networks (section 3.2) and is a popular method
for relating inputs and outputs (e.g. Aiken et al. 1995b) which can be performed
simply. It is more difficult to determine the optimal structure for non-linear models
and so all non-linear models were developed using the neural network. The following

two sections describe the two chosen methods of model development - multiple linear
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least-squares regression and non-linear neural networks. These models were used to

relate all the selected sets of features (sections 5.3.1 to 5.3.3) to chlorophyll a.

5.4.1 Multiple linear least-squares regression

Using equation 3.5, the coeflicients for each selected set of features were calculated
using the training set of patterns. The spectral values from the test set were then

applied to these coeflicients to predict chlorophyll a.

5.4.2 Neural networks for developing models

The neural networks were trained (using the feed-forward/back-propagation method
described in section 3.2) with the training data set. The neural network feature selec-
tion determined how many hidden nodes were required for the A to I sets of inputs.
The number of hidden nodes for the hand-picked and multiple linear regression feature

selection data sets was chosen with reference to those for the neural network feature

sets.

The networks were trained for 5000 iterations. Other parameters such as the learning
rate and the activation functions were the same as those used in the primary study. It

was intended that the results were the minimum achievable using this method.

Summary of chapter 5

The focus in this section has been on the choice of features for the models. Three
methods of selecting features that were used in this research have been described. The
first method was one that has been commonly used and was based on prior knowledge
of the problem by using the information that was contained in the literature about the

best parts of the spectrum to use for predicting chlorophyll a. The second and third
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methods were iterative and selected sets of features according to their performance with
linear (MLFS) and non-linear (NNFS) regression functions. Because of the number of
coefficients being fitted in the neural network, only a limited number of bands could
be tested at any one time in the NNF'S technique. The 72-band data set was therefore
divided into 9 subsets for the NNFS and, for comparative purposes, the MLFS. This
resulted in the selection of 20 different sets of features. Table 5.8 summarises the

feature selection techniques used and the subsets of band that were applied to them.

Table 5.8: The feature selection methods applied to the band subsets

band subset | HPFS | MLFS | NNFS
all 72 v v

A v v
B v v
C v v
D v v
E v v
F v v
G v v
H v v
I v v

Using multiple linear regression and neural network regression, chlorophyll ¢ prediction
models were then developed. These took as inputs the sets of bands that had been
selected by all the feature selection techniques with the selected sets of bands as inputs.

This resulted in 40 models - 20 each of the multiple linear regression and the neural

network regression.

The feature selection described in this chapter has not been previously applied to ocean
colour data. These methods provided an automatic method of determining from which

regions of the spectrum bands should be taken to build robust chlorophyll a prediction

models.



Chapter 6

Results

6.1 Introduction

This chapter details the results of the feature selection and the development of chloro-
phyll a prediction models. The first section (6.2) discusses the features selected by
the three methods of ‘hand-picking’, multiple regression feature selection and neural
network feature selection and then compares the different methods. Section 6.3 then
describes the predictions of chlorophyll ¢ as made using these selected sets of bands

and the multiple regression and neural network regression methods.

6.2 Feature selection

The following three sections describe the results of the three feature selection methods

that were used. These results are then compared in section 6.2.4.

123
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Table 6.1: These features were chosen with recommendations from literature about

the prediction of chlorophyll a.

Wavelength | wave | Why chosen
(nm) band
412 2 correction for CDOM
443 6
detection of chlorophyll a
560 23
670 38
correction for sediment
710 44 correction for atmosphere
880 67

6.2.1 Hand-picking features based on other chlorophyll a stud-

ies

Using the literature a set of six wavebands was chosen (table 6.1). Several studies
recommended the waveband around 412 nm for correction for CDOM as well as re-
construction of the spectrum (Abbott et al. 1994; Carder et al. 1991; Wrigley et al.
1992). Although Aiken et al. (1995b) recommended avoiding this wavelength because
of atmospheric effects, this band was selected. Bands near 443 and 560 nm have been
the most commonly used for chlorophyll a detection and so these were included in this
set. Quibell (1991) recommended using bands at 665 and 710 nm in combination to
correct for sediment. Hence, bands at 670 and 710 nm were chosen. These bands could
also be used in combination with 880 nm for correction for atmosphere such that a long
wavelength red band was substituted for one of the 2 NIR bands suggested by Morel
and Gordon (1980) in combination with 880 nm.
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Table 6.2: Output of multiple regression on the subsets A-I.

Band | Bands Central (Bands
subset | selected wavelengths (nm) rejected)
A | 1,10, 19, 28, 37, 46, 55, 64 | 406, 469, 533, 596, 661, 725,
790, 859
B |11, 20, 29, 38, 56, 65 476, 540, 604, 668, 797, 863 | (2, 47)
C 12, 21, 30, 39, 57, 66 483, 547, 611, 675, 804, 870 | (3, 48)
D |13, 22, 31, 49, 67 490, 554, 618, 747, 877 (4, 40, 58)
E o, 14, 41, 50 434, 497, 689, 754 (23, 32, 59, 68)
F 6, 33, 42, 51 441, 632, 696, 761 (15, 24, 60, 69)
G 7,34, 43, 52, 70 448, 639, 704, 768, 899 (16, 25, 61)
H |8,17, 26, 35, 44, 53 455, 518, 582, 646, 711, 776 | (62, 71)
I 9, 18, 45, 54, 72 462, 526, 718, 783, 914 (27, 36, 63)
6.2.2 Multiple regression feature selection (MLFS)

Table 6.2 summarises the results of the multiple regression feature selection when the
nine groups of bands (as described in table 5.7) were presented to the algorithm. No
bands were rejected from subset A, two bands were rejected from subsets B, C and H,
three from D, G and I and four from E and F. Appendix C gives details of how the

multiple regression feature selection arrived at the final selection of bands.

To give the selection more meaning, the selected bands have been tabulated according
to the regions of the spectrum from which they are taken (table 6.3). As was expected,
the selected subsets contained bands from all regions of the CASI spectrum. Almost all

the red wavebands were selected and green wavelengths were most poorly represented.

Figure 6.1 summarises the bands selected by the multiple regression feature selection
when all the CASI wavebands were presented to the MLFS algorithm. Thirty-four
bands were selected from the full 72-band set. This set comprised mostly of longer

NIR wavebands and the green wavebands and fewer blue and red wavebands.
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Table 6.3: Comparison of combinations of bands selected by the multiple regression
feature selection. The rows represent the groups of bands that were selected from
and the columns represent the regions in the spectrum. The bracketed values are the

centre wavelength of the selected band.

Sub- Spectral region (band central wavelength in nm)
set blue | blue- | green red red- NIR NIR NIR
green NIR

A | o(406) | ¢(469) | ¢(533) | ©(596) | ¢(661) | (725) | ¢(790) | ¢(855)
B ¢(476) | o(540) | ¢(604) | ¢(668) o(797) | ¢(863)
C o(483) | o(547) | ¢(611) | ¢(675) ¢(804) | ¢(870)
D ¢(490) | o(554) | ¢(618) o(747) *(877)
E | o(434) | o(497) o(689) | o(754)
F | e(441) «(632) | *(696) | o(761)
G | o(448) ¢(639) | o(704) | o(768) ¢(899)
H | o(455) | o(518) | (582) | o(646) | (711) | (776)
I | e(462) | ¢(526) o(718) | ¢(783) ¢(914)

6.2.3 Neural network feature selection (NNFS)

Table 6.4 summarises the bands selected and the number of hidden nodes required
for each of the nine subsets of CASI features applied to the neural network feature

selection. Appendix D gives the details of how the function chose these configurations.

While the NNFS function was being developed, it was applied to the A to I subsets
several times. Table 6.4 shows the results of the final run. Between three and five
bands were selected during each run of the neural network feature selection from the
eight original bands in the subsets, requiring between 6 and 14 hidden nodes. The
same combinations of bands tended to be selected, particularly for subsets A, F and

I. The number of times that each band was selected for this run and the previous
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Figure 6.1: The bands selected by the multiple regression feature selection from the

entire band set

Table 6.4: Summary of output of the neural network feature selection

Band | Bands Central Number of | (Bands
subset | selected wavelengths (nm) hidden | rejected)
nodes
A 1, 10, 19, 28, 55 | 406, 469, 533, 596, 790 14 (37, 46, 64)
B 2, 20, 29 413, 540, 604 10 (11, 38, 47, 56, 65)
C 3, 21, 30 420, 547, 611 10 (12, 39, 48, 57, 66)
D 4, 40, 49 427, 682, 747 13 (13, 22, 31, 58, 67)
E 5, 23, 41, 59 434, 561, 689, 819 6 (14, 32, 50, 68)
F 6, 33, 42, 60 441, 632, 696, 826 13 (15, 24, 51, 69)
G 7, 25, 43, 61 448, 575, 704, 833 7 (16, 34, 52, 70)
H 8, 35, 44, 53 455, 464, 711, 776 13 (17, 26, 62, 71)
I 9, 27,54, 72 462, 589, 783, 914 8 (18, 36, 45, 63)

three is illustrated by the histogram in figure 6.2. The number of hidden nodes was a
little more variable. This indicated that the final error for each training was influenced
by initial weight conditions such that occasionally, particularly low final errors were

achieved with only a few hidden nodes.
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Figure 6.2: The consistency of the neural network feature selection in selecting CASI

bands

Particular regions of the spectrum were consistently selected by the function during
the A to I runs. The most notable was that the blue bands 1 to 10 (402 - 473 nm)
were always selected. This was true for all runs of the function. Conversely, blue-green
bands 11 to 16 (472 - 509 nm) were nearly always rejected. Band 19 (528 - 537 nm),
bands 28 to 29 (592 -608 nm), band 33 (628 - 636 nm), bands 41 to 43 (685 - 708 nm)
near the fluorescence feature and band 54 (779 - 787 nm) were all selected every time
the function was run. Near infrared bands 62 to 71 (837 - 910 nm) were rejected

consistently but band 72 (909 - 918 nm) was always selected.

Again, the bands that were selected are tabulated with respect to the regions of the
CASI spectrum (table 6.5). In general some particular combinations of selected bands
can be described. For subsets A - C the neural network feature selection derived
a combination of a short wavelength blue band, a central green band and a short
wavelength red band. Subsets E - H also had similar combinations to each other.
The short wavelength blue band was combined with a band on the red-NIR transition

and either a long wavelength green or a mid-wavelength red and one other NIR band.
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Table 6.5: Comparison of combinations of bands selected by the neural network

feature selection.

Sub- Spectral region (band central wavelength in nm)
set blue | blue- | green red red- NIR NIR NIR
green NIR
A | ¢(406) | ¢(469) | ¢(533) | ¢(596) ¢(790)
B | e(413) o(540) | #(604)
C | o(420) o(547) | o(611)
D | e(427) o(682) | o(747)
E | e(434) o(561) *(689) *(819)
F | e(441) o(632) | o(696) *(826)
G | (448) o(575) o(704) *(833)
H | (455) o(646) | o(711) | (776)
I | e(462) o(589) o(783) o(914)

Subset D was similar but no green or mid-red band was selected. Subset I also had
a similar combination with the exception that a band on the red-NIR transition was

replaced by a band in the middle of the NIR (band 72).

On average (mean and mode) about 10 hidden nodes were required in the final con-
figuration of the network. Except for subsets E and G at least twice as many hidden
nodes to inputs were required. With regard to the previous runs of the neural network
feature selection, all except for subsets E and G arrived at a number of hidden nodes

close to the average for the subset. For these subsets, the value for this final run was

lower than any previously obtained.
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6.2.4 Comparison of the results of the different feature selec-

tion methods

Six bands were chosen using the ‘hand-picking’ method. This was about the average
number of bands selected from the nine subsets with the multiple linear regression
feature selection. However, the neural network method, resulted in a same size or
smaller set of features. When selecting from the entire data set, the MLFS selected 34
bands, many more than had been permitted by splitting the data into subsets. This
indicated that a great deal of information about chlorophyll ¢ was held in many of
the image bands and that by separating the data into band sets A to I, the feature

selections were constrained.

There were several similarities between the different sets of selected features. All but
band 2 (413 nm)of the hand-picked features were also present in the MLFS sets selected
from the whole data set. Four of the hand-picked bands were included in the feature
sets selected from the nine subsets of the features using either the MLFS or NNFS.
The MLFS and NNFS both selected bands 1, 6 19, 28, 29, 43 an& 54 (406, 441, 533,
596, 604, 704 and 783 nm, respectively). The selection of band 1 was surprising as
this is a very noisy band. Band 6 is in a region of the spectrum popularly chosen for
predicting chlorophyll a at 440 nm. A recent study found that a band around 530 nm in
combination with a band at 600 nm was particularly useful for detecting chlorophyll a
in the North Sea (Hoogenboom et al. 1998) and this corresponded to bands 19, 28 and
29. Band 43 is close to the fluorescence peak and so may have been selected for this

reason. However other bands that are closer to the peak were not always selected.

The MLFS did not select band 40 (682 nm) when working with the subset D. This
is the band that is closest to the peak in fluorescence. However, the NNFS did select
this band. In the primary study the fluorescence feature was found to have a generally
linear relationship to chlorophyll a¢ and so it was surprising that the linear feature
selection did not select this band. It was possible that other bands in the D subset

contained more valuable information.
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Bands 41 to 43, (685-708 nm) which span the region of the fluorescence peak at higher
chlorophyll a concentrations, were selected by both the MLFS and NNFS from the
subsets E to G. However, only band 43 (704 nm) was selected from this region when
all the bands were available indicating that much the same information was contained
in all these bands. Similarly, band 72, an extremely noisy band with many zero values,
was selected by both the MLFS and NNFS as part of subset I. However, it was not
selected when the entire feature set was available. This is a particularly surprising
outcome and may indicate that this band contained important information for the
prediction of chlorophyll a that was not contained in other bands in subset I but that

was available in another, much less noisy band in the whole band set.

On the whole the linear, MLFS selected more bands than the non-linear, NNFS. Bands
on the red and NIR were favoured marginally over other regions of the spectrum by
MLFS when selecting from the subsets A to I. The NNFS method always selected short-
to mid-wavelength blue bands. When presented with the whole feature set, the MLFS
selected bands throughout the spectrum although noisy blue and NIR bands were
avoided in general. The number of bands that were selected from the full feature set
indicates that many bands were required to characterise a linear relationship between

the spectral data and chlorophyll a.

6.3 Model development using the selected feature

sets

The results of the development of models for chlorophyll a prediction are presented
in this section for multiple regression and neural network regression. The goodness
of the prediction was evaluated using quantitative and qualitative measures. Firstly,
statistical measures were used that were based on the comparison between predicted
and measured chlorophyll a concentrations in the testing set. Secondly, the results
were compared using visual measures which indicated whether errors in the predictions

occurred for particular chlorophyll a concentrations or locations along the cruise.
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6.3.1 Statistical assessment of models

Table 6.6 gives the results of the prediction of chlorophyll a concentration. These were
compared to the measured values in the testing set using the root mean squared error
of prediction (equation 4.3) and the correlation between measured and predicted values

(equation 4.2).

6.3.1.1 Multiple linear regression

The hand-picked feature set performed well in comparison to the other feature sets
with this model because the error of 2.77 pgl™! and correlation of 0.8 for this feature
set were equal to the average for all the feature sets. In general, the multiple regression
models performed marginally better with the MLFS sets A-I with an average error
of 2.72 pgl™! and correlation of 0.81 in comparison to with the NNFS sets with an
average error of 2.94 ugl™! and correlation of 0.77. The error and correlation values
were also a little less variable for the MLFS sets than the NNFS sets. The lowest
errors and highest correlations for the MLFS and NNFE'S sets A to I we achieved using
set I, however the lowest error (1.75 pugl™!) and highest correlation (0.93) overall was
achieved with the 34-band set selected using MLFS applied to all 72 bands of the CASI
imagery. The worst performing model was that using the NNFS set D, with an error
of 3.64 pugl~—! and a correlation of 0.62. There was little evidence that the number
of features in each subset was in itself important for deriving a good model as some
models with few features, such as the 4-band NNFS set I performed better than models

using more input features, such as the 8-band MLF'S set A.

6.3.1.2 Neural networks

The hand-picked set of features resulted in a neural network model error of 2.51 pgl™!
and correlation of 0.87. This was a little worse than the average error and correlation for

all the neural network models of, respectively, 2.23 pg ™! and 0.89. The neural network
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models with the MLFS sets A to I with an error and correlation of 2.05 pg{™! and
0.91, performed better on average than those with the NNFS sets, which had an error
and correlation of 2.44 ug!~' and 0.87. The model using the 34-inputs selected using
MLFS from all the bands performed well, with an error and correlation of 1.56 pg (™!
and 0.95. However, the lowest error and highest correlation (1.28 pg!~! and 0.96) were
achieved by the neural network model using the MLFS set 1. Again the performance

of the models was not strongly related to the number of features used as inputs.

6.3.1.3 Comparison of models developed

The RMSE obtained using these models was compared to that which would result from
always predicting the mean of the training set. In this case, this ‘benchmark’ error was
5.97 ugl~. For all the models the RMSE was below this mean value indicating that the
models were not simply predicting the mean value for the training set. The correlations

are all positive and statistically significant.

The 7th and 8th columns of figure 6.6 show the difference between the error and
correlations of the different models using the same sets of input features. In all but
one model (that using NNFS set C) the neural network models performed better than
the multiple linear regression using the same set of inputs. This was indicated by
the positive difference in RMSE and negative difference in correlation. However, the
difference in the error was only between 0.10 ug ™! (NNFS set C) and 1.0 ug ™' (NNFS

set I) and the difference in correlation ~ 0.1.

Comparing the averages for the feature selections it can be seen that both types of
model had lower errors and higher correlations, on average, when using the features
selected using MLFS. The mean RMSE for the multiple linear regression models with
the MLFS and NNFS sets A to I are, respectively, 2.72 and 2.94 pug!~'. For the neural
network regression models these errors are 2.05 and 2.44 pg(~!. The improvement was
therefore particularly marked with the neural network models. Both types of model

performed moderately well with the hand-picked set of features and extremely well
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with the 34-band set of features. It was possible that the models using the NNFS-
derived subsets and the neural network models using 34-inputs were not trained for
long enough to arrive at an optimal weight configuration. The NNFS subsets were
selected from the one neural network in 10 which had the most optimal initial weight
conditions (section 5.3.4), therefore it was likely that, in the final training, the initial
weights of the one network trained for each set of inputs also resulted in non-optimal
weights after only 5000 iterations. These subsets of features were also considered to
have a complex relationship with chlorophyll a concentration and so would need longer

to derive this during training (page 100).

6.3.2 Visual assessment of models

In the following pages the visual assessment of the predictions is described. This was

aimed at determining the sources of good and poor chlorophyll a prediction.

For each data point the predicted chlorophyll a concentration was plotted against the
measured chlorophyll a concentration and the grouping of points around the one-to-one
line was assessed. This allowed the identification of particular ranges in chlorophyll a
concentration that could be predicted well or predicted poorly. The diagonal line
indicates where the predicted value was equal to the measured value. Points above
this indicated that the model predicted a chlorophyll a concentration that was higher
than the measured value. Points below this line indicated that the model predicted
a chlorophyll a concentration that was lower than the measured value. The vertical

distance of the point from the line represented the magnitude of this difference.

The difference between the predicted chlorophyll a concentration and the measured
chlorophyll a concentration was also plotted against the easting co-ordinate of the
data point and regions of over- or under-prediction in the data were located. This
enabled a direct comparison of prediction error with the known sources of error as
derived in section 2.7. If there was some locational reason why predictions at some

data points were good or poor this could be identified as ‘structure’ in these plots. The
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horizontal line indicated no difference between measured and predicted values. Points
above this line indicated that the model predicted a chlorophyll a concentration that
was higher than the measured value. Points below this line indicated that the model
predicted a chlorophyll a concentration that was lower than the measured value. The

vertical distance of the point from the line represented the magnitude of this difference.

6.3.2.1 Multiple linear regression

In figure 6.3 the data points generally formed a curve about the one-to-one line with
predicted values lower than measured values at the lowest and highest measured chloro-
phyll @ concentrations and higher predicted than measured values for the medium
chlorophyll a concentrations. However, this was not evident with the 34-input model
where the cluster was evenly distributed about the one-to-one line throughout the
range of measured chlorophyll a concentration. The alignment to the one-to-one line
was particularly poor for models with NNFS sets B, C, D and 1. Here lower chloro-
phyll a concentrations are reasonably-well predicted but overall the models tended to
predict a concentration of around 11-12 pgl~!. This was close to the mean for the

training set and so the good RMSE found was a little misleading.

The difference between measured values and those predicted using the multiple linear
regression model showed a similar variation with geographical location for all models
(figure 6.4). The models with MLFS sets A, B, F, G and H displayed a more even
distribution of error over space and the model using the MLF'S from all bands displayed
the least structure over space. Other models however, particularly those with NNFS
sets B, C, D, and E, displayed much more structure over space. The main feature
in this variation of error over space, which is evident in all the plots to some degree,
is a large under-prediction, sometimes of more than 10 pgl~!, at about 585000 m
east. This was located approximately in the middle of image 1877 and appeared to
correspond to a large trough in the second principal component (figure 2.22). A peak
in values at 630000 m east for many of the predictions corresponded to a peak in the

first principal component and a large trough in the second principal component. This
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peak, sometimes followed by a trough (especially in the case of NNFS set D), was also

evident in many of the plots.

Another feature that was also common in most of these plots was an narrow region
of over-prediction of up to 10 pgl™! at about 606000 m east, or conversely, under-
prediction in the models with NNFS sets D and I. This corresponded to the region in
which the principal components had a high variance. This geographical location and
also the filament depicted by the colour green where the blue-green ratio was plotted
against chlorophyll a in diagram figure 4.3 and was probably due to the brightening of

spectral values due to increased path radiance at the edge of the image.

Also, all the plots displayed another region of over-prediction at 625000-635000 m east.
This was attributed to the brightening of pixel values in the corresponding location
of image 1875 as can be seen in figure 2.1. A region in which the difference between
the measured and predicted chlorophyll a concentration varied a great deal for many
models was the very far east of the data. Here, the difference between the times of the
over-flights and the in situ sampling was greater than 2% hours and so the error may

not have been in the prediction but rather the co-location of the in situ measurement

with particular spectral values.

6.3.2.2 Neural networks

In figure 6.5 the data points from all the models tended to cluster tightly about the
one-to-one line with little evidence of bias. One feature of note was the over-prediction
of values where measured concentrations were about 5-7 ug{~!. This may have resulted
from the method chosen to select the training data set which picked data points evenly
along the range of possible values. In so doing, the number of training samples was
reduced and it was possible that not enough examples from the chlorophyll a concen-
trations in the range 5-7 ug (™! were provided during training for the network to learn

the range of spectral values that corresponded to these chlorophyll a concentrations.

Only a few structures were evident in the plot of the difference between the measured
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and predicted chlorophyll a concentrations against location (figure 6.6) and these are
most evident for the models using the NNFS sets A to H as inputs. A large over-
prediction was visible at about 630000 m east. This was greatest for the models which
displayed a filament at 5-7 ugl™! in figure 6.5. These data points for which the over-
prediction occurred were located in the region of brightening in image 1875 as noted
in section 6.3.2.1. There were also many data points at an easting of 605000 m east
for which the predictions had been extremely high or low compared to the measured

chlorophyll a concentration.

6.3.2.3 Comparison of models developed

In the visual assessment of the prediction made by the multiple linear regression and
the neural network models the multiple linear regression models displayed more bias in
the predictions both over the range of measured chlorophyll a concentrations and due to
data from particular regions of the study site. The latter effects were often attributable
to environmental factors such as sediment in the water, atmospheric effects or to effects
caused by changes in viewing angle. The neural network predictions fitted most closely
the measured values over the whole range of chlorophyll a concentrations and also
seemed less affected by the environmental factors. In particular, the neural network
models appeared to be unaffected by the factor that caused large errors in the multiple
linear regression model at about 585000 m east. Since a trough was found in the 2nd

principal component at this location, it was thought that CDOM may have been high

in this region.

Where the neural network models were affected by local factors these were often differ-
ent to the ones that affected the multiple regression models. The neural networks were,
however, affected by the choice of training data. The magnitude of the error evident
in these plots was variable with the set of inputs used for the models. Generally, the
models with the MLFS sets showed the least structure with measured chlorophyll «

concentration and over the course of the cruise.
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Summary of chapter 6

In this chapter the features that were selected by three methods of feature selection have
been presented. The multiple regression feature selection tended to select more features
given the same number of features in the initial set. Given the whole set of 72 bands,
this method selected 34 bands that provided adequate information for the regression.
Features from throughout the spectrum were selected together, including noisy bands
in the blue and NIR. However, the neural network feature selection tended to favour
the short wavelength blue bands. Models for predicting chlorophyll a concentration
were developed and an assessment of their predictions has also been presented here.
The multiple regression models did not perform as well as the neural network models.
Also, both models performed better with the MLFS sets than the NNFS set. The
best performances were achieved using the 34-band feature set with the multiple linear
regression models and the MLFS set I with the neural network models. Most of the

error in prediction could be attributed to environmental factors that were evident in

the data.

The results of the feature selection provide a new understanding of the nature of the
relationship between chlorophyll a and spectral information given the region of the
spectrum. It has been shown that the spectral features that have traditionally been
used for ocean colour research are not the most appropriate when non-linear models are
available. The technique of removing noisy data has also been shown to be unnecessary

when regression techniques that are robust to noise are to be used.

The method of analysing the error in prediction both across the range of prediction
and over space has not been previously applied in similar studies and it has provided
some information as to why the prediction is poor in some cases. It has also shown that
the predictions by the linear regression and the neural network regression are affected

by different factors in the data.
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Table 6.6: The root mean squared error (RMSE) of the chlorophyll ¢ and the
correlation between the predicted and measured chlorophyll a are presented here
for each subset of CASI bands and for both multiple linear regression and neural
network regression. The difference between these values for the regression methods is

calculated by subtracting the value for the neural network from that for the multiple

regression.
Multiple linear Neural network

FS regression model || regression model | RMSE corr'n’
method | subset RMSE corr'n! || RMSE corr'n! | difference | difference
HP all 72 2.77 0.80 2.51 0.87 0.27 -0.07
ML A 2.74 0.81 2.20 0.90 0.54 -0.09
ML B 2.72 0.81 2.11 0.91 0.61 -0.10
ML C 2.74 0.81 1.83 0.93 0.90 -0.12
ML D 2.83 0.79 1.89 0.92 0.94 -0.13
ML E 2.99 0.76 2.47 0.87 0.51 -0.11
ML F 2.77 0.80 1.95 0.92 0.82 -0.11
ML G 2.79 0.80 2.40 0.88 0.39 -0.08
ML H 2.60 0.83 2.30 0.89 0.31 -0.06
ML I 2.26 0.87 1.28 0.96 0.98 -0.09
ML all 72 1.75 0.93 1.56 0.95 0.19 -0.02
NN A 3.01 0.76 2.21 0.90 0.79 -0.14
NN B 3.16 0.73 2.74 0.84 0.42 -0.11
NN C 3.06 0.75 3.16 0.79 -0.10 -0.04
NN D 3.64 0.62 3.29 0.81 0.35 -0.19
NN E 2.84 0.79 2.38 0.88 0.46 -0.09
NN F 2.65 0.82 2.19 0.89 0.47 -0.07
NN G 2.82 0.79 2.11 0.90 0.71 -0.11
NN H 2.68 0.82 2.29 0.89 0.39 -0.07
NN I 2.62 0.82 1.63 0.94 1.00 -0.12
whole column p* | 2.77 0.80 2.23 0.89 0.55 -0.10
MLFS sets A-I ut || 2.72 0.81 2.05 0.91 0.67 -0.10
NNFS sets A-I pt || 2.94 0.77 2.44 0.87 0.50 -0.10

corr'n’ = correlation, u! = mean
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Figure 6.3: Plots of predicted values using multiple regression against the measured
values for all the feature sets. Values can be assessed by their deviation from the
one-to-one line. FS method = feature selection method, HP = hand picked, ML =

multiple linear regression, NN = iterative neural network regression
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Chapter 7

Discussion

This research has investigated new techniques of predicting chlorophyll a from remotely
sensed data where the spectral signal is significantly affected by environmental and
sensor conditions. A typical set of remotely sensed and in situ data were obtained for
this purpose and the approach taken was to use a very analytical method throughout
the research. At each stage the findings were assessed and used to determine the
direction that the next stage should follow. The following discussion draws all the

findings of each stage of the research together to address the objectives set out at the

beginning of the research.

The premise of this research was that the relationship between chlorophyll a and the
detected spectral signal was non-linear and complex when affected by other environ-
mental factors. A method by which non-linear models of varying complexity could be
built easily was required. As demonstrated in chapter 3, neural networks were chosen
as a method of regression because they are directly comparable to the more conven-
tional method of multiple linear least-squares regression. The neural network technique
is quite simple. However, it was also found to be time-consuming when more complex

networks were being trained.

The choice of the neural network technique was validated in chapter 4 where it was

144
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shown that models developed using the neural network technique always predicted
more accurately than equivalent least-squares models. For example, the linear neural
network model with the blue and green inputs predicted chlorophyll ¢ with an RMS
error of 4.11 pugl™' whereas the linear least-squares model predicted with an error of
34.78 pugl~'. Furthermore, it was found that the different neural network architec-
tures were simple to compare and thus the importance of different aspects of model
development could by determined. The choice of the neural network technique was
further supported in the final part of the research where the non-linear neural network
models consistently produced more accurate predictions that were less affected by the

known environmental influences than the linear multiple regression models with the

same inputs.

This research aimed to determine if better algorithms could be developed for a ’typical’
data set. Typically, imagery used to investigate chlorophyll a in the coastal zone is high
spatial resolution airborne imagery. In the United Kingdom, CASI is often the instru-
ment of choice to agencies investigating because its configuration is flexible. Although
CASI has a very good noise level, over water the signal is low and so environmental and
sensor effects can be strong. Both cluster analysis and principal component analysis
demonstrated that, although the signal varied with chlorophyll ¢ in the water, other

environmental factors were having a strong, sometimes stronger effect on the signal.

Unfortunately, it was not possible to verify what factors in the environment caused
these effects without the appropriate in situ measurements. Instead, a conjecture of
the possible elements of the environment with which the principal components were
correlated was made. Principal components 1 and 2 clearly were not related to chloro-
phyll a. An inspection of the imagery found that peaks in the first principal component
corresponded to brighter regions in the water. The shape of the eigenvector correspond-
ing to the second principal component indicated that CDOM may also be present in the
scene. Because nothing was known about the distribution and spectral characteristics

of these environmental factors is would have been unwise to try to correct for them.

A useful investigation used the information found in chapter 2 to determine whether
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these factors could be shown to have a strong influence on the predictions. Two of
the simple band ratios derived in the primary study were found to display filaments
when plotted against chlorophyll a. An investigation into the nature of these filaments
showed that they represented data points from different geographical regions. The
blue-green ratio and the red-NIR ratio seemed to be affected by the changing spectral
values recorded along the flight path as highlighted by the statistical analysis of the
data (section 2.7.1) and cluster analysis of the data (section 2.7.3).

The data were also found to have strong sensor effects. Particularly strong was the
noise that manifested with- and cross-the flight direction and the brightening of values
at the edges of the image rows. The blue-green ratio, when plotted against chlorophyll a
concentration was also clearly affected by the area of anomalous principal component
values in the middle of image 1876 and this was probably due to data points having
increased DN values as a consequence of being located close to the edge of the image.
These effects were systematic and it would have been possible to correct for them,
for example, each row in the un-geometrically corrected image could have had its
pixels values adjusted according to some average of surrounding rows. Also, a model
could have been fitted to the edge-brightening in the image and the brighter values
adjusted accordingly. However, in accordance with the objective of the research to use
a 'typical’ data set, these corrections were not performed. Instead, the noise in the

data was reduced by applying an averaging filter to the data.

The averaging filter also had the effect of mitigating errors in the co-location of data
points. It is a simple technique that is commonly applied to data and may be considered
an extension of the averaging performed by the sensor. Therefore, this study was
undertaken with a data set containing realistic environmental effects and also several
sources of error. However, only one basic pre-processing technique was applied to the
data and so the results of this research are widely applicable to many such studies of

chlorophyll a in Case 2 waters.

The investigation using simple least-squares linear regression confirmed that the usual

method of developing chlorophyll a prediction models was not adequate for the present
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data set. The linear and non-linear neural networks, however, tended to predict far
more accurately. Although the more complex of these models were a little more accu-
rate in prediction, the greater improvement in prediction was achieved with non-linear
models. In the final development of models in chapter 6, the non-linear models again
performed better than the linear models. However, it was apparent in the NNFS that
the number of hidden nodes was not so vital in the development of an accurate model.
Instead it was indicated that the optimal number of hidden nodes was determined by
the weight initiation because the selected number of hidden nodes tended to vary with
each training. Throughout this research it has become evident that non-linear regres-
sions produce more accurate models but that the models do not need to be particularly
complex. This is a particularly encouraging finding because it indicates that methods
by which chlorophyll ¢ prediction models are derived do not need to be overly com-
puter intensive, rather attention for developing these models may be focused on other

factors that will ensure a more accurate model.

One such factor, that was highlighted as very important throughout this research was
the type and combination of feature that was to be input to the model. Much previous
research into creating better chlorophyll a prediction models has concentrated on which
features in the spectrum are best for the prediction. The primary study showed this to
be a well-founded exercise as the most important factor in the accuracy of prediction
was the spectral features used. Not only did an increase in the number of input features
greatly reduce the error but particular features, in this case the blue band and the FLH,

tended to be inputs to the more accurate models.

A deeper investigation into the features that were useful for predicting chlorophyll a
concentration was undertaken, using three techniques of feature selection. The first
of these used the common technique of selecting bands according to their known rela-
tionship to chlorophyll a and other environmental factors. This method selected bands
that were different to the bands selected using the two automated methods which were
based on the accuracy with which models predicted chlorophyll a. This indicated that
certain bands, although alone being of little use to chlorophyll prediction, worked well

in combination with other bands. It was a surprise that, when presented with all the
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bands, the multiple regression feature selection (MLFS) determined that 34 were re-
quired for the accuracy of the prediction to remain statistically significant. With all
these bands as inputs, both the linear and non-linear models produced very accurate

predictions.

It is unfortunate that this research was unable to perform the NNFS with all the
72 bands. It was estimated that this would take several months to perform. The
computational intensity of this technique is a limit to its more widespread use. However,
the sets of features selected by NNFS in this research have provided a much greater
understanding of the nature of the chlorophyll a to spectra relationship. It was clearly
found that, where non-linear models may be developed, the blue region of the spectrum

should be utilised.

It was clear that the regions of the spectrum that were most suitable for predicting
chlorophyll a were determined by the type of model used. In the primary study, it
was found that the blue, green and red image bands tended to perform better with the
non-linear models whereas the FLH feature performed well within linear models and
tended to reduce the training time required for non-linear neural networks, indicating

that these were also converging on a linear solution.

As in the primary study, it was found that certain bands were more relevant to cer-
tain types of model. The linear MLFS tended to select green and red bands. The
non-linear feature selection (NNFS) consistently selected blue bands. This was un-
expected because these bands had been shown to be the most noisy, even after the
two-dimensional Gaussian filter had been applied to the image (section 2.7.5). Previ-
ous studies have removed noisy bands (e.g. Benediktsson et al. 1995) but this may
not have been well-founded. This indicated either that the neural network method was
far more robust to noise in the data or that the blue wavebands had a very non-linear
relationship to chlorophyll a concentration and so would not produce good predictions
in a linear model. Another consideration was that, along with band 72 (913 nm), these
noisy bands may have ensured that the function did not over-train. The work of Gross

et al. (1999) showed clearly that the neural network required noise in the training
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data to enable a good generalisation. This validates the choice of feature selection
algorithms because alternative algorithms that do not base selection on the accuracy
of prediction are more likely to select features for which generalisation of the model is
poor. It is likely that blue wavebands were consistently selected for the neural network
because of a combination of all these factors. Firstly that useful information was held
by these bands but it had a non-linear relationship to chlorophyll a concentration and
secondly that the noise in the data allowed the noise-robust neural network to extract

this information without over-fitting to the training data.

The different types of model were also found to respond differently to the error in
the data. By comparing the spatial distribution of error with the conjected sources of
error, as represented by the first and second principal components and the estimate
of tidal flow between sampling, it was possible to identify the causes of poor predic-
tions. For example, it was apparent that the error in the linear models was frequently
concentrated around a region of the cruise track around 585000 m east. This corre-
sponded to a marked change in values for the second principal component. However,
the neural network models did not show any increase in error for the same data. Both
the models were affected by some influence around 630000 to 640000 m which could be

correlated with a combination of changes in value in both the first and second principal

components.

Because it has been shown that a non-linear model is better for determining the concen-
tration of chlorophyll a in the water, it follows that other constituents do not linearly
vary with the spectral values. Therefore, it was difficult to determine which envi-
ronmental factors caused each of these regions of error. However, this technique of
qualitatively investigating error was a valuable method which would be worth extend-

ing to use with a more comprehensive set of in situ data.

The visual assessment of the correlation between measured and predicted chlorophyll a
concentrations was particularly useful to determine the reliability of the models. Of-
ten, although the RMS error and correlation coefficients for some models was found

to be good, the data were clearly not distributed evenly about the line of measured
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chlorophyll a=predicted chlorophyll a. This was particularly true for the linear mod-
els and should be born in mind when considering the quantitative assessments of their
goodness of prediction. The corresponding values for the non-linear models fitted much
better to this 1:1 line. This is another simple analysis technique that was found to have

a great deal of value when assessing the goodness of prediction models.

This technique also highlighted another issue worthy of discussion. For the non-linear
model a large over-prediction was frequently evident for measured chlorophyll a con-
centrations of between 5 and 7 ugl™'. Such an over-prediction was evident in a few
of the 1:1 plots in the primary study, however the error in prediction for the models
on chapter 6 was quite considerable - up to 25 pug!~!. This was thought to have been
caused by the change in the method by which the training data were selected between
the primary and secondary study. The method that was used in the primary study in-
volved simply taking a random sample from the data as the training set. This resulted
in a training set with much the same distribution as the testing set. Because a large
proportion of the data were found in a short range of chlorophyll a concentrations,
it was thought that this selection biased the regression towards this range of values
by effectively providing a priori information about the data distribution to the neural
network (Foody et al. 1995a; Foody et al. 1995b). Therefore, the training data sets
used in the subsequent research were selected evenly from throughout the range of
chlorophyll a concentrations. This did not bias the predictions towards certain values,
however it was thought that not enough training examples were provided to charac-
terise the relationship between chlorophyll a concentration and spectral values and
this was noted particularly in the neural network models’ prediction of a chlorophyll a
concentration of about 6 pug{™!. Clearly it was important to characterise the data well

in the training set to ensure a good prediction of test data chlorophyll a concentration.

Another aspect of the research which may have resulted in a greater accuracy was
to refine the neural network parameters. Only the neural network inputs, number of
hidden nodes and training time were varied during the course of this research. The use
of the neural network was therefore kept simple and the results achieved are attainable

by any researcher in the field of Ocean Colour.
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An assessment of the mean squared error achieved during training found that this was
clearly declining up until the training was stopped. The validation error was used as
an indicator of optimal training times in the primary study but it was found later that
although the validation error tended to increase after an initial trough, it always began

to decline again beyond 2000 iterations.

Because the procedure involved 10 networks working on the same problem it was likely
that the training error achieved during the feature selection was perhaps optimal,
given the neural network parameters. One network in the 10 achieved the lowest error
because its initial weight conditions were the nearest to optimal. When testing the
neural network models, the errors were greater than during the NNFS. The one neural
network being trained during this testing stage probably did not start with the near-
optimal initial weight conditions that the one neural network in ten feature selection
network did. Therefore, this network probably did not reach the global minima in
weight space at the time that the training was stopped. Better results may have been
achieved by training for longer, training several times and choosing the network with
the lowest error or adding a momentum term which would allow the training algorithm
to find other minima in weight space and thus perhaps the global minima. Again,
to keep the procedure simple, the networks were all trained for what was considered
a reasonable number of iterations. Other parameters that could have been altered
were the activation function (a tanh was used here), the number of layers (there were
two in this research) and the learning rate (which was always set to 0.001). However,
a low training error does not necessarily indicate a good testing error because there
is a danger of over-fitting the model to the training data. This research found that
the most straight-forward use of neural networks allow well-generalised models for

predicting chlorophyll a in Case 2 waters to be developed.

This research was not able to apply these results to another data set of a different region
or a different season. It is likely that the relationship between chlorophyll a and spectral
information will change under different conditions (Kutser et al. 1995). However,
the neural network was crucial in the development of a method for investigating this

relationship that shall be useful in future work to extend knowledge about using remote
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sensing to detect chlorophyll a in Case 2 waters.



Chapter 8

Conclusions

8.1 Summary of thesis

In previous ocean colour studies, a number of spectral features have been used to de-
termine the concentration of chlorophyll @ in water. In open ocean water, a linear
model using a blue-green band ratio has been found to be adequate. However, in wa-
ters affected by environmental factors other than chlorophyll a other features from the
spectrum have been used. More recently models that require more than one spectral
feature as inputs have been developed and a few studies have used neural networks in
the development of non-linear chlorophyll a prediction models. The research presented
here has built on these previous works by investigating the value of using neural net-
works to develop chlorophyll a prediction models where the error in the data was large

and difficult to correct for - a typical data set.

The various sources of this error were investigated and it was found that a number
of factors had a greater influence on the spectral values than did chlorophyll a. The
data were also found to be highly affected by noise. However, it was confirmed that
the chlorophyll a signal was present in the spectral measurements and a qualitative

assessment was made of the main sources of error in the data using statistical, cluster
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and principal component analyses and calculation of the presence of error due to tidal
motion of the water. This investigation resulted in a clear understanding of the sources
of error that were likely to be encountered when predicting chlorophyll a from these

data according to both the spectral and geographic regions in the data.

Single- and multi-layer perceptrons were chosen to derive chlorophyll a prediction mod-
els. This type of neural network was well used and understood and could be directly
compared to simple and multiple linear regression because the same least-squares tech-
nique was used to fit the models to the data. This error minimisation technique assumes
that the output error has a normal distribution. The ability to develop and compare
several models of varying linearity and complexity at the same time was useful to
the investigation of the nature of the relationship between chlorophyll ¢ and spectral

information. Early on the need for a selection of model inputs was recognised.

The data were divided randomly into training, validation and testing sets. Chloro-
phyll a prediction models were developed using the standard linear regression and
neural network techniques with the training and validation sets. The spectral features
for these models were selected using information from previous studies and from rela-
tionships that had been found within the data. These models were then assessed using
a number of methods to determine their validity and their ability to predict chloro-
phyll a in the testing data set. The linearity, complexity and inputs to the models were

also compared to determine which were the most important factors in the accuracy of

the predictions.

Building on the findings of this investigation, the technique was refined to investigate
the spectral dependence of the relationship between chlorophyll a and spectral infor-
mation. The training data were chosen this time to be distributed evenly about the
range of the chlorophyll a concentrations. A standard technique of selecting spectral
bands was compared to two feature selection methods that were closely related to the
regression techniques to be used. The resulting sets of features were then regressed on
chlorophyll a to produce further chlorophyll a prediction models. Both the results of

the feature selection and the prediction of the models were assessed to identify which
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spectral regions were the most useful given the model to be used and the environ-
mental conditions of the scene. The error in the model was used to determine which

environmental factors were likely to result in the most error and with which models.

This work has made several contributions to research in the field of ocean colour re-
mote sensing. A number of simple techniques have been demonstrated that extract
valuable information from a data set. For example, the spatial locations of environ-
mental substances that are likely to strongly affect the remotely sensed signal may
be estimated using cluster analysis and principal component analysis. Also, by in-
vestigating the architecture and the manner of training of a simple neural network,
details about the relationship between the spectral input data and the chlorophyll a

concentration output data may be inferred.

Two techniques that have proved particularly valuable were those of neural network
regression and automated feature selection. The former technique allowed the inves-
tigation of the linearity and complexity of the relationship between chlorophyll ¢ and
remotely sensed spectra to be thoroughly investigated. The latter showed that there
may be better sets of spectral features for chlorophyll a prediction than those that are

indicated by the knowledge of the spectral signal of chlorophyll a.

Therefore, although many of the findings of this research may only relate to the Norfolk
30/05/96 data, they do indicate a need for a more thorough investigation of ocean
colour data. Furthermore, the techniques presented here may be applied to any new
data set being analysed. The conclusions of any such investigation will then be of great

value to the ocean colour community.

8.2 Further work

This research was undertaken in a sequential and modular fashion with the results
at each stage being used to determine the method for the next. Although the final

conclusions of the current research are laid out in the next section, the success of this
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research indicates that there remains a great deal of potential for further investigations
in this area. The areas in which the research could develop further are the data used in
the research, the type of input features used and the refinement of the neural network

method. These topics are addressed under their respective headings below.

8.2.1 The data set

This research only covered one site at one date. There is a great deal of evidence
that different chlorophyll a prediction algorithms are required for each site and season
and so this research should be extended to include different conditions. There were a
number of aspects to the data for which it was difficult to ascertain the accuracy of the
data. There were just enough in situ measurements of chlorophyll a for the calibration
of the fluorometer data but a more comprehensive set of calibration points would have
allowed greater confidence in this calibration. There were also uncertainties with the
co-location of some data points, especially when there was a difference of several hours
between in situ measurement and overflight. Ambiguities such as these are to be
expected in real data, however where a number of cruises and over-flights have been
performed for several different seasons, it should be possible to select enough of the

more reliable data to provide a very useful data set for the development of this research.

Where it is necessary to derive unique empirical chlorophyll a predictions models for
each site, the derivation of reliable models is usually restricted by the number of lo-
cations for which both spectral and chlorophyll ¢ measurements are available. The
research presented here used the maximum number of samples available for training
the regression algorithms. However, it would be of value to determine the accuracy
which may be achieved using fewer data points and which methods of determining the
model parameters (conventional or neural network) are most suited to research with a

limited data set.

Another source of spectral measures are space-borne data. Space-borne sensors have

necessarily a much coarser spatial or spectral resolution (or both). It would be worth-
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while investigating how the results from this research ‘scale-up’ to the resolution of
sensors such as SeaWiFS. Such an investigation would be of relevance to the design of

future space-borne sensors, specifically aimed at viewing coastal regions.

8.2.2 The spectral features

Initially, many different types of feature were investigated for this research. The original
bands were used but the value of other more complex bands is recognised. In section
1.3 band ratios and differences and spectral derivatives were discussed. These features
have shown more potential than the simple image bands in many studies and so should

be useful inputs to a neural network model.

With access to a spatial data set, it seemed pertinent to investigate the potential of
using spatial information as an input to chlorophyll a prediction models. Since the
1970s, a great deal of interesting research into the spatial variability of phytoplankton
has been undertaken. By comparing the spatial variation of chlorophyll a to other
tracers of ocean currents such as temperature or suspended sediment, it has been
noticed that at certain spatial scales the variance spectra of the two factors diverge
or, similarly, the autocorrelation between them declines (Denman 1976; Steele and
Henderson 1979; Gower et al. 1980; Campbell and Esaias 1985; Strutton et al. 1997).
This occurs when phytoplankton growth or zooplankton grazing is at a greater rate

than the dissipation of energy by eddies (Denman and Platt 1976; Davis et al. 1991).

In waters where the spatial distribution of phytoplankton is thought to be a conse-
quence of currents the spatial distribution of tracers which are easier to detect, such
as suspended sediments, may be used as an aid to determination the distribution of
chlorophyll a. Under those conditions when the spatial signal of phytoplankton can be
separated from that of tracers in the water, the spatial information in the data should
be investigated for use in chlorophyll a prediction where suspended sediments strongly

affect the water-leaving signal.
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Neural networks are ideally suited to the input of spatial information (Miller et al.
1995). For example, multidimensional input arrays can be used to account for spatial
and spectral dimensions in the data. This may remove the need for an averaging

window around the data points to correct for noise.

It was noted in the primary study that bands that were close to one another may
have been more useful in the prediction of chlorophyll a because they were similarly
affected by environmental influences. This was not investigated further due to a need
to restrict the size of data sets from which features were selected. However, it is worth
investigating in future research as the relative location of ideal bands for predicting
chlorophyll a is of great relevance to ocean colour research and to the design of ocean

colour sensors in the future.

8.2.3 The neural network

There are a great many techniques being ‘developed in the field of neural networks
which may be applicable to this field of research. It is important that the subject area
be fully understood before applying any new method, to ensure that it is suitable to
the problem. The research presented here has highlighted a number of areas in which
the current feed-forward/back-propagation method could be developed. For example,
it was thought that the final networks did not achieve a global error minimum. Future
studies could simply train the network for longer, or utilise parameter optimisation

algorithms other than the gradient descent algorithm used here.

Another issue raised in this research is the noise level of the data. It was considered
possible that the noise in the data improved the generalisation during training. Pro-
viding noise explicitly in the input has been suggested (Sietsma and Dow 1991; Bishop
1995) and certainly could prove useful in this case. The explicit addition of noise in
the input would therefore allow the information value of bands selected by the feature

selection to be better investigated.
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A number of neural networks were trained in this research. Although some were found
to give better predictions than others, all the networks trained in the secondary study
predicted to within a reasonable accuracy. Rather than selecting the best neural net-
work to predict chlorophyll a concentration in a future study, it may be expedient to
combine the ’expertise’ of all the networks in a committee of networks (Bishop 1995).
Such a network has as inputs the predictions from several other networks. In this way
the curse of dimensionality is avoided because each network only deals with a small
amount of data. The accuracy of prediction may also be increased and furthermore the
resulting network may predict chlorophyll a concentration in new data with greater
accuracy. This technique may be applied to feature selection such that all the available

image bands may be selected from.

It is beyond the scope of this research to investigate the many different neural net-
work techniques that may be of use in producing chlorophyll a prediction algorithms.
However, the basic techniques demonstrated here have shown a great deal of potential.

This indicates that there is value in exploring further the new developments in the field

of neural networks.

8.3 Conclusions

The approach taken in the research presented here is highly analytical. All aspects
of the regression of chlorophyll a on spectral data have been investigated thoroughly.
This includes the quality of the data, the linearity and complexity of the models used
and the causes of error. Performing such a complete examination of the regression has
not previously been undertaken in the field of ocean colour. Furthermore, applying
the two automatic methods of feature selection is a new approach to the problem of
designing robust models for the prediction of chlorophyll a. The method by which
neural networks were employed to investigate the nature of the chlorophyll a-spectra
relationship is original in remote sensing as a whole. Prior to this research, the data

used with neural networks has not been typical of that used by bodies interested in
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detecting chlorophyll a in Case 2 waters. However, this research uses a very typical set

of data.

Not only were these techniques entirely novel, but they have enabled a valuable con-
tribution to the knowledge in the field of ocean colour. The following pages summarise

these findings according to the aims of this investigation into the Norfolk 30/05/96

data.

1. The separability of the chlorophyll a spectral signature in the presence of other

environmental factors and sensor noise

e The spectral signal from chlorophyll a may be separated from those of the
atmosphere, suspended sediment and CDOM

e However it was apparent that the signal could not fully be separated using
a linear technique

2. The severity of the contaminating signals and noise

e Other environmental factors and sensor noise have a much stronger influence
on the detected spectral signal than does chlorophyll a

e One spectral feature is not adequate to characterise the change in chloro-

phyll @ under these circumstances

3. The applicability of neural networks to predicting chlorophyll ¢ concentrations

from spectra contaminated by other environmental factors and sensor noise

e Neural networks provide a convenient method by which non-linear multiple

regression may be achieved

e All stages of the training of neural-networks provide useful information

about the nature of the chlorophyll a-spectra relationship
4. A comparison of linear regression and neural network regression techniques

e Neural networks almost always outperformed linear regression models
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e The neural network was, however, more time-consuming to train

e The neural network tended to require fewer bands to produce a better pre-
diction model

e The multiple linear regression models tended to be more strongly affected
by environmental factors whereas the neural network models tended to be

more strongly affected by the data set used for training

5. The nature of the relationship between chlorophyll a and different regions of the

spectrum

e FLH has a linear relationship to chlorophyll a

e The blue region of the spectrum is noisy and has a non-linear relationship
to chlorophyll a

e Other regions of the spectrum did not show a strong non-linear relationship
to chlorophyll @ but by the increase in performance with fewer bands, it was
inferred that some extra information was available to the non-linear models

from throughout the spectrum

6. The identification of the most appropriate spectral regions for the prediction of

chlorophyll a concentration

e Where possible, a selection of features that is based on the goodness of
prediction using those features should be used to highlight useful features
in the data that may not be uncovered by conventional methods

e Features with a linear relationship to chlorophyll a such as FLH are useful
for linear regression-derived models

e The blue spectral region contains a lot of information about chlorophyll a
concentration but is only useful if a non-linear model that is robust to noise

may be derived

7. Other findings

e It is important to use the most suitable features for the type of prediction

model to be used
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e The use of several types of model assessment techniques (qualitative and
quantitative) is desirable to gain a full understanding of the performance of

chlorophyll a prediction models and sources of error

The techniques and results presented here have shown that reliable chlorophyll a pre-
diction algorithms can be developed even for regions previously thought to be too

contaminated by other spectral signatures.
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The CASI enhanced spectral

bandset
Band Lower limit (nm) Centre (nm) Upper limit (nm) Width (nm)
1 401.6 405.7 409.8 8.2
2 408.6 412.7 416.8 8.2
3 415.6 419.7 423.8 8.2
4 422.6 426.7 430.8 8.2
5 429.7 433.8 437.9 8.2
6 436.7 440.8 444.9 8.2
7 443.7 447.8 451.9 8.2
8 450.8 454.9 459 8.2
9 457.8 461.9 466 8.2
10 464.9 469 473.1 8.2
11 471.9 476 480.1 8.2
12 479 483.1 487.2 8.2
13 486 490.1 494.2 8.2
14 493.1 497.2 501.3 8.2
15 500.1 504.3 508.5 8.4
16 507.1 511.3 515.5 8.4
17 514.2 518.4 522.6 8.4
continued on next page




continued from previous page

Band Lower Limit (nm) Centre (nm) Upper Limit (nm) Width (nm)
18 521.3 925.5 929.7 8.4
19 528.3 532.5 936.7 8.4
20 535.4 539.6 543.8 8.4
21 542.5 046.7 550.9 8.4
22 049.6 953.8 258 8.4
23 956.7 560.9 065.1 8.4
24 563.8 068 572.2 8.4
25 570.9 575.1 579.3 8.4
26 578 582.2 586.4 8.4
27 585.1 589.3 593.5 8.4
28 592.2 596.4 600.6 8.4
29 999.3 603.5 607.7 8.4
30 606.5 610.7 614.9 8.4
31 613.6 617.8 622 8.4
32 620.7 624.9 629.1 8.4
33 627.9 632.1 636.3 8.4
34 635 639.2 643.4 8.4
35 642.1 646.3 650.5 8.4
36 649.3 653.5 657.7 8.4
37 656.4 660.6 664.8 8.4
38 663.6 667.8 672 8.4
39 670.7 674.9 679.1 8.4
40 677.9 682.1 686.3 8.4
41 685.1 689.3 693.5 8.4
42 692.2 696.4 700.6 8.4
43 699.4 703.6 707.8 8.4
44 706.6 710.8 715 8.4
45 713.8 718 722.2 8.4

continued on next page
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Band Lower Limit (nm) Centre (nm) Upper Limit (nm) Width (nm)
46 720.9 725.1 729.3 8.4
47 728.1 732.3 736.5 8.4
48 735.3 739.5 743.7 8.4
49 742.5 746.7 750.9 8.4
50 749.7 753.9 758.1 8.4
o1 756.9 761.1 765.3 8.4
52 764.1 768.3 772.5 8.4
53 771.3 775.5 779.7 8.4
54 778.6 782.8 787 8.4
5% 785.8 790 794.2 8.4
56 793 797.2 801.4 8.4
o7 800.2 804.4 808.6 8.4
58 807.5 811.7 815.9 8.4
09 814.7 818.9 823.1 8.4
60 822 826.2 830.4 8.4
61 829.2 833.4 837.6 8.4
62 836.5 840.7 844.9 8.4
63 843.7 847.9 852.1 8.4
64 851 855.2 859.4 8.4
65 858.3 862.5 866.7 8.4
66 865.5 869.7 873.9 8.4
67 872.8 877 881.2 8.4
68 880.1 884.3 888.5 8.4
69 887.4 891.6 895.8 8.4
70 894.7 898.9 903.1 8.4
71 902 906.2 910.4 8.4
72 909.3 913.5 917.7 8.4




Appendix B

Calculating the tidal motion of the
sampled parcels of water

>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>

% TIME:

time = [1000 1100 1200 1300 1400 1500 1600 1700 1800]’;

% SPEED IN KNOTS:
speed = [1.5 1.4 1.1 0.6

% DIRECTION FROM NORTH = O:
dirn = [285 285 270 270

% SPEED IN M/S:
speedms = speed*0.514;

% CONVERSION TO RADIANS:
¢ = asin(0.5)/30;
dirnc = dirn*c;

% DISTANCE EAST PER SECOND:
E = speedms.*sin(dirnc);

% DISTANCE NORTH PER SECOND:

N = speedms.*cos(dirnc);

% SECONDS IN AN HOUR:
hour = 3600;

% SECONDS IN A MINUTE:
min = 60;

0.0 0.9 1.6 1.9 1.6 1]7;

270 105 105 105 105 ]17;



>> % HIGH WATER WAS AT 0849 HOURS:

>> HW = 8xhour + 49%*min;

>>

>> % INITIATE MATRIX OF VELOCITIES OF THE CHLOROPHYLL SAMPLES:
>> ChlVel = zeros(2300,2);

>>

>> % INITIATE MATRIX OF VELOCITIES OF THE SPECTRAL SAMPLES:
>> SpecVel = zeros(2300,2);

>>

>> % INITIATE MATRIX OF DIFFERENCE IN VELOCITIES BETWEEN
>> Y% CHLOROPHYLL AND SPECTRAL SAMPLES

>> VelDiff = zeros(2300,2);

>>

>> % PRODUCE MATRICES OF VELOCITIES BETWEEN SAMPLINGS:

>> for i = 1:2300

Cindex = round((ChlTime(i)-HW) /hour)-1;

Sindex = round((SpecTime(i)-HW)/hour)-1;

ChlVel(i,:) = [E(Cindex),N(Cindex)];

SpecVel(i,:) = [E(Sindex),N(Sindex)];

%

% DETERMINE WHICH SAMPLES WERE THE FIRST AND LAST AT EACH
% DATA POINT:

start = min([ChlTime (i) ,SpecTime(i)]);

stop = max([ChlTime(i),SpecTime(i)]);

%

% FOR EACH SECOND, CALCULATE THE RELATIVE MOTION OF THE

% SAMPLED PARCELS OF WATER

for s = start:stop

VelDiff(i,1) = VelDiff(i,1) + E(round{((s-HW)/hour)-1);
VelDiff(i,2) = VelDiff(i,2) + N(round((s-HW)/hour)-1);
end

end

>>

>> Y% THE DISTANCE BETWEEN THE LOCATIONS OF THE SAMPLED

>> % PARCELS OF WATER AT THE TIME OF THE SECOND MEASUREMENT
>> DistDiff = sqrt(VelDiff(:,1).72 + VelDiff(:,2).72);



Appendix C

The output of the multiple linear
regression feature selection method

The following pages show the output from the multiple linear regression feature selec-

tion method described in chapter 5. Each table gives the results for one run of the

function.



Table C.1: Explanation of headings of tables C.2-D.9

table value

meaning

number of inputs

number of hidden nodes

number of weights

mean squared error

numerator degrees of free-
dom

denominator degrees of free-
dom

L

Fy

accept or reject?

rejected band

the number of inputs being included in
the current configuration

the number of hidden nodes being in-
cluded in the current configuration

the number of weights being included
in the current configuration (current
value/previous value)

the error after the current band/hidden
node has been rejected

= the difference between the degrees of
freedom for the full and reduced model

= the degrees of freedom for the full
model (current value/previous value)
The test statistic

Value from the f-distribution corre-
sponding to a significance level of 95 %

Did the statistic determine to accept or
reject the reduced configuration?

If the statistic determine that the re-
duced input configuration should be ac-
cepted, which band had been removed?

used to
calcu-

late L
and F,

double lines

indicate the final chosen configuration

remaining bands

The bands left in the final configuration

Table C.2: Results of multiple linear regression feature selection for subset A

number | mean numerator | denominator accept | rejected
of squared | degrees of | degrees of L F or band
inputs | error freedom freedom reject?

8 7.8582

8 8.3069 |1 191 10.9057 | 3.92 | reject | 37

remaining bands = 1, 10, 19, 28, 37, 46, 55, 64




Table C.3: Results of multiple linear regression feature selection for subset B

number | mean numerator | denominator accept | rejected
of squared | degrees of | degrees of L F or band
inputs | error freedom freedom reject?

8 10.0222

7 9.2138 |1 191 -15.4058 | 3.92 | accept | 2

6 8.2862 |1 192 -19.3302 | 3.92 | accept | 47

6 9.0222 |1 193 17.1433 | 3.92 | reject | 56

remaining bands = 11, 20, 29, 38, 56, 65

Table C.4: Results of multiple linear regression feature selection for subset C

number | mean numerator | denominator accept | rejected
of squared | degrees of | degrees of L F or band
inputs | error freedom freedom reject?

8 10.3042

7 84811 |1 191 -33.7927 | 3.92 | accept | 3

6 8.0964 |1 192 -8.7102 | 3.92 | accept | 48

6 8.7006 |1 193 14405 | 3.92 | reject | 57

remaining bands = 12, 21, 30, 39, 57, 66

Table C.5: Results of multiple linear regression feature selection for subset D

number | mean numerator | denominator accept | rejected
of squared | degrees of | degrees of L F or band
inputs | error freedom freedom reject?

8 15.4476

7 14.4094 | 1 191 -12.8366 | 3.92 | accept | 4

6 12.002 |1 192 -32.0786 | 3.92 | accept | 58

5 12.054 |1 193 0.83641 | 3.92 | accept | 40

5 13.427 |1 194 22.0979 | 3.92 | reject | 67

remaining bands = 13, 22, 31, 49, 67




Table C.6: Results of multiple linear regression feature selection for subset E

number | mean numerator | denominator accept | rejected
of squared | degrees of | degrees of L F or band
inputs | error freedom freedom reject?

8 13.4522

7 12.1312 | 1 191 -18.7562 | 3.92 | accept | 59

6 11.5614 | 1 192 -9.0185 | 3.92 | accept | 23

5 11.6565 | 1 193 1.5879 3.92 | accept | 32

4 11.8353 | 1 194 2.9759 3.92 | accept | 68

4 14.6441 | 1 195 46.2774 | 3.92 | reject | 50

remaining bands = 5, 14, 41, 50

Table C.7: Results of multiple linear regression feature selection for subset F

number | mean numerator | denominator accept | rejected
of squared | degrees of | degrees of L F or band
inputs | error freedom freedom reject?

8 10.7614

7 9.6848 |1 191 -19.1077 | 3.92 | accept | 24

6 8.965 1 192 -14.27 3.92 | accept | 60

5 8.9355 |1 193 -0.63682 | 3.92 | accept | 69

4 8.8472 |1 194 -1.9153 | 3.92 | accept | 15

4 15.7375 | 1 195 151.867 | 3.92 | reject | 6

remaining bands = 6, 33, 42, 51

Table C.8: Results of multiple linear regression feature selection for subset G

number | mean numerator | denominator accept | rejected
of squared | degrees of | degrees of L F or band
inputs | error freedom freedom reject?

8 12.1074

7 10.0241 | 1 191 -32.8652 | 3.92 | accept | 16

6 9.8354 |1 192 -3.6139 | 3.92 | accept | 61

5 9.8813 |1 193 0.89999 | 3.92 | accept | 25

5 11.2105 | 1 194 26.0969 | 3.92 | reject | 70

remaining bands = 7, 34, 43, 52, 70




Table C.9: Results of multiple linear regression feature selection for subset H

number | mean numerator | denominator accept | rejected
of squared | degrees of | degrees of L F or band
inputs | error freedom freedom reject?

8 10.3819

7 10.39 1 191 0.14937 | 3.92 | accept | 62

6 10.4044 | 1 192 0.26587 | 3.92 | accept | 71

6 11.4719 | 1 193 19.8018 | 3.92 | reject | 26

remaining bands = 8, 17, 26, 35, 44, 53

Table C.10: Results of multiple linear regression feature selection for subset I

number | mean numerator | denominator accept | rejected
of squared | degrees of | degrees of L F or band
inputs | error freedom freedom reject?

8 14.1003

7 14.1033 | 1 191 0.040584 | 3.92 | accept | 36

6 13.9915 | 1 192 -1.5225 | 3.92 | accept | 27

5 13.0093 | 1 193 -13.5487 | 3.92 | accept | 63

5 13.34 1 194 4.9321 3.92 | reject | 72

remaining bands = 9, 18, 45, 54, 72




Table C.11: Results of multiple linear regression feature selection of all available bands

number | mean numerator | denominator accept | rejected
of squared | degrees of | degrees of L F or band
| inputs | error freedom freedom reject?
72 18.8939
71 8.6934 |1 127 -69.2372 | 3.92 | accept | 33
70 5.0387 |1 128 -52.9487 | 3.92 | accept | 61
69 4.3718 |1 129 -17.0734 | 3.92 | accept | 49
68 3.6299 |1 130 -22.0597 | 3.92 | accept | 72
67 3.0919 |1 131 -19.4165 | 3.92 | accept | 2
66 29112 |1 132 -7.7139 | 3.92 | accept | 9
65 2.7403 |1 133 -7.8082 | 3.92 | accept | 41
64 2.6087 |1 134 -6.4338 | 3.92 | accept | 12
63 2.5582 |1 135 -2.6153 | 3.92 | accept | 47
62 24719 |1 136 -4.5865 | 3.92 | accept | 70
61 2.357 1 137 -6.3674 | 3.92 | accept | 21
60 2.2725 |1 138 -4.9489 | 3.92 | accept | 60
59 2.2634 |1 139 -0.55633 | 3.92 | accept | 32
58 2.2571 |1 140 -0.3907 | 3.92 | accept | 20
57 2.2467 |1 141 -0.64909 | 3.92 | accept | 71
56 2.0794 |1 142 -10.573 | 3.92 | accept | 3
55 1.856 1 143 -15.3637 | 3.92 | accept | 50
54 1.7883 |1 144 -5.254 3.92 | accept | 69
53 1.7363 |1 145 -4.2189 | 3.92 | accept | 30
52 1.7158 |1 146 -1.7193 | 3.92 | accept | 31
51 1.7031 |1 147 -1.0886 | 3.92 | accept | 25
50 1.704 1 148 0.080471 | 3.92 | accept | 42
49 1.6908 |1 149 -1.1546 | 3.92 | accept | 7
48 1.6976 |1 150 0.60398 | 3.92 | accept | 46
47 1.7012 |1 151 0.31953 | 3.92 | accept | 4
46 1.7085 |1 152 0.64912 | 3.92 | accept | 5
45 1.6677 |1 153 -3.6575 | 3.92 | accept | 8
44 1.6828 |1 154 1.3977 3.92 | accept | 37
43 1.6918 |1 155 0.82722 | 3.92 | accept | 68
42 1.6778 |1 156 -1.2858 | 3.92 | accept | 17
41 1.6783 |1 157 0.040629 | 3.92 | accept | 36
40 1.6879 |1 158 0.90951 | 3.92 | accept | 22
39 1.701 1 159 1.2296 3.92 | accept | 55
38 1.7276 |1 160 2.5052 3.92 | accept | 13
37 1.7598 |1 161 2.9995 3.92 | accept | 10
36 1.7014 |1 162 -5.3748 | 3.92 | accept | 56
35 1.6401 |1 163 -5.8726 | 3.92 | accept | 53
34 1.6493 |1 164 0.92307 | 3.92 | accept | 48
34 1.7029 |1 165 5.354 3.92 | reject |23

remaining bands = 1, 6, 11, 14, 15, 16, 18, 19, 23, 24, 26, 27, 28, 29, 34,
35. 38, 39, 40, 43, 44, 45, 51, 52, 54, 57, 58, 59, 62, 63, 64, 65, 66, 67



Appendix D

The output of the neural network
feature selection method

The following pages show the output from the neural network feature and model se-
lection function described in chapter 5. Each table gives the results for one run of the

function. See table C.1 for an explanation of the headings for these tables.



Table D.1: Results of neural network feature selection for band subset A
number | number number | mean numerator | denominator accept | rejected
of of hidden | of squared | degrees of | degrees of L F, |or band
inputs | nodes weights | error freedom freedom reject?
8 18 181 0.06
8 17 171/181 | 0.058 10 29/19 -0.065 | 2.38 | accept
8 16 161/171 | 0.057 10 39/29 -0.072 | 2.18 | accept
7 16 145/161 | 0.052 16 55/39 -0.193 | 1.84 | accept | 64
7 15 136/145 | 0.05 9 64/55 -0.23 | 2.04 | accept
6 15 121/136 | 0.049 15 79/64 -0.08 | 1.75 | accept | 46
6 14 113/121 | 0.049 8 87/79 -0.136 | 2.02 | accept
5 14 99/113 | 0.044 14 101/87 -0.603 | 1.75 | accept | 37
5 13 92/99 0.051 7 1 108/101 2.387 | 2.09 | reject
4 14 85/99 0.063 14 115/101 3.06 1.75 | reject

remaining bands = 1, 10, 19, 28, 55




Table D.2: Resu

1ts of neural network feature selection for band subset B

number | number number | mean numerator | denominator accept | rejected
of of hidden | of squared | degrees of | degrees of L F, |or band
inputs | nodes weights | error freedom freedom reject?

8 18 181 0.057

8 17 171/181 | 0.051 10 29/19 -0.209 | 2.38 | accept

8 16 161/171 | 0.049 10 39/29 -0.066 | 2.18 | accept

7 16 145/161 | 0.046 16 55/39 -0.171 } 1.84 | accept | 65
7 15 136/145 | 0.046 9 64/55 0.044 | 2.04 | accept

6 15 121/136 | 0.046 15 79/64 -0.042 | 1.75 | accept | 11
6 14 113/121 | 0.051 8 87/79 1.045 | 2.02 | accept

) 14 99/113 | 0.04 14 101/87 -1.269 | 1.75 | accept | 56
5 13 92/99 0.043 7 108/101 0.982 | 2.09 | accept

4 13 79/92 0.04 13 121/108 -0.601 | 1.75 | accept | 47
4 12 73/79 0.041 6 127/121 0.434 | 2.1 | accept

3 12 61/73 0.041 12 139/127 0.149 | 1.75 | accept | 38
3 11 56/61 0.04 5 144/139 -1.177 | 2.21 | accept

2 11 45/56 0.071 11 155/144 10.436 | 1.75 | reject

3 10 51/56 0.04 5 149/144 -0.014 | 2.21 | accept

2 10 41/51 0.063 10 159/149 8.935 | 1.83 | reject

3 9 46/51 0.043 5 154/149 2.761 | 2.21 | reject

2 10 41/51 0.071 10 159/149 11.611 | 1.83 | reject

remaining bands = 2, 20, 29




Table D.3: Resu

1ts of neural network feature selection for band subset C

number | number number | mean numerator | denominator accept | rejected
of of hidden | of squared | degrees of | degrees of L F, lor band
inputs | nodes weights | error freedom freedom reject?

8 18 181 0.058

8 17 171/181 | 0.054 10 29/19 -0.128 | 2.38 | accept

8 16 161/171 { 0.061 10 39/29 0.384 | 2.18 | accept

7 16 145/161 | 0.04 16 55/39 -0.824 | 1.84 | accept | 66
7 15 136/145 | 0.044 9 64/55 0.528 | 2.04 | accept

6 15 121/136 | 0.043 15 79/64 -0.04 | 1.75 | accept | 48
6 14 113/121 0.043 8 87/79 0.035 | 2.02 | accept

5 14 99/113 | 0.048 14 101/87 0.718 | 1.75 | accept | 57
5 13 92/99 0.048 7 108/101 -0.132 | 2.09 | accept

4 13 79/92 0.047 13 121/108 -0.123 | 1.75 | accept | 12
4 12 73/79 0.051 6 127/121 1.72 2.1 | accept

3 12 61/73 0.05 12 139/127 -0.225 | 1.75 | accept | 39
3 11 56/61 0.053 5 144/139 1.768 | 2.21 | accept

2 11 45/56 0.092 11 155/144 9.341 | 1.75 | reject

3 10 51/56 0.04 5 149/144 -6.99 | 2.21 | accept

2 10 41/51 0.093 10 159/149 19.434 | 1.83 | reject

3 9 46/51 0.058 5 154/149 13.073 | 2.21 | reject

2 10 41/51 0.092 10 159/149 19.022 | 1.83 | reject

remaining bands = 3, 21, 30




Table D.4: Resu

ts of neural network feature selection for band subset D

number | number number | mean numerator | denominator accept | rejected
of of hidden | of squared | degrees of | degrees of L F, |or band
inputs | nodes weights | error freedom freedom reject?

8 18 181 0.1

8 17 171/181 | 0.083 10 29/19 -0.321 | 2.38 | accept

8 16 161/171 | 0.092 10 39/29 0.314 | 2.18 | accept

7 16 145/161 | 0.075 16 55/39 -0.445 | 1.84 | accept | 31
7 15 136/145 | 0.076 9 64/55 0.004 | 2.04 | accept

6 15 121/136 | 0.065 15 79/64 -0.566 | 1.75 | accept | 67
6 14 113/121 | 0.064 8 87/79 -0.166 | 2.02 | accept

5 14 99/113 | 0.065 14 101/87 0.037 | 1.75 | accept | 13
5 13 92/99 0.075 7 108/101 2.256 | 2.09 | reject

4 14 85/99 0.067 14 115/101 0.276 | 1.75 | accept | 58
4 13 79/85 0.069 6 121/115 0.409 | 2.17 | accept

3 13 66/79 0.069 13 134/121 -0.01 | 1.67 | accept | 22
3 12 61/66 0.08 5 139/134 4.582 | 2.21 | reject

2 13 53/66 0.133 13 147/134 9.638 | 1.67 | reject

remaining bands = 4, 40, 49




Table D.5: Results of neural network feature selection for band subset E

number | number number | mean numerator | denominator accept | rejected
of of hidden | of squared | degrees of | degrees of L F, or band
inputs | nodes weights | error freedom freedom reject?

8 18 181 0.069

8 17 171/181 | 0.064 10 29/19 -0.143 | 2.38 | accept

8 16 161/171 | 0.077 10 39/29 0.613 | 2.18 | accept

7 16 145/161 | 0.063 16 55/39 -0.452 | 1.84 | accept | 32
7 15 136/145 | 0.071 9 64/55 0.765 | 2.04 | accept

6 15 121/136 | 0.06 15 79/64 -0.614 | 1.75 | accept | 68
6 14 113/121 | 0.056 8 87/79 -0.681 | 2.02 | accept

5 14 99/113 | 0.061 14 101/87 0.497 | 1.75 | accept | 14
5 13 92/99 0.065 7 108/101 1.087 | 2.09 | accept

4 13 79/92 0.071 13 121/108 0.656 | 1.75 | accept | 50
4 12 73/79 0.076 6 127/121 1.566 | 2.1 | accept

3 12 61/73 0.102 12 139/127 3.677 | 1.75 | reject

4 11 67/73 0.072 6 133/127 -1.215 | 2.1 | accept

3 11 56/67 0.109 11 144/133 6.265 | 1.75 | reject

4 10 61/67 0.071 6 139/133 -0.191 | 2.1 | accept

3 10 51/61 0.096 10 149/139 4.807 | 1.83 | reject

4 9 55/61 0.077 6 145/139 1.919 | 2.1 | accept

3 9 46/55 0.094 9 154/145 3.492 | 1.88 | reject

4 8 49/55 0.074 6 151/145 -0.894 | 2.1 | accept

3 8 41/49 0.102 8 159/151 7.209 | 1.94 | reject

4 7 43/49 0.075 6 157/151 0.279 | 2.1 | accept

3 7 36/43 0.092 7 164/157 5.064 | 2.01 | reject

4 6 37/43 0.067 6 163/157 -2.848 | 2.1 | accept

3 6 31/37 0.094 6 169/163 10.957 | 2.1 | reject

4 5 31/37 0.079 6 169/163 5.161 | 2.1 | reject

3 6 31/37 0.086 6 169/163 7.92 2.1 | reject

remaining bands = 5, 23, 41, 59




Table D.6: Results of neural network feature selection for band subset F

number | number | number | mean numerator | denominator accept | rejected
of of hidden | of squared | degrees of | degrees of L F, }or band
inputs | nodes weights | error freedom freedom reject?

8 18 181 0.095

8 17 171/181 | 0.087 10 29/19 -0.157 | 2.38 | accept

8 16 161/171 | 0.084 10 39/29 -0.089 | 2.18 | accept

7 16 145/161 | 0.077 16 55/39 -0.224 | 1.84 | accept | 69
7 15 136/145 | 0.064 9 64/55 -0.994 | 2.04 | accept

6 15 121/136 | 0.066 15 79/64 0.14 | 1.75 | accept | 24
6 14 113/121 | 0.063 8 87/79 -0.495 | 2.02 | accept

5 14 99/113 | 0.068 14 101/87 0.466 | 1.75 | accept | 15
5 13 92/99 0.069 7 108/101 0.374 | 2.09 | accept

4 13 79/92 0.066 13 121/108 -0.378 | 1.75 | accept | 51
4 12 73/79 0.077 6 127/121 3.167 | 2.1 | reject

3 13 66/79 0.1 13 134/121 4.738 | 1.67 | reject

remaining bands = 6, 33, 42, 60




Table D.7: Results of neural network feature selection for band subset G
number | number number | mean numerator | denominator accept | rejected
of of hidden | of squared | degrees of | degrees of L F, |or band
inputs | nodes weights | error freedom freedom reject?
8 18 181 0.104
8 17 171/181 | 0.102 10 29/19 -0.038 | 2.38 | accept
8 16 161/171 | 0.109 10 39/29 0.177 | 2.18 | accept
7 16 145/161 | 0.092 16 55/39 -0.367 | 1.84 | accept | 16
7 15 136/145 | 0.098 9 64/55 0.349 | 2.04 | accept
6 15 121/136 | 0.086 15 79/64 -0.524 | 1.75 | accept | 34
6 14 113/121 | 0.092 8 87/79 0.771 | 2.02 | accept
5 14 99/113 | 0.081 14 101/87 -0.726 | 1.75 | accept | 52
5 13 92/99 0.097 7 108/101 2.707 | 2.09 | reject
4 14 85/99 0.087 14 115/101 0.52 1.75 | accept | 70
4 13 79/85 0.088 6 121/115 0.109 | 2.17 | accept
3 13 66/79 0.126 13 134/121 4.067 | 1.67 | reject
4 12 73/79 0.084 6 127/121 -0.809 | 2.1 | accept
3 12 61/73 0.136 12 139/127 6.449 | 1.75 | reject
4 11 67/73 0.089 6 133/127 1.104 | 2.1 | accept
3 11 56/67 0.125 11 144/133 4.918 | 1.75 | reject
4 10 61/67 0.086 6 139/133 -0.649 | 2.1 | accept
3 10 51/61 0.119 10 149/139 5.366 | 1.83 | reject
4 9 55/61 0.094 6 145/139 2.077 | 2.1 | accept
3 9 46/55 0.124 9 154/145 5.253 | 1.88 | reject
4 8 49/55 0.089 6 151/145 -1.33 | 2.1 | accept
3 8 41/49 0.127 8 159/151 8.105 | 1.94 | reject
4 7 43/49 0.095 6 157/151 1.768 | 2.1 | accept
3 7 36/43 0.13 7 164/157 8.21 2.01 | reject
4 6 37/43 0.11 6 163/157 4.053 | 2.1 | reject
3 7 36/43 0.122 7 164/157 6.361 | 2.01 | reject

remaining bands = 7, 25, 43, 61




Table D.8: Resu

ts of neural network feature selection for band subset H

number | number number | mean numerator | denominator accept | rejected
of of hidden | of squared | degrees of | degrees of L F, |or band
inputs | nodes weights | error freedom freedom reject?

8 18 181 0.118

8 17 171/181 | 0.112 10 29/19 -0.099 | 2.38 | accept

8 16 161/171 | 0.113 10 39/29 0.033 | 2.18 | accept

7 16 145/161 | 0.11 16 55/39 -0.067 | 1.84 | accept | 71
7 15 136/145 | 0.1 9 64/55 -0.547 | 2.04 | accept

6 15 121/136 | 0.104 15 79/64 0.158 | 1.75 | accept | 17
6 14 113/121 | 0.098 8 87/79 -0.509 | 2.02 | accept

5 14 99/113 | 0.077 14 101/87 -1.356 | 1.75 | accept | 26
5 13 92/99 0.078 7 108/101 0.214 | 2.09 | accept

4 13 79/92 0.073 13 121/108 -0.483 | 1.75 | accept | 62
4 12 73/79 0.081 6 127/121 2.173 | 2.1 | reject

3 13 66/79 0.121 13 134/121 6.079 | 1.67 | reject

remaining bands = 8, 35, 44, 53




Table D.9: Results of neural network feature selection for band subset I
number | number number | mean numerator | denominator accept | rejected
of of hidden | of squared | degrees of | degrees of L F, or band
inputs | nodes weights | error freedom freedom reject?
8 18 181 0.065
8 17 171/181 | 0.060 10 29/19 -0.138 | 2.380 | accept
8 16 161/171 | 0.065 10 39/29 0.268 | 2.180 | accept
7 16 145/161 | 0.056 16 55/39 -0.341 | 1.840 | accept | 36
7 15 136/145 | 0.067 9 64/55 1.165 | 2.040 | accept
6 15 121/136 | 0.056 15 79/64 -0.687 | 1.750 | accept | 45
6 14 113/121 | 0.062 8 87/79 1.019 | 2.020 | accept
5 14 99/113 | 0.055 14 101/87 -0.665 | 1.750 | accept | 18
5 13 92/99 0.057 7 108/101 0.323 | 2.090 | accept
4 13 79/92 0.053 13 121/108 -0.470 | 1.750 | accept | 63
4 12 73/79 0.053 6 127/121 -0.230 | 2.100 | accept
3 12 61/73 0.062 12 139/127 1.893 | 1.750 | reject
4 11 67/73 0.050 6 133/127 -0.962 | 2.100 | accept
3 11 56/67 0.062 11 144/133 2.830 | 1.750 | reject
4 10 61/67 0.054 6 139/133 1.623 | 2.100 | accept
3 10 51/61 0.064 10 149/139 2.574 | 1.830 | reject
4 9 55/61 0.052 6 145/139 -0.925 | 2.100 | accept
3 9 46/55 0.063 9 154/145 3.394 | 1.880 | reject
4 8 49/55 0.049 6 151/145 -1.392 | 2.100 | accept
3 8 41/49 0.064 8 159/151 5.801 | 1.940 | reject
4 7 43/49 0.053 6 157/151 2.159 | 2.100 | reject
3 8 41/49 0.063 8 159/151 5.288 | 1.940 | reject

remaining bands = 9, 27, 54, 72




Bibliography

Abbott, M. R, O. B Brown, R. H Evans, H. R Gordon, K. L Carder, F. A Mller-
Karger, and W. E Esaias, 1994. Ocean color in the 21st century: A strategy for
a 20-year time series. Technical Report NASA Technical Memorandum 104566,
Vol. 17, NASA Goddard Space Flight Center, Maryland.

Adams, J. B, M. O Smith, and P. E Johnson, 1986. Spectral mixture modeling:
A new analysis of rock and soil types at the Viking Lander 1 site. Journal of

Geophysical Research 91((B8)), 8098-8112.

Aiken, J, S Hudson, G Moore, and H Bottrell, 1995a. Future development of airborne
remote sensing techniques. Technical report, Plymouth Marine Laboratory. A

preliminary report to the National Rivers Authority.

Aiken, J, G. F Moore, C. C Trees, S. B Hooker, and D. K Clark, 1995b. The SeaWiFS
CZCS-type pigment algorithm. Technical Report NASA Technical Memorandum
104566, Volume 29, NASA Goddard Space Flight Center, Maryland.

Antoine, D and A Morel, 1999. A multiple scattering algorithm for atmospheric
correction of remotely sensed ocean colour (MERIS instrument): principle and
implementation for atmospheres carrying various aerosols including absorbing

one. International Journal of Remote Sensing 20(9), 1875-1916.

Atkinson, P. M, M. E. J Cutler, and H. G Lewis, 1997. Mapping sub-pixel propor-
tional land cover with AVHRR imagery. International Journal of Remote Sens-
ing 18(4), 917-935.

Babey, S. K and C. D Anger, 1989. A compact airborne spectrographic imager
(CASI). In Proceedings of the IEEE International Geoscience Remote Sensing



Symposium ‘89, pp. 1028-1031. IEEE.

Bagheri, S, M Stein, and R Dios, 1998. Utilty of hyperspectral data for bathymetric
mapping in a turbid estuary. International Journal of Remote Sensing 19(6),
1179-1188.

Barne, J. H, C. F Robson, S. S Kaznowska, J. P Doody, and N. C Davidson (Eds.),
1995. Fastern England: Flanborough Head to Great Yarmouth, Volume Region 6
of Coasts and seas of the United Kingdom. Peterborough Joint Nature Conser-

vation Committee.

Benediktsson, J. A and J. R Sveinsson, 1997. Feature extraction for multisource data
classification with artificial neural networks. International Journal of Remote
Sensing 18(4), 727-740.

Benediktsson, J. A, J. R Sveinsson, and K Arnason, 1995. Classification and fea-
ture extraction of AVIRIS data. IEEE Transactions on Geoscience and Remote
Sensing 33(5), 1194-1205.

Benediktsson, J. A, P. H Swain, and O. K Ersoy, 1990. Neural network approaches

versus statistical methods in classification of multisource remote sensing data.

IEFEFE Transactions on Geoscience and Remote Sensing 28(4), 540-550.

Bishop, C. M, 1995. Neural Networks for Pattern Recognition. Oxford University
Press.

Bizzi, S, O Arino, and P Goryl, 1996. Operational algorithm to correct the along
track and across track striping in the JERS-1 OPS images. International Journal
of Remote Sensing 17(10), 1963-1968.

Bolgrien, D. W, R. C Wrigley, R. A Armstrong, and A. S Brooks, 1995. Absorption

spectra for chlorophyll, particles and dissolved organic carbon in Green Bay, Lake

Michigan. In Environmental Research Institute of Michigan (1995), pp. 163-168.

Bricaud, A, A Morel, and V Barale, 1995. MERIS potential for ocean colour studies
in the open ocean. In P. J Curran and Y. C Robertson (Eds.), Remote Sensing
in Action, pp. 133-140. Remote Sensing Society: RSS, Nottingham.

Brown, D. E, P. J Shaw, S Vittone, and K Weise, 1994. A comparison of inductive



modeling techniques for pediatric decision making. In IEEE International con-
ference on systems, man and cybernetics. Humans, information and technology.,

Volume 1, pp. 919-924. IEEE.

Buckton, D, E O’'Mongain, and S Danaher, 1999. The use of Neural Networks for the
estimation of oceanic constituents based on the MERIS instrument. International

Journal of Remote Sensing 20(9), 1841-1851.

Bukata, R. P, G. P Harris, and J. E Bruton, 1974. The detection of suspended solids
and chlorophyll a utilizing multispectral ERTS-1 data. In Proceedings of the 2nd
Canadian Symposium on Remote Sensing, pp. 551-564.

Bukata, R. P, J. H Jerome, K. Y Kondratyev, and D. V Pozdnyakov, 1991. Satellite
monitoring of optically-active components of inland waters: an essential input to
regional climate change impact studies. Journal of Great Lakes Research 17(4),
470-478.

Campbell, J. W and W. E Esaias, 1985. Spatial patterns of temperature and chloro-

phyll in Nantucket Shoals from airborne remote sensing data, May 7-9, 1981.
Journal of Marine Research 43, 139-161.

Carder, K. L, S. K Hawes, K. A Baker, R. C Smith, R. G Steward, and B. G
Mitchell, 1991. Reflectance model for quantifying chlorophyll a in the presence
of productivity degredation products. Journal of Geophysical Research 96(C11),
20599-20611.

Carder, K. L, R. G Steward, G. R Harvey, and P. B Ortner, 1989. Marine humic
and fulvic acids: Their effects in remote sensing of ocean chlorophyll. Limnology

and Oceanography 34(1), 68-81.

Civeo, D. L, 1993. Artificial neural network for land-cover classification and mapping.

International Journal of Remote Sensing 7(2), 173-186.

Civco, D. L and Y Waug, 1994. Classification of multispectral, multisource spa-
tial data using artificial neural networks. In Proceedings of the 1994 Annual
ASPRS/ACSM Convention, Volume I, pp. 123-133. American Society for Pho-

togrammetry and Remote Sensing/American Congress on Surveying and Map-



ping.
Clark, C and A Canas, 1995. Spectral identification by artificial neural network and

genetic algorithm. International Journal of Remote Sensing 16(12), 2255-2275.

Clarke, G. L, G. C Ewing, and C. J Lorenzen, 1970. Spectra of backscattered light
from the sea obtained from aircraft as a measure of chlorophyll concentration.

Science 167, 1119-1121.
Comrey, A. L, 1973. A first course in factor analysis. Academic Press.

Cooley, W. W and P. R Lohnes, 1971. Multivariate Data Analysis. John Wiley and
Sons.

Cosandier, D, T Ivanco, and S Mah, 1992. The geocorrection and integration of the
global positioning system with the Compact Airborne Spectrographic Imager. In
Proceedings of the 15th Canadian Symposium on Remote Sensing, Volume 1, pp.
385-390.

Cover, T. M, 1974. The best two independent measurements are not the two best.

IFEE Transactions on Systems, Man and Cybernetics SMC-4(1), 116-117.

Cracknell, A. P, 1999. Remote sensing techniques in estuaries and coastal zones - an

update. International Journal of Remote Sensing 19(3), 485-496.

Csillag, F', L Pasztor, and L. L Biehl, 1993. Spectral band selection for the character-

ization of salinity status of soils. Remote Sensing of Environment 43, 231-242.

Cunningham, A, 1996. Variability of in vivo chlorophyll fluorescence and its impli-
cations for instrument development in bio-optical oceanography. Scientia Ma-

rina 60(Suppliment 1), 309-315.

Davis, C. S, G. R Flierl, P. H Wiebe, and P. J. S Franks, 1991. Micropatchiness,
turbulence and recruitment in plankton. Journal of Plankton Research 49, 109-

151.

Dekker, A. G, 1993. Detection of optical water quality parameters for eutrophic wa-

ters by high resolution remote sensing. Ph. D. thesis, Free University, Amsterdam.

Dekker, A. G, T. J Malthus, and E Seyham, 1991. Quantitative modeling of inland



water quality for high resolution MSS systems. IEEE Transactions on Geoscience

and Remote Sensing 29(1), 89-95.

Dekker, A. G, T. J Malthus, and M. M Wijnen, 1992b. Spectral band location for
remote sensing of turbid and/or eutrophic waters. In Proceedings of the First
Thematic Conference on Remote Sensing for Marine and Coastal Environments:
Emerging Technologies and Systems, Volume 2, pp. 955-971. Environmental Re-
search Institute of Michigan: ERIM, USA.

Dekker, A. G, T. J Malthus, M. M Wijnen, and E Seyhan, 1992a. The effect of
spectral bandwidth and positioning on the spectral signature analysis of inland

waters. Remote Sensing of Environment 41, 211-225.

Denman, K. L, 1976. Covariability of chlorophyll and temperature in the sea. Deep-
Sea Research 23, 539-550.

Denman, K. L and T Platt, 1976. The variance spectrum of phytoplankton in a
turbulent ocean. Journal of Marine Research 34, 593-601.

Doerffer, R, 1981. Factor analysis on ocean colour interpretation, pp. 339-345. Vol-
ume 13 of Gower (1981).

Doerffer, R and J Fischer, 1994. Concentrations of chlorophyll, suspended matter
and gelbstoff in case II waters derived from satellite Coastal Zone Colour Scanner
data with inverse modelling methods. Journal of Geophysical Research 99, 7457—
7466.

Doerffer, R, J Fischer, M Stésel, C Brockmann, and H Grassl, 1989. Analysis of The-
matic Mapper data for studying the suspended matter distribution in the coastal
area of the German Bight (North Sea). Remote Sensing of Environment 28,
61-73.

Doerffer, R, K Sgrensen, and J Aiken, 1999. MERIS potential for coastal zone ap-

plications. International Journal of Remote Sensing 20(9), 1809-1818.

Downing, J. P, M Meybeck, J. C Orr, R. R Twilley, and H.-W Scharpenseel, 1993.
Land and water interface zones. Water, Aiwr and Soil Pollution 70, 123-137.
Published as Wisniewski, J and Sampson, R N, 1993. Terrestrial Biospheric



Carbon Fluzes: Quantification of Sinks and Sources of CO,. Kluwer Academic
Press.

Dyer, K. R and T. J Moffat, 1998. Fluxes of suspended matter in the East Anglian
plume Southern North Sea. Continental Shelf Research 18(11), 1311-1331.

Eklundh, L and A Singh, 1993. A comparative analysis of standardised and unstan-
dardised principal component analysis in remote sensing. International Journal

of Remote Sensing 14(7), 1359-1370.

Elashoff, J. D, R. M Elashoff, and G. E Goldman, 1967. On the choice of variables

in classification problems with dichtomous variables. Biometrika 54, 668—670.

Environment Agency, 1997. Calibration of CASI imagery for high concentrations of
chlorophyll-a in turbid waters. Technical report, National Centre for Environ-

mental Data and Surveillance.

Environmental Research Institute of Michigan, 1995. Proceedings of the Third The-
matic Conference on Remote Sensing for Marine and Coastal Environments:

Technology and Applications. Environmental Research Institute of Michigan:
ERIM, USA.

Estrada, M, C Marrasé, and J Salat, 1996. In vivo fluorescence/chlorophyll a ratio
as an ecological indicator in oceanography. Scientia Marina 60(Suppliment 1),
317-325.

Farrington, G. A, H. J Hoogenboom, A. G Dekker, and T. J. M Malthus, 1994.
Understanding spectral derivatives of water reflectance from high resolution air-
borne imagery. In First International Airborne Remote Sensing Conference and

FEzhibition, Volume III, pp. 46-55. Strasbourg, France, 11-15 September.

Ferrari, G. M, N Hoepffer, and M Mingazinni, 1996. Optical properties of the water
in a deltaic environment: Prospective tool to analyse satellite data in turbid

waters. Remote Sensing of Environment 58, 69-80.

Fischer, J, 1985. On the information content of multispectral radiance measurements

over an ocean. International Journal of Remote Sensing 6(5), 773-786.



Fischer, J, R Doerffer, and H Grafil, 1986. Factor analysis of multispectral radi-

ances over coastal and open ocean water based on radiative transfer calculations.
Applied Optics 25(3), 448-456.

Fischer, J and U Kronfeld, 1990. Sun-stimulated chlorophyll fluorescence 1: Influence
of oceanic properties. International Journal of Remote Sensing 11(12), 2125-

2147.

Fischer, J and P Schliissel, 1990. Sun-stimulated chlorophyll fluorescence 2: Impact
of atmospheric properties. International Journal of Remote Sensing 11(12),

2149-2162.

Fisher, P, 1997. The pixel: a snare and a delusion. International Journal of Remote
Sensing 18(3), 679-685.

FLIERS, 1999. Fuzzy Land Information from Environmental Remote Sensing final
report. Eu environment and climate programme, topic 3.1.1. contract number
env4-ct96-0305, Collabration of: The University of Leicester, UK; The Univer-
sity of Southampton, UK; Joint Research Centre, European Commission, Italy;
VTT Automation, Espoo, Finland; The Aristotolian University of Thessaloniki,
Greece.

Foody, G. M, 1996. Relating the land-cover composition of mixed pixels to artificial
neural network classification output. Photogrammetric Engineering and Remote
Sensing 62(5), 491-499.

Foody, G. M, R. M Lucas, P. J Curran, and M Honzak, 1997. Non-linear mixture
modelling without end-members using an artificial neural network. International
Journal of Remote Sensing 18(4), 937-953.

Foody, G. M, M. B McCulloch, and W. B Yates, 1995a. Classification of remotely-

sensed data by an artificial neural- network - issues related to training data

characteristics. Photogrammetric Engineering and Remote Sensing 61, 391-401.

Foody, G. M, M. B McCulloch, and W. B Yates, 1995b. The effect of training set size

and composition on artificial neural- network classification. International Journal

of Remote Sensing 16(9), 1707-1723.



Foschi, P. G and D. K Smith, 1997. Detecting subpixel woody vegetation in digital
imagery using two artificial intelligence approaches. Photogrammetric Engineer-

ing and Remote Sensing 63(5), 493-500.

Fraser, R. N, 1998a. Hyperspectral remote sensing of turbidity and chlorophyll a
amoung Nebraska Sand Hills Lakes. International Journal of Remote Sens-
ing 19(8), 1579-1589.

Fraser, R. N, 1998b. Multispectral remote sensing of turbidity among Nebraska Sand
Hills lakes. International Journal of Remote Sensing 19(15), 3011-3016.

Fraser, R. S, S Mattoo, E.-N Yeh, and C. R McClain, 1997. Algorithm for atmo-
spheric and glint corrections of satellite measurements of ocean pigment. Journal

of Geophysical Research-Atmospheres 102(D14), 17107-17118.

Fukunaga, K and W. L. G Koontz, 1970. Application of the Karhunen-Loeve ex-

pansion of feature selection and ordering. IEEE Transactions on Computers C-

19(4), 311-318.

Giannini, L, 1981. Differential spectroscopy for the coastal water quality identification
by remote sensing, pp. 395-402. Volume 13 of Gower (1981).

Gieskes, W. W and G. W Kraay, 1983. Unknown chlorophyll a derivatives in the
North Sea and the tropical Atlantic Ocean revealed by HPLC analysis. Limnology

and Oceanography 28(4), 757-766.

Gitelson, A, 1992. The peak near 700 nm on radiance spectra of algae and wa-
ter: relationships of its magnitude and position with chlorophyll concentration.

International Journal of Remote Sensing 13(17), 3367-3373.

Gitelson, A, M Mayo, Y. Z Yacobi, A Parparov, and T Berman, 1994. The use of
high-spectral-resolution radiometer data for detection of low chlorophyll concen-

trations in Lake Kinneret. Journal of Plankton Research 16(8), 993-1002.

Goodin, D. G, L Han, R. N Fraser, D. C Rundquist, W. A Stebbins, and J. F Schalles,
1993. Analysis of suspended solids in water using remotely sensed high resolution
derivative spectra. Photogrammetric Engineering and Remote Sensing 59(4),

505-510.



Gordon, H. R, 1981. A preliminary assessment of the Nimbus-7 CZCS atmospheric
correction algorithm in a horizontally inhomogeneous atmosphere, pp. 257-265.

Volume 13 of Gower (1981).

Gordon, H. R, 1997. Atmospheric correction of ocean color imagery in the earth
observing system era. Journal of Geophysical Research-Atmospheres 102(D14),
17081-17106.

Gordon, H. R, D. H Clark, J. L Mueller, and W. A Hovis, 1980. Phytoplankton
pigments from the nimbus-7 coastal zone color scanner: Comparisons with surface

measurements. Science 210, 63-66.

Gordon, H. R, D. K Clark, J. W Brown, O. B Brown, and R. S Evans, 1982. Satellite
measurement of the phytoplankton pigment concentration in the surface waters

of a warm core Gulf Stream ring. Journal of Marine Research 40, 491-502.

Gordon, H. R, T Du, and T Zhang, 1997. Remote sensing of ocean color and aerosol
properties: resolving the issue of aerosol absorption. Applied Optics 36(33),
8670-8684.

Gordon, H. R and A. Y Morel, 1983. Remote assessment of ocean colour for inter-
pretation of satellite visible tmagery: A review. Number 4 in Lecture Notes on

Coastal and Estuarine Studies. Springer-Verlag, New York.

Gould, R. W and R. A Arnone, 1997. Remote sensing estimates of inherent optical
properties in a coastal environment. Remote Sensing of Environment 61, 290—
301.

Gower, J. F. R (Ed.), 1981. Oceanography from Space, Volume 13 of Marine Science.
Plenum Press.

Gower, J. F. R and G Borstad, 1981. Use of the in vivo fluorescence line at 685 nm
for remote sensing surveys of surface chlorophyll a, pp. 329-338. Volume 13 of
Gower (1981).

Gower, J. F. R, K. L Denman, and R. J Holyer, 1980. Phytoplankton patchiness
indicates the fluctuation spectrum of mesoscale oceanic structure. Nature 288,

157-159.



Gower, J. F. R, R Doerffer, and G. A Borstad, 1999. Interpretation of the 685
nm peak in water-leaving radiance spectra in terms of fluorescence, absorption

and scattering, and its observation by MERIS. International Journal of Remote

Sensing 20(9), 1771-1786.

Gower, J. F. R, S Lin, and G. A Borstad, 1984. The information content of differ-
ent optical spectral ranges for remote chlorophyll estimation in coastal waters.

International Journal of Remote Sensing 5(2), 349-364.

Great Britain Hydrographic Department, 1996. Admiralty tide tables: Furopean wa-
ters including the Mediterranean Sea, Volume 1. Hydrographer of the Navy.

Great Britain Ministry of Defence Navy Hydrographic Department, 1976. Tidal
stream atlas: North Sea southern portion, Volume NP 251. Hydrographic De-

partment, Taunton.

Green, A. A, M Berman, P Switzer, and M. D Craig, 1988. A transformation for
ordering multispectral data in terms of image quality with implications for noise

removal. IEEE Transactions on Geoscience and Remote Sensing 26(1), 65-74.

Gross, L, S Thiria, and R Frouin, 1999. Applying artificial neural network method-
ology to ocean color remote sensong. Ecological Modelling 120, 237-246.

Gross, L, S Thiria, R Frouin, and B. G Mitchell, 2000. Artificial neural networks for
modeling the transfer function between marine reflectance and phytoplankton

pigment concentration. Journal of Geophysical Research 105(C2), 3483-3495.

Han, L, 1997. Spectral reflectance with varying suspended sediment concentration
in clear and algae-laden waters. Photogrammetric Engineering and Remote Sens-
ing 63(6), 701-705.

Han, L and D. C Rundquist, 1994. The reponse of both surface reflectance and
the underwater light field to various levels of suspended sediments: Preliminary

results. Photogrammetric Engineering and Remote Sensing 60(12), 1463-1471.

Han, L, D. C Rundquist, L. L Liu, R. N Fraser, and J. F Schalles, 1994. The spectral
response of algal chlorophyll in water with varying levels of suspended sediment.

International Journal of Remote Sensing 15(18), 3707-3718.



Hanelt, D, 1996. Photoinhibition of photosynthesis in marine macroalgae. Scientia

Marina 60(Suppliment 1), 243-248.

Haykin, S, 1994. Neural Networks: A Comprehensive Foundation. Macmillan, New
York.

Heermann, P. D and N Khazenie, 1992. Classification of multispectral remote sensing
data using a back propagation neural network. IEEE Transactions on Geoscience

and Remote Sensing 30(1), 81-88.

Hepner, G. F, T Logan, N Ritter, and N Bryant, 1990. Artificial neural network
classification using a minimal training set: Comparison to conventional super-
vised classification. Photogrammetric Engineering and Remote Sensing 56(4),
469-473.

Hill, C, 1998. The validation of TSM and chlorophyll a semi-empirical, universal,
coastal colour algorithms; in the Bristol Channel and Norfolk Wash Coast. Third
year dissertation, University of Southampton.

Holm-Hansen, O, C. J Lorenzen, R. W Holmes, and J. D. H Strickland, 1965. Flu-
orometric determination of chlorophyll. Journal du Conseil. Conseil Permanent
International pour I’Ezploration de la Mer 30(1), 3-15.

Hoogenboom, H. J, A. G Dekker, and I. A Althuis, 1998. Simulation of AVIRIS sen-
sitivity for detecting chlorophyll over coastal and inland waters. Remote Sensing
of Environment 65(3), 333-340.

Justice, C. O, B. L, Markham, S. R. G Townshend, and Kennard, 1989. Spatial
degredation of satellite data. International Journal of Remote Sensing 10(9),
1539-1561.

Karhunen, J, E Oja, L Wang, R Vigdrio, and J Joutsensalo, 1997. A class of neu-
ral networks for independent component analysis. IEEE Transactions on Neural
Networks 8(3), 486-504.

Keiner, L. E and C. W Brown, 1999. Estimating oceanic chlorophyll concentrations

with neural networks. International Journal of Remote Sensing 20(1), 189-194.

Keiner, L. E and X.-H Yan, 1998. A neural network model for estimating sea surface



chlorophyll and sediments form Thematic Mapper imagery. Remote Sensing of

FEnvironment 66(2), 153-165.

Keller, I and J Fischer, 1998. Details and improvements of the radiometric cali-
bration procedure of the Compact Airborne Spectrographic Imager (CASI). In
Schaepman, Schldpfer, and Itten (1998), pp. 81-88.

Kirk, J. T. O, 1994. Light and Photosynthesis in Aquatic Ecosystems (Second ed.).
Cambridge University Press.

Kondratyev, K. Y, D. V Pozdnyakov, and L. H Pettersson, 1998. Water quality
remote sensing in the visible spectrum. International Journal of Remote Sens-
ing 19(5), 957-979.

Kutser, T, H Arst, T Miller, L, Kddrmann, and A Millius, 1995. Telespectromet-

rical estimation of water transparency, chlorophyll-a and total phosphorus con-

centration and Lake Peipsi. International Journal of Remote Sensing 16(16),
3069-3085.

Land, P. E and J. D Haigh, 1996. Atmospheric correction over case 2 waters with
an iterative fitting algorithm. Applied Optics 35(27), 5443-5451.

Lathrop, R. G and T. M Lillesand, 1986. Use of Thematic Mapper data to assess
water quality in Green Bay and central Lake Michigan. Photogrammetric Engi-

neering and Remote Sensing 52(5), 671-680.

Lazar, M, Z Ben-Avraham, and E Ben-Dor, 1998. Comprehensive comparison of
atmospheric corrections of ” CASI” hyperspectral images over water - a case study.

In Schaepman, Schldpfer, and Itten (1998), pp. 97-103.

Lee, J. B, A. S Woodyatt, and M Berman, 1990. Enhancement of high spectral res-
olution remote-sensing data by noise-adjusted principal components transform.

IEEE Transactions on Geoscience and Remote Sensing 28(3), 295-304.

Lee, Z, K. L Carder, S. K Hawes, R. G Steward, T. G Peacock, and C. O Davis,
1994. Model for the interpretation of hyperspectral remote-sensing reflectance.

Applied Optics 33(24), 5721-5732.



Lewis, H, 1997. FLIERS, Fuzzy Land Information from Environmental Remote Sens-

ing: Project details. http://www.geog.le.ac.uk/fliers.

Lewis, H. G, M Brown, A. R. L Tatnall, M Nixon, and J Manslow, 1998. Data
analysis and empirical classification in FLIERS. Technical Report ISIS-3-98, De-

partment of Electronics and Computer Science, University of Southampton.

Lorenzen, C. J, 1966. A method for the continuous measurement of in vivo chloro-

phyll concentration. Deep-Sea Research 13, 223-227.

Mackenzie, F. T, J. M Bewers, R. J Charlson, E. E Hofmann, G. A Knauer, J. C
Kraft, E.-M Nothig, B Quack, J. J Walsh, M Whitfield, and R Wollast, 1991.
What 1s the importance of ocean margin processes in global change?, pp. 433-454.

In Mantoura, Martin, and Wollast (1991).

Malki, H. A and A Moghaddomjoo, 1991. Using the Karhunen-Loeve transformation
in the back-propagation algorithm. IEEFE Transactions on Neural Networks 2(1),

162-165.

Malthus, T, 1997. An introduction to underwater light processes. In A. P Cracknell
and E. S Rowan (Eds.), Physical processes in the coastal zone: computer mod-
elling and remote sensing. Proceedings of the forty ninth Scottish Universities
Summer School in Physics, pp. 233-247. Scottish Univerisities Summer School
in Physics: SUSSP Publications, Edinburgh and Institute of Physics Publishing,
Bristol.

Malthus, T. J and A. G Dekker, 1995. First derivative indices for the remote sensing
of inland water quality using high spectral resolution reflectance. Environment
International 21(2), 221-232.

Malthus, T. J, C. J Place, S Bennet, and S North, 1996. An evaluation of the
Airborne Thematic Mapper sensor for monitoring inland waters. In D. N. M
Donaghue and Y Zong (Eds.), Remote Sensing Science and Industry, pp. 317~
324. Remote Sensing Society: RSS, Nottingham.

Mantoura, R. F. C, J.-M Martin, and R Wollast (Eds.), 1991. Ocean margin processes

in global change. Wiley.


http://www.geog.le.ac.uk/fliers

Maritorena, S, J O’Reilly, and B. D Schieber, 1997. The SeaBAM evaluation data
set. Technical memo, NASA, Goddard Space Flight Center,

http://seabass.gsfc.nasa.gov/seabam/bioopt_workshop.html.

Mather, P. M, 1996. Computer processing of remotely sensed images. An introduc-

tion. John Wiley and Sons.

Matthews, A, 1994. High Resolution Spectral Remote Sensing of Phytoplankton in
the Coastal Zone. Ph. D. thesis, Department of Oceanography, University of

Southampton.

Matthews, A. M and S. R Boxall, 1994. Novel algorithms for the determination
of phytoplankton concentration and maturity. In Proceedings of the Second The-
matic Conference on Remote Sensing for Marine and Coastal Environments, Vol-

ume I, pp. 173-180. Environmental Research Institute of Michigan: ERIM, USA.

Mertes, L. A. K, M. O Smith, and J. B Adams, 1993. Estimating suspended sedi-
ment concentrations in surface waters of the amazon river wetlands from landsat

images. Remote Sensing of Environment 43, 281-301.

Miller, D. M, E. J Kaminsky, and S Rana, 1995. Neural-network classification of
remote-sensing data. Computers and Geosciences 21(3), 377-386.

Miller, R. L, M Giardino, B. A McKee, J. F Cruise, G Booth, R Rovansek, D Muir-
head, W Cibula, K Holladay, R. E Pelletier, W Hudnall, C Bergeron, J Ioup,
G loup, and G Love, 1995. Processes and fates of sediments and carbon in

Baratana Bay, LA. In Environmental Research Institute of Michigan (1995),
pp. 233-244.

Mitchell, J. F. B, C. A Wilson, and W. M Cunnington, 1987. On CO, climate
sensitivity and model dependence of results. Quarterly Journal of the Meteological
Society 113, 293-322.

Mitchelson, E. G, N. J Jacob, and J. H Simpson, 1986. Ocean colour algorithms
from the Case 2 waters of the Irish Sea in comparison to algorithms from Case 1

waters. Continental Shelf Research 5(3), 403-415.

Mittenzwey, K.-H, S Ullrich, A. A Gitelson, and K. Y Kondratiev, 1992. Deter-


http://seabass.gsfc.nasa.gov/seabajn/bioopt_workshop.html

mination of chlorophyll a of inland waters on the basis of spectral reflectance.

Limnology and Oceanography 37(1), 147-149.

Moore, G. K, 1978. Satellite surveillance of physical water-quality characteristics.
In J. J Cook (Ed.), Proceedings, 12th International Symposium on Remote Sens-
ing of Environment, pp. 445-462. Center of Remote Sensing Information and

Analysis: Environmental Research Institute of Michigan.

Morel, A, 1980. In-water and remote measurements of ocean color. Boundary-Layer

Meteorology 18(2), 177-201.

Morel, A, 1988. Optical modeling of the upper ocean in relation to its biogenous
matter content (case 1 waters). Journal of Geophysical Research 93(c9), 10749—
10768.

Morel, A and L Prieur, 1977. Analysis of variations in ocean color. Limnology and

Oceanography 22(4), 709-722.

Morel, A. Y and H. R Gordon, 1980. Report of the working group on water color.
Boundary-Layer Meteorology 18, 343-355.

Myers, R. H, 1986. Classical and modern regression with applications (Second ed.).
PWS-KENT.

NASA, 1982. The marine resources experiment program (MAREX). Technical Re-
port 87368, NASA /Goddard Space Flight Center, Greenbelt, Maryland.

Neville, R. A and J. F. R Gower, 1977. Passive remote sensing of phytoplankton via
chlorophyll a fluorescence. Journal of Geophysical Research 82(24), 3847-3493.

Nieke, B, W. F Vincent, J.-C Therriault, L Legendre, J.-F Berthon, and A Condal,
1997. Use of a ship-borne laser fluorosensor for remote sensing of chlorophyll a

in a coastal environment. Remote Sensing of Environment 60, 140-152.

Novo, E. M, J. D Hanson, and P. J Curran, 1989. The effect of sediment type on
the relationship between the reflectance and suspended sediment concentration.

International Journal of Remote Sensing 10(7), 1283-1289.

Otsu, N, 1984. Karhunen-Loeve line fitting and a linearity measure. In Proceedings

of the 7Tth International Conference on Pattern Recognition, pp. 486-489. IEEE.



Paola, J. D and R. A Schowengerdt, 1995a. A detailed comparison of backprop-
agation neural-network and maximume-likelihood classifiers for urban land use
classification. IEEE Transactions on Geoscience and Remote Sensing 33, 981-
996.

Paola, J. D and R. A Schowengerdt, 1995b. A review and analysis of backpropaga-
tion neural networks for classification of remotely-sensed multispectral imagery.

International Journal of Remote Sensing 16(16), 3033-3058.

Pérez-Ruzafa, A, J Gilabert, A Bel-Lan, V Moreno, and J. M Gutiérrez, 1996. New
approach to chlorophyll a determination in shallow coastal waters by remote

sensing. Scientia Marina 60(Suppliment 1), 19-27.

Peters, S. W. M, A. G Dekker, and P Keller, 1998. From end-user requirements to
sensor requirements. In Schaepman, Schlipfer, and Itten (1998), pp. 215-219.

Piramuthu, S, 1996. Feature selection and neuro-fuzzy systems. Neural Network
World 6(2), 201-208.

Price, J. C, 1990. On the information content of soil reflectance spectra. Remote

Sensing of Environment 33, 113-121.

Prieur, L and S Sathyendranath, 1981. An optical classification of coast and oceanic
waters based on the specific spectral absorption curves of phytoplankton pig-
ments, dissolved organic matter, and other particulate materials. Limnology and
Oceanography 26(4), 671-689.

Quenzel, H and M Kaestner, 1981. Masking effect of the atmosphere in remote sens-

ing of chlorophyll, pp. 365-370. Volume 13 of Gower (1981).

Quibell, G, 1991. The effect of suspended sediment on reflectance from freshwater

algae. International Journal of Remote Sensing 12(1), 177-182.

Rast, M, L Bézy, and S Bruzzi, 1999. The ESA Medium Resolution Imaging Spec-
trometer MERIS - a review of the instrument and its mission. International
Journal of Remote Sensing 20(9), 1681-1702.

Reinerman, P. N and K. L Carder, 1995. Monte Carlo simulation of the atmospheric

point-spread function with an application to correction for the adjacency effect.



Applied Optics 34(21), 4453-4471.
Richards, J. A, 1995. Remote sensing digital image analysis. An introduction. (Sec-
ond ed.). Springer-Verlag.

Roger, R. E, 1996. Principal Components transform with simple, automatic noise

adjustment. International Journal of Remote Sensing 17(14), 2719-2727.

Rumelhart, D. E, G. E Hinton, and R. J Williams, 1986. Learning representations

by back-propogating errors. Nature 323, 533-536.

Rumelhart, D. E and J. L McClelland (Eds.), 1986. Parallel distributed processing:

Ezplorations in the microstructure of cognition, Volume 1: Foundations. MIT
Press.

Rundquist, D. C, L Han, J. F Schalles, and J. S Peake, 1996. Remote measurement of
algal chlorophyll in surface waters: The case for the first derivative of reflectance

near 690 nm. Photogrammetric Engineering and Remote Sensing 62(2), 195-200.

Sager, G and R Sammler, 1968. Atlas der Gezeitenstrome fir die Nordsee, den Kanal

and die Irische See. Seehydrographischer Dienst der DDR. (summarised in Barne

et al. 1995).

Sathyendranath, S, L Prieur, and A Morel, 1989. A three-component model of ocean
colour and its application to remote sensing of phytoplankton pigments in coastal

waters. International Journal of Remote Sensing 10, 1373-1394.

Schaepman, M, D Schlapfer, and K. I Itten (Eds.), 1998. Proceedings of the First
EARSel Workshop on Imaging Spectroscopy. European Association of Remote
Sensing Laboratories.

Schiller, H and R Doerffer, 1999. Neural network for emulation of an inverse model
- operational derivation of Case II water properties from MERIS data. Interna-
tional Journal of Remote Sensing 20(9), 1735-1746.

SCOR-Unesco, 1966. Determination of photosynthetic pigments in sea-water. Mono-
graphs on oceanographic methodology 1, SCOR-Unesco.

Sietsma, J and R. J. F Dow, 1991. Creating artificial nerual networks that generalize.

Neural Networks 4, 67-79.



Singh, A and A Harrison, 1985. Standardised principal components. International

Journal of Remote Sensing 6(6), 883-896.

Singh, R. P, C Olbert, C Lindermann, M Schaale, and R Furrer, 1997. Atmospheric
monitoring with a spectrographic imager. International Journal of Remote Sens-
ing 18(5), 1183-1188.

Smetacek, V, U Bathmann, E.-M Nothig, and R Scharek, 1991. Coastal eutrophica-
tion: Causes and consequences, pp. 251-279. In Mantoura, Martin, and Wollast
(1991).

Steele, J. H and T. W Henderson, 1979. Spatial patterns in North Sea plankton.
Deep Sea Research 26A, 955-963.

Steppe, J. M, K. W Bauer, and S. K Rogers, 1996. Intergrated feature and architec-
ture selection. IEEE Transactions on Neural Networks 7(4), 1007-1014.

Strutton, P. G, J. G Mitchell, and J. S Parslow, 1996. Non-linear analysis of chloro-
phyll a transects as a method of quantifying spatial structure. Journal of Plankton

Research 18(9), 1717-1726.

Strutton, P. G, J. G Mitchell, and J. S Parslow, 1997. Using non-linear analysis
to compare the spatial structure of chlorophyll with passive tracers. Journal of

Plankton Research 19(10), 1553-1564.

Sturm, B, 1981. Ocean colour remote sensing and quantitative retrieval of surface

chlorophyll in coastal waters using Nimbus CZCS data, pp. 267-279. Volume 13
of Gower (1981).

Talcott, J. C, 1995. Remotely sensed data as applied in the coastal water predictive
visibility model. In Environmental Research Institute of Michigan (1995), pp.
273-285.

Tanis, F. J and D. V Pozdnyakov, 1995. Evaluation of proposed coastal ocean colour

algorithms for the retrieval of bio-pigments and suspended sediment in the Great

Lakes. In Environmental Research Institute of Michigan (1995), pp. 140-150.

Tassan, S, 1981. The influence of wind in the remote sensing of chlorophyll in the
sea, pp. 371-375. Volume 13 of Gower (1981).



Tassan, S and M Ribera d’Alcald, 1993. Water quality monitors by Thematic Mapper
in coastal environments. A performance analysis of local bio-optical algorithms
and atmospheric correction procedures. Remote Sensing of Environment 45,
177-191.

Taylor, J. E and R. C Smith, 1967. Spectroradiometric characteristics of natural
light under water. Journal of the Optical Society of America 57(5), 595-601.

Townshend, J. R. G, 1984. Agricultural land-cover discrimination using thematic

mapper spectral bands. International Journal of Remote Sensing 5(4), 681-698.

Warner, T. A and M. C Shank, 1997a. An evaluation of the potential for fuzzy clas-
sification of multispectral data using artificial neural networks. Photogrammetric

Engineering and Remote Sensing 63(11), 1285-1294.

Warner, T. A and M. C Shank, 1997b. Spatial autocorrelation analysis of hyperspec-

tral imagery for feature selection. Remote Sensing of Environment 60, 58-70.
Warner, T. A, K Steinmaus, and H Foote, 1999. An evaluation of spatial auto-
correlation feature selection. International Journal of Remote Sensing 20(8),
1601-1616.
Wernand, M. R, S. J Shimwell, and J. C De Munck, 1997. A simple method of full

spectrum reconstruction by a five-bands approach for ocean colour applications.

International Journal of Remote Sensing 18(9), 1977-1986.

White, H, 1992. Artificial Neural Networks. Approximation and learning theory.
Blackwell.

Williams, J. J, J. D Humphery, P. J Hardcastle, and D. J Wilson, 1998. Field
observations of hydrodynamic conditions and suspended particulate matter in

the southern North Sea. Continental Shelf Research 18(11), 1215-1233.

Wollast, R, 1991. The coastal organic carbon cycle: fluzes, sources and sinks, pp.

365-381. In Mantoura, Martin, and Wollast (1991).
Wollast, R, 1993. Interactions in estuaries and coastal waters, Chapter 14. Wiley.

Wrigley, R. C, R. E Slye, S. A Klooster, R. S Freedman, M Carle, and L. F McGregor,

1992. The airborne ocean color imager - system description and image- processing.



Journal of Imaging Science Technology 36(5), 423-430.

Yentsch, C. S and D. W Menzel, 1963. A method for the determination of phyto-
plankton chlorophyll and phaeophytin by fluorescence. Deep-Sea Research 10,
221-231.



