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UNIVERSITY OF SOUTHAMPTON 

ABSTRACT 

FACULTY OF ENGINEERING AND APPLIED SCIENCE 

SCHOOL OF ENGINEERING SCIENCES 

Doctor of Philosophy 

Development of chlorophyll a prediction algorithms 

for hyperspectral CAST imagery using neural networks 

by Isabel M J Sargent 

This research addressed the problem of predicting chlorophyll a from remotely sensed 

imagery in waters which contain suspended sediments, dissolved organic pigments and 

over which lies an inhomogeneous atmosphere. Image and in situ data were obtained 

for the North Norfolk Coast region of the United Kingdom. These data were inves-

tigated for sources of error and noise and were found to be contaminated by several 

signals stronger than that of chlorophyll a. To determine whether a non-linear and 

more complex regression model was more applicable than conventional linear tech-

niques to predicting chlorophyll a in Case 2 waters, the technique of neural network 

regression was compared to conventional linear regression techniques and was found 

to give more reliable results. Moreover, information was taken from the training and 

accuracy of linear and non-linear prediction models to infer details about the relation-

ship between chlorophyll a and spectral data in this environment. Several techniques of 

feature selection were used to determine which regions of the spectrum were useful for 

predicting chlorophyll a, given the type of model used. The non-linear neural network 

feature selection technique consistently selected the noisy blue and near-infrared bands 

that were rejected by the linear feature selection techniques. 

This research clearly demonstrates the applicability of the neural network technique 

to predicting chlorophyll a. Also, using the novel investigative techniques described 

in this thesis, new information has been gained about the regions of the spectrum 

that are useful to the development of robust chlorophyll a prediction models. Unlike 

previous studies using neural networks, this research used data with a high level of 

noise and strong effects from environmental factors - a realistic data set. The findings 

are therefore highly relevant to all remote sensing investigations of the chlorophyll a 

content of water. 
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Chapter 1 

Introduction 

1.1 Background 

This thesis describes research into measuring the chlorophyll content of coastal waters, 

using remotely sensed spectral data and neural networks. Although much previous 

work has developed reliable methods for the open ocean, the conditions in the coastal 

margin are far more complex and have therefore attracted a great deal of investigation 

over recent years. 

At the interface between the continents and the oceans, the coastal zones of the world 

are of vital importance to both terrestrial and marine, biological and chemical cycles 

(Mackenzie et al. 1991; Wollast 1993). As awareness of the impact of human activity 

on our environment from local to global scales has developed, the importance of the 

coastal regions has been recognised. Although coastal waters account for only 0.5 % of 

the global ocean's volume, they account for about 14 % of the global ocean productivity 

due to nutrient inputs from terrestrial systems via rivers and from bottom waters via 

currents and upwelling. Also, with about 60 % of the world's population living within a 

band between 200 m below sea-level to 200 m above sea-level, these waters are the most 

threatened by contamination and pollution by human activities. In turn, the response 
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of the coastal ecosystems to pollutants and environmental change can threaten these 

human activities (Cracknell 1999; Doerffer a/. 1999; Downing o/. 1993). 

A global environmental issue that haa received a great deal of attention over recent 

years is climate change. A major concern is that the emission of carbon dioxide (CO2) 

from human activities may be enhancing the natural greenhouse effect that heats the 

Earth. As the basis of the ocean food chain, phytoplankton use solar energy to 6x 

carbon. The role of phytoplankton in the removal of CO2 from the atmosphere is 

debated (Miller et al. 1995; Downing et al. 1993; Wollast 1991) but attempts to model 

the change in climate resulting from changes in CO2 have produced wildly differing 

results (Mitchell et al. 1987). It is therefore important that accurate estimates of the 

quantity and distribution of phytoplankton be available to climate modellers. 

There has also been a great deal of concern about the effects of human activity on the 

health of the ocean. Many coastal regions have elevated quantities of nutrients as a 

result of runoff from terrestrial and marine agriculture, the disturbance of soils in river 

basins, industrial processes, tourism, marine agriculture and the suppression of riverine 

nutrient uptake caused by pollution (Smetacek et al. 1991). The resulting increase in 

algal growth, called eutrophication, threatens fisheries and tourism, and may result 

in a permanent loss of vital ecosystems. The ability to monitor for the presence of 

phytoplankton blooms can therefore both aid in the detection of pollution and provide 

warning of the bloom hazard itself (Environment Agency 1997). 

Satellite and airborne remote sensing is the only method by which broad and contiguous 

regions can be sampled efficiently. In a region as dynamic as the coastal zone the use 

of remote sensing for monitoring change is crucial. Remote sensing is a useful tool 

where a study site is too vast or too remote to be studied adequately 'on the ground'. 

Since few measurements other than the spectral information may be made under most 

circumstances, algorithms using remote sensing data are usually based on inferences 

using the imagery alone. 

The phytoplankton concentration in the surface of the oceans is usually estimated from 
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the spectral signature of the chlorophyll pigments it contains. These pigments have 

a distinctive pattern of absorption throughout the spectrum. However, this signature 

becomes hard to detect in regions where non-organic sediments and other pigments 

occur in the water. In coastal regions, the spectral signal can be dominated by light 

backscattered by inorganic particles. Pigments formed by the breakdown of organic 

matter are also prevalent in coastal waters and the spectral signature of these can 

be very similar to that of chlorophyll. Coastal regions are often near to regions of 

human settlement and sources of wind-borne particles. Therefore, in addition to the 

influences of other water constituents, the spectral signal detected in coastal regions 

can be strongly affected by particles in the atmosphere. Owing to the mixture of 

influences on the atmosphere at the coast, the distribution of these aerosols is often 

not uniform, making it difficult to correct for atmospheric effects. 

The most common method used to determine the quantity of chlorophyll in water 

from spectral data is the colour ratio technique. This is an empirical method whereby 

the ratio of a chlorophyll-sensitive waveband to a less chlorophyll-sensitive waveband 

is regressed against chlorophyll concentration. Another empirical method that has 

shown great potential over recent years uses chlorophyll fluorescence at 685 nm to 

predict chlorophyll concentration. A third method that has popularly been used over 

recent years, models the radiative transfer within water containing known constituents 

have been developed. Inversion of these models provides a method of prediction of 

chlorophyll content from measured spectral information (Rast et al 1999). 

The research presented here aimed to investigate more deeply the detection of chloro-

phyll in remote sensing imagery where the dominant spectral signal was from envi-

ronmental factors such as the atmosphere and suspended sediments in the water. The 

empirical approach was used to derive chlorophyll prediction algorithms. The data that 

were used were collected over a coastal region impacted by inorganic sediments and 

dissolved pigments and also covered by an inhomogeneous atmosphere. A thorough in-

vestigation of the information content of the data found noise from many sources to be 

present. Several feature selection techniques were used to determine useful wavelengths 

for predicting chlorophyll concentration. Linear and non-linear models of varying com-
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plexity were developed for predicting chlorophyll from spectral information using both 

conventional regression and neural network approaches. Finally, the findings of the 

different techniques were drawn together to derive a more complete understanding of 

the linearity and complexity of chlorophyll-spectra relationship across the visible and 

near-infrared (NIR) spectrum in Case 2 waters. 

1.2 Outl ine of thesis 

The remainder of this chapter details how other research has estimated the chlorophyll 

content of water using remote sensing. Much previous work has concentrated on finding 

the best single feature to predict chlorophyll concentration. However, the complex 

way in which the optical elements of the scene interact indicates that several spectral 

features are necessary to characterise the nature of the chlorophyll-spectra relationship. 

The model used to relate spectral information to chlorophyll is also addressed. The 

non-linearity and complexity of this relationship suggests that current linear regression 

techniques are inadequate. Therefore, the research presented here develops non-linear 

models for predicting chlorophyll. Neural networks have produced many valid results 

in remote sensing studies, which are relevant to the current problem. Short reviews 

of empirical modelling techniques and neural networks in remote sensing are provided. 

The aims of this research are set out at the end of this chapter. 

Obtaining suitable sets of spectral and in situ data for detecting chlorophyll in water 

can be a difficult task because rarely are ship-board and remotely-sensed measurements 

taken at the same time and place. Few photons are reflected back to the sensor from 

the water and so the remotely sensed signal is subject to high levels of noise. It is 

important that the nature of this noise is understood before the data are used for 

predicting chlorophyll. Chapter 2 describes how the data used in this research were 

obtained and calibrated. Various techniques were applied to investigate the suitability 

of these data for predicting chlorophyll and to highlight any potential problems with 

the data. Previous studies using neural networks for predicting chlorophyll used data 
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sets, which were not typical of those used for water quality monitoring in the UK. This 

is the first study to demonstrate the applicability of the neural network technique to a 

data set, which has a typical level of contamination by oceanic, atmospheric and sensor 

effects. 

Before the use of neural networks is introduced in this research, chapter 3 describes 

their operation and discusses issues relevant to their implementation. This begins from 

an understanding of the familiar technique of multiple linear least-squares regression 

and demonstrates that the neural networks used in this research are an extension of this 

simple method. Thus, the two techniques may be directly compared. Both techniques 

allow many models to be developed such that a thorough comparison of model inputs, 

structure and accuracy may be easily achieved. However, few studies have used these 

regression algorithms to their fullest potential. 

This research was undertaken in two parts. Firstly a primary study was performed 

to assess the validity of the techniques that have been proposed. The methods used 

to assemble the data and regress the spectral inputs against chlorophyll using both a 

linear least-squares method and a neural network approach are described in chapter 

4. The results of the primary study are also presented in this chapter and carefully 

assessed taking into account not only the accuracy with which chlorophyll predictions 

were made using the models but also aspects of model design and inferences that may 

be made about the relationship between chlorophyll and spectra. 

The second part of the research is then described in chapters 5 and 6. Here, the method 

of the primary study was refined to extract more information about the relationship 

between chlorophyll and spectra by using several different methods of selecting spectral 

features. Although feature selection is a well-researched technique, it is unusual for 

ocean colour research to apply automated techniques for finding useful spectral bands. 

Yet these techniques have the potential to highlight extremely useful combinations of 

bands that may otherwise have been ignored. Using several different sets of inputs, 

multiple regression and neural network regression are then applied to the data to make 

a more rigorous test of the validity of the neural network model that had been proposed. 



C h a p t e r 1 I n t r o d u c t i o n 

Chapter 7 then discusses the findings of both the primary and secondary studies with 

reference to the knowledge about the data that had been gained in chapter 2. A 

summary of the research and the conclusions relating to the project aims are then 

presented in chapter 8 with recommendations for future work in this field. 

The approach taken to analysing the results of this research was a practical and infor-

mative way of extracting new understanding about the relationship between remotely 

sensed data and chlorophyll in Case 2, coastal waters. 

1.3 Detect ing chlorophyll in remotely sensed im-

agery 

When light from the sun enters a medium, it interacts with the molecules and particles 

therein and its characteristics are altered. The light measured above a water body 

has been attenuated by absorption and scattering within the atmosphere and as it 

crosses the water surface. The constituents of the water and reflection from a shallow 

sea-bed further attenuate the light before it passes back through the surface and the 

atmosphere to the sensor. Scattering and absorption have varying effects throughout 

the spectrum depending on the material involved. Remote sensing aims to determine 

the nature of these materials in the scene from the spectral information gathered from 

it. 

Three decades ago, Clarke et al. (1970) first explored the use of remote sensing for 

detecting chlorophyll in natural waters. They compared airborne spectrometer data 

with in situ chlorophyll data and found a decline in backscattered blue light relative 

to green light as the chlorophyll increased. 

Phytoplankton contain a combination of pigments that are principally used to absorb 

light for photosynthesis. Of the three chlorophylls, a, b and c, chlorophyll a is the 

pigment common to all species of phytoplankton (Fischer and Kronfeld 1990). It has 
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Figure 1.1: Absorption spectrum of chlorophyll a in water averaged from measured 

spectra of algae grown in culture (from Morel 1988) 

a distinctive absorption signature in water (figure 1.1) showing absorption in both the 

blue and red wavelengths. There is a maximum reflectance in the green and NIR 

wavelengths, resulting in the green hue experienced by the human eye. A chlorophyll 

breakdown product, phaeophytin a, cannot be distinguished spectrally from chloro-

phyll a and so any spectral measurement of chlorophyll a in water is actually the sum 

of the two pigments (Gordon et al. 1980). 

Absorption of light by water increases with wavelength. At 690 nm, the absorption be-

gins to increase rapidly such that very little signal is detected beyond 720 nm (Malthus 

1997). 

Above the water's surface, a sensor measures the water-leaving radiance. Here, the 

reflectance from the water constituents has been altered by passing through the air-

water interface. Under calm conditions and at a viewing angle of less than 48.8° to 

the vertical, the signal that is detected above the water surface has been affected little 

by passing through the water surface. However, as the roughness of the surface or the 

viewing angle increases, more of the signal is reflected downwards at the interface (Kirk 
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1994). 

As the height of the sensor increases, the influence of the atmosphere becomes greater. 

Much of the contribution by the atmosphere is the scatter of light into the path of the 

sensor. Scatter by molecules, Rayleigh scatter, is greatest at shorter wavelengths. The 

contribution from this can be approximated if the illumination and observation angles 

are known. The contribution by scattering from aerosols is more complicated however, 

because knowledge of the aerosol type and optical thickness is required (Antoine and 

Morel 1999). The signal is also subject to absorption by molecules within the atmo-

sphere. Principal absorption bands are caused by water at 644-660 nm and around 

710 nm, and by oxygen absorption around 687 nm and 760 nm (Fischer and Schliissel 

1990; Gower et al. 1984). Some absorption by aerosols also occurs. Again this is 

difficult to predict because the type of aerosol must be known. Aerosols resulting from 

industrial processes may be quite common in some coastal regions and can be strongly 

absorbing (Gordon et al. 1997). 

The sensor also receives radiance resulting from specular reAectance at the sea surface, 

known as sun-glint. This changes with the viewing and illumination geometry as with 

the reflection of upwelling radiance at the underside of the air-sea interface. Therefore, 

roughening of the sea surface causes an increase in sun-glint (Gordon 1997; Eraser et al. 

1997). 

Since the work of Clarke et al. (1970), a common method of determining the chloro-

phyll a content of water has been to use the ratio of the detected radiance in the blue 

region of the spectrum with that detected in the green. The ratio is a comparison 

of the region of absorption in the blue with the region of increased reflection in the 

green. As the chlorophyll o in the water increases, the radiance in the absorption band 

decreases and so a decrease in the blue-green ratio indicates an increase in the amount 

of chlorophyll a (Kirk 1994). 

Principally, two blue-green ratios have been used to determine chlorophyll a. The first 

uses measured radiance at 443 nm over that at 550 nm and when the chlorophyll o 
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concentration gets so high that the absorption at 443 nm is near-absolute, radiance at 

520 nm over that at 550 nm. As chlorophyll a concentration increases, the band of 

absorption around 443 nm becomes broader and hence absorption can be detected at 

520 nm (Gordon and Morel 1983; Kirk 1994). 

The remote sensing instrument, the Coastal Zone Color Scanner (CZCS), was launched 

in 1978 on the Nimbus-7 satellite. Throughout the seven years of its operation, both 

blue-green ratios were used to determine the concentration of chlorophyll in the global 

ocean. Studies, such as Gordon et al. (1980) found that a linear regression of this ratio 

against chlorophyll a concentration could be derived from ship-board measurements 

and applied to CZCS imagery very successfully. However in their seminal work, Clarke 

et al. (1970) also noted anomalies in the relationship between ocean colour and chloro-

phyll a, which they thought likely to be due to other constituents in the water, the 

water surface or the atmosphere. Although the blue-green ratio, rather than a measure 

at a single wavelength, does compensate for the effects of other materials in the water 

and the atmosphere (Gordon et al 1980), many studies have found that inorganic 

sediments and coloured dissolved organic material (CDOM) in the water have had a 

strong influence on the light detected above certain waters (Morel and Gordon 1980; 

Mittenzwey et al. 1992; Han 1997). 

Inorganic sediments are carried into the coastal zone by rivers or are resuspended by 

wave and current action at the coast (Williams et al. 1998). Where present, inorganic 

particles are usually the principal influence on water-leaving radiance because they 

scatter light within the water column and back to the sensor (Kirk 1994). The spectral 

proSle of this scatter depends on the size and mineralogy of particles (Novo o/. 1989; 

Han aZ. 1994). Generally speaking however, a brightening at all optical wavelengths 

is usually detected (Moore 1978). Some absorption of light may occur which is also 

very dependent on the mineralogy of the sediment (Han and Rundquist 1994). 

CDOM consists of the pigments formed by the breakdown of organic matter. Some of 

this pigment is formed in the ocean by the breakdown of plankton but much is carried 

to the coastal zone by rivers. The major influence of this pigment on the received 
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spectral signal from the water surface is in absorbing light in the shorter wavelengths 

(Ferrari o/. 1996). The absorption of light decreases in an approximately exponential 

manner with increasing wavelength (Bolgrien aJ. 1995). This results in a bias to 

the backscattered light towards the green and red wavelengths and, since the water 

absorbs more strongly in the red, the result can appear yellow to the human eye, 

hence the name often given to this pigment - gelbstoffe or yellow substance (Taylor 

and Smith 1967; Dekker 1993). Dissolved organic pigments do not always co-vary with 

chlorophyll a and, since they also absorb strongly at 440 nm they can result in an 

under- or over-estimation of the chlorophyll concentration (Carder oL 1989). 

To account for the complicating effects of water constituents other than chlorophyll a, 

radiative transfer models have been developed to model the effect of absorbing and 

scattering materials on the light entering the water (e.g. Fischer et al. 1986; Carder 

et al. 1991; Aiken et al. 1995b; Kondratyev et al. 1998). If the specific absorptions, 

the concentrations and the scattering characteristics are known for each substance in 

the water, then many of these studies have shown that the models reproduce measured 

spectral radiances accurately (Morel and Prieur 1977; Prieur and Sathyendranath 1981; 

Sathyendranath o/. 1989). 

These models can then be used to produce spectral data for a wide-enough range of 

water-quality conditions, so that ocean colour algorithms may be developed and tested 

(e.g. Sathyendranath et al. 1989). Alternatively, the models can be inverted to develop 

ocean colour algorithms directly. To invert such a model the specific optical properties 

of all the water constituents in the model must be known (Morel 1980; Morel and 

Gordon 1980; Doerffer and Fischer 1994) for all wavelengths (Sathyendranath et al. 

1989). Therefore, the spectral dependence of these optical properties is often assumed 

to obey a simple law (Morel and Prieur 1977). 

By comparing measurements of turbidity and pigment content and in-water spectral 

measurements with modelled spectral values. Morel and Prieur (1977) were able to 

investigate the origin of the observed spectra. They showed that the scattering of light 

was at least as influential in determining the blue-green ratio as pigment absorption. 
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Their research separated green waters into Case 1 and Case 2 waters. In Case 1 waters, 

they noted a clear minimum in reflectance at 440 nm that developed as the chlorophyll 

in the water increased. For these waters, the water-leaving radiance is a product only 

of phytoplankton pigments. However, they found that the minimum at 440 nm was 

not visible in turbid Case 2 waters. Here the spectral signature is strongly affected 

by CDOM, by suspended sediment, or by both. The waters around the coast of the 

United Kingdom have been classed as Case 2 waters. 

Mitchelson et al. (1986) found a significant difference between the blue-green ratio to 

chlorophyll slopes for Cage 1 and Case 2 waters and proposed a general blue-green ratio 

algorithm for determining chlorophyll a in Case 2 waters. However, different studies 

have found that such algorithms are very location- and season-specific (Environment 

Agency 1997) and that no general algorithms can be produced using this ratio for use 

in Case 2 waters (Carder et al. 1989; Tanis and Pozdnyakov 1995). 

In addition to the influence from water constituents, these coastal areas are often 

subject to non-uniform atmospheric effects, particularly when near industrial or urban 

zones, which increase the aerosol load of the atmosphere (Tassan and Ribera d'Alcala 

1993). Most of the work that has developed empirical relationships between remotely 

sensed reflectance and chlorophyll a has emphasised the need to correct for atmospheric 

influences (e.g. Gordon et al. 1980; Morel and Prieur 1977). This is because, due to 

the high absorption of the water itself, the radiances measured over water are very low. 

Over very clear, deep water, the scatter of light within the atmosphere can account for 

up to 95 % of the measured signal (Moore 1978). However, over more reflective waters, 

the contribution from the atmosphere is a little reduced. 

Although a popular choice for chlorophyll a detection, the blue wavelengths have been 

found to be noisy as a result of sensor effects (Dekker aJ. 1992a; Dekker ef oA 

1992b) and atmospheric effects (Aiken et al. 1995b). Lathrop and Lillesand (1986) 

also considered that the poor correlation between the blue Thematic Mapper band 

and water constituents was possibly because this band represented the integrated sig-

nal from deeper within the water body than the reference measurements of the water 
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constituents. Recently, Kondratyev a/. (1998) demonstrated how six different blue-

green and green-green ocean/marine algorithms became unusable as soon as the water 

column became enriched with sediments and/CDOM for lake waters. Malthus aZ. 

(1996) noted that at shorter wavelengths the signal is subject to a mixture of absorption 

and scattering effects from photosynthetic pigments, suspended sediments and CDOM. 

The response in the longer wavelength bands was however, dominated by phytoplank-

ton pigments. Workers have therefore tried to find other regions of the spectrum from 

which to obtain information about the chlorophyll a content of the water. 

Other efforts to detect chlorophyll used radiance in the NIR band, where there is also 

a band of absorption by chlorophyll a. Bukata et al. (1974) found that there was 

a relationship between reflectance in the NIR and the logarithm of chlorophyll con-

centration. Because CDOM absorption is minimized at longer wavelengths and the 

effect of suspended sediment on water-leaving radiance is approximately the same for 

wavelengths longer than 600 nm (Quibell 1991), some studies have suggested the use of 

band difference and band ratio algorithms which utilise reflectance in the green, red and 

NIR wavelengths (Rundquist et al. 1996; Hoogenboom et al. 1998). Mittenzwey et al. 

(1992) found that red wavelengths are most sensitive to changes in phytoplankton. 

They suggest a NIR to red ratio which seems to work well for waters with a medium 

to high chlorophyll a concentration. When looking at the validity of using Airborne 

Thematic Mapper data for assessing inland water quality, Malthus et al. (1996) also 

found that a ratio of bands in the red and NIR had the best correlation with chloro-

phyll a. However, Han et al. (1994) found that the rate of increase in reflectance with 

an increase in the level of sediment was not the same for all wavelengths, even in the 

red and NIR. 

The early remote sensing instruments required broad spectral bands to ensure that 

enough radiation was collected for the signal to be detected. As sensor technology 

has advanced so instruments have been developed that can collect data for much nar-

rower wavebands. Hyperspectral instruments have allowed near-complete spectra to 

be collected, so that narrow features in the spectrum, such as absorption bands, may 

be identified and interpreted. Airborne remote sensing instruments are now available 
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with approximately the 10 nm spectral resolution recommended by Morel and Gordon 

(1980), Dekker oA (1992a) and Dekker oZ. (1992b). With many more bands of 

information, features in the spectrum other than band ratios and differences may now 

be computed. 

One feature extracted from hyperspectral data is the derivative of the spectrum, usually 

near a region of particular interest. This technique determines the rate of change of the 

measured spectrum with wavelength and so can be used to highlight peaks and troughs 

in the spectrum, or indeed points of inflection. Where reflectance was not highly cor-

related with chlorophyll a and especially for data that are afl'ected by the atmosphere, 

Mai thus and Dekker (1995) found that the first derivatives of the measured reflectance 

had a high correlation with chlorophyll a concentration, particularly in the red wave-

lengths. Building on this work, Farrington et al. (1994) found that, the first derivative 

spectra of the measurements from an airborne and a surface platform were very similar 

whereas the subsurface reflectance calculated from both these platforms showed shifts 

in magnitude. This indicated that more robust algorithms could be derived from the 

derivative spectrum. Rundquist et al. (1996) found that the first derivatives near 500, 

700 and 800 nm had a good correlation with chlorophyll a concentration. In particular, 

they found that the derivative at 690.7 nm compared very favorably with a NIR to red 

ratio. Eraser (1998a) found that peaks in the first derivatives near 429 and 695 nm 

were likely to be particularly useful for chlorophyll a prediction. Goodin et al. (1993) 

found that a difference between the peak in the second derivative at 695 nm and its 

trough at 660 nm was very stable to changes in the sediment content of water. 

Neville and Gower (1977) considered that the effects of the atmosphere and of partic-

ulates in the water cannot be simply removed by ratios such as the blue-green. This is 

because the wavelengths being used are situated far apart in the spectrum and so it is 

likely that these effects are likely to be different at each wavelength. Therefore, they 

introduced the idea of measuring chlorophyll a using the peak in spectral response at 

685 nm. This peak is thought to be due to chlorophyll fluorescence (Gitelson 1992), 

which results from the re-emission of energy that has been absorbed at about 675 nm 

(Rundquist a/. 1996; Gitelson 1992). Only about 1 % of light absorbed by photo-
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synthesising plankton is lost by Huorescence (Kirk 1994) but an increase in Huorescence 

may be observed to accompany an increase in chlorophyll o (Lorenzen 1966). However, 

there is still some discussion about whether the detected peak is due to fluorescence or 

is the result of a combination of high-scattering of light and absorption of chlorophyll 

at 670 nm (Gower et al. 1999). 

The height and width of the fluorescence feature is expected to increase with an increase 

in chlorophyll a. Therefore, by measuring these dimensions an estimate of the amount 

of chlorophyll a may be made. The height of the observed peak has been found to have 

an approximately linear relationship with chlorophyll a concentration in the range from 

1 to 20 (Gower oL 1999). 

By simulating the typical responses of coastal waters, Fischer oL (1986) compared 

the blue-green ratio to three fluorescence features. They concluded that the blue-green 

ratio was 'useless' for predicting chlorophyll a in these conditions. However, all the 

fluorescence features could be used. Their fluorescence features were; 1) the difference 

between reflectance at 685 nm and 670 nm - the wavelengths of chlorophyll a fluores-

cence and absorption, respectively, 2) the height of the reflectance above a straight line 

joining reflectance at 645 and 725 nm, and 3) the height above a straight line joining 

reflectance at 645 and 670 nm - again this accounts for chlorophyll a absorption at 

670 nm. Several fluorescence line height (FLH) algorithms have been derived that use 

features similar to the latter two fluorescence measures of Fischer et al. (1986) (e.g. 

Fischer and Kronfeld 1990; Gitelson 1992; Gitelson et al. 1994). The usual method for 

determining FLH is demonstrated in figure 1.2. 

Not only does the peak of measured response at 685 nm increase with an elevation of 

chlorophyll a concentration, but several studies have also found that the peak appears 

to move to longer wavelengths as chlorophyll a increases. This is due to a broadening 

of the 675 nm chlorophyll o absorption band (Gitelson 1992; Matthews 1994), to 

sediments in the water, to phytoplankton maturity or to stress (Matthews and Boxall 

1994). 
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Figure 1.2: Diagram of FLH measurement. A straight baseline is drawn between the 

response at two wavebands (here, 675 and 732 nm as used by Gitelson 1992) and 

the height of the spectral response above this baseline at the fluorescence waveband 

(685 nm) is measured. 

The fluorescence peak is in a wavelength region not greatly aEected by Rayleigh scatter 

within the atmosphere (Gower et al. 1984). Unfortunately attenuation of light by water 

is much stronger at red wavelengths, which can result in a very weak fluorescence signal 

(Malthus 1997). As a result, the detected fluorescence signal originates only in the top 

2 m of the water (compared to the top 5 m for shorter wavelengths) and hence is 

not a good indicator of chlorophyll a in the majority of the euphotic zone (Fischer 

and Kronfeld 1990). Fischer and Kronfeld (1990) also found that the FLH feature is 

affected by very turbid water. Surface reflectance has also been found to strongly affect 

this signal (Neville and Gower 1977). 

Fischer and Schliissel (1990) created a radiative transfer model to assess the impact of 

the atmosphere on the detection of the fluorescence signal through it and concluded 

that the signal could be detected if the sensor had a spectral resolution of 5 nm. 

However, few remote sensing instruments have such flne spectral resolution and, for 
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ocean colour applications, it is possible that the signal received within such a narrow 

wave band will be too low to keep the signal to noise ratio above their recommended 

1000:1. 

Fluorescence is a measure of the physiological state of the phytoplankton (Sathyen-

dranath et al. 1989). This results in a high variability of the fluorescence signal in 

response to changes in environmental conditions such as nutrient levels and light avail-

ability (Bricaud et al. 1995). Ocean colour, on the other hand, is affected by the 

physical characteristics of the phytoplankton population such as cell size and shape 

(Bukata et al. 1991). 

Studies trying to quantify chlorophyll a using its spectral signature have found that 

blue wavelengths are noisy and strongly affected by CDOM. Red wavelengths (including 

fluorescence) are absorbed by water and/or affected by scatter by both sediments in 

the water and aerosols in the atmosphere. Fluorescence itself has a very low signal 

which can have a variable response to chlorophyll a concentration. The single feature 

algorithms have been found to hold too little information for accurate chlorophyll a 

detection. 

Morel and Prieur (1977) recommended that where other pigments and suspended sed-

iments are present many more spectral features are required to determine how much 

chlorophyll a there is in the water. For example. Carder et al. (1991) found that the 

CDOM to chlorophyll ratio had a profound impact on upwelled radiance at 443 nm. 

Degradation products absorb more strongly at 412 nm whereas chlorophyll absorbs 

more strongly at 443 nm. Therefore, they suggested separating CDOM with a band at 

412 nm and using this in ratio with a green band (they used the SeaWiFS (Sea-viewing 

Wide Field-of-view Sensor) band at 565 nm) with another ratio of 443 to 565 nm. 

Gower of. (1984) and Fischer of. (1986) have suggested that the entire visible 

and some of the NIR spectrum would be required to determine chlorophyll o in Case 2 

waters. However, owing to the volume of data to be collected, this is usually imprac-

ticable. Also, since many wavelengths are highly correlated, much of the information 
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is redundant. Studies have begun to determine those wave bands which together hold 

as much information as the entire spectrum. Sathyendranath a/. (1989) used a 

model of ocean colour to find a group of Eve wave bands, centred at 400, 445, 520, 

565 and 640 nm, which held almost as much information as the whole spectrum. This 

group appeared to be aa successful at predicting chlorophyll a, suspended sediment 

and CDOM as the whole spectrum. Dekker et al. (1992a) and Dekker et al. (1992b) 

defined 9 bands in the 500-800 nm part of the spectrum with a minimum band width 

of 10 nm which provided almost all the information of the whole spectrum. Using 

multiple regression analysis, Wernand et al. (1997) found a group of 5 wavelengths 

from which the whole spectrum could be reconstructed. 

When many fine bands of spectral data have been measured, it is often found that 

these bands are highly correlated. A transformation of such data has been used in 

several studies to reduce this correlation between features and to reduce the number 

of features used. Principal component analysis is a popular method by which this is 

achieved. This is described in more detail in section 2.7.4. 

Using principal component analysis, Doerffer (1981) found two characteristic vectors of 

data acquired over the northern North Sea. The first of these had negative correlations 

with blue wavelength and positive correlations with the region around 685 nm and so 

was interpreted to represent chlorophyll a. The second was interpreted to represent 

sediment. Similarly, Gower et al. (1984) used eigenvector analysis to determine which 

parts of the spectrum contained the most useful information for deriving chlorophyll a 

concentration. They found that it is the absorption and scattering of phytoplankton 

that correlate with the response in the blue-green region of the spectrum and that the 

information in the red region of the spectrum was mostly found in the fluorescence 

feature. 
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1.4 Regression analysis 

In modelling problems there are three elements for consideration, the inputs, the out-

puts and the model which relates them. In the case of this research, measures of the 

inputs (the spectral measures) and the outputs (the concentration of chlorophyll a) 

will be used. Therefore, the research aims to develop the optimal model to relate them 

(Brown et al. 1994). 

Morel and Gordon (1980) described three different approaches to development of mod-

els which predict chlorophyll a from spectral information: empirical, semi-analytical 

and analytical. The empirical method statistically relates a small set of measured 

chlorophyll a values to measured spectral values and then applies the algorithm to 

further spectral values. The semi-analytical method determines the optical effects of 

materials that co-vary with chlorophyll and those that do not. These are then statis-

tically related to the measured water constituents. The analytical method develops a 

radiative transfer model by computing the optical consequences of water constituents. 

The model must then be inverted to determine the concentrations of constituents that 

produce a measured spectrum. Whilst developing algorithms for use with SeaWiFS 

data, several semi-analytical and empirical algorithms were tested. The empirical al-

gorithms were found to produce the more reliable predictions (Maritorena et al. 1997). 

Much knowledge of the water body in question needs to be obtained for the two an-

alytical methods. One of the most common uses for chlorophyll a prediction in the 

UK is for identifying water quality, particularly algal blooms, to enable rapid response 

by fisheries, environment agencies, etc. (Environment Agency 1997). Therefore the 

relatively straightforward empirical method is commonly favoured. This method usu-

ally uses the least squares regression approach to find the straight-line ht between the 

feature and chlorophyll a. 

Most empirical algorithms developed to predict chlorophyll o concentration from water-

leaving spectra assume a linear relationship. However, this assumption has often been 

found to be untenable over all but the shortest ranges of chlorophyll o concentration 
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(Sathyendranath a/. 1989). Also, the optical signature has been found to be very 

complex (Bukata o/. 1991; Sathyendranath a/. 1989). This is due to the interac-

tion between the optical signatures of the water constituents and the optical properties 

of the water itself (Sathyendranath et al. 1989; Fischer and Kronfeld 1990). 

The features used as an input to a model are recognised as one of the most important 

aspects of the model. No matter how complicated a regression model is, it will not 

extract information that is not there in the features. Thus much of the work aimed at 

developing algorithms to predict chlorophyll a has concentrated on finding the ideal 

features to regress against chlorophyll a and little work has concentrated on finding 

a more applicable model for the data. However, the linear model often used to relate 

the spectral information to chlorophyll a is inappropriate for Case 2 waters (Bukata 

et al. 1991). A non-linear and rather more complex model would be better (Keiner 

and Yan 1998) but this may require input features that have not been considered for 

linear models. Neural networks present a method by which a non-linear function may 

be optimally modelled without any advance knowledge of the data structure. 

Spectral data that are collected over a coastal region are the product of a number of 

processes within the atmosphere and water and are likely to be affected by instrumental 

error. Since chlorophyll a is the only measure from the scene, the user experiences these 

effects as variability in the spectral response that is not attributable to chlorophyll a. 

Neural networks have been shown to be more robust to such noise in data (Paola and 

Schowengerdt 1995a). 

Clearly, neural networks have the potential to overcome the difficulties experienced 

when prescribing the right model for the data set. Many remote sensing applications 

have used neural networks to solve scene modelling problems. The following section 

gives a quick overview of the use of neural networks with remotely sensed data. 
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1.5 Neural networks in Remote Sensing 

Neural networks are a simple, iterative method of developing algorithms that relate 

two sets of variables. These algorithms may be linear or non-linear, and of varying 

complexity. The technique is therefore ideal for investigations in which linear and 

non-linear, and simple and complex algorithms are to be compared. The operation of 

neural networks is described in detail in chapter 3. 

Algorithms used to derive information from remotely sensed imagery are of two main 

types. Regression algorithms, such as those described in the previous section, predict 

the values for a continuous variable for a given set of observations (inputs). Other 

algorithms assign observations to discrete classes, rather than regarding them as a 

continuous variable. These algorithms are known as classifiers and have been the most 

popular application of neural networks in remote sensing (Paola and Schowengerdt 

1995b). 

Early classifications using neural networks divided the image into 'pure' classes, usu-

ally by assigning each pixel to one single surface type (for example Hepner et al. 1990; 

Benediktsson et al. 1990; Heermann and Khazenie 1992). More recently, image clas-

sifications have been performed which distinguish the spectral classes within so-called 

'mixed pixels'. These so-called 'fuzzy' classifications produce fraction images which 

show, for each class, the fraction of each pixel which is covered by that class (Adams 

et al. 1986; Atkinson et al. 1997; Foody et al. 1997; FLIERS 1999). 

Some studies have found that the mixtures of class spectral information may be non-

linear and have recommended that neural networks be used for spectral unmixing rather 

than alternative linear methods (Foody et al. 1997). Initially, neural networks used for 

unmixing pixels were trained using pure examples (endmembers) of the class spectra 

(Civco 1993; Warner and Shank 1997a) but better results have been achieved using 

examples of mixed spectra to train the network (Foody 1996; Foschi and Smith 1997; 

Clark and Cahas 1995). The function defined by the neural network to determine class 

proportions using spectral information is a regression function (Lewis oZ. 1998). 
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The pixels in marine imagery are intrinsically a mixture of several different signals. It is 

therefore logical to extend the technique of spectral unmixing to the spectra measured 

over water. This concept was first tested on estimating the suspended sediment con-

centration of water using endmembers derived in the laboratory (Mertes et al. 1993) 

with successful results. If the mixing of signals is not linear, it is logical to 'unmix' this 

signal using a non-linear technique, such as neural networks. 

Although many radiative transfer models assume simple spectral dependence laws these 

are unlikely to exist. Hence, Morel and Prieur (1977) suggested the use of some iterative 

fitting algorithm. Neural networks were recommended by Peters et al. (1998) to invert 

the increasingly complex radiative transfer models demanded by the use of imaging 

spectrometry. A practical application of this recommendation has been carried out 

recently by Schiller and Doerffer (1999). They used a model to reproduce the top-

of-atmosphere reflectance over Case 1 and Case 2 waters and from this derived a 

set of data for a comprehensive range of phytoplankton, suspended sediments and 

CDOM concentrations. These data were then used to train a neural network, the 

trained network thus emulating the inverted model. In a similar study, Buckton et al 

(1999) trained a neural network on data derived from a model incorporating oceanic, 

atmospheric and instrument effects. They found that even when the data contained 

noise from a number of sources, the retrieval of water constituents was within what 

they considered an acceptable accuracy for Case 2 waters. 

An alternative method is to use the neural network as a specialist predictor of one water 

constituent, rather than of all the constituents. This method is equivalent to producing 

empirical models for predicting chlorophyll a from an ocean colour or fluorescence 

feature. Four studies have investigated the potential for using neural networks for 

chlorophyll a detection. The first, Keiner and Yan (1998), compared neural network 

regression with linear and log-linear regression of the three visible Thematic Mapper 

bands on chlorophyll a. A great improvement was noted with using the neural network 

method. The second study, Keiner and Brown (1999) used the SeaWiFS Bio-optical 

Algorithm Mini-workshop (SeaBAM) dataset. The neural network outperformed all 

the empirical and semi-empirical algorithms from SeaBAM. Recognising the value of 
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previous works using both model-derived and simulated space-borne imagery, Gross 

o/. (1999) and Gross o/. (2000) have also used a neural network to develop 

models for predicting chlorophyll a concentration. This work used data derived from 

the model of Morel (1988) and simulated SeaWiFS data with realistic noise added. In 

this work it was found that neural networks that have been trained with noise were 

highly robust to noise and outperformed polynomial models based on blue-green ratios. 

Although highly relevant, none of these studies adequately addressed the problem of 

chlorophyll a prediction in Case 2 waters. Thematic Mapper data are expensive to ob-

tain in the UK and have too broad a spectral resolution to show any of the important 

chlorophyll a features (Dekker et al. 1992a). Because they are largely based on extrap-

olated information, the SeaBAM data do not have realistic noise levels. They are also 

largely of Case 1 regions (Maritorena et al. 1997). The data derived from the model 

of Morel (1988) and the simulated SeaWiFS data used by Gross et al. (1999) were all 

for Case 1 waters only. It is evident that these studies using neural networks need to 

be extended and applied to hyperspectral data containing noise and contamination of 

the chlorophyll a signal with the atmosphere and other water constituents. 

1.6 Aims 

The initial premise of this research is that when the remotely-sensed spectrum is con-

taminated by the signal from inorganic sediment and non-chlorophyllous pigments, the 

relationship between chlorophyll a and spectral values may be noisy and become non-

linear and complex. Although the fluorescence signal has been found to have a more 

linear relationship to chlorophyll o, this feature can be noisy, di&cult to 6nd and does 

not give information about more than the first few metres of water. 

A wealth of features may be extracted from remote sensing data for prediction of 

scene characteristics and it is likely that several features will be needed to predict 

chlorophyll a in Case 2 waters. Recent studies into the use of neural networks for 
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calculating chlorophyll a concentration have shown promising results but there is a 

need to extend this work to the type of data that would be used for water quality 

studies in the UK. The present research will use a data set that was obtained for the 

purpose of determining chlorophyll a in a region of mixed coastal waters. Previous work 

using such data has demonstrated the difficulties with using conventional algorithms 

for determining chlorophyll a concentration (Environment Agency 1997; Hill 1998) and 

has indicated the desirability of using non-linear multiple regression techniques. 

The present research investigates the potential for improving empirical methods of 

predicting chlorophyll a by using neural networks. The research will also use realistic 

data similar to those regularly used by organisations such as the UK Environment 

Agency, so that the results will be relevant to all bodies concerned with monitoring 

chlorophyll a in coastal waters. Usually, hyperspectral airborne data are used for 

such studies. These data have a high spatial resolution as well as a high spectral and 

radiometric resolution. Often many of the spectral measurements are discarded and 

only a few of the narrow bands used to determine chlorophyll a. Feature selection 

and model selection will be performed and the response of the neural network to new 

configurations examined. This can provide a great deal of information about the data 

and can help describe the nature of the relationship between chlorophyll a and spectral 

information. The approach shall be highly analytical, applying mathematical and 

image processing techniques to the complex problem of detecting chlorophyll a in Case 2 

waters. By interpreting the results at each stage, this research aims to determine: 

1. The separability of the chlorophyll o spectral signal in the presence of other 

environmental factors and sensor noise 

2. The severity of the contaminating signals and noise 

3. The applicability of neural networks to predicting chlorophyll a concentration 

from spectra contaminated by other environmental factors and sensor noise 

4. A comparison of conventional linear regression and neural network regression 

techniques 
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5. The nature of the relationship between chlorophyll o and different regions of the 

spectrum 

6. The identification of the most appropriate spectral regions for the prediction of 

chlorophyll a concentration 



Chapter 2 

Data preparation 

2.1 Introduction 

The first part of this chapter describes how the data were prepared for use in the 

research. The second part describes a number of preliminary analyses that were per-

formed with the aim of understanding the data before their use. 

A key aspect to this research was that it should use data that were typical of those 

that have been and that shall be used for environmental investigations of the coastal 

zone. To the analyst with no immediate access to remote sensing instruments and 

survey vessels, obtaining a suitable data set can pose difficulties. Section 2.2 describes 

potential sources from which data were sought for this research. The data obtained 

for this research are then discussed in section 2.3. The preprocessing of the data is 

described in sections 2.5 and 2.6. 

It is important that the quality of the data is fully understood before undertaking an 

analysis. In so doing, the potential of the data to provide enough information for the 

task as well as the restrictions imposed by the data, may be determined. A typical 

data set is far from perfect however, and so a thorough investigation of its sources of 

error was undertaken. This examined sensor noise (section 2.7.5), atmospheric effects 

25 
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(section 2.7.6) and errors due to co-registering the image and m data (section 2.7.7). 

2.2 Acquisition of data 

Supervised methods of developing regression algorithms require sets of input and out-

put patterns. That is, paired sets of observations of the phenomenon which is to be 

predicted and the information from which is it to be predicted. In this case, chloro-

phyll G was to be predicted from remotely sensed imagery. 

Remote sensing is particularly useful for oceanographic purposes because it is often 

difficult to take an adequate amount of samples directly from the ocean for a valid 

study of a subject. However, this inaccessibility is notorious for causing problems with 

obtaining viable data sets for investigations such as that presented here. Many cruises 

take in situ water measurements and many satellites and aircraft carry sensors over 

regions of the ocean but few of these activities coincide. A significant portion of this 

research entailed tracking down a suitable set of in situ and image data for the research. 

Since the findings of this search may be of relevance to other works, a brief summary 

is given here. 

For a decade since the demise of the Coastal Zone Colour Scanner (CZCS) in 1986 

there were no space-borne sensors which were optimised for ocean applications. Sen-

sors which were recently launched were investigated. The Modular Optoelectronic 

Scanner (MOS) was launched in March 1996 and is still operating and data is avail-

able from DLR, the German centre for air- and space-research. The Ocean Colour 

and Temperature Scanner (OCTS) data is available from NASDA (the Japanese space 

agency) for August 1996 to June 1997. The Sea-viewing Wide Field-of-view Sensor 

(SeaWiFS) was launched in August 1997 and is still operational with data available 

for download from the satellite receiving station at Dundee. Imagery from all these 

sensors was downloaded from the internet. Unfortunately, no m data were located 

for any of the imagery during the data acquisition period of this research. 
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In situ data were sought from the British Oceanographic Data Centre (BODC). Their 

advice was to find suitable imagery and contact them to find out if cruise data were 

available. The Reports Of Oceanographic Cruises and Oceanographic Programmes 

(ROSCOP) database was also searched for suitable data. Unfortunately, due to the 

time taken to process cruise reports, not until late into this research did the database 

hold information about cruises sailing after the launch of any of the above sensors. 

To secure a valid in s«it?//imagery data set it is necessary to time cruises for satellite 

overpasses or send airborne sensors out during scheduled cruises. Because there are 

a number of factors which can prevent in situ data from being collected for specific 

time periods of cruises, the latter scenario is usually the most reliable. The data finally 

secured for this research were collected in this way - three flights were made over the 

path of a cruise which regularly sampled the coastal waters of the UK. 

2.3 Descript ion of the da t a 

The Environment Agency's National Centre for Environmental Data and Surveillance 

have an archive of imagery and in situ samples. These data were originally obtained for 

their Case Study 1 (Environment Agency 1997). From this, one location was chosen 

for this research which will be referred to as Norfolk 30/05/96. 

These data comprised three 72 band Compact Airborne Spectrographic Imager (CASI) 

images (see figure 2.1) of approximately 20 m spatial resolution in enhanced spectral 

mode (the details of the bands are shown in appendix A). These had been flown at 

about 3000 m over the north Norfolk coast on 30th May 1996 and each image con-

tained a small portion of land for the purpose of geometric correction (section 2.7.5). 

Concurrent with these over-flights, a cruise followed the coastline taking continuous flu-

orescence measurements by pumping sea-water into a fluorometer. This flow-through 

fluorometer emits light at 440 nm and detects light at the 685 nm chlorophyll o fluo-

rescence band. At about 606000 m east, the cruise also diverted to take measurements 
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on a transect that was perpendicular to the main cruise direction. Several samples of 

water were also taken along the cruise track. The water samples were processed in the 

laboratory to determine the chlorophyll a concentration of the water in These 

data conform to the quality standards set out by the Environment Agency, which are 

detailed in Environment Agency (1997) and summarised in table 2.1. 

Table 2.1: Environment Agency data quality requirements 

Data Quality criteria 

Laboratory • Date, time and location of sample must be known 

• Extreme values (> 20figl~^) must be checked with the laboratory 

• At least 7 samples must be spatio-temporally associated with 

the fluorometer measurements and 

• at least 6 of these must have values greater than the laboratory 

limit of detection 

Fluorometer • Date, time and location of measurement must be known 

• Data must be free of noise 

e At least 10 fluorometer readings must be recorded within 250 

metres of each laboratory sample site and 

• within 30 minutes of the laboratory sample being taken 

• At least 15 km of continuous track fluorometric readings must 

lie within the geographical region of the CASI imagery 

CAST image e Date and time of image must be known and images must be 

geometrically corrected 

• Edge brightening and glint must be minimal 

® Images should be free of cloud 

General ® The chlorophyll a concentrations in the region should vary by 

at least over a 10 km stretch of water 

The Norfolk 30/05/96 data contained the laboratory measured chlorophyll a for 17 

water samples. This information was used to calibrate the 3142 Euorometer measure-
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ments. The calibrated Auorometer data were used as a measure of chlorophyll a. This 

calibration is described in section 2.5. No ground measurements of downwelling ir-

radiance were made m and so radiance measurements could not be converted to 

reflectance. Thus image spectral measurements shall be referred to as digital numbers 

or DN. 

2.3.1 T h e locat ion of t h e resea rch 

The north Norfolk coast is located in the eastern region of the UK. The region of the 

research faces north and north-east into the North Sea (see figure 2.2). The north 

Norfolk coast is designated a Heritage Coast and Area of Outstanding Natural Beauty 

because of its exceptional scenic qualities. The region also contains a Ramsar site (wet-

land of international importance) and Special Protection Area, both of which commit 

the UK to conserving the habitats in the region (Barne et al. 1995). The region is 

affected by a plume of sediment during parts of the year although around the time the 

data were collected (May) the plume becomes discontinuous (Dyer and Moffat 1998). 

Also, the North Sea has been found to have high levels of coloured dissolved organic 

matter (CDOM) (Morel and Gordon 1980). 

The regime of the north-facing coast tends to be that of sediment deposition (Dyer 

and Moffat 1998) as is demonstrated by the spit features and marshes from Brancaster 

Bay to Blakeney Point. From Sheringham eastwards the north-east coast has a more 

erosional regime as demonstrated by the cliffs at Cromer. North-easterly and southerly 

winds occur in equal amounts at the time of year when the data were collected. East 

of 600000 m, the water is around 10 m deep within the region of the images. West of 

600000 m, the water is shallower (Barne et al. 1995). April to May is the time of a 

phytoplankton bloom although it is likely that this bloom will have receded somewhat 

by the time of sampling (the end of May). The recession of a phytoplankton bloom can 

result in increased levels of CDOM as the organic matter breaks down (Carder a/. 

1989). 



Figure 2.1: CASI data used for this research with bands 6 (441 nm), 20 (540 nm) and 41 (689 nm) set to blue, green and red, 

respectively. From left to right the images are 1877, 1876 and 1875. 
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Figure 2.2: The location of the images off the North Norfolk Coast 
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Figure 2.3: The locations of the three images are shown here with the location of the 

in situ cruise samples superimposed. 

2.3.2 Desc r ip t ion of C A S I image ry 

CASI is a aircraft-mounted pushbroom spectrographic imager. Light entering the de-

tectors is collimated and then dispersed into wavelengths onto a charged coupled device 

(CCD) array for which the rows represent the image rows and the columns represent 

the spectral bands (Babey and Anger 1989; Keller and Fischer 1998). The CCD ar-

ray creates the digital output, which is then recorded onto magnetic tape ready for 

processing. 

CASI was designed to be convenient and inexpensive to operate whilst providing high 

sensitivity and resolution (Babey and Anger 1989). It has the ability to change the 

spectral and spatial configuration to suit the intended use. Three modes are available; 

spatial mode, spectral mode and enhanced spectral mode. Spatial mode has full spatial 

coverage but only about 15 spectral bands in the range 400-920 nm. Spectral mode 

has full spectral coverage of 288 spectral bands but the sampled pixels do not give con-

tiguous spatial coverage. Enhanced spectral mode allows contiguous spatial coverage 

with the possibility of a large number of spectral bands produced by combining bands 

in the full set of 288. 
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The spatial resolution of the imagery is determined by a number of factors. The width 

of the pixel is determined by the Seld of view and the altitude of the sensor. Typically, 

at a height of about 3000 m, the pixels have a width of about 4 m. The length of 

the pixel is determined by the speed of the aircraft and the data integration time. 

In spatial mode the integration time can be short enough to ensure square pixels. 

As the number of desired bands increases, the integration time needs to increase to 

ensure that enough photons are collected. Thus, the pixels of the enhanced spectral 

and spectral modes are longer in the flight direction. For example, the 72 band set 

used in this research would have had an original pixel size of about 4 x 15 m. During 

geometric correction the data are resampled such that the pixels may be considered 

square although some loss of resolution is incurred (Andrew Wilson, NERC Centre for 

Ecology and Hydrology, personal communication; Kyle Brown, Environment Agency, 

personal communication). These data were resampled to 20 x 20 m. 

2.4 Software used for this research 

Geometric correction of the imagery was performed by staff at the Environment Agency's 

Centre for Environmental Data and Surveillance within the PCI Works toolkit for which 

CASI data are formatted. Images were then imported into ERDAS Imagine and ENVI 

for image processing and extraction of spectral values (section 2.6). Calibration of 

in situ samples, least-squares regression and analysis of point-data and results were 

performed within Matlab. The FLIERS SFT2.0 software (Lewis 1997) was used for 

neural network algorithm training and testing. 

2.5 Calibrat ion of t he fluorometer da t a 

Since Lorenzen (1966) many cruises have measured m Mfo fluorescence to determine 

the m chlorophyll a content of water (for example, Neville and Gower 1977; Steele 

and Henderson 1979; Gordon e( oA 1982; Strutton aZ. 1996; Strutton oZ. 1997). 
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These data are quick to obtain and thus enable many measurements to be made within 

a reasonable time-window of the aircraft over-pass. Alternative methods use only 

laboratory processed samples of sea water, which are time consuming to collect and 

so often result in too few samples per image to be viable. A recent study by Nieke 

et al. (1997) found that in vivo fluorometer detection of chlorophyll a compared well 

to standard laboratory as well as laser detection methods. 

Chlorophyll a fluorescence is a measure of the reaction of the pigment to the light 

source. This is a product of its physiological condition. It is therefore a particularly 

suitable measure of chlorophyll a for studies interested in primary production. If 

quenching (where the turbidity of the water is high and much light is absorbed) does 

not occur and there is no scattering of light by particles in the water, the relationship 

between fluorescence and chlorophyll a is linear (Lorenzen 1966; Yentsch and Menzel 

1963). Variation in the measured fluorescence can be caused by many factors including 

the configuration of the instrument, the physiological state of the phytoplankton and 

the phytoplankton species and even the time of day (Estrada et al. 1996). It is 

not possible to determine all these factors in vivo so some error in determining the 

chlorophyll a concentration may be expected (Cunningham 1996; Hanelt 1996; Carder 

oZ. 1989). Additionally, some error is expected in the determination of chlorophyll a 

in the samples taken for the calibration of the fluorometer measurements because it is 

not possible to remove all accessory pigments or ensure that identical techniques are 

employed in all laboratories (Gieskes and Kraay 1983; SCOR-Unesco 1966; Aiken et al. 

1995b). 

The fluorometer measurements were calibrated to chlorophyll a in using the 

17 water samples which had been processed for chlorophyll a. It was assumed that 

a linear relationship existed between the fluorometer readings and the chlorophyll o 

concentration of the water and that the relationship remained constant throughout the 

cruise (Yentsch and Menzel 1963; Holm-Hansen oA 1965; Lorenzen 1966). 

A fluorometer reading was found for each laboratory datum using the time Axes pro-

vided with both sets of measurements. Four of the laboratory data were discarded 
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because no fluorometer reading could be found within a short time interval, or because 

no fix had been provided. 

110 

Calibration data points 
fluoro = 4.342C'ma + 9.403 

"O 80 

O 60 

chlorophyll a concentration {fig I' 
16 

Figure 2.4: Calibration of the fluorometer data using the laboratory water samples. 

A first-order polynomial was fitted to the remaining 13 data points using the least 

squares method. The relationship 

fluoro = 4.342C/i/a + 9.403 (2.1) 

was found where fluoro indicates the fluorometer reading and Chla indicates the chloro-

phyll a concentration in Inverted, this produced the calibration 

Chla{^gl ) = 0.230//«oro — 2.163 ( 2 . 2 ) 

as illustrated in figure 2.4. This relationship was used to calibrate all 3142 data points 

to chlorophyll a in figl~^. 

The correlation of this calibration is 0.664 which is significant to within the 10 % 

level. A better correlation would be desirable if absolute chlorophyll a predictions were 

needed. However, it was intended that this research make a comparison of algorithms 
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for predicting Huorometer-measured chlorophyll o. This measure will be referred to ag 

chlorophyll a from this point forward. 

2.6 Extrac t ion of spectral information 

It is common to use some form of averaging window when extracting information from 

images of water scenes (for example DoerHer cA 1989; Malthus and Dekker 1995). 

This is intended to smooth out noise and/or account for current and tidal effects and 

uncertainty in the registration of images to sample points. However, the research should 

account for the underlying scale of variation of chlorophyll a in the water which is often 

of the order of a few tens of metres in coastal regions (Steele and Henderson 1979). 

A moving window was chosen that found for each pixel the weighted mean for a win-

dow around that pixel. The pixels within this window were weighted using a two-

dimensional Gaussian function such that the mean was biased towards values in the 

middle of the window. Such an averaging window smoothes out the noise in the data 

whilst giving priority to the measurements made nearest to the location of the pixel. 

Initially, this was assessed for several window sizes. This assessment was performed 

only for image 1876 as it would have been too computer intensive to have used all three 

images. The original research using these data (Environment Agency 1997) performed 

this correlation test for a FLH calculated from the imagery and using a window size of 

up to 21 by 21 pixels. Window sizes above 21 by 21 pixels were considered too large to 

be valid. This window size represented an area of approximately 420 m^ on the ground. 

The digital numbers in several image bands for several different moving window sizes 

were calculated and compared to the chlorophyll a measurements using the correlation 

coefficient: 

P ^ Y.U(Chk - Chl){DN, - DN) p g) 

'JUtAChk - chif Y:LI(.DN, - DNr 

where DA'i and C/iZ, are the zth digital number and chlorophyll o measurement re-

spectively, and are the means of these observations and n is the number of 

observations. This meaaure indicates the amount of association between the chloro-
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phyll a concentration and the spectral measurements. 

Table 2.2 gives the values for these coefficients for various window sizes. 

Table 2.2: Correlation coefficients for different moving window sizes around fluorome-

ter data points 

Weighted mean for CASI band: 

Et 15 20 30 40 60 

1 0.5080 0.5323 0.6863 0.6852 0.4318 0.5687 

7 0.6502 0.6305 0.7114 0.7267 0.5410 0.6520 

11 0.6483 0.6339 0.7103 0.7265 0.5468 0.6531 

15 0.6477 0.6352 0.7096 0.7270 0.5515 0.6542 

21 0.6463 0.6364 0.7090 0.7273 0.5540 0.6546 

^ Size of sides of window in pixels (one pixel has an edge of 

approximately 20 m). 

* Mean correlation coefficient for each window size. 

Band 40 (682 nm) is the band closest to the fluorescence peak and hence the corre-

lations with the fluorometrically-derived chlorophyll a concentration are the highest. 

Generally, as the window size increased, there was an increase in the correlation of 

chlorophyll a measurements with spectral data obtained from the window. This in-

crease was consistent with the findings of the Environment Agency in their study using 

this data (Environment Agency 1997) and, although the increase in the mean values 

was not statistically signiRcant, a moving window of 21 by 21 pixels was selected for 

comparability with their work. 

The spectral data used in the rest of this research was then extracted from the imagery 

using the weighted mean method and a window of 21 by 21 pixels. The three sets of 

spectral values, corresponding to the three images, were then concatenated. Because 

the images 1876 and 1877 overlapped, some data points were removed by giving priority 
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to the data which had a shorter time interval between the over-Sight and the m 

sampling. This resulted in pixels from image 1877 being chosen where they coincided 

with pixels in image 1876. 

Several more data points were removed because they fell outside of the image range 

and others were removed because the window around the data point lay partly outside 

the image. This resulted in 2300 chlorophyll a measurements (calibrated fluorometer 

readings) with corresponding spectral readings in each CAST band. 

2.7 Pre -s tudy analysis of da t a 

Some preliminary analyses were performed to enable a full knowledge of the data. This 

involved determining some basic statistics of the data and using cluster analysis and 

principal component analysis to determine the information content of the spectral data. 

It is widely acknowledged that spectral data collected over water surfaces is subject to 

high noise levels. This is because the signal received from the water body itself is so low 

that any other source of interference can have a significant impact. These impacts can 

be dependent on the wavelength and region of the image. Further analyses assessed 

the potential sources of error in the data. 

2.7.1 Sta t i s t ica l analysis of t h e d a t a 

The chlorophyll a data ranged in value from 3.12 to 22.61 with a mean 

value of 8.96 A histogram of chlorophyll o values is shown in Sgure 2.5. Much 

of the data had chlorophyll o concentrations of between 5 and 7 //p with over 1000 

points having values in this range. There were also two lesser peaks in chlorophyll a 

values at about 13 and 21 

The mean spectrum and the standard deviation of the spectral values were determined 
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for each image (figure 2.6). The mean spectra displayed a typical peak in the blue and 

green wavelengths (refer to appendix A for a description of wavelengths correspond-

ing to each band) and a sharp decline as water-absorption increases towards longer 

wavelengths. A narrow trough was visible at approximately 440 nm (band 6), which 

corresponded to the chlorophyll a absorption band here (Wrigley af. 1992). Several 

peaks and troughs were visible in the blue and green region, which corresponded well 

between images. Troughs at bands 45 (718 nm) and 51 (761 nm) were well dehned 

and probably resulted from atmospheric water (Fischer and Schliissel 1990) and oxy-

gen (Wrigley oZ. 1992) absorption, respectively. The standard deviation of these 

spectra ranged from around 500 DN in the blue to about 100 in the NIR. Although 

the overall shape of the spectra were the same, there was some difference between the 

spectral values of the three images with 1875 having the highest values and 1877 having 

the lowest values. This may be a consequence of some environmental factor such as 

increased scattering by the atmosphere or suspended sediment, which caused overall 

brightening in some images more than others, a decrease in the sensitivity of the sensor 

throughout the course of the flight or even differences in the calibration of each image. 

No adjustment was made to the image values to reduce these differences between the 

images. 

2.7.2 Cor re l a t ion analysis of t h e d a t a 

Figure 2.7 illustrates the correlation (equation 2.3) found between each CASI band and 

chlorophyll a. With 2300 data points all correlations above ~ 0.1 may be considered 

to be significant. The highest correlations were in the red wavelengths, particularly 

around 689 nm (band 41). The lowest correlations were for bands 1 to 4 (401 to 

427 nm). Band 72 (914 nm) had the only negative correlation with chlorophyll a at 

-0.73. This waa found to be because quite a few values were very low or zero and 

these tended to correspond to the higher chlorophyll o concentrations. This was not 

observed in any other band and was due to some error with the calibration of the 

imagery. Without these values, band 72 had a correlation of 0.35 to chlorophyll o 
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Figure 2.5: Histogram of chlorophyll a concentration. The mode of the values was 

between 5 and 7 

concentration. All the data points, including those with zero values in band 72 were 

kept in the data set. 

Many chlorophyll a detection algorithms use a ratio of two bands. The correlation of 

each 2-band ratio with chlorophyll a is plotted in figure 2.8. The highest correlations 

were for the ratio of bands 41 (689 nm) to 39 (675 nm) and for bands 29 (604 nm) to 

27 (589 nm) and for ratios of longer red wavelengths with green wavelengths. 

The correlation between the bands was also assessed. Figure 2.9 illustrates this. Most 

wavebands had a high correlation with each other. The lowest correlations were for blue 

wavelengths and band 72 with the rest of the spectrum. A distinct boundary between 

the visible and the NIR was apparent as comparatively low correlations between bands 

of the two spectral regions. 
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Figure 2.6: Spectral mean and standard deviation of images. The mean digital number 

and standard deviation of this value is plotted for each band in each of the three 

images. These values have been calculated for the pixels representing water only. 
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Figure 2.7: The correlation of CASI bands 1 to 71 with chlorophyll a. Band 72 had a 

correlation coefficient of -0.73 (see text). 

2.7.3 C lus t e r analysis of d a t a 

To assess whether there was enough information in the spectral bands for prediction of 

chlorophyll a, an initial visual technique was used. This examined the clustering in the 
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Figure 2.8: Correlation of the 2-band ratios of the 72 CASI wave bands with 

chlorophyll a. 

6 0 7 0 

Figure 2.9: Correlation of the 72 CASI wave bands (normalized to zero-mean, unit 

variance) with each other. 

feature (band) domain of data representing similar chlorophyll a concentrations. This 

entailed extracting spectral measurements for data points with short ranges of chloro-

phyll a concentration and plotting them in two-dimensional feature space. Figure 2.10 

demonstrates this for two pairs of bands. In these figures, each short spectral range 

is represented by a different colour such that the progression of data points in feature 
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space can be followed as the chlorophyll a concentration increases. 

Figure 2.10a shows a typical example for much of the Norfolk 30/05/96 data. Curvi-

linear features are visible which may have been due to changes in chlorophyll a along 

the cruise track and which correlated with gradual changes in spectral values due to 

atmospheric, oceanic or sensor effects. Such features were not so evident when plotting 

short ranges of chlorophyll a against bands 10 (469 nm) and 70 (899 nm) in figure 2.10b. 

From these figures it was evident that clustering of similar chlorophyll a values does 

occur in feature space but with a change in chlorophyll a (as represented by a change 

in colour) the change in location of the cluster in feature space was not uniform. This 

indicates the complexity and non-linearity of the relationship between chlorophyll a 

and spectral values. 
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Figure 2.10: Cluster analysis of data. These figures demonstrate how well data with 

similar chlorophyll a concentrations cluster together in feature space. 

The covariance matrices for each range of chlorophyll a concentration were also calcu-

lated. The trace of these was taken as a measure of the overall variance within each 

chlorophyll a range and those with a high variance were investigated further by find-

ing two bands in the covariance matrix with a high covariance and plotting the data 
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points against these bands. This technique highlighted a number of anomalies in the 

data. The data points in the range 6-7 displayed two distinct clusters in feature 

space for which one cluster had higher spectral values for both bands. The data points 

from these two clusters were plotted according to their geographical positions and the 

clusters were found to correspond to images 1877 and 1875. The values in image 1877 

had the higher spectral values, as was found in section 2.7.1. 

Other ranges of concentrations with high variances were 11-12 and 15-16 

Distinct clusters were found in these ranges in spectral space, which corresponded to 

distinct clusters in geographical space. These highlighted patches of brighter values 

to the west of image 1877 at about 577000 m east (see figure 2.11) and also in image 

1875 at 630000 m east. These bright patches may have been due to haze, or a highly 

reflective suspensoid, reflection from the bottom or sun-glint on the water surface. 

Cluster analysis highlighted these bright regions because, by choosing small ranges of 

chlorophyll a concentration, very localised areas in the data were being analysed. 

2.7.4 Pr inc ipa l c o m p o n e n t analysis of t h e d a t a 

Principal component analysis (PCA) transposes the data, onto a new set of axes 

such that the maximum variance in the data is projected onto the minimum number 

of axes: 

y = $% (2.4) 

where Y is the transposed data and $ the matrix of transform vectors. Fischer (1985) 

used principal component analysis to determine how many independent optical com-

ponents of the water could be detected given variation in scattering and absorption by 

sediments and the atmosphere. Fischer (1985) used a radiative transfer model to gener-

ate the data and so were able to control effects such as sensor error. With measurements 

at 6 wavelengths they found that at most two water substances caused a significant 

change in spectral information. Also, using model-generated data, Sathyendranath 

aL (1989) found that enough orthogonality existed between suspended sediments, 

chlorophyll and yellow substance to permit their retrieval at least in some cases. They 
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Figure 2.11: Identifying anomalies in the spectral data with cluster analysis. The left 

figure shows data points for image 1877 with chlorophyll a concentrations between 

11 and 12 and 15 and 16 iJ.gl~^ plotted in feature space defined by bands 

15 (504 nm) and 25 (575 nm). The two clusters that are found for each range of 

chlorophyll a are displayed with different symbols. These same clusters are then 

plotted in geographic space in the right figure. 

found that the first principal component was highly correlated with suspended sedi-

ments. Gower et al. (1984) found that the 2nd and 3rd principal components of their 

reflectance spectra, collected off the coast of Canada, related to chlorophyll. Fischer 

et al. (1986) found the 2nd principal component of their model-derived data correlated 

to chlorophyll if CDOM was not present. However if CDOM was present, the 2nd 

principal component correlated with CDOM and chlorophyll with the 4th principal 

component. 

A similar technique, factor analysis (Comrey 1973; Otsu 1984; Cooley and Lohnes 

1971), identifies correlations between factors (eigenvectors of the correlation matrix) 

and variables. Using this technique, Doerffer (1981) found two eigenvectors in 16-band 

airborne sensor data from the northern North Sea the first of which corresponded to 

chlorophyll and the second to sediment. However, when applying factor analysis to 
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the covariance matrix, DoerEer (1989) found that neither chlorophyll o nor 

Gelbstoffe signals could be separated out from Thematic Mapper measurements made 

over the sediment-rich German Bight waters of the North Sea. Their principal factors 

corresponded to suspended sediments, atmospheric turbidity and temperature. This 

second study had fewer than half the number of spectral bands of the first and this 

may explain why the more complex chlorophyll a signal could not be separated. 

An assessment of the principal components of the Norfolk 30/05/96 data was under-

taken to provide an insight into the linearly separable components of the data. Princi-

pal component analysis may be performed using a number of techniques. Usually the 

eigenvectors of the covariance matrix, Ex are found such that 

. (2.5) 

With the restriction that Y is orthogonal, Ey is a diagonal matrix describing the 

variance of the data along each transpose axis. These are the eigenvalues corresponding 

to the vectors in $ . Sometimes the eigenvectors are determined for the correlation 

matrix of the data. A less common method uses singular value decomposition (SVD). 

In this case the matrices U, S and V are found such that 

== . (2 .6) 

The columns of U contain left singular vectors of X, which are the unit eigenvectors of 

(which may be equated with the matrix of covariance between the data points) 

and the rows of V are the right singular vectors of X or the unit eigenvectors of 

X^X (which may be equated with the matrix of covariance between the variables). 

6" contains the square roots of the eigenvalues of known as the singular values of 

X. The principal components are found from U * S {= {V^)~^X). This method was 

used by Buckton a/. (1999) to produce features for input to a neural network for 

predicting oceanic constituents. 

The standard method was found to produce some principal components that are less 

noisy than those with a higher eigenvalue. This is an eEect that has been found with 

high dimensional data with highly correlated bands (Green et al. 1988; Lee et al. 
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Figure 2.12; Principal component 

analysis of spectral data, (a) displays 
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95 % of the variance is accounted for 

by the first 4 eigenvectors and 98 % by 
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1990). The SVD method produced some more useful principal components that shall 

be presented here. 

The principal components of the Norfolk 30/05/96 data were normalised and their val-

ues plotted according to a grey scale (figure 2.12a). A visual inspection of these showed 
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that the Arst five principal components varied steadily over space whereas the higher 

order principal components were very noisy. Because the bands were highly correlated 

with each other, it was expected that much of the variance in the data should be ac-

counted for by very few principal components. This was supported by the magnitude 

of the first few eigenvalues compared to the majority of the eigenvalues (figure 2.12b), 

which indicated that the first 5 principal components accounted for 96 % of the vari-

ance. These first five components may have represented uncorrected elements in the 

scene which change the spectral characteristics of the data. The correlation coefficients 

between all the principal components and chlorophyll o were calculated (Egure 2.12c) 

and the third principal component was found to have a very high correlation coefficient 

of 0.77. 

The spectral dependence of the principal components was found by inspecting the 

eigenvectors (Ggure 2.13). The eigenvector corresponding to the largest eigenvalue 

echoed the shaped of the mean spectra for the images (figure 2.6). If the first principal 

component was to be correlated with some element of the scene it would have been one 

that had an equal effect throughout the spectrum such as suspended sediment, bottom 

reflectance or sun-glint. Inspection of the first principal component (see also figure 

2.22a) found peak values that correspond to brighter regions in the imagery, particu-

larly at 577000 m east and 630000 m east. These were the same bright regions that 

were highlighted by cluster analysis of chlorophyll a concentration ranges 11-12 

and 15-16 in section 2.7.3. Lesser peaks throughout this principal component 

corresponded to brighter regions in the images, the origin of which was difficult to 

determine. Again, it was possible that this effect was due to atmospheric haze or to 

particulates in the water that were increasing the scatter into the sensor. Alterna-

tively, it was possible that changes in the attitude of the sensor resulted in increased 

reflectance from the surface of the water or transmission through the atmosphere. 

The second eigenvector had large negative values in the blue region of the spectrum 

indicating that the second principal component was dominated by these wavelengths. 

The manner in which the values in the eigenvector approached zero with increasing 

wavelength was similar to the shape of the absorption curve of CDOM and so the 
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second principal component may have corresponded to this water constituent. This 

characteristic was very similar to the second eigenvector found by Sathyendranath 

(1989). Very low values were observed in the second principal component (see 

also figure 2.22b) at 586000, 632000 and 648000 m east. 

The third eigenvector, corresponding to the principal component that correlated most 

with chlorophyll a, and the fifth and sixth eigenvectors had a shape similar to the 

chlorophyll a absorption spectrum with peaks in the blue and red and a deep trough in 

the blue-green and green. However, the shape of the fourth eigenvector was similar to 

the chlorophyll a reflectance spectrum and it may have been that these four principal 

components represented changes in pigment concentrations in the water. 
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Figure 2.13: The eigenvectors corresponding to the six highest eigenvalues. The values 

of the vectors (the coefficients of the principal component transform) are plotted 

against the band number. 
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All the principal components showed a large range in values at 606000 m east, the region 

where the cruise took a transect perpendicular to the main cruise direction (section 2.3). 

The 3rd, 4th and 5th principal components are directly compared to chlorophyll a 

concentration in figure 2.14. Although highly correlated with chlorophyll a, these 

principal components clearly do not follow the same pattern aa chlorophyll o over the 

track of the cruise. 
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Figure 2.14: Chlorophyll a concentration and the values of the third, fourth and fifth 

principal components multiplied by 10. 

Owing to the high values of the first two principal components, these were identified as 

indicators of factors that would result in error in the prediction of chlorophyll a. The 

PCA technique is linear and thus non-linear elements in the data may not be separated 

using this technique. Therefore, the presence of chlorophyll a may have been intrinsic 

in more than one of the lower order principal components. 
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2.7.5 Sensor effects 

The pitch, roll and yaw of the aircraft can have a significant effect on pushbroom 

scanners and this effect can be different for each line of the image. CASI data are 

provided with data from the onboard vertical gyroscope (which accounts for pitch and 

roll) and Global Positioning System (GPS) data, which account for changes in position. 

Cosandier et al. (1992) found that standard CASI geometric correction using these two 

sources of information worked well where the surface was fiat, as is a water surface. The 

data were obtained already geometrically corrected by the Environment Agency. This 

entailed using the gyroscope and GPS data to correct the image and then performing 

a secondary, manual correction using information from the scene. This resulted in an 

error of correction of around 10 m towards the coast, which increases away from the 

coast (Rebecca Allen, Environment Agency, personal communication). 

The most noticeable sensor effect in this imagery was a brightening and darkening of 

whole rows or columns of the image data prior to the application of the 21-pixel win-

dow (section 2.6) (figure 2.15). Striping occurs in all imagery collected from surfaces 

of low reflectance (Bagheri et al. 1998). It was thought that the brightening of certain 

rows was caused by a subtly changing row integration time as the aircraft passed over 

the scene or perhaps by fluctuations in power supply (Bizzi et al. 1996). However, the 

variation was not consistent across the wavebands. This indicated that the changes 

were possibly occurring whilst the light signal was being separated by the reflection 

diffraction grating into wavebands before being recorded. There was a similar, appar-

ently random variation in the values of whole columns, which was likely to be due to 

particular Charged Coupled Devices within the array that registered slightly erroneous 

light levels. 

The contribution by the row and column variation to the overall variation in the data 

was quantised from ungeometrically corrected images as follows (see figure 2.16). For 

the image (f in figure 2.16), the mean value for each row (or column) was calculated for 

each band to produce the 'row-mean', A, ('column-mean', a). The difference between 

this value and the mean of the surrounding row-means (column-means) was then de-
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Figure 2.15: Variation in digital numbers (DN) for whole rows or columns shown in 

bands 70, 6 and 1 = red, green and blue. Here the grey levels for each band have been 

stretched from 0 to 255 for this section of the image to enhance the effect. 

termined ('row-difference', c/'column-difference', D). It was found that the local mean 

of row-means was very similar for 5 to 21 rows (columns) and so the row-difference 

(column-difference) was calculated within the locality of 21 rows (columns). The result 

was a matrix that is 72 (the number of bands) by the number of rows (columns) of the 

image. 

The row-mean matrix was analysed per-row, F (along the flight direction) and per-

band, E. NO structure was found along the flight direction but a clear variation in this 

noise effect was found by averaging the row difference for each band. The dotted line 

in figure 2.17 shows how variation that occurred from one row to the next varied with 

the image band in the original images. The maximum mean difference between a row 

and its surrounding rows for the original image was about 45 digital numbers for the 

shortwave blue bands. The minimum mean difference was about 6 digital numbers. 

With a standard deviation of between 400 and 600 DN for the blue wavelengths (fig-

ure 2.6) this accounted for as much as 6 percent of the standard deviation at these 

wavelengths for the original images. As the signal declined at longer wavelengths the 

contribution from row-to-row variation to the standard deviation approached 25 per-

cent. By passing the window over the image, (section 2.6) the effects of this noise were 

greatly reduced as shown by the solid lines in figure 2.17. The variation from row to 
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Figure 2.16: This figure illustrates how the row and column variation in the images 

wag assessed. This is explained fully in the text on page 51. 

row in the image was now found to account for a maximum of 3 % of the standard 

deviation. 

A similar analysis was performed on the column-mean matrix. One effect was apparent 
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Figure 2.17; The mean difference between the mean value for a row and its surrounding 

20 rows is shown in the left plot (a) against band number. The dotted line shows 

this noise before the 21-pixel moving window was applied and the solid line shows the 

effect of the noise after the moving window was applied. 

across the flight direction (h in figure 2.16) but this is more relevant to section 2.7.6 

and so will be discussed there. Per-band (G in figure 2.16), this matrix showed a similar 

effect to the row-mean matrix (figure 2.18). However, more noise was evident in the 

near-infrared. This noise accounted for approximately three to seven percent of the 

standard deviation at blue wavelengths, dropping to around three percent for green 

and red wavelengths and then rapidly increasing in the near-infrared from five percent 

to almost 50 %. Again, applying the moving window to the image data reduced this 

noise effect to only a few percent. 

2.7.6 Atmosphe r i c , sur face , b o t t o m a n d ad jacency effects 

The greatest contribution to radiance received over water is usually from the atmo-

sphere. Rayleigh scatter from molecules and Mie scatter from aerosols adds radiance 

throughout the spectrum, although it is wavelength-dependent. By flying an aircraft 
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Figure 2.18: The mean difference between the mean value for a column and its 

surrounding 20 columns is shown in the left plot (a) against band number. The dotted 

line shows this noise before the 21-pixel moving window was applied and the solid line 

shows the effect of the noise after the moving window was applied. 

at different heights over the same stretch of water, Gower and Borstad (1981) found 

that the atmosphere contributes 0.4 % to the radiance at 440 nm for every 100 m and 

0.15 % at 560 nm (also Singh et al. 1997). The variations in radiance caused by the 

atmosphere can be greater than the variations caused by water constituents (Quenzel 

and Kaestner 1981). 

Many authors insist that atmospheric effects must be corrected for if the chlorophyll a 

signature is to be extracted (e.g. Hoogenboom et al. 1998; Gordon 1997). The most 

popular method by which this is achieved is dark-pixel subtraction whereby the water-

leaving radiance is assumed to be zero in the NIR (e.g. Antoine and Morel 1999; Moore 

1978). The measured value at these wavelengths is then solely due to the atmosphere 

and this radiance can be subtracted from all bands. However, in turbid waters it 

cannot be assumed that the radiance is zero because NIR light can be backscattered 

by sediments in the water (Gordon 1981; Peters et al. 1998). Other methods for 

correcting for atmospheric effects are based on models (for example Land and Haigh 
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1996; Gordon a/. 1997). However, without ground truth measurements these are 

hard to specify or verify (Lazar et al. 1998). 

Atmospherically corrected formats of images 1875-1877 were available for this research. 

These data were processed using the atmospheric correction algorithms developed by 

Plymouth Marine Laboratory as part of the COAST project (Aiken et al. 1995a). 

This required subsampling the 72 channel imagery to 15 channels of up to 25 nm 

width before applying the algorithm. With these data, it was found, in some pixels, 

that the fluorescence peak around 685 nm became more prominent as a result of this 

correction. However, the data were extremely noisy with many pixels having zero 

values in one or more bands. A previous study using these data had found a reduced 

accuracy for chlorophyll a algorithms developed from it (Environment Agency 1997). 

It was decided that only the original imagery would be used for the research, since 

this would allow the exploration of algorithms that did not require the extra stage of 

atmospheric correction. 

The most dominant atmospheric effect in this data was brightening towards the edges 

of the image (figure 2.19). This was due to the increased path length of the radiance 

received as a result of the increased viewing angle over the scene at the edges of the 

scanner. This tended to be slightly greater along the north edge of the images than the 

south, possibly due to the interaction of viewing and solar zenith angles causing greater 

scatter into the sensor from the atmosphere on one side. In addition, the CASI sensor 

has an asymmetric field of view such that nadir is found some columns away from the 

centre column of the image. This results in a greater viewing angle at one edge of 

the image than the other (Andrew Wilson, NERC Centre for Ecology and Hydrology, 

personal communication). 

Using the column-mean method described in section 2.7.5, it was found that this effect 

is most prominent with the shortest wavelengths and was negligible beyond ^560 nm. 

Figure 2.20 illustrates how the average spectral value per image column varies across 

the image and with wavelength. For the blue and green wavebands the average digital 

numbers were highest to the north of the scanline, declined steadily towards the centre 
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and began to increase to the south of the scanline for all three images. At the south 

of the scanline the mean values for all images tended to drop off because the values 

of the land pixels had been set to zero. In the image with the least land (1877) the 

mean digital numbers increased towards the south following a smooth curve, although 

the values did not approach the high values that were found to the north. At the very 

edge of the images the increase in spectral values in the blue wavelengths was as much 

as 1000 digital numbers. This was a very significant effect on the imagery because it 

was greater than the standard deviation of the imagery. However, correction of this 

brightening would be relatively simple as the brightening was a function of column 

number and appeared to fit a quadratic-like function. The ENVI image processing 

package (only available very late on in the research) provides a simple tool for correcting 

such brightening. This increased radiance had little effect upon the spectral data at 

the 2300 data points because these were largely located along the centre columns of 

the images. Only the transect of measurements at 606000 m passed into this region of 

increased DNs. 

Figure 2.19: The blue bands, in this case band 4 (427 nm), show clearly the changes in 

spectral values across the scanline, here shown for part of the geometrically corrected 

image 1877. 

Another effect common in images over water is sun- and sky-glint. This is specular 

reflection from the water surface and so depends on the interaction between illumi-

nation and viewing geometry as well as the clarity of the atmosphere (which affects 
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the brightness of the sky). Because the viewing angle is important, the effects of ghnt 

may change with the attitude of the sensor platform during image acquisition (Wrigley 

et al. 1992). Glint is particularly common where the surface is roughened by winds 

because the area of surface that reflects light straight to the sensor is increased. The 

overall effect of glint on spectral measurements is to brighten values across the spec-

trum. Tassan (1981) found that sun-glint was a high source of error in chlorophyll a 

prediction although sky-glint is usually not significant enough to necessitate its cor-

rection (Moore 1978). Sturm (1981) and Fraser et al. (1997) provide methods for 

correcting for glint but, as with atmospheric correction, these require knowledge of the 
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atmospheric, meteorologic and oceanographic conditions at the time of sampling. 

Reflection from the bottom of the sea has been identified as a source of error in shallow 

waters. Gould and Arnone (1997) found that bottom rejection was signiEcant in 

their data and Eraser (1998a) and (1998b) found that error in their turbidity and 

chlorophyll a predictions was partly due to bottom reflection and this error varied 

with the bottom sediment type. Lee et al. (1994) derived an expression for the remote 

sensing reflectance received from the bottom as a function of the bottom albedo, the 

water depth and its absorption coefficient and Perez-Ruzafa et al. (1996) proposed a 

model from which the chlorophyll a content of water may be determined even when 

the water is shallow and the bottom is covered in meadows of macroalgae. East of 

600000 m in the Norfolk 30/05/96 site, the water depth quickly descends to greater 

than 10 m. To the west the water is shallower and some possibility of bottom reflectance 

wag considered. 

The point spread function of the sensor and scattering within the atmosphere deter-

mine from where in the scene and with what weighting photons are collected for each 

pixel. This usually results in a bias towards the central region of the pixel which de-

creases towards the edge of the pixel, with a few photons being gathered from the 

areas represented by adjacent pixels (Justice et al. 1989; Fisher 1997). Brightening 

of spectral values close to land is often attributed to reflection from the bottom sed-

iments, however, it can also result from light being gathered from nearby regions of 

land (Reinerman and Carder 1995). 

Haze in the atmosphere, or surface or bottom effects may have caused the bright regions 

at 577000 m and 630000 m that were highlighted by cluster and principal component 

analysis. Without m aifw measurements, it was diflRcult to determine which were the 

strongest influences on the data. Yet, the potential for error in chlorophyll o predictions 

due to these factors was recognised. 
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2.7.7 E r r o r s due to co-locat ion of d a t a 

A great deal of e%rt was made to ensure that the image and m data sets were well 

registered to each other. However, error may have been introduced at any stage in the 

registration. For example, the instruments giving readings for the locations of m azf?/ 

samples and the GPS and gyroscopic instruments giving information about the location 

of the aircraft during image acquisition may have some slight error. The Environment 

Agency CASI used a 'differentially corrected' GPS receiver using a commercial signal. 

There can be some time delay in receiving this signal and so a certain amount of error 

in positioning was expected (Kyle Brown, Environment Agency, personal communica-

tion). More error may occur because water samples used for calibrating the fluorometer 

and the fluorometer itself were not read from the same parcel of water, or represent 

samples of different sizes in the parcel of water. Image geometric correction is not 

perfect and some pixels may not have represented the correct region of the water body, 

especially away from the coast where the geometric correction is less certain. Also, the 

sample represented by a pixel is not the same volume as the parcel of water represented 

by the fluorometer measure at the same location. Errors such as these were treated as 

noise in the data because very little could be done to mitigate for them. One source 

of co-locational error that was investigated further was that due to the movement of 

water between sample from ship and aircraft. 

2.7.7.1 Tidal and current effects 

Unlike terrestrial remote sensing, the scene of marine remote sensing is constantly 

moving as a result of currents within the water. This results in error in the co-location 

of image and m measurements where these have not been sampled at the same time. 

Although much eflFort was made to ensure that the samples were taken concurrently the 

greater speed of the aircraft meant that the images were sampled within a few minutes 

whereas the same region in the water took up to four hours to sample. Table 2.3 

demonstrates the differences in the times of the samples. 
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Table 2.3: Table showing the difference in the times that the images and the m 

measurements were sampled. 

Image Time of Time of in situ Greatest time Least time 

number flight samples for difference difference 

(GMT) region of images (hrs:mins) (hrs:mins) 

1875 start 

finish 

14:41 

14:49 

10:46 

12:41 1 
3:56 2:11 

1876 start 

finish 

14:55 

15:02 

12:44 

16:07 
2:10 0 

1877 start 

finish 

15:16 

15:26 

15:42 

18:22 
2:57 0:50 

[in situ sample points did not always correspond to very edges of images) 

The images covered a region only 8 km out to sea. Currents are driven by waves 

nearshore and by tides offshore (Kieran Millard, HR Wallingford, personal communi-

cation). Thus, ideally current measurements would have been gathered simultaneously 

to the data so that the motion of the water between in situ and aircraft sampling could 

be calculated and possibly corrected for. Several sources were contacted regarding such 

measurements including the Environment Agency, the companies involved with Bacton 

Gas Terminal (BP-AMOCO, Shell, Philhps, British Gas and Interconnector), Anglian 

Water, Great Yarmouth Coast Guard, EMC and GeoTeam and who had worked on 

a pipeline to Bacton during 1996 but data that were available were not suitable for 

correcting the m data. 

Using the Admiralty tidal stream atlas and the Admiralty tide tables (Great Britain 

Ministry of Defence Navy Hydrographic Department 1976; Great Britain Hydrographic 

Department 1996) the tidal currents were estimated (table 2.4). At the beginning of 

the m sampling of the region of image 1875 the tidal currents were Sowing from 

the east-south-east at a speed of 1.5 knots. The currents were in the same direction, 
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Table 2.4: The tidal currents at the time of sampling 

time speed (knots) speed (ms") direction (clockwise from north) 

10:00 1.5 0.77 285° 

11:00 1.4 0.72 285° 

12:00 1.1 0.57 270° 

13:00 ~0.6 -0 .31 270° 

14:00 0 0 270° 

15:00 0.9 0.46 105° 

16:00 1.6 0.82 105° 

17:00 1.9 0.98 105° 

18:00 1.6 0.82 105° 1 

slowing to 1.4 knots during the ship sampling of the middle of the region of image 1875. 

As the ship moved into the region of image 1876 the currents were slowing to about 

1.1 knots from the east and the water became slack during the time that the middle of 

this region was being sampled. As the ship passed into the region of image 1877 the 

currents were from a west-north-west direction at a speed of 0.9 knots. The currents 

remained in the same direction increasing to a speed of 1.9 knots and then declining, 

as the ship headed west. During the overflights of images 1875 and 1876 (whilst the 

ship was in the region of the centre of image 1876) the currents were slack increasing 

to 0.9 knots from a west-north-west direction during the acquisition of image 1877. 

Using the Admiralty tide information, the relative velocity between corresponding 

parcels of water sampled in situ and from the aircraft was calculated (figure 2.21). 

The Matlab code for this is given in appendix B. The resulting distance between the 

sampled parcels of water was quite large - up to 8 km to the west of the region and 

14 km to the east. However, because the images represent only up to 8 km from shore, 

the speed of the tidal currents will have been reduced by friction at the coast. They 

are also signiflcantly lower than the maximum tidal current speeds calculated by Sager 

and Sammler (1968). Therefore, although tidal currents were considered to be a source 
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of error in these data, they were not thought to be as inSuential as the Admiralty tide 

calculations suggest. 

33501*0 

' position of sampfe 
— overaM deference between kxiation of samples 
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Figure 2.21: The maximum relative distance between corresponding parcels of water 

sampled in situ and from the aircraft, for every hundredth sample point. 

2.7.8 Tota l e r ro r in d a t a 

The previous sections have detailed a study that was made of a number of factors 

which may have influenced the relationship between chlorophyll a and spectral values. 

A number of effects were identified and these are summarised in table 2.5. A moving 

window was applied to the data to remove the effects of sensor noise and possible prob-

lems with co-registering data. However, it was not possible to correct for other effects 

in a simple manner because such correction required reliable information about envi-

ronmental factors such as water constituent concentration, water depth, atmospheric 

and meteorological conditions and the current velocities. It was considered important 

to bear these effects in mind when developing the chlorophyll a prediction models. 

In the subsequent analysis the presence of these various causes of error were consid-
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ered. However, regions of the spectrum and geographical regions that were strongly 

affected by these factors were retained in the data to determine the overall effect on 

the prediction of chlorophyll a. Figure 2.22 shows the first two principal components 

plotted against the easting of the corresponding data point for easy reference during 

the assessment of error. 

I 

H 

I 
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easting 

(a) 1st principal component (normalised) 

5.7 u u e a.1 a j &3 8.4 &5 

easting 

(b) 2nd principal component (nor-

malised) 

Figure 2.22; The spatial dependence of sources of error. If the first two principal 

components are considered to indicate the presence of factors in the scene that may 

cause error in chlorophyll a prediction, (a) and (b) show how these factors change 

over the course of the cruise transect. 

Summary of chapter 2 

There are many sources of image and m oceanographic data. However, it is 

often difficult to obtain data that coincide. The data used in this research required 

some preprocessing to determine the chlorophyll a concentration and spectral measures 

corresponding to each cruise data point and the methods used to process these data 

have been presented in this chapter. 
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The data were assessed for their relevance to predicting chlorophyll o from spectral 

information using cluster analysis and principal component analysis. It was found that 

there was a change in spectral value with chlorophyll o although it was clear that other 

factors dominated the spectral signal that was detected. 

The data were assessed for factors such as image sensor noise, atmospheric effects and 

the effects of co-registering the in situ and image data. In particular, the data displayed 

some significant sensor and atmospheric effects as is typical for oceanographic data. 

In previous studies extensive steps have been taken to correct for this but correction 

can introduce its own error if it is undertaken without accurate information about the 

sources of error. The movement of water between the in situ and spectral sampling 

was estimated using Admiralty tide information. However, it was considered that this 

would be the maximum effect of currents as they would be reduced by friction so close 

to the shore. 

A moving window was applied to the spectral data to mitigate sensor noise and current 

effects. No atmospheric correction was undertaken, however, rather it was intended 

that algorithm development should attempt to produce algorithms that were robust to 

the errors that had been identified. 

The detailed analysis of error in the data that has been described here is fundamental 

to the research that is detailed in the following chapters. It also represents one of the 

novel aspects of this research because the techniques used to investigate these data 

have not been used in previous ocean colour research. 



Table 2.5: Effects of environmental factors that were identiSed in the data. 

cause how identified dependence severity 

bright patches cluster analysis spatial/a little spectral significant increase in spectral values 

spectral variance not principal component anal- spatial a dominant effect on spectral values 

caused by chlorophyll a ysis 

edge brightening means of image spatial and spectral little effect on data points 

columns/PCA 

row/column noise means of rows or columns spectral minimised by using moving window 

tidal current effects - spatial possibly very severe at the far west and 

east of the data but the proximity of 

the coast is likely to have reduced the 

velocity of the currents 
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Chapter 3 

Multiple regression techniques 

3.1 In t roduct ion 

Regression analysis requires two important design decisions - the choice of the best 

features for input and a balance in the model between complexity and generalisation 

(Brown et al. 1994). This chapter describes the two types types of algorithms that 

were used to develop models in this research - multiple linear least-squares regression 

and non-linear neural networks. These two methods were compared in the research 

presented here to determine if the neural network technique would produce models that 

were more accurate than the more conventional multiple linear regression technique. 

The two techniques are related and this chapter begins by describing the linear method 

and then expanding on this to explain neural networks. Finally, some specific points 

about using neural networks are detailed. 

67 
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3.2 From multiple linear regression to neural net-

works 

To perform a linear least squares regression, the vector of coe&cients, /), of the input 

vector X is identified which allows the prediction of the output For a regression with 

n input features, the expected value of y given the inputs x is calculated as 

= A + + ' ' ' + - (3-1) 

In matrix notation, if X is a p x (n + 1) matrix of input features with all elements in 

the 6rst column having the value of 1 (to determine the offset, /)o) and the following 

columns having the values of all other input features x for p observations and y is the 

p X 1 vector of measured output values for each of the p observations, then the model 

may be expressed as 

y = X^ + ^ . (3.2) 

6̂  is a vector of the error of the model 

£ = 
9 = 1 

= i(y - X p f { y - XP) (3.3) 

where is the measured output for observation g and is the output predicted for 

the gth set of inputs. This error changes with /3 and so the minimum may be found 

using differentiation by satisfying 

^ U y - X P f ( y - X P ) ] = 0 

= -2X'^y + 2(X^X)P (3.4) 

The best approximation of assuming that X^X is nonsingular, is therefore (Myers 
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1986) 

== . (35) 

which is the linear, least squares solution and thus minimises the sum of squares error. 

A feed-forward neural network regression algorithm may be visualised as rows of nodes 

interconnected with layers of weights. In a single layer of the network, each node (%) in 

the first row is connected to each node ( j ) in the second row by a weight. The value 

arriving at node j is calculated by weighting all the outputs from the previous layer 

and adding them together 
n 

0; = ^ Wija;, 4- 6 (3.6) 
i=l 

where Wij is the weight connecting node z, in the first row with Oj in the second row 

and b is the bias (offset). The value is then passed over an activation function such as a 

sigmoid, hyperbolic tan (tanh) or linear function. The simplest neural network of this 

type has only one layer of weights connecting two rows of nodes and is usually referred 

to as a single layer perceptron (SLP) (figure 3.1). If this has linear activation functions 

at the output nodes then the result is a linear model. Such a network is optimized to a 

set of observed inputs and outputs during the training process that minimises an error 

function. During this, the error (equation 3.3) of the predicted output is iteratively 

minimised. The expansion of equation 3.6 is 

Oj = b + WijXi + • • • + WnjXfi . (3.7) 

Because Oj is the expected value of y given the inputs, x, equation 3.7 is equivalent 

to equation 3.1. Since during training, the sum of squares error is being minimised, 

an optimized linear neural network produces the same algorithm as the linear least 

squares method (equation 3.1). 

A more complex network is produced by interconnecting more than two rows of nodes 

with layers of weights to produce a multilayer perceptron (MLP). A two layer MLP 

(figure 3.2) has one hidden set of nodes at which the weighted sums of the input layer 

are passed over an activation function. The resulting outputs from the hidden nodes 

are then weighted in the second layer and summed at the output nodes before being 
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Zi + 6 

Figure 3.1: A single layer perception with three inputs, one output and a bias term. 

passed over another activation function. At each output Ok of a two-layer network the 

resulting value is therefore calculated as 

Ot = ^ (3.8) 

/ n ^ 
where hj = JF f 

\ i = l / 

Here, z, is the value at the input node i of n inputs, hj is the value output from the 

hidden node j of m hidden nodes, Wij is the weight connecting nodes i and j and bi 

is the bias for layer I. T{-) and Q{-) are the activation functions for the hidden and 

output sets of nodes, respectively. In this case it is assumed that the same activation 

function is applied at all the nodes in the same row. 

In effect, the input information is being transformed from n-dimensional input space 

to m-dimensional space in the hidden layer and then again to o-dimensional output 

space. This allows non-linear functions to be modelled. An increase in complexity is 

gained by adding hidden nodes or adding layers to the network. However, it is worth 

emphasising that the neural network is still converging towards a range of mean values 

for the data set, rather than modelling the transfer within the scene. The method by 

which the transformation is achieved by back-propagation of the error is described in 
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Z = E = E = E = 

1 

E = 

Figure 3.2: A multilayer perceptron with three input nodes, four hidden nodes and 

one output. Notation is the same as in equation 3.8 

the following section. 

3.2.1 T h e back-p ropaga t ion rule 

The network is trained with patterns of known inputs (x) and outputs (y). The inputs 

are fed forward through the network (equation 3.8) and the error calculated (equation 

3.3) (Rumelhart aZ. 1986). The network is optimized to find the best function to fit 

the training data set by iteratively updating the weights according to the error of the 

prediction of i/. Each weight is changed by an amount which is proportional 
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to the local error gradient in weight-space 

where 77 is the learning rate which controls the magnitude of each weight change. If 

is the output from node %, Oj is weighted by and ) is the activation function 

applied to node i such that 

Zi = %(a , ) (3.10) 

+ 6, (3.11) Q,j 
2=1 

we can use the chain rule to calculate the value of 

(3.12) 

Aere & = (3.13) 
gO; 
dcL • 

OTid z, — IT—^ (3.14) 

5j can be viewed as the error at node j and it is this that is fundamental to the 

calculation of the weight adjustment (from equations 3.9 and 3.12): 

Awij = — (3.15) 

To adjust the weights in the final layer, 5k is simply calculated using the error at the 

output of the network. Firstly, the chain rule is used to expand equation 3.13 to 

4 = (3.16) 

From equation 3.10 it can be seen that 

?^i(«t) (3.17) 

and thus: 

= (3-18) 

Therefore, where a linear activation function is used for the output nodes, the change 

in weights is calculated using 

- Z/t . (3.19) 
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is determined for any hidden node, j using the chain rule such that 

J 6=1 J 

Since ot — and using equation 3.13, equation 3.20 can be re-written to 

obtain the formula for calculating S for any hidden node: 

6̂ ; — ^ - (3.21) 

k=l 

This formula defines how much of the error at the output is contributed to by the 

values calculated at each hidden node. If, as in the research presented here, a two-layer 

network were trained with a hyperbolic tan (tanh) function as the activation function 

in the hidden layer, this formula becomes 

= (1 - 2/D . (3.22) 

fc=i 

By adjusting the weights in this way, the network is performing gradient descent 

optimization - it is descending down the error surface in weight space. This feed-

forward /back-propagation process is repeated, iteratively adjusting the weights, until 

either a predetermined number of iterations are reached or the reduction in error with 

each iteration is below a desired amount. The full derivation of this is given in Bishop 

(1995), Haykin (1994) and Rumelhart and McClelland (1986). 

3.3 Specifics of neural network training 

The function derived during training is an empirical estimation of the relationship 

between the inputs and outputs. A balance must be struck between finding a function 

that fits the training data well and producing a function that will fit all subsequent 

data well. Where p is the number of training patterns and the matrix of measured 

inputs is X the solution to the regression problem is therefore: 

y = g ( X , w * ) + ^ (3.23) 
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y is the set of desired outputs, w* is a vector of unknown optimal weights, 6" is the 

error and s(X, w) is the mean value of y in response to X (Steppe oZ. 1996). This 

emphasises that the regression coefRcients (weights) of the neural network, like other 

least-squares regression techniques, determine the expected value of the desired outputs 

for a given range of input values. 

As with all regression techniques, deriving a good generalisation is dependent on the 

data used. The neural network is trained on a limited set of data which, as with any set 

of real data, will not encompass the full range of possible patterns existing in nature. 

The temptation with training is to strive to achieve the lowest training error. However, 

because overly complex networks may be built, there is a danger that the training will 

fit the network precisely to the training data but will predict new data poorly. This 

results in a loss of generality (and the network will not accurately predict the testing 

patterns). Over-fitting may be avoided by keeping the complexity to a minimum and 

using a validation data set during training to determine when the error for this set 

begins to deviate from that of the training set. 

A good generalisation gives the neural networks a robustness to noise in the data that 

other methods do not have (for example, Clark and Canas 1995). This is important 

with hyperspectral ocean colour data which is subject to strong noise effects aa waa 

demonstrated in chapter 2 particularly at the shorter wavelengths where a great deal 

of useful information is held (Moore 1978; Sathyendranath et al. 1989). 

Neural networks are often said to be a non-parametric method of determining regression 

functions but in practice are actually semi-parametric. Many traditional methods of 

determining relationships, including least-squares analysis, rely on some assumption of 

a normal distribution. Where such a distribution is not present, the assumptions of 

these measures are not valid (Paola and Schowengerdt 1995a). Non-parametric models 

may be used when the distribution of the data is not normal or is unknown. However, 

neural networks usually require some parametric assumptions in training, such as using 

the assumption of a normally distributed output error, in order to specify the model by 

which the error is minimised. In this case the error is reduced using the least squares 
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method, that is by minimising the square of the error (equation 3.3). 

The technique of neural network regression has been considered for the development 

of chlorophyll o prediction algorithms because it hag a number of advantages over 

other methods. As has already been discussed, many studies have found that the 

chlorophyll o-spectra relationship is non-linear. Neural networks offer a simple method 

of finding the optimal non-linear model to fit the data. The neural network has the 

advantage over least-squares curve fitting in that it does not require prior understanding 

of the curvature or the complexity of the regression to be performed (Bishop 1995). 

Neural networks are also useful when a number of different data types are to be used. 

Multisource information presents problems with more traditional techniques because 

the statistical properties and scales of the different data types can cause a bias in the 

resulting algorithm. A neural network however, will assign automatically reliability 

factors to each input during training in that it will find the combination of weights 

that will use optimally all the input information (Benediktsson et al. 1990; Civco 

and Waug 1994). However, when using data of various scales, the user should be 

aware that a certain amount of the initial training of the neural network is concerned 

with adjusting the weights to the scale of the data being used and so training may take 

longer. The current research uses only spectral information as an input to the algorithm 

but this can have different ranges. There is the potential for other information, such as 

measures of the atmospheric and sedimentary contribution to the image, to but used 

as inputs to a neural network . 

Furthermore, using neural networks, a number of comparable algorithms of varying 

complexity may be developed alongside each other. This is very relevant to the current 

problem because the non-linearity and complexity of the relationship between chloro-

phyll a spectral data haa not been determined. Using neural networks is thus a useful 

method to determine the characteristics of the problem and enables greater insight for 

future work. However, some key problems inherent in the neural network method need 

to be addressed. 
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It has been said that neural networks are particularly useful in studies for which not 

all the training data are available at one time because the network may be re-trained 

easily when new information becomes available (Schiller and Doerffer 1999). However, 

other techniques (such as the k-nearest neighbour technique) are better for this purpose 

because the neural network actually has to be completely retrained with all available 

data, to ensure that model is re-optimised. 

Firstly, the error may be described as a surface in weight-space, such that, as we change 

the weights the output error increases or decreases. The gradient descent learning rule 

aims to follow the error surface towards a minimum value. This can result in a non-

optimal solution however, if the network converges on a minima in the error surface 

which is not the global minimum (Paola and Schowengerdt 1995a). A solution to this 

would be to run each training several times with different initialisation weights, to 

ensure that the network always converges on the same solution, or to find the best 

solution. 

Secondly, a problem often reported with pattern recognition problems is known as the 

'curse of dimensionality'. This describes the poor response of a recognition system 

when presented with too many input features. For every possible combination of input 

and output values, enough sets of training input and output data are required by the 

regression function during training to model the relationship well. As the number of 

input features increases, there is an exponential increase in the number of example 

patterns required by the training algorithm to derive a prediction of the output. With 

a limited training data set, some input-output patterns may be under-represented and 

the training algorithm will not succeed in finding a reliable solution. This can be 

avoided by using only a limited number of inputs by employing feature extraction 

and selection techniques. It was clear that with 72 input bands some form of feature 

selection would be necessary. 
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Summary of chapter 3 

The development from using the linear least-squares technique to determine the regres-

sion coefBcients to that using a neural network technique has been presented. The two 

techniques are easily compared because they derive the regression model by minimis-

ing the mean square error. Both techniques can have one or more input variables, the 

neural network technique can produce linear (SLP) or non-linear (MLP) models, with 

the linear models being identical to those developed using the standard least squared 

method. Neural network-derived models can be of varying complexity. Their advan-

tage is that any number of inputs with any scale may be used and many linear and 

non-linear models of varying complexity may be developed for comparison. The im-

portance of considering the assumptions made in the process of model fitting, i.e. that 

the output error has a normal distribution and also the need for a balance between 

a model fitting the training data and the generality of the model, were highlighted. 

Finally, the volume of data was addressed. So that a sufficient number of training 

examples is provided to the function, it was considered to be impossible to regress all 

72 input bands against chlorophyll a. 

The multi-layer perceptron attempts to determine the regression coefficients iteratively 

and allows non-linear functions to be developed. This approach uses gradient descent 

to find the minimum in the error surface. Whilst this may not be a global minimum and 

a problem of over-fitting the model to the training data exists, methods for avoiding 

these drawbacks are simple to implement. 

The research presented here explicitly chose the neural network technique of regression 

because the results would be directly comparable to the more common method of linear 

least squares regression. In so doing, the research would be able to investigate more 

thoroughly than previous studies using neural networks the nature of the relationship 

between chlorophyll a and spectral information by investigating the structure of the 

models used for the regression. 



Chapter 4 

Primary study 

4.1 In t roduct ion 

A primary study was performed to assess the validity of the neural network regression 

technique and to identify any refinements to the techniques that may be required. 

This investigated whether straight-forward chlorophyll a prediction models could be 

used with the Norfolk 30/05/96 data. A simple selection of spectral features was 

undertaken (section 4.2), the data were divided into training, validation and testing 

sets (section 4.3) and then a training (4.4) and testing (4.5) of conventional linear least 

squares- and neural network-derived models was performed. All aspects of the training 

of the neural networks and test results were used to draw conclusions about the nature 

of relationship between chlorophyll a and spectral information. 

4.2 Extract ing a subset of spectral features 

With the CASI hyperspectral data, a large volume of information was available. This 

was reduced by picking out a number of spectral features with which to develop the 

models. Bands were chosen from each section of the spectrum - blue, green, red and 

78 
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near infra-red (NIR) - according to their correlation with chlorophyll a (figure 2.7), 

their correlation as ratios with chlorophyll o (figure 2.8) in the training set, their 

correlation with each other (hgure 2.9) and also with bands close to known features in 

the spectrum were considered. This resulted in a subset of eight bands being extracted 

from the training, validation and testing sets. These bands, and the basis by which 

they were chosen, are detailed in table 4.1. 

Table 4.1: The subset of eight bands that were chosen for model development 

band 

number 

wavelength ^ 

(nm) comments 

6 441 (blue) Close to chlorophyll a absorption peak and had one 

of the highest correlations with chlorophyll a in the 

blue. 

20 540 (green) Close to green reflectance peak and was within a 

minima in the correlation of green wavelengths with 

chlorophyll a . One of the better correlations with 

chlorophyll a as a ratio with band 6. 

27 589 (green-red) Ratio of band 27 and 29 gave the highest correlation 

with chlorophyll a of the whole training set. 

29 604 (red-green) Ratio of band 27 and 29 gave the highest correlation 

with chlorophyll a of the whole training set. Low 

response to chlorophyll o. 

39 675 (red) Chlorophyll a absorption peak. Also one of highest 

correlations of ratios (with band 41). 

41 689 (red-NIR) Good correlation with chlorophyll a as single band 

and in ratio with band 39. 

44 711 (NIR-red) Highest red band correlation with chlorophyll o . 

Close to peak in reflectance. 

47 732 (NIR) Low correlation with chlorophyll o in the NIR. 

^see appendix A for full details of wavebands 
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The Euorescence feature near 685 nm was also extracted. This was the same feature 

as was measured by the flow-through Huorometer although in this case it was solar-

induced. The peak wag not very clear in the CASI spectra but a drop in reHectance was 

almost always evident from band 40 (682 nm) to band 41 (689 nm). This was probably 

due to absorption by oxygen at 687 nm (Fischer and Schliissel 1990). The fluorescence 

line height (FLH) feature is usually measured above a baseline described by two bands 

on either side of the peak (see equation 4.1 and figure 1.2). Several baselines were tried 

and the correlation coefficient of the FLH measurement with chlorophyll a was used to 

determine which FLH measurement would be used in model development (table 4.2). 

The correlation of the FLH and chlorophyll a should be high and linear since they are 

both measuring the fluorescence efficiency of the chlorophyll. 

TP _ T LX, (AG - XF) + I/AZ (AF - AX) 
-r - \ { (4.1) 

/\2 — /\l 
where F is the fluorescence band, 

1 and 2 are the first and second baseline bands, 

I/A„ is the radiance at band n and 

A„ is the wavelength of band n. 

The baseline described by bands 39 and 47 (Gitelson92) had the highest correlation of 

0.7282 and so was chosen for the rest of this research. This feature was subsequently 

calculated for the validation and testing sets. 

4.3 Dividing da t a into t raining and tes t ing sets 

Three sets of m aifu and spectral measurements were produced by dividing the data 

randomly. Because there were over 2000 data points available, a large training set 

could be constructed from only 30 % of the data, and a validation set from 20 % of 

the data. This allowed a very large testing set (50 %) to be created thus ensuring that 

the accuracy tests were valid. The training set was to be used to create both types of 

regression model, the validation set was to be used in training the neural networks and 
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Table 4.2: Trials of different Fluorescence Line Height measurements. FLH was 

meeisured at band 40 (centred on 682 nm) above a straight baseline described by two 

bands in the spectrum. 

name of baseline baseline correlation 

FLH measure reference wav elengths^ bands coefficient 

Gitelson92 (Gitelson 1992) 675 730 39 47 0.73 

Gitelson94a (Gitelson et oL 1994) 650 715 36 45 0.53 

Gitelson94b (Gitelson et al. 1994) 670 730 38 47 0.72 

FischerKQOa (Fischer and Kronfeld 1990) 645 725 35 46 0.56 

FischerKDOb (Fischer and Kronfeld 1990) 645 670 35 38 0.67 

see appendix A for full details 

the testing set was for testing the accuracy of the models. 

By dividing the data using a random method, the statistical properties of the training, 

testing and validation sets were very similar. A subset of the validation set was chosen 

arbitrarily for validation of the neural network during training (this is described in 

detail in section 4.4.2) so that, if the network was to reduce the training error by 

predicting the mean chlorophyll a for every pattern and so over-fitting to the training 

data, then an increase in error would be evident for the validation set. 

These sets are summarised in table 4.3 and their distributions are shown in the his-

togram in figure 4.1. 

4.4 Deriving t he model coefRcients 

Both the simple linear regression and the neural network models were produced using 

the Norfbjjc 30/05/96 training data. The testing data were kept aside to test the models 

(section 4.5). The neural network also required the validation set to determine the value 
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Table 4.3: Statistics of the data sets which were used to train and assess the models 

in the primary study. 

chlorophyll a 

proportion standard 

set of data minimum maximum mean deviation 

training 30 % 3.15 22.62 8.86 4.63 

validation 20 % 3.14 22.16 9.02 4.76 

arbitrary validation set ~4 % 3.14 7.03 5.50 0.86 

testing 50 % 2.91 22.60 8.98 4.73 

of some of the parameters in its architecture. The following two sections describe, 

first, the determination of the coefficients for the simple linear models and second, the 

method by which the neural network model coefficients were derived. The technique of 

finding the model coefficients is commonly called 'training' in neural network literature. 

This term will be used for both methods of finding model parameters. 

4.4.1 Tra in ing t h e s imple l inear mode l s 

It is common to use models with a single input in studies which determine the amount 

of chlorophyll a in water. Using the subset of bands defined in section 4.2, several 

sets of band ratios were produced. These were either based on ratioing a chlorophyll a 

absorption band with a region of the spectrum which had low correlation with chloro-

phyll a or on ratios that were found to have a high correlation with chlorophyll a (as 

described in table 4.1). Least squares regression waa used to produce a linear approxi-

mation of the relationship feature = f{Chl) for each feature using equation 3.5. This 

was then inverted to produce the model which would predict chlorophyll o concentra-

tion from the ratios (CAZ = + intercept). The resulting linear 

models are summarized in table 4.4 and illustrated in figure 4.2. 
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Table 4.4: The inverted least-squares regression model of the chlorophyll a to spectra 

relationship 

correlation 

feature description with chl a gradient intercept 

blue-green ratio 

red-NIR ratio 

band 6 
band 20 

band 41 
band 47 

0.13 

0.16 

489.13 

584.26 

-484.89 

-746.27 

red-green ratio 1 

red-green ratio 2 

red-red ratio 

band 39 
band 20 

band 29 
band 27 

band 41 
band 39 

0.50 

0.77 

0.74 

554.99 

480.75 

795.49 

-303.25 

-439.25 

-632.06 

FLH see section 4.2 0.73 0.99 -19.34 

4.4.2 Tra in ing t h e neu ra l ne tworks 

A single-layer network (figure 3.1) and a two-layer network (figure 3.2) were chosen for 

this research. A single-layer network can only model linear functions; this architecture 

was used to test whether a linear function was an adequate model. A network with two 

or more layers can model increasingly complex non-linear functions. Various spectral 

features were chosen as inputs. The output of the network was always chlorophyll a 

concentration in iJ,gl~^. 

Training a multilayer perceptron can prove complicated because there are many adjust-

ments that can be made to the network to improve the training. Several preliminary 

trainings were performed and tested against the validation set and, based on the out-

comes, assumptions were made as to the best activation functions and learning rate to 

be used throughout the course of this research. For the two-layer network, a hyperbolic 

tan (tanh) activation function was used at the hidden nodes and a linear function used 

at the output nodes. A tanh function is a sigmoid that scales the data from -1 to 1. 

For both types of network, the learning rate remained 0.001 throughout this research. 

A smaller set of spectral features than for the linear regression model waa used to train 
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the neural networks. These features were: bands 6 (441 nm), 20 (540 nm), 41 (689 nm) 

and the FLH measurement. The features were taken from the three main regions of the 

visible domain - blue (band 6) green (band 20) and red (band 41). This combination 

of four features allowed the exploration of the characteristics of these regions of the 

spectrum and of the FLH feature. With only these four features, 15 combinations 

of inputs were possible. The number of nodes in the hidden layer was varied for each 

possible combination of input. The possible numbers of nodes were: zero (the one-layer 

network), two, six or 10. By manipulating only these two parameters of the network, 

60 networks were set up for training. 

The naming convention for these networks will be sip + number of inputs + code (for 

single layer networks) or mlp + number of inputs + number of hidden nodes + code 

(for multi-layer networks) where the code signifies the combination of inputs used and 

is specific to the number of inputs. For example, mlp36a has three inputs of the a 

combination (bands 6, 20 and 41) and six hidden nodes. When discussing a number of 

neural networks with similar characteristics the wild card * shall be used. For example 

all 1-input, 2-hidden node networks will be referred to as mlpl2*. The names of all the 

networks and the number of iterations to which each of the 60 networks was trained 

to is given in table 4.5. 

The neural networks were trained with the training data set. The 'arbitrary' validation 

data set was then used to estimate the ideal number of iterations for training the 

networks as follows. At the end of each iteration the arbitrary validation data points 

were passed through the network and the output error of this was calculated. Because 

the network weights were adjusted by the back-propagation of the training set only, it 

was expected that the validation error would decrease for a number of iterations, then 

increase when the network began to over-train. The number of iterations at which the 

validation error was minimised was then assumed to be the ideal number of iterations. 

The 60 networks were all trained for 2000 iterations and then retrained to the number 

of iterations at which the validation set displayed the minimum error. These networks 

were then used to compare the models developed using a neural network model, to 
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those using linear regression. 

key to table 4.5 

network name see section 4.4.2, page 86 

input features the features used as inputs to the networks 

number of hidden nodes the number of hidden nodes. 0 indicates a 1-layer 

neural network 

training MSE at 2000 the mean squared error of the training set at 2000 

iterations 
validation MSE at 2000 the mean squared error of the validation set at 

2000 iterations 
lowest validation MSE at: .. the number of iterations at which the validation 

MSE was lowest 

training MSE here the MSE of the training set at which the validation 

MSE was lowest 

validation MSE here minimum validation MSE achieved for this train-

ing 

correlation correlation between the predicted and measured 

test set values. This is explained in section 4.5 

RMSE the root MSE between the predicted and measured 

test set values. This is explained in section 4.5 

87 

Table 4.5: Training and results of linear and non-linear neural networks in the primary 

study. 

number training validation lowest training validation 

network input of hidden MSE MSE validation MSE MSE corre-

name features nodes at 2000 at 2000 MSE at: here here lation R.MSE 

slpla 6 0 17.157 3.383 13 17.2314 3.1208 0.4919 4.1362 

sip lb 20 0 17.4713 5.3474 10 18.063 4.3608 0.4635 4.2796 

slplc 41 0 14.3462 5.304 16 14.3744 5.235 0.611 3.7548 

slpld FLH 0 10.0575 10.9864 7 13.2581 7.673 0.76 3.5307 

mlpl2a 6 2 0.6105 0.0664 172 0.6591 0.0366 0.6277 3.6828 

mlpl2b 20 2 0.7282 0.3039 110 0.7171 0.2227 0.5701 3.8896 

mtplZc 41 2 0.4263 0.4388 10 0.6403 0.2274 0.6732 3.6924 

mlpl2d FLH 2 0.3633 0.4804 7 0.5442 0.4456 0.7667 3.3970 

continued on next page 
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table 4.5 continued from previous page 

number training validation lowest training validation 

network input of hidden MSE MSE validation MSE MSE corre-

name features nodes at 2000 ad 2000 MSE at: here here lation RMSE 

mlpl6a 6 6 0.6219 0J056 115 0 663 0.0338 0.6259 3.6916 

mlpl6b 20 6 0.7402 0.3239 131 0.7164 0.2184 0.5709 3.8882 

mlpl6c 41 6 0.4257 0.4366 8 0.6448 0.2211 0.657 3.7030 

mlpl6d FLH 6 0.3618 0.491 6 0.5097 0 4526 0.766 3.2639 

mlpllOa 6 10 0.6192 0.0983 115 0.6655 0.0332 0.6248 3.6961 

mlpllOb 20 10 0.7288 0.3031 99 0.7183 0.2217 0.5689 3.8956 

mlpllOc 41 10 0.4256 0.4351 6 0.6847 0.2269 0.6346 3.8236 

mlpllOd PLH 10 0.3618 0.4893 4 0.5774 0.4591 0.7626 3.5049 

slp2a 6,20 0 16.9167 3.6551 14 16.9654 3.4699 0.4998 4.1108 

slp2b 6,41 0 14.3617 5.1752 14 14.4894 4.7835 0.6105 3.7746 

slp2c 6,FLH 0 9.9126 8.8655 9 11.2301 6.9917 0.7675 3.2252 

slp2d 20,41 0 10.5211 9.6166 12 13.4466 4.4229 0.6659 3.6343 

slp2e 20,FLH 0 10.0518 10.8472 8 12.1053 7.8029 0.7611 3.3637 

slp2f 41,FLH 0 9.8724 9.2292 9 11.2888 7.6961 0.7686 3.2352 

mlp22a 6^0 2 0.6067 0.1025 463 0.633 0.0735 0.6455 3.6140 

mlp22b 6,41 2 0.2488 0.0618 :>2000 0.2488 0.0618 O^MW 2.2840 

mlp22c 6 f L H 2 0.3192 0.2434 8 0.5094 0.2328 0.7701 3.2432 

mlp22d 20,41 2 0.3764 0.3987 8 0.6726 0.2214 0.629 3.7893 

mlp22e 20,FLH 2 0.343 0.488 8 0.5188 0.3244 0.7637 3.2889 

mlp22f 41,FLH 2 0.291 0.4152 5 0.4857 0.2894 0.7915 3.1753 

mlp26a 6,20 6 0.4769 0.0684 l^W 0.4984 0.0634 0.7306 3.3269 

mlp26b 6,41 6 0.231 0.0598 1351 0.2369 0.0587 0.8845 2.2447 

mlp26c 6,FLH 6 0.2208 0.0634 >2000 0 2208 0.0634 0.8959 2.1290 

mlp26d 20,41 6 0.3721 0.3799 5 0.7023 0.2223 0.6074 3.8786 

mlp26e 20.FLH 6 0.3184 0.5135 5 0.5617 0.3434 0.7617 3.4378 

mlp26f 41,FLH 6 0.2782 0.3973 4 0.4854 0.3006 0.7797 3.1578 

mlp210a 6,20 10 0.4907 0.0881 >2000 0.4907 0.0881 0.7554 3.2873 

mlp210b 6^U 10 0.2283 0.0586 >2000 0.2283 0.0586 0.8929 2.1876 

mlp210c 6 f L H 10 0.2243 0.0727 >^M0 0.2243 0.0727 0.8934 2.1556 

mlp210d 20^1 10 0.3727 0.3644 5 0.7058 0.2158 0.5959 3.8876 

mlp210e 2 0 f L H 10 0.3189 0.5102 4 0.5248 0.3261 0.7588 3.2988 

mlp210f 4 1 f L H 10 0.282 0.4218 4 0.5509 0.3027 0.7656 3.3938 

slp3a 6,20,41 0 9.4785 6.283 15 12.4302 3.3058 0.7009 3.4720 

sljpSb 6,20,FLH 0 9.8235 8.6167 9 11.1597 6.8509 0.7698 3.2130 

slp3c 6,41,FLH 0 9.8632 8.7347 10 10.7658 7.4115 0.7693 3.1549 

slp3d 20,41,FLH 0 8.7713 11.5411 9 10.9406 8.2164 0.7781 3.1821 

mlp32a 6,20,41 2 0.1624 0.1262 >2000 0.1624 0.1262 0.9278 1.7694 

mlp32b 6,20,FLH 2 0.2052 0.1264 >2000 0.2052 0.1264 0.9175 1.9356 

mlp32c 6,41,FLH 2 0.1621 0.1017 >2000 0.1621 0.1017 0.9305 1.7569 

mlp32d 20^^FLH 2 0.2832 0.4344 7 0.5264 0.2718 0.7752 3.3213 

mlp36a 6,20,41 6 0.1432 0.1136 >2000 0.1432 0.1136 0.9347 1.6871 

mlp36b 6,20,FLH 6 0.1341 0.1478 518 0.1803 0.1035 0.923 1.8451 

mlp36c 6,41,FLH 6 0.1164 0.0803 >2000 0.1164 0.0803 0.9526 1.4620 

continued on next page 
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table 4.5 continued from previous page 

number training validation lowest training validation 

network input of hidden MSB MSB validation MSE MSE corre-

name features nodes at 2000 at 2000 MSE at: here here lation RMSE 

mlp36d 20,41,PLH 6 0.2548 0.3638 4 0.533 0.2613 0.7564 3.3377 

mlp310a 6,20,41 10 0.1322 0.0876 >2000 0.1322 0.0876 0.9398 1.6180 

mlp310b 6,20,FLH 10 0.134 0.1658 631 0.1908 0.1408 0.9246 1.8115 

mlpSlOc 6,41,FLH 10 0.109 0.0583 >2000 0.109 0.0583 0.9538 1.4498 

mlpSlOd 20,41,FLH 10 0.2577 0.3532 4 0.5253 0.2688 0.7528 3.2994 

slp4a 6,20,41,PLH 0 8.2217 8.1801 10 10.2596 7.2131 0.785 3.0689 

mlp42a 6,20,41,FLH 2 0.1279 0.0989 >2000 0.1279 0.0989 0.9464 1.5410 

mlp46a 6,20,41,FLH 6 0.0813 0.0459 >2000 0.0813 0.0459 0.9669 1.2117 

mlp410a 6,20,41,FLH 10 0.0694 0.0279 1640 0.0746 0.0269 0.9685 1.1838 

4.5 Results 

The models developed in the previous section were tested by comparing their predic-

tions of test set chlorophyll a values with the measured values. Two measures were 

used for this comparison. The first is the correlation between the predicted output and 

the desired output (this was calculated as in equation 2.3 but is reiterated here) 

P = (4.2) 

where ?/, is the gth point in the testing set, is the prediction for this point, ^ is the 

mean of chlorophyll a measurements in the testing set, y is the mean of the predictions 

of these measurements and p is the number of data points in the testing set. This 

measurement is the normalized covariance of the predicted and desired values. 

The second measure is the Root Mean Squared Error (RMSE) which was calculated as 

(4.3) 
1 

P 
^ ( 3 / g - . 
9=1 

This measured the accuracy of the results and increased with the error of the prediction. 

Because both linear least-squares regression and neural network regression train by 

minimising the mean squared error, these models always try to predict the mean output 

value given the inputs values. When presented with a set of data for which they are 
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poorly specified, the models will tend to predict values near the mean for the whole 

training set. Where the training and testing data have similar statistical characteristics, 

a model that predicts only the mean value of the data can be identified by predictions 

with a RMSE that is approximately equal to the standard deviation of the desired 

values. 

4.5.1 Tes t ing t h e s imple Unear mode l s 

As can be seen in figure 4.2, the relationship between band ratios and chlorophyll a, 

as measured by the fluorometer, was quite complicated. The blue-green and red-NIR 

ratios were particularly non-linear, displaying filaments of data points. For these two 

relationships the geographical position of the data points in the filaments were plotted 

(figure 4.3). 

From these plots, there appeared to be a number of regions in which the relationship 

between spectra and chlorophyll a concentration was different. These may have been 

caused by environmental factors such as sediment or CDOM in the water, wind rough-

ening of the surface causing glint or foam or atmospheric effects, such as haze. The 

tiny region characterised by the green filament in the plot of blue-green ratio against 

chlorophyll o concentration corresponded to the region in all the principal components 

for which a great range in values was noted in section 2.7.4. The red region in this plot 

corresponded to the region in which a peak in values was found in the first principal 

component. Because the two ratios did not appear to display the same division of 

regions, it was thought that each was affected by a different environmental factor. 

The other three ratios were better distributed around the line of the model. The 

red-green ratio 1 showed a slight separation of data points into regions in the plot 

(figure 4.2), perhaps again as a result of environmental effects. The red-red ratio 

appeared to have the most linear ratio-chlorophyll a relationship. 

The FLH meaaure was a special case since it was considered to be similar to the 
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Figure 4.3: Different water bodies within the Norfolk region. The coloured filaments 

in the ratio-chlorophyll a plots are plotted geographically along the cruise transect. 

chlorophyll a measure (as this was measured using the fluorometer). The gradient of 

this relationship was indeed nearly 1:1, however there was quite a large offset of about 

40 % of the FLH measure and the relationship appeared slightly non-linear. These 

deviations from the 1:1 relationship illustrated the interference in the system caused 

by other water constituents, the water surface and the atmosphere. 

Table 4.6 gives the correlation and RMSEs of the chlorophyll a values predicted by 

the linear models. There was quite a distinction between the performances of the first 

three models and second three models. The blue-green, red-NIR and red-green 1 ratios 
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did not perform well, the first two had error values which indicated that predicted 

chlorophyll o was well outside the range of measured values. The second red-green 

ratio, the red-red ratio and the FLH measure gave the better results, with errors 

below the standard deviation of the chlorophyll a for this set (4.73 and good 

correlations. These models were based on features which were close to each other in the 

spectrum. As pointed out by Neville and Gower (1977) the effects of the atmosphere, 

CDOM and suspended sediment can be found to be approximately uniform over a 

short spectral range. Therefore the better performance of the second red-green ratio, 

the red-red ratio and the FLH measure may have been because they were measured 

over a short spectral range. 

Table 4.6: The correlation and RMSE for the inversion of 

Feature P e 

blue-green ratio 0.16 34.78 

red-NIR ratio 0.16 27.90 

red-green ratio 1 0.50 8.40 

red-green ratio 2 0.76 4.09 

red-red ratio 0.76 4.28 

FLH 0.76 4.27 

inear least-squares models 

p = correlation, a = RMSE 

4.5.2 C o m p a r i s o n of b o t h t y p e s of l inear mode l s 

The results in the previous section were compared to the linear neural network results 

(tables 4.6 and 4.7). Two of these models were directly comparable - the FLH least-

squares models with and the blue-green ratio models with The correlations 

for the FLH linear least-squares model and the model were the same but the 

neural network produced a lower error. The blue-green ratio did not perform at all 

well compared to The error of the model prediction was just less than 

the standard deviation of the testing set. Although none of the other linear neural 
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networks were directly comparable, it was clear that those with more than one input 

performed better than the least-squares models. This indicates that the problem has 

a greater level of complexity than one input can resolve. 

Table 4.7: The corre ation and RMSEs for the linear neural network 

p = correlation, e = RMSE 

network features P e 

sip la blue 0.49 4.14 

sip lb green 0.46 4.28 

slplc red 0.61 3.75 

slpld FLH 0.76 3.53 

slp2a blue, green 0.50 4.11 

slp2b blue, red 0.61 3.77 

slp2c blue, FLH 0.77 3.23 

slp2d green, red 0.67 3.63 

slp2e green, FLH 0.76 3.36 

slp2f red, FLH 0.77 3.24 

slp3a blue, green, red 0.70 3.47 

slp3b blue, green, FLH 0.77 3.21 

slpSc blue, red, FLH 0.77 3.15 

slpSd green, red, FLH 0.78 3.18 

slp4a blue, green, red, FLH 0.79 3.07 

4.5.3 Comparison of linear and non-linear neural network mod-

els 

Here, the neural network models were used to compare the effect that altering different 

neural network parameters had on the hnal prediction. From this it was possible to 

draw conclusions about the nature of the data. Table 4.5 gives the correlation and 

RMSE for all 60 networks. Table 4.8 summarizes these data by finding the mean 



Chapter 4 Pr imary study 94 

correlation and RMSE for networks with a given number of inputs, number of hidden 

nodes, input feature or combination of features. 

Table 4.8: These tables summarize the goodness of the neural network predictions for 

NorWA 30/05/96. 

number number of 

of inputs E //p fil hidden nodes E //p lie 

1 16 0.64 3.74 51.81 0 15 0.68 3.54 11.00 

2 24 0.74 3.21 571.50 2 15 0.77 2.96 719.87 

3 16 0.86 2.39 950.44 6 15 0.79 2.82 795.13 

4 4 0.92 1.75 1412.50 10 15 0.79 2.83 834.13 

input input 

includes includes 

band E ///) jjX bands E //p 

blue 32 0.81 2.59 1090.22 blue, green 16 0.83 2.42 1192.50 

green 32 0.75 3.01 609.66 blue, red 16 0.88 2.12 1440.00 

red 32 0.79 2.82 723.63 blue, FLH 16 0.88 2.15 1177.19 

FLH 32 0.83 2.74 591.56 green, red 16 0.80 2.74 732.44 

green, FLH 16 0.83 2.65 553.56 

red, FLH 16 0.84 2.56 731.63 

^ = The number of networks' results that the mean correlation and RMSE were 

calculated from (see table 4.5), = Mean correlation coeScient, = Mean RMSE 

/iX = mean number of iterations at which the validation set had reached minimum 

The top left table in table 4.8 shows how the average correlation, RMSE and number 

of iterations required during training changed with the number of input nodes. There 

was a very clear increase in correlation and decrease in error with more input features, 

indicating that each input added more useful information. With the increase in inputs. 
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there was an increase in the number of weights in the network. This was rejected by 

the requirement for more iterations for the network to And minimum error. 

The top right table compares the number of hidden nodes. Where no nodes were used 

(a one-layer network), the predictions were not as good. A marked improvement is 

apparent for the two-layer networks and those networks with 6 hidden nodes resulted 

in slightly better prediction than those with 2 hidden nodes. However, no more im-

provement in prediction resulted from having 10 hidden nodes. Again the increase in 

the number of hidden nodes caused the networks to require, on average, more iterations 

to train. 

The two bottom tables indicate the effect that particular bands have on the outcome 

of the model and whether certain bands complement each other in the model. The 

greatest difference here was that band 20 (green) did not appear to contribute as much 

to the model as the three other bands. Band 6 (blue) in combination with FLH or 

with band 41 appeared to produce much better models than any other combinations 

of features. The number of iterations required was particularly high when the blue 

band was included in the inputs. This indicated that this input had a more complex 

relationship with chlorophyll a. 

The best correlations and error values were always achieved for the networks with 

all four inputs, indicating that it was the inputs that had the greatest effect on the 

resulting model. The best network overall was the most complex one using all four 

inputs and 10 hidden nodes. 

Figure 4.4 shows the regression functions derived by the neural network when only one 

input was used for the four di%rent conSgurations of hidden nodes. The shape of the 

non-linear models closely resembled the tanh activation function used in the hidden 

nodes. Greater non-linearity was apparent for the blue and green bands and the FLH 

was most linear. 

Figure 4.5 illustrates the distribution of the error of prediction for all the networks. 

In most cases the error was roughly symmetrical about zero. The most skew error 



Chapter 4 Pr imary study 96 

«5 
120(1 

f 
•§ 

wo 

data point 
linear network 
two hidden nodes 
$ix hidden nodes 
t e n hidden nodes 

chlorophyll a {jj-gl 

w 16 m a 
chlorophyll a {fxg l~^) 

I ' 
O i e o o 

• § 

gg 1400 

I' 
Q 40 
•S 

r 
% 
025 
5 

sw. 

chlorophyll a [jig I - i i 

10 15 M « 
chlorophyll a {iJ.gl 

Figure 4.4; The regression functions derived by the neural network for one-input 

networks 

distributions [slpla - c, slp2a - b, slp2d, slpSa and the mlp2*ds) did not have FLH 

as an input. This was particularly apparent with the linear networks. Many of the 

non-linear networks had a leptokurtic error distribution (with a high peak compared 

to width) which was symmetrical about zero. This was particularly evident for the 3-

and 4-input networks and also the 2-input networks with the b combination of inputs 

(bands 6 and 41), reflecting the finding on table 4.8 that it was the combination of 

inputs that contributed most to prediction accuracy. The non-linear 3-input networks 

with the (i-combination of inputs performed poorly compared to other non-hnear 3-

input networks. This input combination did not contain the blue band and so was 

another indicator of the value of this band. 
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Figure 4.5: Distribution of prediction error. The histograms show the distribution of 

the error of chlorophyll o as predicted by each of the neural network models. 

Figure 4.6 shows the values predicted by the neural networks plotted against the mea-

sured values. Many of the networks, particularly the one-input networks, and 

did not show a good one to one relationship. These networks tended to predict 

a value of around the mean for the training set (8.86 Therefore, even those 

predictions with an error that was less than the standard deviation of the data were 

not very reliable. For some of the other networks especially those with three or four 

inputs, the values are reasonably well distributed around the one to one line. 

Another indicator of the importance of the combination of inputs was that, if networks 

with the same architecture (number of inputs and hidden nodes) were ranked according 
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Figure 4.6: Measured versus predicted chlorophyll a values in the primary study 

to their output error, then it was generally found that networks with the same input 

features had the same rank. The main exceptions to this were the linear networks for 
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which the best ranking networks were always those with FLH or FLH and band 6 as 

inputs. 

One of the linear regressions and three of the trained networks were used to predict the 

chlorophyll a for the whole of the Norfolk 30/05/96 image data (Agure 4.7, page 103) 

For much of the center of the images, the linear regression with the blue-green ratio 

(figure 4.7(a)) predicted chlorophyll a concentrations of zero or below. This image 

clearly showed that the brightening at the edges of the CASI images has a very strong 

effect on this linear regression model as very high chlorophyll a concentrations were 

predicted for the edges of the images. The neural networks were mlp22h with bands 6 

and 41 as inputs and 2 hidden nodes, mlp36c with bands 6 and 41 and FLH as inputs 

and 6 hidden nodes and mlp410a with all four inputs and 10 hidden nodes. The range 

of chlorophyll a predictions was not extreme for most of these images. Overestimates 

may have occurred in the north of the region, possibly where edge brightening had 

affected the images. Very few of the training or testing data points were affected by 

edge brightening because the cruise was located along the centre columns of the images. 

Therefore, this effect was not explicitly corrected for by the models during training. 

The two more complex networks appeared a little more sensitive to noise in the images 

whereas mlp22b (two inputs, 2 hidden nodes) produced a much smoother chlorophyll a 

prediction. 

4.6 Discussion of resul ts of p r imary s t u d y 

From this primary analysis of the Norfolk 30/05/96 dataset it was clear that conven-

tional techniques of linear regression of band ratios were not adequate for the prediction 

of chlorophyll o from these data. The inverted least-squares analysis was a very simple 

method of producing models which predicted the chlorophyll a in the water from light 

detected above the water. The neural networks were rather more complicated to train 

but were found to be a simple way of combining several features and of developing 

non-linear regression models. Also, the results of the different network architectures 
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allowed some insights into the nature of the data being modelled. 

The simpler networks reached a validation error minimum much sooner than the more 

complex networks. A training neural network will always produce a linear model in the 

initial iterations. Those networks which required the fewest iterations tended to have 

FLH as an input. Those networks which required the most training iterations tended 

to have blue band 6 as an input. This indicated that FLH had a near-linear relation-

ship with chlorophyll a and that blue had the most non-linear. From the improved 

performance with the two-layer networks, it appeared that a non-linear relationship 

did exist between all ocean colour features and chlorophyll a, which explained the poor 

performance of the linear regression functions. 

For the two-layer networks, the number of hidden nodes did not have a great impact 

on the prediction, even when there were fewer hidden nodes than inputs, (for example 

mlp32* and mlp42*). This indicated that, although a non-linear model was necessary 

a particularly complex one was not. However, it was found that different signatures 

did occur in different localities (figure 4.3) when observing the blue-green and red-NIR 

ratios. This fitted with the findings in chapter 2 that a number of influences on the 

spectral data, other than chlorophyll a, varied geographically. The complexity may 

have occurred in only certain parts of the spectrum. This was reflected by the increase 

in the number of iterations required by the blue input band to reduce the prediction 

error. 

Perhaps the strongest agreement found from other studies was that it was the choice 

and combinations of inputs to the models that had the most significant effect on their 

outcome. With the non-linear networks, particular combinations of inputs consistently 

performed better than others. 

As has been found in several studies, the FLH measure gave good predictions for the 

linear regressions. As was expected, the relationship between this and the chlorophyll a 

measure (which was based on fluorescence measurements) was the most 'linear' because 

the single-layer networks which had FLH as an input always gave better results than 
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other single-layer networks. This idea of linearity was supported by the short training 

time required by networks with FLH as an input. 

The performance of the blue band 6, was more of a surprise. Recent studies have 

avoided this part of the spectrum because of noise or the interference of other water 

constituents and the atmosphere (e.g. Dekker 1992a). This study conErmed 

that in the original image data the blue band was noisy and the complex relationship 

between shorter wavelengths and chlorophyll a was highlighted by the plots of blue-

green ratios against chlorophyll a (figure 4.2) and blue against chlorophyll a (figure 

4.4). However, band 6 provided good predictions as an input to non-linear and complex 

regressions. 

It was noted that neither the blue-green ratio model (figure 4.2) nor the blue-input 

neural network (figure 4.4) found a negative slope between the spectral feature and 

chlorophyll a. This indicated that the absorption of blue wavelengths by chlorophyll a 

was not being detected. Other studies have found a similar effect in the coastal zone 

(e.g. Fischer oZ. 1986). 

Although the green band, band 20, did not perform well, the four-input networks 

always performed better than any others. This indicated that this band did contribute 

some information to the predictions. With the increase in accuracy of prediction, 

which occurred with more inputs, there was no tail off in the increase in accuracy 

indicating that each band contributed information to the prediction. The FLH feature 

consistently gave good predictions and was the most suitable of all the features when 

only linear modelling was possible. The blue wave band appeared to have the most 

non-linear relationship to chlorophyll a, this relationship was strong and so the blue 

wave band enabled some good predictions of chlorophyll a. 

A factor that was not tested in the neural network models was whether the closeness 

of features played a role in improving these regressions. Of the other linear regressions, 

those ratios produced from spectrally-close wave bands gave better performances. This 

is an issue worth exploring in future studies. 
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The results showed that, even in an environment contaminated by atmospheric eEects, 

suspended sediment and CDOM, it was still possible to detect chlorophyll a in the 

30/05/96 imagery. The effects of this contamination was notable by the need 

for several sources of information (wavebands) and non-linear models. The potential 

of the neural network technique had been verified such that the research could be 

expanded to investigate further the issues found to be most important to the prediction 

of chlorophyll a. 

S u m m a r y of chap te r 4 

The primary study showed that there is a need for better models than the single-ratio 

linear models that are often used for Case 2 waters. Increasing the number of inputs 

gained increased accuracy in prediction and certain inputs were found to contribute 

more to the accuracy than others. The features that performed well depended on the 

model being used. The FLH performed well with the linear models but the blue band 

performed best with the non-linear models. The non-linear models performed better 

than the linear models. The symmetrical error distribution demonstrated by most of 

the neural networks indicated that these models were well-specified and that neureil 

networks were a valid method of defining non-linear chlorophyll a prediction models. 

The technique of comparing the performances of different neural network architectures 

that has been described in this chapter is a novel use of neural networks and has 

produced some new insights into problem of predicting chlorophyll a from spectral 

data that has been collected over Case 2 waters. In particular, it has been shown that 

non-linear but not very complex models predict much better than simple linear models. 

Also, the number and type of input has been found to be the most important aspect 

to creating good chlorophyll a prediction models. This second point was investigated 

further, as described in the following chapter. 
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Figure 4.7: One of the hnear re-

gressions and three of the trained 

neural networks were used to pro-

duce the following three images. 

These neural networks increase in 

complexity: 

mlp22h with two inputs (bands 6 

and 41) and two hidden layers 

mlp36c with three inputs (bands 6 

and 41 and FLH) and six hidden 

nodes 

mlp410a with four inputs (bands 

6, 20 and 41 and FLH) and 10 

hidden nodes. 

M' ^ 

(a) Linear regression of the blue-green ratio 
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fis I 

(b) mlp22h at 2000 iterations (c) mlp36c at 2000 iterations 
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(d) mlp410a at 1640 iterations 



Chapter 5 

Development of method 

5.1 In t roduc t i on 

In the primary study it was demonstrated that increasing the number of inputs to 

the model produced more accurate predictions of chlorophyll a. It was also found that 

certain inputs provided more useful information to the model than others. This chapter 

describes three methods of selecting features for the prediction of chlorophyll a and 

then shows how models were developed with the chosen sets of features. 

5.2 Crea t ing a t ra in ing, val idat ion and tes t ing set 

A different approach was used to select the data in this secondary study. It was 

considered that having a large number of training data points with very similar values 

(figure 2.5) may bias the models during training. Therefore the new training set was 

selected so that the chlorophyll a concentrations within this set were evenly distributed 

throughout the range of values. This was achieved by Rrst dividing the data randomly 

into training, validation and testing sets containing respectively 673, 469 and 1158 data 

points (table 5.1). 

106 
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Table 5.1: Statistics of the data sets which were used to train and assess the models 

in the secondary study. 

chlorophyll 

proportion standard 

set of data minimum maximum mean deviation 

training 30 % 3.14 22.22 8.96 4.75 

selected training set - 4 % 3.14 22.10 12.69 5.57 

validation 20 % 3.17 22.59 9.09 4.91 

testing 50 % 3.40 22.61 8.91 4.62 

One hundred data points were then selected from the training set by finding the data 

points with nearest chlorophyll a concentration to values spaced evenly through the 

range of the training data set. The resulting set had a similar range to the training, 

validation and testing sets but the mean value was much higher and the standard 

deviation was increased. This new set will be referred to as the training set from this 

point forwards. 

5.3 Fea tu re selection 

As was demonstrated in the primary study, the selection of the input bands was the 

most important factor in improving the chlorophyll a prediction. Particular bands gave 

better results than others, although combining all four inputs gave the best results. It 

was therefore important that the features for model development be carefully chosen. 

Hyperspectral data provides many bands of fine spectral resolution. However, it is not 

possible computationally to use all these bands as inputs to the model (Dekker et al. 

1991). Nor would we want to, since each band multiplies the curse of dimensionality 

(section 3.3) and including irrelevant and redundant bands can often result in a poorer 
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model (Myers 1986; White 1992). Therefore it may be considered that there is a lower 

and an upper limit to the number of features which would produce a good regression. 

The practice of feature selection is well documented and, over recent years, several new 

techniques of selecting features have been developed. Much of the work into feature 

selection for remotely sensed images has concentrated on choosing features for classifi-

cation (e.g. Richards 1995; Mather 1996; Piramuthu 1996). Feature selection methods 

that are more generally applicable to regression problems are available however. There 

are two parts to feature selection algorithms, the first is the method of assembling 

sets of features for testing and the second is the metric that is used to test the sets of 

features (Bishop 1995). 

Selected bands may be 'narrow' or 'broad'. Narrow band selection picks individual 

bands from the original image whereas broad band selection combines original bands. 

Narrow bands are sensitive to narrow features in the spectrum such as absorption 

features. However, these bands are subject to noise and so, often, broad bands may be 

favoured. 

Transforms of the data such as principal component analysis (section 2.7) (Otsu 1984; 

Benediktsson and Sveinsson 1997; Malki and Moghaddomjoo 1991)) and similar tech-

niques (Singh and Harrison 1985; Roger 1996; Karhunen oZ. 1997) are often used 

to reduce the dimensionality of the data. These methods order the features according 

to the variability in the input data that they explain. Such transforms are optimal in 

the sense that, in selecting the lowest order eigenvectors, the mean squared error be-

tween the original data and the transformed and reduced data is minimised. However, 

on their own these new features do not provide much information about the spectral 

dependence of the model (Fukunaga and Koontz 1970). 

Research such as that by Townshend (1984) have selected those original wavebands 

that contribute most to the lowest order eigenvectors or have selected broadband re-

gions corresponding to the lowest order eigenvectors (Price 1990). Conversely Csillag 

oZ. (1993) have removed those wavebands which contribute most to the highest 



Chapter 5 Development of method 

order eigenvectors. The transform resulting from principal component analysis is very 

dependent on the data set used (Eklundh and Singh 1993) and the inclusion of features 

such as land, clouds or even sensor effects can result in axes orientated very differently 

to the direction expected. 

Because transforms that are based on variance are not always relevant to high dimen-

sional data (page 46), Green oZ. (1988) and Lee oZ. (1990) developed transforms 

that are based on the signal to noise ratios of each band. Since noise is considered to 

have little or no spatial autocorrelation, other feature selection methods are based on 

the spatial autocorrelation of image bands (Warner and Shank 1997b; Warner et al 

1999). Although popular, unsupervised feature selection methods do not provide a 

measure of the performance of the subsequent model because they do not account for 

the relationship between the spectral data and the variables that are to be predicted 

from them. 

In the circumstances of studies such as this, where model outputs are available, features 

should be selected according to their suitability to predicting the output. Two new 

metrics are now available as a basis on which to select subsets of features - correlation 

of the model outputs with the sets of features and the ability of the features to predict 

a set of outputs from a new set of inputs (respectively, these metrics are equivalent to 

measures of class separability and classification accuracy commonly used for feature 

selection in image classification studies). 

As has been demonstrated by Elashoff et al. (1967) and Cover (1974) the best subset 

of features is not necessarily made up of the best individual features. Therefore the 

feature selection methods should select features which 'work together' well. There are 

2"̂  — 1 possible subsets of features in a data set of d features. It clear is not feasible to 

test all these possible subsets with hyperspectral data. The number of possible subsets 

is reduced to if the desired number of features in the subset, J is known (Bishop 

1995) but this may still be too many subsets to compare. 

If the number of desired features is not known, it is necessary to find a sequential 
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method of selecting feature subsets. Two main approaches to this are /orword 

and Forward selection begins by choosing the best single feature 

(according to the chosen metric) and then determining which feature works best with 

the first feature. Features are added sequentially until some stopping criterion is met, 

for example at the iteration when the improvement in the metric is not statistically sig-

nificant. Backward elimination begins with the entire feature set and removes features 

one by one until some stopping criterion is met. 

This research looked into the many possible features which may be extracted from 

a spectral image data set. A remote sensing image may be considered as a three-

dimensional block of information with measurements in one spectral and two spatial 

directions. Depending on from which orientation this image is viewed, a number of 

different types of features may be extracted. These include broad bands, band ratios 

and differences, spectral derivatives and transforms of the data onto new axes. Spatial 

features have also been considered as it has been shown that the presence of phyto-

plankton results in a spatial structure which is different from that of tracer features 

such as sediment and temperature (see section 8.2). 

In line with the aims of this research the choice of input was kept simple. The original 

spectral bands in the images were investigated for input which made the resulting 

models more generally applicable (Paola and Schowengerdt 1995b). These bands were 

narrow and better for the retrieval of information about fine features in the spectrum 

(Malthus et al. 1996). The FLH feature was shown to have a linear relationship with 

chlorophyll a, however this feature is more suited to high concentrations of chlorophyll a 

(Sathyendranath et al. 1989) when the water is not too turbid (Fischer and Kronfeld 

1990). This feature was not used for the rest of the research although its value for 

predicting chlorophyll a was recognised. 

Since the models were to be developed using neural networks as well as a more conven-

tional technique, many methods of feature selection were not so relevant. For example, 

if the selection procedure were to be based on a measure of a feature's linear corre-

lation to chlorophyll a then the purpose of using a non-linear neural network would 
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be negated. Several methods of feature selection have been developed for use with 

neural networks but they are often highly computer intensive. Linear feature selection 

methods can be simpler to use. 

The three methods chosen for this research used information about the output from 

the model to select features. The first method (section 5.3.1) used the wealth of 

knowledge about chlorophyll a in water and about the environmental conditions of 

Case 2 locations to select spectral features. This is the method commonly used in the 

design of new sensors. The second (section 5.3.2) and third (section 5.3.3) methods were 

a linear and a non-linear method which tested the accuracy of the models' predictions 

to determine the features to remove. Stepwise methods are useful for highlighting sets 

of features that work well together that may not have been identified by a study of the 

spectral characteristics of chlorophyll a alone. Such methods are not commonly used 

in studies of ocean colour. Also, these methods are more relevant to feature selection 

from hyperspectral data. 

5.3.1 Hand-picking features based on other chlorophyll a stud-

ies (HPFS) 

Much work has already been undertaken into the most useful wavelengths for predicting 

chlorophyll a. Section 1.3 outlined much of this work. Before undertaking an intensive 

feature selection process, it was worth utilising these findings to construct a set of 

features for inputs to the models. The research was broadly separated into the following 

three areas: 

1. Research in specific features for chlorophyll a prediction. Many of these features 

were discussed in section 1.3 (summarised in table 5.2). 

2. Research into those features which are afiFected by other environmental factors 

such as the atmosphere or CDOM. These features may be used to correct for the 

eS'ect of this factor or should be avoided (summarised in table 5.3). 
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3. Research into reconstructing the measured spectrum from as few measured wave-

bands aa possible. Some workers have determined which wavelengths are the 

most useful for reconstructing a spectrum detected over a water body containing 

chlorophyll a. These features are the ones that are typical of the responses of the 

spectrum to changes in the constituents in the water (summarised in table 5.4). 

This method of feature selection shall be known as hand-picking feature selection or 

HPFS. 

Table 5.2: Features used for detecting chlorophyll in water 

Citation Type of 

feature 

Wavelengths 

(nm) 

Situation Comment 

Gordon et al. 1980 ratio 443 / 550 Gulf of Mexico CZCS algorithm for low chloro-

phyll a concentration 

Gordon et al. 1980 ratio 520 / 550 Gulf of Mexico CZCS algorithm for high chloro-

phyll a concentration 

Tassan 1981 difference 440 - 550 model Difference algorithm per-

formed better than ratio of 

same bands and overcame 

some problems of sun glitter, 

foam and atmospheric 

effects 

Giannini 1981 difference 585 - 662 coastal waters Preliminary study, possibly 

low sediment 

Mitchelson et al. 1986 ratio 440 / 550 Irish Sea 

Case 2 waters 

All algorithms empirically 

derived for Case 2 waters 

were statistically similar 

Mittenzwey et al. 1992 ratio 705 / 670 inland waters Least sensitive to other sub-

stances in the water. Based on 

a comparison between labora-

Goodin et al. 1993 raw band 720 experimental 

tanks 

tory and in situ measurements 

As sediment varies reflectance 

at this wavelength remains 

constant 

Tilcott 1995 ratio 485 / 570 coastal waters Landsat TM data 

Aiken et al. 1995b ratio 490 / 555 ocean in situ 

spectral 

Ratio responds best to range 

of chlorophyll a levels (where 

continued on next page 
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continued from previous page 

Citation Type of 

feature 

Wavelengths 

(nm) 

Situation Comment 

measurements 

and modelled 

spectra 

carotenoid pigments co-vary 

with chlorophyll a 

Perez-Ruzafa et al. 1996 ratio 443 / 560 oligotrophia 

lake water 

Use natural log of attenuation 

coefficients 

Rundquist et al. 1996 ratio maximum NIR/ 

minimum red 

experimental 

tanks, no 

sediment 

When chlorophyll a 

concentration is 

low 

Rundquist et al. 1996 1®' derivative 690.7 experimental 

tanks, no 

sediment 

When chlorophyll a 

concentration is 

relatively high 

Hoogenboom et al. 1998 ratio rwSSO/ 600 model of North 

Sea water 

Sensitivity of this combination 

not changed by addition of 

tripton 

Eraser 1998a 1®* derivative 429 and 695 inland waters Peak in derivative at these 

wavelengths corresponds to 

steep reflectance slopes 

associated with chlorophyll a 

Table 5.3; Features used for determining the influence of other factors 

Citation Substance Wavelengths (nm) Situation Use to correct for 

or avoid? 

Abbott et al. 1994 

Wrigley et al. 1992 

Carder et al. 1991 

CDOM 412 oceanic and coastal 

waters 

correct for 

Morel and Gordon 1980 CDOM 400 Case 2 waters correct for 

Morel and Gordon 1980 atmospheric aerosol 880 + at least 

2 other bands in 

the NIR 

Case 2 waters correct for 

Morel and Gordon 1980 turbidity 610 Case 2 waters correct for 

Aiken et al. 1995b atmosphere 412 ocean in situ spec-

tral measurements and 

modelled spectra 

avoid 

Dekker et al. 1992a noise < 500 nm inland waters avoid 

Sathyendranath et al. 1989 CDOM 400L430 model with sediment 

and CDOM 

correct for 

Singh et al. 1997 atmospheric aerosol 760 inland waters correct for 

Gordon et al. 1980 atmosphere 670 Gulf of Mexico correct for 

Mittenzwey et al. 1992 bottom reflectance < 550 inland waters avoid 

continued on next page 
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continued from previous page 

Citation Substance Wavelengths (nm) Situation Use to correct for 

or avoid? 

and CDOM 

Perez-Ruzafa et al. 1996 bottom reflectance 443 / 560 ratio shallow coastal waters correct for 

Quibell 1991 sediment ~665 minus ^710 experimental tanks correct for 

WrigleySKFCM92 

citing NASA 1982 

sediments 620 coastal waters correct for 

Table 5.4: Bands used for reconstructing spectrum 

Citation Method used Situation Wavebands (nm) 

Wernand et al. 1997 Multiple regression analysis coastal water 412, 492, 556, 620 and 672 

Sathyendranath et al. 1989 Eigenvector analysis model of Case 2 water 400, 445, 520, 565 and 640 

Dekker et al. 1992a 

Dekker et al. 1992b 

Knowledge-based method inland water 510-530, 555-575, 590-610, 

620-640, 645-655, 660-670, 

670-685, 695-715 and 770-800 

5.3.2 Multiple linear regression feature selection (MLFS) 

See table 5.5 on page 115 for a glossary of the notation used in this section. 

The linear multiple regression model was used to select features for regression. This 

was performed using a backward elimination technique. At each iteration, this method 

removes one feature and compares the error of the resulting prediction with that of 

the original set to determine if there is any decrease in accuracy. This is achieved as 

follows: 

1. Using equation 3.5, the regression coefBcients (/3) were determined from the train-

ing set for the full set of /+ inputs 

2. The were then used to make predictions of chlorophyll o from the validation 

set with the full set of inputs 

3. The mean squared error 6̂ + was determined for these predictions with the full set 

of inputs 



Chapter 5 Development of method 

Table 5.5: Notation used in description of multiple regression feature selection method 

Symbol Description 

/+ Number of inputs in the full feature set 

Number of inputs in the reduced feature set 

Minimum error achieved for full configuration 

Minimum error achieved for reduced configuration 

Ptrain Number of patterns in the training data set 

Pvalid Number of patterns in the validation data set 

P Ptrain, + 

df^ Degrees of freedom for the full configuration 

d/_ Degrees of freedom for the reduced configuration 

Xi Measurements in band i 

X£__ Band which, when removed from the 7+ inputs results in 

the lowest error for all the /+ sets of inputs 

4. Stages 1 to 3 were then repeated /+ times, each time with a reduced set of /_ 

inputs where — 1, produced by removing band Xi 

5. The lowest error achieved at stage 4, by removing band was then compared 

to £_i_ to determine if — £+ < 0. If this was the case, X£_ was removed from 

the data, /+ was set to , i set to % — 1 and f + set to the value of f _ 

6. Stages 4 and 5 were repeated until the removal of any more bands resulted in 

- 6:+ > 0 

The criterion used to determine whether — 6̂ + < 0 was a statistical one. Clearly, 

with noise in the system, slight variations in the error may not have been statistically 

significant. The statistical function allowed natural variation in the error due to noise to 

be distinguished from that caused by real alterations in the model. This was achieved in 

this function by assuming that the error was normally distributed and hence its natural 
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variation could be determined. This assumption was reasonable, as was demonstrated 

in the primary study. 

This was tested by comparing the test statistic Z, where 

—dj 

lET 
4f+ 

(5.1) 

to the corresponding values in the f-distribution for the numerator degrees of freedom 

df^ — df+ and denominator degrees of freedom df+ for the significance level of 95 %. 

The hypothesis being tested was 

Hq : RP 7̂  0 (5.2) 

and the alternative hypothesis was 

Ha : R(3 = 0 (5.3) 

where was the vector of coefBcients of the model and E was a vector of zeros and a 

one at the position corresponding to the coefficient being tested. At each iteration the 

coefficient corresponding to the band X£_̂  was being tested and when — <5+ < 0 (the 

prediction with one fewer inputs was at least as good as with all the inputs) the null 

hypothesis was rejected. 

The degrees of freedom were the number of patterns used to train the algorithm minus 

the number of constrictions placed on the data. In this work two sets of data were 

used to train the networks, f and f f and so the number of patterns f = 

f The number of constrictions placed on the data were the regression 

coefficients (including the intercept), therefore df_ = P — /_ + 1, df^ = F — /+ + 1 and 

since at every iteration, 7+ = 4-1, — 6̂ + = 1. 

This method of feature selection shall be known as multiple regression feature selection 

or MLFS. 
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5.3.3 Neural network feature selection (NNFS) 

See table 5.6 for a glossary of the notation used in this section. 

Table 5.6: Notation used in description of neural network feature selection method 

Symbol Description 

s Number of networks used throughout the function 

Number of hidden nodes in the full model configuration 

Number of hidden nodes in the reduced model configuration 

/+ Number of inputs in the full feature set 

/_ Number of inputs in the reduced feature set 

<5_i_ Minimum error achieved for full configuration 

Minimum error achieved for reduced configuration 

Ptrain Number of patterns in the training data set 

Pvalid Number of patterns in the validation data set 

P Ptrain + Pvalid 

Number of weights 

cy_i. Degrees of freedom for the full configuration 

df^ Degrees of freedom for the reduced configuration 

a;, Measurements in band % 

The technique chosen here was originally described by Steppe et al. (1996) and was an 

extension of the method described in section 5.3.2. This method was chosen because it 

was specifically designed to select features for neural network models. Moreover, this 

technique, which shall be referred to as the neural network feature selection method also 

determined the number of weights required for the selected input features. The method 

was a backward elimination technique which begins with all the input features and 

carefully selects features for removal as with the multiple regression feature selection. 

This was achieved using the following procedure: 

1. Several (s) networks with all the /+ inputs to be assessed and maximum number 
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of hidden nodes J_t_ were initiated with randomised weights. This was to allow for 

the possibility that certain initialisations of weights would result in the network 

converging on a non-global minimum. It was assumed that s was enough networks 

to ensure that at least one would converge on the global minimum. 

2. The s networks were trained until each was deemed to have converged (using, 

for example, the validation set error as in the primary study or a maximum 

number of iterations stopping criterion). The training sum squared error waa 

then assessed for each of the s networks and the minimum was taken to be the 

overall training error 

3. The s networks were then re-initiated and trained with one fewer hidden node 

(J_ hidden nodes). The minimum error of these networks was sought and this 

was compared to £+ to determine il £_—£+< 0. If the current training error 

was equal to or less than the previous training error, the new model configuration 

was accepted and £+ was set to £ - and J+ = J_ . If £^ > £^, the new model 

was rejected. The assumption was that with this configuration of inputs, the J+ 

hidden nodes were required to adequately specify the model. 

4. The s networks were then re-initiated and trained but this time one input was 

removed to leave /_ inputs. This step was repeated 7+ times with each input 

being withheld in turn. This resulted in a s x matrix of errors in which 

the lowest error, £_, corresponding to the removal of feature X£_, was located. 

Again £^ was compared to <5+ to determine if — £_i_ < 0. If this was true, 

the accepted network configuration was that with feature xs_ rejected leaving 

/+ = /_. Otherwise all /+ features were retained within the model. 

5. Stages 3 and 4 were repeated until no change was made to /+ or The resulting 

configuration was considered to be that with the optimal inputs and number of 

hidden nodes for solving the problem. 

Again, — 6"+ < 0 was tested by comparing 2/ (equation 5.1) to the f-value. This 

tested the hypothesis: 

^0 : Aw* ^ 0 (5.4) 
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and the alternative hypothesis was 

Ha '• Rw* = 0 (5.5) 

where w* was a vector of optimal weights derived for the model with /_|_ inputs and 

hidden nodes, i? is a vector of zeros and ones where the ones are in the locations that 

correspond to the weights in w* which were connected to the hidden node or input node 

that was being tested. Therefore, the test determined whether the weights connected 

to the input or hidden node of interest were equal to zero. 

In the case of the neural network, the restrictions on the residuals were the weights 

(including biases) as these were equivalent to the coefficients of regression in the mul-

tiple regression problem. Thus, if the number of weights, u,= J{I + 1) + ( J + 1) 

(for a one-output network) then cf/+ = P — u. When a hidden node was removed 

df- = P — (m — (/+ + 2)) and when an input was removed df_ = P — (u — J^). 

This method of feature selection will be known as neural network feature selection or 

NNFS. 

5.3.4 Initialisation conditions 

So that the degrees of freedom were a positive value it was necessary that the number 

of weights in the network were fewer than the number of patterns training the network. 

Therefore, this restricted the number of inputs and hidden nodes in the network. All 72 

wavebands could not be applied to this algorithm. Instead, the bands were separated 

into nine subsets, labelled A to I, with the wavebands spaced evenly throughout the 

spectrum (table 5.7). It was recognised that this removed the opportunity to test 

whether including adjacent bands in the models enabled a better correction for the 

effects of environmental factors on the spectral values. To enable a direct comparison 

with the neural network feature selection sets and the models derived from these sets, 

the multiple regression feature selection technique was initiated with the same subsets, 

A to I. Because the number of model coefRcients was fewer for the MLFS method, it was 
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also possible to initiate this feature selection technique with all 72 image bands. The 

neural network feature selection method was initiated with each of these nine subsets 

of features and 18 hidden nodes. For each iteration of the function, 10 networks were 

trained, that is s = 10, and each network was trained for 4000 iterations. 

Table 5.7: CASI bemds in each of the 9 subsets used for the neural network feature 

selection method 

Subset Band numbers 

A 1, 10, 19, 28, 37, 46, 55, 64 

B 2, 11, 20, 29, 38, 47, 56, 65 

C 3, 12, 21, 30, 39, 48, 57, 66 

D 4, 13, 22, 31, 40, 49, 58, 67 

E 5, 14, 23, 32, 41, 50, 59, 68 

F 6, 15, 24, 33, 42, 51, 60, 69 

G 7, 16, 25, 34, 43, 52, 61, 70 

H 8, 17, 26, 35, 44, 53, 62, 71 

I 9, 18, 27, 36, 45, 54, 63, 72 

5.4 Mode l deve lopment 

The selected features were to be related to chlorophyll a using a model. In the primary 

study it was seen that even linear neural networks perform better than simple linear 

least-squares regression if more than one input is used. Multiple linear least-squares 

regression is equivalent to linear neural networks (section 3.2) and is a popular method 

for relating inputs and outputs (e.g. Aiken oZ. 1995b) which can be performed 

simply. It is more difficult to determine the optimal structure for non-linear models 

and so all non-linear models were developed using the neural network. The following 

two sections describe the two chosen methods of model development - multiple linear 
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least-squares regression and non-linear neural networks. These models were used to 

relate all the selected sets of features (sections 5.3.1 to 5.3.3) to chlorophyll a. 

5.4.1 Mult iple linear least-squares regression 

Using equation 3.5, the coefficients for each selected set of features were calculated 

using the training set of patterns. The spectral values from the test set were then 

applied to these coefficients to predict chlorophyll a. 

5.4.2 Neura l networks for developing models 

The neural networks were trained (using the feed-forward/back-propagation method 

described in section 3.2) with the training data set. The neural network feature selec-

tion determined how many hidden nodes were required for the A to I sets of inputs. 

The number of hidden nodes for the hand-picked and multiple linear regression feature 

selection data sets was chosen with reference to those for the neural network feature 

sets. 

The networks were trained for 5000 iterations. Other parameters such as the learning 

rate and the activation functions were the same as those used in the primary study. It 

was intended that the results were the minimum achievable using this method. 

Summary of chapter 5 

The focus in this section has been on the choice of features for the models. Three 

methods of selecting features that were used in this research have been described. The 

Rrst method was one that has been commonly used and was based on prior knowledge 

of the problem by using the information that was contained in the literature about the 

best parts of the spectrum to use for predicting chlorophyll o. The second and third 
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methods were iterative and selected sets of features according to their performance with 

linear (MLFS) and non-linear (NNFS) regression functions. Because of the number of 

coefficients being fitted in the neural network, only a limited number of bands could 

be tested at any one time in the NNFS technique. The 72-band data set was therefore 

divided into 9 subsets for the NNFS and, for comparative purposes, the MLFS. This 

resulted in the selection of 20 different sets of features. Table 5.8 summarises the 

feature selection techniques used and the subsets of band that were applied to them. 

Table 5.8: The feature selection methods applied to the band subsets 

band subset HPFS MLFS NNFS 

all 72 / / 

A / / 

B / / 

C / / 

D / / 

E / / 

F / / 

G / / 

H / / 

I / / 

Using multiple linear regression and neural network regression, chlorophyll a prediction 

models were then developed. These took as inputs the sets of bands that had been 

selected by all the feature selection techniques with the selected sets of bands as inputs. 

This resulted in 40 models - 20 each of the multiple linear regression and the neural 

network regression. 

The feature selection described in this chapter has not been previously applied to ocean 

colour data. These methods provided an automatic method of determining from which 

regions of the spectrum bands should be taken to build robust chlorophyll a prediction 

models. 



Chapter 6 

Results 

6.1 I n t r o d u c t i o n 

This chapter details the results of the feature selection and the development of chloro-

phyll a prediction models. The Erst section (6.2) discusses the features selected by 

the three methods of 'hand-picking', multiple regression feature selection and neural 

network feature selection and then compares the different methods. Section 6.3 then 

describes the predictions of chlorophyll a as made using these selected sets of bands 

and the multiple regression and neural network regression methods. 

6.2 Fea tu r e selection 

The following three sections describe the results of the three feature selection methods 

that were used. These results are then compared in section 6.2.4. 

123 
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Table 6.1: These features were chosen with recommendations from literature about 

the prediction of chlorophyll o. 

Wavelength wave Why chosen 

(nm) band 

412 2 correction for CDOM 

443 6 1 
> detection of chlorophyll a 

560 23 
i 

670 38 ] 
> correction for sediment 

710 44 / > correction for atmosphere 

880 67 

6.2.1 Hand-picking features based on other chlorophyll a stud-

ies 

Using the literature a set of six wavebands wag chosen (table 6.1). Several studies 

recommended the waveband around 412 nm for correction for CDOM as well as re-

construction of the spectrum (Abbott et al. 1994; Carder et al. 1991; Wrigley et al. 

1992). Although Aiken oA (1995b) recommended avoiding this wavelength because 

of atmospheric effects, this band was selected. Bands near 443 and 560 nm have been 

the most commonly used for chlorophyll a detection and so these were included in this 

set. Quibell (1991) recommended using bands at 665 and 710 nm in combination to 

correct for sediment. Hence, bands at 670 and 710 nm were chosen. These bands could 

also be used in combination with 880 nm for correction for atmosphere such that a long 

wavelength red band was substituted for one of the 2 NIR bands suggested by Morel 

and Gordon (1980) in combination with 880 nm. 
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Table 6.2: Output of multiple regression on the subsets A-I. 

Band Bands Central (Bands 

subset selected wavelengths (nm) rejected) 

A 1, 10, 19, 28, 37, 46, 55, 64 406, 469, 533, 596, 661, 725, 

790, 855 

B 11, 20, 29, 38, 56, 65 476, 540, 604, 668, 797, 863 (2, 47) 

C 12, 21, 30, 39, 57, 66 483, 547, 611, 675, 804, 870 (3, 48) 

D 13, 22, 31, 49, 67 490, 554, 618, 747, 877 (4, 40, 58) 

E 5, 14, 41, 50 434, 497, 689, 754 (23, 32, 59, 68) 

F 6, 33, 42, 51 441, 632, 696, 761 (15, 24, 60, 69) 

G 7, 34, 43, 52, 70 448, 639, 704, 768, 899 (16, 25, 61) 

H 8, 17, 26, 35, 44, 53 455, 518, 582, 646, 711, 776 (62, 71) 

I 9, 18, 45, 54, 72 462, 526, 718, 783, 914 (27, 36, 63) 

6.2.2 Mul t ip le regression fea tu re selection (MLFS) 

Table 6.2 summarises the results of the multiple regression feature selection when the 

nine groups of bands (as described in table 5.7) were presented to the algorithm. No 

bands were rejected from subset A, two bands were rejected from subsets B, C and H, 

three from D, G and I and four from E and F. Appendix C gives details of how the 

multiple regression feature selection arrived at the final selection of bands. 

To give the selection more meaning, the selected bands have been tabulated according 

to the regions of the spectrum from which they are taken (table 6.3). As was expected, 

the selected subsets contained bands from all regions of the CASI spectrum. Almost all 

the red wavebands were selected and green wavelengths were most poorly represented. 

Figure 6.1 summarises the bands selected by the multiple regression feature selection 

when all the CASI wavebands were presented to the MLFS algorithm. Thirty-four 

bands were selected from the full 72-band set. This set comprised mostly of longer 

NIR wavebands and the green wavebands and fewer blue and red wavebands. 
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Table 6.3: Comparison of combinations of bands selected by the multiple regression 

feature selection. The rows represent the groups of bands that were selected from 

and the columns represent the regions in the spectrum. The bracketed values are the 

centre wavelength of the selected band. 

Sub- Spectral region (band central wavelength in nm) 

set blue blue- green red red- NIR NIR NIR 

green NIR 

A .(406) .(469) .(533) .(596) .(661) .(725) .(790) .(855) 

B .(476) .(540) .(604) .(668) .(797) .(863) 

C .(483) .(547) .(611) .(675) .(804) .(870) 

D .(490) .(554) .(618) .(747) .(877) 

E .(434) .(497) .(689) .(754) 

F .(441) .(632) .(696) .(761) 

G .(448) .(639) .(704) .(768) .(899) 

H .(455) .(518) .(582) .(646) .(711) .(776) 

I .(462) .(526) .(718) .(783) .(914) 

6.2.3 Neural network fea ture selection (NNFS) 

Table 6.4 summarises the bands selected and the number of hidden nodes required 

for each of the nine subsets of CASI features applied to the neural network feature 

selection. Appendix D gives the details of how the function chose these configurations. 

While the NNFS function was being developed, it was applied to the A to I subsets 

several times. Table 6.4 shows the results of the Anal run. Between three and Ave 

bands were selected during each run of the neural network feature selection from the 

eight original bands in the subsets, requiring between 6 and 14 hidden nodes. The 

same combinations of bands tended to be selected, particularly for subsets A, F and 

I. The number of times that each band was selected for this run and the previous 
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Figure 6.1: The bands selected by the multiple regression feature selection from the 

entire band set 

Table 6.4: Summary of output of the neural network feature selection 

Band Beinds Central Number of (Bands 

subset selected wavelengths (nm) hidden rejected) 

nodes 

A 1, 10, 19, 28, 55 406, 469, 533, 596, 790 14 (37, 46, 64) 

B 2, 20, 29 413, 540, 604 10 (11, 38, 47, 56, 65) 

C 3, 21, 30 420, 547, 611 10 (12, 39, 48, 57, 66) 

D 4, 40, 49 427, 682, 747 13 (13, 22, 31, 58, 67) 

E 5, 23, 41, 59 434, 561, 689, 819 6 (14, 32, 50, 68) 

F 6, 33, 42, 60 441, 632, 696, 826 13 (15, 24, 51, 69) 

G 7, 25, 43, 61 448, 575, 704, 833 7 (16, 34, 52, 70) 

H 8, 35, 44, 53 455, 464, 711, 776 13 (17, 26, 62, 71) 

I 9, 27, 54, 72 462, 589, 783, 914 8 (18, 36, 45, 63) 

three is illustrated by the histogram in hgure 6.2. The number of hidden nodes was a 

little more variable. This indicated that the final error for each training was influenced 

by initial weight conditions such that occasionally, particularly low final errors were 

achieved with only a few hidden nodes. 
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Figure 6.2: The consistency of the neural network feature selection in selecting CASI 

bands 

Particular regions of the spectrum were consistently selected by the function during 

the A to I runs. The most notable was that the blue bands 1 to 10 (402 - 473 nm) 

were always selected. This was true for all runs of the function. Conversely, blue-green 

bands 11 to 16 (472 - 509 nm) were nearly always rejected. Band 19 (528 - 537 nm), 

bands 28 to 29 (592 -608 nm), band 33 (628 - 636 nm), bands 41 to 43 (685 - 708 nm) 

near the fluorescence feature and band 54 (779 - 787 nm) were all selected every time 

the function was run. Near infrared bands 62 to 71 (837 - 910 nm) were rejected 

consistently but band 72 (909 - 918 nm) was always selected. 

Again, the bands that were selected are tabulated with respect to the regions of the 

CASI spectrum (table 6.5). In general some particular combinations of selected bands 

can be described. For subsets A - C the neural network feature selection derived 

a combination of a short wavelength blue band, a central green band and a short 

wavelength red band. Subsets E - H also had similar combinations to each other. 

The short wavelength blue band was combined with a band on the red-NIR transition 

and either a long wavelength green or a mid-wavelength red and one other NIR band. 
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Table 6.5: Comparison of combinations of bands selected by the neural network 

feature selection. 

Sub- Spectral region (band central wavelength in nm) 

set blue blue-

green 

green red red-

NIR 

NIR NIR NIR 

A .(406) .(469) .(533) .(596) .(790) 

B .(413) .(540) .(604) 

C .(420) .(547) .(611) 

D .(427) .(682) .(747) 

E .(434) .(561) .(689) .(819) 

F .(441) .(632) .(696) .(826) 

G .(448) .(575) .(704) .(833) 

H .(455) .(646) .(711) .(776) 

I .(462) .(589) .(783) .(914) 

Subset D was similar but no green or mid-red band was selected. Subset I also had 

a similar combination with the exception that a band on the red-NIR transition was 

replaced by a band in the middle of the NIR (band 72). 

On average (mean and mode) about 10 hidden nodes were required in the final con-

figuration of the network. Except for subsets E and G at least twice as many hidden 

nodes to inputs were required. With regard to the previous runs of the neural network 

feature selection, all except for subsets E and G arrived at a number of hidden nodes 

close to the average for the subset. For these subsets, the value for this hnal run was 

lower than any previously obtained. 



C h a p t e r 6 Resul ts ^ 

6.2,4 Compar ison of t he results of t he different fea ture selec-

t ion m e t h o d s 

Six bands were chosen using the 'hand-picking' method. This was about the average 

number of bands selected from the nine subsets with the multiple linear regression 

feature selection. However, the neural network method, resulted in a same size or 

smaller set of features. When selecting from the entire data set, the MLFS selected 34 

bands, many more than had been permitted by splitting the data into subsets. This 

indicated that a great deal of information about chlorophyll a was held in many of 

the image bands and that by separating the data into band sets A to I, the feature 

selections were constrained. 

There were several similarities between the different sets of selected features. All but 

band 2 (413 nm)of the hand-picked features were also present in the MLFS sets selected 

from the whole data set. Four of the hand-picked bands were included in the feature 

sets selected from the nine subsets of the features using either the MLFS or NNFS. 

The MLFS and NNFS both selected bands 1, 6 19, 28, 29, 43 and 54 (406, 441, 533, 

596, 604, 704 and 783 nm, respectively). The selection of band 1 was surprising as 

this is a very noisy band. Band 6 is in a region of the spectrum popularly chosen for 

predicting chlorophyll a at 440 nm. A recent study found that a band around 530 nm in 

combination with a band at 600 nm was particularly useful for detecting chlorophyll a 

in the North Sea (Hoogenboom et al. 1998) and this corresponded to bands 19, 28 and 

29. Band 43 is close to the fluorescence peak and so may have been selected for this 

reason. However other bands that are closer to the peak were not always selected. 

The MLFS did not select band 40 (682 nm) when working with the subset D. This 

is the band that is closest to the peak in Suorescence. However, the NNFS did select 

this band. In the primary study the Huorescence feature was found to have a generally 

linear relationship to chlorophyll o and so it was surprising that the linear feature 

selection did not select this band. It was possible that other bands in the D subset 

contained more valuable information. 
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Bands 41 to 43, (685-708 nm) which span the region of the fluorescence peak at higher 

chlorophyll a concentrations, were selected by both the MLFS and NNFS from the 

subsets E to G. However, only band 43 (704 nm) was selected from this region when 

all the bands were available indicating that much the same information was contained 

in all these bands. Similarly, band 72, an extremely noisy band with many zero values, 

was selected by both the MLFS and NNFS as part of subset I. However, it was not 

selected when the entire feature set was available. This is a particularly surprising 

outcome and may indicate that this band contained important information for the 

prediction of chlorophyll a that was not contained in other bands in subset I but that 

was available in another, much less noisy band in the whole band set. 

On the whole the linear, MLFS selected more bands than the non-linear, NNFS. Bands 

on the red and NIR were favoured marginally over other regions of the spectrum by 

MLFS when selecting from the subsets A to L The NNFS method always selected short-

to mid-wavelength blue bands. When presented with the whole feature set, the MLFS 

selected bands throughout the spectrum although noisy blue and NIR bands were 

avoided in general. The number of bands that were selected from the full feature set 

indicates that many bands were required to characterise a linear relationship between 

the spectral data and chlorophyll a. 

6.3 Mode l deve lopment us ing t h e selected f ea tu re 

sets 

The results of the development of models for chlorophyll o prediction are presented 

in this section for multiple regression and neural network regression. The goodness 

of the prediction weis evaluated using quantitative and qualitative measures. Firstly, 

statistical measures were used that were based on the comparison between predicted 

and measured chlorophyll a concentrations in the testing set. Secondly, the results 

were compared using visual measures which indicated whether errors in the predictions 

occurred for particular chlorophyll o concentrations or locations along the cruise. 
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6.3.1 Stat ist ical assessment of models 

Table 6.6 gives the results of the prediction of chlorophyll a concentration. These were 

compared to the measured values in the testing set using the root mean squared error 

of prediction (equation 4.3) and the correlation between measured and predicted values 

(equation 4.2). 

6.3.1.1 Multiple linear regression 

The hand-picked feature set performed well in comparison to the other feature sets 

with this model because the error of 2.77 and correlation of 0.8 for this feature 

set were equal to the average for all the feature sets. In general, the multiple regression 

models performed marginally better with the MLFS sets A-I with an average error 

of 2.72 and correlation of 0.81 in comparison to with the NNFS sets with an 

average error of 2.94 and correlation of 0.77. The error and correlation values 

were also a little less variable for the MLFS sets than the NNFS sets. The lowest 

errors and highest correlations for the MLFS and NNFS sets A to I we achieved using 

set I, however the lowest error (1.75 and highest correlation (0.93) overall was 

achieved with the 34-band set selected using MLFS applied to all 72 bands of the CASI 

imagery. The worst performing model was that using the NNFS set D, with an error 

of 3.64 and a correlation of 0.62. There was little evidence that the number 

of features in each subset was in itself important for deriving a good model as some 

models with few features, such as the 4-band NNFS set I performed better than models 

using more input features, such as the 8-band MLFS set A. 

6.3.1.2 Neural networks 

The hand-picked set of features resulted in a neural network model error of 2.51 

and correlation of 0.87. This was a little worse than the average error and correlation for 

all the neural network models of, respectively, 2.23 and 0.89. The neural network 
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models with the MLFS sets A to I with an error and correlation of 2.05 //p and 

0.91, performed better on average than those with the NNFS sets, which had an error 

and correlation of 2.44 and 0.87. The model using the 34-inputs selected using 

MLFS from all the bands performed well, with an error and correlation of 1.56 

and 0.95. However, the lowest error and highest correlation (1.28 and 0.96) were 

achieved by the neural network model using the MLFS set I. Again the performance 

of the models was not strongly related to the number of features used as inputs. 

6.3.1.3 Comparison of models developed 

The RMSE obtained using these models was compared to that which would result from 

always predicting the mean of the training set. In this case, this 'benchmark' error was 

5.97 fj.g For all the models the RMSE was below this mean value indicating that the 

models were not simply predicting the mean value for the training set. The correlations 

are all positive and statistically significant. 

The 7th and 8th columns of figure 6.6 show the difference between the error and 

correlations of the different models using the same sets of input features. In all but 

one model (that using NNFS set C) the neural network models performed better than 

the multiple linear regression using the same set of inputs. This was indicated by 

the positive difference in RMSE and negative difference in correlation. However, the 

difference in the error was only between 0.10 fig (NNFS set C) and 1.0 fig (NNFS 

set I) and the difference in correlation % 0.1. 

Comparing the averages for the feature selections it can be seen that both types of 

model had lower errors and higher correlations, on average, when using the features 

selected using MLFS. The mean RMSE for the multiple linear regression models with 

the MLFS and NNFS sets A to I are, respectively, 2.72 and 2.94 For the neural 

network regression models these errors are 2.05 and 2.44 The improvement was 

therefore particularly marked with the neural network models. Both types of model 

performed moderately well with the hand-picked set of features and extremely well 



C h a p t e r 6 Results 134 

with the 34-band set of features. It was possible that the models using the NNFS-

derived subsets and the neural network models using 34-inputs were not trained for 

long enough to arrive at an optimal weight configuration. The NNFS subsets were 

selected from the one neural network in 10 which had the most optimal initial weight 

conditions (section 5.3.4), therefore it was likely that, in the final training, the initial 

weights of the one network trained for each set of inputs also resulted in non-optimal 

weights after only 5000 iterations. These subsets of features were also considered to 

have a complex relationship with chlorophyll a concentration and so would need longer 

to derive this during training (page 100). 

6.3.2 Visual assessment of models 

In the following pages the visual assessment of the predictions is described. This was 

aimed at determining the sources of good and poor chlorophyll o prediction. 

For each data point the predicted chlorophyll a concentration was plotted against the 

measured chlorophyll a concentration and the grouping of points around the one-to-one 

line was assessed. This allowed the identification of particular ranges in chlorophyll a 

concentration that could be predicted well or predicted poorly. The diagonal line 

indicates where the predicted value was equal to the measured value. Points above 

this indicated that the model predicted a chlorophyll a concentration that was higher 

than the measured value. Points below this line indicated that the model predicted 

a chlorophyll a concentration that was lower than the measured value. The vertical 

distance of the point from the line represented the magnitude of this difference. 

The difference between the predicted chlorophyll a concentration and the measured 

chlorophyll a concentration was also plotted against the easting co-ordinate of the 

data point and regions of over- or under-prediction in the data were located. This 

enabled a direct comparison of prediction error with the known sources of error as 

derived in section 2.7. If there was some locational reason why predictions at some 

data points were good or poor this could be identified as 'structure' in these plots. The 
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horizontal line indicated no difference between measured and predicted values. Points 

above this line indicated that the model predicted a chlorophyll a concentration that 

was higher than the measured value. Points below this line indicated that the model 

predicted a chlorophyll a concentration that was lower than the measured value. The 

vertical distance of the point from the line represented the magnitude of this difference. 

6.3.2.1 Multiple linear regression 

In figure 6.3 the data points generally formed a curve about the one-to-one line with 

predicted values lower than measured values at the lowest and highest measured chloro-

phyll a concentrations and higher predicted than measured values for the medium 

chlorophyll a concentrations. However, this was not evident with the 34-input model 

where the cluster was evenly distributed about the one-to-one line throughout the 

range of measured chlorophyll a concentration. The alignment to the one-to-one line 

was particularly poor for models with NNFS sets B, C, D and I. Here lower chloro-

phyll a concentrations are reasonably-well predicted but overall the models tended to 

predict a concentration of around 11-12 This was close to the mean for the 

training set and so the good RMSE found was a little misleading. 

The difference between measured values and those predicted using the multiple linear 

regression model showed a similar variation with geographical location for all models 

(figure 6.4). The models with MLFS sets A, B, F, G and H displayed a more even 

distribution of error over space and the model using the MLFS from all bands displayed 

the least structure over space. Other models however, particularly those with NNFS 

sets B, C, D, and E, displayed much more structure over space. The main feature 

in this variation of error over space, which is evident in all the plots to some degree, 

is a large under-prediction, sometimes of more than 10 at about 585000 m 

east. This was located approximately in the middle of image 1877 and appeared to 

correspond to a large trough in the second principal component (figure 2.22). A peak 

in values at 630000 m east for many of the predictions corresponded to a peak in the 

Hrst principal component and a large trough in the second principal component. This 



C h a p t e r 6 Resul ts 

peak, sometimes followed by a trough (especially in the case of NNFS set D), was also 

evident in many of the plots. 

Another feature that was also common in most of these plots was an narrow region 

of over-prediction of up to 10 at about 606000 m east, or conversely, under-

prediction in the models with NNFS sets D and 1. This corresponded to the region in 

which the principal components had a high variance. This geographical location and 

also the filament depicted by the colour green where the blue-green ratio was plotted 

against chlorophyll a in diagram figure 4.3 and was probably due to the brightening of 

spectral values due to increased path radiance at the edge of the image. 

Also, all the plots displayed another region of over-prediction at 625000-635000 m east. 

This was attributed to the brightening of pixel values in the corresponding location 

of image 1875 as can be seen in figure 2.1. A region in which the difi'erence between 

the measured and predicted chlorophyll a concentration varied a great deal for many 

models was the very far east of the data. Here, the difference between the times of the 

over-flights and the in situ sampling was greater than 2 | hours and so the error may 

not have been in the prediction but rather the co-location of the in situ measurement 

with particular spectral values. 

6.3.2.2 Neural networks 

In figure 6.5 the data points from all the models tended to cluster tightly about the 

one-to-one line with little evidence of bias. One feature of note was the over-prediction 

of values where measured concentrations were about 5-7 [ig . This may have resulted 

from the method chosen to select the training data set which picked data points evenly 

along the range of possible values. In so doing, the number of training samples was 

reduced and it was possible that not enough examples from the chlorophyll o concen-

trations in the range 5-7 //p were provided during training for the network to learn 

the range of spectral values that corresponded to these chlorophyll a concentrations. 

Only a few structures were evident in the plot of the difiFerence between the measured 
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and predicted chlorophyll a concentrations against location (figure 6.6) and these are 

most evident for the models using the NNFS sets A to H eis inputs. A large over-

prediction was visible at about 630000 m east. This was greatest for the models which 

displayed a filament at 5-7 in figure 6.5. These data points for which the over-

prediction occurred were located in the region of brightening in image 1875 as noted 

in section 6.3.2.1. There were also many data points at an easting of 605000 m east 

for which the predictions had been extremely high or low compared to the measured 

chlorophyll a concentration. 

6.3.2.3 Comparison of models developed 

In the visual assessment of the prediction made by the multiple linear regression and 

the neural network models the multiple linear regression models displayed more bias in 

the predictions both over the range of measured chlorophyll a concentrations and due to 

data from particular regions of the study site. The latter effects were often attributable 

to environmental factors such as sediment in the water, atmospheric effects or to effects 

caused by changes in viewing angle. The neural network predictions fitted most closely 

the measured values over the whole range of chlorophyll a concentrations and also 

seemed less affected by the environmental factors. In particular, the neural network 

models appeared to be unaffected by the factor that caused large errors in the multiple 

linear regression model at about 585000 m east. Since a trough was found in the 2nd 

principal component at this location, it was thought that CDOM may have been high 

in this region. 

Where the neural network models were affected by local factors these were often differ-

ent to the ones that affected the multiple regression models. The neural networks were, 

however, affected by the choice of training data. The magnitude of the error evident 

in these plots was variable with the set of inputs used for the models. Generally, the 

models with the MLFS sets showed the least structure with measured chlorophyll a 

concentration and over the course of the cruise. 
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Summary of chapter 6 

In this chapter the features that were selected by three methods of feature selection have 

been presented. The multiple regression feature selection tended to select more features 

given the same number of features in the initial set. Given the whole set of 72 bands, 

this method selected 34 bands that provided adequate information for the regression. 

Features from throughout the spectrum were selected together, including noisy bands 

in the blue and NIR. However, the neural network feature selection tended to favour 

the short wavelength blue bands. Models for predicting chlorophyll a concentration 

were developed and an assessment of their predictions has also been presented here. 

The multiple regression models did not perform as well as the neural network models. 

Also, both models performed better with the MLFS sets than the NNFS set. The 

best performances were achieved using the 34-band feature set with the multiple linear 

regression models and the MLFS set I with the neural network models. Most of the 

error in prediction could be attributed to environmental factors that were evident in 

the data. 

The results of the feature selection provide a new understanding of the nature of the 

relationship between chlorophyll a and spectral information given the region of the 

spectrum. It has been shown that the spectral features that have traditionally been 

used for ocean colour research are not the most appropriate when non-linear models are 

available. The technique of removing noisy data has also been shown to be unnecessary 

when regression techniques that are robust to noise Eire to be used. 

The method of analysing the error in prediction both across the range of prediction 

and over space has not been previously applied in similar studies and it has provided 

some information as to why the prediction is poor in some cases. It has also shown that 

the predictions by the linear regression and the neural network regression are affected 

by different factors in the data. 
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Table 6.6: The root mean squared error (RMSE) of the chlorophyll a and the 

correlation between the predicted and measured chlorophyll a are presented here 

for each subset of CASI bands and for both multiple linear regression and neural 

network regression. The difference between these values for the regression methods is 

calculated by subtracting the value for the neural network from that for the multiple 

regression. 

Multiple linear Neural network 

FS regression model regression model RMSE corr'n^ 

method subset RMSE corr'nt RMSE corr'n^ difference difference 

HP all 72 2.77 0.80 2.51 0.87 0.27 -0.07 

ML A 2.74 0.81 2.20 0.90 0.54 -0.09 

ML B 2.72 0.81 2.11 0.91 0.61 -0.10 

ML C 2.74 0.81 1.83 0.93 0.90 -0.12 

ML D 2.83 0.79 1.89 0.92 0.94 -0.13 

ML E 2.99 0.76 2.47 0.87 0.51 -0.11 

ML F 2.77 0.80 1.95 0.92 0.82 -0.11 

ML G 2.79 0.80 2.40 0.88 0.39 -0.08 

ML H 2.60 0.83 2.30 0.89 0.31 -0.06 

ML I 2.26 0.87 1.28 0.96 0.98 -0.09 

ML all 72 L75 0.93 1.56 0.95 0.19 -0.02 

NN A 3.01 0.76 2.21 0.90 0.79 -0.14 

NN B 3.16 0.73 2.74 0.84 0.42 -0.11 

NN C 3.06 0.75 3.16 0.79 -0.10 -0.04 

NN D 3.64 0.62 3.29 0.81 0.35 -0.19 

NN E 2.84 0.79 2.38 0.88 0.46 -0.09 

NN F 2.65 0.82 2.19 0.89 0.47 -0.07 

NN G 2.82 0.79 2.11 0.90 0.71 -0.11 

NN H 2.68 0.82 2.29 0.89 0.39 -0.07 

NN I 2.62 0.82 1.63 0.94 1.00 -0.12 

whole column 2.77 0.80 2.23 0.89 0.55 -0.10 

MLFS sets A-I 2.72 0.81 2.05 0.91 0.67 -0.10 

NNFS sets A-I 2.94 0.77 2.44 0.87 0.50 -0.10 

corr'n^ = correlation, = mean 



C h a p t e r 6 Results 140 

FS method: HP FS method: ML FS method: ML 

FS method: ML FS method: ML FS method: ML 

FS method: ML FS method: ML FS method: ML 

FS method: NN FS method: NN FS method: NN 

FS method: ML 

Subset: C 

FS method: ML 

Subset: D Subset: E Subset: % 

FS method: NN 

Subset: Subset: A 
* 

all bands 

FS method: NN FS method: NN 

Subset: D 

FS method: NN FS method: NN 

Subset: E Subset: B Subset: C 

FS method: NN 

0 10 20 
measure^d chlorophyll 

10 20 

Figure 6.3: Plots of predicted values using multiple regression against the measured 

values for all the feature sets. Values can be assessed by their deviation from the 

one-to-one line. FS method = feature selection method, HP = hand picked, ML = 

multiple linear regression, NN = iterative neural network regression 
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Figure 6.4: Plots of difference between predicted and measured values for multiple 

regression against the location along the cruise. Values can be assessed by their 

deviation from the line of no difference between predicted and measured values. 

FS method = feature selection method, HP = hand picked, ML = multiple linear 

regression, NN = iterative neural network regression 
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Figure 6.5: Plots of predicted values using neural network regression against the 

measured values for all the feature sets. Values can be assessed by their deviation 

from the one-to-one line. FS method = feature selection method, HP = hand picked, 

ML = multiple linear regression, NN = iterative neural network regression 
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Figure 6.6: Plots of di%rence between predicted and measured values for multiple 

regression against the location along the cruise. Values can be assessed by their 

deviation from the line of no difference between predicted and measured values. 

FS method = feature selection method, HP = hand picked, ML = multiple linear 

regression, NN = iterative neural network regression 



Chapter 7 

Discussion 

This research has investigated new techniques of predicting chlorophyll o from remotely 

sensed data where the spectral signal is significantly aSected by environmental and 

sensor conditions. A typical set of remotely sensed and in situ data were obtained for 

this purpose and the approach taken was to use a very analytical method throughout 

the research. At each stage the Endings were assessed and used to determine the 

direction that the next stage should follow. The following discussion draws all the 

findings of each stage of the research together to address the objectives set out at the 

beginning of the research. 

The premise of this research was that the relationship between chlorophyll a and the 

detected spectral signal was non-linear and complex when affected by other environ-

mental factors. A method by which non-linear models of varying complexity could be 

built easily was required. As demonstrated in chapter 3, neural networks were chosen 

Eis a method of regression because they are directly comparable to the more conven-

tional method of multiple linear least-squares regression. The neural network technique 

is quite simple. However, it was also found to be time-consuming when more complex 

networks were being trained. 

The choice of the neural network technique was validated in chapter 4 where it was 

144 
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shown that models developed using the neural network technique always predicted 

more accurately than equivalent least-squares models. For example, the linear neural 

network model with the blue and green inputs predicted chlorophyll a with an RMS 

error of 4.11 iig whereas the linear least-squares model predicted with an error of 

34.78 Furthermore, it was found that the different neural network architec-

tures were simple to compare and thus the importance of different aspects of model 

development could by determined. The choice of the neural network technique was 

further supported in the final part of the research where the non-linear neural network 

models consistently produced more accurate predictions that were less affected by the 

known environmental influences than the linear multiple regression models with the 

same inputs. 

This research aimed to determine if better algorithms could be developed for a 'typical' 

data set. Typically, imagery used to investigate chlorophyll a in the coastal zone is high 

spatial resolution airborne imagery. In the United Kingdom, CAST is often the instru-

ment of choice to agencies investigating because its configuration is flexible. Although 

CASI has a very good noise level, over water the signal is low and so environmental and 

sensor effects can be strong. Both cluster analysis and principal component analysis 

demonstrated that, although the signal varied with chlorophyll a in the water, other 

environmental factors were having a strong, sometimes stronger effect on the signal. 

Unfortunately, it was not possible to verify what factors in the environment caused 

these effects without the appropriate in situ measurements. Instead, a conjecture of 

the possible elements of the environment with which the principal components were 

correlated was made. Principal components 1 and 2 clearly were not related to chloro-

phyll a. An inspection of the imagery found that peaks in the first principal component 

corresponded to brighter regions in the water. The shape of the eigenvector correspond-

ing to the second principal component indicated that CDOM may also be present in the 

scene. Because nothing was known about the distribution and spectral characteristics 

of these environmental factors is would have been unwise to try to correct for them. 

A useful investigation used the information found in chapter 2 to determine whether 



C h a p t e r 7 Discussion 146 

these factors could be shown to have a strong inHuence on the predictions. Two of 

the simple band ratios derived in the primary study were found to display filaments 

when plotted against chlorophyll a. An investigation into the nature of these filaments 

showed that they represented data points from different geographical regions. The 

blue-green ratio and the red-NIR ratio seemed to be affected by the changing spectral 

values recorded along the flight path as highlighted by the statistical analysis of the 

data (section 2.7.1) and cluster analysis of the data (section 2.7.3). 

The data were also found to have strong sensor effects. Particularly strong was the 

noise that manifested with- and cross-the flight direction and the brightening of values 

at the edges of the image rows. The blue-green ratio, when plotted against chlorophyll a 

concentration was also clearly affected by the area of anomalous principal component 

values in the middle of image 1876 and this was probably due to data points having 

increased DN values as a consequence of being located close to the edge of the image. 

These effects were systematic and it would have been possible to correct for them, 

for example, each row in the un-geometrically corrected image could have had its 

pixels values adjusted according to some average of surrounding rows. Also, a model 

could have been fitted to the edge-brightening in the image and the brighter values 

adjusted accordingly. However, in accordance with the objective of the research to use 

a 'typical' data set, these corrections were not performed. Instead, the noise in the 

data was reduced by applying an averaging filter to the data. 

The averaging filter also had the effect of mitigating errors in the co-location of data 

points. It is a simple technique that is commonly applied to data and may be considered 

an extension of the averaging performed by the sensor. Therefore, this study was 

undertaken with a data set containing realistic environmental effects and also several 

sources of error. However, only one basic pre-processing technique was applied to the 

data and so the results of this research are widely applicable to many such studies of 

chlorophyll o in Case 2 waters. 

The investigation using simple least-squares linear regression confirmed that the usual 

method of developing chlorophyll o prediction models was not adequate for the present 
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data set. The linear and non-linear neural networks, however, tended to predict far 

more accurately. Although the more complex of these models were a little more accu-

rate in prediction, the greater improvement in prediction was achieved with non-linear 

models. In the final development of models in chapter 6, the non-linear models again 

performed better than the linear models. However, it was apparent in the NNFS that 

the number of hidden nodes was not so vital in the development of an accurate model. 

Instead it was indicated that the optimal number of hidden nodes was determined by 

the weight initiation because the selected number of hidden nodes tended to vary with 

each training. Throughout this research it has become evident that non-linear regres-

sions produce more accurate models but that the models do not need to be particularly 

complex. This is a particularly encouraging finding because it indicates that methods 

by which chlorophyll a prediction models are derived do not need to be overly com-

puter intensive, rather attention for developing these models may be focused on other 

factors that will ensure a more accurate model. 

One such factor, that was highlighted as very important throughout this research was 

the type and combination of feature that was to be input to the model. Much previous 

research into creating better chlorophyll a prediction models has concentrated on which 

features in the spectrum are best for the prediction. The primary study showed this to 

be a well-founded exercise as the most important factor in the accuracy of prediction 

was the spectral features used. Not only did an increase in the number of input features 

greatly reduce the error but particular features, in this case the blue band and the FLH, 

tended to be inputs to the more accurate models. 

A deeper investigation into the features that were useful for predicting chlorophyll a 

concentration was undertaken, using three techniques of feature selection. The first 

of these used the common technique of selecting bands according to their known rela-

tionship to chlorophyll a and other environmental factors. This method selected bands 

that were di%rent to the bands selected using the two automated methods which were 

based on the accuracy with which models predicted chlorophyll o. This indicated that 

certain bands, although alone being of little use to chlorophyll prediction, worked well 

in combination with other bands. It was a surprise that, when presented with all the 
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bands, the multiple regression feature selection (MLFS) determined that 34 were re-

quired for the accuracy of the prediction to remain statistically significant. With all 

these bands as inputs, both the linear and non-linear models produced very accurate 

predictions. 

It is unfortunate that this research was unable to perform the NNFS with all the 

72 bands. It was estimated that this would take several months to perform. The 

computational intensity of this technique is a limit to its more widespread use. However, 

the sets of features selected by NNFS in this research have provided a much greater 

understanding of the nature of the chlorophyll a to spectra relationship. It was clearly 

found that, where non-linear models may be developed, the blue region of the spectrum 

should be utilised. 

It was clear that the regions of the spectrum that were most suitable for predicting 

chlorophyll a were determined by the type of model used. In the primary study, it 

was found that the blue, green and red image bands tended to perform better with the 

non-linear models whereas the FLH feature performed well within linear models and 

tended to reduce the training time required for non-linear neural networks, indicating 

that these were also converging on a linear solution. 

As in the primary study, it was found that certain bands were more relevant to cer-

tain types of model. The linear MLFS tended to select green and red bands. The 

non-linear feature selection (NNFS) consistently selected blue bands. This was un-

expected because these bands had been shown to be the most noisy, even after the 

two-dimensional Gaussian filter had been applied to the image (section 2.7.5). Previ-

ous studies have removed noisy bands (e.g. Benediktsson aZ. 1995) but this may 

not have been well-founded. This indicated either that the neural network method was 

far more robust to noise in the data or that the blue wavebands had a very non-linear 

relationship to chlorophyll a concentration and so would not produce good predictions 

in a linear model. Another consideration was that, along with band 72 (913 nm), these 

noisy bands may have ensured that the function did not over-train. The work of Gross 

aZ. (1999) showed clearly that the neural network required noise in the training 
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data to enable a good generalisation. This validates the choice of feature selection 

algorithms because alternative algorithms that do not base selection on the accuracy 

of prediction are more likely to select features for which generalisation of the model is 

poor. It is likely that blue wavebands were consistently selected for the neural network 

because of a combination of all these factors. Firstly that useful information was held 

by these bands but it had a non-linear relationship to chlorophyll a concentration and 

secondly that the noise in the data allowed the noise-robust neural network to extract 

this information without over-fitting to the training data. 

The different types of model were also found to respond differently to the error in 

the data. By comparing the spatial distribution of error with the conjected sources of 

error, as represented by the first and second principal components and the estimate 

of tidal Sow between sampling, it was possible to identi^ the causes of poor predic-

tions. For example, it was apparent that the error in the linear models was frequently 

concentrated around a region of the cruise track around 585000 m east. This corre-

sponded to a marked change in values for the second principal component. However, 

the neural network models did not show any increase in error for the same data. Both 

the models were affected by some influence around 630000 to 640000 m which could be 

correlated with a combination of changes in value in both the first and second principal 

components. 

Because it has been shown that a non-linear model is better for determining the concen-

tration of chlorophyll a in the water, it follows that other constituents do not linearly 

vary with the spectral values. Therefore, it was difficult to determine which envi-

ronmental factors caused each of these regions of error. However, this technique of 

qualitatively investigating error was a valuable method which would be worth extend-

ing to use with a more comprehensive set of m data. 

The visual assessment of the correlation between measured and predicted chlorophyll a 

concentrations was particularly useful to determine the reliability of the models. Of-

ten, although the RMS error and correlation coefhcients for some models was found 

to be good, the data were clearly not distributed evenly about the line of measured 
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chlorophyll a=predicted chlorophyll a. This was particularly true for the linear mod-

els and should be born in mind when considering the quantitative assessments of their 

goodness of prediction. The corresponding values for the non-linear models fitted much 

better to this 1:1 line. This is another simple analysis technique that was found to have 

a great deal of value when assessing the goodness of prediction models. 

This technique also highlighted another issue worthy of discussion. For the non-linear 

model a large over-prediction was frequently evident for measured chlorophyll a con-

centrations of between 5 and 7 Such an over-prediction was evident in a few 

of the 1:1 plots in the primary study, however the error in prediction for the models 

on chapter 6 waa quite considerable - up to 25 This was thought to have been 

caused by the change in the method by which the training data were selected between 

the primary and secondary study. The method that was used in the primary study in-

volved simply taking a random sample from the data as the training set. This resulted 

in a training set with much the same distribution as the testing set. Because a large 

proportion of the data were found in a short range of chlorophyll a concentrations, 

it was thought that this selection biased the regression towards this range of values 

by effectively providing a priori information about the data distribution to the neural 

network (Foody et al. 1995a; Foody et al. 1995b). Therefore, the training data sets 

used in the subsequent research were selected evenly from throughout the range of 

chlorophyll a concentrations. This did not bias the predictions towards certain values, 

however it was thought that not enough training examples were provided to charac-

terise the relationship between chlorophyll a concentration and spectral values and 

this was noted particularly in the neural network models' prediction of a chlorophyll a 

concentration of about 6 Clearly it was important to characterise the data well 

in the training set to ensure a good prediction of test data chlorophyll a concentration. 

Another aspect of the research which may have resulted in a greater accuracy was 

to refine the neural network parameters. Only the neural network inputs, number of 

hidden nodes and training time were varied during the course of this research. The use 

of the neural network was therefore kept simple and the results achieved are attainable 

by any researcher in the field of Ocean Colour. 
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An assessment of the mean squared error achieved during training found that this was 

clearly declining up until the training was stopped. The validation error was used as 

an indicator of optimal training times in the primary study but it was found later that 

although the validation error tended to increase after an initial trough, it always began 

to decline again beyond 2000 iterations. 

Because the procedure involved 10 networks working on the same problem it was likely 

that the training error achieved during the feature selection was perhaps optimal, 

given the neural network parameters. One network in the 10 achieved the lowest error 

because its initial weight conditions were the nearest to optimal. When testing the 

neural network models, the errors were greater than during the NNFS. The one neural 

network being trained during this testing stage probably did not start with the near-

optimal initial weight conditions that the one neural network in ten feature selection 

network did. Therefore, this network probably did not reach the global minima in 

weight space at the time that the training was stopped. Better results may have been 

achieved by training for longer, training several times and choosing the network with 

the lowest error or adding a momentum term which would allow the training algorithm 

to find other minima in weight space and thus perhaps the global minima. Again, 

to keep the procedure simple, the networks were all trained for what was considered 

a reasonable number of iterations. Other parameters that could have been altered 

were the activation function (a tanh was used here), the number of layers (there were 

two in this research) and the learning rate (which was always set to 0.001). However, 

a low training error does not necessarily indicate a good testing error because there 

is a danger of over-fitting the model to the training data. This research found that 

the most straight-forward use of neural networks allow well-generalised models for 

predicting chlorophyll a in Case 2 waters to be developed. 

This research was not able to apply these results to another data set of a different region 

or a diff"erent season. It is likely that the relationship between chlorophyll a and spectral 

information will change under different conditions (Kutser et al. 1995). However, 

the neural network was crucial in the development of a method for investigating this 

relationship that shall be useful in future work to extend knowledge about using remote 
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sensing to detect chlorophyll a in Case 2 waters. 



Chapter 8 

Conclusions 

8.1 Summary of thesis 

In previous ocean colour studies, a number of spectral features have been used to de-

termine the concentration of chlorophyll a in water. In open ocean water, a linear 

model using a blue-green band ratio has been found to be adequate. However, in wa-

ters affected by environmental factors other than chlorophyll a other features from the 

spectrum have been used. More recently models that require more than one spectral 

feature as inputs have been developed and a few studies have used neural networks in 

the development of non-linear chlorophyll a prediction models. The research presented 

here has built on these previous works by investigating the value of using neural net-

works to develop chlorophyll a prediction models where the error in the data was large 

and difRcult to correct for - a typical data set. 

The various sources of this error were investigated and it was found that a number 

of factors had a greater influence on the spectral values than did chlorophyll a. The 

data were also found to be highly affected by noise. However, it was confirmed that 

the chlorophyll o signal was present in the spectral measurements and a qualitative 

assessment was made of the main sources of error in the data using statistical, cluster 

153 
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and principal component analyses and calculation of the presence of error due to tidal 

motion of the water. This investigation resulted in a clear understanding of the sources 

of error that were likely to be encountered when predicting chlorophyll a from these 

data according to both the spectral and geographic regions in the data. 

Single- and multi-layer perceptrons were chosen to derive chlorophyll a prediction mod-

els. This type of neural network was well used and understood and could be directly 

compared to simple and multiple linear regression because the same least-squares tech-

nique was used to fit the models to the data. This error minimisation technique assumes 

that the output error has a normal distribution. The ability to develop and compare 

several models of varying linearity and complexity at the same time was useful to 

the investigation of the nature of the relationship between chlorophyll a and spectral 

information. Early on the need for a selection of model inputs was recognised. 

The data were divided randomly into training, validation and testing sets. Chloro-

phyll a prediction models were developed using the standard linear regression and 

neural network techniques with the training and validation sets. The spectral features 

for these models were selected using information from previous studies and from rela-

tionships that had been found within the data. These models were then assessed using 

a number of methods to determine their validity and their ability to predict chloro-

phyll a in the testing data set. The linearity, complexity and inputs to the models were 

also compared to determine which were the most important factors in the accuracy of 

the predictions. 

Building on the findings of this investigation, the technique was refined to investigate 

the spectral dependence of the relationship between chlorophyll a and spectral infor-

mation. The training data were chosen this time to be distributed evenly about the 

range of the chlorophyll a concentrations. A standard technique of selecting spectral 

bands was compared to two feature selection methods that were closely related to the 

regression techniques to be used. The resulting sets of features were then regressed on 

chlorophyll o to produce further chlorophyll o prediction models. Both the results of 

the feature selection and the prediction of the models were assessed to identify which 
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spectral regions were the most useful given the model to be used and the environ-

mental conditions of the scene. The error in the model waa used to determine which 

environmental factors were likely to result in the most error and with which models. 

This work has made several contributions to research in the field of ocean colour re-

mote sensing. A number of simple techniques have been demonstrated that extract 

valuable information from a data set. For example, the spatial locations of environ-

mental substances that are likely to strongly affect the remotely sensed signal may 

be estimated using cluster analysis and principal component analysis. Also, by in-

vestigating the architecture and the manner of training of a simple neural network, 

details about the relationship between the spectral input data and the chlorophyll a 

concentration output data may be inferred. 

Two techniques that have proved particularly valuable were those of neural network 

regression and automated feature selection. The former technique allowed the inves-

tigation of the linearity and complexity of the relationship between chlorophyll a and 

remotely sensed spectra to be thoroughly investigated. The latter showed that there 

may be better sets of spectral features for chlorophyll a prediction than those that are 

indicated by the knowledge of the spectral signal of chlorophyll a. 

Therefore, although many of the findings of this research may only relate to the Norfolk 

30/05/96 data, they do indicate a need for a more thorough investigation of ocean 

colour data. Furthermore, the techniques presented here may be applied to any new 

data set being analysed. The conclusions of any such investigation will then be of great 

value to the ocean colour community. 

8.2 Further work 

This research was undertaken in a sequential and modular fashion with the results 

at each stage being used to determine the method for the next. Although the Gnal 

conclusions of the current research are laid out in the next section, the success of this 
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research indicates that there remains a great deal of potential for further investigations 

in this area. The areas in which the research could develop further are the data used in 

the research, the type of input features used and the reAnement of the neural network 

method. These topics are addressed under their respective headings below. 

8.2.1 T h e d a t a set 

This research only covered one site at one date. There is a great deal of evidence 

that different chlorophyll a prediction algorithms are required for each site and season 

and so this research should be extended to include different conditions. There were a 

number of aspects to the data for which it was difEcult to ascertain the accuracy of the 

data. There were just enough in situ measurements of chlorophyll a for the calibration 

of the fluorometer data but a more comprehensive set of calibration points would have 

allowed greater confidence in this calibration. There were also uncertainties with the 

co-location of some data points, especially when there was a difference of several hours 

between in situ measurement and overflight. Ambiguities such as these are to be 

expected in real data, however where a number of cruises and over-Aights have been 

performed for several different seasons, it should be possible to select enough of the 

more reliable data to provide a very useful data set for the development of this research. 

Where it is necessary to derive unique empirical chlorophyll a predictions models for 

each site, the derivation of reliable models is usually restricted by the number of lo-

cations for which both spectral and chlorophyll a measurements are available. The 

research presented here used the maximum number of samples available for training 

the regression algorithms. However, it would be of value to determine the accuracy 

which may be achieved using fewer data points and which methods of determining the 

model parameters (conventional or neural network) are most suited to research with a 

limited data set. 

Another source of spectral measures are space-borne data. Space-borne sensors have 

necessarily a much coarser spatial or spectral resolution (or both). It would be worth-
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while investigating how the results from this research 'scale-up' to the resolution of 

sensors such as SeaWiFS. Such an investigation would be of relevance to the design of 

future space-borne sensors, specifically aimed at viewing coastal regions. 

8.2.2 T h e spec t ra l f e a tu r e s 

Initially, many different types of feature were investigated for this research. The original 

bands were used but the value of other more complex bands is recognised. In section 

1.3 band ratios and differences and spectral derivatives were discussed. These features 

have shown more potential than the simple image bands in many studies and so should 

be useful inputs to a neural network model. 

With access to a spatial data set, it seemed pertinent to investigate the potential of 

using spatial information as an input to chlorophyll a prediction models. Since the 

1970s, a great deal of interesting research into the spatial variability of phytoplankton 

has been undertaken. By comparing the spatial variation of chlorophyll a to other 

tracers of ocean currents such as temperature or suspended sediment, it has been 

noticed that at certain spatial scales the variance spectra of the two factors diverge 

or, similarly, the autocorrelation between them declines (Denman 1976; Steele and 

Henderson 1979; Gower et al. 1980; Campbell and Esaias 1985; Strutton et at 1997). 

This occurs when phytoplankton growth or zooplankton grazing is at a greater rate 

than the dissipation of energy by eddies (Denman and Piatt 1976; Davis et al. 1991). 

In waters where the spatial distribution of phytoplankton is thought to be a conse-

quence of currents the spatial distribution of tracers which are easier to detect, such 

as suspended sediments, may be used as an aid to determination the distribution of 

chlorophyll a. Under those conditions when the spatial signal of phytoplankton can be 

separated from that of tracers in the water, the spatial information in the data should 

be investigated for use in chlorophyll a prediction where suspended sediments strongly 

a%ct the water-leaving signal. 
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Neural networks are ideally suited to the input of spatial information (Miller af. 

1995). For example, multidimensional input arrays can be used to account for spatial 

and spectral dimensions in the data. This may remove the need for an averaging 

window around the data points to correct for noise. 

It was noted in the primary study that bands that were close to one another may 

have been more useful in the prediction of chlorophyll a because they were similarly 

affected by environmental influences. This was not investigated further due to a need 

to restrict the size of data sets from which features were selected. However, it is worth 

investigating in future research as the relative location of ideal bands for predicting 

chlorophyll a is of great relevance to ocean colour research and to the design of ocean 

colour sensors in the future. 

8.2.3 T h e neu ra l ne twork 

There are a great many techniques being developed in the field of neural networks 

which may be applicable to this field of research. It is important that the subject area 

be fully understood before applying any new method, to ensure that it is suitable to 

the problem. The research presented here has highlighted a number of areas in which 

the current feed-forward/back-propagation method could be developed. For example, 

it was thought that the final networks did not achieve a global error minimum. Future 

studies could simply train the network for longer, or utilise parameter optimisation 

algorithms other than the gradient descent algorithm used here. 

Another issue raised in this research is the noise level of the data. It was considered 

possible that the noise in the data improved the generalisation during training. Pro-

viding noise explicitly in the input has been suggested (Sietsma and Dow 1991; Bishop 

1995) and certainly could prove useful in this case. The explicit addition of noise in 

the input would therefore allow the information value of bands selected by the feature 

selection to be better investigated. 
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A number of neural networks were trained in this research. Although some were found 

to give better predictions than others, all the networks trained in the secondary study 

predicted to within a reasonable accuracy. Rather than selecting the best neural net-

work to predict chlorophyll a concentration in a future study, it may be expedient to 

combine the 'expertise' of all the networks in a committee of networks (Bishop 1995). 

Such a network has as inputs the predictions from several other networks. In this way 

the curse of dimensionality is avoided because each network only deals with a small 

amount of data. The accuracy of prediction may also be increased and furthermore the 

resulting network may predict chlorophyll a concentration in new data with greater 

accuracy. This technique may be applied to feature selection such that all the available 

image bands may be selected from. 

It is beyond the scope of this research to investigate the many different neural net-

work techniques that may be of use in producing chlorophyll a prediction algorithms. 

However, the basic techniques demonstrated here have shown a great deal of potential. 

This indicates that there is value in exploring further the new developments in the field 

of neural networks. 

8.3 Conclusions 

The approach taken in the research presented here is highly analytical. All aspects 

of the regression of chlorophyll a on spectral data have been investigated thoroughly. 

This includes the quality of the data, the linearity and complexity of the models used 

and the causes of error. Performing such a complete examination of the regression has 

not previously been undertaken in the held of ocean colour. Furthermore, applying 

the two automatic methods of feature selection is a new approach to the problem of 

designing robust models for the prediction of chlorophyll a. The method by which 

neural networks were employed to investigate the nature of the chlorophyll o-spectra 

relationship is original in remote sensing as a whole. Prior to this research, the data 

used with neural networks has not been typical of that used by bodies interested in 
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detecting chlorophyll a in Caae 2 waters. However, this research uses a very typical set 

of data. 

Not only were these techniques entirely novel, but they have enabled a valuable con-

tribution to the knowledge in the field of ocean colour. The following pages summarise 

these findings according to the aims of this investigation into the ^0/05/^^ 

data. 

1. The separability of the chlorophyll a spectral signature in the presence of other 

environmental factors and sensor noise 

• The spectral signal from chlorophyll a may be separated from those of the 

atmosphere, suspended sediment and CDOM 

• However it was apparent that the signal could not fully be separated using 

a linear technique 

2. The severity of the contaminating signals and noise 

• Other environmental factors and sensor noise have a much stronger influence 

on the detected spectral signal than does chlorophyll a 

• One spectral feature is not adequate to characterise the change in chloro-

phyll a under these circumstances 

3. The applicability of neural networks to predicting chlorophyll a concentrations 

from spectra contaminated by other environmental factors and sensor noise 

« Neural networks provide a convenient method by which non-linear multiple 

regression may be achieved 

® All stages of the training of neural-networks provide useful information 

about the nature of the chlorophyll o-spectra relationship 

4. A comparison of linear regression and neural network regression techniques 

• Neural networks almost always outperformed linear regression models 
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# The neural network was, however, more time-consuming to train 

# The neural network tended to require fewer bands to produce a better pre-

diction model 

e The multiple linear regression models tended to be more strongly affected 

by environmental factors whereas the neural network models tended to be 

more strongly affected by the data set used for training 

5. The nature of the relationship between chlorophyll a and different regions of the 

spectrum 

# FLH has a linear relationship to chlorophyll a 

# The blue region of the spectrum is noisy and has a non-linear relationship 

to chlorophyll a 

® Other regions of the spectrum did not show a strong non-linear relationship 

to chlorophyll a but by the increase in performance with fewer bands, it was 

inferred that some extra information was available to the non-linear models 

from throughout the spectrum 

6. The identification of the most appropriate spectral regions for the prediction of 

chlorophyll a concentration 

# Where possible, a selection of features that is based on the goodness of 

prediction using those features should be used to highlight useful features 

in the data that may not be uncovered by conventional methods 

# Features with a linear relationship to chlorophyll a such as FLH are useful 

for linear regression-derived models 

# The blue spectral region contains a lot of information about chlorophyll o 

concentration but is only useful if a non-linear model that is robust to noise 

may be derived 

7. Other 6ndings 

# It is important to use the most suitable features for the type of prediction 

model to be used 
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# The use of several types of model assessment techniques (qualitative and 

quantitative) is desirable to gain a full understanding of the performance of 

chlorophyll a prediction models and sources of error 

The techniques and results presented here have shown that reliable chlorophyll a pre-

diction algorithms can be developed even for regions previously thought to be too 

contaminated by other spectral signatures. 



Appendix A 

The CASI enhanced spectral 
handset 

Band Lower limit (Mm) Centre (yim) Upper limit (nm) Width (nm) 

1 401.6 405.7 409.8 8.2 

2 408.6 412.7 416.8 8.2 

3 415.6 419.7 423.8 8.2 

4 422.6 426.7 430.8 8.2 

5 429.7 433.8 437.9 8.2 

6 436.7 440.8 444.9 8.2 

7 443.7 447.8 451.9 8.2 

8 450.8 454.9 459 8.2 

9 457.8 461.9 466 8.2 

10 464.9 469 473.1 8.2 

11 471.9 476 480.1 8.2 

12 479 483.1 487.2 8.2 

13 486 490.1 494.2 8.2 

14 493.1 497.2 501.3 8.2 

15 500.1 504.3 508.5 8.4 

16 507.1 511.3 515.5 8.4 

17 514.2 518.4 522.6 8.4 

continued on next page 



continued from previous page 

Band Lower Limit (nm) Centre (nm) Upper Limit (nm) Width (fim) 

18 521.3 525.5 529.7 8.4 

19 528.3 532.5 536.7 8.4 

20 535.4 539.6 543.8 8.4 

21 542.5 546.7 550.9 8.4 

22 549.6 553.8 558 8.4 

23 556.7 560.9 565.1 8.4 

24 563.8 568 572.2 8.4 

25 570.9 575.1 579.3 8.4 

26 578 582.2 586.4 8.4 

27 585.1 589.3 593.5 8.4 

28 592.2 596.4 600.6 8.4 

29 599.3 603.5 607.7 8.4 

30 606.5 610.7 614.9 8.4 

31 613.6 617.8 622 8.4 

32 620.7 624.9 629.1 8.4 

33 627.9 632.1 636.3 8.4 

34 635 639.2 643.4 8.4 

35 642.1 646.3 650.5 8.4 

36 649.3 653.5 657.7 8.4 

37 656.4 660.6 664.8 8.4 

38 663.6 667.8 672 8.4 

39 670.7 674.9 679.1 8.4 

40 677.9 682.1 686.3 8.4 

41 685.1 689.3 693.5 8.4 

42 692.2 696.4 700.6 8.4 

43 699.4 703.6 707.8 8.4 

44 706.6 710.8 715 8.4 

45 713.8 718 722.2 8.4 

continued on next page 
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Band Lower Limit (nm) Centre (nm) Upper Limit (»m) Width (nm) 

46 720.9 725.1 729.3 8.4 

47 728.1 732.3 736.5 8.4 

48 735.3 739.5 743.7 8.4 

49 742.5 746.7 750.9 8.4 

50 749.7 753.9 758.1 8.4 

51 756.9 761.1 765.3 8.4 

52 764.1 768.3 772.5 8.4 

53 771.3 775.5 779.7 8.4 

54 778.6 782.8 787 8.4 

55 785.8 790 794.2 8.4 

56 793 797.2 801.4 8.4 

57 800.2 804.4 808.6 8.4 

58 807.5 811.7 815.9 8.4 

59 814.7 818.9 823.1 8.4 

60 822 826.2 830.4 8.4 

61 829.2 833.4 837.6 8.4 

62 836.5 840.7 844.9 8.4 

63 843.7 847.9 852.1 8.4 

64 851 855.2 859.4 8.4 

65 858.3 862.5 866.7 8.4 

66 865.5 869.7 873.9 8.4 

67 872.8 877 881.2 8.4 

68 880.1 884.3 888.5 8.4 

69 887.4 891.6 895.8 8.4 

70 894.7 898.9 903.1 8.4 

71 902 906.2 910.4 8.4 

72 909.3 913.5 917.7 8.4 



Appendix B 

Calculating the tidal motion of the 
sampled parcels of water 

>> % TIME: 
>> time = [1000 1100 1200 1300 1400 1500 1600 1700 1800]'; 
» 

» % SPEED IN KNOTS: 
>> speed = [1.5 1.4 1.1 0.6 0.0 0.9 1.6 1.9 1.6 ]'; 
» 

>> % DIRECTION FROM NORTH = 0: 
>> dirn = [285 285 270 270 270 105 105 105 105 ]'; 
» 

» % SPEED IN M/S: 
» speedms = speed*0.514; 
» 
>> % CONVERSION TO RADIANS: 
» c = asin(0.5)/30; 
» dime = dirn*c; 
» 
>> % DISTANCE EAST PER SECOND: 
» E = speedms.*sin(dirnc); 
» 
>> % DISTANCE NORTH PER SECOND: 
>> N = speedms.*cos(dime); 
» 
>> % SECONDS IN AN HOUR: 
» hour = 3600; 
» 
>> % SECONDS IN A MINUTE: 
» min = 60; 
» 



>> % HIGH WATER WAS AT 0849 HOURS: 
» HW = 8*hour + 49*min; 
» 
>> % INITIATE MATRIX OF VELOCITIES OF THE CHLOROPHYLL SAMPLES: 
>> ChlVel = zeros(2300,2); 
» 
>> % INITIATE MATRIX OF VELOCITIES OF THE SPECTRAL SAMPLES: 
» SpecVel = zeros(2300,2); 
» 
» % INITIATE MATRIX OF DIFFERENCE IN VELOCITIES BETWEEN 
>> % CHLOROPHYLL AND SPECTRAL SAMPLES 
>> VelDiff = zeros(2300,2); 
» 
>> % PRODUCE MATRICES OF VELOCITIES BETWEEN SAMPLINGS: 
» for i = 1:2300 
Cindex = round ((C]ilTime(i)-HW)/hour)-1; 
Sindex = round((SpecTime(i)-HW)/hour)-1; 
ChlVel(i,:) = [E(Cindex),N(Cindex)]; 
SpecVeKi,:) = [E(Sindex) ,N(Sindex)] ; 

% 
% DETERMINE WHICH SAMPLES WERE THE FIRST AND LAST AT EACH 
% DATA POINT: 
start = min([ChlTime(i),SpecTime(i)]); 
stop = max(CChlTime(i),SpecTime(i)]); 

% 
% FOR EACH SECOND, CALCULATE THE RELATIVE MOTION OF THE 
% SAMPLED PARCELS OF WATER 
for s = start:stop 
VelDiff(i,l) = VelDiff(i,l) + E(round((s-HW)/hour)-l); 
VelDiff(i,2) = VelDiff(i,2) + N(round((s-HW)/hour)-1); 
end 
end 
» 

>> % THE DISTANCE BETWEEN THE LOCATIONS OF THE SAMPLED 
>> % PARCELS OF WATER AT THE TIME OF THE SECOND MEASUREMENT 
>> DistDiff = sqrt(VelDiff(:,l).-2 + VelDiff(:,2)."2); 



Appendix C 

The output of the multiple linear 
regression feature selection method 

The following pages show the output from the multiple linear regression feature selec-

tion method described in chapter 5. Each table gives the results for one run of the 

function. 



Table C.l: Explanation of headings of tables C.2-D.9 

table value meaning 

number of inputs 
the number of inputs being included in 
the current configuration 

number of hidden nodes 
the number of hidden nodes being in-
cluded in the current configuration 

number of weights 
the number of weights being included 
in the current configuration (current 
value/previous value) 

mean squared error 
the error after the current band/hidden 
node has been rejected 

numerator degrees of free-
dom 

= the difference between the degrees of 
freedom for the full and reduced model used to 

denominator degrees of free-
dom 

L 

= the degrees of freedom for the full 
model (current value/previous value) 

The test statistic 

calcu-
late L 
and Fa 

Fa 
Value from the f-distribution corre-
sponding to a significance level of 95 % 

accept or reject? 
Did the statistic determine to accept or 
reject the reduced configuration? 

rejected band 
If the statistic determine that the re-
duced input configuration should be ac-
cepted, which band had been removed? 

double lines indicate the final chosen configuration 

remaining bands The bands left in the final configuration 

Table C.2: Results of multiple linear regression feature selection for subset A 
number 
of 
inputs 

mean 
squared 
error 

numerator 
degrees of 
freedom 

denominator 
degrees of 
freedom 

L F 
accept 
or 
reject? 

rejected 
band 

8 
8 

7.8582 
8.3069 1 191 10.9057 3.92 reject 37 

remaining bands = 1, 10, 19, 28, 37, 46, 55, 64 



Table C.3: Results of multiple linear regression feature selection for subset B 
number mean numerator denominator accept rejected 
of squared degrees of degrees of L F or band 
inputs error freedom freedom reject? 
8 10.0222 
7 9.2138 1 191 -15.4058 3.92 accept 2 
6 8.2862 1 192 -19.3302 3.92 accept 47 
6 9.0222 1 193 17.1433 3.92 reject 56 
remaining bands = 11, 20, 29, 38, 56, 65 

Table C.4; Resu ts of multiple linear regression feature selection for subset C 
number mean numerator denominator accept rejected 
of squared degrees of degrees of L F or band 
inputs error freedom freedom reject? 
8 10.3042 
7 8^W11 1 191 -33^927 3.92 accept 3 
6 8.0964 1 192 -8.7102 3.92 accept 48 
6 8^-006 1 193 14.405 3.92 reject 57 
remaining bands = 12, 21, 30, 39, 57, 66 

Table C.5: Resu ts of multiple linear regression feature selection for subset D 
number mean numerator denominator accept rejected 
of squared degrees of degrees of L F or band 
inputs error freedom freedom reject? 

8 15.4476 
7 14.4094 1 191 -12.8366 3.92 accept 4 
6 12.002 1 192 -32.0786 3.92 accept 58 
5 12.054 1 193 0.83641 3.92 accept 40 
5 13.427 1 194 22.0979 3.92 reject 67 
remaining bands = 13 ,22 ,31 , ' 19,67 



Table C.6: Results of multiple linear regression feature selection for subset E 
number mean numerator denominator accept rejected 
of squared degrees of degrees of L F or band 
inputs error freedom freedom reject? 

8 13.4522 
7 12.1312 1 191 -18.7562 3.92 accept 59 
6 11.5614 1 192 -9.0185 3.92 accept 23 
5 11.6565 1 193 1.5879 3.92 accept 32 
4 11.8353 1 194 2.9759 3.92 accept 68 
4 14.6441 1 195 46.2774 3.92 reject 50 
remaining bands = 5, 14, 41, 50 

Table C.7: Results of multiple linear regression feature selection for subset F 
number mean numerator denominator accept rejected 
of squared degrees of degrees of L F or band 
inputs error freedom freedom reject? 

8 10.7614 
7 9.6848 1 191 -19.1077 3.92 accept 24 
6 8.965 1 192 -14.27 3.92 accept 60 
5 8.9355 1 193 -0.63682 3.92 accept 69 
4 8.8472 1 194 -1.9153 3.92 accept 15 
4 15.7375 1 195 151.867 3.92 reject 6 
remaining bands = 6, 33, 42, 5!. 

Table C.8: Results of multiple linear regression feature selection for subset G 
number mean numerator denominator accept rejected 
of squared degrees of degrees of L F or band 
inputs error freedom freedom reject? 

8 12.1074 
7 10.0241 1 191 -32.8652 3.92 accept 16 
6 9.8354 1 192 -3.6139 3.92 accept 61 
5 9.8813 1 193 0.89999 3.92 accept 25 
5 11.2105 1 194 26.0969 3.92 reject 70 
remaining bands = 7, 34, 43, 52, 70 



Table C.9: Results of multiple linear regression feature selection for subset H 
number mean numerator denominator accept rejected 
of squared degrees of degrees of L F or band 
inputs error freedom freedom reject? 
8 10.3819 
7 10.39 1 191 0.14937 3.92 accept 62 
6 10.4044 1 192 0.26587 3.92 accept 71 
6 11.4719 1 193 19.8018 3.92 reject 26 
remaining bands = 8, 17, 26, 35, 44, 53 

Table C.IO: Results of multiple linear regression feature selection for subset I 
number mean numerator denominator accept rejected 
of squared degrees of degrees of L F or band 
inputs error freedom freedom reject? 

8 14.1003 
7 14.1033 1 191 0.040584 3.92 accept 36 
6 13.9915 1 192 -1.5225 3.92 accept 27 
5 13.0093 1 193 -13.5487 3.92 accept 63 
5 1&34 1 194 4.9321 3.92 reject 72 
remaining bands = 9, 18, 45, 54, 72 



Table C.ll: Results of multiple linear regression feature selection of all available bands 

number mean numerator denominator accept rejected 
of squared degrees of degrees of L F or band 

inputs error freedom freedom reject? 

72 18.8939 
71 8.5934 1 127 -69.2372 3.92 accept 33 
70 5.0387 1 128 -52.9487 3.92 accept 61 
69 4.3718 1 129 -17.0734 3.92 accept 49 
68 3.6299 1 130 -22.0597 3.92 accept 72 
67 3.0919 1 131 -19.4165 3.92 accept 2 

66 2.9112 1 132 -7.7139 3.92 accept 9 

65 2.7403 1 133 -7.8082 3.92 accept 41 

64 2.6087 1 134 -6.4338 3.92 accept 12 
63 2.5582 1 135 -2.6153 3.92 accept 47 
62 2.4719 1 136 -4.5865 3.92 accept 70 
61 2.357 1 137 -6.3674 3.92 accept 21 

60 2.2725 1 138 -4.9489 3.92 accept 60 
59 2.2634 1 139 -0.55633 3.92 accept 32 
58 2.2571 1 140 -0.3907 3.92 accept 20 
57 2.2467 1 141 -0.64909 3.92 accept 71 

56 2.0794 1 142 -10.573 3.92 accept 3 

55 1.856 1 143 -15.3637 3.92 accept 50 

54 1.7883 1 144 -5.254 3.92 accept 69 
53 1.7363 1 145 -4.2189 3.92 accept 30 
52 1.7158 1 146 -1.7193 3.92 accept 31 

51 1.7031 1 147 -1.0886 3.92 accept 25 
50 1.704 1 148 0.080471 3.92 accept 42 
49 1.6908 1 149 -1.1546 3.92 accept 7 

48 1.6976 1 150 0.60398 3.92 accept 46 
47 1.7012 1 151 0.31953 3.92 accept 4 

46 1.7085 1 152 0.64912 3.92 accept 5 

45 1.6677 1 153 -3.6575 3.92 accept 8 

44 1.6828 1 154 1.3977 3.92 accept 37 

43 1.6918 1 155 0.82722 3.92 accept 68 
42 1.6778 1 156 -1.2858 3.92 accept 17 

41 1.6783 1 157 0.040629 3.92 accept 36 
40 1.6879 1 158 0.90951 3.92 accept 22 
39 1.701 1 159 1.2296 3.92 accept 55 

38 1.7276 1 160 &5052 3.92 accept 13 

37 1.7598 1 161 2.9995 3.92 accept 10 

36 1.7014 1 162 -5.3748 3.92 accept 56 
35 1.6401 1 163 -5.8726 3.92 accept 53 
34 1.6493 1 164 0.92307 3.92 accept 48 
34 1.7029 1 165 5.354 3.92 rqect 23 
remaining bands = 1, 6, 11, 14, 15, 16, 18, 19, 23, 24, 26, 27, 28 , 29, 34, 
35, 38, 39, 40, 43, 44, 45, 51, 52 , 54 ,57 ,58 ,59 , 62,63,64 , 65, 6 6, 67 



Appendix D 

The output of the neural network 
feature selection method 

The following pages show the output from the neural network feature and model se-

lection function described in chapter 5. Each table gives the results for one run of the 

function. See table C.l for an explanation of the headings for these tables. 



Table D.l: Results of neural network feature selection for band subset A 
number number number mean numerator denominator accept rejected 
of of hidden of squared degrees of degrees of L Fa or band 
inputs nodes weights error freedom freedom reject? 

8 18 181 &06 
8 17 171/181 0.058 10 29/19 -0.065 2.38 accept 
8 16 161/171 0.057 10 39/29 -0.072 2.18 accept 
7 16 145/161 0.052 16 55/39 -0T93 1.84 accept 64 
7 15 136/145 0.05 9 64/55 -0.23 2.04 accept 
6 15 121/136 0.049 15 79/64 -0.08 1.75 accept 46 
6 14 113/121 0.049 8 87/79 -0.136 2.02 accept 
5 14 99/113 0.044 14 101/87 -0.603 1.75 accept 37 
5 13 92/99 0.051 7 108/101 2.387 2.09 reject 
4 14 85/99 0.063 14 1 115/101 3.06 1.75 reject 
remaining bands = 1, 10, 19, 28, 55 



Table D.2: Resu ts of neural network feature selection for banc subset B 
number number number mean numerator denominator accept rejected 
of of hidden of squared degrees of degrees of L Fa or band 
inputs nodes weights error freedom freedom rqed^ 
8 18 181 0.057 
8 17 171/181 0.051 10 29/19 -0.209 2.38 accept 
8 16 161/171 0.049 10 39/29 -0.066 218 accept 
7 16 145/161 0.046 16 55/39 -0171 1.84 accept 65 
7 15 136/145 0.046 9 64/55 0.044 2.04 accept 
6 15 121/136 0.046 15 79/64 -0.042 L75 accept 11 
6 14 113/121 0.051 8 87/79 1.045 2.02 accept 
5 14 99/113 0.04 14 101/87 -1.269 1.75 accept 56 
5 13 92/99 0.043 7 108/101 0.982 2.09 accept 
4 13 79/92 0.04 13 121/108 -0.601 1.75 accept 47 
4 12 73/79 0.041 6 127/121 0.434 2.1 accept 
3 12 61/73 0.041 12 139/127 0.149 1.75 accept 38 
3 11 56/61 0.04 5 144/139 -1.177 2.21 accept 
2 11 45/56 0.071 11 155/144 10.436 1.75 Deject 
3 10 51/56 0.04 5 149/144 -0.014 2.21 accept 
2 10 41/51 0.063 10 159/149 8.935 1.83 n%ect 
3 9 46/51 0.043 5 154/149 2.761 2.21 rî ject 
2 10 41/51 0.071 10 159/149 11.611 L83 n%ect 
remaining bands = 2, 20, 29 



Table D.3: Resu ts of neural network feature selection for banc subset C 
number number number mean numerator denominator accept rejected 
of of hidden of squared degrees of degrees of L Fa or band 
inputs nodes weights error freedom freedom reject? 

8 18 181 0.058 
8 17 171/181 0.054 10 29/19 -&128 2.38 accept 
8 16 161/171 0.061 10 39/29 0.384 2.18 accept 
7 16 145/161 0.04 16 55/39 -0.824 1.84 accept 66 
7 15 136/145 0.044 9 64/55 0.528 2.04 accept 
6 15 121/136 0.043 15 79/64 -&04 1.75 accept 48 
6 14 113/121 0.043 8 87/79 0.035 2.02 accept 
5 14 99/113 0.048 14 101/87 0.718 1.75 accept 57 
5 13 92/99 0.048 7 108/101 -&132 2.09 accept 
4 13 79/92 0.047 13 121/108 -&123 1.75 accept 12 
4 12 73/79 0.051 6 127/121 1.72 2.1 accept 
3 12 61/73 0.05 12 139/127 -0.225 1.75 accept 39 
3 11 56/61 0.053 5 144/139 1.768 2.21 accept 
2 11 45/56 0.092 11 155/144 9.341 1.75 reject 
3 10 51/56 0.04 5 149/144 -6.99 2.21 accept 
2 10 41/51 0.093 10 159/149 19.434 1.83 n%ect 
3 9 46/51 0.058 5 154/149 13.073 2.21 reject 
2 10 41/51 0.092 10 159/149 19.022 L83 rî ject 
remaining bands = 3, 21, 30 



Table D.4: Resu ts of neural network feature selection for banc . subset D 
number number number mean numerator denominator accept rejected 
of of hidden of squared degrees of degrees of L Fa or band 
inputs nodes weights error freedom freedom reject? 
8 18 181 0.1 
8 17 171/181 0.083 10 29/19 -0.321 2.38 accept 
8 16 161/171 0.092 10 39/29 0.314 2.18 accept 
7 16 145/161 0.075 16 55/39 -0.445 1.84 accept 31 
7 15 136/145 0.076 9 64/55 0.004 2.04 accept 
6 15 121/136 0.065 15 79/64 -0.566 1.75 accept 67 
6 14 113/121 0.064 8 87/79 -0.166 2.02 accept 
5 14 99/113 0.065 14 101/87 0.037 1.75 accept 13 
5 13 92/99 0.075 7 108/101 2.256 2.09 reject 
4 14 85/99 0.067 14 115/101 0.276 1.75 accept 58 
4 13 79/85 0.069 6 121/115 0.409 2.17 accept 
3 13 66/79 0.069 13 134/121 -0.01 1.67 accept 22 
3 12 61/66 0.08 5 139/134 4.582 2.21 reject 
2 13 53/66 0.133 13 147/134 9.638 1.67 reject 
remaining bands = 4, 40, 49 



Table D.5: R.esn ts of neural network feature selection for banc subset E 
number number number inean numerator denominator accept rejected 
of of hidden of squared degrees of degrees of L Fa or band 
inputs nodes weights error freedom freedom reject? 
8 18 181 0.069 
8 17 171/181 0.064 10 29/19 -&143 2.38 accept 
8 16 161/171 0.077 10 39/29 0.613 &18 accept 
7 16 145/161 0.063 16 55/39 -0.452 1.84 accept 32 
7 15 136/145 0.071 9 64/55 OU'65 2.04 accept 
6 15 121/136 0.06 15 79/64 -0.614 L75 accept 68 
6 14 113/121 0.056 8 87/79 -0.681 2.02 accept 
5 14 99/113 0.061 14 101/87 0.497 1.75 accept 14 
5 13 92/99 0.065 7 108/101 1.087 2.09 accept 
4 13 79/92 0.071 13 121/108 0.656 1.75 accept 50 
4 12 73/79 0.076 6 127/121 1.566 2.1 accept 
3 12 61/73 0.102 12 139/127 3.677 1.75 reject 
4 11 67/73 0.072 6 133/127 -L215 2.1 accept 
3 11 56/67 0.109 11 144/133 6.265 1.75 reject 
4 10 61/67 0.071 6 139/133 -&191 2.1 accept 
3 10 51/61 0.096 10 149/139 4.807 1.83 reject 
4 9 55/61 0.077 6 145/139 1.919 2.1 accept 
3 9 46/55 0.094 9 154/145 3.492 1.88 reject 
4 8 49/55 0.074 6 151/145 -0j#4 2.1 accept 
3 8 41/49 0.102 8 159/151 7.209 1.94 reject 
4 7 43/49 0.075 6 157/151 0.279 2.1 accept 
3 7 36/43 0.092 7 164/157 5.054 2.01 reject 
4 6 37/43 0.067 6 163/157 -2.848 2.1 accept 
3 6 31/37 0.094 6 169/163 10.957 2.1 reject 
4 5 31/37 0.079 6 169/163 5.161 2.1 nyect 
3 6 31/37 0.086 6 169/163 7.92 2.1 reject 
remaining bands = 5, 23, 41, 59 



Table D.6: Results of neural network feature selection for band subset F 
number number number mean numerator denominator accept rejected 
of of hidden of squared degrees of degrees of L Fa or band 
inputs nodes weights error freedom freedom reject? 

8 18 181 0.095 
8 17 171/181 0.087 10 29/19 -&157 2.38 accept 
8 16 161/171 0.084 10 39/29 -0.089 218 accept 
7 16 145/161 0.077 16 55/39 -0.224 1.84 accept 69 
7 15 136/145 0.064 9 64/55 -0.994 2.04 accept 
6 15 121/136 0.066 15 79/64 0J4 1.75 accept 24 
6 14 113/121 0.063 8 87/79 -0.495 2.02 accept 
5 14 99/113 0.068 14 101/87 0U166 1.75 accept 15 
5 13 92/99 0.069 7 108/101 0.374 2.09 accept 
4 13 79/92 0.066 13 121/108 -&378 1.75 accept 51 
4 12 73/79 0.077 6 127/121 3.167 2.1 n%ect 
3 13 66/79 0.1 13 134/121 4.738 1 L67 reject 
remaining bands = 6, 33, 42, 60 



Table D.7: R.esu ts of neural network feature selection for banc subset G 
number number number mean numerator denominator accept rejected 
of of hidden of squared degrees of degrees of L Fa or band 
inputs nodes weights error freedom freedom reject? 
8 18 181 0.104 
8 17 171/181 0.102 10 29/19 -0.038 2.38 accept 
8 16 161/171 0.109 10 39/29 0.177 2.18 accept 
7 16 145/161 0.092 16 55/39 -0.367 1.84 accept 16 
7 15 136/145 0.098 9 64/55 0.349 2.04 accept 
6 15 121/136 0.086 15 79/64 -0.524 1.75 accept 34 
6 14 113/121 0.092 8 87/79 0.771 2.02 accept 
5 14 99/113 0.081 14 101/87 -0.726 1.75 accept 52 
5 13 92/99 0.097 7 108/101 2.707 2.09 reject 
4 14 85/99 0.087 14 115/101 0.52 1.75 accept 70 
4 13 79/85 0.088 6 121/115 0.109 2.17 accept 
3 13 66/79 0.126 13 134/121 4.067 1.67 reject 
4 12 73/79 0.084 6 127/121 -0.809 2.1 accept 
3 12 61/73 0.136 12 139/127 6.449 1.75 reject 
4 11 67/73 0.089 6 133/127 1.104 2.1 accept 
3 11 56/67 0.125 11 144/133 4.918 1.75 reject 
4 10 61/67 0.086 6 139/133 -0.649 2.1 accept 
3 10 51/61 0.119 10 149/139 5.366 1.83 reject 
4 9 55/61 0.094 6 145/139 2.077 2.1 accept 
3 9 46/55 0.124 9 154/145 5.253 1.88 reject 
4 8 49/55 0.089 6 151/145 -1.33 2.1 accept 
3 8 41/49 0.127 8 159/151 8.105 1.94 reject 
4 7 43/49 0.095 6 157/151 1.768 2.1 accept 
3 7 36/43 0.13 7 164/157 8.21 2.01 reject 
4 6 37/43 0.11 6 163/157 4.053 2.1 reject 
3 7 36/43 0.122 7 164/157 6.361 2.01 reject 
remaining bands = 7, 25, 43, 61 



Table D.8: Resu ts of neural network feature selection for banc subset H 
number number number mean numerator denominator accept rejected 
of of hidden of squared degrees of degrees of L Fa or band 
inputs nodes weights error freedom freedom reject? 

8 18 181 0.118 
8 17 171/181 0.112 10 29/19 -0.099 2.38 accept 
8 16 161/171 0.113 10 39/29 0.033 2.18 accept 
7 16 145/161 0.11 16 55/39 -0.067 1.84 accept 71 
7 15 136/145 0.1 9 64/55 -0.547 2.04 accept 
6 15 121/136 0.104 15 79/64 0.158 1.75 accept 17 
6 14 113/121 0.098 8 87/79 -0.509 2.02 accept 
5 14 99/113 0.077 14 101/87 -1.356 1.75 accept 26 
5 13 92/99 0.078 7 108/101 0.214 2.09 accept 
4 13 79/92 0.073 13 121/108 -0.483 1.75 accept 62 
4 12 73/79 0.081 6 127/121 2.173 2.1 reject 
3 13 66/79 0.121 13 134/121 6.079 1.67 reject 
remaining bands = 8, 35, 44, 53 



Table D.9: Results of neural network feature selection for band subset I 
number number number mean numerator denominator accept rejected 
of of hidden of squared degrees of degrees of L or band 
inputs nod^ weights error freedom freedom reject? 
8 18 181 0.065 
8 17 171/181 0.060 10 29/19 -&138 2.380 accept 
8 16 161/171 0.065 10 39/29 0.268 Z180 accept 
7 16 145/161 0.056 16 55/39 -0.341 1.840 accept 36 
7 15 136/145 0.067 9 64/55 1.165 2.040 accept 
6 15 121/136 0.056 15 79/64 -0.687 L750 accept 45 
6 14 113/121 0.062 8 87/79 1.019 2.020 accept 
5 14 99/113 0.055 14 101/87 -0.665 1.750 accept 18 
5 13 92/99 0.057 7 108/101 0.323 2.090 accept 
4 13 79/92 0.053 13 121/108 -&470 1.750 accept 63 
4 12 73/79 0.053 6 127/121 -0.230 2.100 accept 
3 12 61/73 0.062 12 139/127 1.893 1.750 reject 
4 11 67/73 0.050 6 133/127 -0.962 2J^0 accept 
3 11 56/67 0.062 11 144/133 2.830 1.750 reject 
4 10 61/67 0.054 6 139/133 1.623 2.100 accept 
3 10 51/61 0.064 10 149/139 2.574 1.830 reject 
4 9 55/61 0.052 6 145/139 -0.925 2.100 accept 
3 9 46/55 0.063 9 154/145 3.394 1.880 reject 
4 8 49/55 0.049 6 151/145 -1.392 2.100 accept 
3 8 41/49 0.064 8 159/151 5.801 1.940 reject 
4 7 43/49 0.053 6 157/151 2.159 2.100 reject 
3 8 41/49 0.063 8 159/151 5.288 1.940 reject 
remaining bands = 9, 27, 54, 72 
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ing of chlorophyll, pp. 365-370. Volume 13 of Gower (1981). 

Quibell, G, 1991. The effect of suspended sediment on reflectance from freshwater 

algae. Jot/maZ 12(1), 177-182. 

Rast, M, L Bezy, and S Bruzzi, 1999. The ESA Medium Resolution Imaging Spec-

trometer MERIS - a review of the instrument and its mission. International 

JoumaZ 20(9), 1681-1702. 

Reinerman, P. N and K. L Carder, 1995. Monte Carlo simulation of the atmospheric 

point-spread function with an application to correction for the adjacency effect. 



34(21), 4453-4471. 

Richards, J. A, 1995. TZemok aengmp image onoZg/aig. 4̂% m(roduc(%on. (Sec-

ond ed.). Springer-Verlag. 

Roger, R. E, 1996. Principal Components transform with simple, automatic noise 

adjustment. /n(ema(wMaZ JourMdZ o/.Remote 5'engmg 17(14), 2719-2727. 

Rumelhart, D. E, G. E Hinton, and R. J Williams, 1986. Learning representations 

by back-propogating errors. Nature 323, 533-536. 

Rumelhart, D. E and J. L McClelland (Eds.), 1986. foroZ^e^ d%a(n6u(ed proceggmg; 

Explorations in the micro structure of cognition, Volume 1: Foundations. MIT 

Press. 

Rundquist, D. C, L Han, J. F Schalles, and J. S Peake, 1996. Remote measurement of 

algal chlorophyll in surface waters: The case for the Erst derivative of reSectance 

near 690 nm. Photogrammetric Engineering and Remote Sensing 62(2), 195-200. 

Sager, G and R Sammler, 1968. der Gezez^enaWme/wr dze TVorckee, den TTonoZ 

and die Irische See. Seehydrographischer Dienst der DDR. (summarised in Barne 

et al. 1995). 

Sathyendranath, S, L Prieur, and A Morel, 1989. A three-component model of ocean 

colour and its application to remote sensing of phytoplankton pigments in coastal 

waters. International Journal of Remote Sensing 10, 1373-1394. 

Schaepman, M, D Schlapfer, and K. I Itten (Eds.), 1998. Proceedings of the First 

EARSel Workshop on Imaging Spectroscopy. European Association of Remote 

Sensing Laboratories. 

Schiller, H and R Doerffer, 1999. Neural network for emulation of an inverse model 

- operational derivation of Case II water properties from MERIS data, 

(zonoZ JoumaZ o/7Zemofe 20(9), 1735-1746. 

SCOR-Unesco, 1966. Determination of photosynthetic pigments in sea-water. Mono-

graphs on oceanographic methodology 1, SCOR-Unesco. 

Sietsma, J and R. J. F Dow, 1991. Creating artificial nerual networks that generalize. 

TVewro/ #e(worA;5 4, 67-79. 



Singh, A and A Harrison, 1985. Standardised principal components. 

Jouma/ o/.Remote 5'enam^ 6(6), 883-896. 

Singh, R. P, C Olbert, C Lindermann, M Schaale, and R Furrer, 1997. Atmospheric 

monitoring with a spectrographic imager. JourmoZ o/ Aemo(e 5'eM5-

mp 18(5), 1183-1188. 

Smetacek, V, U Bathmann, E.-M Nothig, and R Scharek, 1991. Coastal eutrophica-

(zon; Cauaes congegwences, pp. 251-279. In Mantoura, Meirtin, and Wollagt 

(1991). 

Steele, J. H and T. W Henderson, 1979. Spatial patterns in North Sea plankton. 

Deep Sea Research 26A, 955-963. 

Steppe, J. M, K. W Bauer, and S. K Rogers, 1996. Intergrated feature and architec-

ture selection. IEEE Transactions on Neural Networks 7(4), 1007-1014. 

Strut ton, P. G, J. G Mitchell, and J. S Parslow, 1996. Non-linear analysis of chloro-

phyll a transects as a method of quantifying spatial structure. Journal of Plankton 

18(9), 1717-1726. 

Strutton, P. G, J. G Mitchell, and J. S Parslow, 1997. Using non-linear analysis 

to compare the spatial structure of chlorophyll with passive tracers. Journal of 

Plankton Research 19(10), 1553-1564. 

Sturm, B, 1981. Oceon coZour remote sengmp oncf o/ guz/ace 

chlorophyll in coastal waters using Nimbus CZCS data, pp. 267-279. Volume 13 

of Gower (1981). 

Talcott, J. C, 1995. Remotely sensed data as applied in the coastal water predictive 

visibility model. In Environmental Research Institute of Michigan (1995), pp. 

273-285. 

Tanis, F. J and D. V Pozdnyakov, 1995. Evaluation of proposed coastal ocean colour 

algorithms for the retrieval of bio-pigments and suspended sediment in the Great 

Lakes. In Environmental Research Institute of Michigan (1995), pp. 140-150. 

Tassan, S, 1981. TAe m/Zuence o/ lumtf m remote o/ 

560, pp. 371-375. Volume 13 of Gower (1981). 



Tassan, S and M Ribera d'Alcala, 1993. Water quality monitors by Thematic Mapper 

in coastal environments. A performance analysis of local bio-optical algorithms 

and atmospheric correction procedures. .Remote 0/ 45, 

177-191. 

Taylor, J. E and R. C Smith, 1967. Spectroradiometric characteristics of natural 

light under water. Journal of the Optical Society of America 57(5), 595-601. 

Townshend, J. R. G, 1984. Agricultural land-cover discrimination using thematic 

mapper spectral bands. 0/.Remote 5(4), 681-698. 

Warner, T. A and M. C Shank, 1997a. An evaluation of the potential for fuzzy clas-

sification of multispectral data using artificial neural networks. Photogrammetric 

Engineering and Remote Sensing 63(11), 1285-1294. 

Warner, T. A and M. C Shank, 1997b. Spatial autocorrelation analysis of hyperspec-

tral imagery for feature selection. .Remote .̂ enam^ 0/ Enmronment 60, 58-70. 

Warner, T. A, K Steinmaus, and H Foote, 1999. An evaluation of spatial auto-

correlation feature selection. International Journal of Remote Sensing 20(8), 

1601-1616. 

Wernand, M. R, S. J Shimwell, and J. C De Munck, 1997. A simple method of full 

spectrum reconstruction by a five-bands approach for ocean colour applications. 

International Journal of Remote Sensing 18(9), 1977-1986. 

White, H, 1992. Artificial Neural Networks. Approximation and learning theory. 

Blackwell. 

Williams, J. J, J. D Humphery, P. J Hardcastle, and D. J Wilson, 1998. Field 

observations of hydrodynamic conditions and suspended particulate matter in 

the southern North Sea. Continental Shelf Research 18(11), 1215-1233. 

Wollast, R, 1991. TAe cordon cg/cZe." /ZiLcea, ao /̂rcea ond pp. 

365-381. In Mantoura, Martin, and Wollast (1991). 

Wollast, R, 1993. m eatwaneg and coostaZ waterg. Chapter 14. Wiley. 

Wrigley, R. C, R. E Slye, S. A Klooster, R. S Freedman, M Carle, and L. F McGregor, 

1992. The airborne ocean color imager - system description and image- processing. 



Journal of Imaging Science Technology 36(5), 423-430. 

Yentsch, C. S and D. W Menzel, 1963. A method for the determination of phyto-

plankton chlorophyll and phaeophytin by fluorescence. Deep-Sea Research 10, 

221-231. 


