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ABSTRACT 

In order for an electromagnetic transducer to operate well as either a mechanical shunt damper or as 

a vibration energy harvester, it must have good electromechanical coupling. A simple two-port 

analysis is used to derive a non-dimensional measure of electromechanical coupling, which must be 

large compared with unity for efficient operation in both of these applications. The two-port 

parameters for an inertial electromagnetic transducer are derived, from which this non-dimensional 

coupling parameter can be evaluated. The largest value that this parameter takes is approximately 

equal to the square of the magnetic flux density times the length of wire in the field, divided by the 

mechanical damping times the electrical resistance. This parameter is found to be only of order of 

one for laboratory devices that weigh about 1 kg, and so such devices are generally not efficient, 

within the definition used here, in either of these applications. The non-dimensional coupling 

parameter is found to scale in approximate proportion to the device’s characteristic length, however, 

and so although miniaturised devices are less efficient, much greater efficiency can be obtained 

with large devices, such as those used to control civil engineering structures. 

1. INTRODUCTION 

Electromagnetic transducers can be used for either shunt damping [1, 2] or energy harvesting [3, 4]. 

The performance of such a device in both of these applications is analysed here in terms of its two-

port parameters. A single dimensionless parameter is found to govern the efficiency of the device 

when used for either shunt damping or energy harvesting. The scaling of the parameter with the size 

of the transducer is then investigated and the result contrasted with the corresponding result for a 

piezoceramic actuator. 
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Assuming that the moving parts of an electrodynamic actuator all vibrate in phase and that it is 

linear, its response at a single frequency can be completely defined by the two-port network 

equations [5, 6], which may be written as: 

𝑢 = 𝑍𝑒𝑏 𝑖 + 𝑇𝑣 

𝑓 =  −𝑇𝑖 + 𝑍𝑚𝑜 𝑣, 

(1) 

(2) 

where u, i, f and v are the voltage across the device’s terminals, the current through the device, the 

force generated by the device and its velocity. 𝑍𝑒𝑏  is thus the device’s blocked electrical impedance, 

𝑍𝑚𝑜  is its open circuit mechanical impedance and 𝑇 its transduction coefficient, each of which are, 

in general, complex, frequency-dependant parameters. 

Figure 1 shows a block diagram of the transducer, represented in terms of the two-port parameters. 

There are two circuits, representing either the mechanical or electrical responses, each coupled via a 

generator representing the electromechanical coupling. 

When the base of the transducer is fixed and the force acts on the moving mass, an electromagnetic 

actuator can be idealised as on the left hand side of Figure 2. This model is widely used to represent 

the dynamics of shaker mounted on a rigid base, for example. Assuming the mechanical parts move 

as a single degree of freedom system, then the two port parameters for the transducer in this case 

are: 

𝑍𝑒𝑏 = 𝑅𝑒 + 𝑗𝜔𝐿𝑒  , 

𝑍𝑚𝑜 = 𝑗𝜔𝑀 +  
𝐾

𝑗𝜔 
+ 𝑅𝑚  , 

𝑇 = 𝐵𝑙 . 

(3) 

(4) 

(5) 

where 𝑅𝑒  and 𝐿𝑒  are the electrical resistance and inductance of the coil 𝑀, 𝐾 and 𝑅𝑚  are the mass, 

stiffness and mechanical resistance of the moving parts, B is the flux density and l is the length of 

wire moving in the field. The electrical and mechanical variables are assumed to be proportional to 

𝑒𝑗𝜔𝑡  where 𝜔 is the angular excitation frequency. When operated at its natural frequency, 𝜔𝑛 =

  𝐾/𝑀, the open circuit mechanical impedance is equal to 𝑅𝑚  and, since  𝜔𝐿𝑒  is generally much 

less that 𝑅𝑒  at this frequency, 𝑍𝑒𝑏  is approximately equal to 𝑅𝑒 . 

If, however, the electromagnetic transducer is used as an inertial device, so that the force acts on its 

base and the mass vibrates freely, as on the right hand side of Figure 2, the two port parameters can 

then be shown to be: 

𝑍𝑒𝑏 =  𝑅𝑒 + 𝑗𝜔𝐿𝑒 +  
𝑗𝜔 𝐵𝑙 2

𝑗𝜔𝑅𝑚 + 𝐾 − 𝜔2𝑀
  , 

𝑍𝑚𝑜 =  
𝑗𝜔𝑀 (𝐾 + 𝑗𝜔𝑅𝑚 )

𝑗𝜔𝑅𝑚 + 𝐾 − 𝜔2𝑀
  , 

(6) 

 

(7) 
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𝑇 =  
−𝜔2𝑀𝐵𝑙

𝑗𝜔𝑅𝑚 + 𝐾 − 𝜔2𝑀
 . 

(8) 

Figure 3 shows the modulus of these two port parameters, as a function of frequency, for both cases 

with the assumed parameters listed in Table 1. 

If the inertial device is operated above its natural frequency, 𝜔𝑛 , but below the frequency at which 

the inductance becomes important, 𝜔𝑢 =  𝑅𝑒/𝐿𝑒 , then 𝑍𝑒𝑏  is approximately equal to 𝑅𝑒 , 𝑍𝑚𝑜  is 

approximately equal to 𝑅𝑚 and 𝑇 is approximately equal to 𝐵𝑙. These approximations hold for well 

damped devices with 𝜁 > 1/2. For damping ratio lower than 1/2 the cut off frequency above which 

these approximations are still valid is approximately given by 𝜔𝑛/2𝜁 [7]. For the device whose 

parameters are listed in Table 1, this frequency range is from approximately 30 Hz to 1 kHz, as 

confirmed by the results shown in Figure 3. 

2. SHUNT DAMPING AND ENERGY HARVESTING 

When used as either a shunt damper or an energy harvester, an electrical impedance, 𝑍𝑠𝑕𝑢𝑛𝑡 , is 

connected across the electrical terminals of the transducer, as shown in Figure 4. The difference 

between the two applications is that for shunt damping the objective is to modify the mechanical 

response of the device, whereas for energy harvesting the objective is to transfer as much power 

into the electrical shunt as possible, so that it may be stored and used for other purposes. 

2.1 SHUNT DAMPING 

The voltage across the terminals, u, is equal to −𝑍𝑠𝑕𝑢𝑛𝑡 𝑖, since 𝑖 is defined to flow onto the 

transducer in Figure 1. The two-port equations (1) and (2), can then be used to show that the 

mechanical impedance presented by the transducer in this case is: 

𝑍𝑚 =  𝑍𝑚𝑜 +  
𝑇2

𝑍𝑒𝑏 + 𝑍𝑠𝑕𝑢𝑛𝑡
 . (9) 

Assuming the actuator is being used in the frequency range where 𝑍𝑒𝑏  is resistive, and that the shunt 

is passive, the greatest increase in 𝑍𝑚  will be achieved if the shunt impedance is set to zero, i.e. the 

device is short circuit. In this case 𝑍𝑚  is equal to 𝑍𝑚𝑠 , given by: 

𝑍𝑚𝑠 =  𝑍𝑚𝑜  1 +  
𝑇2

𝑍𝑚𝑜𝑍𝑒𝑏
  . (10) 

If the electromagnetic transducer is mass-driven and at resonance, or if it is base-driven in the 

frequency range discussed in Section 1, so that  𝑇 is approximately equal to 𝐵𝑙, 𝑍𝑒𝑏  is 

approximately equal to 𝑅𝑒  and  𝑍𝑚𝑜  is approximately equal to 𝑅𝑚 , then we can express the ratio of 

the short circuit mechanical impedance to the open circuit mechanical impedance as: 
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𝑍𝑚𝑠

𝑍𝑚𝑜
= 1 +  𝐶𝑒𝑚  , (11) 

where we define 𝐶𝑒𝑚  to be the non-dimensional electromagnetic coupling coefficient given by 

𝐶𝑒𝑚 =  
 𝐵𝑙 2

𝑅𝑚𝑅𝑒
 . (12) 

The ratio 𝑍𝑚𝑠/𝑍𝑚𝑜  is a measure of the extent to which shorting an electromagnetic actuator can 

affect its impedance and hence achieve shunt damping. The variation of 𝑍𝑚𝑠/𝑍𝑚𝑜  with 𝐶𝑒𝑚  is 

shown in Figure 5. 

It is clear that there will be little shunting effect on the mechanical impedance, if 𝐶𝑒𝑚  is small 

compared to unity, but a considerable effect if 𝐶𝑒𝑚  is large compared with unity. It is possible to 

synthesise electrical impedances that are not passive with special circuits, in which case the 

resistive part of the shunt impedance could be negative, cancelling out some of the resistive part of 

𝑍𝑒𝑏 , which would have a greater effect on 𝑍𝑚  than just short circuiting [1]. To have a significantly 

greater effect than just short circuiting, however, most of the resistive part of 𝑍𝑒𝑏  would have to be 

cancelled [2], which makes the stability of the system rather sensitive to changes in 𝑍𝑒𝑏  due, for 

example to variations in temperature. 

2.2 ENERGY HARVESTING 

When used for energy harvesting purposes, we assume that the transducer is subject to a constant 

excitation velocity, 𝑣. Since the voltage across the terminals is equal to − 𝑍𝑠𝑕𝑢𝑛𝑡 𝑖, then using 

equation (1), the current generated is: 

𝑖 =  
−𝑇𝑣

𝑍𝑒𝑏 + 𝑍𝑠𝑕𝑢𝑛𝑡
 . (13) 

The electrical power transferred to the shunt is: 

𝑊𝑒 =  
1

2
Re 𝑖∗𝑢 =   

1

2
 𝑖 2Re 𝑍𝑠𝑕𝑢𝑛𝑡  , (14) 

where Re denotes the real part of a complex quantity and * indicates complex conjugate, so that: 

𝑊𝑒 =  
 𝑇 2 𝑣 2 Re 𝑍𝑠𝑕𝑢𝑛𝑡  

2 𝑍𝑒𝑏 +  𝑍𝑠𝑕𝑢𝑛𝑡  2
 . (15) 

The harvested power is maximised, in this case where a constant velocity excitation is assumed, if 

𝑍𝑠𝑕𝑢𝑛𝑡  is equal to 𝑍𝑒𝑏
∗ . If the mass-driven actuator is driven at resonance or the base-driven actuator 

is again driven in the frequency range discussed at the end of Section 1, then 𝑍𝑒𝑏  is equal to 𝑅𝑒 , and 

so for maximum harvested power 𝑍𝑠𝑕𝑢𝑛𝑡  must also equal 𝑅𝑒 , in which case: 

𝑊𝑒 =  
 𝑇 2 𝑣 2

8 𝑅𝑒
 . (16) 

The mechanical power absorbed by the transducer is: 
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𝑊𝑚 =
1

2
Re 𝑣∗𝑓 =

1

2
 𝑣 2Re 𝑍𝑚  , (17) 

where the mechanical impedance of the transducer is, in general, given by equation (9). If  𝑍𝑒𝑏 and 

𝑍𝑠𝑕𝑢𝑛𝑡  are again assumed to be equal to 𝑅𝑒 , then using equation (9) the mechanical power is given 

by: 

𝑊𝑚 =  
1

2
 𝑣 2Re 𝑍𝑚𝑜 +  

𝑇2

2𝑅𝑒
  . (18) 

Although there are many figures of merit that could be used for such transducers, we define the 

power harvesting efficiency, 𝐸, as the ratio of the electrical power harvested to the mechanical 

power supplied, so that: 

𝐸 =
𝑊𝑒

𝑊𝑚
=

 𝑇 2

Re 𝑍𝑚𝑜 + 𝑇2/2𝑅𝑒  4𝑅𝑒
 . (19) 

If the electromagnetic transducer is mass-driven at resonance, or it is base-driven in the frequency 

range discussed in Section 1, then 𝑇 is approximately equal to 𝐵𝑙 and Re 𝑍𝑚𝑜   to 𝑅𝑚 , so that: 

𝐸 =
 𝐵𝑙 2

4𝑅𝑚𝑅𝑒 + 2 𝐵𝑙 2
=  

𝐶𝑒𝑚
4 + 2𝐶𝑒𝑚

 , (20) 

where 𝐶𝑒𝑚  is again the electromagnetic coupling coefficient given by equation (12) [4]. The 

variation of 𝐸 with 𝐶𝑒𝑚  is also shown in Figure 5. 

The efficiency of the energy harvesting device is clearly low if 𝐶𝑒𝑚  is small compared to unity, but 

reaches a maximum value of 50% when 𝐶𝑒𝑚  is large compared with unity. In this case the 

electromagnetic coupling is strong, little power is dissipated in the mechanical parts of the 

transducer and an equal power is dissipated in the internal electrical resistance and harvested on the 

external shunt. 

3 SCALING OF COUPLING COEFFICIENT WITH DEVICE SIZE 

If the cross-section area of the wire used in the coil of the electromagnetic actuator is 𝐴𝑤  and the 

resistivity of the material is 𝜂, then the resistance of the coil is given by: 

𝑅𝑒 =  η
𝑙

𝐴𝑤
 , (21) 

where 𝑙 is the length of wire in the coil, which is given, approximately, by 

𝑙 =  
𝑉𝑐
𝐴𝑤

 , (22) 

and 𝑉𝑐  is the volume of the coil. The quantity  𝑙2 𝑅𝑒 , which appears in the expression for the 

electromagnetic coupling coefficient, 𝐶𝑒𝑚 , in equation (12), is thus given by  
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𝑙2

𝑅𝑒
=  

𝑉𝑐
η

 , (23) 

which is independent of the number of turns in the coil. The resistivity of the coil material does not 

depend of the scale of the transducer, but the volume of the coil clearly scales as the cube of 

characteristic length of the transducer, L, so that it scales as [L
3
] in the notation used in reference [8-

10], for example. The magnetic flux density 𝐵 is assumed to be saturated in a well-designed 

transducer, so this depends on the properties of the materials that the transducer is made from, but 

not its dimensions. Finally, the scaling of the mechanical resistance,𝑅𝑚 , depends on the detailed 

mechanism of mechanical damping in the transducer and we will infer this from experimental data. 

Table 2 lists the parameters of a number of different electromagnetic actuators, including their non-

dimensional coupling coefficient. The variation of this parameter with the mass of the transducer is 

plotted in Figure 6. A least square fit to the data shown in Figure 7 suggests that the electromagnetic 

coupling coefficient scales as the mass raised to the power of about 0.35. Since the mass of the 

device clearly scales as [L
3
], the overall electromagnetic coupling coefficient, 𝐶𝑒𝑚 , given 

by 𝐵𝑙 2 𝑅𝑒𝑅𝑚 , thus must scale approximately in proportion to the characteristic length of the 

transducer, as [L]. Assuming that  𝐵𝑙 2 𝑅𝑒  still scales as [L
3
], this result implies that 𝑅𝑚  scales as 

about [L
2
] for these devices, rather than in proportion to [L], as suggested in [11]. A reasonable fit 

to the data is thus that electromagnetic coupling coefficient is given by: 

(𝐵𝑙)2

𝑅𝑚𝑅𝑒
≈   

𝑀𝑇

𝑀0
 

.35

, (24) 

where 𝑀𝑇  is the total mass of the transducer and 𝑀0 is a reference mass, given from Figure 6 as 

about 0.6 kg. 

This scaling of the coupling coefficient for electromagnetic transducers is in contrast to the 

equivalent quantity for piezoelectric transducers, as discussed in the Appendix, which depends only 

on the material properties and is thus, to a first approximation, independent of L. It is shown in the 

Appendix that the equivalent coupling coefficient for piezoelectric transducers 𝐶𝑝𝑖𝑒𝑧𝑜 , is related to 

the piezoelectric coupling factor, 𝑘𝑝𝑖𝑒𝑧𝑜
2 , by the expression: 

𝐶𝑝𝑖𝑒𝑧𝑜 =  
𝑘𝑝𝑖𝑒𝑧𝑜

2

1 − 𝑘𝑝𝑖𝑒𝑧𝑜
2 , (25) 

We can thus define a coupling factor for a generic electromagnetic transducer, 𝑘𝑒𝑚
2 , as a function of 

the electromagnetic coupling coefficient, by analogy with the piezoelectric case as: 

𝑘𝑒𝑚
2 =  

𝐶𝑒𝑚
1 +  𝐶𝑒𝑚

, (26) 
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which varies from 0 to 1 as 𝐶𝑒𝑚  increase from 0 to ∞. Figure 7 shows the variation of 𝑘𝑒𝑚
2 , with the 

actuator mass, assuming that 𝐶𝑒𝑚  scales with mass as in equation (24), with a constant of 

proportionality obtained from Figure 6. Also shown on this graph is the value of 𝑘𝑝𝑖𝑒𝑧𝑜
2  for a PZT 

transducer, which is assumed to be independent of actuator mass, as discussed in the Appendix. 

It can be seen that 𝑘𝑒𝑚
2  is smaller than 𝑘𝑝𝑖𝑒𝑧𝑜

2  for actuator masses below about 6 kg, whereas it is 

larger than 𝑘𝑝𝑖𝑒𝑧𝑜
2  for larger devices. 

In order to assess the practicability of larger electromagnetic devices, it is also useful to estimate the 

scaling of some of its other properties with device size. Gardonio et al.[10], for example, show that 

the devices natural frequency, 𝜔𝑛 =  𝐾/𝑀, scales as [L
-1

] and that the static displacement due to 

gravity, 𝑀𝑔/𝐾, where 𝑔 is the acceleration due to gravity, scales as [L
2
]. As the actuator gets larger, 

its natural frequency tends to fall, as expected, but of more concern is that its static displacement 

due to gravity will become large rather quickly. This is not a concern if the device can be used 

horizontally, but if used vertically this static displacement can become larger than the size of the 

device itself and may ground the inertial mass. Although various self-levelling strategies can be 

adopted [12] these often require external power, which compromises energy harvesting 

performance, and so the static displacement may limit the size of the device that can be used in 

practice. 

The operating frequency range of the inertial device has also been assumed to be from somewhat 

above the natural frequency, 𝜔𝑛 , to an upper frequency, 𝜔𝑢 , when the reactance of the device’s 

inductance is equal to its electrical resistance, given by 𝑅𝑒/𝐿𝑒 . The dependence of 𝑅𝑒  on the 

geometric and electrical properties of the coil is given by equation (21). If the coil has a radius r and 

height h, then since l is approximately equal to 𝜋𝑟𝑁, where N is the number of turns, and 𝐴𝑤  is 

equal to 𝑟𝑕/𝑁, then: 

𝑅𝑒 ≈ 𝜂 
𝜋𝑁2

𝑕
, (27) 

where 𝜂 is the resistivity of the wire. The electrical inductance can also be approximated by that of 

a solenoid coil: 

𝐿𝑒 = 𝜇 
𝐴𝑠𝑁

2

𝑕
, (28) 

where 𝜇 is the magnetic permeability and 𝐴𝑠 is the area of the solenoid. 𝐴𝑠 is equal to 𝑟𝑕 in this 

case so the inductance is approximately given by: 

𝐿𝑒 ≈ 𝜇𝑁2  𝑟, (29) 

The upper limiting frequency 𝜔𝑢 , given by 𝑅𝑒/𝐿𝑒  is thus equal to: 
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𝜔𝑢 =
𝜂

𝜇

𝜋

𝑟𝑕
  , (30) 

which is independent of the number of turns, N, but scales as [L
-2

]. 

The frequency range of operation of an inertial device is assumed to be above 𝜔𝑛 , which scales as 

[L
-1

], but below 𝜔𝑢 , which scales as [L
-2

], and this range thus becomes smaller as the size of the 

device is scaled up. The upper frequency range can be extended somewhat by using electrical 

circuit with a negative inductance to cancel the electrical inductance of the device. Similar circuits, 

but with negative capacitance are currently used to increase the frequency range over which shunt 

dampers using piezoelectric actuators can be used [13]. There are limitations to the use of such 

circuits, however, since the magnetic behaviour can be more complicated than that leading to the 

linear model in equations (3), (4) and (5), with parameters that can be frequency and amplitude 

dependent. 

4 CONCLUSIONS 

The efficiency of an electromagnetic transducer when used as either a shunt damper or an energy 

harvester has been shown, under realistic circumstances, to depend on a non-dimensional 

electromagnetic coupling coefficient, equal to  𝐵𝑙 2 𝑅𝑒 𝑅𝑚 . This coupling coefficient, which varies 

from zero for a poorly coupled transducer to infinity for a well coupled device, is shown to increase 

with the size of the electromagnetic transducer, approximately in proportion to its characteristic 

length. This is in contrast to a piezoelectric transducer, for which the corresponding coupling 

coefficient is independent of the size of the device. The coupling coefficient is related to the 

coupling factor widely used to characterise piezoelectric transducers, which varies from zero to 

unity. 

Although an electromagnetic transducer can be used as either a shunt damper or energy harvester, 

there may also be applications where it is used simultaneously for both purposes. The harvested 

electrical energy could potentially be used to power a self-tuning shunt damper, for example, to 

give an entirely autonomous device [14, 15] which may even give enough power to drive a digital 

controller [13]. 

It has been demonstrated that, because of the scaling of the coupling coefficient with the 

transducer’s size, such systems may be most efficient for electromagnetic devices weighing many 

kilogrammes, as used in civil engineering applications for example, but would not bevery efficient 

for miniaturised device, even though it is such devices that have been most widely studied for 

energy harvesting. 
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APPENDIX A 

In order to compare the analysis above with that for piezoelectric transducers, we can write the two 

port equations for a single-layered piezoelectric transducer, of area 𝐴 and thickness 𝑡 as: 

𝑞 =  𝐶𝑒𝑢 +  𝐷𝑤 

𝑓 =  −𝐷𝑢 +  𝑆𝑚𝑤 

(A.1) 

(A.2) 

where 𝑞, 𝑢, 𝑓 and w are the charge, voltage, force and extension of the actuator, and [17]: 

𝐶𝑒 =  
𝜖𝑇𝐴 1 − 𝑘2 

𝑡
 

𝐷 =  
𝑑33𝐴

𝑆𝐸𝑡
 

𝑆𝑚 =  
𝐴

𝑆𝐸𝑡
 , 

(A.3) 

 

(A.4) 

 

(A.5) 

where 𝜖𝑇, 𝑆𝐸 , 𝑑33  and 𝑘2 are the permittivity, compliance, piezoelectric constant and 

electromechanical coupling factor of the piezoelectric material. 

If the piezoelectric transducer is open circuit then for harmonic excitation the current, given by 𝑗𝜔𝑞 

is equal to zero, so that unless 𝜔 is zero, then q must also equal zero, and so the open circuit 

stiffness is equal to: 

 𝑓

𝑤
 
𝑜𝑝𝑒𝑛  𝑐𝑖𝑟𝑐𝑢𝑖𝑡

=  𝑆𝑚  1 +  
𝐷2

𝑆𝑚𝐶𝑒
  , (A.6) 

where 𝑆𝑚  is the mechanical stiffness if the device is short circuited. 

The stiffness, and hence the impedance, of a piezoelectric transducer is thus greater when it is open 

circuit than when it is short circuit, in contrast to an electromagnetic transducer, whose impedance 

is greater when short circuit than when it is open circuit, as shown in equation (11). Another 

difference is that whereas an electromagnetic device, being velocity controlled, can add damping 

when short circuit, the piezoelectric device, being displacement controlled, is dominated by its 

stiffness when either open or short circuit and so requires a resistive element in the shunt to provide 
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a damping impedance. Nevertheless, we can define an electromechanical coupling coefficient for 

this piezoelectric case, by taking the analogy between equation (A.6) and equation (10), as: 

𝐶𝑝𝑖𝑒𝑧𝑜 =  
𝐷2

𝑆𝑚𝐶𝑒
 , (A.7) 

which can also be written, using the definitions in equations (A.3) to (A.5), as: 

𝐶𝑝𝑖𝑒𝑧𝑜 =  
𝑘𝑝𝑖𝑒𝑧𝑜

2

1 − 𝑘𝑝𝑖𝑒𝑧𝑜
2  (A.8) 

where 

𝑘𝑝𝑖𝑒𝑧𝑜
2 =  

𝑑33
2

𝑆𝐸𝜖𝑇
 (A.9) 

is the electromechanical coupling factor of the piezoelectric material [17], which can vary from 0 to 

1, but is typically 0.1 for PVDF and 0.7 for PZT. As 𝑘𝑝𝑖𝑒𝑧𝑜
2  varies from 0 to 1, the 

electromechanical coupling coefficient in this case 𝐶𝑝𝑖𝑒𝑧𝑜 , varies from 0 to ∞, being about 0.1 for 

PVDF transducer  and 2.3 for PZT devices. 

Since 𝑘𝑝𝑖𝑒𝑧𝑜
2  depends only on the piezoelectric material, and not on the transducer dimensions, then 

𝑘𝑝𝑖𝑒𝑧𝑜
2  and hence 𝐶𝑝𝑖𝑒𝑧𝑜  for a piezoelectric transducer, does not depend on the size of the transducer, 

in contrast to the case for the electromagnetic actuator above. 
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FIGURES 

 

Figure 1: Block diagram of an electromagnetic transducer in terms of its two-port parameters 

 

Figure 2: Block diagram of an idealised electromagnetic actuator when driven by the moving mass, left, and 

when driven by the base structure, for an inertial device, right. 
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Figure 3: The modulus of the blocked electrical impedance  𝑍𝑒𝑏  , open circuit impedance  𝑍𝑚𝑜   and 

transduction coefficient  𝑇  for an electromagnetic transducer with the force acting on the mass, mass-driven, 

dashed lines, and the force acting at the base, base-driven or inertial, solid lines, with the example parameters 

in the Table 1. 

 

Figure 4: Block diagram of an electromagnetic transducer with a shunt impedance, 𝑍𝑠𝑕𝑢𝑛𝑡 , across its 

electrical terminals. 
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.  

Figure 5: variation of the ratio of the electromagnetic transducer’s mechanical impedance when short circuit 

and open circuit, 𝑍𝑚𝑠 /𝑍𝑚𝑜  (solid line) as function of the electromechanical coupling coefficient 𝐶𝑚𝑒 =
(𝐵𝑙)2/𝑅𝑚𝑅𝑒 , and the corresponding variation of the efficiency of the transducer as anenergy harvester 𝐸, 

given by the ratio of the electrical power harvested to the mechanical power supplied 

 

Figure 6: The log of the non-dimensional electromagnetic coupling coefficient,  𝐵𝑙 2 𝑅𝑒𝑅𝑚 , for different 

transducers, plotted as a function of the log of their mass. The best linear fit to this datais shown as the 

dashed line, which suggests that  𝐵𝑙 2 𝑅𝑒𝑅𝑚  scales as mass to the power of about 0.35. 
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Figure 7: The effective electromechanical coupling factor as a function of the actuator mass for both 

electromagnetic transducers, using equation (25) and for piezoelectric transducers, assuming a PZT device. 

TABLES 

Table 1:Parameters of an example electromagnetic actuator, mostly taken from the datasheets for the 

Micromega Dynamics ADD-45N device 

Moving mass (M) 2.2 kg 

Suspension Stiffness (K) 6130 Nm
-1

 

Suspension damping ratio (ζ) 0.15 

Suspension mechanical resistance (Rm) 35 Nsm
-1

 

Electrical resistance (Re) 4 Ω 

Electrical inductance (Le) 0.6 mH 

Force constant (Bl) 20 NA
-1

 

Total mass 3 Kg 

Peak force 45 N 

Resonant frequency (𝜔𝑛 /2π) 8.4 Hz 
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Table 2:The parameters of a number of electromagnetic inertial actuators 

Type Bl (NA
-1

) Re (Ω) Rm (Nsm
-1

) (Bl)
2
/ReRm Total mass (kg) 

APS 400 37 3.0 53 8.0 73 

Micromega (ADD-45N) 20 4 35 2.9 3 

Motran (IFY 30-100) 10 1.6 44 1.4 0.94 

Aura 7 4.4 9 1.2 0.64 

Ultra 7.1 3.2 9.4 1.7 0.42 

Micromega (IA-01) 1.6 3.0 1.4 0.6 0.085 

TRUST headphone 

actuator 
0.74 8 0.38 0.18 0.012 

 


