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ABSTRACT
In order for an electromagnetic transducer to operate well as either a mechanical shunt damper or as
a vibration energy harvester, it must have good electromechanical coupling. A simple two-port
analysis is used to derive a non-dimensional measure of electromechanical coupling, which must be
large compared with unity for efficient operation in both of these applications. The two-port
parameters for an inertial electromagnetic transducer are derived, from which this non-dimensional
coupling parameter can be evaluated. The largest value that this parameter takes is approximately
equal to the square of the magnetic flux density times the length of wire in the field, divided by the
mechanical damping times the electrical resistance. This parameter is found to be only of order of
one for laboratory devices that weigh about 1 kg, and so such devices are generally not efficient,
within the definition used here, in either of these applications. The non-dimensional coupling
parameter is found to scale in approximate proportion to the device’s characteristic length, however,
and so although miniaturised devices are less efficient, much greater efficiency can be obtained

with large devices, such as those used to control civil engineering structures.

1. INTRODUCTION
Electromagnetic transducers can be used for either shunt damping [1, 2] or energy harvesting [3, 4].
The performance of such a device in both of these applications is analysed here in terms of its two-
port parameters. A single dimensionless parameter is found to govern the efficiency of the device
when used for either shunt damping or energy harvesting. The scaling of the parameter with the size
of the transducer is then investigated and the result contrasted with the corresponding result for a

piezoceramic actuator.
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Assuming that the moving parts of an electrodynamic actuator all vibrate in phase and that it is
linear, its response at a single frequency can be completely defined by the two-port network
equations [5, 6], which may be written as:
u=_Z,i+Tv 1)

f= —Ti+Zy,v, )
where u, i, f and v are the voltage across the device’s terminals, the current through the device, the
force generated by the device and its velocity. Z,,, is thus the device’s blocked electrical impedance,
Zmo 1S 1ts open circuit mechanical impedance and T its transduction coefficient, each of which are,
in general, complex, frequency-dependant parameters.
Figure 1 shows a block diagram of the transducer, represented in terms of the two-port parameters.
There are two circuits, representing either the mechanical or electrical responses, each coupled via a
generator representing the electromechanical coupling.
When the base of the transducer is fixed and the force acts on the moving mass, an electromagnetic
actuator can be idealised as on the left hand side of Figure 2. This model is widely used to represent
the dynamics of shaker mounted on a rigid base, for example. Assuming the mechanical parts move
as a single degree of freedom system, then the two port parameters for the transducer in this case

are.:
Zep =R, +jwl,, (3)
] K
Zmo=]wM+jZ+ R, , (4)
T =BI. ®)

where R, and L, are the electrical resistance and inductance of the coil M, K and R,,, are the mass,
stiffness and mechanical resistance of the moving parts, B is the flux density and | is the length of
wire moving in the field. The electrical and mechanical variables are assumed to be proportional to
e/“t where w is the angular excitation frequency. When operated at its natural frequency, w, =
\/K/—M, the open circuit mechanical impedance is equal to R,, and, since wL, is generally much
less that R, at this frequency, Z,,, is approximately equal to R,.

If, however, the electromagnetic transducer is used as an inertial device, so that the force acts on its
base and the mass vibrates freely, as on the right hand side of Figure 2, the two port parameters can

then be shown to be:

Zoy = R+ jool, + —I2ED” ©
eb = Re MOk T S R+ K — wZM’
_ joM (K + joR,,) @)

™ jwRy, + K — wiM '’



_ —w’MBI (8)
"~ jwR, +K — w?M’

Figure 3 shows the modulus of these two port parameters, as a function of frequency, for both cases
with the assumed parameters listed in Table 1.

If the inertial device is operated above its natural frequency, w,, but below the frequency at which
the inductance becomes important, w, = R./L., then Z,, is approximately equal to R,, Z,,, IS
approximately equal to R,, and T is approximately equal to Bl. These approximations hold for well
damped devices with ¢ > 1/2. For damping ratio lower than 1/2 the cut off frequency above which
these approximations are still valid is approximately given by w, /2¢ [7]. For the device whose
parameters are listed in Table 1, this frequency range is from approximately 30 Hz to 1 kHz, as

confirmed by the results shown in Figure 3.

2. SHUNT DAMPING AND ENERGY HARVESTING
When used as either a shunt damper or an energy harvester, an electrical impedance, Zgyn:, 1S
connected across the electrical terminals of the transducer, as shown in Figure 4. The difference
between the two applications is that for shunt damping the objective is to modify the mechanical
response of the device, whereas for energy harvesting the objective is to transfer as much power

into the electrical shunt as possible, so that it may be stored and used for other purposes.

2.1 SHUNT DAMPING
The voltage across the terminals, u, is equal t0 —Zjune i, Since i is defined to flow onto the
transducer in Figure 1. The two-port equations (1) and (2), can then be used to show that the
mechanical impedance presented by the transducer in this case is:
T2
fm = Zmo + Zep + Zshunt ©)
Assuming the actuator is being used in the frequency range where Z,,;, is resistive, and that the shunt
IS passive, the greatest increase in Z,, will be achieved if the shunt impedance is set to zero, i.e. the

device is short circuit. In this case Z,, is equal to Z,,, given by:

TZ
L. = 7 1+ . 10
ms mo < Zmo Zeb) ( )

If the electromagnetic transducer is mass-driven and at resonance, or if it is base-driven in the
frequency range discussed in Section 1, so that T is approximately equal toBl, Z,, is
approximately equal to R, and Z,,, is approximately equal to R,, , then we can express the ratio of

the short circuit mechanical impedance to the open circuit mechanical impedance as:



ms

=1+ Cgp , (11)

Zmo
where we define C,,, to be the non-dimensional electromagnetic coupling coefficient given by
(Bl)?
Com = . 12
m = 2R (12)

The ratio Z,,/Z, 1S @ measure of the extent to which shorting an electromagnetic actuator can
affect its impedance and hence achieve shunt damping. The variation of Z,,,/Z,,, with C,, is
shown in Figure 5.

It is clear that there will be little shunting effect on the mechanical impedance, if C,,, is small
compared to unity, but a considerable effect if C,,, is large compared with unity. It is possible to
synthesise electrical impedances that are not passive with special circuits, in which case the
resistive part of the shunt impedance could be negative, cancelling out some of the resistive part of
Z,;,, Which would have a greater effect on Z,,, than just short circuiting [1]. To have a significantly
greater effect than just short circuiting, however, most of the resistive part of Z,, would have to be
cancelled [2], which makes the stability of the system rather sensitive to changes in Z,, due, for

example to variations in temperature.

2.2 ENERGY HARVESTING
When used for energy harvesting purposes, we assume that the transducer is subject to a constant
excitation velocity, v. Since the voltage across the terminals is equal to — Z,,,,; i, then using
equation (1), the current generated is:
i = _—Tv. (13)
Zep + Zspunt

The electrical power transferred to the shunt is:
1
1 . .
W, = ERe(l u) = EMZRG{Zshunt } (14)

where Re denotes the real part of a complex quantity and * indicates complex conjugate, so that:

W, = |T|2|U|2 Re{Zshunt}
¢ 2|Zeb + Zshunt|2 .

The harvested power is maximised, in this case where a constant velocity excitation is assumed, if

(15)

Zsnune 1S €qual to Z;, . If the mass-driven actuator is driven at resonance or the base-driven actuator

is again driven in the frequency range discussed at the end of Section 1, then Z,, is equal to R,, and

so for maximum harvested power Z;,,,, must also equal R, in which case:
IT|?|v|

-~ "8R,

The mechanical power absorbed by the transducer is:

W,

(16)



W, = %Re{v*f} = %|U|2R6{Zm}, (17)

where the mechanical impedance of the transducer is, in general, given by equation (9). If Z,,and

Znune are again assumed to be equal to R,, then using equation (9) the mechanical power is given

by:

W, = llv|*Re{Z +T—2 (18)
m = 3|VI°Re1Zn, 2R

Although there are many figures of merit that could be used for such transducers, we define the
power harvesting efficiency, E, as the ratio of the electrical power harvested to the mechanical
power supplied, so that:

We |T|?
W,, Re{Z,, +T?/2R,} 4R, "

If the electromagnetic transducer is mass-driven at resonance, or it is base-driven in the frequency

E = (19)

range discussed in Section 1, then T is approximately equal to Bl and Re{Z,,, } to R,,, S0 that:

B (B1)? _ Cem
" 4R,R, + 2(BD? 4 +2C,,’

where C,,, is again the electromagnetic coupling coefficient given by equation (12) [4]. The

(20)

variation of E with C,,, is also shown in Figure 5.

The efficiency of the energy harvesting device is clearly low if C,,, is small compared to unity, but
reaches a maximum value of 50% when C,,, is large compared with unity In this case the
electromagnetic coupling is strong, little power is dissipated in the mechanical parts of the
transducer and an equal power is dissipated in the internal electrical resistance and harvested on the

external shunt.

3 SCALING OF COUPLING COEFFICIENT WITH DEVICE SIZE
If the cross-section area of the wire used in the coil of the electromagnetic actuator is A,, and the

resistivity of the material is n, then the resistance of the coil is given by:

R. = n-, (21)

1= -<, (22)

and V. is the volume of the coil. The quantity I?/R,, which appears in the expression for the

electromagnetic coupling coefficient, C,,,, in equation (12), is thus given by



— == (23)

which is independent of the number of turns in the coil. The resistivity of the coil material does not
depend of the scale of the transducer, but the volume of the coil clearly scales as the cube of
characteristic length of the transducer, L, so that it scales as [L°] in the notation used in reference [8-
10], for example. The magnetic flux density B is assumed to be saturated in a well-designed
transducer, so this depends on the properties of the materials that the transducer is made from, but
not its dimensions. Finally, the scaling of the mechanical resistance,R,,, depends on the detailed
mechanism of mechanical damping in the transducer and we will infer this from experimental data.

Table 2 lists the parameters of a number of different electromagnetic actuators, including their non-
dimensional coupling coefficient. The variation of this parameter with the mass of the transducer is
plotted in Figure 6. A least square fit to the data shown in Figure 7 suggests that the electromagnetic
coupling coefficient scales as the mass raised to the power of about 0.35. Since the mass of the
device clearly scales as [L%], the overall electromagnetic coupling coefficient, C,,, given
by(B1)?/R,R,,, thus must scale approximately in proportion to the characteristic length of the
transducer, as [L]. Assuming that (B1)2/R, still scales as [L°], this result implies that R,, scales as
about [L?] for these devices, rather than in proportion to [L], as suggested in [11]. A reasonable fit

to the data is thus that electromagnetic coupling coefficient is given by:

BD?2 M\
T~ () (22)
RmRe MO
where My is the total mass of the transducer and M, is a reference mass, given from Figure 6 as

about 0.6 kg.

This scaling of the coupling coefficient for electromagnetic transducers is in contrast to the
equivalent quantity for piezoelectric transducers, as discussed in the Appendix, which depends only
on the material properties and is thus, to a first approximation, independent of L. It is shown in the

Appendix that the equivalent coupling coefficient for piezoelectric transducers Cy;.,, , is related to

2
piezo !

the piezoelectric coupling factor, k by the expression:

k2.
C.. — plezo (25)
2 )
plezo 1— kpiezo

We can thus define a coupling factor for a generic electromagnetic transducer, k2,,, as a function of

the electromagnetic coupling coefficient, by analogy with the piezoelectric case as:
Cem

k2 = ———
1+ C,p

(26)



which varies from 0 to 1 as C,,,, increase from 0 to co. Figure 7 shows the variation of kZ,,, with the

actuator mass, assuming that C,, scales with mass as in equation (24), with a constant of
proportionality obtained from Figure 6. Also shown on this graph is the value of k%, for a PZT

piezo

transducer, which is assumed to be independent of actuator mass, as discussed in the Appendix.

2
piezo

It can be seen that k2, is smaller than k for actuator masses below about 6 kg, whereas it is

2
piezo

larger than k for larger devices.

In order to assess the practicability of larger electromagnetic devices, it is also useful to estimate the
scaling of some of its other properties with device size. Gardonio et al.[10], for example, show that

the devices natural frequency, w, = \/K/—M , scales as [L™'] and that the static displacement due to
gravity, Mg/K, where g is the acceleration due to gravity, scales as [L?]. As the actuator gets larger,
its natural frequency tends to fall, as expected, but of more concern is that its static displacement
due to gravity will become large rather quickly. This is not a concern if the device can be used
horizontally, but if used vertically this static displacement can become larger than the size of the
device itself and may ground the inertial mass. Although various self-levelling strategies can be
adopted [12] these often require external power, which compromises energy harvesting
performance, and so the static displacement may limit the size of the device that can be used in
practice.

The operating frequency range of the inertial device has also been assumed to be from somewhat
above the natural frequency, w,, to an upper frequency, w,, when the reactance of the device’s
inductance is equal to its electrical resistance, given by R,/L.. The dependence of R, on the
geometric and electrical properties of the coil is given by equation (21). If the coil has a radius r and
height h, then since | is approximately equal to rN, where N is the number of turns, and 4, is
equal to rh/N, then:

N?

Re = ——, (27)
where 7 is the resistivity of the wire. The electrical inductance can also be approximated by that of
a solenoid coil:

AN?
Le =u Sh : (28)

where u is the magnetic permeability and A is the area of the solenoid. A is equal to rh in this
case so the inductance is approximately given by:
L. ~ uN?r, (29)

The upper limiting frequency w,,, given by R, /L, is thus equal to:



_nhrn
Ou = urh’
which is independent of the number of turns, N, but scales as [L™].

(30)

The frequency range of operation of an inertial device is assumed to be above w,, which scales as
[L™], but below w,,, which scales as [L™], and this range thus becomes smaller as the size of the
device is scaled up. The upper frequency range can be extended somewhat by using electrical
circuit with a negative inductance to cancel the electrical inductance of the device. Similar circuits,
but with negative capacitance are currently used to increase the frequency range over which shunt
dampers using piezoelectric actuators can be used [13]. There are limitations to the use of such
circuits, however, since the magnetic behaviour can be more complicated than that leading to the
linear model in equations (3), (4) and (5), with parameters that can be frequency and amplitude

dependent.

4 CONCLUSIONS

The efficiency of an electromagnetic transducer when used as either a shunt damper or an energy
harvester has been shown, under realistic circumstances, to depend on a non-dimensional
electromagnetic coupling coefficient, equal to (BI)?/R, R,,. This coupling coefficient, which varies
from zero for a poorly coupled transducer to infinity for a well coupled device, is shown to increase
with the size of the electromagnetic transducer, approximately in proportion to its characteristic
length. This is in contrast to a piezoelectric transducer, for which the corresponding coupling
coefficient is independent of the size of the device. The coupling coefficient is related to the
coupling factor widely used to characterise piezoelectric transducers, which varies from zero to
unity.

Although an electromagnetic transducer can be used as either a shunt damper or energy harvester,
there may also be applications where it is used simultaneously for both purposes. The harvested
electrical energy could potentially be used to power a self-tuning shunt damper, for example, to
give an entirely autonomous device [14, 15] which may even give enough power to drive a digital
controller [13].

It has been demonstrated that, because of the scaling of the coupling coefficient with the
transducer’s size, such systems may be most efficient for electromagnetic devices weighing many
kilogrammes, as used in civil engineering applications for example, but would not bevery efficient
for miniaturised device, even though it is such devices that have been most widely studied for

energy harvesting.
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APPENDIX A
In order to compare the analysis above with that for piezoelectric transducers, we can write the two

port equations for a single-layered piezoelectric transducer, of area A and thickness t as:

q= C,u+ Dw (A1)
f= —-Du+ S,w (A2)
where g, u, f and w are the charge, voltage, force and extension of the actuator, and [17]:
eTA(1 - k?) (A.3)
C,= ———=

t
_ 434 (A4)

SEt

_ A

where €”, SE, ds; and k? are the permittivity, compliance, piezoelectric constant and
electromechanical coupling factor of the piezoelectric material.
If the piezoelectric transducer is open circuit then for harmonic excitation the current, given by jwq

is equal to zero, so that unless w is zero, then g must also equal zero, and so the open circuit

2
L = sn(14 5. e

w open circuit Sm Ce

stiffness is equal to:

where S, is the mechanical stiffness if the device is short circuited.

The stiffness, and hence the impedance, of a piezoelectric transducer is thus greater when it is open
circuit than when it is short circuit, in contrast to an electromagnetic transducer, whose impedance
is greater when short circuit than when it is open circuit, as shown in equation (11). Another
difference is that whereas an electromagnetic device, being velocity controlled, can add damping
when short circuit, the piezoelectric device, being displacement controlled, is dominated by its

stiffness when either open or short circuit and so requires a resistive element in the shunt to provide



a damping impedance. Nevertheless, we can define an electromechanical coupling coefficient for
this piezoelectric case, by taking the analogy between equation (A.6) and equation (10), as:
DZ

Cpiezo = S C, ) (A7)
which can also be written, using the definitions in equations (A.3) to (A.5), as:
k2,
C.. ——= _—Pero A8
piezo 1— kgiezo ( )
where
d 2
k2. o= 233 (A.9)

piezo SEET
is the electromechanical coupling factor of the piezoelectric material [17], which can vary from 0 to
1, but is typically 0.1 for PVDF and 0.7 for PZT. As k2 varies from 0 to 1, the

piezo
electromechanical coupling coefficient in this case Cp,, , Varies from 0 to oo, being about 0.1 for
PVDF transducer and 2.3 for PZT devices.

Since k2, depends only on the piezoelectric material, and not on the transducer dimensions, then

piezo

k2., and hence Cpiezo for apiezoelectric transducer, does not depend on the size of the transducer,

piezo

in contrast to the case for the electromagnetic actuator above.
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Figure 1: Block diagram of an electromagnetic transducer in terms of its two-port parameters
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Figure 2: Block diagram of an idealised electromagnetic actuator when driven by the moving mass, left, and
when driven by the base structure, for an inertial device, right.
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Figure 3: The modulus of the blocked electrical impedance |Z,;, |, open circuit impedance |Z,,,, | and
transduction coefficient |T| for an electromagnetic transducer with the force acting on the mass, mass-driven,
dashed lines, and the force acting at the base, base-driven or inertial, solid lines, with the example parameters
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Figure 4: Block diagram of an electromagnetic transducer with a shunt impedance, Zgyyn: ,» aCross its

electrical terminals.
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Figure 5: variation of the ratio of the electromagnetic transducer’s mechanical impedance when short circuit
and open circuit, Z,,,; /Z, (solid line) as function of the electromechanical coupling coefficient C,,, =
(BD)?/R,, R, and the corresponding variation of the efficiency of the transducer as anenergy harvester E,

given by the ratio of the electrical power harvested to the mechanical power supplied
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Figure 6: The log of the non-dimensional electromagnetic coupling coefficient, (Bl)?/R,R,,, for different
transducers, plotted as a function of the log of their mass. The best linear fit to this datais shown as the

dashed line, which suggests that (B1)?/R,R,, scales as mass to the power of about 0.35.
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Figure 7: The effective electromechanical coupling factor as a function of the actuator mass for both
electromagnetic transducers, using equation (25) and for piezoelectric transducers, assuming a PZT device.

TABLES

Table 1:Parameters of an example electromagnetic actuator, mostly taken from the datasheets for the
Micromega Dynamics ADD-45N device

Moving mass (M) 2.2 kg
Suspension Stiffness (K) 6130 Nm™
Suspension damping ratio (¢) 0.15
Suspension mechanical resistance (Ry) | 35 Nsm™
Electrical resistance (R.) 4Q
Electrical inductance (L) 0.6 mH
Force constant (Bl) 20 NA™
Total mass 3Kg

Peak force 45N
Resonant frequency (w,,/2m) 8.4 Hz
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Table 2:The parameters of a number of electromagnetic inertial actuators

Type BI (NA™) Re (Q) Rm(Nsm™) | (BI)*/R:R, | Total mass (kg)
APS 400 37 3.0 53 8.0 73
Micromega (ADD-45N) 20 4 35 2.9 3

Motran (IFY 30-100) 10 1.6 44 1.4 0.94

Aura 7 4.4 9 1.2 0.64

Ultra 7.1 3.2 9.4 1.7 0.42
Micromega (1A-01) 1.6 3.0 1.4 0.6 0.085
TRUST headphone 0.74 8 0.38 0.18 0.012
actuator
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