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ABSTRACT
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Doctor of Philosophy
MODELS FOR THE PREDICTION OF REAR-ARC AND

FORWARD-ARC FAN BROADBAND NOISE IN
TURBOFAN ENGINES

by Gareth Jenkins

This thesis investigates three elements necessary for the prediction of the broadband noise
from a turbofan engine due to the interaction between the turbulent rotor wakes with the
Outlet Guide Vanes (OGVs). These are (i) the sound radiation from a cascade of closely
spaced blades interacting with rotor wake turbulence, (ii) an analysis of the behaviour
of hotwire velocity data from a Large Scale Fan Rig (LSFR), (iii) the development of a
scheme for the prediction of the blockage due to the transmission of multi-mode sound
across the rotor necessary for the prediction of noise in the forward-arc.

(i) Cascade noise model A noise model is presented for the prediction of rotor wake
turbulence with a cascade of OGVs. Similar to other approaches of this kind, computation
time becomes excessive at high frequencies as the number of modes required increases.
This thesis shows that at sufficiently high frequencies, when at least two modes are cut-on
between adjacent blades, the acoustic blade coupling is weak and the cascade sound radia-
tion closely approximates to that of an isolated aerofoil whose radiation can be computed
efficiently using single airfoil theory, thereby greatly reducing computation time.

(ii) Characteristics of rotor wake turbulence One factor currently limiting accu-
rate fan broadband noise predictions is an understanding of rotor wake turbulence at the
OGV leading edge. This thesis analyses in detail recent hotwire velocity data measured
in the interstage of an LSFR. The focus here is on assessing the extent of self-preservation
in the rotor wake, whereby the mean and turbulent wake characteristics can be deduced
at any position downstream of the rotor and at any operating condition from a limited
number of measurements. Unlike as previously assumed, this analysis demonstrates insuf-
ficient self-preserving behaviour to justify further pursuit of this approach. Rotor wake
turbulence must therefore be measured or predicted at each operating condition separately.

An analysis procedure is developed by which the characteristics of individual wakes,
necessary for broadband noise predictions, may be inferred from rotor wake velocity mea-
surements in situations in which there is significant overlap between adjacent wakes.

(iii) Multi-mode rotor blockage Noise generated by the OGV propagates to the for-
ward arc by passing upstream through the spinning rotor. This thesis presents a model for
the sound power transmission loss associated with crossing the rotor that includes modal
frequency scattering effects. It is shown that the results obtained using exact cascade
scattering closely agree at low and high frequencies with the results from a relatively sim-
ple prediction scheme that assumes that only plane waves propagate through the cascade,
thereby ignoring modal scattering effects. The advantage of making this approximation
is that the computation is considerably more efficient than a full cascade calculation. At
low frequencies, where only plane waves propagate in the gap, exact agreement is obtained
between the exact and plane wave models. Close agreement is also observed in the high
frequency limit where a large number of cascade modes are cut-on, most of which are well
cut-on and hence whose behaviour tends that of the plane wave mode.

The three components of the prediction procedure outlined above are combined to
perform a prediction of the rear-arc and forward-arc broadband noise from an LSFR.
Comparison of the measured and predicted noise spectra are in reasonable agreement with
variations with working line and fan speed being reasonably well captured.
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Chapter 1

Introduction

1.1 Broadband noise from turbofan engines

Aircraft noise pollution can be a source of annoyance for communities living close to
airports and has become a major cause of conflict between those populations and the
aeronautic community. Noise legislation has been strengthened resulting in restrictions to
operations which have had an impact on logistical and economic concerns with capacity
at many large European airports constrained by noise requirements [1]. It is therefore
of great interest to airport and aircraft operators to reduce the noise exposure caused by
their activities.

Since the widespread introduction of turbojet-powered flight technological advances
have resulted in a reduction of around 20 dB to the noise produced by individual aircraft [1].
Despite this, the increase in air traffic has led to greater noise exposure in the population,
with European air traffic projected to grow by approximately 17% over the period 2013–
2019 [2] with faster growth predicted in the Middle East and Asia [1]. In order to avoid
further restrictions to flight operations it will therefore be necessary to further reduce the
noise produced by individual aircraft, with the target of 15 dB by 2050 relative to a 2000
baseline set by the Advisory Council for Aeronautics Research in Europe (ACARE). The
changes in engine design needed to bring about the required noise reduction will require a
detailed knowledge of the noise generation mechanisms.

Airframe noise Engine noise

Figure 1.1 – Sources of aircraft noise.
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Sources of aircraft noise

Many parts of an aircraft generate noise. The sources can be broadly divided into two
categories, as illustrated in Figure 1.1. Airframe noise is caused by airflow over the surfaces
and protuberances of the airframe such as the undercarriage, flaps and slats, nacelles, etc.
Engine noise has contributions from; jet noise associated with the turbulent mixing of the
engine exhaust with the relatively slow-moving ambient air, tones resulting from shocks
formed at supersonic fan tips, tones due to the impingement of rotor velocity wakes on
the Outlet Guide Vanes (OGVs), and noise due to interaction of engine components with
turbulent flows within the engine.

Figure 1.2 shows a breakdown of the relative contributions of various aircraft noise
sources to the overall aircraft noise. The data for sideline and approach certification
conditions are shown in Figures 1.2a and 1.2b respectively. At both sideline and approach
conditions the fan noise makes a significant contribution to the total engine noise and
therefore the total aircraft noise. Note that the data in Figure 1.2 refer to airframes and
engines from 1992 with bypass ratios of ∼5 and are taken from Kumasaka et al. [3]. More
recent high bypass engine designs have bypass ratios of up to 11 in the case of the Rolls-
Royce Trent 1000. The increase in bypass ratios has reduced jet exit velocity and hence
the relative contribution of jet noise to total engine noise. Subsequently the contributions
due to fan noise are more significant to total engine noise but are lower in absolute terms
[4].
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(b) Approach

Figure 1.2 – Relative importance of aircraft noise components at the sideline and approach certifi-
cation conditions, 1992-level technology (bypass ratio ∼5) on a large 4-engine airframe (Boeing 747).
Data taken from Kumasaka et al. [3].
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1.2 Rotor wake-OGV interaction noise

Fan noise is a significant contribution to overall aircraft noise, as shown above. Four
important noise generation mechanisms by which fan noise is generated are indicated in
Figure 1.3. These four mechanisms are described in Sections 1.2.1–1.2.3.

OGV self noise

Rotor-boundary layer
interaction noise

Rotor wake-OGV
interaction noise

Rotor self noise

Figure 1.3 – Noise sources within a high bypass turbofan engine.

1.2.1 Rotor/OGV self noise

The noise generated by an airfoil in a smooth flow due to interaction between the airfoil
and the turbulent boundary layer that forms on its surface is referred to as self noise. Both
the rotor and OGV airfoil surfaces will generate self noise in this manner.

1.2.2 Rotor-boundary layer interaction noise

Turbulent boundary layers will build along the inlet surface. As the rotor cuts through
this turbulent layer the surfaces are subject to unsteady loading which in turn leads to
noise radiation.

1.2.3 Rotor-OGV interaction noise

The flow behind the rotor is complex, and can be decomposed into steady mean flow and
unsteady turbulent velocity fields, which lead to tonal and broadband interactions with
the OGV, as described below.
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direction of
rotor travel

rotor OGV (stationary)

turbulent rotor wakes

{ {
Figure 1.4 – Turbulent wakes of rotor blades convecting onto OGV and generating broadband noise.

Rotor-OGV interaction noise: tonal contribution

The flow velocity behind the rotor has mean velocity deficits in the ‘shadow’ of each of the
rotor blades. These mean rotor wakes convect downstream onto the OGV and are periodi-
cally cut by the OGV leading edges resulting in tonal noise at the blade-passing frequency
and its harmonics. Tonal fan noise contributions have been the subject of much interest
and research has led to significant reductions of this noise source [5]. Consequently, the
broadband noise due to rotor-OGV interactions have been exposed as significant contrib-
utors to overall fan noise.

Broadband rotor-OGV interaction noise

Measurements made on a low speed scale fan rig by Ganz et al. indicate that rotor-OGV
interaction noise is a significant source of broadband noise at all frequencies and is the
dominant source for frequencies above ∼5 kHz at rig scale [5, Page 128]. The importance of
rotor-OGV interaction noise makes it crucial that this noise generation mechanism and the
propagation of broadband noise generated on the OGV to the observer is well understood.
For this reason rotor-OGV interaction noise is the focus of this thesis. Turbulence in the
rotor wakes results in unsteady fluctuations in the rotor wake velocity. Broadband noise is
generated by interactions between these turbulent flows and the Outlet Guide Vane (OGV
or stator) as illustrated in Figure 1.4.

1.3 Literature review

In this thesis the problem of broadband rotor-OGV interaction noise has been divided into
three parts:

• Prediction of the turbulence in the rotor wake at the OGV leading edge,
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• Calculation of the noise generated on the OGV due to interaction with the turbulent
rotor wakes,

• Prediction of the transmission loss due to the transmission through the rotor.

A survey of the literature relevant to these three areas is given in the following sections.

1.3.1 Rotor wake analysis and prediction of turbulence characteristics

This thesis focusses on the broadband noise generated by the interaction of the turbulent
wakes behind a rotor with the vanes of the OGV. Predictions of broadband noise can be
used to assess the changes to the radiated noise spectrum caused by changes in the design
of engines or the modification of operating conditions. The noise calculations require
the specification of the rotor wake turbulence at the OGV leading edge. For reasons of
time and expense it will not generally be possible to measure rotor wakes for all desired
configurations of geometry and flow conditions. Therefore, it becomes important that the
wake development can be predicted in order to accurately specify the turbulence for input
to the noise model.

One approach to the prediction of rotor wake turbulence is the identification of struc-
ture in turbulent wakes. Given that the wake structure was known it would be possible
to predict the wake turbulence at some arbitrary point downstream of the rotor. One
long-held view in the turbulence community is that turbulent plane wakes become ‘self-
preserving’ at some point downstream of the wake generator. When in the self-preserving
state the parameters describing the mean wake and turbulent wake characteristics scale
with a single flow parameter, allowing the determination of the turbulence characteristics
at the OGV from, say, a prediction of the pressure loss across the rotor. A review of the
literature relevant to notions of self-preserving wakes and turbulent wake development is
presented below.

1.3.1.1 Self-preserving plane wakes for rotor wake turbulence prediction

Self-preservation, or self-similarity, is a condition of a flow in which the velocity profile and
other flow parameters scale with respect to a single flow parameter. Early work, defining
these ideas, was conducted in 1907 by Blasius [6] where they were used in relation to
laminar boundary layers. In 1937 self similarity was first applied to turbulent flows by
Zel’dovich [7].

The book by Townsend [8] (1976) asserts that the self-preserving states in a turbulent
flow occur as the flow characteristics become independent of the initial conditions, at some
downstream location. According to this, the plane wakes due to bodies with different pro-
files should exhibit identical growth rates once the self-preserving condition is established.
Experimental and theoretical investigations have provided evidence that, in some cases,
appear to back this up (see, e.g. Sreenivasan and Narasimha [9] (1982) and Louchez et al.
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[10] (1987)) and, in others, refute it (see, e.g. Bevilaqua and Lykoudis [11] (1978), Wyg-
nanski et al. [12] (1986) and Marasli et al. [13] (1992)), leading to a division within the
turbulence community.

Universality of self-preserving wakes

In their paper of 1982, Sreenivasan and Narasimha [9] argue that the wake due to any body
will enter a universal self-preserving state when measured sufficiently far downstream.
They contend that differences between wakes observed in experiment are the result long-
lived transients that will dissipate given long enough.

Non-universal self-preserving states

A contrary view to that of Sreenivasan and Narasimha was presented in 1989 by George
[14, 15], when he examined the historical assumptions surrounding self-preserving flows
due to jets and wakes. George observed that earlier work relating to wake development
assumed the wake generator to be a point source of drag and that the predicted flows
therefore evolve into a particular self-preserving form in which the mean wake profile is
independent of the characteristics of the wake generator. Furthermore, the dependency
of the mean wake velocity deficit and half-maximum half-width of the mean wake would
be universal, i.e. the wake due to, say, a cylinder is predicted to develop identically as
that due to an airfoil. George argued that these earlier analyses, by ignoring the effects of
the initial conditions at the wake generator, omitted the influence of the wake generator
on subsequent wake development. In his analysis George found that the constants of
proportionality that link the wake velocity deficit and half-maximum half-width of the
mean wake to the downstream distance are not universal, but that the initial conditions
dictate the rate of growth of the mean wake so that it is dependent on:

• The geometry of the wake generator,

• The velocity of the flow past the wake generator,

• The loading of the wake generator.

Despite these differences, George observed that the mean wake shapes should always be
similar when normalised with local parameters.

George cited as evidence of non-universality recent experiments of two-dimensional
plane wakes conducted by Wygnanski et al. [12]. In their measurement campaign, [12]
analysed the wakes due to several bodies, including cylinders and a symmetric airfoil, all
experiments being conducted in axial flows with no mean perpendicular loading. The
published results showed that the mean wake shape was symmetric and similar to the
Gaussian function but that the growth rates of the wake width and maximum velocity
deficit were dependent on the geometry of the wake generating bodies, suggesting that
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there was a lack of universality in the measured results. Wygnanski et al. found that the
inflow turbulence in different test facilities greatly influenced the observed wake evolution.

Computational approaches to self-preserving wake research

Computational studies into wake self-preservation have also been conducted. In 1997
Ghosal and Rogers [16] Performed Large Eddy Simulations (LES) and found non-unique
self-preserving states, characterized by different spreading rates and turbulent statistics
that were maintained for significant time periods. Later, in 1998 Moser et al. [17] made
a series of wake predictions using Direct Numerical Simulation (DNS) and demonstrated
the sensitivity of the flows to the initial conditions. However, due to finite resources, their
simulations were not able to show the final state of the wakes.

1.3.1.2 Rotor wake turbulent wake measurements

Few experimental studies have been conducted of the three-dimensional flow behind a
rotor. In 1975 Evans [18] conducted a measurement campaign using an ensemble-averaging
technique. Ganz et al. [5] (1998) performed an analysis of the flow in a low speed Boeing
18-inch fan rig subject to a variety of operating conditions. Comparison of the three-
dimensional turbulence velocity with the homogeneous isotropic turbulence model due to
von Kármán revealed weak evidence of anisotropy. However, despite the anisotropy, the
turbulence integral lengthscale was found to scale with the wake width.

Gliebe et al. [19] (2000) performed a series of measurements and Reynolds-Averaged
Navier-Stokes (RANS) predictions of the wakes behind the rotor stage of a low aspect
ratio test rig. Hotwire probes were positioned at several radial and axial locations. RANS
Results were shown to be in good agreement with experiment. Analysis of these results led
to the definition of expressions defining the development of the mean and turbulent wake
components with increasing distance downstream, all of which were related to the wake
momentum thickness. These expressions allowed the definition of the wake turbulence
spectrum using the velocity wavenumber spectra due to e.g. von Kármán or Liepmann,
either of which require the specification of only two parameters; the root-mean-square
velocity and an integral length scale. Gliebe et al. used their wake development rules
to predict the broadband noise due to a turbofan-like test rig to within 5 dB at most
frequencies. RANS solutions for the rotor wake have also been performed by Nallasamy
et al. [20] (2002). In 2004 it was noted by Envia et al. [21] that most contemporary
descriptions of the rotor turbulent wake were based on the results published by Ganz
et al. [5], Gliebe et al. [19], Nallasamy et al. [20], as described above.

Cyclostationary analysis of rotor wakes

More recently, in 2009 Jurdic et al. [22] performed cyclostationary spectral analysis on
rotor wakes measured on a low speed fan rig. This cyclostationary technique allowed
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the separation of the turbulence in between the wakes from that in the rotor wakes with
significantly greater frequency resolution than conventional spectral analysis. It is noted
by Jurdic [23] that the Liepmann turbulence model for homogeneous isotropic turbulence
is a good fit for the measured turbulence, even in hub and tip regions where secondary
flows are significant.

The treatment of wake overlap phenomena

A consequence of the broadening of the wakes with increasing downstream distance is
that at some point downstream of the rotor the wakes will become overlapped. Both Ganz
et al. [5] and Gliebe et al. [19] acknowledge that wake overlap has occurred in some of their
measurements of rotor wakes but in neither case was any attempt made to account for
this phenomenon so that the values obtained for the maximum mean wake velocity deficit,
free stream velocity or mean wake width are not the values associated with individual
self-preserving mean wakes. The results of the mean wake overlap model presented in
Chapter 6 of this thesis suggests that neglect of the mean wake overlap phenomena will
have caused errors in the ‘correlations’ obtained by Gliebe et al. [19]. To the knowledge of
the author, no attempt has been made elsewhere in the available literature to model the
effects of mean wake overlap on measured mean wake parameters.

1.3.2 Noise due to interaction between OGV and convected turbulence

Developments relevant to the prediction of noise due to the interaction of turbulence
with an OGV began in the 1930s with considerations of the unsteady lift on an airfoil
due to a gust. Progress in this field has led to the inclusion of three-dimensional flow
effects and compressibility and the interactions between adjacent vanes of the OGV. These
developments are presented in approximately chronological order below.

1.3.2.1 Single airfoil interaction noise models

Early work on interaction noise concentrated on the response of an isolated airfoil subject
to a sinusoidal vortical gust aligned perpendicularly to the airfoil surface. The unsteady
lift on the airfoil is used to determine the strength of acoustic dipole sources that are
assumed to replace the airfoil. Such interactions result in a single frequency, or tonal,
response as the gust propagates past the airfoil leading edge in a steady mean flow.

Single airfoil models for the prediction of tonal noise

The foundations of the turbulence-OGV interaction problem lie in work performed in the
field of aeronautics. In 1938 von Kármán and Sears [24] published work that aimed to
simplify the contemporary body of airfoil theory (see, e.g. Theodorsen [25] and Küssner
[26]). This work, subsequently summarised by Sears [27] in 1941, formulated expressions
for the lift and moment on a two-dimensional flat plate airfoil of finite chord subject to
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‘translatory’ and ‘rotational’ gust velocities, being respectively uniform along the chord
and proportional to the location aft of the chord centre. Sears [27] extended the formulation
to include the unsteady lift due to a sinusoidal gust.

In 1955 it was observed by Curle [28] that, through an extension of Lighthill’s general
theory of aerodynamic sound [29], the effect of a flat plate in a flow was equivalent to that
of a distribution of dipoles in place of the solid boundary. Application of this theory to the
sinusoidal gust formulation of Sears [27] led to the first flat-plate single airfoil noise model
for prediction of the sound pressure due to a harmonic vortical gust. The formulation
derived by Curle assumed that the flow was incompressible and was of limited accuracy
at higher frequencies and Mach numbers, where compressibility effects become important.

Extension of single airfoil noise models to include three-dimensionality and
compressibility effects

Much work has subsequently been undertaken in order to include the effects of three-
dimensionality and compressibility. Formulations for three-dimensional incompressible
flows were derived by Filotas [30] (1969) and Graham [31] (1970). Approximate solutions
for the two-dimensional compressible flow were derived by Osborne [32] (1973) and Amiet
[33] (1974), both valid at low frequency. The general three-dimensional compressible prob-
lem cannot be solved analytically but in 1970 Graham [34] deduced that the formulation
for a three-dimensional gust in a compressible flow can be expressed in terms of the two-
dimensional compressible and the three-dimensional incompressible results through the
use of the so-called similarity conditions. Incident gusts are found to be either subcritical,
with a subsonic phase speed along the leading edge of the blade, or supercritical, where
the phase speed is supersonic along the blade leading edge. A subcritical case can be re-
duced to a case of oblique incidence in an incompressible fluid whereas a supercritical case
is similar to compressible two-dimensional case where there is no span-wise wavenumber
component.

Adamczyk [35] (1974) took an approximate approach to the three-dimensional com-
pressible flow problem and derived a closed-form expression for the aerodynamic response
of an infinite swept flat-plate airfoil in the form of a sum of two terms, representing the
leading edge interaction and the subsequent trailing edge back-scattering.

Extension of single airfoil models to broadband noise

In 1975 Amiet [36] extended the earlier flat-plate theories to predict broadband noise
emissions due to a stationary airfoil in a turbulent flow. The resulting formulation included
the effects of non-zero span-wise wavenumber components of incident turbulence using
the similarity rules of Graham [34]. Approximate solutions provided by Amiet divide the
spectrum into low and high frequency regimes based on the reduced wavelength of the gust
relative to a one-quarter airfoil chord and using the low frequency response function from
Amiet [33] and the high frequency response function due to Adamczyk [35] as required.
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The results of this model were subsequently validated in 1977 during a series of experiments
conducted by Paterson and Amiet [37] who also showed that the effects of angle of attack
on the radiated noise were small but that the noise from thick airfoils was under-predicted
at high frequency due to the use of flat plate models. The single airfoil approach to
interaction noise from rotors and stators has since been employed by many researchers
(see, e.g. Roger et al. [38] (2006), Moreau and Roger [39] (2007) or Pagano et al. [40]
(2010)).

In 2010 a frequency domain model for the broadband sound power radiated to the far-
field from a single airfoil was developed by Blandeau et al. [41], where unsteady loading
of the impinged blade row is modelled using classical isolated flat-plate airfoil theory of
Amiet [33, 42] which predicts far-field pressure.

1.3.2.2 Cascade interaction noise models

In a typical turbofan engine the OGV has vanes that are closely spaced with chords that
are long relative to the gaps separating them so that acoustic interactions between the
vanes become a significant factor in the acoustic response to incident turbulence. The
single airfoil approach clearly cannot account for interactions between the vanes of an
OGV.

Cascade models for tonal noise prediction

In 1958 a two-dimensional unwrapped blade row was considered by Lane and Friedman
[43] in an analysis of the unsteady lift and moment on compressor and turbine blades for
the prediction of flutter rather than noise. Torsional flutter was also the subject of work by
Whitehead [44] (1965) where a chord-wise distribution of bounded vorticity is described
that is equivalent to the cascade surfaces. The reaction of the bounded vorticity and their
shed vortices are combined to form a description of the blade forces.

Kaji and Okazaki [45] (1970) developed a model for the tonal noise generated due to
the potential and velocity deficit interactions between a stator row and downstream rotor.
Their formulation replaced the blade row with a distribution of pressure doublets, the
strength of which was determined by the numerical solution of an integral equation.

In 1973 Smith [46] used a bounded vorticity approach, similar to that seen in Whitehead
[44], in order to obtain an integral function for the unknown vorticity distribution along the
cascade blades. Expressions were given for the calculation of the distribution of unsteady
forces and moments and acoustic pressure due to blade torsion and translation and incident
acoustic and vorticity waves. Solutions to the integral equation were obtained using a
collocation technique. Further notes and a code based on this formulation, Linsub, were
presented in 1987 by Whitehead [47].

The analyses of Kaji and Okazaki [45], Smith [46], Whitehead [47] mentioned above
all employ numerical schemes in order to obtain their solutions, introducing significant
computational difficulties at high frequencies. Approximate analytic expressions for the
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sound transmission through a two-dimensional cascade were presented in 1970 by Mani
and Horvay [48]. Their approach was based on the Wiener-Hopf technique and neglected
interaction between the leading and trailing edges by using semi-infinite blades for both the
downstream-propagating waves from the leading edges and upstream-propagating waves
from the trailing edge. These wave interactions were resolved in the vane overlap region,
thus limiting this technique to overlapping configurations.

Since 1992 further developments have been undertaken by Peake and co-workers. The
unsteady blade loading due to an incident vortical gust was calculated by Peake [49, 50].
The upstream radiation of sound waves where the angle of attack is non-zero was obtained
using similar techniques by Peake and Kerschen [51] whilst the effects of small amounts of
blade thickness and camber are considered by Evers and Peake [52].

Extension of cascade noise models to broadband

The numerical approach to the solution was extended to predictions of broadband noise
in 1998 by Hanson and Horan [53]. Their paper utilised the formulation due to Glegg
[54] with an incident gust that is generalised by the use of a Fourier transform, in a
similar manner as had been adopted by Amiet [36] for the isolated airfoil case. The use of
the Wiener-Hopf technique limits the application of this formulation to overlapped-blade
configurations. Hanson [55, 56, 57, 58] later developed this broadband model to include
transmission effects, which will be discussed in Section 1.3.3.

In 2006 Cheong et al. [59] developed a broadband model for turbulence-cascade interac-
tion that employed the cascade formulation due to Smith [46], thus removing the limitation
to overlapped-blade cascades imposed by the Wiener-Hopf technique. The broadband ex-
tension was developed using a Fourier transform approach similar to that of Hanson and
Horan [53]. Cheong et al. observed that periodicity in the kernel function used to ob-
tain the acoustic response of the cascade represented redundancy in the calculations and
proposed a re-ordering of the formulation that has allowed a significant improvement in
evaluation times.

Extension of cascade noise models to include three-dimensional effects

In 1976 Goldstein [60] proposed a solution for a rectilinear cascade to account for three-
dimensional gusts with discrete span-wise wavenumbers due to rigid duct walls. This
approach was adopted in 1981 by Atassi and Hamad [61] when considering the interaction
of wakes and secondary flows with a cascade. This work extended the similarity rules
established by Graham [34] to three-dimensional gusts impinging on a rectilinear cascade.

The Wiener-Hopf technique was employed by Glegg [54] (1999) to derive an exact
analytical expression for the acoustic field radiated from a three-dimensional cascade of
blades with finite chord subject to a three-dimensional gust. The result is obtained by
observing that it is not necessary to derive expressions for the unsteady loadings on the
blades in order to determine the acoustic potential outside the cascade.
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In 2010 Posson et al. [62, 63] extended the formulation due to Glegg [54] in order to
obtain a solution for the acoustic field that was also valid in the inter-vane space.

A semi-analytic model was developed in 2008 by Lloyd and Peake [64], extending the
two-dimensional cascade model of Smith [46], Whitehead [47] and Hanson and Horan
[53] to incorporate the effects of lean and sweep, further extending the similarity rules of
Graham [34] and [61].

Noise models for three-dimensional geometries

A model for noise generated by an annular cascade of unloaded blades subject to swirling
mean flows was developed by El Hadidi and Atassi [65] (2002) and Atassi et al. [66] (2004)
which evaluated the pressure at the inlet and exit planes of an annular duct involved the
matching of vortical and acoustic modes within an annular duct with radially variable
swirling flow. Results of this model have shown that the span-wise variation of the swirl
angle causes significant changes to the span-wise unsteady lift distribution and hence to
the propagating acoustic pressure.

1.3.3 Calculation of rotor transmission loss

Semi-actuator disk modelling for transmission through a blade row

Early work on transmission through blade rows concentrated on discrete frequency (tonal)
noise. The simplest formulation applicable to the rotor transmission problem was presented
in 1970 by Kaji and Okazaki [67]. A semi-actuator disk method was adopted so that the
flow field was divided into three regions: upstream of, downstream of, and within the
blade row. The medium in the region within the blade row was assumed to support only
plane-wave acoustic waves propagating upstream and downstream within notional ducts
aligned with the stagger angle. Matching of the pressure, vorticity and enthalpy at the
leading edge and trailing edge interfaces led to a system that was solved for the required
acoustic parameters.

Cascade modelling of blade row transmission

Also in 1970, Kaji and Okazaki [68] took a more detailed approach to the cascade trans-
mission problem. In this, the blades of a flat-plate cascade were replaced with acoustic
doublets, subject to the boundary condition of zero velocity perpendicular to the blade sur-
faces. The resulting integral equation for the upwash velocity required numerical solution
using the collocation technique.

The bounded vorticity formulation due to Smith [46], discussed in Section 1.3.2.2 for
the interaction noise problem, included inputs for acoustic wave incidence and as such was
applicable to the acoustic transmission problem. Here, as before, the collocation method
was used to provide a solution for the upwash velocity.
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Wiener-Hopf solution for cascade transmission

Mani and Horvay [48] (1970) took a different approach to the sound transmission problem.
They split the transmission problem into two parts: the reflection and transmission by a
cascade of semi-infinite plates and the radiation from the rectilinear ducts formed between
the semi-infinite plates of a rectilinear cascade. The Wiener-Hopf technique was applied
to obtain an approximate solution but the assumption of semi-infinite plates limited the
application to cascades in which the adjacent blades are overlapped.

Koch [69] (1971) developed the work of Mani and Horvay [48] to provide an exact
solution for the reflected and transmitted sound when a cascade of blades of finite chord
is impinged upon by acoustic waves.

Application of models to broadband rotor transmission

In 1999 Hanson [55] adapted the cascade transmission model of Smith [46] by incorporating
actuator disks to affect the flow turning due to steady loading and a formulation was
derived for the sound pressure in a coupled rotor-OGV system. Later, in 2001 Hanson
[56] adopted the cascade model due to Glegg [54] so that the effects of lean and sweep
were treated but at the expense of the overlapped-cascade limitation of the Wiener-Hopf
method. The resulting expressions were for tonal sound power. In later work Hanson
[57, 58] extended the noise model to broadband sound power.

More recently, work on acoustic transmission loss through the rotor has been conducted
by Posson and co-workers [70, 71, 72, 73, 74] (2007 onwards). In these papers the cascade
formulation is that due to Glegg [54], with strip theory being used to treat the rotor
geometry and the unsteady blade loading coupled to the duct modes to compute overall
sound power transmitted along the duct.

1.4 Novel contributions of this thesis

The main contribution of this thesis is that it develops a comprehensive model for fan
broadband noise prediction which addresses the issues of the behaviour of the turbulent
wake convected onto the OGV, noise generation by the OGV cascade, and the subsequent
blockage of sound by the rotor. A summary of the novel elements included in this work
are given below:

• A model has been developed for the overlapping of self-preserving mean wakes due
to a regular distribution of wake generating bodies that allows the properties of
the individual mean wakes to be deduced from the characteristics of significantly
overlapped mean wakes, as observed at downstream locations and permits the robust
deduction of momentum thickness. These values are of fundamental importance in
the prediction of turbulence parameters for the broadband noise calculations.
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• Accurately describing the turbulence incident on the OGV is critical for making
useful predictions of broadband interaction noise. Many noise prediction schemes
use the results of rotor wake surveys undertaken by Gliebe et al. [19]; it is assumed
that the rotor wake development observed in that study is applicable because of
the universality of the individual wake self-preserving states. An analysis of fan
test rig hotwire anemometry data has been undertaken which shows that the self-
preservation states of rotor wakes are not universal, as the results exhibit sensitivity
to working line and differ significantly from those recorded by [19].

• Observation that anisotropy in measured rotor wakes leads to underestimates of
turbulence integral lengthscale when isotropy is assumed and that overestimates of
the turbulence kinetic energy are observed when applying the inherently isotropic
RANS CFD method to these anisotropic flows.

• Identification of frequency regimes, that are a function of mean flow Mach number,
blade separation and stagger angle, in which the noise generated by a cascade of flat
plate airfoils is insensitive to the interactions between blades. In these regimes single
airfoil theory may be substituted for cascade theory, thus dramatically reducing the
calculation time required for noise predictions.

• Presentation of a generalised formulation for noise scattering by a rotor. It is ob-
served that the scattering predicted using the exact cascade model and the plane-
wave assumption due to Kaji and Okazaki [67] are in very close agreement at low
and high frequencies. A simplified frequency-averaged rotor transmission loss model
is developed which indicates that rotor transmission loss is highest when broadband
sound power incident on the rotor is concentrated on phase velocity angle bands
that are poorly transmitted, which generally occurs when the power and transmis-
sion distributions are narrow at high mean flow Mach numbers.

The findings of this research have been published in The Journal of the Acoustical Society
of America [75] and presented at the 17th and 18th AIAA/CEAS Aeroacoustics conferences
[76, 77, 78].

1.5 Thesis overview

The significance of broadband rotor-OGV interaction noise means that it is important
that accurate and practical methods are available for its prediction so that new engine
designs and operating regimes can be assessed and refined prior to manufacture. This
thesis concentrates on the broadband rotor-OGV interaction noise prediction methods, an
approach that is divided as described below:

• A noise model to predict the sound power generated on an OGV impinged upon by
a general spectrum of turbulence velocity is presented in Chapter 2. The model is
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based on an exact cascade formulation that accounts for the interactions between the
vanes of the OGV. The predicted spectral characteristics are explored in Chapter 3.

• Due to computational expense, evaluation of the exact cascade broadband noise
model for rotor-OGV interaction noise is slow at high frequencies. An alternative
analytical ‘Single Airfoil’ (SA) sound power model, which ignores the vane-to-vane
interactions, is compared with the cascade model in Chapter 4 resulting in guidelines
for the frequency regimes in which the SA noise model may be used instead of the
exact cascade model.

• Noise generated on the OGV propagates to the forward arc by passing upstream
through the rotor where some sound power will be reflected, resulting in a transmis-
sion loss. In Chapter 5 models are developed for the prediction and interpretation
of the rotor transmission loss.

• The ability to predict the turbulence characteristics at the OGV, as required for
performing noise predictions, depends on the presence of structure in the rotor wake
and is in turn dependent on the onset of wake self-preservation. Self-preserving mean
wakes behind a rotor will become overlapped when observed sufficiently far down-
stream. A method for the determination of the individual mean wake characteristics
from overlapped mean wake observations is developed in Chapter 6. Application
of the mean wake overlap model in Chapter 7 allows the robust calculation of the
momentum thickness and in Chapter 8 allows the deduction of relations describing
self-preserving wake development and hence prediction of the turbulence character-
istics at the OGV leading edge locations as required for inputs to the noise model.

• In Chapter 9 the methods developed in earlier chapters are applied to the predic-
tion of rear and forward arc noise from a fan test rig which are compared with
experimental measurements.
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Chapter 2

Model for the prediction of broadband
noise radiated from a cascade interacting
with velocity fluctuations

This chapter presents a model for the prediction of the sound power radiated from a two-
dimensional cascade of flat plate airfoils interacting with arbitrary velocity perturbations.
In Chapter 9 this model will be used to predict the broadband noise due to the interaction
between rotor wake turbulence and downstream OGVs.

This radiated sound power model and the rotor sound power transmission loss model of
Chapter 5 are both extensions of a general formulation for the acoustic pressure response
of a cascade, derived by Smith [46] and Whitehead [47]. Due to the complex fan and flow
geometries inherent to turbofan designs a number of simplifying assumptions are made
which are presented in the following section. These assumptions are common to both the
noise model and the rotor transmission model.

2.1 Assumptions for the cascade model

The fan blades and stator vanes within a turbofan engine have complex geometry where
the stagger angle, lean angle, sweep angle, camber, thickness and shape of the blades
vary across the radial span. Such complications make it necessary to adopt simplifying
assumptions in order to develop broadband noise and multi-mode transmission models
base on analytic and semi-analytic models rather than computationally expensive CFD
methods. The assumptions and simplifications are listed below.

1. The rotor/stator is divided into annular strips. Each strip is unwrapped at its
medial radius to form a two-dimensional blade row or ‘cascade’ of flat plate airfoils,
as illustrated in Figures 2.1 and 2.2. Broadband noise contributions of overall noise
sound power due to each strip are calculated and the total broadband noise prediction
for the three-dimensional rotor/stator is obtained from the incoherent summation
of the sound power from each strip. Further detail of the derivation of the cascade-
defining parameters is given in Section 2.2.

17
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R

Figure 2.1 – Illustration of single annular strip taken from an OGV.

2. Turbulence impinging on the rotor/stator is assumed to be two-dimensional, i.e. the
span-wise wavenumber component is assumed to be zero.

3. Broadband noise is assumed to be radiated from the rotor/stator into free field: the
effects of the duct on radiated sound are ignored.

4. The blades of the rotor/stator in each strip are represented as flat plates of zero
thickness (see Figure 2.2).

5. The blades/vanes of the rotor/stator are assumed to be identical and evenly spaced
around its circumference.

6. The rotor/stator is assumed to have no steady loading so that the mean flow is
assumed to impinge on the blades with zero angle of incidence (see Figure 2.3).

7. The Kutta condition is imposed, i.e. the pressure jump is continuous at the vane
trailing edges [47].

8. Unsteady flow perturbations are assumed to be very small compared to the mean
flow velocity so that linear theory may be employed.

9. Turbulence vorticity is assumed to be convected by the mean flow as a ‘frozen gust
pattern’. This assumption is representative of a case where the time taken for a vortex
to sweep past the cascade is short compared to the turbulence decay timescale.

10. The flow is assumed to be subsonic and isentropic.

11. The medium is assumed to be inviscid so that boundary layers on vane surfaces are
neglected.
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(b) Strip section at
medial radius R

(c) Unwrap section
at radius R

(e) Flat-plate
airfoils

(d) Unwrapped
infinite cascade

(a) Annular strip
from OGV

R

Figure 2.2 – OGV ‘unwrapped’ at strip medial radius R to form an infinite cascade of two-
dimensional blades which are in turn modelled as flat-plate airfoils.

2.2 Cascade geometry

2.2.1 Defining annular strips

Consider an OGV with Bs evenly spaced vanes. The OGV is divided into a number of
annular strips covering the entire span, as illustrated in Figure 2.1. The stagger angle,
chord and aerodynamic behaviour of the vanes at each strip’s medial radius, R, is assumed
to be representative of the characteristics over the whole strip.

2.2.2 Unwrapping strip to define an infinite rectilinear cascade

Each strip is ‘unwrapped’ at its medial radius to form a two-dimensional vane row or
‘cascade’ as illustrated in Figure 2.2. The cascade is assumed to be of infinite extent in
the gap-wise direction. Due to the spatial periodicity of the annular strip the vane pattern
is assumed to repeat every Bs vanes. Finally the vanes are assumed to be flat-plate airfoils
of zero thickness (Assumption 4 in Section 2.1). The flat-plate airfoils of the cascade are
assumed to have identical stagger angle χs, chord cs and inter-blade spacing ss = 2πR/Bs.

A representation of the two-dimensional cascade is shown in Figure 2.3 indicating the
coordinate systems used in the noise model. The unwrapped duct coordinate system has
components x = (x1, x2) in the axial and gap-wise directions respectively with its origin
at the leading edge of a cascade reference vane. The OGV-aligned y coordinate systemy1

y2

 =

 cos θs sin θs

− sin θs cos θs

x1

x2

 (2.1)

also has its origin at the leading edge of the reference vane with y1 lying along its chord
and y2 perpendicular to it.
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U
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x1

x2

Convected
turbulent gust

y1

y2

U2

U1

Flat-plate airfoils
Mean flow

χs = θs

θs

Figure 2.3 – Geometry of the infinite cascade of flat-plate airfoils representing stator vanes in a
given annular strip. The mean flow U is aligned with the cascade vanes so that the stagger angle
matches the whirl angle, χs = θs.

2.2.3 Velocity field

The velocity field associated with the turbulence is decomposed into a steady mean ve-
locity vector U oriented parallel to the airfoil chords (θs = χs) plus an unsteady velocity
fluctuation vector w due to the turbulent wakes shed by the upstream rotor.

U : The steady mean velocity has components (U1, U2) with respect to x that are assumed
to be subsonic. In this model the radial component is assumed to be insignificant. By
definition the y coordinate system is aligned with the mean flow so that its resolved
components with respect to y are (U, 0).

w : The unsteady velocity fluctuation vector w has resolved components (w1, w2) with
respect to the x coordinate system and (wy1 , w) with respect to y. The unsteady
velocity component normal to the blade surface w is referred to as the upwash
velocity.

2.3 Pressure radiated from cascade due to velocity perturbation

Several methods exist for the solution of the acoustic pressure field that is generated due to
the interaction of a single-frequency harmonic gust with a flat-plate cascade, as discussed
in Chapter 1. The results presented in this thesis have been obtained using the method
due to Whitehead [47] and Smith [46], key features of which are summarised below.

1. The upwash velocity distribution on the vanes of the flat plate cascade is represented
by a chord-wise distribution of bounded vortices. The fixed vane spacing ss results
in a constant inter-vane phase angle given by

σ = (k1 sin θs + k2 cos θs)ss, (2.2)
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where k1 and k2 are the wavenumber components of the incident vortical gust with
respect to the cascade-aligned y coordinate system.

2. The periodic nature of the bounded vortices allows the resulting vorticity field to be
decomposed into continuous wave-like sheets of vorticity of order r which are referred
to as ‘cascade waves’. The rth cascade wave has wavenumber component νr in the
x2 direction given by

νr = σ − 2πr
ss

= (k1 sin θs + k2 cos θs)ss − 2πr
ss

. (2.3)

Wave solutions to the linearised Euler equations, shown in Equation (2.8), predict up-
stream and downstream-propagating acoustic waves equivalent to azimuthal modes
of order r, hereafter indicated by superscript symbols + and − respectively. The
axial wavenumber components corresponding to νr at some angular frequency ω are
given by

µ±r = −
M1(k −M2νr)±

√
(k −M2νr)2 − β2

1ν
2
r

β2
1

, (2.4)

where M1 and M2 are the Mach number components of the mean flow with respect
to the x coordinate system, β1 = (1−M2

1 )1/2 is the Prandtl-Glauert number corre-
sponding to M1 and k = ω/c0 is the free space acoustic wavenumber where c0 is the
sound speed.

3. The interaction of a single frequency harmonic gust of amplitude w with a flat-
plate cascade results in upstream-propagating and downstream-propagating acoustic
pressure fluctuations. An expression for p± at some location x at time t can be
written as the sum of contributions due to cascade waves of order r

p±(x, t) = ρ0wU
∞∑

r=−∞
R±r (k, ω) exp

{
i(ωt− µ±r x1 − νrx2)

}
, (2.5)

where R±r represents the single-frequency cascade response function specifying the
non-dimensional pressure amplitude due to the rth cascade wave and turbulence
with wavenumber components k = (k1, k2). ρ0 is the density of air.

2.4 Extension of single-frequency pressure formulation to
broadband sound power

The preceding section summarised the main features of a model for the prediction of sound
pressure due to the interaction of a single harmonic vortical gust with a cascade of flat-plate
airfoils, culminating in Equation (2.5). In Chapter 5 this cascade pressure response will
be extended to the case of incident acoustical waves in order to calculate the sound power
transmitted through a rotor. However, the focus of the current chapter is to formulate an
expression for the sound power radiated from an OGV due to turbulence comprised of a
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continuum of wavenumber components, enabling the calculation of broadband rotor-stator
interaction noise. The following section describes the generalisation of the incident gust.

2.4.1 Generalisation of upwash velocity using Fourier transform

The instantaneous acoustic pressure due to a two-dimensional turbulence gust with a
continuum of wavenumber components k1 and k2 can be expressed by generalisation of
Equation (2.5) formed by integrating over all frequency components and two-dimensional
wavenumber components k1 and k2 as [56]

p±(x, t) = ρ0U

$ ∞

−∞
W(k, ω)

∞∑
r=−∞

R±r (k, ω) exp
{
i(ωt− µ±r x1 − νrx2)

}
d2k dω, (2.6)

where W(k, ω) is the frequency-wavenumber upwash velocity spectrum given by the Fourier
transform of the incident upwash velocity w(x, t)

W(k, ω) =
( 1

2π

)3 $ ∞

−∞
w(x, t) exp {−i(ωt− k1x1 − k2x2)} d2x dt. (2.7)

The frequency-wavenumber upwash velocity spectrum W(k, ω) is an averaged spectrum
and as such is a statistical description of the non-deterministic upwash velocity w.

Velocity perturbations in the flow are assumed to be very small (Assumption 8 in
Section 2.1). The flow can therefore be described in terms of the two-dimensional linearised
momentum equations [46], expressed with respect to x as

∂w1
∂t

+ U1
∂w1
∂x1

+ U2
∂w1
∂x2

+ 1
ρ0

∂p

∂x1
= 0, (2.8a)

∂w2
∂t

+ U1
∂w2
∂x1

+ U2
∂w2
∂x2

+ 1
ρ0

∂p

∂x2
= 0. (2.8b)

In order to compute the sound intensity, and hence sound power, radiated from the cascade,
we require the particle velocity components in the x1 and x2 directions. These may be
deduced from Equations (2.6) and (2.8)

w±1 (x, t) = ρ0U

$ ∞

−∞
W(k, ω)

∞∑
r=−∞

µ±r
ρ0(ω − U1µ

±
r − U2νr)

R±r (k, ω)

× exp
{
i(ωt− µ±r x1 − νrx2)

}
d2k dω, (2.9a)

w±2 (x, t) = ρ0U

$ ∞

−∞
W(k, ω)

∞∑
r=−∞

νr

ρ0(ω − U1µ
±
r − U2νr)

R±r (k, ω)

× exp
{
i(ωt− µ±r x1 − νrx2)

}
d2k dω. (2.9b)

2.4.2 Acoustic intensity

The sound power generated by the cascade is obtained by spatial integration of the axial
component of acoustic intensity over the duct cross-section. The axial component of the
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instantaneous acoustic intensity in a uniform steady isentropic flow U is given by [60]

I±1 (x, t) =
(
p±(x, t)
ρ0

+ U ·w±(x, t)
)(

ρ0w
±∗
1 (x, t) + U1

p±∗(x, t)
c2

0

)
, (2.10)

where the superscript ∗ denotes complex conjugation.
The pressure and velocity terms in Equation (2.10) are dependent on the frequency-

wavenumber upwash velocity spectrum W(k, ω), as described in Section 2.4.1. Their values
are therefore not knowable at a given instant in time but are characterised in an average
sense. Assuming identical blades, and therefore identical blade wake turbulence statistics,
we may assume that the turbulent wake statistics, and therefore the statistics of the
generated noise, are identical over a single blade passage T , suggesting the use of ensemble-
averaging. The expected value operator E [·] is used to indicate the ensemble-average value
at x as a function of time, so that

E
[
I±1 (x, t)

]
= 1
K

K∑
k=1

I(x, t+ kT ), (2.11)

where T is the period of blade passage, k ∈ N is the cycle index where there are K cycles in
the average. Thus Equation (2.10) is expanded by substitution of Equations (2.6) and (2.9),
yielding

E
[
I±1 (x, t)

]
= Re

{
ρ0
c0
U2

$ $ ∞

−∞
E
[
W(k, ω)W∗(k′, ω′)

]
×

∞∑
r=−∞

∞∑
r′=−∞

ω/c0
[
µ±∗r′ +M1(ω′/c0 −M1µ

±∗
r′ −M2νr′)

]
(
ω/c0 −M1µ

±
r −M2νr

) (
ω′/c0 −M1µ

±∗
r′ −M2νr′

)
×R±r (k, ω) R±∗r′ (k′, ω′) exp

{
i(ω − ω′)t

}
× exp

{
−i
[(
µ±r − µ±∗r′

)
x1 + (νr − νr′)x2

]}
d2k d2k′ dω dω′

}
. (2.12)

2.4.3 General form of the velocity wavenumber-frequency cross
spectrum E [W(k, ω)W∗(k′, ω′)]

The definition of W(k, ω) is given in Equation (2.7) so that the expected value of the
upwash velocity wavenumber-frequency cross spectrum can be written

E
[
W(k, ω)W∗(k′, ω′)

]
= 1

(2π)6

$ $ ∞

−∞
E
[
w(x, t)w∗(x′, t′)

]
× exp

{
−i(ωt− ω′t′ − k · x + k′ · x′)

}
d2x d2x′ dt dt′. (2.13)

where it is understood that E [·] represents the expectation over numerous blade passages
in the sense of Equation (2.11).

For a typical rotor wake the perturbation velocities w are very much smaller than
the mean flow velocity U and hence the gust pattern changes only slightly as it convects
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past the cascade leading edge (Assumption 9 in Section 2.1). The velocity disturbance is
therefore assumed to be independent of time in the flow-fixed frame of reference x̃ = x−Ut.
Writing

x̃′ = x̃ + δx̃, (2.14a)

t′ = t+ τ, (2.14b)

Equation (2.13) can be rewritten as∗

E
[
W(k, ω)W∗(k′, ω′)

]
= 1

(2π)4

& ∞

−∞
E [w(x̃)w∗(x̃ + δx̃)]

× exp
{
−i(k′ − k) · x̃

}
exp

{
−ik′ · δx̃

}
d2x̃ d2δx̃

× 1
2π

∫ ∞
−∞

exp
{
−i[(ω − k ·U)− (ω′ − k′ ·U)]t

}
dt

× 1
2π

∫ ∞
−∞

exp
{
i(ω′ − k′ ·U)τ

}
dτ, (2.15)

where E [w(x̃)w∗(x̃ + δx̃)] corresponds to the general definition of an autocorrelation func-
tion Rww(x̃, δx̃) while the t and τ integrations are recognised as the Fourier transform
representation of the Dirac delta function so Equation (2.15) may be simplified to

E
[
W(k, ω)W∗(k′, ω′)

]
= 1

(2π)4

& ∞

−∞
Rww(x̃, δx̃)

× exp
{
−i(k′ − k) · x̃

}
exp

{
−ik′ · δx̃

}
d2x̃ d2δx̃

× δ(ω − k ·U) δ(ω′ − k′ ·U). (2.16)

2.4.4 Simplification of wake turbulence autocorrelation function

The description of the wake developed by Ventres et al. [79] and subsequently employed
by, e.g. Hanson [56], Nallasamy and Envia [80], Jurdic et al. [81], Lloyd and Peake [64],
and Posson et al. [82] modulates the velocity and not the correlation. Where wake widths
are large with respect to the rotor blade spacing sr the adjacent wakes become correlated,
leading to unrealistic scaling of the mean-square acoustic pressure as B2

s . It will be shown
in Chapter 8 that adjacent wake overlap is a common phenomenon in rotor wakes.

The analysis of the hotwire turbulence velocity behind a rotor by Jurdic et al. [22] has
shown that its correlation structure is consistent with that of isotropic turbulence ρww(δx̃)
which is assumed to be homogeneous, and therefore a function of only the separation
distance δx̃, modulated by a periodic wake profile which is a function of position x in the
wake. This representation of the turbulence autocorrelation yields adjacent wakes that are
uncorrelated, regardless of the width of the wake relative to the rotor blade spacing sr.

The rotor wake is separated into terms that are purely dependent on x̃ = x−Ut and

∗The change of variables given by Equations (2.14) has the property that its Jacobian |J| = 1.
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the ‘separation’ vector δx̃ in the form

Rww(x̃, δx̃) = w2
0H(x̃)ρww(δx̃), (2.17)

where w2
0 is the maximum mean-square turbulence velocity at the wake centreline, ρww(δx̃)

is the autocorrelation function of homogeneous isotropic turbulence velocity, normalised
such that ρww(0) = 1, and H(x̃) is a non-dimensional turbulent wake velocity correlation
profile, the properties of which are developed in the following section. The advantages of
this turbulent wake description compared to that of Ventres et al. will be made clear in
Section 2.4.9.

2.4.5 Properties of the turbulent wake profile function H(x̃)

1. In the stationary duct-aligned frame of reference, x, a reference point on H moves
in the azimuthal direction with velocity RΩ.

2. H is time-independent when viewed in the frame of reference moving with and aligned
to the rotor z = (x1, x2 −RΩt).

3. For the sake of simplicity H is assumed to be time-independent with respect to the
fluid-fixed frame of reference x̃ = x − Ut. The turbulence model shall be applied
to noise calculations at discrete downstream locations. In this context the turbulent
wake development is of little concern.

4. At any given instant H shall be assumed to be invariant along vectors aligned with
Ur, the mean flow as seen in the rotor-fixed frame of reference z.

5. Wake statistics are assumed to be identical for all rotor blades so that H is spatially
periodic in the x2 direction over sr = 2πR/Br and time-periodic over T = sr/RΩ.

The turbulent wake velocity correlation modulation function H is an infinite train of
individual wake correlation profiles, h(x, t, n), and is of the form

H(x, t) =
∞∑

n=−∞
h(x, t, n). (2.18)

The characteristics of h(x, t, n) are defined in the following section.

2.4.6 Characteristics of individual wake profile functions h(x, t, n)

Consider the wake due to an isolated ‘reference’ wake generator (n = 0) located at (0,0)
in a mean flow with θr = 0 at time t = 0. The corresponding wake profile h is defined so
that its centreline is at x2 = 0 for all x1

h(x, t = 0, n = 0) = h(x2). (2.19)
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Figure 2.4 – Individual turbulent wake correlation modulation function defined as function of x2
and as a function of the skew coordinate transformation x · r.

Figure 2.4a shows an example of Equation (2.19) evaluated using a Gaussian wake function
for h(x2).

For a wake generated in a mean flow with arbitrary whirl angle θr the same wake
profile function can be used but its argument must be zero along the line parallel to Ur

that passes through (0,0). The skew coordinate transformation vector r is defined

r = (− tan θr, 1). (2.20)

Taking the scalar product of this with x yields the appropriate argument, so that

h(x, t = 0, n = 0) = h(x · r), (2.21)

and the individual wake correlation modulation function is correctly aligned. Figure 2.4b
shows the example Gaussian wake profile generated with Equation (2.21) for θr = 40◦.
Note that the x2 profile at x1 = 0 is identical to that seen in Figure 2.4a.

For arbitrary t the expression shown in Equation (2.21) is valid for arbitrary t if the
frame of reference moves with the fluid. This is achieved by substitution of x̃ in place of
x (see Item 3 in Section 2.4.5). The nth wake is described by the addition of nsr to the
argument so that

h(x, t, n) = h(x̃ · r + nsr), (2.22)

and so the wake correlation modulation function of Equation (2.18) becomes

H(x, t) = H(x̃). (2.23)
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2.4.7 Fourier decomposition of turbulent wake function H(x̃)

The wake function defined by Equations (2.18) and (2.22) is periodic in the x̂2 direction
and may be expressed using the Poisson summation formula as

H(x̃) = 1
sr

∞∑
l=−∞

ĥl exp {−i∆kl x̃ · r} , (2.24)

where ∆kl is the lth harmonic of the azimuthal wavenumber

∆kl = 2πl
sr
, (2.25)

and ĥl is the lth Fourier coefficient of h

ĥl =
∫ ∞
−∞

h(x̃ · r) exp {i∆kl x̃ · r} dx̃2. (2.26)

Substitution of Equations (2.17) and (2.24) into Equation (2.15) and separation of x̃
and δx̃ integrals yields

E
[
W(k, ω)W∗(k′, ω′)

]
=

∞∑
l=−∞

ĥl w
2
0

sr
δ(ω − k ·U) δ(ω′ − k′ ·U)

× 1
(2π)2

" ∞

−∞
ρww(δx̃) exp

{
−ik′ · δx̃

}
d2δx̃

× 1
(2π)2

" ∞

−∞
exp

{
−i(k′ − k + ∆kl r) · x̃

}
d2x̃. (2.27)

The second line of Equation (2.27) represents the definition of the normalised two-dimen-
sional wavenumber spectrum of homogeneous wake turbulence

φ(k) = 1
(2π)2

" ∞

−∞
ρww(δx̃) exp {−ik · δx̃} d2δx̃. (2.28)

The dx̃ integrations in Equation (2.27) are Fourier transform representations of Dirac
delta functions so that Equation (2.27) reduces to

E
[
W(k, ω)W∗(k′, ω′)

]
=

∞∑
l=−∞

ĥl w
2
0

sr
φ(k′) δ(k′−k+∆kl r) δ(ω−k·U) δ(ω′−k′ ·U). (2.29)

Combining Equation (2.20) with Equation (2.1) it is possible to write expressions for the
components of ∆kl r resolved in the flow-aligned y coordinate directions

∆kl r · ŷ1 = ∆kl
sin(θs − θr)

cos θr
≡ ∆k1,l, (2.30a)

∆kl r · ŷ2 = ∆kl
cos(θs − θr)

cos θr
≡ ∆k2,l, (2.30b)
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whilst, by definition

k ·U = k1U. (2.30c)

Substituting Equation (2.29) and Equations (2.30) into Equation (2.12) gives

E
[
I±1 (x, t)

]
= Re

{
ρ0
c0

$ $ ∞

−∞

∞∑
l=−∞

ĥl w
2
0

sr
φ(k′1, k′2)

× δ(k′1 − k1 + ∆k1,l) δ(k′2 − k2 + ∆k2,l)

× Uδ(ω − k1U) Uδ(ω′ − k′1U)

×
∞∑

r=−∞

∞∑
r′=−∞

R±r (k1, k2, ω) R±∗r′ (k′1, k′2, ω′)

×
ω/c0

[
µ±∗r′ +M1(ω′/c0 −M1µ

±∗
r′ −M2νr′)

]
(
ω/c0 −M1µ

±
r −M2νr

) (
ω′/c0 −M1µ

±∗
r′ −M2νr′

)
× exp

{
i
[(
ω − ω′

)
t−

(
µ±r − µ±∗r′

)
x1 − (νr − νr′)x2

]}
dk1 dk′1 dk2 dk′2 dω dω′

}
.

(2.31)

Recalling the property of the Dirac delta function δ(ax) = δ(x)/|a| and performing the
integrations over k1, k′1 and k′2 , the terms Uδ(ω − k1U) and Uδ(ω′ − k′1U) arising from
the frozen gust assumption in Equation (2.16) imply that k1 and k′1 at any frequency ω

take the values

k1 = ω/U ≡ K1, k′1 = ω′/U ≡ K ′1, (2.32a)

whilst, from the k′2 integral

k′2 = k2 −∆k2,l, (2.32b)

so that Equation (2.31) reduces to

E
[
I±1 (x, t)

]
= Re

{
ρ0
c0

$ ∞

−∞

∞∑
l=−∞

ĥl w
2
0

sr
φ(K ′1, k2 −∆k2,l)

× U δ(ω′ − ω + U∆k1,l)

×
∞∑

r=−∞

∞∑
r′=−∞

R±r (k2, ω) R±∗r′ (k2 −∆k2,l, ω
′)

×
MK1

[
µ±∗r′ +M1(MK ′1 −M1µ

±∗
r′ −M2νr′)

]
(
MK1 −M1µ

±
r −M2νr

) (
MK ′1 −M1µ

±∗
r′ −M2νr′

)
× exp

{
i
[(
ω − ω′

)
t−

(
µ±r − µ±∗r′

)
x1 − (νr − νr′)x2

]}
dk2 dω dω′

}
. (2.33)

The delta function term under the ω′ integration will give

ω′ = ω − U∆k1,l. (2.34)
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θr

θs

Ur

U

U2 = U sin θs

Ur,2 = Ur sin θr

RΩ

Ur,1 = Ur cos θr

U1 = U cos θs

Figure 2.5 – Relation between whirl angles and velocity components of mean flow as seen in sta-
tionary and rotor-fixed frames of reference.

The relation between the x2 component of the mean flow as seen in the stationary and
rotor-fixed frames of reference, illustrated in Figure 2.5 is

U2 = Ur,2 +RΩ. (2.35)

The axial component of the mean flow velocity is invariant when seen from the rotor-fixed
or the stationary frame of reference so that Ur,1 = U1 (see Figure 2.5) and so Equa-
tion (2.35) can be rearranged to yield

RΩ = U
sin(θs − θr)

cos θr
. (2.36)

Combining Equations (2.25), (2.30a) and (2.36) allows simplification of the last term of
Equation (2.34)

U∆k1,l = lBrΩ. (2.37)

Performing the integration over ω′ in Equation (2.33) and using Equation (2.37) yields

E
[
I±1 (x, t)

]
= Re

{
ρ0M

" ∞

−∞

∞∑
l=−∞

ĥl w
2
0

sr
φ(K1 −∆k1,l, k2 −∆k2,l)

×
∞∑

r=−∞

∞∑
r′=−∞

R±r (k2, ω) R±∗r′ (k2 −∆k2,l, ω − lBrΩ)

×
MK1

[
µ±∗r′ +M1(M(K1 −∆k1,l)−M1µ

±∗
r′ −M2νr′)

]
(
MK1 −M1µ

±
r −M2νr

) (
M(K1 −∆k1,l)−M1µ

±∗
r′ −M2νr′

)
× exp

{
i
[
mBrΩt−

(
µ±r − µ±∗r′

)
x1 − (νr − νr′)x2

]}
dk2 dω

}
. (2.38)

This expression represents the instantaneous ensemble-averaged time-dependent axial com-
ponent of upstream and downstream acoustic intensity due to wake turbulence periodically
interacting with the OGVs. Equation (2.38) is in the form of the sum of intensity contri-
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butions over all frequencies, such that

E
[
I±1 (x, t)

]
=
∫ ∞
−∞

E
[
I±1 (x, t, ω)

]
dω. (2.39)

Comparison of Equation (2.39) with Equation (2.38) defines the ensemble-averaged time-
dependent acoustic intensity spectrum in the form of a Fourier series

E
[
I±1 (x, t, ω)

]
= Re

{ ∞∑
l=−∞

I±1,l(ω,x) exp {ilBrΩt}
}
, (2.40)

where I±1,l(ω,x) are the time-independent axial intensity spectra associated with the lth
harmonic of the response to the periodic rotor blade passage, given by

I±1,l(ω,x) = ρ0M

∫ ∞
−∞

ĥl w
2
0

sr
φ(K1 −∆k1,l, k2 −∆k2,l)

×
∞∑

r=−∞

∞∑
r′=−∞

R±r (k2, ω) R±∗r′ (k2 −∆k2,l, ω − lBrΩ)

×
MK1

[
µ±∗r′ +M1(M(K1 −∆k1,l)−M1µ

±∗
r′ −M2νr′)

]
(
MK1 −M1µ

±
r −M2νr

) (
M(K1 −∆k1,l)−M1µ

±∗
r′ −M2νr′

)
× exp

{
−i
[(
µ±r − µ±∗r′

)
x1 + (νr − νr′)x2

]}
dk2, (2.41)

in which the acoustic wavenumbers µ±r , µ±∗r′ , νr and νr′ defined in Equations (2.3) and (2.4)
are given by

µ±r = −
M1[MK1 −Ms,2νr]±

√
[MK1 −Ms,2νr]2 − β2

1ν
2
r

β2
1

, (2.42a)

νr = [K1 sin θs + k2 cos θs]ss − 2πr
ss

, (2.42b)

µ±∗r′ = −
M1[M(K1 −∆k1,l)−Ms,2νr′ ]±

√
[M(K1 −∆k1,l)−Ms,2νr′ ]2 − β2

1ν
2
r′

β2
1

, (2.42c)

νr′ = [(K1 −∆k1,l) sin θs + k2 cos θs]ss − 2πr
ss

+ ∆kl. (2.42d)

Equation (2.40) defines the instantaneous intensity spectrum. Owing to the periodic-
ity assumptions made about the turbulence statistics the intensity spectrum is predicted
to vary periodically with a fundamental frequency equal to the blade passing frequency
(BPF). The concept of the time-frequency (Wigner-Ville) representation for rotor-OGV
broadband interaction noise does not appear to be well recognised in the literature. A
more detailed discussion of this property can be found in Jurdic et al. [22].

2.4.8 Broadband power spectrum P±(ω)

The previous section develops an expression for the time-dependent axial acoustic intensity
spectrum due to the periodically varying ensemble-averaged turbulence velocity in the
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wake of a rotor in the form of a Fourier series (see Equations (2.40) and (2.41)). This
formulation reveals that the intensity spectrum varies periodically in time as a result of
periodic modulation of assumed homogeneous turbulence that impinges upon the stator
vanes.

In Chapter 9 the results of the sound power model are compared with experimental
measurements of sound power. Experimental sound power spectra are inferred from time-
averaged records of acoustic pressure measurements made over time durations much longer
than the blade passage period T . These measured spectra therefore represent equivalent
spectra with stationarity assumed. To allow valid comparison between predictions and
measurements it is therefore necessary to compute the time-average spectra from Equa-
tion (2.40).

The time-average of the ensemble-average axial acoustic intensity is given by

〈
I±1 (ω,x)

〉
= lim

T→∞

1
T

∫ T

0
E
[
I±1 (x, t, ω)

]
dt. (2.43)

Applying this to the Fourier series expression in Equation (2.40) will result in a cancellation
of all higher order contributions (|l| > 0) in the limit T → ∞ so that only the l = 0
term contributes to the sound intensity in the long-term average. This term refers to
axisymmetric intensity because it is constant with respect to x2. The time-averaged axial
intensity spectrum is now expressed as

〈
I±1 (ω,x)

〉
= Re

{
ρ0M

∫ ∞
−∞
〈w2〉 φ(K1, k2)

∞∑
r=−∞

∞∑
r′=−∞

R±r (k2, ω) R±∗r′ (k2, ω)

×
MK1

[
µ±∗r′ +M1(MK1 −M1µ

±∗
r′ −M2νr′)

]
(
MK1 −M1µ

±
r −M2νr

) (
MK1 −M1µ

±∗
r′ −M2νr′

)
× exp

{
−i
[(
µ±r − µ±∗r′

)
x1 + (νr − νr′)x2

]}
dk2

}
, (2.44)

where 〈w2〉 is the mean-square turbulence velocity averaged over a complete blade passage
γ = 2π/Br given by

〈w2〉 = Br
2π

∫ 2π/Br

0
w2

0 dγ = ĥ0w2
0

sr
, (2.45)

since ĥ0/sr is the mean value of the normalised unsteady mean-square velocity profile H
over a blade passage.

The sound power spectral density per unit span is now found by gap-wise integration of
this time-averaged ensemble-averaged axial acoustic intensity over a distance correspond-
ing to a single complete circumference 2πR = Bsss

P±(ω) =
∫ Bsss

0

〈
I±1 (ω,x)

〉
dx2. (2.46)

In Equation (2.43) the gap-wise wavenumber components νr and νr′ that are defined in
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Equations (2.42b) and (2.42d) are now both purely functions of K1, k2, ss and θs with no
dependence on modal order m. Their values are periodic over the circumferential distance
Bsss. Under the x2 integration, therefore, the orthogonality of the resulting complex
exponentials gives ∫ Bsss

0
exp {−i(νr − νr′)x2} dx2 = Bsssδrr′ , (2.47)

where δrr′ is the Kroneker delta function. The application of Equation (2.47) to Equa-
tion (2.44) gives an expression which is non-zero only for purely real values of the axial
wavenumber component µ±r . Equations (2.43) and (2.46) for the total time-averaged sound
power now yield

P±(ω) = ρ0MBsss

∫ ∞
−∞

Φ(K1, k2)
∞∑

r=−∞

∣∣R±r (K1, k2)
∣∣2F±r (µ±r , νr) dk2, (2.48)

where F±r is the non-dimensional power factor

F±r (µ±r , νr) = MK1
[
(MK1 −M2νr)2 − β2

1ν
2
r

]1/2∣∣∣MK1 −M1µ
±
r −M2νr

∣∣∣2 , (2.49)

and Φ is the turbulence velocity wavenumber spectrum

Φ(K1, k2) = 〈w2〉 φ(K1, k2). (2.50)

2.4.9 Re-ordering of the sound power expression for computational ef-
ficiency

The previous section develops the formulation for sound power spectral density per unit
span. Evaluation of the expression shown in Equation (2.48) is difficult as the cascade
response terms R±r are time consuming to compute. Following the approach due to Cheong
et al. [59] a change of order is introduced that substantially reduces the required number
of calculations of the blade response function R±r .

The annulus of fan geometry that is represented by the rectilinear cascade has spatial
periodicity over a distance 2πR = Bsss corresponding to the circumference at the medial
radius R. The acoustic wavenumber in the x2 direction must therefore satisfy

νm = 2πm
Bsss

. (2.51)

where m ∈ Z denotes the order of the acoustic mode, equivalent to the azimuthal mode
index. These acoustic modes shall be referred to as ‘duct modes’ and their influence on the
sound power spectra produced by this model shall be demonstrated in Chapter 3. Com-
bining Equations (2.32a) and (2.51) with the definition of the x2 wavenumber component
of the rth cascade wave given in Equation (2.3) the turbulence wavenumber component
in the y2 direction may be defined as a function of the acoustic modal order m and the
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index r that is now interpreted as a scattering index; describing the scattering of acoustic
modes into cascade waves

k2,m+Bsr = 2π
Bsss cos θs

(m+Bsr)−K1 tan θs. (2.52)

The discrete nature of this wavenumber for fixed values of ω and scattering index r means
that the integration over k2 in Equation (2.48) is replaced by a summation over m with

dk2 = 2π
Bsss cos θs

, (2.53)

so that

P±(ω) = 2πρ0M

cos θs

∞∑
m=−∞

∞∑
r=−∞

Φ(K1, k2,m+Bsr)
∣∣R±r (K1, k2)

∣∣2F±r (µ±r , νr). (2.54)

Evaluation of the non-dimensional cascade response function R±r (K1, k2) relies on a nu-
merical step which involves the calculation and inversion of kernel matrices K, full details
of which can be found in Smith [46]. A considerable simplification of Equation (2.54)
is possible by noting that the kernel matrices K are periodic so that they exhibit the
behaviour (in the matrix notation of Equation (51) in Smith [46])

K−1(σm+Bsr) = K−1(σmod (m,Bs)), (2.55)

where the function mod (m,Bs) denotes the remainder when dividing m by Bs [59]. There-
fore, the relation in Equation (2.52) allows Equation (2.54) to be rearranged to

P±(ω) = 2πρ0M

cos θs

∞∑
m=−∞

Q±m(K1, k2, mod (m,Bs))
∞∑

r=−∞
Φ(K1, k2,m+Bsr) . (2.56)

where
Q±m(K1, k2, mod (m,Bs)) =

∣∣∣R±m(K1, k2, mod (m,Bs))
∣∣∣2F±m(µ±m, νm), (2.57)

is the non-dimensional power radiated by the mth cascade wave due to a harmonic vortical
gust of the form exp{−i(ωt−K1x1 − k2, mod (m,Bs)x2)}.

The definition of the non-dimensional power factor F±m given in Equation (2.49) ensures
that P± has contributions only from modes m having strictly real-valued axial wavenumber
components µ±m. Solving the discriminant of Equation (2.4) gives the limits of m to be

mmin =
⌈
Bsss
2π k

M2 − β1
β2

⌉
, (2.58a)

and

mmax =
⌊
Bsss
2π k

M2 + β1
β2

⌋
, (2.58b)

where d·e and b·c denote ceiling and floor functions respectively. Equation (2.56) may now
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be written as

P±(ω) = 2πρ0M

cos θs

mmax∑
mmin

Q±m(K1, k2, mod (m,Bs))
∞∑

r=−∞
Φ(K1, k2,m+Bsr) , (2.59)

where Φ(K1, k2,m+Bsr) is modelled by a two-dimensional Liepmann spectrum for homoge-
neous isotropic turbulence given by

Φ(K1, k2,m+Bsr) = 〈w
2〉Λ2

4π
1 + Λ2(4k2

1 + k2
2,m+Bsr)

[1 + Λ2(k2
1 + k2

2,m+Bsr
)]5/2

, (2.60)

where Λ is the integral lengthscale of the turbulence.
Equation (2.59) is identical to that for the broadband power spectrum proposed by

Cheong et al. [59] despite the fact that Cheong et al. assume axisymmetric turbulence
rather than the formulation presented in this chapter where the turbulence correlation
function is assumed to be modulated by the wake profile. This indicates that only
circumferentially-averaged values of wake turbulence velocity and lengthscale are needed
as inputs for the broadband noise model due to the cancellation of the higher order Fourier
coefficients of the unsteady wake profile (see Equation (2.44)). The use of Equation (2.60)
for the turbulence statistics is therefore preferable to that of Ventres et al. [79] because
the resulting noise predictions are relatively insensitive to the shape of the wake profile,
unlike those due to the noise model due to Ventres et al. which retains the dependency on
the higher order unsteady wake profile Fourier coefficients.



Chapter 3

Characteristics of the cascade sound
power spectrum

This chapter describes the characteristics of the sound power spectra obtained using the
radiation model developed in Chapter 2. This will include an investigation of the spectral
characteristics associated with the cut-on frequencies of duct modes Ωm and cascade modes
ωn, both of which are defined in Section 3.1. The relation between these frequencies and the
cascade geometry will be explained and the spectral effects due to changing flow conditions
presented.

3.1 Effects of mode cut-on frequencies on a cascade sound power spec-
trum

In this section the characteristics of the sound power spectrum shall be described with
a particular emphasis on the phenomena associated with the cut-on frequencies of duct
modes Ωm and cascade modes ωn.

Figure 3.1 shows upstream-propagating and downstream-propagating sound power
spectra (blue and red, respectively) generated using the model described in Chapter 3
for a cascade with Bs = 20, ss/cs = 0.7 and χs = 30◦ in a mean flow with M = 0.5
and normalised turbulence lengthscale Λ/ss = 0.2. The downstream level is greater than
upstream, largely as a result of convective amplification. Various other features shall be
explained in the following paragraphs.

3.1.1 Duct modes

In Section 2.4.9 it was noted that the expression for the sound power in Equation (2.59) is
the sum over a finite number of acoustic duct modes m that are cut-on at a given frequency
ω, as defined in Equation (2.58). These duct modes are equivalent to azimuthal modes in

35
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Figure 3.1 – Upstream and downstream one-third octave equivalent sound power spectra obtained
using the broadband radiation model for a cascade with Bs = 20, ss/cs = 0.7 and χs = 30◦ in a mean
flow with M = 0.5 and normalised turbulence lengthscale Λ/ss = 0.2. Power radiated upstream
and downstream is represented by blue and red lines respectively. Arrows indicate the frequencies at
which various modes cut-on, as explained in the text.

a cylindrical duct. The cut-on frequency of duct mode m is expressed as

Ωm =

m∆Ω− : m < 0,

m∆Ω+ : m > 0,
(3.1)

where ∆Ω± is the fundamental cut-on frequency for upstream and downstream propagating
modes m that is obtained from the discriminant of Equation (2.4)

∆Ω± = β2

M2 ± β1

2πc0
Bsss

. (3.2)

In Figure 3.1 the cut-on frequencies for the first 5 positive m are indicated with red arrows.
Blue circle-headed pointers indicate the cut-on frequencies for the first 5 negative m. The
difference in fundamental cut-on frequency for upstream and downstream propagating
modes (positive and negative m) is due to the presence of whirling flow and hence non-
zero M2 in Equation (3.2). For axial flow with θ = 0 Equation (3.2) reduces to the
expression

∆Ω± = ±β 2πc0
Bsss

. (3.3)

The response of the upstream and downstream spectra differ as the frequency moves
upwards through duct mode cut-on frequencies. For the upstream spectrum (blue line),
counter-rotating modes (m > 0, red arrow pointers) are associated with ‘spikes’ such that
the sound power rapidly falls back to levels similar to those seen prior to modal cut-on. Co-
rotating modes (m < 0, blue circle pointers) are associated with ‘steps’ in the spectrum:
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Figure 3.2 – Upstream and downstream modal sound power for the spectra shown in Figure 3.1.

the new level is maintained as frequency increases. In the downstream spectrum (red line)
the cut-on frequencies of both co- and counter-rotating modes are associated with steps
in the spectral level.

Figure 3.2 shows the modal power P±m for cut-on modes m plotted against the nor-
malised frequency ω/∆ω. The cut-on triangles are skewed because of the asymmetry of
the cut-on frequencies of co-rotating and counter-rotating modes shown in Equation (3.2).
Upstream (Figure 3.2a), co-rotating modes (m < 0) carry most sound power and the
distribution of modal power changes slowly with both modal order and frequency. The
right hand edge of the cut-on triangle in Figure 3.2a shows the cut-on of counter-rotating
modes. The power contribution of each counter-rotating mode decreases rapidly with in-
creasing frequency following cut-on leading to the observed spectral ‘spike’ features. The
sound power distribution for downstream propagation (Figure 3.2b) is generally more even
and slower varying than that upstream. This accounts for the more ‘step-like’ behaviour
observed in the downstream sound power spectrum of Figure 3.1.

Both upstream and downstream modal power maps have distinct diagonal lines along
which modal sound power approaches zero. Upstream (Figure 3.2a) this line corresponds
to modes for which the group velocity angle ψg,m = π/2 so that no sound power propagates
axially. The diagonal line in Figure 3.2b for downstream propagation corresponds to modes
for which the phase velocity angle ψp,m is aligned with the stator stagger angle. The phase
velocity angle ψp,m of a mode order m is given by

ψ±p,m = arctan
(
νm

µ±m

)
, (3.4)

where νm and µ±m are the gap-wise and axial acoustic wavenumber components as defined
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Figure 3.3 – Trend of phase velocity angle
ψp,m with increasing modal order m. The dis-
tribution is relatively sparse for large and small
m.
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Figure 3.4 – Phase velocity angle sound power
density obtained using the broadband radia-
tion model for a cascade with Bs = 20, ss/cs =
0.7 and χs = 30◦ in a mean flow with M = 0.5
and normalised turbulence lengthscale Λ/ss =
0.2 over the octave-band 1.5 < ω/∆ω < 3. The
values are normalised with respect to the peak
value shown. Upstream propagating power is
shown in blue and downstream in red. The
stagger angle of the cascade is indicated by the
black line.

in Equations (2.3) and (2.4) respectively. Clearly for upstream-propagating modes the
axial component of the phase velocity must be opposite to that of the mean flow. It is
suggested that this explains the ‘spike’ behaviour in upstream counter-rotating modes that
must ‘work against’ the mean flow while downstream propagation is relatively insensitive
to this effect.

In Chapter 5 it shall be shown that the strength of interaction between a mode order
m and the rotor is strongly influenced by the relation between the stagger angle of the
rotor and ψp,m obtained using Equation (3.4). It is therefore important to understand
the ‘directivity’ of the modal sound power distribution in terms of ψp,m. When applying
Equation (3.4) to all propagating modes at a particular frequency, the modal distribution is
not even with respect to ψp,m, tending to be relatively sparsely populated at the extremes
of the cut-on range of m as defined in Equation (2.58). The distribution of modes in terms
of m and ψp,m is sketched in Figure 3.3 to illustrate the sparsity for very large and very
small m. The directivity of the sound power is therefore assessed by summing the sound
power radiated into discrete phase angle bands, thus obtaining the approximate sound
power density with respect to phase velocity angle.

Figure 3.4 shows the sound power density with respect to phase velocity angle cal-
culated from the data shown in Figure 3.2, aggregating the sound power over the octave
frequency band 1.5 < ω/∆ω < 3 in order to smooth the results. The upstream-propagating
power is shown in blue and downstream in red. The stagger angle of the cascade is indi-
cated by the black line. Observations about Figure 3.4 are listed below.
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χs

n̂

x1

x2

ψp,m

lines of constant phase

Figure 3.5 – Plane wave representing acoustic mode with phase velocity angle ψp,m = χs cannot be
excited by upwash normal to blade surfaces due to orthogonality.

1. The upstream radiation pattern (blue) has a principal lobe corresponding to the
range of angles over which most of the acoustic energy is radiated.

2. The upstream radiation pattern is significantly narrower than downstream (red).
This is explained by the effects of convection on the group velocity angle, as discussed
by Jurdic and Joseph [83].

3. The downstream radiation pattern has a gap at the cascade stagger angle (30◦). This
is due to the orthogonality of the upwash velocity on the blade surfaces with modes
having ψp,m = χs, as illustrated in Figure 3.5. Any such modes cannot be excited.

4. The upstream radiation pattern is directed away from the line of the cascade stagger
and the downstream radiation has a peak at 300◦, perpendicular to the cascade
airfoils, suggesting ‘beaming’ of the sound power in blade-perpendicular directions,
due to alignment of ψp,m with the blade normal.

3.1.2 Cascade modes

The PWL spectra in Figure 3.1 show relatively large oscillations in both upstream and
downstream spectra at the frequencies marked with black diamond-headed pointers. These
frequencies correspond to the cut-on frequencies of the higher-order modes in the ducts
formed between adjacent blades in the cascade. These modes shall be referred to as
‘cascade modes’ and it will be shown that they are an important feature in many aspects
of the cascade response to impinging turbulence. The cut-on frequency of the cascade
mode of order n is given by

ωn = n∆ω, (3.5)

where

∆ω = πβc0
ss cosχs

. (3.6)
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A full derivation of Equation (3.6) is given in Appendix A. In Section 4.2.2.1 it will
be shown that the existence of several cut-on cascade modes fundamentally changes the
interactions between adjacent blades.

In the following section the results of a parameter study shall be presented showing
the influence of cascade geometry and flow on the sound power radiated by the cascade.

3.2 Cascade spectral power parameter study

In the previous section the spectrum of upstream and downstream sound power radiated
from a cascade was shown and its main features described. In this section a study is
conducted to show the effects of parameter changes on upstream and downstream sound
power spectra.

3.2.1 Parameter study design

A reference set of parameters is defined, as listed in Table 3.1. A parameter sweep is
conducted for each of these as the others are held at the reference value. In each case
the turbulence intensity is constant at 2% so that the mean-square turbulence velocity
〈w2〉 = 4× 10−4 U2.

Table 3.1 – Reference cascade parameters for cascade geometry parameter study.

Parameter Bs ss/cs M θ (◦) Λ (m)
Value 6 0.1 0.4 40 0.1

In Section 4.2.2.1 it shall be shown that cascade behaviour is fundamentally different
at frequencies below and above ≈ ω2 as defined in Equation (3.5). In this parameter study
two frequency bands are defined for each parameter sweep so that, as far as possible,
they fall either side of ω2. The total sound power in these low frequency (LF) and high
frequency (HF) bands shall be shown as a function of the parameter under investigation.

3.2.2 Spectral power changes due to variation of vane count Bs

Figures 3.6a and 3.6c show the variation in upstream and downstream sound power spectra
generated as the number of stator vanes Bs is changed while keeping all other parameters
listed in Table 3.1 fixed. Note that fixing the value of ss/cs requires the variation in chord
cs as ss is inversely proportional to Bs. The values of Bs and corresponding values of ∆ω
are listed in Table 3.2.

Table 3.2 – Bs and corresponding values of ∆ω.

Bs 6 12 24 48
∆ω 1.53e3 3.05e3 6.10e3 1.22e4
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The total sound power in frequency bands

LF : 300 rad/s <ω < 600 rad/s,

HF : 5000 rad/s <ω < 10000 rad/s.

is shown as a function of Bs in Figures 3.6b and 3.6d. Note that the HF band is not above
ω2 for Bs > 6.
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Figure 3.6 – Effect of changing number of stator vanes Bs on the predicted sound power spectrum
plotted against angular frequency ω. Frequency bands ‘LF’ and ‘HF’ are indicated by coloured
sections in left hand plots with corresponding band total power plotted against Bs in right hand
plots.

1. Sound power in the HF band is seen to increase with the number of stator vanes
despite the inverse relationship between Bs and chord length cs. It shall be shown
in the following section that sound power is insensitive to the chord length for suf-
ficiently large cs. Upstream sound power is seen to increase in proportion to the
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number of stator vanes, as shown by the black line. The downstream sound power in
the HF band increases at a slower rate. This may be influenced by the high values
of ∆ω seen for large Bs.

2. Little change is seen in the LF band. In the low frequency regime the low radi-
ation efficiency of the cascade limits the sound power. Increasing the number of
vanes decreases the spacing between vanes ss and consequently reduces the radiation
efficiency (see Section 4.2.2.1).

3.2.3 Spectral power changes due to variation of cascade space-chord
ratio ss/cs

In this section the parameter ss/cs is changed by means of the variation of the chord
length cs. Figure 3.7 shows the resulting sound power spectra and corresponding band
total sound powers in the frequency bands

LF : 300 rad/s <ω < 600 rad/s,

HF : 3000 rad/s <ω < 6000 rad/s.

The chord length does not influence ∆ω which has the same value as shown for Bs = 6 in
Table 3.2.

1. Sound power in LF and HF bands is insensitive to chord length cs for small values
of ss/cs. In this regime the acoustic reduced frequency µa = ωcs/c0β

2 > 1 and the
cascade chord is significantly longer than the acoustic wavelength so that leading-
edge noise sources are decoupled from the trailing edge.

2. Sound power decreases as with chord length cs as ss/cs increases. The slope ap-
proaches proportionality with c2

s , which is consistent with a chord-wise distribution
of coherently radiating compact dipole sources.

3.2.4 Spectral power changes due to variation of mean flow Mach num-
ber M

Sound power spectra obtained for several values of the mean flow mach number M are
shown in Figures 3.8a and 3.8c. The total sound power in the frequency bands

LF : 300 rad/s <ω < 600 rad/s,

HF : 3000 rad/s <ω < 6000 rad/s,

are shown in Figures 3.8b and 3.8d plotted against M . Table 3.3 shows the effect of M
on the values of ∆ω and confirms that LF and HF bands are always either side of ω2.
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Figure 3.7 – Effect of changing chord cs, and hence space-chord ratio ss/cs, on the predicted sound
power spectrum plotted against angular frequency ω. Frequency bands ‘LF’ and ‘HF’ are indicated
by coloured sections in left hand plots with corresponding band total power plotted against ss/cs in
right hand plots.

Table 3.3 – Mean flow mach number M and corresponding values of ∆ω.

M 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
∆ω 1.66e3 1.63e3 1.59e3 1.53e3 1.44e3 1.33e3 1.19e3 9.99e2 7.25e2
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Figure 3.8 – Effect of changing mean flow Mach number M on the predicted sound power spectrum
plotted against frequency normalised with cascade mode frequency step ∆ω. Frequency bands ‘LF’
and ‘HF’ are indicated by coloured sections in left hand plots with corresponding band total power
plotted against M in right hand plots.
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1. The total power in both LF and HF bands increases faster than the classical M5

power law indicated by the black lines in Figures 3.8b and 3.8d. The sensitivity for
small M is approximately M6.

2. The sensitivity reduces as M increases, more rapidly for the LF bands. Similar
observations with respect to frequency sensitivity of the sound power response to
mean flow Mach number have been made by Atassi and Logue [84]. Glegg and
Jochault [85] found sensitivity increasing from M5 to M6 at higher Mach numbers
for rotor self noise.

3. As the turbulence intensity is constant and 〈w2〉 ∝ U2 the observed near-M5 power
law can be interpreted as being due to 〈w2〉U3 which shall be used when assessing
the impact of turbulence parameter prediction errors on sound power estimates in
Section 8.12.

3.2.5 Spectral power changes due to variation of mean flow whirl
angle θ

Figure 3.9 shows the effect on sound power of changing stagger angle χs and hence mean
flow angle θ. In this case the frequency bands are defined

LF : 300 rad/s <ω < 600 rad/s,

HF : 5000 rad/s <ω < 10000 rad/s.

The range of θ for which sound power has been calculated and corresponding values of ∆ω
are listed in Table 3.4. Note that the largest values of θ result in large values of ∆ω such
that the HF band is not above ω2 for θ = 80◦.

Table 3.4 – Mean flow whirl angle θ and corresponding values of ∆ω.

θ (◦) 0 20 30 35 40 45 50 60 80
∆ω 1.17e3 1.24e3 1.35e3 1.43e3 1.53e3 1.65e3 1.82e3 2.34e3 6.73e3

1. Upstream sound power increases with stagger angle. This may be explained by
convection effects due to the reduction of the axial component of the mean flow that
occurs as θ increases with constant mach number onto the cascade M . In Figure 3.9b
the sensitivity is slightly greater in the LF band with approximately 9 dB increase
over the range 0 < θ < 80 versus 6 dB in the HF band.

2. Downstream, a clockwise ‘rotation’ of the sound power spectrum is observed as θ
increases. The LF band shows a 5 dB increase over the range of angles whilst the
HF band decreases by 3.5 dB over the same range.
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Figure 3.9 – Effect of changing mean flow whirl angle θ on the predicted sound power spectrum
plotted against frequency normalised with cascade mode frequency step ∆ω. Frequency bands ‘LF’
and ‘HF’ are indicated by coloured sections in left hand plots with corresponding band total power
plotted against θ in right hand plots.
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3. Note that due to symmetry the upstream and downstream sound power spectra must
converge as θ → 90◦.

3.2.6 Spectral power changes due to variation of turbulence integral
lengthscale Λ

Figure 3.10 shows the results on sound power spectra of variation of turbulence integral
lengthscale Λ. Frequency bands either side of ω2 = 3050 rad/s are given by

LF : 300 rad/s <ω < 600 rad/s,

HF : 5000 rad/s <ω < 10000 rad/s.
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Figure 3.10 – Effect of changing turbulence integral lengthscale Λ on the predicted sound power
spectrum plotted against angular frequency ω. Frequency bands ‘LF’ and ‘HF’ are indicated by
coloured sections in left hand plots with corresponding band total power plotted against Λ in right
hand plots.
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1. Sound power in LF and HF bands increases in proportion to Λ before falling in inverse
proportion to Λ. The location peak of the band power is almost independent of the
direction of sound propagation but is clearly sensitive to the location of the frequency
band. These effects are due to the changing shape of the Liepmann turbulence
velocity spectrum.



Chapter 4

Comparison of sound power radiation
from cascades and single airfoils

The noise model described in Chapter 2 allows the prediction of the broadband sound
power radiated from an OGV due to the interaction with turbulence from an upstream
rotor. The model takes into account the acoustic interactions between the vanes of the
OGV. Calculations using this ‘exact’ cascade noise model rely on a numerical procedure.
At high frequencies this numerical step is computationally expensive and time consuming.

Alternative models are sought which offer computational benefits over the exact cascade
model without sacrificing the accuracy of noise prediction. One model that has been
investigated for this purpose is the semi-analytical single-airfoil sound power model (SA-
model) developed by Blandeau et al. [41]. The SA-model uses the classical isolated flat-
plate airfoil theory of Amiet [33, 42] to model the unsteady loading of a blade.

In this chapter, predictions of the radiated sound power made using the SA-model and
the exact cascade model are compared. This will lead to insight into the behaviour of the
cascade and allow the definition of circumstances under which the SA-model may be used
in place of the exact cascade model, i.e. when the blade-to-blade interaction effects can be
ignored. The chapter commences with a brief description of the SA-model.

4.1 General formulation for single airfoil sound power radiation

An isolated flat plate airfoil of chord cs is assumed to interact with homogeneous isotropic
two-dimensional turbulence convected in a mean flow parallel to the chord with mean
flow velocity U at an angle θs relative to an observer axis, which shall be used to define
upstream and downstream directions in Section 4.1.1. The flow is defined identically to
that for the cascade problem in Chapter 2, having mean-square upwash velocity 〈w2〉 and
integral lengthscale Λ. The turbulent upwash velocity is represented by the Liepmann
velocity frequency spectrum denoted Φww as defined in Equation (2.60).

The single airfoil geometry is illustrated in Figure 4.1a. For comparison a cascade with
identical chord and flow is shown in Figure 4.1b. The cascade has leading edge spacing ss,
stagger angle χs aligned with the flow angle θs and gap-wise periodicity Bsss.

49
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(a) Single airfoil (b) Cascade

U

cs

U

θs = χs

cs
ss

Λ Λθs = χs

Figure 4.1 – Diagram of single airfoil and cascade geometries.

4.1.1 Expression for the sound power radiated from a single airfoil

For the sake of brevity only the final expression for the sound power due to Bs isolated
airfoils is shown here. A full derivation and discussion of the single airfoil sound power
radiation model can be found in Blandeau et al. [41].

As noted above, the mean flow U is assumed to be at an angle θs to the observer
axis, which can be considered equivalent to the duct axis. The SA-model formulation
defines the far-field intensity at observer angles α relative to the duct axis, as illustrated
in Figure 4.2. The upstream and downstream sound power are the half-circuit integrals of
this directional sound power given by [41]

P±SA (ω) = π

4β
4Mskρ0

(
cs
2

)2
Φww (K1)

� ±π/2

∓π/2

|L (α′,K1)|2 sin2 α′

A(α′,Ms)2 [A(α′,Ms)−Ms cosα′]2
dα,

(4.1)
where α′ = α−χs is the effective observer angle with respect to the blade stagger angle, as
illustrated in Figure 4.2. The term L in Equation (4.1) represents the effective acoustically
weighted unsteady loading across the chord of the flat plate defined by Equation (2) in
Blandeau et al. [75] while A (α,Ms) =

√
1−M2

s sin2 α.

For the purposes of direct comparison with the sound power radiated by the cascade
given by Equation (2.56) the SA-model result is multiplied by the number of vanes in the
OGV Bs so that

P± (ω) = BsP±SA (ω) . (4.2)

Despite the differences between the exact cascade formulation of Equation (2.56) and
the single-airfoil formulation of Equation (4.1) it will be shown that the results of these two
sound power models are in close agreement at sufficiently high frequencies. The frequencies
above which close agreement is assured will be identified during the course of this chapter.
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Figure 4.2 – Observer angles relative to single airfoil stagger angle.

4.2 Comparison of single airfoil and cascade sound power spectra

Single airfoil and cascade sound power spectra obtained using Equations (2.56) and (4.1)
will be compared in this section. It will be seen that above a certain frequency the predicted
sound power spectra are in close agreement. This observation will lead to criteria, and in
turn to the definition of minimum frequencies, above which single airfoil theory may be
substituted for cascade theory without significant loss of accuracy. We begin by comparing
sound power spectra for a typical turbofan geometry, allowing the identification of some
important differences in spectral characteristics.

4.2.1 Characteristics of single airfoil and cascade power spectra

Predicted upstream and downstream power spectra of the sound power level per unit
span are shown in Figure 4.3. The parameters chosen for these simulations are typical
of a turbofan bypass stator, having Bs = 40 with space-chord ratio ss/cs = 0.5 at radius
R = 0.8 m and stagger angle χs = 40°. The mean flow onto the stator vanes has Mach
number Ms = 0.4 and the turbulence has normalised lengthscale Λ/ss = 0.2 and turbulence
intensity Tw = 〈w2〉1/2/U = 0.02. Arrows indicate the cut-on frequencies of the duct
modes and cascade modes identified in Chapter 3. The sound power level plotted in
Figure 4.3 represents the contributions from all blades, the single airfoil sound power
being multiplied by Bs as defined in Equation (4.2). These spectra are plotted against
frequency normalised by ∆ω, the fundamental cut-on frequency of the cascade modes as
defined in Equation (3.6). Some important features of these sound power level spectra are
summarised below:

• In both upstream and downstream figures there is a frequency above which there is
negligible difference between the single airfoil and cascade sound power spectra.

• The frequencies above which agreement occurs are different for upstream-propagating
and downstream propagating noise.
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Figure 4.3 – Spectra of upstream-propagating and downstream-propagating sound power per unit
span obtained using single airfoil model and cascade model. Red and blue arrows indicate cut-off
frequencies of circumferential modes Ωm of positive and negative order respectively. Black arrows
indicate the cut-off frequencies of the inter-blade cascade modes ωn. The nature of these modes was
discussed in Chapter 3.
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• The single airfoil spectrum is generally smooth compared to the cascade spectrum
which is oscillatory due to the cut-on of various modes. Duct modes Ωm dominate
the response at low frequencies while inter-blade cascade modes ωn dominate at high
frequencies (see Chapter 3).

• Variations in the spectra at frequencies between successive cascade cut-on frequencies
ωn are due to the interference between all modes cut-on in this frequency band. This
behaviour will be explored in detail in Section 4.2.4.

• Ripples are evident in the single airfoil spectra due to interactions between leading
and trailing edges. The identical phenomenon is present in the cascade spectra but
is generally obscured by cascade mode interference. This will be seen more clearly in
Section 4.2.3. These ripples are deeper in the upstream direction due to the stronger
directivity of the trailing edge noise in the upstream direction.

It will be argued that the reasons for the differing behaviour between the single airfoil
and cascade sound power predictions are due to the following main physical processes:

1. A difference in radiation efficiency: the single airfoil radiates into free field whereas
radiation from a cascade is via duct exits that may or may not be efficient depending
on their size compared with the acoustic wavelength.

2. The cut-on of cascade modes within the inter-blade gaps which are clearly not present
for an isolated airfoil.

3. Differing behaviour in the oscillations in upstream and downstream sound power
spectra arising from interactions between the leading and trailing edges.

In the next section the characteristics of the sound power radiated from cascades with
overlapping blades will be compared with those of non-overlapping cascades. This will
lead to the definition of low and high ss/cs regimes in which distinct behaviours in the
power spectra are seen in the cascade results.

4.2.2 Effect blade overlap on the strength of cascade interaction

In this section the effect of blade overlap on the strength of cascade interactions are ex-
plored by comparison of exact cascade and equivalent single airfoil spectra for geometries
with differing degrees of cascade blade overlap. Clearly, a pre-requisite for strong modal
interactions between adjacent blades is that a substantial section of adjacent blades must
overlap in the sense of Figures 4.4(a),(b) and (c) which show overlapping (ss/cs) sinχs < 1,
just-overlapping (ss/cs) sinχs = 1 and non-overlapping blades (ss/cs) sinχs > 1 respec-
tively. Note that this study could not have been performed using the Wiener-Hopf solution
for the cascade blade response as it is restricted to overlapping blades.

In order to illustrate the effect of blade overlap on blade-to-blade interaction consider
three examples of cascade geometries with Bs = 48, χs = 40°, Ms = 0.4, Λ/ss = 0.2
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(a) (ss/cs) sinχs < 1

Overlap forms rectilinear duct

(b) (ss/cs) sinχs = 1

Leading-edge and trailing-edge
perpendiculars coincide

(c) (ss/cs) sinχs > 1

No overlap

χs

ss

χs χs

ss

cs

cs

cs

ss

Figure 4.4 – Illustration of perpendicular overlap forming between blades of a non-zero stagger
cascade for (ss/cs) sinχs < 1.

and Tw = 0.02 but with varying degrees of blade overlap. The first has significantly
overlapping blades (ss/cs) sinχs � 1, the second has significantly non-overlapping blades
(ss/cs) sinχs � 1 while the third is a transition geometry in which the blades are neither
significantly overlapped or significantly non-overlapped (ss/cs) sinχs ≈ 1. A comparison
of their ‘exact’ spectra and corresponding single airfoil sound power spectra are plotted
in Figure 4.5 against frequency normalised with the fundamental cascade mode cut-on
frequency ∆ω. The values of (ss/cs) sinχs used are listed in the figure caption. Obser-
vations regarding the results shown in Figure 4.5 are listed below, grouped according to
their overlap condition. Note that a 20 dB offset has been added to these spectra in order
to clearly see each example clearly.

4.2.2.1 Differences between exact cascade and SA-model for substantially
overlapping blades, (ss/cs) sinχs � 1

In this case the overlaps between adjacent blades form well defined ducts. Effects due to
cascade interactions are therefore strong, as can be seen by the depth of the oscillations
in the spectra due to cascade mode interference for ω/∆ω > 1. Nevertheless, single airfoil
theory is observed to be in good agreement with the cascade solution above a certain
frequency.

In this example, the cascade prediction for ω/∆ω . 1 is significantly lower than for
the single airfoil calculation. In this frequency range the only cascade mode to be cut-on
is the plane-wave mode n = 0.

Note that close agreement is generally seen for ω > ∆ω although the frequency of
agreement is appreciably lower for upstream rather than downstream radiation. It will be
shown in Section 4.3 that this condition does not always ensure agreement and further
refinements to this criterion will be proposed.
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Figure 4.5 – Cascade sound power spectra for three values of (ss/cs) sinχs = [0.06, 1, 13] demonstrat-
ing the effect of blade overlap. Equivalent single airfoil sound power spectra shown for comparison.
All flow and geometry parameters held constant, Bs = 48, χs = 40°, Ms = 0.4, Λ/ss = 0.2 and
Tw = 0.02. Note that a 20 dB offset has been added to these spectra in order to clearly see each
example clearly.
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4.2.2.2 Differences between exact cascade and SA-model for substantially
non-overlapping blades, (ss/cs) sinχs � 1

This is the case of most interest in open rotor applications where solidity is low. Close
agreement is obtained over all frequencies above a certain, but generally low, frequency in
both upstream and downstream directions. The reason for their departure at low frequency
is simply that periodicity is imposed on the cascade solution while none is imposed on the
single airfoil prediction.

In the following section the changes of behaviour due to changes in ss/cs are pre-
sented, allowing the identification of cascade mode interference effects which are critical
to establishing agreement criteria for substantially overlapping blades.

4.2.2.3 Differences between exact cascade and SA-model for partially over-
lapping blades, (ss/cs) sinχs ≈ 1

In this case, there is only partial overlap between neighbouring blades. This is the case of
most interest in turbofan applications. Single airfoil theory is still observed to have good
agreement with the cascade solution above a certain frequency. The factors that influence
the frequency at which agreement occurs differ in the upstream and downstream cases.
Note that no abrupt change in behaviour is observed as the blades become non-overlapped.

Upstream radiation for partially overlapping blades, (ss/cs) sinχs ≈ 1. When
the blades are only partially overlapped the oscillations in the power spectra arising from
the interference between cascade modes become significantly lower in amplitude. These
effects are not present in the single airfoil calculation. Reduced blade overlap also results
in a reduction of the difference in sound power radiation seen at low frequencies, suggest-
ing a reduction of the plane wave radiation efficiency effect observed in for significantly
overlapped blades. Both of these effects imply that duct radiation effects are reduced as
the inter-blade ducts become shorter.

For upstream radiation the main distinctions between the spectra predicted by the two
models arise due to the small differences in the manner in which the leading and trailing
edge interactions occur. This leads to significant, but slowly varying, oscillations that
are present in both power spectra but with their peaks and troughs in slightly different
positions. However, unlike for substantially overlapping blades, when the overlap is only
partial the influence of the trailing edge becomes a significant factor in determining the
degree of agreement between the two spectral predictions. The magnitude of these oscilla-
tions for upstream radiation are greater than in the downstream spectra. This is because
of interference between the downstream propagation modes with the reflected upstream
propagating modes which requires at least two reflections in the downstream case, as de-
picted in Figure 4.6. The combined effect of these phenomena is that the frequency of
agreement is now appreciably higher than when substantially overlapped.
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(a) Upstream

direct

reflected
(b) Downstream

direct

reflected

Figure 4.6 – Illustration of waves reflecting in duct formed between overlapped blades.

Downstream radiation for partially overlapping blades, (ss/cs) sinχs ≈ 1. Quali-
tative agreement between the single airfoil and cascade spectra are different for downstream
radiation compared to that upstream. Good agreement is obtained for downstream ra-
diation over a much wider range of frequencies. In particular it may be noted that the
oscillations in the power spectra arising from the cut-on of the cascade modes are neg-
ligible. It will be shown in Section 4.2.4 that the character of the interference between
cascade modes that cause these oscillations leads to their disappearance at lower values of
ss/cs for downstream radiation compared with upstream radiation.

4.2.3 Effect of ‘ss/cs’ on fine structure of cascade interaction power spec-
tra

The effect of changes to ss and cs on the upstream and downstream of both single airfoil
and cascade spectra are now investigated in greater detail. The leading-edge spacing ss

controls the number of cascade modes that will be cut-on at a given frequency and is
therefore only of concern to the cascade. The chord cs is linked with reduced-frequency
effects, particularly those associated with leading-trailing edge interactions. The ratio of
these two parameters ss/cs forms the independent parameter in controlling the cascade
response [59] while it was also shown to be critical in the determination of blade overlap
in the preceding section. In order to identify the detailed behaviour of the variation in
sound power spectra, they are presented on two-dimensional ‘maps’ in which the cascade-
equivalent PWL is plotted against ω/∆ω and ss/cs. The frequency normalisation factor
∆ω has been chosen to reveal the precise frequencies at which the cascade modes cut-on.

Figures 4.7 and 4.8 show respectively the upstream and downstream maps for single
airfoils and cascades with common parameters: Bs = 48, χs = 40°, Ms = 0.4, Λ/ss = 0.2
and Tw = 0.02. Significant interference due to cascade effects are seen in the upstream and
downstream plots for ss/cs . 1.5 and ω/∆ω > 1. Moreover, distinct regions of behaviour
can be observed corresponding to the different frequency bands ωn < ω < ωn+1. In these
regions, complex interference patterns are visible, which in Section 4.2.4 are demonstrated
to be due to interference between cascade modes. Note also that significant cascade mode
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Figure 4.7 – ‘Maps’ of upstream sound power level per unit span plotted against ss/cs and ω/∆ω.
Other geometry and flow parameters held constant, Bs = 48, χs = 40°, Ms = 0.4, Λ/ss = 0.2 and
Tw = 0.02. Calculations not performed for ss/cs < 1 AND ω/∆ω > 8 for computational reasons.
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Figure 4.8 – ‘Maps’ of downstream sound power level per unit span plotted against ss/cs and ω/∆ω.
Other geometry and flow parameters held constant, Bs = 48, χs = 40°, Ms = 0.4, Λ/ss = 0.2 and
Tw = 0.02. Calculations not performed for ss/cs < 1 AND ω/∆ω > 8 for computational reasons.
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interactions are still visible for non-overlapping blades, corresponding to ss/cs > 1.5 in
this example. However, their intensity falls off rapidly for ss/cs values above this.

Also clearly visible in the single airfoil and cascade spectral map are distinct diagonal
features. These correspond directly to lines of constant reduced-frequency and are related
to the peaks and troughs of ripples associated with waves repeatedly interacting between
the trailing edge and leading edge. It is noteworthy that these features are appreciably
stronger in the single airfoil spectra, suggesting that ducting of the radiated sound by
adjacent blades causes a weakening of this behaviour. As ss/cs increases and cascade
effects weaken the frequencies at which the peaks and troughs of these ripples appear
become closer in single airfoil and cascade calculations so that the spectral differences are
reduced.

4.2.4 Cascade mode interference

It will now be demonstrated by simple analysis that the interference patterns seen for
(ss/cs) < 1.5 in the cascade power maps of Figures 4.7b and 4.8b are due to interference
between cascade modes.

For simplicity, consider the frequency range in which only the cascade modes of orders
n = 0 and n = 1 are cut-on: ω1 < ω < ω2 (Equation (3.5)). First consider the behaviour of
the downstream sound power spectra. It is assumed that the downstream radiated sound
power is related to the mean-square pressure at the trailing edge plane. The pressure at
the trailing edge due to the two cascade modes of orders n = 0 and n = 1, each of unit
amplitude and with phase difference ϕ, generated at the leading edge is given by

p (cs) = e−iϕe−ik1,0cs + e−ik1,1cs , (4.3)

where k1,n is the axial wavenumber of the cascade mode of order n given by

k1,n =
kMs ±

√
k2 − β2k2

2,n

β2 , (4.4)

and from Equation (3.5)

k2,n = nπ

ss cosχs
, (4.5)

is the corresponding gap-wise wavenumber component. The mean-square pressure at the
trailing edge is given by

p2 (cs) = 1
2pp

∗ = 1 + cos (ϕ+ k1,0cs − k1,1cs) , (4.6)

where ∗ denotes complex conjugation. The peaks and troughs of p2 (cs) will occur when

(k1,0 − k1,1) cs = mπ − ϕ, for m ∈ N. (4.7)
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Even values of m result in peaks, associated with constructive interference. Destructive
interference troughs occur at odd values of m. It is now assumed for the sake of simplicity
that the phase difference ϕ = 0. Equation (4.4) is solved for n = 0 and n = 1 and the
resulting expressions are substituted into Equation (4.7), giving the following expression
for the frequency at which the peak or trough of order m is located

ωint,m = ± πβc0
2ss cosχs

{
βm (ss/cs) cosχs + [βm (ss/cs) cosχs]−1

}
. (4.8)

Figure 4.9 shows a set of curves obtained using Equation (4.8) overlaid on a map of
downstream PWL plotted against ss/cs and ω/∆ω.
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Figure 4.9 – Peak and trough lines overlaid on a cascade sound power level map showing modal
interference for ω1 < ω < ω2, 0.1 < ss/cs < 1 obtained using parameters: ϕ = 0, Bs = 12, χs = 40°,
Ms = 0.4, Λ/ss = 0.01 and Tw = 0.02.

4.3 Criteria for agreement between single airfoil and cascade theory

The purpose of this chapter is to identify the frequencies above which close agreement
is seen between the PWL spectra obtained using the exact cascade and single airfoil
noise models using Equations (2.56) and (4.1) allowing improvements to the efficiency of
sound power calculations for broadband noise. The main differences between exact cascade
and single airfoil sound power spectra have been demonstrated and the physical causes
behind these differences discussed in the preceding section. In this section criteria will be
established that allow the identification of frequencies above which agreement at a desired
level is obtained.
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4.3.1 Definition of agreement criteria

A method shall now be described that allows the identification of frequencies above which
agreement between two PWL spectra is obtained to within a given threshold. The concept
of close agreement is somewhat arbitrary and hence has proved difficult to define in precise
terms. However, the following method has produced results that appear to be acceptable.

Having chosen a desired level of agreement (in dB) the objective of the new method is
to ensure that at all frequencies above the resulting minimum agreement frequency:

“The difference in PWL exceeds the threshold for
no more than one-third octave bandwidth.”

This definition ignores small-bandwidth excursions of sound power level difference, as-
suming that these are of little importance to band-average behaviour (tending to become
‘averaged-out’).

The level difference between two spectra is calculated ∆PWL. The analysis of the
difference spectrum is conducted one frequency point at a time from high frequencies to
low. A one-third octave band is identified below the current frequency point. If any part
of the one-third octave band is within the prescribed threshold then the current frequency
point is regarded as being in agreement. This process is repeated until the first band is
encountered which has no part within the prescribed threshold. This process is illustrated
in Figure 4.10.

Figure 4.10a shows PWL spectra obtained for a cascade and the equivalent single
airfoil spectrum while Figure 4.10b shows the level difference between these two spectra
∆PWL. Overlaid on Figure 4.10b are horizontal blue lines indicating the threshold values
(±1 dB in this case) and a vertical green line showing the minimum agreement frequency.
The spectra at higher frequencies are in agreement within the specified threshold, this
area being shaded in green. The one-third octave band corresponding to the agreement
frequency is shown as the pink area. Note that throughout this entire band ∆PWL is
outside the threshold.

4.3.2 Example of cascade-single airfoil agreement frequencies obtained
using agreement criteria

Using the agreement criteria defined in Section 4.3.1 the variation of the minimum agree-
ment frequencies are investigated for changing ss/cs using the geometry Bs = 48, Ms = 0.4,
Λ/ss = 0.2 and Tw = 0.02 which are the same selection of parameters as used for the ex-
amples presented in Sections 4.2.2 and 4.2.3. This study is restricted to the case when
Λ/ss < 0.25 for non-overlapped wakes. Different behaviour is observed at larger nor-
malised length scales, particularly at low frequencies. These effects will not be discussed
further in this thesis. Upstream and downstream results are presented separately.
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Figure 4.10 – Cascade and SA-model PWL spectra and corresponding level difference plotted on
separate axes to illustrate agreement at 1 dB. Also shown are horizontal blue lines indicating the
threshold (±1 dB) and a vertical green line indicating the corresponding minimum agreement fre-
quency. The green shaded areas indicate frequencies where agreement is seen. The pink shaded area
in the lower plot is of one-third octave bandwidth and shows that the level difference is outside the
threshold over its entire width. These spectra obtained using the parameters: ss/cs = 1, Bs = 48,
χs = 40°, Ms = 0.4, Λ/ss = 0.2 and Tw = 0.02.
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4.3.2.1 Upstream agreement frequencies

Figure 4.11 shows the 1 dB and 3 dB upstream minimum agreement frequencies versus
ss/cs. These frequencies are normalised with ∆ω, the fundamental frequency for cascade
modes defined in Equation (3.6). Also shown is Ω−1, the cut-on frequency of the duct
mode of order -1 (see Equation (3.2)). The vertical dash-dotted line represents the value
of ss/cs for which the blades cease to overlap as ss/cs increases from below.
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Figure 4.11 – Upstream minimum agreement frequencies obtained at 1 dB and 3 dB levels for cascade
and equivalent single airfoil predictions with Bs = 48, Ms = 0.4, Λ/ss = 0.2 and Tw = 0.02 over a
range of ss/cs. The frequencies Ω−1 and the constant hydrodynamic reduced-frequency µh = 10 are
indicated, as is the overlap condition (ss/cs) sinχs = 1. All frequencies are normalised with ∆ω.

The most striking feature of this figure is that the minimum agreement frequencies
appear to follow the line of constant reduced-frequency, µh = ωcs/2β2U = 10 at small
values of ss/cs. As the tolerance is reduced from 3 dB to 1 dB the minimum agreement
frequencies deviate from this straight line at increasing values of ss/cs. The reason for this
behaviour can be found by inspection of Figure 4.5a showing comparisons between single
airfoil and cascade spectra at very small, moderate and very large (ss/cs) sinχs values.
It can be seen that the main differences between the cascade and single airfoil spectra
as they converge result from their slightly differing responses due to leading-trailing edge
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interactions. Peaks and troughs are present in both spectra but appear at slightly different
frequencies. These oscillations generally become smaller as ss/cs is increased, eventually
becoming unimportant.

For high values of ss/cs, where the differences in leading-trailing edge interactions are
insignificant for model agreement, the agreement frequency becomes equal to the cut-
off frequency of the duct mode of order m = −1. This mode is co-rotating and carries
significant power unlike the counter-rotating m = +1, as observed in Section 3.1.1. The
duct modes, absent from the single airfoil radiation model, cause a fundamental difference
in low-frequency spectral behaviour.

For small ss/cs, where cascade interaction effects are important, good agreement is
obtained well below ∆ ω, the frequency at which the first higher-order cascade mode
cuts on. This suggests that upstream radiation is predominantly generated by direct
radiation from the leading edges to the upstream observer with only a minor influence by
the rectilinear inter-blade duct.

4.3.2.2 Downstream agreement frequencies

Figure 4.12 shows the 1 dB and 3 dB downstream minimum agreement frequencies versus
ss/cs. These frequencies are normalised by ∆ω. A horizontal dash-dotted line indicates
the frequency Ω+1 defined in Equation (3.2). Also shown as a vertical dash-dotted line is
the value of ss/cs for which the blades cease to overlap as ss/cs increases from below.

The behaviour of the minimum agreement frequencies with ss/cs is markedly different
from that obtained for upstream radiation, as shown in Figure 4.11. These minimum
agreement frequencies are observed to largely independent of ss/cs for (ss/cs) sinχs . 0.8.
This suggests that for downstream radiation a reasonable degree of blade overlap is nec-
essary for cascade effects to become significant. Unsurprisingly, the minimum agreement
frequencies increase as the tolerance is reduced.

In this downstream case, for overlapped blades, the agreement frequencies correspond
closely to the cut-off frequencies of the cascade modes of order n = 1 and n = 2. Thus, it
would appear that cascade effects can be neglected when at least one higher-order cascade
mode is cut-on (for agreement at 3 dB). Figure 4.12 indicates that if better agreement
is sought using single airfoil theory then at least 2 or 3 higher-order cascade modes are
required to be cut-on.

For high values of ss/cs, where the blades are non-overlapped, the agreement frequency
becomes equal to the cut-off frequency of the duct mode of order m = +1. This mode is
counter-rotating but carries significant power since the axial component of the downstream
modal phase angle is aligned with that of the mean flow.

4.3.3 Summary or agreement criteria

It has been demonstrated that the sound power spectra for upstream and downstream
radiation obtained using single airfoil and cascade theory are in close agreement above
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Figure 4.12 – Downstream minimum agreement frequencies obtained at 1 dB and 3 dB levels for
cascade and equivalent single airfoil predictions with Bs = 48, Ms = 0.4, Λ/ss = 0.2 and Tw = 0.02
over a range of ss/cs. The frequency Ω+1 is indicated, as is the overlap condition (ss/cs) sinχs = 1.
All frequencies are normalised with ∆ω.
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certain minimum agreement frequencies that are influenced by the extent of blade overlap
and other geometrical and flow parameters. In general, where there is substantial blade
overlap the upstream and downstream agreement frequencies are approximately ∆ω, the
fundamental cut-on frequency of cascade modes as defined in Equation (3.5).

In the partially overlapping regime, (ss/cs) sinχs ≈ 1, it is likely that around ∆ω there
will be differences between the cascade and single airfoil sound power spectra of a few
decibels. In the upstream case the spectra diverge because of differences in the nature
of the leading-trailing edge interactions. In downstream propagation spectral differences
occur because of large-bandwidth excursions due to cascade mode interference that are
absent in the single airfoil calculations. However, agreement between cascade and single
airfoil spectra is improved considerably at ω2.

Where the blades are substantially non-overlapping, (ss/cs) sinχs � 1, the minimum
frequency required to see close agreement between the sound power spectra obtained using
cascade theory and single airfoil theory is Ω±1 as defined in Equation (3.1) the cut-on
frequency for the first co-rotating duct mode associated with the periodicity imposed on
sound power radiation in the cascade formulation (Equation (2.56)).

The agreement frequencies are summarised in Table 4.1 and sketched in Figure 4.13.

Table 4.1 – Summary of the criteria for agreement between sound power spectra using single airfoil
and cascade.

Substantially Substantially
overlapped non-overlapped

Upstream ω > ∆ω ω > Ω−1
Downstream ω > ∆ω ω > Ω+1

4.4 Concluding remarks

This chapter makes the following main contributions to the understanding of cascades and
how they relate to isolated airfoils:

1. It is observed that upstream and downstream sound power radiation spectra are
in close agreement above certain frequencies, which can be calculated for a given
geometry and turbulent subsonic flow.

2. Significant cascade interactions occur for cascade geometries where adjacent blades
have a substantial perpendicular overlap, forming inter-blade ducts. The resulting
phenomena – duct radiation efficiency and cascade mode interference – dominate the
agreement in this overlapped regime.

3. In the partially-overlapping case the upstream agreement frequencies are relatively
high due to differences in the manner of leading-trailing edge interactions seen in
single airfoil and cascade calculations.
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Figure 4.13 – Sketch indicating the areas of agreement between cascade and single airfoil predicted
sound power levels.
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4. Where cascade blades are substantially non-overlapped the lower limit of agreement
is controlled only by the periodicity condition imposed on cascade radiation.
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Chapter 5

Sound power transmission loss across the
rotor

Broadband rotor-stator interaction noise has been shown to be a major contributor to the
noise generated by a turbofan engine. Noise generated in this manner will propagate to
the far-field observer both downstream and upstream. The upstream path, indicated in
Figure 5.1, must pass through the rotor which will both reflect some of the incident power
and scatter energy between frequencies. It is this upstream path and the scattering of
sound by the spinning fan that is the primary concern of this chapter.

In this chapter a general modal power scattering model is developed which is expressed
in terms of non-dimensional modal pressure scattering coefficients. The model is used
to perform simulations of rotor sound power transmission loss where the scattering is
calculated using the acoustic scattering model due to Smith [46] and Whitehead [47]. A
series of blockage results are presented to show trends with Mach number, stagger angle,
rotor pitch-chord ratio and rotation speed. The analytical rotor transmission model due
to Kaji and Okazaki [67] is used to derive a rotor sound power transmission loss model
which provides a simple interpretation of the blockage mechanism.

turbulent rotor wakes

to forward arc

Figure 5.1 – Noise generated on the OGV surface propagates to the forward arc through the rotor.
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5.1 Scattering theory

In this section a general scattering model is presented that is expressed in terms of modal
pressure scattering coefficients. This begins by outlining the basic modelling assumptions.

5.1.1 Modelling assumptions

The following series of assumptions are employed in the modelling approach

1. The rotor is divided into annular strips, as for the noise model in Chapter 2. The
sound power in each strip is summed incoherently. This ‘strip theory’ approach is
common in solutions to the vortical impingement problem where coherence between
adjacent strips is low due to the random nature of the incident field. However, in
the current problem of impingement by deterministic acoustical modes the radial
coherence of each incident mode is assured. We assert that due to the broadband
multi-modal character of the incident field there will, in fact, be low coherence be-
tween adjacent strips at sufficiently high frequency.

2. The broadband noise is assumed to be radiated from the OGV in free field. The
effects of the duct on radiated sound are ignored.

3. The blades of the rotor in each strip are represented as flat plates of zero thickness.

4. The rotor is assumed to have no steady loading so that the mean flow can be modelled
as uniform. The mean flow is assumed to impinge with zero angle of incidence.

5. The annular duct is assumed to have a constant cross section. This, combined with
the steady mean flow (see item 4), leads to an assumption that there is a constant
range of cut-on acoustic modes at any axial location for a given frequency.

6. The finite unsteady blade loading assumption is satisfied and the Kutta condition is
imposed, i.e. the pressure is continuous at the blade trailing edges (see e.g. Whitehead
[47]).

7. The unsteady flow perturbations are assumed to be very small compared to the mean
flow velocity so that linear theory may be employed.

8. The flow is assumed to be subsonic and isentropic.

9. The medium is assumed to be inviscid and hence boundary layers on vane surfaces
are neglected.

5.1.2 Incident acoustic field

In a circular or annular duct, a system of cylindrical coordinates (x, φ,R) can be defined
such that the x-axis points along the duct centreline, R is a radial coordinate from the
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Figure 5.2 – Illustration of the geometry of flat plate airfoils with stagger angle χ translating in
the duct x reference frame with velocity ΩR0. The mean flow is assumed to be unchanged by its
passage through the rotor so that the x frame velocity U and whirl angle θ are identical upstream
and downstream of the blade row. In the x̂ frame, moving with the blade row, the mean flow appears
to have velocity Û and is aligned with the blades so that the whirl angle is χ.

duct centreline, and φ is the azimuthal angle. At a single frequency acoustic modes of
azimuthal order m in the duct are of the form

pm(x, t) = f(R)ei(ω0t+µ±mx+mφ),

where f(R) is a radially dependent function (usually involving Bessel functions), ω0 is the
acoustic frequency and µ±m is the associated axial wavenumber, with + denoting a wave
travelling upstream, and − denoting a wave travelling downstream.

Consider a thin annular section of the duct, about medial radius R0, and suppose that
within this section the pressure is independent of R, so f(R) = constant. The duct section
is ‘unwrapped’, with the φ coordinate mapping to the new ‘gap-wise’ coordinate x2 = φR0.
Then φ = 2πx2/Bs, where B is the number of fan blades and s = 2πR0/B is the blade
pitch, as illustrated in Figure 5.2a. The pressure in this strip can be written as

pm(x, t) = Pmei(ω0t+µ±mx1+νmx2), (5.1)

where Pm is the complex pressure magnitude and µ±m and νm are the wavenumber com-
ponents resolved in the axial and gap-wise directions respectively.

The mode order m incident upon the rotor is constrained by the periodic nature of the
cylindrical duct so that the gap-wise wavenumber component is given by

νm = 2πm
Bs

. (5.2)

Substitution of Equation (5.1) into the convected wave equation results in the acoustic
dispersion relation (

ω0
c0

+M1µm +M2νm
)2
−
(
µ2
m + ν2

m

)
= 0, (5.3)
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where M1 and M2 are the axial and gap-wise components of the mean flow Mach number.
Solving for the axial wavenumber component yields

µ±m =
M1(ω0

c0
+M2νm)±

(
(ω0
c0

+M2νm)2 − β2
1ν

2
m

)1/2

β2
1

, (5.4)

where the two solutions describe upstream and downstream propagating modes, denoted
by + and − respectively. The model will be restricted to the cut-on modes so that

(ω0
c0

+M2νm)2 − β2
1ν

2
m ≥ 0,

and µ±m ∈ R. This can be used to specify a pair of numbers mmin and mmax which give
the lowest and highest cut-on values of m, defined by

mmin =
⌈
Bsω0

2πc0β2 (M2 − β1)
⌉
, (5.5a)

mmax =
⌊
Bsω0

2πc0β2 (M2 + β1)
⌋
, (5.5b)

where bc denotes a floor function (rounding down to the nearest integer) and de denotes a
ceiling function (rounding up).

The following section considers the mode scattering implications of the periodicity
imposed by the unwrapping of the cylindrical duct.

5.1.3 Scattering between modes

m r = 1 r = 2

s

Figure 5.3 – Aliasing of inci-
dent mode order m: phase of each
modal order n = m + rB is iden-
tical when sampled at blades.

Consider an incident mode of order m, as described in Sec-
tion 5.1.2. The gap-wise wavenumber component is ‘sam-
pled’ by the blades, so that the phase difference between
adjacent blades can be seen to be

σm = sνm = 2πm
B

. (5.6)

In Figure 5.3 the mode orderm is sketched alongside two
higher order modes which share the same phase difference,
mod (2π). In this situation there will be an aliasing of these
modes and an exchange of sound pressure, or scattering
between them. This will occur for any mode order n that
satisfies

sνn = σm + 2πr, (5.7)

where the scattering index r ∈ Z. The gap-wise wavenumber component of mode n is
given by

νn = σm + 2πr
s

= 2π
Bs

(m+ rB) . (5.8)
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Comparison of this expression with Equation (5.2) shows that the modal order of n is
given by the scattering rule

n = m+ rB. (5.9)

In the following section the inter-mode scattering is combined with the frequency scat-
tering effects that result from translation of the blade row.

5.1.4 Scattering by a translating row of flat plates

Consider the case where the fan rotates clockwise (i.e. in the negative φ direction) with
angular velocity Ω. The equivalent blade row is seen to move in the negative x2 direction
in the ‘unwrapped’ duct geometry, with velocity ΩR0 = ΩBs/2π. In this unwrapped
geometry, we shall require two coordinate systems: x, in which the duct is stationary and
the blades move, and x̂, in which the blade row is stationary and the duct moves. These
are sketched in Figures 5.2a and 5.2b. The assumption that the blades are unloaded (item
4 in Section 5.1.1) implies that the mean flow is unchanged as it passes through the blade
row.

The coordinate systems are related by

x̂1 = x1; x̂2 = x2 + ΩBs2π t. (5.10)

Mean-flow velocity components are related by

Û1 = U1; Û2 = U2 + ΩBs2π , (5.11)

and total velocities are given by the Pythagorean theorem. Note that

Û1 = Û cosχ and Û2 = Û sinχ. (5.12)

Note also that U1 , U cosχ, as the flow in the x reference frame is not in the χ direction.
Figure 5.2c illustrates the relation between the flow velocity magnitudes as seen in the x
and x̂ frames. A closed velocity vector triangle is formed from the two flow velocities and
the frame translation velocity ΩR0.

In the fixed-duct reference frame x, consider an incident mode of order m, as defined by
Equations (5.1)–(5.4) in Section 5.1.2. This mode is expressed in the fixed-blade reference
frame x̂ by substitution of Equations (5.2) and (5.10) into Equation (5.1) to yield

pm(x̂, t) = Pmei((ω0−mΩ)t+µ±mx̂1+νmx̂2). (5.13)

In shifting between reference frames, the mode is perceived to have undergone a Doppler
shift to the frequency ωm defined by

ωm = ω0 −mΩ. (5.14)
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Note that the dispersion relation in the x̂ frame (see Equation (5.3)) requires an x̂1

wavenumber component µ̂±m(ωm) defined by

µ̂±m(ωm) =
M̂1(ωmc0 + M̂2νm)±

(
(ωmc0 + M̂2νm)2 − β̂2

1ν
2
m

)1/2

β̂2
1

. (5.15)

Since M̂1 = M1, β̂1 = β1, and M̂2 = M2 + ΩBs
2πc0 = M2 + Ωm

νmc0
, therefore

ωm
c0

+ M̂2νm = ω0
c0

+M2νm,

and so the axial wavenumber components in the x̂ and x frames are unchanged

µ̂±m(ωm) = µ±m(ω0). (5.16)

The incident mode may thus be written in terms of x̂ frame values as

pm(x̂, t) = Pmei(ωmt+µ̂±m(ωm)x̂1+νmx̂2). (5.17)

When the incident mode pm(x̂, t) interacts with a blade row a scattered field is gen-
erated which is composed of a superposition of all possible duct modes n(r) = m + rB

defined by the scattering rule shown in Equation (5.9). Henceforth the dependency of n
on r shall not be explicitly noted for the sake of brevity. We denote the upstream and
downstream scattered pressure field by p±(x, t), where ± indicates the direction of prop-
agation, as described earlier. The scattered field due to all cut-on modes m incident at
frequency ω0 can be written as the modal superposition

p±(x̂, t) =
mmax∑

m=mmin

rmax∑
r=rmin

PmG±mnei(ωmt+µ̂±n (ωm)x̂1+νnx̂2). (5.18)

Here G±mn are a set of non-dimensional pressure scattering coefficients which may be eval-
uated using a scattering model such as the exact cascade model due to Smith [46] and
Whitehead [47]. It is shown by Smith and Whitehead that each G±mn is dependent on the
incident and scattered mode numbers, m and n respectively, the fan geometry, the x̂ frame
flow Mach number M̂ and the direction and frequency of the incident field, so that

G±mn = G±mn(s/c, θ, M̂ , ωm, sgn(µ̂±m)), (5.19)

where sgn(µ̂±m) gives the direction of the incident field, and the superscript on G±mn gives
the direction of the scattered field. For brevity of notation, we shall subsequently write
only the M̂ and ωm arguments of the G functions, the first to represent the coordinate
system, the second to note the Doppler-shifted frequency.
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In the rotor-fixed x̂ frame the minimum and maximum scattering indices are

rmin(ωm) =
⌈
sωm

2πc0β̂2

(
M̂2 − β̂1

)
− m

B

⌉
, (5.20a)

rmax(ωm) =
⌊
sωm

2πc0β̂2

(
M̂2 + β̂1

)
− m

B

⌋
. (5.20b)

The scattered field (Equation (5.18)) can be converted back into the fixed-duct (x)
observer reference frame using Equations (5.10) and (5.2), to give

p±(x, t) =
mmax∑

m=mmin

rmax(ωm)∑
r=rmin(ωm)

PmG±mn(M̂, ωm)ei((ωm+nΩ)t+µ̂±n (ωm)x1+νnx2). (5.21)

Here again it is noted that a Doppler shift has occurred so that, using Equation (5.14),
the observer fixed-duct frame radiation frequency is defined as

ωmn = ω0 − (m− n)Ω = ω0 + rBΩ. (5.22)

Hence the incident frequency is scattered into frequencies separated by integer multiples
of the blade passing frequency BΩ.

The frequency scattering effect is illustrated in Figure 5.4. This figure shows the
scattering into modes n of all cut-on modes m incident at frequency ω0 = 15Ω for the
case; B = 5, M̂ = 0.7, χ = 40◦, θ = −30◦, MΩR = 0.45, R0 = 0.5 m. Here the modes m
incident at the ‘source’ frequency ω0/Ω = 15 EO are marked with blue squares. Note that
these occupy the entire width of the dark grey duct frame cut-on triangle at this frequency.
These modes appear in the rotor-fixed frame at the frequencies ωm, which are marked by
the large green circles. Note that while the incident modes at higher orders (m = [6, 7])
fall outside the dark grey duct frame cut-on triangle at their rotor frame frequencies ωm,
all of them fall within the rotor frame cut on ‘triangle’ overlaid as the light grey region.
The scattering rule (Equation (5.9)) allows these to be scattered (horizontally here) into
modes n = m + rB, represented by small green circles. Each of these scattered modes
radiates into the duct-fixed frame at frequencies ωmn as defined in Equation (5.22), marked
by red stars. Note that these stars all fall within the original duct cut-on triangle and the
different scattering orders r result in emission at ωmn = ω0 + rBΩ (offset step of 5 EO in
this case).

Considering the axial wavenumber components as in Equation (5.16), these are again
found to be equal in their respective frames of reference

µ̂±n (ωm) = µ±n (ωmn). (5.23)

The scattered pressure field observed in the fixed-duct frame can thus finally be written
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Figure 5.4 – The scattering into modes n of all cut-on modes m incident at frequency ω0 = 15Ω for
the case B = 5, M̂ = 0.7, χ = 40◦, θ = −30◦, MΩR = 0.45 and R0 = 0.5 m. The modes m incident at
the ‘source’ frequency ω0/Ω = 15 EO, marked with blue squares are scattered into modes n = m+rB
which are radiated at frequencies (ωmn = ω0 + rBΩ)/Ω EO (offset step of B = 5 EO in this case).

in the form

p±(x, t) =
mmax∑

m=mmin

rmax(ωm)∑
r=rmin(ωm)

PmG±mn(M̂, ωm)ei(ωmnt+µ±n (ωmn)x1+νnx2). (5.24)

This chapter is primarily concerned with the transmitted acoustic power across the
rotor. Substitution of Equation (5.24) into the linearised momentum equation gives the
acoustic particle velocity components of the scattered field:

u±1 (x, t) = − 1
ρ0

mmax∑
m=mmin

rmax(ωm)∑
r=rmin(ωm)

PmG±mn

× µ±n (ωmn)
ωmn + U1µ

±
n (ωmn) + U2νn

ei(ωmnt+µ±n (ωmn)x1+νnx2), (5.25a)

u±2 (x, t) = − 1
ρ0

mmax∑
m=mmin

rmax(ωm)∑
r=rmin(ωm)

PmG±mn

× νn

ωmn + U1µ
±
n (ωmn) + U2νn

ei(ωmnt+µ±n (ωmn)x1+νnx2). (5.25b)
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The axial component of the time-averaged acoustic intensity is given by Goldstein [60] as

I1 = lim
T→∞

Re
[(

p±

ρ0
+ U1u1 + U2u2

)(
ρ0u
∗
1 + U1p

∗

c2
0

)]
. (5.26)

Substitution of Equations (5.25a) and (5.25b) into Equation (5.26) (with a new dummy
variables r′ and corresponding n′ = m′ + r′B) and treating the broadband incident field
as uncorrelated gives

I±1 (x) = lim
T→∞

Re
[

1
ρ0

mmax∑
m=mmin

mmax∑
m′=mmin

rmax(ωm)∑
r=rmin(ωm)

rmax(ωm)∑
r′=rmin(ωm)

E [PmP ∗m′ ]

× G±mnG±∗m′n′e
i(µ±n (ωmn)−µ±∗

n′ (ωm′n′ ))x1ei(νn−νn′ )x2

× ωmn

(
−µ±∗n′ (ωm′n′) +M1(ωm′n′c0

+M1µ
±∗
n′ (ωm′n′) +M2νn′)

)
(ωmn + U1µ

±
n (ωmn) + U2νn)(ωm′n′ + U1µ

±∗
n′ (ωm′n′) + U2νn′)

]
, (5.27)

where E[·] denotes the expected value, or ensemble average value. Assuming that Pm is a
statistically random variable then

lim
T→∞

mmax∑
m=mmin

mmax∑
m′=mmin

E [PmP ∗m′ ] =
mmax∑

m=mmin

mmax∑
m′=mmin

|Pm′ |2δm,m′ , (5.28)

where δm,m′ is a Kronecker delta function.

The acoustic power per unit span is calculated by integrating the acoustic intensity
around the circumference of the duct strip

P± =
2π∫
0

I±1 (x)R0 dφ =
Bs∫
0

I±1 (x) dx2. (5.29)

The only x2 dependence in the intensity expression shown in Equation (5.27) is in a
complex exponential, so it can be evaluated using an orthogonality condition

Bs∫
0

ei(νn−νn′ )x2 dx2 =
Bs∫
0

ei(n−n′)2πx2/Bs dx2 = Bs δn,n′ , (5.30)

Using Equations (5.28) and (5.30), the m′ and r′ summations in Equation (5.27) can be
performed to give

P± = Bs

ρ0

mmax∑
m=mmin

rmax(ωm)∑
r=rmin(ωm)

ωmn|Pm|2|G±mn(M̂, ωm)|2

|ωmn + U1µ
±
n (ωmn) + U2νn|2

× Re
[(
−µ±∗n +M1(ωmnc0 +M1µ

±∗
n +M2νn)

)
ei(µ±n−µ±∗n )x1

]
. (5.31)

Noting that the term in brackets is non-zero only for purely real values of the axial
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wavenumber component µ±r , this expression can be further simplified to

P± = ∓Bs
ρ0

mmax∑
m=mmin

rmax(ωm)∑
r=rmin(ωm)

|Pm|2|G±mn(M̂, ωm)|2H±(ωmn,M, θ, n). (5.32)

where H± are the upstream and downstream power factors:

H±(ω,M, θ,m) =
ωmn

[
( ωc0 +M2νm)2 − β2

1ν
2
m

]1/2
|ω + U1µ

±
m(ω) + U2νm|2

. (5.33)

5.1.5 Effect of rotor diffusion on flow modelling

χLE

χTE

s

s

sTE

⊥
sLE

⊥

Figure 5.5 – Leading edge
and trailing edge dimensions
and parameters.

The base flow described in Section 5.1.2 abides by the mod-
elling assumptions listed in Section 5.1.1 but is not typical of
the flows seen in a real turbofan application. Instead, the inlet
flow is typically axial whilst steady loading of the rotors leads
to a turning of the mean flow, inducing whirl. Additionally, the
blades of a rotor are typically cambered, with stagger angle de-
creasing from leading to trailing edges. Such an arrangement
presents a divergent duct to the rotor-relative flow, leading to
diffusion and deceleration of the flow through the inter-blade
space. Figure 5.5 shows a sketch of a typical rotor blade geom-
etry, indicating the leading and trailing edge stagger angles χLE

and χTE respectively.

5.1.5.1 Incompressible flow model for diffusion in the blade passage

The cambered rotor blade passage presents a divergent passage to the mean flow and
therefore acts as a diffuser in the rotor frame of reference. The x̂ rotor frame Mach
number of the mean flow at the leading edge of the rotor M̂LE is now used in conjunction
with the geometry to define all other flow parameters.

An incompressible diffusion model is employed in order to provide an approximation
for the trailing edge Mach number M̂TE. A generalised model for diffusion is adopted
in which the medium is assumed to have constant density ρ. As the medium flows with
velocity V1 through an area A1, as shown in the left hand side of Figure 5.6 the mass flow
is given by the product ρV1A1. Continuity of mass flow leads to the expression

V2 = V1
A1
A2
. (5.34)

In the case of the rotor, the cross-sectional area of the blade passage at the leading and
trailing edges is proportional to the perpendicular separation of the blades at each location
sLE
⊥ ≈ s cosχLE and sTE

⊥ ≈ s cosχTE, as illustrated in Figure 5.5. Therefore Equation (5.34)
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V1 V2
A1 A2

Figure 5.6 – Definitions of the pa-
rameters defining the incompressible
diffusion model.
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Figure 5.7 – Mach number vector triangles for
the mean flow at leading and trailing edges.

is extended to give the following relation in terms of the defining parameters

M̂TE = M̂LE cos(χTE + ∆χ)
cosχTE

, (5.35)

where ∆χ = χLE − χTE is the flow turning angle associated with the rotor blade camber.

5.1.5.2 Mach number vector triangles at leading and trailing edges.

In order to calculate the input parameters for the scattering model developed in Section 5.1
the relation between the mean flows as seen in the x duct frame and the x̂ rotor frame
must be known. The left hand side of Figure 5.7 shows a vector triangle for the mean flow
Mach number at the rotor leading edge. The inlet flow is assumed to be axial with respect
to the static frame of reference, having whirl angle θLE = 0. In the x̂ frame of reference
the flow is assumed to be perfectly aligned with the rotor leading edge ‘metal angle’ χLE.
The magnitude of the incident flow Mach number is derived using

MLE = M̂LE cos(χTE + ∆χ). (5.36)

At the rotor trailing edge, shown on the right hand side of Figure 5.7, the flow is also
assumed to be aligned with the blade. This is consistent with the assumption of zero
steady loading (item 4), however Cumpsty [4] observes that the flow deviation at the rotor
trailing edge is typically of order 10◦.

The flow in the ‘duct’ behind the rotor is assumed to adopt a constant defined whirl
angle θTE that is independent of the fan speed. Thus, for a given trailing edge stagger
angle χTE the rotation Mach number MΩR and duct mean flow Mach number MTE will
scale linearly with M̂LE, forming a family of similar triangles. In terms of the defining
parameters these Mach number relations are

MTE = M̂LE cos(χTE + ∆χ)
cos θTE

, (5.37)

MΩR = M̂LE cos(χTE + ∆χ) [tanχTE − tan θTE] . (5.38)
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5.1.5.3 Choice of model input parameters

There are two components to the blockage presented by a rotor as illustrated in Figure 5.8:

1. The scattering of incident acoustic field that occurs at the trailing edge.

2. Scattering by regions of transonic and supersonic flow in between the rotor blades.

incident mode m

scattered mode n

Scattering by
trailing edge

Scattering by
transonic/supersonic
inter-blade flow

scattered mode n

Figure 5.8 – Illustration of blockage of a mode m propagating upstream and incident on rotor
trailing edge. The mode is scattered into modes n. These must propagate through inter-blade flow
which is faster towards the leading edge for typical cambered rotor blades.

In order to best capture these two effects in simulations the model inputs have been chosen
to be χ = χTE and M̂ = M̂LE. The flow parameters θ = θTE and M = M̂TE are used
to describe flow for the incident modes, while θ = θLE and M = M̂LE are used for the
radiation of scattered modes.

The attempt to include diffusion by the rotor using the flat plate incompressible flow
model described above is at the expense of introducing discontinuities in the flow speed
and angle at the rotor leading and trailing edges. Simulations have shown that, in some
cases, this discontinuity causes the modal sound power transmission coefficient across the
rotor to exceed unity, which is clearly non-physical.

5.2 Simulated rotor transmission results

A series of parameter studies have been conducted using the acoustic scattering model
presented in Section 5.1. The scattering coefficients G±mn have been calculated using both
the exact cascade model due to Smith [46] and Whitehead [47] and semi-actuator disk
model due to Kaji and Okazaki [67], that will be discussed in Section 5.3.2.1.

5.2.1 Characteristics of blockage spectra

Figure 5.9 shows a typical rotor blockage spectrum obtained using the exact cascade
scattering model due to Smith [46] and Whitehead [47]. The upstream-propagating sound
power radiated upstream of the rotor Pr+(ω) is compared with that incident upon it



83

P inc(ω), such that the rotor transmission loss level in dB is given by

Lτ (ω) = 10 log10
Pr+(ω)
P inc(ω) . (5.39)

Negative values of Lτ indicate a reduction of sound power transmitted through the rotor.
Note that in this and other results shown in this chapter, unit power is assumed to be
incident on the rotor at all frequencies, divided equally between the cut-on modes. Thus
the values plotted in Figure 5.9 are Lτ (ω) = 10 log10 Pr+(ω)(ω). The thick red line shows
the blockage spectrum, which is the sum of contributions from the scattered modes n =
m + rB in accordance with Equation (5.9). The contributions due to each value of the
scattering index r are shown individually in Figure 5.9 as thin blue lines. The spectra are
plotted against ω/Ω, the normalised frequency referred to as engine order (EO).
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Figure 5.9 – Typical blockage spectrum (red line) plotted with the scattered contributions due to
scattering indices r (blue lines) for the ‘control’ configuration B = 20, s/c = 0.7, χ = 40◦, θ = −30◦,
M̂ = 0.7. Frequency scattering causes the offset of the contributions due to r , 0. The band limiting
of the source frequency range (0 EO–100 EO) results in a discontinuity where the r = −1 contribution
ceases (80 EO).

The ‘source’ in this case and those seen subsequently is band limited to the range
0 EO–100 EO. The set of source frequencies shall be denoted by ω. It can be seen that the
individual scattered modal contributions are offset by the blade passing frequency (20 EO)
multiplied by the scattering index r. The overall level of the contributions decreases with
increasing |r|. The contribution for |r| = 1 is significant in the superposition, resulting in
a discontinuity at 80 EO where the r = −1 contribution ceases.

Ideally the contributions from all possible ‘source’ frequencies would be evaluated in
order to obtain the true scattered spectrum, the evidence shown here suggests that only a
few values of r are needed in order to obtain a converged blockage estimate. Further work
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is required to identify the range of contributions required for a given rotor configuration,
although it is suggested that the product rB is an important factor.

A common feature of the rotor transmission loss level spectrum shown in Figure 5.9
is that, aside from the noted discontinuities, is exhibits only weak frequency dependency.
The ripples seen at low frequency are due to the cut-on of the incident modes m. In
order to simplify the results of the parameter study shown in Section 5.2.3 they shall be
presented as frequency band averaged values.

In the following section the results obtained using the exact scattering model will be
compared the with those obtained using the semi-actuator disk model due to Kaji and
Okazaki [67].

5.2.2 Equivalence of exact cascade and Kaji-Okazaki scattering coeffi-
cient models

Figure 5.10 shows rotor transmission loss spectra obtained using the semi-actuator disk
model due to Kaji and Okazaki [67] (blue line) with those using the exact cascade scattering
coefficients (red dashed line with circle markers) for the stationary blade case B = 20,
M̂ = 0.7, s/c = 0.7, χ = 40◦. The normalising frequency ∆ω used in Figure 5.10 is
that at which the first higher order mode cuts on in the inter-blade region, as defined in
Equation (3.6).
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Figure 5.10 – Equivalence of blockage calculated using Kaji-Okazaki and exact cascade scattering
coefficients. Blockage spectra calculated for static case B = 20, M̂ = 0.7, s/c = 0.7, χ = 40◦.

5.2.2.1 Low frequency equivalence of scattering models

The Kaji-Okazaki rotor transmission loss spectrum is more finely resolved than that using
the exact cascade model, but the points at which the exact cascade results are calculated
(the marker locations) are in exact agreement for ω/∆ω . 0.7, indicated by the green
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region in Figure 5.10. The limitation to plane waves in the inter-blade space assumed in
the scattering model of Kaji and Okazaki limits its application to ω/∆ω . 1.

5.2.2.2 High frequency equivalence of scattering models

Given that the highest frequency of validity for the Kaji-Okazaki scattering model is
ω/∆ω . 1 it is surprising to see that there is agreement in the overall rotor transmission
loss seen for ω/∆ω & 3. In the high frequency regime ω/∆ω & 3 the acoustic field in the
inter-blade region is dominated by several well cut-on modes. The chord-wise component
of the wavenumbers associated with well cut-on modes is approximately equal to that of
the plane-wave mode of order n = 0 so that the overall behaviour becomes increasingly
dominated by plane wave-like behaviour as frequency increases.

Figure 5.11 illustrates the convergence of the values of the chord-wise wavenumber
components k1 associated with the order n = 0 and n = 1 modes as frequency increases
above ∆ω, the fundamental cascade mode cut-on frequency. These values of k1 have been
calculated using the negative (upstream) branch of

k1,n =
kM ±

√
k2 − β2k2

2,n

β2 , k2,n = nπ

s cos θ , (5.40)

where k = ω/c0 is the free-space acoustic wavenumber and β = (1−M2)1/2 is the Prandtl-
Glauert number. The expressions in Equation (5.40) are derived in Appendix A. The values
of k1 in Figure 5.11 are normalised with ∆ω/c0.
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Figure 5.11 – Normalised chord-wise wavenumber component for cascade modes of orders n = 0 and
n = 1 plotted against normalised frequency. The chord-wise component of the acoustic wavenumber
of a cascade mode n = 1 approaches that of the plane wave mode n = 0 as frequency increases above
the fundamental cascade mode cut-on frequency ∆ω.

5.2.3 Frequency-averaged rotor transmission loss coefficients

In Figure 5.10 it is observed that the rotor transmission loss coefficients obtained using
both the exact cascade and Kaji-Okazaki scattering models are only weakly frequency
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dependent. This suggests that the rotor transmission loss behaviour can be presented in
terms of a single frequency-averaged rotor transmission loss coefficient Lτ , defined as

Lτ =

∑
ω∈ω
Pr+(ω)∑

ω∈ω
P inc(ω)

, (5.41)

where ω is the set of source frequencies. Sound power scattered outside the source fre-
quency band is not included.

The changes to frequency-averaged rotor blockage that occur as the rotor geometry and
flow parameters are changed are now explored. A ‘control’ geometry and flow configuration
is defined using the values listed in Table 5.1. Each of these parameters is swept through
a range of values while the others are held constant at their control values and the radius
is held constant at R0 = 0.5 m. For the rotating cases a fixed x frame flow whirl angle
θ = −30◦ is used.

Table 5.1 – Control configuration for rotor transmission loss coefficient parameter study.

B s/c χ M̂

20 0.71 40 ◦ 0.7

The rotor transmission loss has been calculated using four combinations of flow model
and modal scattering model:

1. Stationary flat-plate blade row, exact modal scattering model,

2. Stationary flat-plate blade row, Kaji-Okazaki scattering model,

3. Rotating flat-plate blade row, exact modal scattering model,

4. Rotating ‘cambered’ blade row, exact modal scattering model.

The flat-plate flows (items 1–3) are calculated using flow model described in Section 5.1.2,
while in the case of item 4 the flow model of Section 5.1.5 has been applied to derive the
scattering model inputs. The two modal pressure scattering models used are the same as
are compared in Section 5.2.2. The corresponding band-averaged rotor transmission loss
coefficients obtained using Equation (5.41) are shown in Figure 5.12. Observations are
listed below.

• Figure 5.12a shows that the rotor transmission loss is independent of the number of
blades.

• Figure 5.12b shows that the rotor transmission loss associated with overlapping cas-
cades ((s/c) sinχ < 1) is independent of the pitch-chord ratio. For (s/c) sinχ > 1
the exact cascade results all show significant increases in transmission: the cascade
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(b) Variation of rotor pitch-chord ratio (s/c),
plotted against (s/c) sinχ. The blades are non-
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Figure 5.12 – Plots of band-averaged rotor transmission loss coefficients showing changes due to
single parameter variation. Power scattered upstream in the source frequency band is compared
with incident power calculations for four different flow model and scattering model combinations as
described in the text.
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scattering effects become weak when there is no overlap, as was shown by Jenkins
et al. [77]. The result obtained using the Kaji-Okazaki scattering model is insensi-
tive to (s/c) sinχ because it effectively assumes an infinite blade density so that it
is ignorant of s/c and hence is always ‘overlapped’.

• Figure 5.12c shows the changes to the rotor transmission loss as the stagger angle χ
is changed. Generally there is an increase in blockage as χ increases, although the
diffused flow model result (black dashed line with circle markers) shows an increase
from χ = 0◦ to χ = 40◦.

• Figure 5.12d shows the effect of changing rotor-frame Mach number M̂ . A monotonic
increase in the rotor transmission loss with rotor-relative Mach number M̂ is observed
for all flow and scattering models.

In the following section, the analytic model of Kaji and Okazaki [67] shall be adapted
in order to create a simplified blockage model which will allow an intuitive interpretation
of the blockage effect based on power transmission coefficients as a function of incident
mode phase angle ψp and the distribution of power in the incident field.

5.3 Interpretation of rotor transmission using simplified power trans-
mission model

In this section, explanations will be sought for the rotor transmission loss behaviour ob-
served in the parameter study shown in Section 5.2. The blockage problem will be broken
down into two parts; the power distribution of the incident field and the transmission of
sound power, both as functions of the phase velocity angle ψp. It will be shown that it is
the interaction of these two functions that controls the overall blockage behaviour.

5.3.1 Phase velocity angle distribution of incident sound power

The results shown in Section 5.2 have been obtained using an equal power per mode
model for the incident sound field. This assumption is not typical of the sound field
upstream of an OGV (see Section 3.1.1) but is relatively simple and provides expressions
that permit analysis. In this section, an equal power per mode distribution is used to
derive an expression for the phase velocity sound power density D as a function of the
phase velocity angle ψp. This density function D(ψp) is identical in form to a probability
density function (PDF), the theory for which shall be reviewed in Section 5.3.1.1.

5.3.1.1 Probability density functions and cumulative distribution functions

A PDF p(x) defines the likelihood that a random variable adopts a particular value. The
probability that the variable has a value within the range a ≤ x ≤ b is given by the integral
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of the probability density function over that range

P (a ≤ x ≤ b) =
∫ b

a
p(x) dx. (5.42)

Being a probability, the solution for an infinite range of values is unity∫ ∞
−∞

p(x) dx = 1. (5.43)

For a given PDF of a random variable X, there exists a cumulative distribution function
(CDF) defined as F (x0) = P (X < x0). Thus using Equation (5.42), F (x0) is related to
p(x) by

F (x0) =
∫ x0

−∞
p(x) dx. (5.44)

The CDF is non-decreasing and has the properties

lim
x0→−∞

F (x0) = 0, lim
x0→∞

F (x0) = 1. (5.45)

Furthermore, any non-decreasing function with the limiting characteristics defined in
Equations (5.45) can be used as a CDF with a corresponding PDF p(x) that is obtained
by taking the partial derivative of F with respect to x. This will be used in Section 5.3.1.4
in order to define the phase velocity sound power density D(ψp).

5.3.1.2 Normalised circumferential wavenumber component as a cumulative
distribution function

It is observed that the equal power per mode assumption means that the sound power
over a given range of phase velocity angle ψp is proportional to the number of modes
present over that range. Equation (5.2) defines a linear relationship between the gap-wise
component of the wavenumber ν and the modal order m which will be used in this section
to relate the sound power over a range of phase velocity angle ψp to ν.

At a given frequency, the range of cut-on modes m is limited to lie between the limits
mmin and mmax by the expressions in Equations (2.58). Thus it is possible to define the
normalised value of ν

C(m) =


0 : m < mmin,

ν(m)− ν(mmin)
ν(mmax)− ν(mmax) : mmin ≤ m ≤ mmax,

1 : m > mmax.

(5.46)

C(m) as defined in Equation (5.46) is non-decreasing and behaves according to the limits
defined in Equations (5.45) and is therefore of the form of a CDF. Because the value of ν
is proportional to the modal order and the sound power is proportional to the number of
modes C(m) represents a CDF for the sound power.
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5.3.1.3 CDF for sound power as a function of phase velocity angle ψp

Equation (5.46) gives a definition of the CDF for sound power as a function of modal
order m. In this section Equation (5.46) will be used to define the CDF for sound power
in terms of phase velocity angle ψp.

The phase velocity angle of a wave propagating in the duct is given by Equation (3.4),
which can be rearranged to give

ν = µ tanψp, (5.47)

where the axial and circumferential wavenumbers µ and ν satisfy the acoustic dispersion
relation shown in Equation (5.3). Substituting Equation (5.47) into Equation (5.3) and
solving for the upstream-going axial wavenumber component µ+ gives

µ+(k,M, θ, ψp) = −k

M1 +M2 tanψp −
√

1 + tan2 ψp
. (5.48)

Substitution of Equation (5.48) into Equation (5.47) now gives

ν(k,M, θ, ψp) = −k tanψp

M1 +M2 tanψp −
√

1 + tan2 ψp
. (5.49)

It is now assumed that at an arbitrarily high frequency the circumferential wavenumber
ν is continuous rather than the discrete modal model so far employed. Cut-on waves will
have circumferential wavenumber component that falls in the range νmin ≤ ν ≤ νmax

defined by substitution of Equations (2.58) into Equation (5.2)

νmin(k,M, θ) = k
M2 − β1
β2 , (5.50a)

νmax(k,M, θ) = k
M2 + β1
β2 . (5.50b)

This range of ν corresponds to the range of phase angles bounded by

ψp,min = − arccosM1, (5.51a)

ψp,max = arccosM1. (5.51b)

The relation between M1 and the range of ψp is sketched in Figure 5.13.

Equation (5.49) and the values for νmin and νmax given by Equations (5.50) are now
substituted into Equation (5.46), hence defining the frequency-independent cumulative ray
density valid for νmin ≤ ν ≤ νmax

C(M, θ, ψp) = − 1
2β1

 β2 tanψp

M1 +M2 tanψp −
√

1 + tan2 ψp
+ (M2 − β1)

 . (5.52)
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Figure 5.13 – Illustration of the range of phase velocity angles ψp valid for a given axial Mach
number component M1.

5.3.1.4 Ray angle density function

Using the relation between a cumulative distribution function and the corresponding den-
sity function defined in Section 5.3.1.1, the ray angle density is now obtained by differen-
tiating Equation (5.52) with respect to the phase velocity angle ψp

D(M, θ, ψp) = ∂C
∂ψp

= −β
2

2β1

M1 − cosψp

(M1 cosψp +M2 sinψp − 1)2 . (5.53)

In the case where each mode (corresponding to a duct spinning mode) has equal sound
power, Equation (5.53) represents the sound power angular distribution function.

An example power density function is shown in Figure 5.14 where it is compared with
an equivalent distribution obtained numerically, both for the case M = 0.7, θ = 40◦.
Here it can be seen that the two methods produce practically identical results, however
the numerical version requires the calculation and sorting into phase angle ‘bins’ of all
cut-on wavenumbers at a frequency high enough that the distribution has converged. The
analytic result is quicker and more flexible to implement.

Figure 5.15 shows the variations of the power density function D due to changes to
the flow parameters M and θ. In the left hand plot (Figure 5.15a) M is changed whilst
the whirl angle is maintained at θ = 40◦. The distribution becomes increasingly offset as
M increases. Defining the angle at which the peak in D occurs ψDp , it can be shown that
ψDp → 0 as M → 0 and that ψDp → θ as M → 1, so that in all cases ψDp falls between θ

and 0. Also worthy of note is the fact that as M increases the width of the base of the
distribution narrows in accordance with Equation (5.51).

The right hand plot (Figure 5.15b) shows the effect of changing flow whirl angle θ.
It can be seen that the power distribution broadens and becomes increasingly offset as θ
increases. Note also that larger values of θ increase the cut-on range as M1 = M cos θ
decreases.

Having identified the power distribution due to a given flow the following section con-
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Figure 5.14 – Power density function D compared with numerically obtained ray density for the
case M = 0.7, θ = 40◦.
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Figure 5.15 – Curves showing the ray angle density D for a range of Mach numbers M =
[0.1, 0.3, 0.5, 0.7, 0.9] and whirl angles θ = [−80◦,−60◦,−40◦,−20◦, 0◦].
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siders the transmission of the incident power through the blade row.

5.3.2 Power transmission coefficients

In Section 5.2 it was observed that there was good agreement in the band-averaged rotor
transmission loss coefficients obtained using the exact cascade scattering model due to
Smith [46] and the semi-actuator disk model of Kaji and Okazaki [67]. In this section,
the simpler Kaji-Okazaki scattering model will be adapted in order to interpret the Sec-
tion 5.2 results. This analysis commences by showing the formulation for calculation of
the scattering coefficients.

5.3.2.1 Scattering model due to Kaji and Okazaki

The semi-actuator disk model due to Kaji and Okazaki [67] assumes that the blade row
is replaced by a medium which supports only plane waves, propagating upstream and
downstream aligned with the stagger angle χ as a one dimensional sound field. This
assumption ensures that the ν wavenumber component of a transmitted mode must match
that of the incident mode so that G+

mn = G+
mmδmn.

Kaji and Okazaki describe a method for matching the mass flow and enthalpy at the
cascade leading and trailing edges whilst imposing the Kutta condition at the trailing
edge [67]. In so doing, it can be shown that the relation between the scattering coeffi-
cients G±mm and an acoustic mode incident from the downstream side of a blade row with
amplitude I is given by the system:

c0

2ωmΛ+
m

(
1 + νm

µV
tan θ

)(
(Ψm + km cos θ)µ+

Deiµ+
Dc − (Ψm − km cos θ)µ−Deiµ−Dc

)
G+
mm

− 1
Λ−m

(
µ−m + ν2

m

µV

)
eiµ−mLG−mm = 1

Λ+
m

(
µ+
m + ν2

m

µV

)
eiµ+

mLI, (5.54a)

c2
0

2ωmΛ+
m cos θ

(
(Ψm + km cos θ)µ+

Deiµ+
Dc + (Ψm − km cos θ)µ−Deiµ−Dc

)
G+
mm

−eiµ−mLG−mm = eiµ+
mLI, (5.54b)

where km = ωm/c0 is the free-space acoustic wavenumber, µV is the axial wavenumber
component of shed vorticity defined by

µV = −ωm + Û2νm

Û1
, (5.55)

while the wavenumbers of the one-dimensional inter-blade sound field are given by

µ±D = km(M̂ ± 1)
1− M̂2

, (5.56)
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and the functions

Λ±m = ωm + Û1µ
±
m + Û2νm, (5.57)

Ψm =
[
(km + M̂2νm)2 − β2

1ν
2
m

]1/2
, (5.58)

which have units of frequency and wavenumber respectively. The system (5.54) may be
solved for G+

mm to give the modal pressure transmission coefficients.

5.3.3 Phase angle dependency of power transmission coefficients

Kaji and Okazaki present plots of pressure transmission versus the phase angle of incident
waves [67]. In the same spirit we shall now present the transmission of sound power.
Using the solution to the system shown in Equation (5.54) and assuming a continuum of
wavenumbers the power transmission may be calculated for arbitrary values of ψp.

Recalling the final expression for sound power shown in Equation (5.32), it is noted that
P± is expressed in terms of the pressure amplitude of incident modes m. Now assuming an
incident field in which each incident mode m carries equal sound power, Equation (5.33)
is employed to calculate the pressure magnitudes. The resulting ratio of power factors
H+ will be unity when n = m, and hence ωmn = ω0, as must be the case when using
Kaji-Okazaki scattering. Hence in this case the power transmission coefficient is given by

T +
mm = |G+

mm|2. (5.59)

Consider the frequency dependency of T +
mm at low and high values of M̂ . Figure 5.16

shows T +
mm plotted against ψp for a range of values of the reduced frequency kc. At

M̂ = 0.7 (Figure 5.16b) very little difference can be seen between the plotted cases, this
is in agreement with the results given by Kaji and Okazaki [67]. A single peak in T +

mm is
seen at ψTp = χ = 40◦. This is a nil-shielding angle: incident modes with phase angle ψTp
do not interact with the blade row and hence are not scattered.

At M̂ = 0.1 (Figure 5.16b) it is observed that ψTp = χ = 40◦. However, there is now
considerable variation in the shape of T +

mm as kc changes. Kaji and Okazaki explain these
variations by observing that kc is the phase change of a transmitted wave across the blade
row. We shall perform an averaging of T +

mm over the period π/100 ≤ kc ≤ π for all further
cases in order to deal with this frequency variation.

5.3.3.1 Effect of rotor-relative Mach number on T +
mm

Figure 5.17a shows the variation of T +
mm with rotor-relative flow Mach number M̂ . In all

cases the stagger angle is χ = 40◦. The nil-shielding effect is seen to be independent of
M̂ in that for all cases ψTp = χ and T +

mm(χ) = 1. The width of the transmission band
narrows as M̂ increases.
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(b) M̂ = 0.1

Figure 5.16 – Power transmission coefficients plotted against phase angle showing frequency depen-
dency for low and high M̂ . In both cases χ = 40◦, s/c = 0.71.

5.3.3.2 Effect of rotor stagger angle on T +
mm

Figure 5.17b shows the variation of T +
mm due to changing stagger angle χ. Only positive

values are shown here as the symmetry of the problem would otherwise lead to duplication.
For all cases ψTp = χ and T +

mm(χ) = 1. Finite transmission is seen over a wider range of ψ
for larger values of χ but the width over which appreciable transmission occurs narrows
at larger values of χ.
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Figure 5.17 – Power transmission coefficients, frequency averaged over interval π/100 ≤ kc ≤ π,
plotted against phase angle showing dependency on M̂ and χ.

In the following section the power transmission function will be combined with the
incident power density function to show the effects of stagger angle and flow Mach number
on the power transmitted through a stationary blade row.
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5.3.4 Blockage results using simplified sound power transmission model

This section provides a validation of the simplified sound power transmission model devel-
oped in Sections 5.3.1 and 5.3.2 by comparing its rotor transmission loss predictions with
the exact cascade scattering results presented in Section 5.2.

Noting that, by the definitions given in Equations (5.52) and (5.53),
∫ π/2
−π/2D(ψp) dψp =

1, the sound power transmission loss coefficient may be estimated using the simplified
sound power transmission model by evaluating

Lτ = 10 log10

∫ π/2

−π/2
T +
mm(ψp)D(ψp) dψp, (5.60)

where D and T +
mm are obtained using Equations (5.53) and (5.59) respectively.

Figure 5.18 shows a comparison of the rotor transmission loss coefficients obtained
using Equation (5.60) and (5.41) evaluated for exact cascade scattering over a range of M
and χ values. Agreement to within 0.5 dB is observed in all cases.
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Figure 5.18 – Comparison of mean blockage for simplified model (—) and exact cascade scattering
(− ◦ −) for static blade row with B = 20 and s/c = 0.71.

The relation between the ψp dependency of D and T +
mm is now explored in order to

explain the observed behaviour. An array of results are shown in Figure 5.19. Each
sub-figure plots against ψp the power density function D (red dash-dotted), the power
transmission coefficient T +

mm (blue dashed) and the product T +
mmD (red solid) for a par-

ticular combination of M̂ and χ. The blade row is stationary and so the flow whirl angle
θ = χ and flow Mach numbers are equal M = M̂ . Note that as the power density values
D and T +

mmD are plotted relative to the left hand (red) axis, whilst the dimensionless
transmission coefficients T +

mm are plotted relative to the right hand (blue) axis. The area
under the incident power density function D represents the total incident power, whilst
the area under T +

mmD (shown in cyan) represents the total transmitted power, thus the
difference between these two areas (shaded in dark grey) represents the incident power
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that is either reflected or shed as vorticity.
The four subplots Figures 5.19b, 5.19e, 5.19h and 5.19k show the results for χ = 40◦ and

as such represent ‘snapshots’ of the detailed behaviour at different points of Figure 5.18a.
At M̂ = 0.1 (Figure 5.19b) the distribution of T +

mm is nearly symmetrical and T +
mm > 0.8

for ≈ 75% of the cut-on range of ψp. Moreover, the tails of D extending outside this
‘window’ of transmission are relatively small. This combination results in the grey area
representing non-transmitted power being small relative to the (cyan) transmitted power
region, the predicted transmission loss is -0.6 dB. Moving down through the higher values
of M̂ , both T +

mm and D distributions become increasingly skewed and narrow. The value
of peak of ψDp approaches χ as observed in Section 5.3.1 but the selectivity of the two
distributions results in increasing transmission loss (larger grey area) as M̂ increases.

Now considering the results associated with changing χ, the detailed behaviour un-
derlying the curve shown in Figure 5.18b at the points χ = [0◦, 40◦, 80◦] is shown in
Figures 5.19g, 5.19h and 5.19i. At χ = 0◦ (Figure 5.19g) both T +

mm and D distributions
are symmetric and T +

mm > 0.8 for ≈ 50% of the cut-on range of ψp. While this is con-
siderably narrower than the T +

mm distributions shown in Figure 5.19b the comparative
narrowness of the power distribution D results in an overall blockage of -1 dB. Moving to
larger values of χ, (Figures 5.19h and 5.19i) the distribution of T +

mm becomes narrower
while the power distribution becomes broader, and hence more thinly spread, leading to
greater loss.

For χ = 0◦, the proportion of power lost to reflection and vorticity appears to be
largely independent of M̂ , as ψT = ψD (see Figures 5.19a, 5.19d, 5.19g and 5.19j).

5.3.5 Effects of rotation on rotor transmission loss

It has been shown that the alignment of the peaks in the incident power distribution D
and the sound power transmission coefficient T +

mm is the dominant factor in determining
the overall rotor transmission loss. The effects of changes to the rotor geometry and flow
conditions on the locations of the peaks of these distributions are considered in this section.

In Section 5.1.2 a model for the base flow corresponding to a translating flat plate
blade row was defined. Using this definition, the duct whirl angle is related to the rotor
stagger angle χ, flow Mach number in the x̂ frame M̂ and the rotor spin Mach number
MΩR = ΩR0/c0 by

θ = arctan
(

tanχ− MΩR

M̂ cosχ

)
, (5.61)

so that θ → χ as MΩR → 0. Figure 5.20 shows the dependency of the ‘difference’ angle
ξ = χ− θ on the rotor stagger angle χ and the Mach number ratio MΩR/M̂ .

These curves may be readily interpreted by considering the vector triangles that define
them, as originally illustrated in Figure 5.2c. Figure 5.21 illustrates the changes to the
vector triangles for large and small values of χ with MΩR/M̂ at extremal values. Here it
may be seen that a small stagger angle results in a slow change of the difference angle,
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(b) M̂ = 0.1, θ = χ = 40◦
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(c) M̂ = 0.1, θ = χ = 80◦
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(d) M̂ = 0.5, θ = χ = 0◦
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(e) M̂ = 0.5, θ = χ = 40◦
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(f) M̂ = 0.5, θ = χ = 80◦
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(g) M̂ = 0.7, θ = χ = 0◦
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(h) M̂ = 0.7, θ = χ = 40◦
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(i) M̂ = 0.7, θ = χ = 80◦
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(j) M̂ = 0.9, θ = χ = 0◦
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(k) M̂ = 0.9, θ = χ = 40◦
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(l) M̂ = 0.9, θ = χ = 80◦

Figure 5.19 – Comparison of power density function D (− · −), the power transmission coefficient
T +
mm (−−−) and T +

mmD (—) for combinations of M̂ and χ calculated for a stationary blade row.
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while at a large values of χ the difference angle changes rapidly as the Mach number ratio
passes through unity.
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Figure 5.20 – Dependence of difference angle
ξ on stagger angle χ and Mach number ratio
MΩR/M̂ .
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Figure 5.21 – Illustration of difference an-
gle ξ dependence on Mach number ratio
MΩR/M̂ .

The implication of Equation (5.61) is that for any non-zero value of MΩR/M̂ the rotor
stagger angle and flow whirl angles will be separated. Low sound power transmission is
observed when ψDp , ψTp but as ψDp always lies between 0 and θ the changes predicted can
only move ψDp and ψTp further apart, hence the rotor transmission loss increases as MΩR

increases.
Figure 5.22 shows a comparison between the frequency-averaged blockage values cal-

culated using the exact cascade model and the simplified model for spinning rotor with
the ‘control’ geometry at different rotation speeds, and hence different values of ξ. These
two sets of results are in agreement to within 0.5 dB at all points.
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Figure 5.22 – Band-averaged blockage for flat-plate flow over a range of ξ, calculated using exact
cascade and simplified model. The blade row geometry is B = 20, χ = 40◦, s/c = 0.7 while relative
Mach number is M̂ = 0.7.

Figure 5.23 shows three ‘snapshots’ from the Figure 5.22 results to show the ψp de-
pendence of the power density function D, the power transmission coefficient T +

mm and
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T +
mmD as the blade row spins progressively faster. The lines and transmitted and ‘lost’

power regions are indicated as in Figure 5.19. Figure 5.23a for ξ = 0◦ has no rotation but
moving to the right the rotation increases, shifting the duct whirl angle θ further from the
stagger angle χ and causing a reduction in transmitted power.
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(a) ξ = 0◦

−90 −60 −30 0 30 60 90
0

0.3

0.6

0.9

1.2

1.5

ψp

p
o
w
e
r
d
e
n
si
ty

0

0.2

0.4

0.6

0.8

1

T
+
m
m

(b) ξ = 45◦
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(c) ξ = 90◦

Figure 5.23 – Comparison of power density function D (− · −), the power transmission coefficient
T +
mm (− − −) and T +

mmD (—) for blade row with M̂ = 0.7, χ = 40◦ and a range of values for the
difference angle ξ.

5.3.6 Effects of rotor blade ‘camber’ on rotor transmission loss

This section explores the effects on rotor transmission loss of application of the diffused
rotor flow model described in Section 5.1.5.

Figure 5.24 shows the frequency-averaged rotor transmission loss calculated for the
case B = 20, χ = 40◦, s/c = 0.7 while relative Mach number is M̂ = 0.7 and difference
angle ξ = 70◦. This has been evaluated over a range of ‘camber’ angles ∆χ using the exact
cascade model (black dashed lines with circle markers) and the simplified model described
earlier in this section (red line).
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Figure 5.24 – Band-averaged rotor transmission loss for diffused flow over a range of ∆χ, calculated
using exact cascade and simplified model. The blade row geometry is B = 20, χ = 40◦, s/c = 0.7
while relative Mach number is M̂ = 0.7 and difference angle ξ = 70◦.

Note that in Figure 5.24 the flow at the leading edge of the rotor is assumed to be axial,
it shall be shown in Section 9.3.1 that the flow discontinuity caused by this assumption
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leads to non-physical rotor transmission loss calculations. The results shown in Figure 5.22
assume flow that is not turned at the leading edge: the difference in leading edge flow
between these two cases accounts for differences in the predictions made for ξ = 70◦ in
Figure 5.22 and the result for ∆χ = 0◦ in Figure 5.24.

The simplified rotor transmission loss model does not exhibit the same behaviour as
the exact cascade scattering model and therefore no insight into the camber effects can be
obtained by its use. This result highlights the difficulties associated with the use of flat-
plate models when modelling real-world problems such as steady loading and cambered
blade effects.

5.4 Concluding remarks

In this chapter, a general model has been developed to describe the scattering of sound
power incident on a rotating fan. This model has been used to calculate the loss of
sound power incident from the downstream direction, as if for rotor-stator interaction
noise passing through the rotor of a turbofan engine.

Two flow models are used: an unloaded flat plate model where the flow is undisturbed
by the rotor and a new model that estimates the diffusion of the flow through the divergent
duct formed by cambered rotor blades and the change of flow whirl angle across the
rotor. Application of the new flow model imposes a flow discontinuity at the rotor trailing
edge due to the flat plates used to model the rotor blades and it has been found that
transmission coefficients in excess of unity are possible when employing this flow model,
which is physically unrealistic.

The results obtained when using the exact cascade scattering model due to Smith [46]
and Whitehead [47] to evaluate the unloaded flat plate flow model shows that the rotor
transmission loss increases as the relative Mach number of the flow is increased and as
the rotor stagger angle is increased. The blockage effect is found to be largely frequency
independent and is not influenced by either the number of rotor blades or, for overlapped
fan blades, by the pitch-chord ratio s/c.

Good agreement with the results of the exact cascade scattering model has been ob-
served when evaluating the modal scattering with the semi-actuator disk model due to
Kaji and Okazaki [67]. This analytic modal scattering model has been adapted to create
a simplified sound power transmission model based on the interaction between the inci-
dent sound power distribution D(ψp) and the transmission coefficient of the blade row
T +
mm(ψp). The power distribution D(ψ) has one distinct peak which falls between ψp = 0

and ψp = θ. At low M the peak is close to zero while at high M it tends to the whirl
angle. The transmission coefficient T +

mm(ψp) has a main peak value of unity which falls at
ψTp = χ, the rotor stagger angle.

It has been found that there is a significant transmission loss when the peaks in D(ψp)
and T +

mm(ψp) are misaligned, so that the majority of the sound power is incident with a
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phase angle that is not efficiently transmitted. Both D(ψp) and T (ψp) become narrower
as the relative Mach number M̂ increases so that there is greater attenuation overall at
high flow rates.

The whirl angle is related to χ by

θ = arctan
(

tanχ− MΩR

M̂ cosχ

)
.

For stationary blades where MΩR = 0 this results in alignment of the flow whirl angle with
the rotor stagger angle θ = χ and thus for any given M̂ the misalignment of the peaks
is minimal. Increasing the value of MΩR results in an increase in peak separation and an
increase in transmission loss.



Chapter 6

Investigation of self-preservation for rotor
wakes

In Chapter 7 techniques will be presented for the processing of rotor wake velocity data
in order to decompose instantaneous velocity data into steady and unsteady components
with the following properties:

• The steady velocity profile component 〈U〉 is aligned with the mean flow while 〈V 〉
and 〈W 〉 are perpendicular to it. These velocity profiles are repeated for each blade
passage and are referred to as ‘mean wakes’.

• The unsteady velocity fluctuation component u is aligned with the mean flow and
v and w are perpendicular to it. These fluctuating components are associated with
turbulent velocity perturbations that are superposed upon the steady velocity pro-
files.

In Chapter 8 an analysis of the rotor wake velocity data is conducted with the objective
of finding structure in the turbulent wakes arising from wake self-preservation as described
by Townsend [8].

In this chapter, the concept of wake self-preservation is reviewed, defining the charac-
teristics of a self-preserving wake in terms of the mean wakes and the unsteady velocity
components. Following this description the direct implications of wake self-preservation
on the measurement of rotor wakes are explored, with a particular emphasis on the ob-
served wake behaviour when adjacent mean wakes overlap. The chapter commences by
introducing the characteristic length and velocity scales used to describe a mean wake.

6.1 Characteristic scales of individual mean wakes

Figure 6.1 shows a sketch of the azimuthal variation (y3) of the flow-aligned mean velocity
component of an individual mean wake 〈U〉 due to a single wake generating body. The
mean wake velocity is located so that its minimum min (〈U〉) lies at y3 = 0. Also marked
are the characteristic velocity and length scales of the mean wake, described below:

103
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• The width of the mean wake is denoted LWW. A procedure for identifying the extent
of the wake is described in Section 7.1.3.

• Far from the wake minimum the mean wake velocity plateaus to the ‘free-stream’
velocity U∞.

• The maximum wake velocity deficit ∆U is the difference between U∞ and min (〈U〉).

• One-half the width of the wake deficit at the point that 〈U〉 has the value U∞−∆U/2
is defined as the half-width half-minimum L0.

2L0

U∞

y3

U

min (〈U〉)

〈U〉

∆U

1
2∆U

0

LWW

Figure 6.1 – Characteristic scales of an individual mean wake.

6.1.1 Normalised distance downstream of the wake generating body x̂

In the forthcoming description of the effects on mean wake shape and length and velocity
scales of self-preserving wakes in Section 6.2 the evolution of the wake due to an arbitrary
body is described as a function of the distance downstream of the body. The distance is
taken along the mean flow streamline which, in the case of rotor wakes, is a helical path of
length xh. Calculation of this length from experimental data is discussed in Section 7.2.

The normalised downstream distance is given by

x̂ = xh
2θm

, (6.1)

where θm is the momentum thickness of the wake. Calculation of θm is discussed in
Section 7.3. This normalisation is chosen to match that used in several earlier studies such
as those due to Wygnanski et al. [12] and Gliebe et al. [19].

6.2 Self-preserving wakes

In this section the concept of the self-preservation of a wake is reviewed.
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6.2.1 Characteristics of self-preserving wakes.

Townsend [8] defines self-preservation of a wake as an asymptotic state in which wake flow
changes in scale but has a similar shape at all stages of decay. Thus, a non-dimensional
mean wake velocity profile function f(η) can be defined that is independent of x̂ such that
the mean flow velocity 〈U〉 at any arbitrary distance x̂ is given by

〈U〉 = U∞ −∆Uf(η), (6.2)

where U∞ is the free-stream velocity, ∆U is the maximum mean wake deficit and

η = y3
L0
, (6.3)

is the normalised azimuthal distance [11]. For self-preserving wakes the mean wake length
and velocity scales L0, U∞ and ∆U defined in Section 6.1 should vary according to devel-
opment relations of the form f(x̂) = ax̂+ b. For ∆U and L0 these relations are specifically
[12, 14]

(
L0
θm

)2
= ax̂+ b, (6.4a)(

U∞
∆U

)2
= cx̂+ d, (6.4b)

for some constants a, b, c and d. Note that the constants b and d in Equations (6.4)
account for the ‘virtual origin’ of the turbulence that can appear to originate upstream of
the wake generating body’s trailing edge [12]. In Chapter 8, data measured on a fan test
rig are analysed in order to identify the constants in Equations (6.4).

The unsteady or mean-square velocity wakes that will be discussed in Section 7.4 are
described by length and velocity scales Lu and 〈u2〉 that are defined in Section 7.4.2.
In fully self-preserving wakes these parameters are assumed to scale with mean wake
parameters so that constant ratios will be observed between, say, Lu and L0

Lu
L0

= g, (6.5)

for some constant g. The values of these constants are also sought in Chapter 8.

6.2.2 Universality of self-preserving wake characteristics

In a comparison of the values of the constants in Equations (6.4) reported in the literature,
Wygnanski et al. [12] found that the inflow turbulence in different test facilities greatly
influenced the observed wake evolution. The wakes due to several different bodies were
measured, including circular cylinders and a symmetric airfoil, all experiments being con-
ducted in axial flows with no mean loading. The published results showed that the wake
evolution was also dependent on the geometry of the different wake generating bodies.
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sr

Near-wake location:
Wakes well separated

Far wake location:
Wakes overlapped

Observed mean wake Individual mean wakes

Figure 6.2 – Sketched mean wakes due to periodic distribution of bodies in a uniform flow.

The universality of self-preserving states has been investigated theoretically by George
[14, 15]. George shows that the governing equations permit solutions where partial self-
preservation is attained, i.e. where the wake profile function f(η) is preserved but some or
all of the wake parameters evolve in non-self-preserving manner. It is also shown that the
self-preserving state is sensitive to the flow conditions at the wake generator: changing the
geometry or operating condition will result in a different set of development relations.

Moser et al. [17] conducted a series of wake predictions using Direct Numerical Simula-
tion (DNS) and demonstrated the sensitivity of the flows to the initial conditions. However,
due to finite resources, their simulations were not able to show the final state of the wakes.

Sreenivasan and Narasimha [9] argue for a universal self-preserving state when mea-
sured sufficiently far downstream. They contend that differences observed in experiment
are long-lived transients.

In the present context of rotor wakes in typical turbofan geometries, x̂ will be shown
to be relatively small and therefore it seems likely that significant variations in wake
development with rotor geometry and operating conditions will be observed.

6.3 Wakes due to a periodic distribution of wake generating bodies

Consider the wakes generated by a periodic distribution of identical bodies separated by a
distance sr. The wake due to each body is assumed to be self-preserving so that the wake
profile due to each body is described by Equation (6.2). In the near-wake the observed
mean wake velocity is a train of isolated wakes, as sketched in Figure 6.2.

Equation (6.4a) shows that the half-width half-minimum L0 is approximately propor-
tional to x̂1/2 so that at some point in the far-wake the wake width LWW becomes large
with respect to sr and the mean wakes become significantly overlapped, as shown on the
right-hand side of Figure 6.2. When this occurs the observed mean wake velocity (shown
in red) is assumed to be a superposition of the individual mean wakes (shown in blue) and
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∆Û
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Figure 6.3 – Notation used for characteristics of individual and observed overlapped mean wakes.

the individual mean wake parameters U∞, ∆U and L0 can no longer be measured directly.

6.3.1 Characteristic scales of significantly overlapped mean wakes

Figure 6.3 shows a train of individual mean wakes separated by distance sr in blue and
the observed mean wake formed from their superposition in red. The individual mean
wake parameters U∞, ∆U , L0 and LWW defined in Section 6.1 are shown again along with
the parameters for the observed overlapped wake, distinguished by the addition of the
ˆ accent. Note that for mean wakes with negligible overlap the individual and observed
mean wakes are identical.

The degree of mean wake overlap can be quantified by the relative width of the indi-
vidual and observed mean wakes with respect to the rotor blade spacing sr

ζ = 4L0
sr

, ζ̂ = 4L̂0
sr

, (6.6)

where all terms are defined in Figure 6.3. In Section 6.5 it will be shown that as wake
overlap increases the observed mean wake becomes sinusoidal with a spatial period of sr.
The factor of 4 in Equation (6.6) is chosen so that ζ̂ → 1 as ζ →∞.

6.4 Effects of isolated mean wake overlap on observed mean wakes

To illustrate the effects of mean wake superposition and overlap a periodic wake profile
function is defined as

F (η) =
∞∑

n=−∞
f

(
η + nsr

L0

)
, (6.7)

which will subsequently be substituted into Equation (6.2) in place of the single wake
profile function f(η) to illustrate the effects of mean wake overlap.
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Figure 6.4 shows plotted against y3/sr for several values of ζ to illustrate the effects on
the shape of F (η) due to varying degrees of mean wake overlap. In this example f(η) is
chosen to be the wake function defined in Equation (8.3) that is fitted to test rig hotwire
data as described in Chapter 8. In the list below three values of ζ are identified, as shown
in Figure 6.4, in order to illustrate different degrees of wake overlap:

• ζ = 1/2: Negligible mean wake overlap. Observed mean wake resembles a train of
isolated mean wakes separated by regions where F (η) = 0.

• ζ = 1: Partial mean wake overlap. No regions of F (η) = 0 are seen as the gaps
between individual mean wakes begin to ‘fill in’.

• ζ > 1: Significant mean wake overlap. Increasing ζ results in a progressive flattening
of the response and increase in its mean value. The summed wake profile becomes
increasingly sinusoidal.

Figure 6.5 shows a comparison of the mean wake relative width ζ and the observed
wake relative width ζ̂ as defined in Equation (6.6). The effects of mean wake overlap
on the observed values of wake deficit ∆Û and free stream velocity Û∞ are shown in
Figures 6.6 and 6.7 respectively. The observed values of relative wake width, wake deficit
and free stream velocity ζ̂, ∆Û and Û∞ are shown to be very close to their corresponding
isolated wake values for ζ . ζc = 2−1/2. Above this critical value wake overlap effects are
significant on the parameters obtained if the observed wake parameters were measured
directly.

When wakes are significantly overlapped the velocity gradient, and hence turbulence
production, is reduced (see Figure 6.4). This suggests that turbulence measured in these
downstream locations will be mostly convected from upstream locations.

Where rotor mean wakes are self-preserving but also significantly overlapped, the effects
shown in Figures 6.5, 6.6 and 6.7 suggest that the development of the observed wake
scales ζ̂, ∆Û and Û∞ will not be linear or constant, as for the mean wakes due to isolated
wake generating bodies defined in Equations (6.4) and (6.5). In order to determine the
mean wake velocity that will interact with the OGV the overlapped wake shape can be
predicted using Equation (6.7) once the underlying evolution of the individual mean wakes
is understood. It shall also be shown in Section 7.3.2 that the momentum thickness θm

can only be calculated accurately from the isolated wake parameters L0, ∆U and U∞. It
is therefore necessary to find a method to deduce isolated mean wake parameters when
they are obscured by wake overlap. It is assumed that the evolution of the wakes due to
individual rotor blades is unaffected by wake overlap. In Section 6.5 this assumption is
used to develop a method for extracting estimates for the isolated mean wake parameters
from overlapped mean wakes thus allowing the prediction of mean wake parameters at
far-wake locations such as the leading edge of the OGV necessary for noise predictions.
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Figure 6.4 – Effect of wake overlap illustrated
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Figure 6.5 – Effects on observed relative wake
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wakes ζ is varied.
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Figure 6.6 – Effects on observed wake deficit
∆Û as the relative width of the individual
wakes ζ is varied.
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Figure 6.7 – Effects on observed free stream
velocity Û∞ as the relative width of the indi-
vidual wakes ζ is varied.
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6.5 Determination of isolated mean wake maximum velocity deficit and
relative width for overlapped mean wakes using Fourier decomposi-
tion

In this section a method is developed to allow the estimation of the individual mean wake
parameters ζ and ∆U from measurements of significantly overlapped mean wakes.

The wakes due to all rotor blades are assumed to be identical so that the ensemble-
averaged streamwise velocity component is a 2π/Br periodic function of the form

〈U〉(γ) = U∞ −∆U
∞∑

n=−∞
f

(
γ + 2πn

Br

)
, (6.8)

where γ represents the azimuthal angle, U∞ is the free stream velocity, ∆U is the maximum
wake deficit and f is a non-dimensional wake profile function. The Poisson summation
formula allows the periodic term in Equation (6.8) to be represented as

∞∑
n=−∞

f

(
γ + 2πn

Br

)
= Br

2π

∞∑
m=−∞

f̂meiBrmγ , (6.9)

where f̂m are Fourier coefficients, given by

f̂m =
∫ ∞
−∞

f(γ)e−iBrmγdγ. (6.10)

For the purposes of this analysis the wake profile function f(γ) will be assumed to be the
Gaussian function

fG(η) = exp
[
− ln2 η2

]
, (6.11)

using the identity
η = Rγ

L0
, (6.12)

where R is the radius of the point under consideration. It will be shown in Section 8.2.1
that the Gaussian wake profile is not a perfect match for the asymmetric individual mean
wakes measured on a fan test rig. However, the Gaussian function has the advantage of
simplicity and integrability which is necessary for this analysis. Note that in principle the
skewed wake profile function fS defined in Equation (8.3) and used in the examples shown
in Figures 6.4–6.7 could be used in place of the Gaussian function, but this would present
significant difficulties in performing the Fourier transformation required in the technique.
Substitution of Equation (6.11) into Equation (6.10) gives

f̂m = L0
R

√
π

ln 2 exp
[
−
(
BrmL0

2
√

ln 2R

)2 ]
. (6.13)

Figure 6.8 is a plot of the Fourier coefficients obtained using Equation (6.13) for three
values of the wake overlap parameter ζ. For values of ζ & 1 the zero-order term is dominant
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with the only significant harmonic contributions coming from |m| = 1 terms. These |m| = 1
terms lead to the observed sinusoidal wake profiles where mean wakes are significantly
overlapped. At high values of ζ where the mean wakes are highly overlapped, the |m| = 1
terms also become very small. This corresponds to the ‘flattening’ of F (η) observed in
Figure 6.4.
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Figure 6.8 – Fourier coefficients of overlapped Gaussian wakes with three relative wake widths ζ
calculated using Equation (6.13).

The present study is concerned with mean wakes where there is significant overlap
ζ > ζc. In this regime it has been shown that the observed wake is dominated by the order
m = 0 and |m| = 1 Fourier coefficients. The m = 0 term gives the mean level and the
|m| = 1 terms the sinusoidal oscillation. The sum of these three contributions is given by
substitution of Equations (6.9) and (6.13) into Equation (6.8) giving

〈U〉(γ) = U∞ −
∆UBr

2π

1∑
m=−1

L0
R

√
π

ln 2 exp
[
−
(
BrmL0

2
√

ln 2R

)2 ]
exp [iBrmγ] , (6.14)

=
{
U∞ −∆U BrL0

2πR

√
π

ln 2

}
︸                                ︷︷                                ︸

Steady Term

−
{

∆U BrL0
2πR

√
π

ln 2 exp
[
−
(

BrL0

2
√

ln 2R

)2 ]
[2 cosBrγ]

}
︸                                                                        ︷︷                                                                        ︸

Oscillating Term

.

(6.15)

Recalling the definition ζ = 4L0/sr in Equation (6.6) this becomes

〈U〉(γ) =
{
U∞ −

∆Uζ
4

√
π

ln 2

}
︸                          ︷︷                          ︸

Steady Term

−
{

∆Uζ
2

√
π

ln 2 exp
[
−
(

πζ

4
√

ln 2

)2 ]
cosBrγ

}
︸                                                           ︷︷                                                           ︸

Oscillating Term

. (6.16)

The overlapped wake profile described by Equation (6.16) may be used to determine U
and ∆Û which form the input for the technique for deducing the parameters of individual
wakes, as illustrated in Figure 6.9. The steady and oscillating terms of Equation (6.16)
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Observed wake 〈Û〉 = Û∞ −∆ÛF (η)

Individual wake profiles 〈U〉 = U∞ −∆Uf(η)
U

y3/sr1 2 30

Û∞

U

U∞

∆U

∆Û

Figure 6.9 – Parameters of observed overlapped wake profile. Mean value U and peak-to-trough
difference ∆Û are readily measured but the free stream velocity U∞ is obscured.

can be related to the measured parameters U and ∆Û by

U = U∞ −
∆U ζ

4

√
π

ln 2 , (6.17)

∆Û = ∆U ζ
√

π

ln 2 exp
[
−
(

πζ

4
√

ln 2

)2 ]
. (6.18)

Rearranging these expressions yields

ζ = 4
√

ln 2
π

√√√√ln
{

4[U∞ − U ]
∆Û

}
, (6.19)

∆U =
√
π

U∞ − U√√√√ln
{

4[U∞ − U ]
∆Û

} . (6.20)

For substantially overlapped wakes the relative width of the individual mean wakes ζ and
the maximum individual mean wake deficit ∆U may be estimated from parameters that
are readily measurable if the free-stream flow speed U∞ is known. In practice it will be
necessary to use an estimate for U∞, as discussed in Section 8.4.

6.6 Sensitivity of overlapped wake method to errors in U∞

The extraction of isolated wake parameters from significantly overlapped wakes requires
an estimate for the free stream velocity U∞ that is subject to error. The sensitivity of the
expressions Equations (6.19) and (6.20) to errors in U∞ is now investigated.

It is assumed that the correct value of the free-stream velocity U∞ is known and that
the value used is subject to some error δU∞. Errors in the expressions for ζ and ∆U are
now obtained by taking partial derivatives of Equations (6.19) and (6.20) with respect to
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U∞. The resulting error sensitivity expressions are

∂ζ

∂U∞
= 2

√
ln 2

π[U∞ − U ]

(
ln
{

4[U∞ − U ]
∆Û

})−1/2

, (6.21)

∂(∆U)
∂U∞

=
√
π

(
ln
{

4[U∞ − U ]
∆Û

}
− 1

2

)
·
(

ln
{

4[U∞ − U ]
∆Û

})−3/2

. (6.22)

Figure 6.10 shows two representations of the sensitivity of ζ to errors in U∞ normalised
with U∞, plotted against (U∞−U)/U∞ which indicates the normalised difference between
the mean of the observed wake and the actual free stream flow speed. The values of
(U∞ − U)/U∞ are linked to the degree of mean wake overlap so that small values are
associated with partial overlap where the assumptions made in Section 6.5 are close to
breakdown.
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Figure 6.10 – Normalised sensitivity of ζ to errors in U∞ over the domain U∞−U > ∆Û/4 obtained
by evaluation of Equation (6.21).

Figure 6.10a shows U∞∂ζ/∂U∞ plotted for three values of ∆Û/U∞ — the size of the
observed wake fluctuations relative to the free-stream flow speed. The sensitivity to errors
in U∞ is high for small values of (U∞ − U)/U∞ but decreases as overlap increases.

Figure 6.10b shows contours of iso-sensitivity versus ∆Û/U∞ and (U∞−U)/U∞. Con-
tours of U∞∂ζ/∂U∞ are plotted for U∞ −U > ∆Û/4. Outside this domain, points on the
observed wake exceed the free-stream velocity which is non-physical and in violation of
the wake overlap model shown in Equation (6.8). The contours of U∞∂ζ/∂U∞ indicate
that the sensitivity to error increases towards the left, where the overlap condition is close
to breakdown.

Figure 6.11 shows the modulus of the sensitivity of ∆U to errors in U∞ plotted against
(U∞ − U)/∆Û . Large magnitude negative values of sensitivity are seen for 1/4 < (U∞ −
U)/∆Û <

√
e/4, which correspond to cases where the assumptions made in Section 6.5 are
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approaching or exceeding their limits. At all other points the magnitude of the sensitivity
is less than unity.
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Figure 6.11 – Sensitivity of ∆U to errors in U∞ over the domain U∞ > ∆Û/4 obtained using
Equation (6.22).

The expressions in Equations (6.19) and (6.20) for the relative width and the velocity
deficit of the isolated mean wake as derived from observed mean wake parameters have
been shown to be sensitive to errors in the estimated free-stream velocity U∞ when the
mean wakes begin to overlap and the assumption of significant wake overlap is close to
breaking down.



Chapter 7

Extraction of mean and turbulent wake
data from hotwire and RANS CFD data
for input to broadband noise models

This chapter will give a description of the general procedures applied in order to extract
mean and turbulent flow data from hotwire anemometry velocity timeseries data and
RANS CFD predictions with a simple turbulence model. In particular, this includes:

• Resolution of velocities in a duct-aligned coordinate system into a coordinate system
aligned with the mean flow.

• Calculation of the mean wakes and extraction of mean wake parameters.

• Calculation of the momentum thickness θm.

• Obtaining the unsteady component of the wake velocity and extraction of the un-
steady wake parameters.

The hotwire data are in the form of instantaneous timeseries that require ensemble-
average processing. The RANS CFD simulation data are mean velocity profiles with
turbulence velocity statistics so the ensemble-averaging steps are omitted.

All examples using hotwire data in this chapter are taken from the LSFR tests described
in Section 8.1.

7.1 Resolution of velocities into a flow-oriented coordinate system

In Chapter 8 mean and turbulent wake data are used to predict the flow conditions at the
OGV leading edge for broadband noise predictions. The analysis of this data is performed
in terms of a coordinate system aligned with the mean flow. The measured data are,
however, expressed in terms of a coordinate system aligned with the duct. This section
will describe the processes required in order to resolve these velocities into components
aligned with the mean flow and perpendicular to it.
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Figure 7.1 – Sketch of duct-aligned co-
ordinate system x and its relation to the
measurement location.
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Figure 7.2 – Axial velocity data over 18 blade pas-
sages (blue lines) and the corresponding ensemble-
average taken over 25,308 blade passages (red) plot-
ted against t/T . These data taken from LSFR run at
50% fan speed and working line 5, from the hotwire
measurement location at axial location Pos.1, radial
location 7.

7.1.1 Duct-aligned coordinate system

Instantaneous hotwire velocity data are described in terms of duct-aligned coordinate
component velocities Ud, V d and W d. Ud is aligned with the fan rig axis x1. V d and W d

are aligned with the azimuthal x2 and radial x3 directions respectively at the points of
measurement as sketched in Figure 7.1.

7.1.2 Forming ensemble-average of hotwire timeseries

The hotwire data is in the form of instantaneous timeseries Ud, V d and W d. It is assumed
that variations of geometry between rotor blades are insignificant so that the instantaneous
velocities are a superposition of a mean velocity wake repeated for each blade passage and
an unsteady random component representing the turbulence velocity perturbations. The
steady flow component is obtained from an ensemble-average of the instantaneous data.

The hotwire velocity timeseries have a constant number of samples for each blade
passage Nj ∈ N. A per-blade ensemble average for the Ud velocity component is deduced
from

〈Ud〉(j) = 1
Nb

Nb∑
n=1

Ud(j + (n− 1)Nj
)
, (7.1)

where Nb ∈ N is the number of blade passages included in the average. Similar calculations
are performed for the V d and W d velocity components.

Figure 7.2 shows the instantaneous axial velocity data over 18 blade-passages in blue,
plotted against t/T . An ensemble average taken over 25,308 blade passages from the same
data set is also shown in red. The ensemble-averaged velocity profile exhibits a distinct
velocity deficit. Away from the velocity minimum the velocity profile plateaus. The
velocity in this ‘flat region’ is regarded as being free-stream and will be used to determine
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the flow angles, as described in Section 7.1.
Several of the instantaneous timeseries shown in Figure 7.2 have wake minima that are

not aligned with the mean wake. This ‘wander’ of the wake is not considered further in
this thesis, but can be expected to lead to a broadening of the mean wake.

7.1.3 Identifying the extent of the rotor blade wake velocity deficit

In the subsequent sections it will be important to identify the extents of the mean wake
so that the mean flow and wake can be considered separately. In this section a procedure
is described for automatically determining the mean wake extents.

In the present study, the axial velocity component Ud is most closely aligned with the
streamwise direction and is the only component to exhibit clear wake deficit-like behaviour,
as shown in Figure 7.2. Care has been taken to define a procedure to automatically identify
the mean wake extents from 〈Ud〉 and hence to obtain the width of the observed mean
wake L̂WW. The procedure is described below and is illustrated in Figure 7.3.

1. The location of mean wake minimum in 〈Ud〉 is identified (marked with red square).

2. The ensemble-average wake 〈Ud〉 is a discrete signal and its gradient is approximately
proportional to the difference between adjacent samples δ〈Ud〉. This difference signal
is shown as the blue dashed line. In practice, smoothing is generally applied to δ〈Ud〉
in order to reduce the effects of noise in this ‘derivative’.

3. The maximum and minimum of δ〈Ud〉 are found either side of the minimum of the
mean wake 〈Ud〉 (blue triangles).

4. The location of the wake extents are supposed to correspond to the points at which
the difference falls to 1/2.1 of its maximum and minimum values (blue circles and red
stars). The factor 2.1 has been chosen empirically in order to match the automatic
results to those picked ‘by eye’ and improve robustness of the results in the face of
contamination from probe vibrations (as compared with a value of 2).

7.1.4 Free-stream velocity

The free-stream velocity components Ud
∞, V d

∞ and W d
∞ resolved in the x1, x2 and x3 direc-

tions respectively are now determined by taking the mean of the corresponding ensemble-
averaged velocity outside the wake extent obtained in Section 7.1.3. Examples of the three
ensemble-averaged velocity components and the corresponding free-stream velocities are
shown in Figure 7.4 plotted against t/T .

7.1.5 Mean flow angles

The free-stream velocity component estimates Ud
∞, V d

∞ and W d
∞ are used to provide esti-

mates for the mean flow whirl angle ψw and radial angle ψr relative to the local machine
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Figure 7.3 – Illustration of the procedure for identifying the extent of an ensemble-averaged wake.
The red line and left-hand axis represent the ensemble-averaged wake. The blue dashed line and
right-hand axis represent its smoothed difference. The various markers are referred to in the text.
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Figure 7.4 – Ensemble-averaged velocities re-
solved in the duct-aligned coordinate system plot-
ted against t/T . The corresponding free-stream
velocities are shown as dashed lines. These data
taken from LSFR at 50% fan speed at working
line 5 at axial location Pos.1, radial station 7.
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Figure 7.5 – Definition of the radial and whirl
angles relative to the local machine coordinate
system.
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coordinate system, as illustrated in Figure 7.5 so that

ψw = arctan
(
W d
∞

Ud
∞

)
, (7.2a)

ψr = arctan

 V d
∞√

Ud
∞

2 +W d
∞

2

 . (7.2b)

7.1.6 Rotation matrix for resolving velocity data

The flow angles ψw and ψr are used to assemble the rotation matrix

R =


cosψr cosψw sinψr cosψr sinψw

− sinψr cosψw cosψr − sinψr sinψw

− sinψw 0 cosψw

 . (7.3)

The matrix R may be used to resolve the duct coordinate velocity hotwire timeseries data
into streamwise and stream-normal components

U

V

W

 = R


Ud

V d

W d

 . (7.4)

An identical operation is used to resolve the ensemble-averaged velocity components
〈U〉
〈V 〉
〈W 〉

 = R


〈Ud〉
〈V d〉
〈W d〉

 . (7.5)

Examples of the stream-resolved ensemble-averaged velocity components given by the
application of Equation (7.5) are shown in Figure 7.6 plotted against t/T . Having per-
formed this transformation, the streamwise component 〈U〉 can be used to extract the
mean wake velocity and length scales U∞, ∆U and L0 as described in Chapter 6. Note
that the velocities of the transverse components 〈V 〉 and 〈W 〉 are close to zero outside the
wake region.

7.2 Non-dimensional downstream distance

The self-preserving wake development described in Section 6.2 is expressed in terms of the
normalised distance between the rotor trailing edge and the measurement position x̂. The
radial and whirl angles obtained in Section 7.1.5 are now used to calculate x̂.

The convection streamline from the rotor trailing edge to the measurement location is
assumed to follow a helical path of length

xh =
√

(∆x1 secψw)2 + ∆x2
2, (7.6)
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Figure 7.6 – Ensemble-averaged velocity resolved into streamwise and stream-normal components
from radial station 7 of Case HW2 plotted against t/T .

where ∆x1 and ∆x2 are the axial and radial differences between a given point on the OGV
leading edge and the intersection of the rotor trailing edge with straight lines projected
back from that point with radial angle ψr, as illustrated in Figure 7.7. The flow angles ψw

and ψr are obtained using Equation (7.2). The non-dimensional distance x̂ is then given
by x̂ = xh/2θm as originally defined in Equation (6.1).

7.3 Momentum thickness θm

The momentum thickness θm is used as the main lengthscale in the subsequent analysis
of the variation of the wake width L0 and velocity deficit ∆U . Momentum thickness is
a quantity closely related to the drag coefficient of a given body and as such should be
only weakly dependent on the downstream location at which it is measured [12]. In this
section the steps taken to calculate θm from experimental data are explained. It shall be
shown that where the wakes due to individual rotor blades are significantly overlapped
(see Chapter 6) the conventional method for evaluating θm causes significant errors. A
method is proposed to obtain robust estimates of θm under mean wake overlap conditions
which show little variation with the axial location at which the flow measurements were
made. The section commences by reviewing the conventional calculation method, that is
appropriate for use when individual mean wakes are well separated.

7.3.1 Calculation of θm for mean wakes with negligible overlap

The momentum thickness θm of the wake due to an isolated body may be calculated using
[12]

θm =
∫ ∞
−∞

Ū(y3)
U∞

(
1− Ū(y3)

U∞

)
dy3, (7.7)

where y3 is the distance along a direction normal to the streamwise flow corresponding to
the azimuthal direction, Ū(y3) is the time-averaged streamwise velocity component which
varies as a function of at y3 and U∞ is the streamwise free-stream velocity.
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When working with rotor wake data Equation 7.7 is approximated by the finite integral

θm =
∫ sr/2

−sr/2

〈U〉(y3)
U∞

(
1− 〈U〉(y3)

U∞

)
dy3, (7.8)

where sr is the rotor blade separation distance and 〈U〉 is the ensemble-averaged mean
wake profile, obtained as described in Section 7.1.2. This truncation of the domain relies
on the fact that the contributions of the integrand fall to zero as 〈U〉 tends to U∞, as
is shown in Figure 7.8. If the rotor mean wakes are well separated then only the wake
velocity deficit contributes significantly to the value of θm in Equation (7.8). Problems
associated with calculation of θm when mean wakes are overlapped shall be discussed in
Section 7.3.2.
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Figure 7.7 – Illustration of parameters used
in calculation of helical distance.
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Figure 7.8 – Integrand of the momentum
thickness calculation Equation (7.8) plotted
against its independent variable 〈U〉/U∞.

7.3.2 Calculation of momentum thickness θm for significantly overlapped
mean wakes

In Section 7.3.1 it was shown that Equation (7.8) can be applied to calculate the momentum
thickness for non-overlapped mean wakes. This section will propose a method for the
calculation of θm when the mean wakes are significantly overlapped.

When the mean wakes are non-overlapped the velocity deficit falls to near zero before
the limits of integration in Equation (7.8) are reached. As the isolated wake profile broad-
ens the wake extends beyond these limits and, because of the periodicity of the observed
wake, the velocity deficits from adjacent blade passages are found to contribute to the
observed mean wake profile. Now the maximum apparent mean wake velocity is smaller
than the free-stream velocity (see the right hand side of Figure 6.2).

Two options for the calculation of the momentum thickness for overlapped mean wakes
using Equation (7.8) exist:

• Method 1 Calculate using the observed overlapped wake 〈U〉 and the observed free
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stream velocity Û∞ in place of U∞. This would be the calculation made if wake
overlap had not been identified. The integrand of this calculation is illustrated by
the shaded area in Figure 7.9a. It will be shown that this method consistently
underestimates θm because of the reduction of ∆Û that occurs with increasing mean
wake overlap.

• Method 2 Calculate using the observed overlapped wake 〈U〉 and the isolated free
stream velocity U∞ (see Section 8.4). The integrand of this calculation is illustrated
by the shaded area in Figure 7.9b. It will be shown that this method is highly
sensitive to errors in the estimate of U∞.

A third method, referred to as Method 3, is proposed that uses an individual mean
wake profile that is ‘reconstructed’ using the mean wake parameters U∞, ∆U and L0

obtained using the methods developed in Chapter 6. Equation (6.2) for the isolated mean
wake model is substituted into Equation (7.7) to give

θm =
∫ ∞
−∞

U∞ −∆Uf(η)
U∞

(
1− U∞ −∆Uf(η)

U∞

)
dy3. (7.9)

where η = y3/L0 is the azimuthal distance normalised with the half-wake half-width of
the individual mean wake. For the examples that follow, and for use in Equation (7.9)
in Chapter 8, f(η) is chosen to be the asymmetric mean wake shape of Equation (8.3)
derived from the experimental data which is discussed in Section 8.2.1. The integrand of
Equation (7.9) is illustrated by the shaded area in Figure 7.9c.

The accuracy of the three methods for calculating θm described above is assessed by
observing their behaviour as the relative wake width ζ of a hypothetical mean wake is
changed. Consider mean wakes separated by distance sr in a flow with U∞ = 100 m/s.
The half-wake half-width L0 is varied so that the relative mean wake width covers the
range 0.25 ≤ ζ ≤ 4. It is assumed that the product L0∆U is constant so that ∆U is
inversely proportional to L0, consistent with the behaviour of a self-preserving wake [12].
The values of ∆U are chosen so that the largest is 10 m/s — one-tenth of the free-stream
velocity. For each combination of L0 and ∆U the individual mean wake and overlapped
mean wake velocity profiles are calculated using Equations (6.2) and (6.7). The three
momentum thickness calculation methods are then used to obtain estimates for θm. Note
that as Method 3 uses an isolated wake and the conventional calculation method it perform
the function of a ‘control’ in this exercise. The results obtained using each method are
shown in Figure 7.10.

1. For ζ̂ > ζc Method 1 (black line) consistently underestimates θm when compared
with Method 3. As wake overlap increases and ∆Û decreases the predicted value of
θm rapidly tends to zero.

2. Method 2 (blue solid line) and Method 3 (red solid line) are in close agreement over
the entire domain of calculation suggesting that both are accurate.
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Figure 7.9 – Calculation of momentum thickness from significantly overlapped mean wakes using
three methods.

3. Also shown on Figure 7.10 as blue and red dashed lines are the results obtained
using Methods 2 and 3 when a -0.5% ‘error’ is applied to the value of U∞. The
Method 2 result is changed by over one-third its original value indicating that it is
highly sensitive to errors in U∞. Bearing in mind that in practice this value will
be estimated, the observed sensitivity is not acceptable. Conversely, the Method 3
results are nearly indistinguishable from those obtained when using the correct value
of U∞, indicating that this method is robust to errors in U∞.

4. Also of note here is that the self-preserving nature of the flow, enforced by maintain-
ing L0 ∆U = const, do not result in a constant value of θm as ζ is changed. This is in
contradiction to Wygnanski et al. [12]. The effect is observed to be sensitive to the
ratio ∆U/U∞, with larger variations seen for large ratios, and hence the applicability
only to small-deficit wakes.

In this section several methods for the calculation of the momentum thickness θm

for rotor wakes have been investigated. Where individual wake overlap is negligible the
ensemble-average calculation of Equation 7.8 gives accurate results provided that the ex-
tracted value of U∞ = Û∞ is accurate. However, where wakes are significantly overlapped
with ζ̂ > ζc this method leads to values of θm that rapidly approach zero. A similar
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Figure 7.10 – Comparison of momentum thickness calculated for non-overlapped and overlapped
mean wakes in a hypothetical self-preserving flow with U∞ = 100 m/s. Three calculation methods are
used; (black line) a single blade-passage calculation using Equation (7.8) with apparent free stream
velocity Û∞, (blue line) a similar calculation using the isolated wake free stream velocity U∞ and
(red line) a method using a ‘reconstructed’ mean wake. The product of half-wake half-width to the
wake velocity deficit is constant with the maximum wake velocity deficit being 10% of the free stream
velocity. Dashed lines indicate the values obtained when a -0.5% perturbation is introduced into the
value of U∞, showing the sensitivity to errors of Methods 2 and 3.

approach using an estimate of U∞ as discussed in Chapter 6 has been shown to yield ac-
curate results but is extremely sensitive to errors in U∞. A ‘reconstructed wake’ method
developed here, shown in Equation (7.9), has been found to be robust to errors in the
estimates of U∞.

7.4 Extraction of turbulence data from unsteady wakes

So far the analysis of hotwire and RANS CFD data has been conducted on ensemble-
averaged mean wake data. In this section the unsteady component of the rotor wakes
shall be examined.

As noted in the introduction to this chapter the hotwire data are instantaneous velocity
timeseries while the results of RANS CFD calculations are per-blade ensemble-average
statistics. The RANS CFD calculations used in the present study were performed with
a k-ω turbulence model. Here k represents the total turbulence kinetic energy and ω the
specific dissipation. The procedures involved in producing turbulence statistics from these
types of data are presented in this section.

7.4.1 Ensemble-averaged mean-square turbulent velocities

Ensemble-averages of the mean-square unsteady velocity components as resolved in the
streamwise and transverse directions are assembled from the instantaneous hotwire time-
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series using

u2 = 1
Nb

Nb∑
n=1

(U − 〈U〉)2 , (7.10a)

v2 = 1
Nb

Nb∑
n=1

(V − 〈V 〉)2 , (7.10b)

w2 = 1
Nb

Nb∑
n=1

(W − 〈W 〉)2 , (7.10c)

where Nb is the number of blade passages included in the average and U , 〈U〉, V , 〈V 〉,
etc. are the flow-aligned and transverse components defined in Section 7.1.6.

The RANS CFD predictions express the unsteady velocity data in terms of a total
turbulent kinetic energy [86]

k = 1
2
(
u2 + v2 + w2

)
. (7.11)

The k-ω turbulence model has been adopted when performing these RANS calculations.
This model assumes isotropy so that

u2 = v2 = w2 = 2k
3 . (7.12)

7.4.2 Mean-square unsteady wake parameters

By way of an example, a typical mean-square velocity wake profile is sketched in Fig-
ure 7.11. The wake profile and its characteristic parameters are described below, along
with descriptions of the procedures used to obtain them. Identical methods are applied
to the mean-square wake profiles v2 and w2 to obtain the corresponding parameters for
these velocity components.

2Lu

1
2∆u2

∆u2

u2∞

y3

u2
max(u2)

u2

〈u2〉

Figure 7.11 – Illustration of the characterising parameters for a mean-square turbulent velocity wake.
The turbulent wake half-maximum half-width Lu is shown in relation to the peak and baseline mean-
square velocities max(u2) and u2∞. The circumferentially-averaged mean-square unsteady velocity
〈u2〉 is obtained from the mean over a blade passage.

• A two-peaked wake is shown with maximum value max(u2). This value is obtained
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by inspection of the turbulent wake profile.

• Outside the wake, the profile drops to a plateau associated with free-stream tur-
bulence u2∞. This parameter is obtained by taking the mean of the values outside
the extents of the turbulent wake. These extents are determined identically to the
extents of the mean wake as described in Section 7.1.3.

• Half the width of the wake at the half-way point between u2∞ and max(u2) is the
turbulent half-wake half-width Lu.

• The circumferentially-averaged mean-square turbulence velocity 〈u2〉 is used as an
input to the noise model described in Chapter 2. 〈u2〉 is obtained from the average
of the turbulent wake profile over the entire blade passage.

7.5 Concluding remarks

Methods have been described for the processing of instantaneous timeseries from hotwire
anemometry and ensemble-averaged mean and unsteady wake data from RANS CFD pre-
dictions. These methods allow the extraction of parameters relating to the characteristics
of the mean wakes and turbulent wakes.

It is observed that for significantly overlapped mean wakes the computation of momen-
tum thickness θm is subject to significant error if the effects of wake overlap are not taken
into consideration. A new method for the calculation of θm for significantly overlapped
mean wakes has been developed that has been shown to be accurate and robust to errors
in the free-stream velocity U∞.



Chapter 8

The use of hotwire anemometry and
RANS CFD for the prediction of flow
and turbulence characteristics

When developing a new engine it is important to be able to predict the noise it generates,
preferably for several iterations of design. In the preceding chapters, models have been
presented that allow the prediction of noise radiated from an OGV when a turbulent flow
impinges on it from the rotor. The noise models require a description of the turbulent
flow impinging on the OGV leading edge in the form of its mean flow Mach number Ms,
circumferentially-averaged turbulence mean-square velocity 〈w2〉 and integral lengthscale
Λ.

In this chapter turbulent wake parameters obtained from direct measurement on the
Large Scale Fan Rig (LSFR) using hotwire anemometry and simulated using Reynolds-
Averaged Navier-Stokes Computational Fluid Dynamics (RANS CFD) are compared.

Measurement of the turbulence offers the possibility of making measurements under
exact operating conditions. However, it requires the construction and testing of a fan rig
for each design which is time-consuming and expensive. The data in the present study are
taken at a limited number of axial locations and operating points and so it is necessary
to develop methods for predicting the turbulent flow parameters Ms, 〈w2〉 and Λ at the
OGV leading edge. The measured mean wake and turbulence parameters are analysed
in order to look for structure. The presence of structure relies on the wakes being in a
‘self-preserving’ state. The importance of such self-preserving wakes and how they are
used in this analysis is discussed in Section 6.2.

RANS CFD modelling is a cheaper and faster way to obtain the required information
but some degree of empiricism is needed to obtain a value for the turbulence integral
lengthscale Λ. Comparison of the RANS CFD parameters with equivalent measurements
allows consistent values of Λ to be obtained from RANS CFD.

The turbulent wake parameters predicted in this chapter will be used to predict
forward-arc and rear-arc noise In Chapter 9.
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Figure 8.1 – A test rig in the process of being installed in Test Bed III at AneCom AeroTest GmbH.
This inlet-side anechoic chamber has a floor area of 1000 m2 and is 10 m high. In the foreground an
array of microphones that are used for sound power measurement may be seen (see Section 9.1).

8.1 The Large Scale Fan Rig (LSFR)

Hotwire measurements and RANS CFD simulations were performed on the Large Scale Fan
Rig (LSFR). The LSFR was subjected to aerodynamic and acoustic testing on Test Bed
III at AneCom AeroTest GmbH. This facility is equipped with a large anechoic chamber
on the inlet side of the facility, shown in Figure 8.1, allowing forward-arc sound power
measurements, that are described in Section 9.1.

The location of the rotor and OGV within the LSFR is sketched in Figure 8.2. The
location of the rotor trailing edge is shown on the left hand side of the picture. Three OGV
configurations are shown: a 44-vane OGV in ‘forward’ location with small interstage gap
(red) and a 28-vane OGV in both a ‘forward’ (green) and ‘rearward’ (blue) axial location.
These three OGV configurations shall be referred to as 44F, 28F and 28R. Note that the
duct annulus reduces in area across the chord of the 28R OGV. This chord-wise annular
contraction is common to all the OGV configurations but is only shown in the 28R axial
location for the sake of clarity. The crosses show the location of the hotwire measurements,
that are described in the following section.

8.1.1 Hotwire measurements on the LSFR

The axial and radial locations of downstream hotwire probes are marked in Figure 8.2 by
black crosses. Groups of measurement locations were specified at three axial locations,
referred to as Pos.1, Pos.2 and Pos.3. The radial measurement locations are indicated by
Ri where i counts outwards from the hub. Hotwire measurements were confined to the
28-vane OGV in its rearward location (28R – blue). These tests were conducted over a
range of fan speeds and working lines, as summarised in Table 8.1.

The hotwire data is in the form of instantaneous velocity timeseries recorded over
many fan revolutions; each being approximately 25 s of data acquired at 192 kHz. These
timeseries have been resampled so that an integral number of samples describes a single
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Figure 8.2 – Sketch of the LSFR in cross-section showing the rotor trailing edge, three OGV con-
figurations and hotwire probe locations.

Table 8.1 – Configurations for which hotwire measurements were conducted.

Fan Working Axial location
speed (%) line Pos.1 Pos.2 Pos.3

50 3 X X -
5 X X X

80 3 X - -
5 X - -

90 3 X - -
5 X - -

blade passage.

8.1.2 LSFR configurations predicted with RANS CFD

RANS CFD flow predictions for the LSFR were conducted for a range of fan speeds and
working lines by John Coupland at Rolls-Royce. These predictions did not include the
OGV but did include the annular contraction associated with two of the OGV configura-
tions: 28R and 44F (see Section 8.1). A full description of the RANS CFD simulations,
contributed by John Coupland, is given in Appendix B.

8.2 Comparison of normalised mean wake velocity profiles

In Section 6.2 it was noted that for wakes to be self-preserving the wake profile function
f(η) should be unchanging irrespective of where it is measured so that the mean wakes
are exactly similar. In this section the level of self-similarity is assessed by the comparison
of the normalised mean wake velocity profiles, defined by (Û∞ − 〈U〉)/∆Û , measured at
different positions using hotwire and predicted using RANS CFD.

Figure 8.3 shows comparisons between the normalised mean wake velocities derived
from hotwire measurements (red lines) and equivalent RANS CFD predictions (blue lines)
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plotted against η̂ where (see Equation (6.3))

η̂ = y3/L̂0, (8.1)

and L̂0 is the half-minimum half-width of the observed mean wake, as discussed in Sec-
tion 6.3.1. Similar plots are shown in Figure 8.4 for 50% and 80% fan speed over a range
of radial locations. Observations with respect to these figures are given below:

1. The hotwire measurements (red lines) are seen to be affected by probe oscillations to
varying degrees. Their effects are greater at 80% and 90% fan speed than at 50% and
are particularly severe at 80% fan speed (Figures 8.3c, 8.4b, 8.4d and 8.4f). At these
higher fan speeds the oscillations in the measured wakes leads to uncertainty over
the observed mean wake parameters Û∞, ∆Û and L̂0 obtained using the methods
described in Section 6.1. Self-preserving wake development relations, as discussed in
Section 6.2, are therefore only sought for the 50% fan speed results.

2. At low fan speed the mean wake profiles predicted by RANS CFD (blue dashed lines)
are similar to those measured using hotwire probes, particularly around the wake
minimum (maximum in these normalised plots).

3. Similar levels of agreement at each of the two working lines are observed in Fig-
ures 8.3a and 8.3b.

4. The mean wakes profiles from Pos.1 (Figures 8.3a–8.3d) all exhibit some degree of
asymmetry, with a shallower slope on their right hand side than their left. Mean
loading on the rotor blades results in a favourable pressure gradient on the pressure
surface that is associated with thin wakes (left hand side of wake as plotted). Adverse
pressure gradients occur on the suction side of the blades resulting in greater wake
thickness on the right hand side of the mean wake velocity profile.

5. The mean wakes at Pos.2 are more symmetric than the corresponding wakes at Pos.1
(compare Figure 8.3e with Figure 8.3a). At Pos.2 the measured and predicted wakes
appear to be nearly sinusoidal. In these cases the observed relative wake width ζ̂ > ζc

indicates significant wake overlap as defined in Chapter 6.

6. At the outermost radial location, R12, (Figure 8.4e) a significant slope is seen between
adjacent wakes so that the predicted wake is almost sawtooth in shape. The slope
corresponds to the ramp function identified by Majiggi and Gliebe [87] for rotor wake
profiles and is due to pressure differences across the rotor blade surfaces caused by
steady loading. At these outboard locations the rotor tip leakage and boundary
flows lead to substantially different flows than are seen at inboard locations.



131

−4 −2 0 2 4

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

η̂

(U
∞
−
〈U

〉)
/
∆
U

(a) Pos.1, 50% fan speed, WL5

−4 −2 0 2 4

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

η̂

(U
∞
−
〈U

〉)
/
∆
U

(b) Pos.1, 50% fan speed, WL3

−4 −2 0 2 4

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

η̂

(U
∞
−
〈U

〉)
/
∆
U

(c) Pos.1, 80% fan speed, WL5

−4 −2 0 2 4

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

η̂

(U
∞
−
〈U

〉)
/
∆
U

(d) Pos.1, 90% fan speed, WL5
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Figure 8.3 – Comparison of normalised mean wake velocity from hotwire measurements (
 

 ) and
RANS CFD extractions (

 
 ) at radial location R7 showing similarity of wake profiles as axial

position, fan speed and working line are altered.
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Figure 8.4 – Comparison of normalised mean wake velocity from hotwire measurements (
 

 ) and
RANS CFD extractions (

 
 ) at Pos.1 at 50% and 80% fan speed at WL5 for a range of radial

locations.
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8.2.1 Modelling the mean wake profile function

In Section 8.2 it was observed that the RANS CFD and hotwire wake profiles measured at
Pos.1 were very similar at 50% fan speed. In this section these near-wake low speed mean
wake profiles are compared with the symmetric Gaussian function fG and a new function
fS that attempts to model the observed asymmetry. The fitted wake profile function
developed here is used to reconstruct individual mean wakes in order to robustly calculate
momentum thickness θm in the cases where mean wakes are significantly overlapped, as
described in Section 7.3.2.

Figure 8.5a shows the normalised mean wake profiles measured at Pos.1 at 50% fan
speed and at both working lines plotted against normalised azimuthal distance η̂ as defined
in Equation (8.1). The results from all radial measurement locations are shown. Overlaid
on these are non-dimensional mean wake profile functions f(η) that may be used to model
the mean wakes when used in Equation (6.2). The mean wake functions for individual
blades are described below.
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Figure 8.5 – Normalised ensemble-averaged wake profiles compared with Gaussian and skewed wake
functions.
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Gaussian wake profile The Gaussian function fG defined in Equation (6.11) is often
used to model wakes because of its simplicity and integrability and good approximation of
the wake shape. For these reasons the Gaussian function is used to model the wake profile
in the analysis of adjacent wake overlap in Section 6.5.

Proposed skewed wake profile Wygnanski et al. [12] measured the wakes due to
symmetric wake generators in axial flows and found that the Gaussian function fG over-
estimated the values they observed at the edges of the wake and so applied a fourth-order
correction to obtain

fW(η) = exp
[
−0.637η2 − 0.056η4

]
. (8.2)

The wakes obtained from the LSFR hotwire data measured in near wake locations are not
symmetric for the reasons noted in Item 4 on Page 130. In order to better fit to these data
a skewed wake function is proposed with a third-order correction term of the form

fS(η) = exp
[
−0.661η2 + 0.165η3 − 0.072η4

]
. (8.3)

The coefficients of the polynomial terms have been chosen to fit the shapes of the wakes
measured at 50% fan speed at Pos.1, where the effects of wake overlap and probe oscillation
are negligible. The fitting of these coefficients is explained in Appendix C.

Effect on observed wake profiles of axial location of hotwire probe Figure 8.5b
shows a similar plot of wake profiles to Figure 8.5a at 50% fan speed but for the downstream
locations Pos.2 and Pos.3 instead of Pos.1. The profiles seen at these downstream locations
are more symmetric than those measured at Pos.1, being generally closer in shape to the
Gaussian function fG than the skewed wake profile fS. This behaviour is consistent with
the overlapping of adjacent wakes, as explored in Section 6.4. In Section 8.3 it will be
shown that the observed relative wake width ζ̂ > ζc for the outer radial locations of
measurements made at Pos.2 at 50% fan speed.

Effect on observed wake profiles of changing fan speeds Figure 8.5c shows the
wake profiles measured at Pos.1 at 80% and 90% fan speeds. Significant disturbances
associated with probe vibration are seen in the plotted normalised wakes so that they do
not show collapse onto any wake profile.

8.3 Observed relative wake width ζ̂

Figure 8.6 shows the observed wake widths ζ̂ as defined in Equation (6.6) obtained from
measurements at Pos.2 at 50% fan speed and both working lines shown against normalised
radius R̂ defined as

R̂ = R−Rin
Rout −Rin

, (8.4)
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Figure 8.6 – Apparent wake width across the normalised span for mean wakes obtained at Pos.2
at two working lines. Non-overlapped measurements are indicated by blue markers while significant
overlap occurs for ζ > ζc.

where R is the radius of the measurement point and Rin and Rout are the radii of the inner
and outer casing at the axial location of the measurement point (see Figure 8.2). Note
that for Pos.1 Rhub is assumed to lie on a line joining the radius of the splitter leading
edge to the same normalised radius at the rotor trailing edge.

In each subplot the outer radial locations are seen to have ζ̂ > ζc showing that they are
significantly overlapped. The outermost radial measurement in Figure 8.6a has ζ̂ < ζc but
this measurement is affected by tip leakage and boundary layers associated with the outer
casing, causing a significantly more complex mean wake shape, similar to that observed in
the Pos.1 R12 measurement shown in Figure 8.4e.

8.4 Estimation of free-stream velocity U∞ for significantly overlapped
mean wakes

In Chapter 6 is was shown that the relative width and velocity deficit of the isolated
mean wake can be inferred from measurements taken from wakes that are significantly
overlapped. The method requires an estimate for the free stream velocity U∞ that is
obscured by the overlap of wakes.

Two methods for estimating U∞ have been devised. The first attempts to use the
apparent relative wake width ζ̂ as the basis of the prediction. This approach has been found
to be too sensitive where the value of ζ̂ approaches unity. It is these precise conditions for
which the predicted values of U∞ are required, so that this approach of little use.

A second method applies a constant scaling factor to measurements of the free stream
velocity U∞ made at near-wake locations where mean wakes are non-overlapped and U∞

is obtained directly.
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8.4.1 Assessment of streamlines joining Pos.1 and Pos.2 measurement
locations

By applying a single scaling factor to the Pos.1 values of U∞ to estimate the Pos.2 values it
is assumed that there is a 1:1 correspondence between the hotwire measurement locations
in the two axial groups so that the streamline passing through, say, R1 at Pos.1 also passes
through R1 at Pos.2. The validity of this assumption is assessed in this section.

Figure 8.7 shows streamlines obtained from hotwire measurements at 50% fan speed
at the two working lines using Equation (7.2b). The working line 5 results are shown for
three axial positions in Figure 8.7b while two axial locations are shown in Figure 8.7b.
The streamlines originating from Pos.1 are generally found to be misaligned with the
corresponding radial stations at Pos.2. The radial angles at Pos.2 and Pos.3 are small by
comparison.
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Figure 8.7 – Streamlines from measured radial flow components, fan speed 50%.

The radial flow angles ψr used to obtain these streamlines are ‘snapshots’ taken at
discrete locations. The extrapolations of these angles are not likely to be representative
of the streamlines over the inter-measurement distances, and may represent ‘worst cases’.
It shall be assumed that each radial location corresponds to its downstream counterpart.

8.4.2 Comparison of free-stream velocity U∞ at two axial locations

In Section 8.3 it was shown that, for measurements made at Pos.2, the mean wakes are non-
overlapped at inboard locations where the relative wake width is small ζ < ζc. All mean
wakes measured at Pos.1 are non-overlapped. Where the mean wakes are non-overlapped
the free-stream velocity is obtained directly from the mean wake and U∞ = Û∞.

In Figure 8.8 U∞ obtained at the non-overlapped inboard radial locations of Pos.2 are
plotted as blue circles against U∞ obtained from the corresponding probe locations at
Pos.1. These measurements were taken at 50% fan speed for two working lines, which are
shown in separate sub-figures. The blue circles lie on a line of constant slope, indicating
that when there is no mean wake overlap there is a constant ratio ℵ = 0.984 between U∞

at the two axial measurement positions. This line is shown in red and labelled ℵU∞|Pos.1.
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Figure 8.8 – Comparison of U∞ as measured at Pos.1 and Û∞ at Pos.2 for fan speed 50%. Note
that for the inner radii where mean wakes are non-overlapped there is good agreement between the
plotted results and the fixed area-ratio line ℵU∞|Pos.1. At the outer radial positions where the Pos.2
mean wakes are significantly overlapped the values of Û∞ are reduced.

In Figure 8.8 the observed free-stream velocity Û∞ obtained at Pos.2 radial positions
where the mean wakes are significantly overlapped ζ < ζc are shown as red circles plotted
against U∞ obtained from the corresponding probe locations at Pos.1. These Û∞ lie below
the line ℵU∞|Pos.1 which is consistent with the effect on Û∞ of significant wake overlap
(see Section 6.4).

It is assumed that the flow is incompressible and that the change in U∞ observed
between Pos.1 and Pos.2 is due to the change in duct area upstream and downstream of
the core/bypass splitter (see Figure 8.2). The area-ratio effect is assumed to be constant
across the duct radius. Thus, the free-stream velocity U∞ at a Pos.2 measurement point
where the mean wakes are significantly overlapped is estimated by multiplying the value
obtained from the equivalent Pos.1 measurement point by ℵ:

U∞|Pos.2 = ℵU∞|Pos.1. (8.5)

The results obtained using Equation (8.5) are shown as black star markers in Figure 8.8.
The use of Equation (8.5) yields improvements in parameter collapse and calculation of
momentum thickness θm over the use of the Û∞.

The area of the duct is nearly constant downstream of the core/bypass splitter. It
shall therefore be assumed that Equation (8.5) is applicable for all points downstream of
the core/bypass splitter.
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8.5 Momentum thickness θm from LSFR measurements

Section 7.3 examined methods for the calculation of the momentum thickness θm. Where
the mean wakes are significantly overlapped it was shown that inaccurate values of θm

were obtained if the mean wake overlap effects were not taken into consideration. In this
section the reconstructed-wake method for the calculation of θm developed in Section 7.3.2
is applied to the LSFR measurements.

Figure 8.9 shows values of θm obtained from mean wake data measured on the LSFR
at Pos.1, Pos.2 and Pos.3 at 50% fan speed and working line 5. For measurement lo-
cations where the relative wake width ζ̂ < ζc and the mean wakes are non-overlapped
Equation (7.8) was used. For measurement locations where ζ̂ ≥ ζc and the mean wakes
are significantly overlapped the reconstructed-wake method given by Equation (7.9).

0

0.2

0.4

0.6

0.8

1

R̂

θm (m)
 

 

Pos.1

Pos.2

Pos.3

Figure 8.9 – Momentum thickness θm obtained from LSFR hotwire data at 50% fan speed and
working line 5 at three axial locations.

1. At inboard locations (R̂ < 0.5) there is no overlap in any of the measured mean
wakes. Differences between the values obtained at Pos.1 (blue) and Pos.2 (red) may
be due to errors in the extracted values of U∞, to which this method of calculation
is sensitive (see Figure 7.10).

2. At outboard locations (R̂ > 0.5) mean wake overlap is seen in Pos.2 and Pos.3 axial
positions but not at Pos.1. The two overlapped-wake results are in close agreement.
Significant differences are seen between the Pos.1 values of θm and those at further
downstream locations. This could be due to large wake velocity deficits in the near-
wake measurement at Pos.1 as this tends to reduce θm for small ζ, as noted in Item 4
on Page 123.

The values of θm obtained at Pos.2 and Pos.3 using the reconstructed wake method of
Section 7.3.2 are consistent with one another. In Section 8.11 the momentum thickness
θm obtained using these methods is used as the normalising lengthscale allowing the self-
preserving wake development relations for the LSFR to be determined.
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8.6 Ensemble-averaged turbulence intensity

The ensemble-averaged mean-square turbulent velocities, u2, v2 and w2, calculated as de-
scribed in Section 7.4.1 using Equation (7.10), are used to obtain the component turbulence
intensities

Tu =
√
u2

U∞
, Tv =

√
v2

U∞
, Tw =

√
w2

U∞
, (8.6)

where U∞ is the free-stream velocity due to the isolated mean wake as discussed in Sec-
tion 6.1. Note that Tv and Tw the transverse components are normalised with respect to
U∞ rather than their corresponding free stream velocity components which by the nature
of the streamwise resolution are near zero (see Figure 7.6).

Figure 8.10 shows plots of ensemble-averaged turbulence intensity as measured at a
range of axial and radial locations at working line 5 and 50% fan speed. These are nor-
malised with the largest plotted value, the peak of Figure 8.10d. In this matrix of plots the
axial position ranges from Pos.1 in the left hand column to Pos.3 in the right hand column
while each row refers to a particular radial location. The colours of the lines indicate the
direction of the velocity component in resolved coordinates; blue streamwise, red whirl
and green radial. Also shown in black are the equivalent isotropic turbulence intensities
derived from the RANS CFD data. These plots show that:

1. The shapes of Tu, Tv and Tw from the hotwire measurements (blue, red and green
lines) are considerably different around the peaks, indicating some degree of aniso-
tropy. This contradicts the isotropic assumption of the k-ω model adopted in RANS
CFD calculations and in the noise model of Chapter 2.

2. The RANS CFD peak turbulence intensity is consistently overestimated, particularly
at the upstream axial position 2. This may indicate some sensitivity of the k-ω
turbulence model to flow anisotropy that a two-equation turbulence model cannot
predict (see Item 1 above).

3. All axial position 2 plots, except radial location 12, show a distinct ‘flat’ baseline or
free-stream turbulent intensity. In the RANS CFD modelling this baseline turbulence
is an input parameter, which is smaller than the measured results.

4. Measurements made at radial location 12 (Figures 8.10a–8.10c) all show significant
increases in turbulence intensity between wake regions, indicating that the bound-
ary layer associated with the outer duct wall influences the measurements. Similar
predictions are made by RANS CFD.

5. Measurements at the outer radial locations and axial positions 3 and 4 no longer have
distinct free-stream regions. There appears to be an overlap of adjacent turbulent
wakes as seen in the ensemble-averaged wakes (see Chapter 6), and the apparent free
stream turbulence intensity is increased due to this overlap.
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Figure 8.10 – Plots of ensemble-averaged turbulence intensity representing a range of axial and
radial locations at 50% fan speed and working line 5. Plotted value are normalised with respect to
the peak value shown across the entire matrix of plots. The hotwire data have coloured lines indicating
velocity component: blue streamwise, green radial and red whirl. Black lines show equivalent isotropic
turbulence intensities derived from the RANS CFD data.
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8.7 Turbulent velocity spectra

The velocity timeseries U(n) taken from the hotwire measurements were processed to
remove the ensemble-averaged velocity 〈U〉 to extract timeseries u(n) relating to the un-
steady components in the streamwise and transverse directions (only u component shown
for the sake of brevity)

u(n) = U(n)− 〈U〉(mod(n,Nj)), (8.7)

where mod(n,Nj) denotes the remainder when dividing sample number n by the number
of samples in a single blade passage Nj .

Figure 8.11 shows velocity PSD plots for the stream-aligned component u extracted at
four radial locations. Two subplots are shown; Figure 8.11a has data measured at Pos.2,
50% fan speed and working line 5, Figure 8.11b has data measured at Pos.1, 80% fan
speed and working line 3. The spectra plotted in Figure 8.11 are composites assembled
from PSDs of various bandwidths in order to improve the visibility of the underlying
shapes by optimising the sampling density in different frequency bands. These PSDs were
obtained using Welch’s method [88]. Observations are noted below.

1. The spectra shown for each fan speed and working line display a similar shape
characterised by a flat section for f . 1 kHz and a roll off with an approximate −2
slope for 1 kHz . f . 8 kHz (indicated by blue dashed line). This shape is consistent
with the 1-dimensional Liepmann turbulence model used in the noise model described
in Chapter 2 and defined in Equations (8.8a) and (8.8b).

2. For 8 kHz . f . 60 kHz a steeper roll-off with approximate −6 slope is observed
(indicated by red dashed line). High frequency dissipation is characterised by expo-
nential high frequency roll-off rather the constant gradient observed in these PSDs
[89]. The observed roll-off is, however, consistent with a second order low pass filter
(12 dB per octave, 40 dB per decade, −4 slope) superimposed on the existing −2
slope.

3. At very high frequencies, f & 60 kHz, a large increase in level is seen in all spectra,
associated with the noise floor of the rig.

4. Peaks are seen for both sets of spectra at f ≈ 7.5 kHz, f ≈ 10.4 kHz and f ≈
19.5 kHz, their bandwidths suggesting significant damping. These peaks are greater
in magnitude at 80% fan speed (Figure 8.11b). The frequency at which the tones
appear is independent of the fan speed and they are believed to be associated with
vibration of the hotwire probes.

5. The overall level increases with radius at low frequencies.

The results shown in Figure 8.11b indicate that parameters fitted to the spectra at
higher fan speeds will be affected by hotwire probe vibration.
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Figure 8.11 – Velocity PSD spectra extracted from LSFR hotwire measurements at different axial
and radial positions, fan speeds and working lines. Displayed PSDs are composites assembled from
a range of PSDs of differing length in order to optimise resolution and increase clarity over all
frequencies. Dashed lines show the -2 slope high-frequency roll-off associated with 1-dimensional
Liepmann spectrum and a -6 slope roll-off.
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8.8 Assessment of the validity of the isotropic turbulence assumption

The noise model described in Chapter 2 assumes an isotropic model for the turbulence
incident on the OGV. In Section 8.6 it was observed that the ensemble-averaged turbulence
intensity profiles for the three velocity components exhibited different shapes, suggesting
a possible lack of isotropy.

In this section, the isotropy of the turbulence in the measured wakes is assessed by
deducing estimates of the turbulence integral lengthscale Λ from the component velocity
PSD spectra. It will be shown that the isotropic assumption and the Liepmann model are
appropriate for the rotor wake turbulence on the LSFR but that caution is required at low
frequencies, where the whirl velocity component w is under-predicted by the turbulence
model.

8.8.1 Turbulence integral lengthscale deduced from Liepmann isotropic
turbulence model

In the noise model of Chapter 2 the turbulence impinging on the OGV is assumed to
be isotropic so that the turbulence can be modelled using a single integral lengthscale Λ
and component mean-square velocities 〈u2〉, 〈v2〉 and 〈w2〉. Equation (2.50) defines the
two-dimensional Liepmann isotropic turbulence model for the blade-normal w component
which has Λ and 〈w2〉 as inputs.

The one-dimensional Liepmann isotropic turbulence model defines the streamwise u
component as

Φuu(f) = 4Λ〈u2〉
U∞

1
(1 + (Λk1)2) , (8.8a)

while the transverse components v and w are given by integration of Equation (2.50) over
k2 (only w shown for brevity)

Φww(f) = 2Λ〈w2〉
U∞

(1 + 3(Λk1)2)
(1 + (Λk1)2)2 , (8.8b)

where k1 = 2πf/U∞ is the streamwise wavenumber of frozen harmonic turbulence. Note
that in this thesis the isolated wake free stream velocity U∞ is used rather than the value
extracted from the observed wake Û∞ for significantly overlapped mean wakes. The length
scales may be deduced by taking the low frequency limit of Equation (8.8)

Λ = lim
k1→0

Φuu(f) U∞

4〈u2〉
, (8.9a)

and

Λ = lim
k1→0

Φww(f) U∞

2〈w2〉
, (8.9b)

where again the v component may be substituted for w without loss of generality. Due
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to low frequency noise present in the measured spectra below 5 Hz (see Figure 8.11) the
low-frequency limit shown in Equation (8.9) is replaced with the average of the spectrum
over a significant portion of the low frequency ‘flat’ section, excluding any points for which
f < 5 Hz.

At each measurement location Equation (8.9) is used to deduce a value of Λ from each
velocity component timeseries u, v and w. These three lengthscales are denoted Λu, Λv

and Λw respectively.
For isotropic turbulence the ratios Λu/Λv and Λu/Λw are unity. Figure 8.12 shows

the ratios Λu/Λv and Λu/Λw plotted against the normalised radius of the measurement
locations R̂. These hotwire measurements were taken at Pos.2 at 50% fan speed. Results
from working line 5 are shown as filled square markers and solid lines while working line
3 results are shown as circle markers with dashed lines.
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Figure 8.12 – Ratios of turbulence integral lengthscales fitted to streamwise velocity component Λu
and transverse components Λv and Λw. For isotropic turbulence the ratios Λu/Λv and Λu/Λw are
unity.

Across the span, the values of Λu/Λv and Λu/Λw do not deviate greatly from the
average values of 0.9 in the case of Λu/Λv and 0.6 in the case of Λu/Λw. The Λu/Λw

average ratio is significantly lower than the unity required for isotropy. For subsequent
use the estimated value of Λ is taken to be the arithmetic mean of the three component-
derived lengthscale estimates

Λ = 1
3(Λu + Λv + Λw). (8.10)

In the following section the averaged value of Λ obtained from Equation (8.10) is used
to assess the effect of the anisotropy observed in Figure 8.12 on the fit of the Liepmann
isotropic turbulence model to the measured spectra.

8.8.2 Comparison of measured and modelled turbulence spectra

Figure 8.13 shows the three measured component velocity PSDs Φuu(f), Φvv(f) and
Φww(f) normalised with respect to Λ〈u2〉/U∞, Λ〈v2〉/U∞ and Λ〈w2〉/U∞ respectively.
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These are plotted against frequency normalised with U∞/Λ. Note that all calculations
have been performed using a single power spectral density (PSD) obtained using Welch’s
method [88] with an FFT length of 219 points but the displayed PSDs shown in Figure 8.13
are composites of several PSDs of differing resolutions to provide optimal clarity at all fre-
quencies. Two sets of data are shown; Figure 8.13a is for data measured at Pos.2, and R7

at 50% fan speed and working line 5, Figure 8.13b shows data from Pos.1 and R7 at 80%
fan speed and working line 3. Also shown in Figure 8.13 are the three Liepmann spectra
Φuu(f), Φvv(f) and Φww(f) (coincident with Φvv(f)) generated using Equation (8.8) with
the averaged value of Λ obtained from Equation (8.10).

1. At the 50% fan speed (Figure 8.13a) the streamwise and transverse Liepmann spec-
tra are in good agreement with the measured streamwise (blue lines) and radial
(red lines) spectra. The low frequency asymptotes of these components are 4 for
streamwise u and 2 for radial v.

2. In Figure 8.13a the whirl component w (green line), used as the velocity spectrum
in the noise model described in Chapter 2, is underestimated by a factor of nearly 2
by the Liepmann spectrum in the normalised frequency regime Λf/U∞ < 0.1. This
underestimation of the turbulence velocity suggests that noise predictions may be
underestimated by up to 3 dB for f . 1 kHz in rig scale.

3. At 80% fan speed (Figure 8.13b) the fit of the modelled spectra to the measured
data is generally poor. The frequencies at which the high-frequency roll-off of the
predicted spectra occur is too high for all three components. This is due to the broad
‘tonal’ peaks in the measured spectra that arise from probe vibration (see Item 4 on
Page 141). These increase the calculated value of the component circumferentially-
averaged mean-square velocities 〈u2〉, 〈w2〉 and 〈w2〉 and hence cause an underesti-
mate of Λ (see Equation (8.9)).

4. Also in Figure 8.13b the fitted Liepmann spectrum is seen to overestimate the mea-
sured spectrum for Λf/U∞ > 0.5. In this frequency range the steeper -6 slope is
seen in the measured spectra (see Item 2 on Page 141).

Measured turbulence velocity PSDs have been compared with isotropic turbulence
spectra obtained using the Liepmann isotropic turbulence model. This comparison has
shown that the Liepmann isotropic model provides a good fit to the measured spectra.
However, it is observed that The Liepmann isotropic turbulence model underestimates
the w component of measured turbulence at low normalised frequencies Λf/U∞ < 0.01
which may lead to underestimates of low-frequency noise in the noise model described in
Chapter 2.

At higher fan speeds the measured spectra are contaminated by tone-like noise due
to probe vibrations. These broad tonal contributions lead to an over-estimate of the
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Figure 8.13 – Normalised component velocity PSDs and Liepmann component velocity spectra.
Hotwire data measured at different axial positions, fan speeds and working lines at R7. Displayed
PSDs are composites assembled from a range of PSDs of differing length in order to optimise resolution
and increase clarity over all frequencies.
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component circumferentially-averaged mean-square velocities 〈u2〉, 〈v2〉 and 〈w2〉 and cause
underestimation of the values obtained for Λ.

8.8.3 Collapse of normalised w component velocity PSDs onto a common
curve

The appropriateness of the Liepmann isotropic turbulence model is further illustrated in
Figure 8.14 which shows normalised w component velocity PSDs collapsing onto a common
curve. The ‘shoulder’ for the onset of the -2 slope is consistently located but the onset of
the steeper -6 slope occurs at different normalised frequencies as the normalising frequency
U∞/Λ changes. This is consistent with low-pass filter set at a fixed frequency.

0.01 0.1 1 10

        

        
        
        
                                                

        
        
        
                                                

        
        
        
                                                

        
        
        
                                                

        
        
        
                                                

        
        
        
                                                

        
        
        
                                                

        
        
        
                                                

Λf/U∞

U
∞
Φ
w
w
(f
)/
(Λ

〈w
2
〉)

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

-2 slope

-6
slope

0 slope

Figure 8.14 – Normalised PSDs extracted from the w velocity component at all 12 radial locations
of Pos.2 at 50% fan speed and working line 3.

8.9 Determination of the natural lengthscale for wake turbulence inte-
gral lengthscale

Figure 8.15 shows values of Λu, Λv and Λw obtained from Equation (8.9) plotted against
the normalised radius R̂ defined in Equation (8.4). The values of Λu, Λv and Λw were
obtained from hotwire measurements taken at Pos.2 and 50% fan speed at working lines
5 and 3. Each of the three subplots of Figure 8.15 shows Λu, Λv and Λw normalised with
one of the three mean-wake parameters:

• The half-minimum half-width of the isolated mean wake L0 (see Section 6.3.1),

• The half-minimum half-width derived from the observed mean wake L̂0,
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• The width of the observed wake extent L̂WW as defined in Section 7.1.3.

The solid square markers indicate working line 5 while the white-faced circle markers and
dashed lines indicate working line 3.

In Figure 8.15a the normalised values of Λu, Λv and Λw drop significantly towards the
outer part of the span where adjacent wakes are significantly overlapped (see Chapter 6).
In Figures 8.15b and 8.15c similar but smaller reductions occur in the streamwise aligned
Λu and whirl components Λw when normalising with L̂0 and L̂WW respectively. However,
in these cases the radial component Λv is seen to be reasonably constant across the span.
In all cases the collapse is better when using the lengthscales L̂0 and L̂WW derived from
the observed mean wake profile, suggesting that these characteristics of the observed mean
wake are the natural lengthscales on which to scale the turbulence integral lengthscale.

8.10 Turbulence integral lengthscale from RANS CFD

In Section 8.8, turbulence lengthscales Λ were obtained from the unsteady component of
the instantaneous hotwire velocity measurements from the LSFR. In this section turbulence
lengthscales are defined, based on the RANS CFD solutions for the LSFR.

The RANS CFD solutions for the LSFR are based on a k-ω turbulence model where
k denotes the total kinetic energy and ω represents specific dissipation (see Appendix B
for a full description of the RANS CFD simulations conducted by John Coupland at
Rolls-Royce). These parameters are expressed in terms of per-blade ensemble-averaged
values and therefore no instantaneous velocity is available for processing as described in
Section 8.8. Instead, estimates of Λ are obtained from the azimuthal average values of k
and ω which are given by

k̄ = 1
Nj

Nj∑
j=1

kj , (8.11a)

ω = 1
Nj

Nj∑
j=1

ωj , (8.11b)

where xj denotes the jth sample of a parameter x and Nj is the number of samples rep-
resenting a single blade passage. Dimensional analysis shows that the turbulence integral
lengthscale can be estimated by

Λ = CΛ
k̄1/2

ω
, (8.12)

where CΛ = O(1) is the constant of proportionality. In the following section estimates for
the value of CΛ are obtained by comparison of the results obtained using Equation (8.12)
with those taken from the hotwire measurements, as described in Section 8.8.
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Figure 8.15 – Comparison of measured component turbulence velocity integral lengthscales Λu, Λv
and Λw normalised with three mean wake dimensions; L0, L̂0 and L̂WW. These values of Λu, Λv and
Λw are obtained from measurements taken at Pos.2 at 50% fan speed. Working line 5 results are
shown as solid blue lines with filled square markers, working line 3 as dashed lines with white-faced
circle markers. Span-wise average values are indicated by red lines.
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8.10.1 Comparison of turbulence integral lengthscales and definition of
RANS CFD lengthscale constant of proportionality CΛ

In this section the turbulence integral lengthscale Λ obtained using Equation (8.12) is
compared with estimates of Λ obtained using different methods. This comparison will
allow the estimation of the constant of proportionality CΛ used in Equation (8.12).

Values of Λ are compared by plotting its development against the normalised down-
stream distance x̂, as defined in Section 6.1.1. In Section 8.9 it was shown that L̂0 was a
natural lengthscale for normalisation of Λ. During the discussion of self-preserving wakes
in Section 6.2 Equation (6.4a) stated that (L0/θm)2 = ax̂+ b. Therefore, at least for non-
overlapped mean wakes, the normalised integral lengthscale Λ should behave according
to ( Λ

θm

)2
= ax̂+ b, (8.13)

for some constants a and b. Note that the momentum thickness is calculated using the
methods described in Section 7.3 so that the effects of mean wake overlap are accounted
for.

Figure 8.16a shows a comparison between estimates of the turbulence integral length-
scale (Λ/θm)2 plotted against x̂ in accord with Equation (8.13). The estimates of Λ are
obtained using four methods:

1. Λ deduced from the low-frequency asymptote of the measured velocity spectrum, as
described in Section 8.8.1, shown as red circle markers.

2. Λ deduced from the half-maximum half-width of the w component of the measured
unsteady mean-square velocity Lw as defined in Section 7.4.2 using the relation
Λ = 0.42Lw due to Jurdic et al. [22]. These values are shown as green square
markers.

3. Λ deduced from the half-maximum half-width Lw due to the azimuthal profile of
w2 = 2k/3 predicted by RANS CFD (see Equation (7.12)) using the relation Λ =
0.42Lw. These values are shown as black diamond markers.

4. Using the k-ω model with CΛ = 1, as defined in Equation (8.12), shown as blue star
markers.

Linear regression is used to fit lines f(x̂) = ax̂+ b to these data which are also shown on
Figure 8.16a.

The values of Λ derived from the k − ω model used in Equation (8.12) are very small
compared with those due to the other three methods, with CΛ = 6.47 providing a good
fit to the values at 50% fan speed at both working lines from axial locations Pos.1 and
Pos.2, as is shown in Figure 8.16b. Λ obtained from measurements at higher fan speeds
have been found to have poor linear fits and have significantly lower ratios (and hence CΛ)
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Figure 8.16 – Comparison of turbulence integral lengthscales obtained using the methods described
in Section 8.10.1. Result obtained using Equation (8.12) is in good agreement with values fitted to
measured spectra for CΛ = 6.47. Displayed data for Pos.2 at 50% fan speed and working line 5.

when compared with equivalent cases from RANS CFD. These results are consistent with
the problems associated with significant probe vibrations, as observed in Section 8.8.1.

8.11 Extrapolation of mean flow and turbulent wake parameters to OGV
leading edge locations

The purpose of this chapter is to obtain mean flow and turbulence parameters for the
LSFR at the OGV leading edge locations for the prediction of rear-arc and forward-arc
noise in Chapter 9. The RANS CFD solutions described in Section 8.1.2 have been sam-
pled at the OGV leading-edge locations. By contrast, the hotwire measurement locations
are not at the OGV leading edges (see Figure 8.2). A method must therefore be de-
veloped to predict the circumferentially-averaged mean-square turbulence velocity in the
direction normal to the OGV surface 〈w2〉, the turbulence integral lengthscale Λ and the
circumferentially-averaged mean flow Mach number M at arbitrary points downstream of
the rotor. Problems with hotwire vibration mean that only the data for 50% fan speed
collected at axial location Pos.2 are used for the development of this method.

8.11.1 Problems associated with the use of LSFR hotwire anemometry
data and limitations of its use

Oscillations in the hotwire timeseries data and a lack of self-preserving flow at upstream
measurement locations limit the scope of turbulence and flow parameter predictions made
using them. These, and the impact they have on the subsequent processing of the hotwire
data, are discussed below.
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8.11.1.1 Oscillations in the hotwire timeseries data

The hotwire timeseries at the higher fan speeds of 80% and 90% are contaminated by
oscillations due to vibration of the hotwire probe as observed in Section 8.2. Parameters
extracted where oscillations are severe are too uncertain to be used. Therefore the higher
fan speeds are not employed in subsequent analysis.

8.11.1.2 Lack of fully self-preserving flow at Pos.1

The rotor wakes must be fully self-preserving for there to be relationships of the form
f(x̂) = ax̂+b between each of the mean wake and mean-square wake parameters and their
natural scales, such as in Equation 6.4. These development relations form the basis of the
method for predicting the turbulent flow parameters at the OGV leading edge.

Figure 8.17 gives examples of the development of mean wake and mean-square wake
parameters demonstrating that the mean wake parameters are self-preserving but that the
mean-square parameters are not.

Figure 8.17a shows the mean wake characteristic (U∞/∆U)2 plotted against x̂. A linear
response is observed, in accordance with Equation (6.4b). Close agreement is obtained
between the trends in the data taken from both Pos.1 (red triangles) and Pos.2 (blue
squares). It is also noted that these results are different from the results published by
Wygnanski et al. [12] and Gliebe et al. [19] that are shown by magenta and cyan lines
respectively. This indicates that the self-preserving flow behaviour is sensitive to the
wake’s initial conditions, as observed by George [14].

Figure 8.17b shows the circumferentially-averaged mean-square velocity 〈w2〉 normal-
ised by the squared maximum wake deficit ∆U . For fully self-preserving flows this ratio
is expected to be constant. For x̂ > 40 the Pos.2 data (blue squares) are consistent with
a constant ratio. However, for x̂ < 40 the ratio is seen to increase while the Pos.1 points
(red triangles) exhibit a strong dependence on x̂ and a different overall trend to Pos.2.
In the near wake this mean-square wake characteristic does not exhibit self-preservation.
The rotor wakes from the LSFR are therefore only partially self-preserving for relatively
small x̂.

The Pos.3 measurements are significantly further downstream than Pos.2 and as such
exhibit a greater degree of mean wake overlap. In the subsequent analysis of the rotor
wakes the Pos.3 data will not be used due to the additional uncertainty associated with
these measurements.

8.11.1.3 Implications of hotwire data problems

As a result of the problems with the hotwire data from the LSFR discussed earlier in
Section 8.11.1 the analysis will be performed only on the 50% fan speed data recorded at
the single axial location Pos.2. Thus, the variations in x̂ are obtained through variation in
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Figure 8.17 – Examples of development of normalised mean wake and mean-square wake parameters
obtained at Pos.1 and Pos.2. The mean wake parameters are consistent with self-preserving flow
whilst the mean-square wake parameters are not. The flow has not become fully self-preserving at
the upstream Pos.1 axial location.

θm rather than the dimensional downstream distance xh. It is important to bear in mind
that in the presented data x̂ is derived from radial changes rather than axial.

Span-wise variations of the rotor geometry and flow conditions mean that it is not as-
sured that the wakes will develop identically at all duct radii. Ideally measurements would
be made at a large range of axial and radial locations downstream of the rotor, allowing
the observation of wake development at different radii. In the present situation, where
usable measurements are only available at a single axial location, it must be assumed that
the rotor wakes develop in some universal sense. It will be shown that wake development
across the span with respect to the normalised downstream distance x̂ is consistent with
that of self-preserving wakes at least at the level of mean wake parameters such as ∆U ,
shown in Figure 8.17a.

8.11.2 Wake development relations derived from LSFR hotwire mea-
surements

In this section, the measurements made on the LSFR at Pos.2 are analysed to seek the
self-preserving wake development relationships for the mean wake parameters L0 and ∆U
in the form f(x̂) = ax̂+ b, as described in Section 6.2. The x̂-independent ratios between
the mean-square wake parameters Lu and 〈w2〉 and the turbulence integral lengthscale Λ
and their natural scales are also sought.

Figures 8.18a–e show plots of (L0/θm)2, (U∞/∆U)2, Lu/L0, 〈w2〉/∆U2 and Λ/Lu

against x̂ with the individual data points for working lines 5 and 3 shown by blue squares
and white-faced circles respectively. Lines of best fit, shown in red, have been obtained
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from all measurements except those from R12 that are influenced by boundary flows from
the outer casing.

The results for the mean wake parameters (L0/θm)2 and (U∞/∆U)2 (Figures 8.18a and
8.18b) collapse well onto their respective lines of best fit f(x̂) = ax̂ + b for all x̂. This
indicates both the success of the procedures developed in Section 6.5 for extraction of
individual mean wake parameters from overlapped mean wakes and that the mean wakes
are self-preserving.

The results for the mean-square velocity wake parameters Lu/L0 and 〈w2〉/∆U2 (Fig-
ures 8.18c and 8.18d) and the turbulence integral lengthscale Λ/Lu (Figure 8.18e) exhibit
behaviour that is not consistent with fully self-preserving wakes, with strong x̂ dependency
observed at relatively small x̂. Furthermore, the behaviour at the two measured working
lines is seen to differ in these ranges of x̂ so that there is a lack of universality. The wakes
measured at the higher-loaded working line 3 operating condition are further from full
self-preservation.

In Sections 8.11.3 and 8.11.4 the lines of best fit shown in Figures 8.18a–e are combined
to allow the prediction of 〈w2〉 and Λ at the OGV leading edge locations, as required for
inputs to the noise model described in Chapter 2.

8.11.3 Predicting circumferentially-averaged mean-square turbulence
velocity 〈w2〉 at arbitrary x̂

The circumferentially-averaged mean-square turbulence velocity is related to the maximum
mean wake deficit by

〈w2〉
∆U2 =

−0.00424x̂+ 0.252 (Working line 3 AND x̂ ≤ 40)

0.0902 (Working line 5 OR x̂ > 40)
, (8.14)

whilst the maximum mean wake deficit is given by

(
U∞
∆U

)2
= 3.195x̂+ 11.95. (8.15)

8.11.4 Predicting turbulence integral lengthscale Λ at arbitrary x̂

The turbulence integral lengthscale Λ is related to the half-maximum half-width of the
streamwise velocity component of the unsteady wake Lu by

Λ
Lu

=

−0.00151x̂+ 0.749 (Working line 3 AND x̂ ≤ 100)

0.571 (Working line 5 OR x̂ > 100)
. (8.16)
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Figure 8.18 – Relations between the wake moments used to define wake development rules.
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Lu is related to the half-minimum half-width of the mean wake by

Lu
L0

=

0.0184x̂+ 0.627 (x̂ ≤ 50)

1.47 (x̂ > 50)
, (8.17)

which develops according to

(
L0
θm

)2
= 0.856x̂+ 5.91, (8.18)

for all values of x̂.

8.11.5 Non-dimensional downstream locations of OGV leading edges

Figure 8.19 shows the non-dimensional downstream distance x̂ of the three OGV configu-
rations tested during the LSFR programme against the normalised span R̂. These values
of x̂ are obtained using Equation (6.1) for 50% fan speed. Working line 5 is indicated by
solid markers and lines while working line 3 has white faced markers and dashed lines.
The values of x̂ at the hotwire locations Pos.1 and Pos.2 are also shown as black crosses.
The flow angles ψw and ψr and the momentum thicknesses used in these calculations were
taken from the measurements at Pos.2. Note that x̂ generally decreases with increasing R̂
as the momentum thickness θm increases at a faster rate than the helical distance xh.
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Figure 8.19 – Non-dimensional distance downstream of the three LSFR OGV configurations and
hotwire locations at 50% fan speed, working lines 5 and 3.
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8.11.6 Turbulent wake parameters 〈w2〉 and Λ predicted at OGV leading
edges

The results of applying the methods shown in Sections 8.11.3 and 8.11.4 for the calculation
of the turbulent wake parameters 〈w2〉 and Λ at the LSFR OGV leading edge locations are
shown in Figures 8.20a and 8.20b. In these plots the colour of the line indicates the OGV
configuration; blue for 28-vane OGV in rearward location, red for the 28-vane OGV in
forward location and green for the 44-vane OGV in forward location. The solid lines with
filled markers show the results for working line 5 while the white-faced markers and dashed
lines denote working line 3. The values of 〈w2〉 and Λ measured at Pos.2 are marked by
crosses, black for working line 5 and white on black for working line 3.
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Figure 8.20 – Turbulent wake parameters 〈w2〉 and Λ extrapolated to the leading edge of the three
LSFR OGV configurations using the prediction rules defined in Sections 8.11.3 and 8.11.4. Values at
the hotwire measurements positions are shown by black lines with cross markers.

8.11.7 Mean flow Mach number M

The circumferentially-averaged mean flow Mach number M is derived from the mean flow
velocity onto the OGV

M = U/c0, (8.19)

where c0 is the local speed of sound. Here U is the circumferentially-averaged velocity of the
observed mean wake resolved in the streamwise direction, as described in Section 6.5. This
quantity is related to the individual mean wake parameters as defined in Equation (6.17)
so that M = M(U, ∆U, L0). Assuming that at positions downstream of the core/bypass
splitter the free-stream velocity U∞ is axially invariant, (as stated in Section 8.4) M can
be estimated using Equations (6.17), (8.15), (8.18) and (8.19).

Figure 8.21 shows a comparison of U obtained using this method (red) with corre-
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sponding values of the apparent free stream velocity Û∞ (green) and the isolated wake
free stream velocity U∞ (blue).

• For inner radial locations U ≈ U∞. Here the mean wakes are non-overlapped and
the wake deficits are relatively narrow (ζ << 1), thus contributing little to the
circumferentially-averaged wake velocity.

• At outer radial locations U ≈ Û∞. Here the mean wake overlap is significant and
observed peak-to-trough difference ∆Û becomes small.
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Figure 8.21 – Comparison of the values of U∞ and U obtained from the observed and isolated mean
wakes at 28R OGV leading edge at 50% fan speed and working line 5.

8.12 Verifying wake development rules by prediction of wake parameters
at hotwire probe locations

In Section 8.11.2 rules were developed that allow the estimation of mean flow and turbulent
wake parameters M , 〈w2〉 and Λ necessary as inputs for the noise model of Chapter 2. In
this section these rules are verified by using them to predict the turbulent wake parameters
at the hotwire measurement locations, where they can be directly verified. The effect of
the observed errors on noise estimates is then estimated.

Comparisons between the predicted values and those measured are shown in Fig-
ure 8.22. The measured parameters are indicated by solid lines and markers whilst the
predicted values are represented by dashed lines with white-faced markers. Working line
5 is shown in blue while working line 3 is in red.

Normalised errors are calculated using

ε = (xpred − xmeas)
xmeas

, (8.20)

where xpred and xmeas indicate the predicted and measured values of parameters respec-
tively. Statistics have been extracted from the normalised errors for these predictions and
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Figure 8.22 – Comparison of measured turbulence and values predicted at hotwire axial locations
Pos.2 and Pos.3 using the rules defined in Section 8.11.2. Note that the scales of Pos.2 and Pos.3
plots are normalised with the maximum values shown for both Pos.2 and Pos.3.

Table 8.2 – Statistics of the normalised prediction errors.

Working max |ε| ε σε

Location line 〈w2〉 Λ 〈w2〉 Λ 〈w2〉 Λ

Pos.2 5 (-)0.270 0.301 -0.0298 0.0318 0.124 0.116
3 (-)0.557 0.667 -0.0532 0.0743 0.173 0.226

Pos.3 5 (-)0.242 0.207 -0.148 0.150 0.0879 0.0480
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are listed in Table 8.2.

• The circumferentially-averaged mean-square velocity 〈w2〉 is generally under-predic-
ted while the integral lengthscale Λ is generally over-predicted.

• Significantly smaller errors are observed at Pos.2 than at Pos.3. The Pos.2 measure-
ment data were used to define the prediction rules (see Section 8.11.2) and therefore
errors in the Pos.2 values represent the goodness of fit of the rules applied to the
predictions. However predictions at Pos.3 require a significant extrapolation of the
data and larger errors are to be expected.

The accuracy of the predicted values of 〈w2〉 and Λ is critical to the subsequent noise
predictions in which the parameters are used as input quantities. The effects on noise
predictions of the mean errors ε at Pos.3 recorded in Table 8.2 are estimated below:

• The mean error ε = −0.148 in 〈w2〉 represents a change of ≈ −0.7 dB with respect
to the measured values. A change of ≈ −0.7 dB is expected in the noise spectrum.

• The mean error ε = 0.150 in Λ will increase low-frequency sound power by ≈ 0.7 dB
and decrease high frequency sound power by ≈ −0.7 dB (see Section 3.2.6).

The combined effect of the mean errors in 〈w2〉 and Λ is to decrease high frequency sound
power by ≈ −1.4 dB. The distinction between low and high frequency is the ‘shoulder’ of
the turbulence spectrum, which at rig scale is approximately 1 kHz.

8.13 Comparison of parameters predicted using hotwire prediction
method and using RANS CFD

In this section comparison will be made between the mean flow and turbulent wake param-
eters obtained using the rules defined in Section 8.11 and from RANS CFD extractions.

Figures 8.23 and 8.24 show radial variations of U , Λ and 〈w2〉 at 50% fan speed.
Figure 8.23 shows predictions made at the leading edge of the 44F OGV at working line 3
and Figure 8.24 shows predictions made at the leading edge of the 28R OGV at working
line 5. The predictions made using the hotwire-based method described in Section 8.11
are shown in red with cross markers, the predictions made using RANS CFD are shown
in blue with circle markers.

In Figure 8.23 all three parameters U , Λ and 〈w2〉 are in good agreement across the
span. At the tip the estimates of Λ diverge but they are closely matched inboard. The
RANS prediction of 〈w2〉 is larger than that from the hotwire method but the shapes of
the two span-wise predictions are similar.

In Figure 8.24 the circumferentially-averaged velocity U is closely matched from RANS
and hotwire data but larger differences are observed between the prediction methods in Λ
and 〈w2〉. In particular, the predicted span-wise shapes are less similar than were seen in
Figure 8.23.
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Figure 8.23 – Noise model input parameters from RANS CFD and hotwire prediction method
compared. Predictions for 44F OGV at 50% fan speed and working line 3. Line types indicate data
source: Hotwire (

  
data1), RANS CFD (

  
data1).
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8.14 Concluding remarks

The main conclusions arising from this chapter are summarised below:

• An analysis of hotwire anemometry data recorded on the Large Scale Fan Rig (LSFR)
has been performed and comparisons are made with RANS CFD solutions based on
the LSFR geometry.

• Large amplitude oscillations are present in the data recorded at higher fan speeds
(80% and 90%), believed to be associated with vibrations of the hotwire probes.
Mean wake parameters and parameters fitted to spectra extracted from these data
are subject to uncertainty.

• Measurements taken at Pos.2 and Pos.3 exhibit characteristics consistent with the
overlapping of adjacent mean wakes. Wake overlap obscures the development of the
individual mean wakes, which has been assumed to be unaffected by the phenomenon.
A method has been developed to deduce the individual wake maximum wake deficit
∆U and relative wake width ζ where the relative wake width is large: ζ̂ > ζc = 2−1/2.

• Measured and RANS-predicted mean wakes are asymmetric and a mean wake profile
function has been suggested which provides a good fit to the measured data.

• Data measured at Pos.1 show that the flow is not fully self-preserving at such near-
wake locations. Collapse of the Pos.1 data with those from Pos.2 is not possible
except for the mean wake parameters. Data measured at Pos.2 and Pos.3 show some
collapse of mean-squared wake parameters, but only for x̂ & 80, indicating that the
wakes are partially self-preserving. The onset of self-preservation is delayed by the
increased loading at working line 3.

• The isolated wake data extracted from Pos.2 measurements taken at 50% fan speed
have been analysed to determine the self-preserving wake development relations.
These relations been used to predict the turbulence parameters at OGV leading
edge locations.

• A large range of x̂ values are required to capture the full range of helical distances
between rotor trailing edge and OGV leading edge.

• The observed wake development for the LSFR differs significantly from that pub-
lished by Gliebe et al. [19]. This indicates that the evolution of the rotor wakes is
sensitive to the initial conditions and that there is not ‘universal’ wake rule, sup-
porting the findings of Wygnanski et al. [12] and George [14].

• Turbulence lengthscales have been found to be nearly proportional to the width of
the mean wake profile, which is consistent with the findings of Ganz et al. [5](p.98).
However, Gliebe et al. [19] found that the ratio of lengthscale to mean wake width
tended to decrease with normalised downstream distance ([19](Figures 36–38)).
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• RANS CFD solutions have been compared with hotwire data and predictions of flow
and turbulence characteristics at OGV locations.

• RANS predictions of the maximum velocity deficit ∆U are over-predicted by as
much as 100% in the near wake region but improves for measurements made further
downstream.

• RANS predictions of the free-stream velocity U∞ are within 10% of the measured
values.

• Predictions of turbulence lengthscale Λ obtained using RANS CFD by the use of
an k-ω model agree with the values obtained from hotwire measurements at 50%
fan speed measured within a factor of CΛ = 6.47 which appears to be reasonably
constant across different working lines and measurement locations.
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Chapter 9

Application of noise models to the
prediction of experimental noise

Earlier chapters have presented methods for the prediction of the noise resulting from
turbulence interactions with downstream stator vanes, the acoustic transmission through
a spinning rotor and rotor wake turbulence parameters at the OGV leading edge. This
chapter shall describe the application of these methods to predict the sound power gener-
ated by the Large Scale Fan Rig (LSFR) introduced in Chapter 8. The resulting sound
power predictions will be validated against experimental noise measurements taken on the
same rig. The chapter shall commence with a description of the methods used to combine
the models.

9.1 Experimental sound power measurements on LSFR

Noise measurements were taken on the LSFR using two arrays of microphones, one set
located in an anechoic chamber forward of the rig and a second set embedded in the
hard-walled bypass duct as illustrated in Figure 9.1.

The anechoic chamber and forward arc array have been used to provide sound power
spectral measurements with a 100 EO bandwidth at 1/4 EO resolution for a number of
combinations of fan speed and OGV configuration at a single working line. The inlet was
lined and so a correction must be applied to the predicted sound power to include the
reduction is sound power due to the duct liner. The details of this correction are described
in Section 9.2.8.

Insufficient microphones are used in the duct by pass to perform a full modal decom-
position and hence accurately deduce the sound power. The sound power level is inferred
from the mean square pressure at the duct wall by assuming that each of the propagating
duct modes has equal sound power. Details of this procedure for deducing sound power
are given in Appendix D.
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Microphone array in
anechoic chamber

Lined inlet

Flush mounted micro-
phone array in bypass
duct

Figure 9.1 – Sketch in planform of the microphone arrays used to measure noise on the LSFR. Note
that this is not drawn to scale.

9.2 Overview of simulation methodology

In this section a description is given of the steps taken to produce rear-arc and forward-arc
noise predictions using the noise radiation and rotor transmission models introduced in
Chapters 2–5, along with the flow and turbulence parameters derived from hotwire and
RANS CFD analyses of Chapter 8.

9.2.1 Input parameters

Geometric, mean flow and turbulence parameters are needed to perform the noise predic-
tions. Their estimation for input to the noise model are described later in this section.

Of note here are the intake and exhaust flows into which sound radiates, as the flow
Mach number and whirl angle directly affect the modal power factor H± (see Section 9.2.3
for definition). A discussion of the choice of flow regime at the rotor and OGV is given
below.

Downstream of OGV Due to the assumption of zero steady loading (Assumption 6 in
Section 2.1) there is no turning of the flow at the OGV so that the whirl angle is
maintained as the blade row is crossed. However, in a physical engine the exhaust
flow is substantively axial. There is no information available for the un-swirled flow
downstream of the OGV. Sound is therefore assumed to radiate into the whirling
flow at the OGV leading edge, defined using hotwire and RANS CFD as described
in Chapter 7.

Upstream of rotor Information regarding the axial flow upstream of the rotor was ex-
tracted from mass flow predictions performed by Rolls-Royce. However, all rotor
transmission calculations were performed with the whirling-flow parameters at the
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rotor as observed in the stationary reference frame. Radiation calculations may be
performed with either set of flow parameters. These two alternative flow assump-
tions are sketched in Figures 9.2a and 9.2b respectively. However, it shall be shown
in Section 9.3.1 that the assumption of axial inlet flow for sound power radiation
calculations, with the associated radiation across the inlet-rotor flow discontinuity,
leads to non-physical transmission loss values across the rotor.
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(b) Radiation into flow at rotor position

Figure 9.2 – Illustration of the calculation regions in which different flow parameters are used.

9.2.1.1 Geometric parameters

The rotor and OGV geometric parameters: Br, Bs, R, sr, ss, cr, cs, χr, χs and x are
assumed to be constant and independent of flow conditions. The rotor geometry is taken
from the case of 90% fan speed, 28F-OGV at working line 5, as this was assumed to be the
closest to on-design. The 28F and 28R-OGV geometries are selected from the same case
as the rotor geometry, with an axial displacement applied to the 28R cases. The 44F-OGV
geometry is taken from its 90% working line 5 case for the same reasons.

9.2.1.2 Flow parameters: inlet

The flow parameters U and c0 are regarded as being dependent only on the fan speed and
working line. The required values of U and c0 are extracted from the Rolls-Royce mass
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flow prediction code Q263. The whirl angle at the inlet θ is assumed to be zero for the
axial flow assumption. These parameters are used for the calculation of radiated sound
power described in Section 9.2.7.

9.2.1.3 Flow parameters: rotor

The flow parameters U , θ and c0 at the rotor are taken as being dependent on the fan speed
and working line but independent of the OGV configuration. Only six combinations of fan
speed and working line are therefore required to perform the transmission calculations for
all cases under investigation here. These mean flow parameters are extracted from Q263.

9.2.1.4 Flow parameters: stator

The flow parameters U , θ and c0 at the stator are taken as being dependent on the fan
speed, working line and OGV configuration. The sound speed c0 is taken from Q263 but
velocity U and whirl angle θ are derived from RANS CFD or hotwire measurements.

In general the interstage flow angle does not match the metal angle of the OGV. The
magnitude of the average difference angle is 1.82◦ while the peak is 6.14◦.

9.2.1.5 Turbulence parameters

The turbulence parameters of mean square velocity w2 and integral length scale Λ are
derived from the appropriate RANS CFD or hotwire measurements as described in Chap-
ter 8.

9.2.2 Choice of frequencies

The rotor transmission model presented in Chapter 5 predicts frequency scattering of
incident sound power such that sound power incident in a mode orderm at source frequency
ω scatters into modes n = m + Brr for scattering orders r ∈ Z. The computation of the
sound field incident on the rotor as a function of frequency needs to be evaluated on a
grid of discrete frequencies so that scattered sound power falls on the same frequency grid.
It shall be shown in Section 9.2.6.2 that this approach affords significant computational
efficiencies.

In the results presented in this chapter the band-limited source spectrum is defined
at single engine order points up to 100 EO so that ω = jΩ for j ∈ [1, 2, 3, · · · 100]. These
frequency points ω constitute a set of frequencies at which modes are radiated from the
OGV and shall be denoted ω. There is no problem in principle associated with finer
division of the bandwidth (e.g. ω = j(Ω/4) for 1/4 EO resolution).

9.2.3 Power spectral density radiated from OGV

In this chapter the upstream and downstream propagating power spectral density per
unit span P± is obtained for a given set of geometric, flow and turbulence parameters
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using either the exact cascade model of Chapter 2 or the single airfoil model described
in Chapter 4. The sound power spectral density per unit span radiated upstream and
downstream from the stator cascade across the source frequencies shall be denoted by
Ps±(ω), where + and − indicate upstream and downstream propagation respectively.

Of the two sound power radiation models used in the current study only the cascade
model yields a modal power distribution for upstream propagating modes P+

m. These are
required for rotor transmission calculations as described in Chapter 5. The single airfoil
noise model assumes radiation into free-field and is therefore not suitable for transmission
calculations.

9.2.4 Acoustic mode cut-on ranges

The rotor scattering calculations of the rotor transmission are formulated in terms of the
scattering of modal pressure amplitudes. Therefore pressure amplitudes are required for
all modes cut-on at the rotor for a given source frequency ω.

The range of modal orders m cut-on at a given frequency ω are defined by Equa-
tion (5.5). The range of m is dependent on the radius R = Bs/2π, flow angle θ, Mach
number M and sound speed c0. The values of these parameters generally differ at the
rotor and OGV locations so that the range of cut-on modes at the rotor is not generally
the same as that at the OGV (see Figure 9.2). An example of the range of cut-on mode
orders m at the rotor and the OGV is shown in Figure 9.3 versus engine order and mode
order m. In this figure the overlap between the modal orders is indicated by the white
region.
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Figure 9.3 – Differences in mean flow at stator and rotor locations resulting in different sets of
cut-on acoustic modes. The intersection of these sets is used when performing rotor transmission
calculations. Power in modes falling outside this intersection is excluded. These sets correspond to
the case: 50% fan speed, working line 5 with 28F OGV at radial strip 7 using hotwire-derived flow
parameters.

Sound power that is radiated upstream from the OGV into a mode that is cut-off at
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the rotor is not included, while a mode cut-on at the rotor that is cut-off at the OGV is
assumed to carry no power. The effect of the exclusion of sound power in modes cut-off at
the rotor is illustrated by comparison of the span-wise sum of modal sound power PSDs
per unit EO at the OGV and rotor, denoted by Ps+(ω) and P inc(ω) respectively. The
PWL spectra can be derived from sound power PSDs using

PWL(ω) = 10 log10
Ps+(ω)
10−12 , (9.1)

where Ps+(ω) is shown without loss of generality.

Figure 9.4 shows a comparison of the PWL spectra derived from Ps+(ω) and P inc(ω)
to illustrate the effect of the modal power not included on the overall power at the rotor
compared with the power at the stator. Here it can be seen that the total effect of
excluding sound power in cut-off modes is approximately 1 dB at 50% fan speed, becoming
increasingly negligible at higher fan speeds.
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Figure 9.4 – Spectra of span-wise sum of sound power level incident on the rotor compared with
the source sound power level showing the sound power reduction between stator and rotor through
removal of cut-off modes. Effect at three fan speeds is shown individually and the change associated
with these is summarised in subplot (d).
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9.2.5 Modal pressure amplitudes at the rotor

Calculations of the scattered sound by the rotor are expressed in terms of the scattered
modal pressure amplitudes Pm at each source frequency (see Equation (5.32)). These
values are derived from the sound power incident on the rotor in each mode order m.

The modal power per unit span per unit radian frequency at the rotor Pr+
m is obtained

from the modal power per unit span per unit radian frequency at the OGV Ps+
m using

Pr+
m (ω) = Ps+

m (ω)∆Rr
∆Rs

, (9.2)

where ∆Rr and ∆Rs are the widths of the annular strips at the rotor and OGV respectively.

The squared pressure amplitude of each mode m at the rotor is given by rearranging
Equation (5.32) whilst assuming that the non-dimensional pressure scattering coefficient
G±mn = 1 as no scattering has yet taken place

|Pm|2(ω) = ρ0
Brsr

Pr+
m (ω)

H+(ω,Mr, θr,m) , (9.3)

where H+ is the upstream power factor evaluated using Equation (2.49) with parameters
ω, Mr, θr from the rotor location in the stationary frame of reference. Note that the sound
power calculations are not sensitive to the phase of the pressure amplitude.

9.2.6 Calculation of rotor transmission loss

9.2.6.1 Frequency indexing

Calculations of the modal scattering due to each mode m by the rotor are required to
obtain the overall sound power transmitted through the rotor. These are performed in the
moving rotor-fixed frame of reference by changing to a coordinate system rotating with
the rotor. Recalling Equation (5.14), each cut-on mode order m incident on the rotor
at frequency ω = jΩ appears in the rotor-fixed reference frame at the Doppler-shifted
frequency ωm = (j −m)Ω. The apparent rotor-frame frequency can be identified by the
index

q = j −m. (9.4)

Note that the cut-on condition shown in Equation (2.58) ensures that the value of q is
always positive. In the calculation of sound transmission through the rotor the range of
modes cut-on in the rotor-fixed reference frame at the apparent frequency

ωm = qΩ (9.5)

is calculated and any modes m that fall outside the cut-on range are discarded.
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9.2.6.2 Identifying unique rotor kernel matrices

The calculation of sound power transmission through the rotor requires the calculation of
non-dimensional pressure scattering coefficients G±mn (see Equation (5.32)). The calculation
of G±mn is dependent on the evaluation of kernel matrices K, as discussed in Section 2.4.9,
for each mode incident at the reduced frequency λ, defined using Equation (9.5) as [46]

λ = qΩ cr

M̂rc0
. (9.6)

λ represents the total phase change of the incident mode along the cascade chord. Pe-
riodicity in the geometry coupled with periodicity in the incident wavenumbers and the
m-dependence of λ leads to the periodicity relation for K in the rotor-fixed reference frame

K(λ,m) = K(λ(j + rBr,m+ rBr), m+ rBr ) : r ∈ Z. (9.7)

This means that K is uniquely identified by the indices q and m′ = mod(m,Br). Cal-
culation of q and m′ for a range of source frequencies ω = jΩ results in a duplication of
certain values of these indices and hence a duplication of K, obtained using Linsub which
is computationally demanding. It is possible to identify the unique combinations of q and
m′ in advance of the transmission calculation and avoid the generation of redundant kernel
matrices, thus saving significant amounts of time and storage space.

Figure 9.5 shows a grid plotted against q and m′ in which combinations of q and m′ for
which kernel matrices are required for a set of rotor sound power transmission calculations
are indicated by the presence of coloured squares. The contributions due to the cut-on
modes incident on the rotor at j = 100 are marked in red and are located on the ‘wrapped’
diagonal that passes through q = 100, m′ = 0.
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Figure 9.5 – Grid showing the combinations of q and m′ for which kernel matrices are required for
a set of rotor sound power transmission calculations. This corresponds to the case: 50% fan speed,
working line 5, 28F OGV radial strip 1 using hotwire-derived flow parameters. Contributions due to
modes cut-on at j = 100 are marked in red.

9.2.6.3 Rotor pressure amplitude calculation from modal power

The pressure amplitudes of scattered mode orders n = m+rBr are obtained in this chapter
either using the exact formulation of cascade scattering with the kernel matrices described
above using Linsub, or using the n = m plane-wave formulation due to Kaji and Okazaki
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[67] by way of an approximation. All scattering calculations are performed in the rotor
frame of reference with the local flow parameters.

9.2.7 Calculation of sound power upstream of the rotor

The PSD of the sound power transmitted through the rotor is obtained from the scattered
pressure amplitudes Pn using Equation (5.32). In the calculation of the power factor H+

necessary to evaluate Equation (5.32) is undertaken using the flow parameters Mr, θr and
c0 as defined at either the inlet or the rotor, as described in Section 9.2.1.2.

Recalling Equations (5.9) and (5.22), an incident mode m is scattered into modes

n = m+ rBr

at frequencies in the stationary observer frame

ωmn = (j − (m− n))Ω = ω + rBrΩ.

For r ≤ 0 these frequencies ωmn all overlap with the source frequency band ω defined
in Section 9.2.2 (assuming that the source is band-limited, as in the results shown here).
However, for r > 0 some sound power is scattered into higher frequencies ωmn < ω.

Typical examples of the power spectral density versus modes m incident on the rotor
and the scattered modes n and the normalised radiation frequency ω/Ω are shown in
Figures 9.6a and 9.6b respectively. In Figure 9.6a the triangle of values corresponds to the
impinging modes in the source frequency band 1 ≤ ω/Ω ≤ 100. Scattering of the incident
modes in accordance with Equations (5.9) and (5.22) leads to the translated ‘images’ of
the incident mode triangle seen in Figure 9.6b.

Recalling Section 5.3.2.1, the semi-actuator disk model due to Kaji and Okazaki em-
ploys a mode-matching approach such that the gap-wise wavenumber component ν is
identical for rotor incident and transmitted modes. This restriction prevents scattering
of the incident modes so that the non-dimensional pressure scattering coefficients are
G+
mn = G+

mmδmn

Sound power PSDs per unit span upstream of the rotor are obtained by summation
over all scattered mode indices n, with the resulting upstream spectrum denoted Pr+(ω).
The PWL spectrum for the upstream-transmitted sound power is calculated using Equa-
tion (9.1) as discussed in Section 9.2.4.

Figure 9.7 shows PWL spectra of upstream-propagating sound power per unit engine
order. The sound power incident on the rotor is shown in black and is compared with
three spectra of rotor-transmitted sound power level:

• Blue line Exact cascade scattering formulation radiating into axial inlet flow.

• Red line Exact cascade scattering formulation radiating into whirling rotor flow.
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Figure 9.6 – Power spectral density of modes incident on the rotor (a) and scattered values (b)
shown against modal orders m, n and normalised frequency ω/Ω. The majority of scattered power is
concentrated in the source frequency band 1 ≤ ω/Ω ≤ 100 but some power is scattered out of band.

• Green line Kaji-Okazaki scattering formulation into whirling rotor flow.

9.2.8 Correction for intake liner

The LSFR includes a sound absorbing liner that is not included in the noise models
described in preceding chapters. The insertion loss associated with this liner must be
determined and accounted for before forward-arc predictions can be compared with exper-
imental measurements.

Figure 9.8 shows the estimated insertion loss plotted against engine order at 50% fan
speed. This insertion loss has been estimated using a generic PWL attenuation spectrum
derived from a composite of Rolls-Royce proprietary rig tests. The attenuation data are
derived from measurements taken at 0◦ to the duct axis and will therefore underestimate
the sound power insertion loss by neglecting the greater attenuation associated with larger
measurement angles. When applying the insertion loss to forward arc noise estimates it is
done with respect to absolute frequency rather than the engine order shown in Figure 9.8.

9.3 Analysis of predicted rotor sound power transmission and its effect
on forward arc noise

The methods described in Section 9.2 have been applied to predict the rear-arc and
forward-arc noise for the LSFR geometry and flows. In this section, the predicted rotor
sound power transmission shall be analysed, considering the span-wise variations of block-
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Figure 9.7 – PWL spectra for rotor-incident sound power level per unit engine order and correspond-
ing transmission calculated using two methods and radiation into two flows. Four configurations are
shown, each for a single radial strip at a single working line.
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Figure 9.8 – Inlet liner insertion loss spectrum based on data from 0 EO–100 EO at 50% fan speed.
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age and changes due to fan speed, working line and OGV configuration. The combined
effect of changing fan speed on OGV turbulence interaction noise and rotor transmission
loss is also considered.

9.3.1 Strip transmission spectra

Having calculated the acoustic power spectral density P inc(ω) incident on the rotor in each
strip and the corresponding power upstream of the rotor Pr+(ω) a strip sound power level
spectrum in dB for transmission across the rotor for frequencies in the source frequency
band ω is defined in Equation (5.39), reproduced below:

Lτ (ω) = 10 log10
Pr+(ω)
P inc(ω) ,

where ω ∈ ω. Figure 9.9 shows transmission spectral levels plotted against engine order
(EO = ω/Ω) corresponding to the power spectra shown in Figure 9.7. Observations are
listed below.

1. Rotor transmission predicted using inlet flow parameters (blue lines) results in posi-
tive values, suggesting increasing noise through the rotor. Clearly this is non-physical
and arises because the scattered pressure amplitudes Pn and corresponding power
factors H+

mn are calculated with different flow parameters, either side of a flow dis-
continuity (see Figure 9.2a). Henceforth all stages in calculation of the rotor trans-
mission shall be performed using flow parameters as defined at the rotor.

2. Some small positive values of Lτ are observed over short frequency ranges in the exact
cascade spectrum using rotor flow parameters. These are associated with frequencies
where P inc(ω) is small and frequency scattered contributions have ‘overfilled’ the
transmission spectrum Pr+(ω). As such these features are physically valid as the
sound power is accounted for.

3. The frequency-averaged value of value of Lτ decreases with increasing fan speed.

4. A band of reduced transmission is seen in all strip transmission spectra calculated
using the exact cascade transmission model; for ω/Ω ≈ 40 EO in the 50% fan speed
cases and ω/Ω ≈ 20 EO at the higher fan speeds. For frequencies higher than
this ‘enhanced blockage band’ (particularly at the higher fan speeds) Lτ appears
to reach a plateau at similar level to the transmission predicted using the Kaji-
Okazaki model (green line) that is seen to be frequency-insensitive, as observed in
Section 5.2.3. A similar ‘enhanced blockage’ feature was observed in Chapter 5 for
stationary fans for 0.7 . ω/∆ω . 3, where a few higher order cascade modes are cut-
on or close to cut-on (see Figure 5.10). Figure 9.10 shows the three strip transmission
spectra calculated with rotor flow parameters and the exact cascade model plotted
against frequency normalised with ∆ω. Here it can be seen that the normalised
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Figure 9.9 – Comparison of individual strip transmission spectra calculated using two methods and
radiation into two flows. Four configurations are shown, each for a single radial strip at a single
working line.
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frequency at which the ‘enhanced blockage band’ occurs increases with fan speed.
In all cases the band appears at higher normalised frequencies than for the stationary
case (Figure 5.10). Further work is required to explain this phenomenon, which is
important for understanding the low frequency behaviour of acoustic transmission
through the rotor.
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Figure 9.10 – Individual strip transmission spectra calculated using exact scattering formulation
into mean flow at rotor plotted against frequency normalised with cut-on frequency of the first higher
order mode between the rotor blades ∆ω.

Having considered the spectrum of rotor transmission in individual strips the overall
frequency-averaged behaviour shall be examined in the following section, with particu-
lar attention being paid to the variation of transmission level across the rotor span.

9.3.2 Radial variation of frequency-averaged rotor transmission

As discussed in the preceding section and Section 5.2.3, the rotor transmission loss calcu-
lated in a single strip may be represented by the frequency-averaged transmission loss co-
efficient Lτ owing to the ‘flatness’ of the predicted transmission spectrum. The frequency-
averaged transmission loss coefficient is defined in Equation (5.41) and reproduced below:

Lτ =
∑
ω∈ω Pr+(ω)∑
ω∈ω P inc(ω) .

Radial variations of Lτ are shown in Figure 9.11 against normalised radius R̂. The min-
imum and maximum transmission loss values in each radial strip are also indicated by
triangle markers and dashed lines. In all cases greater transmission loss is seen towards
the tip of the rotor. This effect is more pronounced at the higher fan speeds and sug-
gests that the transmission loss level is linked to the rotor-relative Mach number M̂r that
increases with radius, as discussed in Section 5.3.3.1.

The strip transmission coefficients Lτ discussed above are plotted against log10Mr,1β
2
r

in Figure 9.12, where Mr,1 is the axial component of the mean flow at the rotor and
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Figure 9.11 – Radial variation of frequency-averaged rotor transmission spectra.
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β2
r = 1 −M2

r is the squared Prandtl-Glauert number with respect to the rotor-relative
Mach number. This representation of the data now shows reasonable collapse of the data
onto the black line representing 30 log10Mr,1β

2
r + 19 dB. At the present time the physical

reason behind this observation is unclear. Application of the high frequency ‘continuum’
model of Section 5.3 based on Kaji-Okazaki plane-wave theory shows a considerably weaker
dependence on βr, suggesting that the assumptions underlying the Kaji-Okazaki model are
unrealistic or that the span-wise variation of the LSFR geometry contributes significantly
to the observed trend.

9.3.2.1 Interpretation of rotor transmission effects using modal phase velocity
angle ψp

In this section the rotor sound power transmission coefficient is estimated using the Kaji-
Okazaki power transmission model averaged over frequency as presented in Section 5.3.
This will allow the rotor transmission loss to be assessed in terms of the phase velocity
angle sound power density. It will be shown that the smallest transmission loss across
the span is associated with the point at which the greatest incident sound power density
is aligned with the maximum sound power transmission coefficient predicted using the
Kaji-Okazaki model. It will also be shown that the increased transmission loss at higher
fan speeds corresponds to a narrowing of both the incident sound power and transmission
coefficient distributions with respect to ψp, so that misalignment effects close to the rotor
tip are enhanced.

Figure 9.13 shows a grid of plots similar to those in Figure 5.19 where the approximate
sound power phase velocity angle density, calculated from noise predictions as described in
Section 3.1.1 and normalised with the peak value in each subplot, is plotted against phase
velocity angle ψp. Also plotted is the Kaji-Okazaki power transmission coefficient T +

mm

as a function of ψp, obtained by solving the system in Equation (5.54), and the product
of the incident sound power with T +

mm. The results for three fan speeds and a range of
radial locations are shown. Note that the outer two radial locations at 90% fan speed
(Figures 9.13c and f) are assumed to be completely blocked due to supersonic M̂r.

1. At R̂ = 0.5 the centre of the incident power distribution is nearly aligned with the
nil-shielding angle (T +

mm = 1). This corresponds to the location of the maximum
transmission seen in Figure 9.11.

2. Increases in fan speed and radius result in narrowing of both T +
mm and incident power

distributions. This causes an increase in sensitivity to alignment effects.

9.3.3 Total rotor incident and transmitted sound power spectra Πinc and
Πr+

The procedures described in the preceding sections are applied to individual radial strips.
The total sound power is also of interest, both in terms of noise prediction and in under-
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(b) 28R OGV, working line 3
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(c) 28F OGV, working line 5

−1.6 −1.2 −0.8 −0.4

−30

−25

−20

−15

−10

−5

0

5

log10 Mr,1β
2
r

L
Σ
τ

 

 

30x+19 dB
50 %
80 %
90 %

(d) 28F OGV, working line 3
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(e) 44F OGV, working line 5
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Figure 9.12 – Frequency-averaged rotor transmission level collapsing onto 30 log10 Mr,1β
2
r + 19 dB.
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(b) 80% fan speed, R̂ = 1
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(c) 90% fan speed, R̂ = 1
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(d) 50% fan speed, R̂ = 0.87
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(e) 80% fan speed, R̂ = 0.87
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(f) 90% fan speed, R̂ = 0.87
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(g) 50% fan speed, R̂ = 0.66
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(h) 80% fan speed, R̂ = 0.66
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(i) 90% fan speed, R̂ = 0.66
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(j) 50% fan speed, R̂ = 0.5
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(k) 80% fan speed, R̂ = 0.5
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(l) 90% fan speed, R̂ = 0.5
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(m) 50% fan speed, R̂ = 0.23
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(n) 80% fan speed, R̂ = 0.23
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(o) 90% fan speed, R̂ = 0.23

Figure 9.13 – Rotor-incident sound power normalised with peak value (− · −), the Kaji-Okazaki
power transmission coefficient T +

mm (− − −) and their product (—) for variations of fan speed and
radial location. All configurations use the 28F OGV and working line 5. Incident sound power
contributions summed over 2-octave band 26 EO–100 EO
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standing rotor blockage.
The span-wise total sound power per unit engine order that is incident on and radiated

forward from the rotor is calculated from the contributions in each strip annular strip
P inc(ω) and Pr+(ω) respectively.

Πinc(ω) =
NR∑
i=1

Ω ∆Ri P inc
i (ω), Πr+(ω) =

NR∑
i=1

Ω ∆Ri Pr+
i (ω), (9.8)

where NR is the number of radial strips, Ω is the shaft rotation frequency, ∆Ri is the span-
wise width of the ith strip and P inc

i (ω) and Pr+
i (ω) are the corresponding rotor scattered

sound power PSDs per unit span per unit angular frequency. PWL spectra are derived
from Πinc(ω) and Πr+(ω) using Equation (9.1).

9.3.4 Total rotor transmission level spectra Ltot
τ

The total rotor transmission level spectrum Ltot
τ is obtained from the total rotor incident

and transmitted sound power spectra Πinc and Πr+ using

Ltot
τ (ω) = 10 log10

Πr+(ω)
Πinc(ω) (9.9)

Figure 9.14 shows the effects on overall spectral transmission level due to OGV configu-
ration change at three fan speeds (increasing from top to bottom) and two working lines
(arranged in left and right hand columns). Different line colours indicate the OGV config-
uration, as indicated in the legend. All plotted results are obtained using RANS-derived
turbulence parameters. No significant differences exist when using the hotwire-derived
parameters as flow conditions at the rotor are identical is either case.

1. For fixed fan speed and working line (within each subplot) the changes in OGV cause
the rotor transmission spectra to alter in detail but the underlying levels remain
consistent.

2. At higher fan speeds (Figures 9.14c–9.14f) the rotor transmission level Ltot
τ is reduced

at frequencies EO.30 relative to higher frequencies. The decreased transmission at
low frequencies is due to the ‘enhanced blockage bands’ observed in individual strip
transmission spectra in Section 9.3.1 (see Item 4 on Page 178). The frequency at
which the ‘enhanced blockage bands’ appear is not yet understood but as a low
frequency phenomenon is probably related to cascade interaction effects. These
effects diminish as rotor blades are decoupled by the cut-on of higher order modes in
the inter-blade gap. The predicted transmission levels in bands either side of 30 EO
are summarised in Table 9.1.

3. Predicted transmission levels are observed to be insensitive to working line except
at 80% fan speed (compare Figures 9.14c and 9.14d). At this fan speed the RANS
CFD analysis predicts a significant increase in mean-square turbulence velocity w2
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(b) 50% fan speed, working line 3
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(c) 80% fan speed, working line 5
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(d) 80% fan speed, working line 3
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(e) 90% fan speed, working line 5
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(f) 90% fan speed, working line 3

Figure 9.14 – Total transmission level spectral changes due to variation of fan speed, working line
and OGV configuration.
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in the outer span when changing from working line 5 to working line 3. The span-
wise sums of sound power incident on and transmitted through the rotor at working
line 3 are consequently weighted towards the outer span. In this location the overall
transmission is reduced, as observed in Section 9.3.2, especially for EO.30 as noted
in Item 2 above.

4. Comparing the same working line as fan speed is changed, the low and high frequency
transmission level tends to decrease with increasing fan speed. The exception to this
is the 80% fan speed working line 3 result noted in Item 3 above.

Table 9.1 – Summary of overall rotor transmission levels Ltot
τ for low frequency band LF 6 EO–13 EO

and high frequency band HF 50 EO–100 EO. Results obtained using hotwire-derived turbulence and
flow parameters are shown in parentheses.

28R 28F 44F
FS (%) WL LF HF LF HF LF HF

50
5 -0.8 -1.1 -0.8 -1.1 -1.2 -1.3

(-0.9) (-0.9) (-0.9) (-0.9) (-1.3) (-1.2)

3 -0.9 -1.0 -0.8 -1.0 -1.2 -1.3
(-0.9) (-0.9) (-0.9) (-0.8) (-1.4) (-1.2)

80 5 -4.0 -2.1 -3.5 -1.9 -4.2 -2.3
3 -5.9 -2.2 -6.1 -2.3 -7.5 -2.9

90 5 -5.5 -3.3 -4.7 -2.9 -5.2 -3.3
3 -5.2 -3.1 -4.6 -2.8 -5.3 -3.1

The rotor transmission behaviour shown in Figure 9.14 is dominated by the rotor speed
with overall transmission coefficient reducing as the rotor speed increases. The differences
due to the three available OGV configurations are negligible at working line 5. At high
fan speeds the predicted transmission level can be separated into two distinct frequency
bands either side of ≈ 30 EO. In the low frequency band increased transmission loss is
observed compared with the high frequency band. In the following section the effects of
fan speed and incident sound power are investigated.

9.3.5 Effects of fan speed on rotor transmission behaviour and forward-
arc power

In Section 9.3.4 it was observed that the overall transmission loss was characterised by
two distinct frequency bands, within each the frequency sensitivity is low (see Item 2 on
Page 183).

The total incident sound power, transmitted sound power and transmission level are
compared at three fan speeds for a single OGV configuration. Two working lines are
considered. For the purposes of this investigation the low frequency band covers 6 EO–
13 EO while the high frequency band is 50 EO–100 EO.
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Figure 9.15 shows a comparison between the predicted power incident on the rotor and
the power transmitted through the rotor. The corresponding band-averaged transmission
loss is shown in blue on the same plot against the right hand vertical axis.
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(c) Working line 3, low frequency band
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(d) Working line 3, high frequency band

Figure 9.15 – Overall sound power incident on and transmitted through rotor in low and high
frequency bands shown with corresponding band averaged transmission level. Results in each sub
plot show the effect of changing fan speed with constant working line and OGV configuration, which
is 28F in all cases.

The balance between increased fan speed, increased source noise and decreased trans-
mission versus fan speed is particularly marked in the low frequency band at working line
5 (Figure 9.15a). Here the transmitted power is observed to be almost constant at all fan
speeds. The corresponding high frequency band result in Figure 9.15b shows that whilst
the sound power onto the rotor increases by 4 dB the rotor transmission decreases by 2 dB
over the same increase in fan speed. The overall increase in power transmitted through
the rotor is therefore limited to just 2 dB.

Of the three fan speeds considered the predicted forward-arc power is greatest at 80%.
The sound power incident on the rotor generally increases with fan speed in agreement
with the stator-incident Mach number power law observed in Section 3.2.4 (except for the
80% fan speed at working line 3 where significant differences are seen in the turbulence
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parameters obtained from RANS CFD analysis). However, as the fan speed increases
above 80% the rotor-relative Mach number M̂r becomes supersonic in the outer strips so
that no sound is transmitted through the rotor in these strips. At these high speeds the
rotor-incident sound power increases are more than balanced by the decreases in rotor
transmission due to rotor flow effects.

9.4 Comparison of predictions with measured rig noise

In this section simulated broadband noise PWL spectra will be compared with measure-
ments taken from the LSFR. The rear and forward arc sound power level spectra shall be
presented in Sections 9.4.1 and 9.4.2.

9.4.1 Rear-arc PWL spectra

Figure 9.16 shows plots at three fan speeds of the rear arc sound power level spectra
with 1 EO bandwidth deduced from the in-duct sound pressure measurements made on
the LSFR with the 44F OGV configuration using the procedure described in Appendix D.
The measured spectra have been processed by Rolls-Royce to remove tonal components.
Also shown on these figures are the predicted sound power radiated downstream of the
OGV obtained using the exact cascade noise model of Chapter 2 and the single airfoil
model described in Chapter 4. The flow and turbulence parameters for the predictions
are derived from RANS CFD solutions in all cases and hotwire data at 50% fan speed.
The spectral differences between the predictions and the experimental measurements are
shown in Figure 9.17.

1. The overall level and shape of the predicted noise spectrum performed using the
exact model with hotwire flow data (solid red line in Figure 9.16a, only available for
50% fan speed) is seen to match the measured data reasonably well at low frequencies
(<40 EO) with the difference between the prediction and measurement being of less
than 2 dB magnitude (see Figure 9.17a). This level of agreement is within the uncer-
tainty introduced by the equal power per mode assumption employed in the sound
pressure-sound power conversion applied to the measured data (see Appendix D).

2. In Figure 9.16a the shape of the spectrum predicted using the exact cascade noise
model with RANS-derived turbulence parameters (solid blue line) matches well with
that of the prediction using hotwire-derived parameters (solid red line). They differ
in level by ≈3.5 dB. A similar effect is observed in the forward arc predictions shown
in Section 9.4.2 (see Item 2 on Page 193). This suggests that the RANS CFD
techniques applied are over-predicting the turbulence velocity amplitudes by a factor
of approximately 1.5. These effects are considered further in Section 9.4.3.

3. Above 40 EO the predicted spectra diverge from the measured data. The roll-off in
frequency exhibited by the predictions is predominantly due to the combined effect
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Figure 9.16 – Rear-arc spectra: three fan speeds at working line 5 for the 44F OGV configuration.
Black lines represent rear arc sound power spectra per unit EO from experiment while coloured lines
indicate predicted noise. Blue lines obtained using turbulence and OGV flow data derived using RANS
CFD while red lines indicate hotwire derived results. Hotwire data was not available at the higher
fan speeds. Solid coloured lines indicate exact solution whilst the dashed lines indicate equivalent
noise estimates obtained using the single airfoil model.
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Figure 9.17 – Difference between experimental and predicted rear-arc PWL spectra shown in Fig-
ure 9.16 for three fan speeds at working line 5 with the 44F OGV configuration. Blue lines show
predictions obtained using turbulence and OGV flow data derived using RANS CFD solutions while
red lines indicate hotwire derived results. Hotwire data was not available at the higher fan speeds.
Solid lines indicate exact solution whilst the dashed lines indicate equivalent noise estimates obtained
using the single airfoil model.
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of the -2 law in the one-dimensional Liepmann turbulence velocity spectrum (see
Equation (8.8b)) that is approximated by the summation of the two-dimensional
spectrum over k2 (Equation (2.54)) and the high frequency cascade response. The
predicted roll-off is weakly dependent on fan speed, ranging from ≈23 dB/decade at
50% to ≈18 dB/decade at 80% and 90%. The corresponding rates of decay in the
measured spectra are ≈11 dB/decade at 50% and ≈10 dB/decade at 80% and 90%.
That the measured rates of decay are significantly lower than predictions cannot be
readily explained by the incident turbulence velocity spectra and possibly suggests
the presence of another high frequency source such as rotor self noise or rotor tip
noise.

4. The predictions obtained using the single airfoil model differ from the exact solutions
by approximately 4 dB for EO . 20. Above this frequency the predictions from the
two models to converge to within 1 dB at 80% and 90% fan speeds and within 1.5 dB
at 50%. Convergence of the noise predicted by the two models at frequencies above
the inter-blade cut-on frequency ∆ω was demonstrated in Chapter 4. The values of
∆ω in EO across the normalised OGV span for these three fan speeds are shown in
Figure 9.18. The frequencies at which these predictions are made are too low relative
to ∆ω to get better agreement than is observed.
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Figure 9.18 – Inter-blade cut-on frequency ∆ω for the 44F-OGV at three fan speeds expressed in
engine order across the normalised span.

The combination of a possible high-frequency noise source other than the turbulence-
OGV interaction and the relatively high frequencies associated with ∆ω for this OGV
design and set of operating conditions means that the single airfoil model is of limited use
in the prediction of accurate rear-arc noise spectra, despite the computational advantages
that it offers.

At low frequencies EO.40 the exact cascade model predicts the measured spectrum to
within 2 dB when the hotwire-derived turbulence and flow parameters are employed. A sys-
tematic difference is observed when using the RANS CFD solutions for these parameters,
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suggesting that modification of the RANS analysis would allow significant improvement
in these results.

In the following section the forward arc noise predictions are compared with experi-
mental measurements in a similar manner to this section.

9.4.2 Forward-arc PWL spectra

Plots of the forward arc sound power measured on the LSFR are shown in Figure 9.19
where they are compared with predictions, taking into account the intake liner insertion
loss described in Section 9.2.8. The differences between the predictions and the exper-
imental measurements are shown in Figure 9.20. Note that the measured spectra have
been processed by Rolls-Royce to remove tonal components.

10 100

EO

P
W
L

2 dB

(a) 50% fan speed

10 100

EO

P
W
L

2 dB

(b) 80% fan speed

10 100

EO

P
W
L

2 dB

 

 
Experimental

Predicted, RANS parameters

Predicted, Hotwire parameters

(c) 90% fan speed

Figure 9.19 – Forward-arc spectra: three fan speeds at working line 5 for the 44F OGV configuration.
Black lines represent rear arc sound power spectra per unit EO from experiment while coloured lines
indicate predicted noise. Blue lines show predictions obtained using turbulence and OGV flow data
derived using RANS CFD solutions while red line indicates hotwire derived results. Hotwire data
was not available at the higher fan speeds.

1. The prediction made using the hotwire-derived turbulence parameters (red line in
Figure 9.19a) closely follows the measurements at low frequency. Figure 9.20a shows
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Figure 9.20 – The difference between experimental and the predicted forward-arc PWL spectra
shown in Figure 9.19 for three fan speeds at working line 5 with the 44F OGV configuration. Blue
lines show predictions obtained using turbulence and OGV flow data derived using RANS CFD
solutions while red lines indicate hotwire derived results. Hotwire data was not available at the
higher fan speeds.
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that difference is less than 1 dB for EO< 20.

2. In Figure 9.19a the shape of the predictions obtained using the RANS-derived turbu-
lence parameters is very similar to that obtained with hotwire-derived parameters.
The two predictions are separated by ≈ 3.5 dB at all calculated frequencies. The
same behaviour was observed in the rear-arc predictions discussed in Section 9.4.1
(see Item 2 on Page 187). These effects are considered further in Section 9.4.3.

3. Agreement between the predictions made at 80% and 90% fan speed (Figures 9.19b
and 9.19c) are within ±3 dB of the measurement for 7 . EO . 60 (see also Fig-
ures 9.20b and 9.20c). At frequencies EO.7 the measured noise increases consider-
ably, suggesting contributions from a noise generation mechanism not accounted for
in the present model.

4. At high frequencies EO>40 the measured spectra exhibit fan speed-dependent be-
haviour. At 50% fan speed a decay rate of ≈8 dB per decade is observed, at 80%
fan speed the spectrum is flat whilst at 90% fan speed the noise level increases by
≈5 dB per decade. As mentioned in Section 9.4.1 this suggests that another noise
source may be contributing to the measurements, possibly rotor self-noise or noise
due to interactions between the rotor and the turbulent inlet boundary layer.

9.4.3 Sensitivity of noise predictions to input parameters

This section investigates the sensitivity of the noise predictions to using input turbulence
data obtained from either RANS CFD or directly from hotwire data. It has been shown
in Figures 9.16a and 9.19a that these two sets of parameters yield differences in predicted
spectra of approximately 3.5 dB for the 44F-OGV. The differences calculated from the
spectra shown in Figures 9.16a and 9.19a and from similar predictions made for the 28R
and 28F-OGV configurations are summarised in Figure 9.21. The rear-arc and forward-arc
data are indicated by solid and dashed lines respectively.

Very similar behaviour is observed in rear-arc and forward-arc predictions as the tur-
bulence parameters are changed, differing by less than 1 dB. This suggests that variations
in the lengthscale and mean-square turbulence velocity are the cause of the variations in
predicted noise spectra: the mean flow being very similar in both cases (see Section 8.13).

9.4.4 Forward arc ‘decel’ noise comparison

Forward arc PWL data have been extracted at discrete engine orders over a range of fan
speeds as the LSFR underwent a ‘decel’; sweeping from high to low speed. Figure 9.22
shows the recorded experimental noise data at four normalised frequencies, EO< 50.
Noise predictions at three fan speeds, taken as the average sound power predicted at
frequencies either side of the experimental engine order, are also shown for comparison.
Higher frequencies are not shown as the match is poor for ω/Ω & 50 EO, as observed in
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Figure 9.21 – Effects on predicted noise levels of changing input turbulence parameters obtained
from hotwire data to parameters from RANS CFD using exact noise model. Solid lines indicate
rear-arc and dashed lines show corresponding forward-arc results that are seen to be within 1 dB at
all frequencies.

Section 9.4.2. The fifth plot, on the right hand side of each subfigure, shows the sum of
the four single engine-order contributions.

1. Simulations predict the trends very well at discrete frequencies but absolute levels
tend to be high at 12.5 EO, and decreasing relative to measurement as frequencies
increase. This trend in absolute value was noted in Section 9.4.2.

2. When taking the sum of the four discrete normalised frequency data the predictions
collapse onto the measured data to within 1.5 dB. The largest differences are observed
at 50% fan speed.

9.5 Concluding remarks

This chapter has shown the results of predictions of rear-arc and forward-arc sound power
for the Large Scale Fan Rig (LSFR) described in Chapter 8 with three OGV configurations
at a range of operating conditions have been performed using the exact cascade and single
airfoil noise models described in Chapters 2 and 4 and the rotor transmission models
developed in Chapter 5. Input flow and turbulence parameters for these models have
been obtained from the Rolls-Royce plc. mass flow prediction code Q263 in combination
with analysis of hotwire data and RANS CFD solutions as described in Chapter 8. These
predictions have been compared with noise measurements taken from the LSFR. The
findings of this chapter are summarised below.

1. The rear-arc prediction made using the exact cascade noise model with hotwire-
derived turbulence parameters (only available at 50% fan speed) is in agreement
with LSFR measurement to within 2 dB for EO< 40. The corresponding forward-
arc prediction using the exact cascade rotor transmission model is within 1 dB of
measurement for EO< 20.
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Figure 9.22 – Forward arc ‘decel’. Comparison of predicted sound power level and experimental
values at noted discrete normalised frequencies. Plots on the right hand side, marked ‘Total’, show
the PWL associated with the sum of power in the four single-frequency sets of data. All predictions
derived using RANS input data.
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2. Predictions made using exact cascade noise and rotor transmission models with tur-
bulence parameters obtained from RANS CFD solutions are higher than those pre-
dicted using hotwire-derived parameters, suggesting that the RANS CFD solutions
are over-predicting the mean-square turbulence velocity.

3. All exact noise and rotor transmission model predictions differ from measurements
at high frequencies EO&40. Additional noise sources are suspected of contributing
to the observed differences.

4. Rear-arc predictions made using the single-airfoil noise model show signs of conver-
gence with the exact cascade model results for EO>20 as observed in Chapter 4.
Convergence is to within 1.5 dB at 50% fan speed and 1 dB at the higher fan speeds.
Relatively high values of the stator inter-vane modal cut-on frequency ∆ω mean
that significant cascade interactions effects are observed at the highest frequencies
calculated. The values of ∆ω are lower for the 28-vane OGV designs due to the
reduction in vane count.

5. Non-physical values of rotor transmission are predicted when radiation power factors
H are calculated using inlet (axial) flow values. Radiation is instead calculated using
mean flow at the rotor as defined in the stationary frame of reference.

6. Frequency-averaged rotor transmission is typically at its span-wise maximum at R̂ ≈
0.45. At this location the incident modal sound power is concentrated around the nil-
shielding angle, as predicted using the simplified plane-wave transmission model due
to Kaji and Okazaki. Transmission levels greater than -2 dB are observed inboard
of this location at all calculated fan speeds. For R̂ & 0.45 transmission is found
to be strongly dependent on fan speed. At high fan speeds the range of phase
velocity angles over which the majority of sound power is incident becomes narrower
whilst the frequency-averaged Kaji-Okazaki model shows that the range of phase
velocity angles that have large rotor transmission coefficients also becomes narrower.
Furthermore, the span-wise increase of rotor stagger angles leads to a misalignment
of these two distributions that results in reduced transmission.

7. Overall rotor transmission spectral levels obtained from the ratio of total power
transmitted to total power incident show distinct split into low and high frequency
regions. At higher fan speeds the transmission level is reduced for ω/Ω . 30 EO.
The predicted transmission level in the high frequency band shows little sensitivity
to frequency.

8. Overall rotor transmission tends to reduce with increasing fan speed, although pre-
dictions show that the span-wise variation of the turbulence parameters can have
a strong influence on the obtained values. This effect tends to counteract increases
in interaction noise at higher fan speeds due to increasing Mach number onto the



197

OGV. The resulting forward-arc noise is weakly dependent on fan speed and is at
its maximum for the 80% fan speed predictions.
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Chapter 10

Conclusions

This thesis has presented a comprehensive framework for the prediction of broadband
sound power radiated from a turbofan engine due to the interaction of the turbulent
rotor wakes with the OGVs. This study has taken into consideration the development of
turbulence in the rotor wakes, the nature of the OGV response to the incident turbulence
and the transmission loss associated with the path through the rotor to the forward arc.

10.1 Prediction of broadband noise generation

It has been demonstrated that the blade-to-blade interactions in significantly overlapped
cascades become weak at frequencies where several high-order modes are cut-on between
the cascade vanes. The sound power radiated from a cascade under these multi-mode
conditions is equivalent to the sound power radiated from the identical number of isolated
airfoils in an identical flow. At high frequencies this allows the computationally intensive
cascade formulation to be replaced by analytic single-airfoil calculations. Where cascades
are non-overlapped the blade-to-blade interactions are universally weak and the limitation
on agreement between the cascade formulation and the single airfoil formulation results
from the periodicity condition imposed on cascade radiation.

10.2 Broadband rotor transmission loss

A model has been presented for the prediction of the broadband sound power transmis-
sion loss applied to noise incident on the rotor from the downstream OGV. Scattering
coefficients calculated using the exact cascade formulation due to Smith [46], Whitehead
[47] are time consuming to obtain, but excellent agreement is observed when the analytic
semi-actuator disk scattering model due to Kaji and Okazaki [67] is applied. A simplified
sound power scattering model has also been developed that allows simple interpretation
of rotor blockage effects.

It has been found that significant transmission loss occurs where sound power incident
on the rotor is concentrated at phase velocity angles that are not efficiently transmitted.
The distributions of incident sound power and sound power transmission are both shown
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to become narrow at high flow rates, so that misalignment of the two distributions is more
likely although the rotor and OGV stagger angles are also significant in influencing this
behaviour. This results in greater rotor blockage at high fan speeds where the relative
flow rates approach and exceed sonic speeds towards the fan tip.

10.3 Analysis of rotor wakes

Parameters describing the characteristics of the turbulence incident on the OGV are re-
quired as inputs for the noise models. Such information as there is in the literature with
regard to rotor wakes has been measured on small scale fan rigs at low speed. Turbulent
wake measurements made on the Large Scale Fan Rig (LSFR) have been analysed in order
to determine the turbulence parameters from a large scale fan rig at operational speeds.

10.3.1 Self-preserving mean wakes and mean wake overlap

A mean wake overlap model has been developed and analysis of the wake overlap behaviour
has yielded a new method to determine parameters describing the relative width L0 and
maximum wake deficit ∆U of the individual mean wakes from a significantly overlapped
ensemble-averaged wake profile, given an estimate of the individual mean wake free-stream
velocity U∞. The mean wake overlap model also allows the robust calculation of θm for
significantly overlapped mean wakes, the calculation of which is subject to significant errors
when the wake overlap effects are not taken into consideration.

Analysis of wake velocity data measured on the LSFR has shown that the flow at
50% fan speed is partially self-preserving when measured at axial locations sufficiently far
downstream of the rotor. The self-preserving state is sensitive to the mean loading of the
rotor blades (working line) and differs significantly from the findings of Gliebe et al. [19],
suggesting a lack of universality in the self preserving state.

10.3.2 Anisotropy in measured turbulent wakes

The analysis of the rotor wake measurements has allowed the prediction of the mean-
square turbulence velocity 〈u2〉 and turbulence integral lengthscale Λ at the OGV leading
edge for inputs to the broadband noise model. In the noise model, the whirl component
of assumed isotropic turbulence is used to predict the upwash velocity on the cascade
surfaces. Component integral lengthscales from the LSFR data exhibit strong evidence of
anisotropy, where the ratio of the streamwise to whirl component values is 1.2 rather than 2
in the isotropic model. Consequently, the input to the noise model may be underestimated
by up to 3 dB at low frequencies.

10.3.3 RANS predictions of rotor wakes

RANS predictions of the rotor flows have been found to accurately predict the measured
mean wake profiles. However, RANS over-predicts the maximum velocity deficit ∆U by
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as much as 100% in the near wake region and typically over-predicts the mean-square
turbulence velocity. It is not known whether the RANS prediction errors are influenced by
the use of isotropic k-ω modelling for the prediction of flows that have since been found
to exhibit anisotropy.

Predictions of turbulence lengthscale Λ obtained using RANS CFD by the use of an
k-ω model agree with the values obtained from hotwire measurements at 50% fan speed
measured within a factor of CΛ = 6.47, which appears to be reasonably constant across
different working lines and measurement locations. The applicability of this coefficient to
different fan speeds is not known due to the lack of suitable measured data at higher fan
speeds.

10.4 Prediction of rotor-stator broadband interaction noise

Noise predictions for LSFR have been made using the turbulence parameters derived from
hotwire measurements and from RANS simulations. Comparison between the predictions
and experimental rig measurement shows agreement to within 2 dB at low frequencies.
At higher frequencies it appears that other noise sources may contribute to the measured
spectra.

Noise predictions made using parameters derived from RANS solutions are higher in
level than those from hotwire-derived turbulence parameters due to the increased mean-
square velocity predicted by the RANS method. Larger differences are observed for the
28F and 28R OGVs that are situated progressively further downstream of the rotor.

It has been shown that the single airfoil noise model can be used to accurately predict
high density cascade noise levels at frequencies where several high order modes are cut on
between the vanes of the OGV. In practice, relatively high values of the stator inter-vane
modal cut-on frequency ∆ω mean that significant cascade interactions effects are observed
at the highest frequencies required for audible frequency range calculations. The value of
∆ω reduces as the vane separation increases and so single airfoil noise predictions may
prove useful when applied to ultra-low count OGVs.

10.5 Rotor transmission loss predictions

Overall rotor transmission reduces with increasing fan speed, although predictions show
that the span-wise variation of the turbulence parameters can have a strong influence on
the obtained values. This effect tends to counteract increases in interaction noise at higher
fan speeds due to increasing Mach number onto the OGV. The resulting forward-arc noise
is weakly dependent on fan speed and is at its maximum for the 80% fan speed predictions.

Overall rotor transmission spectral levels obtained from the ratio of total power trans-
mitted to total power incident show distinct split into low and high frequency regions. At
higher fan speeds (80% and 90%) the rotor transmission loss increases at low frequencies.
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The predicted transmission level in the high frequency band shows little sensitivity to
frequency.

Frequency-averaged rotor transmission loss is typically at its span-wise minimum at
R̂ ≈ 0.45. At this location the incident modal sound power is concentrated around the
nil-shielding angle. For R̂ & 0.45 transmission is found to be strongly dependent on fan
speed.

10.6 Recommendations for future work

Investigation of ‘enhanced blockage’ effects predicted by exact cascade trans-
mission model

The location and depth of the ‘enhanced blockage band’ observed in Lτ spectra calculated
using exact cascade rotor transmission model is not understood. For stationary fans this
feature is located at ω/∆ω = 1. For rotating fans the observed normalised frequency is
increased and the transmission loss in the band is increased.

Anisotropic turbulence modelling

Strong evidence of anisotropy has been identified in the turbulent rotor wakes measured
on the LSFR, resulting in an underestimate of low frequency sound power in the noise
model. An investigation of anisotropic turbulence models to account for the measured
turbulence characteristics would increase the accuracy of the modelling.

Oscillation of hotwire probes

Large amplitude oscillations observed in the hotwire timeseries at high fan speeds, asso-
ciated with vibrations of the hotwire probe, have caused difficulties in the analysis such
that data derived from these high fan speeds have not been included. Further measure-
ments with probes that do not exhibit this behaviour are required. Techniques may also
be developed to assist in processing the present data.

Universality of RANS integral lengthscale fitting parameter CΛ

It would be extremely useful to investigate the applicability to different fan speeds and
geometries of the RANS CFD turbulence integral lengthscale scaling factor CΛ defined in
Section 8.10.1. This investigation will require hotwire wake velocity data and RANS flow
predictions at a range of fan speeds and downstream locations.

Re-analysis of rotor wake hotwire velocity data

In the present study, the hotwire data have been analysed on the basis of using the max-
imum possible number of wake passages to assemble the ensemble-averages. To this end,
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the ensemble averaging has been performed on all complete blade passages with an as-
sumption that there are no inter-blade differences. This approach leads to the possibility
that several important phenomena are masked. These include but are not limited to:

• Blade-to-blade differences.

• ‘Wander’ of the wake: In the present study the wake data have been resampled in a
rotor-locked sense. However, the azimuthal distance between the rotor trailing edge
and the wake centreline is not constant (see Figure 7.2). Low frequency perturbation
of the azimuthal wake location can also lead to many of the phenomena that have
here been attributed to mean wake overlap.

Further research of these effects would be useful. This will require a modification of the
ensemble-averaging method (see Section 7.1.2) so that the changes to the mean wake
behaviour may be seen as the number of ensembles included is altered and so that the
averaging is performed over an entire revolution as opposed to a single passage.

Alternative prediction scheme for the turbulence integral lengthscale from
hotwire data

It is noted that the turbulence integral lengthscales fitted to the component spectra are
nearly proportional to the apparent wake width L̂0, as shown in Figure 8.15b. L̂0 can
be determined from L0 which can be predicted robustly. It is possible that this relation
could used as the basis of a prediction method for Λ which avoids the use of unsteady
wake parameters and is therefore more robust that the method shown in Section 8.11.2.
A study of the accuracy of these models would be informative.

Sound power propagation in the interstage region

Construct a model for modal power propagation from stator upstream to rotor that prop-
erly accounts for changing mean flow and cross-sectional geometry so that sound power is
not lost as modes become cut-off. This effect is particularly important at lower fan speeds
and flow rates.

Effects of large turbulence lengthscales Λ/ss & 0.25 on low frequency noise
predictions

During the course of the present studies it has been observed that for large turbulence
lengthscales Λ/ss & 0.25 the low frequency response of the cascade increases relative to
that predicted by the single airfoil model. This behaviour is of particular interest when
designing low noise OGVs. Further investigation is suggested by considering the effect of
the normalised turbulence integral lengthscale Λ/ss on the frequencies at which agreement
is observed between the single airfoil and cascade noise predictions.
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Appendix A

Derivation of cut-on condition for cascade
modes

The overlap of adjacent flat plate airfoils in a rectilinear cascade causes the formation of a
rectangular duct, as illustrated in Figure A.1. The mean flow through the duct is parallel
to the blades and has velocity U of magnitude U with components Ui in the xi direction.
The secondary coordinate system yj is rotated by an angle θ with respect to the xi axes
and the mean flow is aligned with the y1 axis, having velocity U in that direction.

c s

x1

x2

y1

y2 θ

U

Figure A.1 – Geometry of the duct formed between adjacent fan blades.

The wave equation with one-dimensional convection is[
1
c2

0

(
∂

∂t
+ U

∂

∂y1

)2
−∇2

]
p(x, t) = 0, (A.1)

where c0 is the speed of sound propagation and p is the pressure perturbation. Assuming
that p takes the form

p(x, t) = p(x)eiωt, (A.2)
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where ω is the angular frequency then Equation (A.1) gives[(
ik +M

∂

∂y1

)2
−∇2

]
p(x) = 0, (A.3)

where k = ω/c0 is the wavenumber and M is the Mach number. If it is also assumed that
p(x) = Y1(y1)Y2(y2) then

−β2Y ′′1
Y1

+ 2ikMY ′1
Y1

− k2 = Y ′′2
Y2
, (A.4)

where ′ denotes a partial derivative. Both sides of this equation must be constant so it is
possible to define

Y ′′2
Y2

= −k2
2, (A.5)

=⇒ Y ′′2 + k2Y2 = 0. (A.6)

Assuming a solution of the form Y2 = Aeik2y2 +Be−ik2y2 and applying hard-walled bound-
ary conditions Y ′2 = 0 at y2 = 0;

ik2 (A−B) = 0 ⇐⇒ A = B. (A.7)

So now
Y2 = A

(
eik2y2 + e−ik2y2

)
= Â cos k2y2. (A.8)

At y2 = s cos θ the boundary condition yields

− k2Â sin k2s cos θ = 0, (A.9)

which is satisfied when
k2s cos θ = nπ, n ∈ Z. (A.10)

Therefore there are an infinite number of possible modes of order n, having components
k1,n and k2,n in the y1 and y2 directions respectively.

Equations (A.4) and (A.5) give

β2Y ′′1 − 2ikMY ′1 +
(
k2 − k2

2,n

)
Y1 = 0. (A.11)

Assuming that Y1 = Deik1,ny1 this yields

− β2k2
1,n + 2kMk1,n +

(
k2 − k2

2,n

)
= 0, (A.12)

and so

k1,n =
kM ±

√
k2 − β2k2

2,n

β2 . (A.13)



207

For a mode to be cut-on its axial wavenumber component must be purely real. This
condition requires that

k2 − β2k2
2,n > 0, (A.14)

so Equation (A.10) yields the following condition for the wavenumber magnitude in order
for a mode of order n to be cut-on

ks cos θ
β

> nπ. (A.15)
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Appendix B

RANS CFD calculations

This appendix was contributed by John Coupland at Rolls-Royce who conducted the
RANS CFD predictions of the LSFR that are discussed in Chapter 8.

RANS CFD calculations were conducted of the LSFR to provide a prediction of the
turbulent rotor wake characteristics. The RANS CFD employed the Rolls-Royce plc.
code, HYDRA, which is a general purpose CFD code for hybrid unstructured meshes and
uses an efficient edge based data structure. The flow equations are integrated around
a median-dual control volume using a MUSCL based flux-differencing algorithm. The
discrete flow equations are iterated towards a steady state using a 5-stage Runge-Kutta
scheme. Convergence to a steady state is further accelerated through use of an element
collapsing multi-grid algorithm. The solver runs in parallel on both shared and distributed
memory machines using domain decomposition.

For RANS modelling the Reynolds stresses are modelled using the Boussinesq hypoth-
esis based on an isotropic turbulent viscosity. Note that the normal Reynolds stresses
themselves are not isotropic in this model.

For these RANS calculations the k-ω/SST turbulence model is used to determine the
turbulent viscosity, from

µT = ρk

ω
, (B.1)

where ρ is the mean flow density, k is the specific turbulence energy

k = 1
2

(
u′2 + v′2 + w′2

)
, (B.2)

and ω is related to the turbulence dissipation rate ε through

ω = ε

Cµk
, (B.3)

where Cµ = 0.09 is a standard empirical constant for this form of turbulence model
determined from the ratio of turbulent shear stress to turbulence energy in the logarithmic
region of a turbulent wall boundary layer. In the k-ω/SST turbulence model two additional
transport equations, for k and ω, in addition to the RANS transport equations for mass,
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momentum and energy, are solved.
For comparison with turbulent length scales derived from the LSFR hot-wire measure-

ments then a turbulent mixing length scale can be derived from

Lmix = k1/2

C
1/4
µ ω

, (B.4)

and a larger length scale, more representative of an integral length scale, using

ΛRANS = k1/2

Cµω
. (B.5)

Note that the values given by Equations (B.4) and (B.5) differ by a factor of 6.1. In general,
the relationship between the turbulence parameters k and ω and the integral length scale
Λ is not well defined and some degree of empiricism will be required to determine the
best scaling of the two parameters. Nallasamy and Envia [80] use the length scale ΛRANS

above (although based on use of a k-ε turbulence model) as input to a broadband noise
model. In Section 8.10.1 it shall be shown that adequate agreement with Λ obtained from
hotwire data at 50% fan speed using an isotropic turbulence model assumption is given
using Equation (8.12), reproduced below

Λ = CΛ
k1/2

ω
.

where CΛ = 6.47 is a constant factor. The value of Λ obtained using Equation (8.12) falls
between the values given by Equations (B.4) and (B.5) and gives a lengthscale that is
approximately half that used by Nallasamy and Envia [80].

Some investigation of the sensitivity of the RANS predictions to the turbulence model
used were done using other models available in HYDRA

• k-ε CMOTT two equation model

• Spalart-Allmaras one equation model

In terms of overall fan performance there was little difference between the three turbulence
models for the LSFR, except at lower flow rates than those on the working lines considered
here. There were some small differences in wake turbulence parameters from the k-ε and k-
ω turbulence models, with the k-ε model used here giving lower wake turbulence intensity
than k-ω by around 10%. (The Spalart-Allmaras model does not give a direct prediction
of turbulence intensity or length scale.)

To determine the wake properties of the fan in the LSFR rig the RANS computations
covered a domain including the fan and the bypass duct, splitter and core duct. The
bypass duct OGV and the engine section stator (ESS) are not included in the CFD domain.
Including these blades would of course make the RANS CFD a fully unsteady calculation,
and a sliding plane would be needed between the fan and the OGV/ESS. Rather the
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approach here is to extend the bypass duct beyond the location of the OGV and then to
extract turbulent wake parameters at the OGV leading edge location (or indeed at hotwire
measurement locations) by interpolation of the CFD solution. This approach neglects the
upstream influence of the OGV on the fan aerodynamics, which does cause some radial
redistribution of the flow across the fan, and on the wake evolution. The more important
influence of the splitter geometry on the fan flow is though represented in the current
model. Figure B.1 illustrates the extent of the CFD domain.

Figure B.1 – RANS CFD Fan and Bypass Duct Arrangement.

For the LSFR system there were some differences in bypass duct geometry with different
OGV number and position. These differences were reflected in different RANS CFD
computations done for the 28F and 28R OGV configurations.

A hexahedral mesh of around 3 million cells, generated using the Rolls-Royce in-house
software Padram [90], was used for the fan calculations. The blade surface mesh and near
wall resolution was typical of that used for fan aerodynamics predictions in HYDRA, but
the stream-wise mesh downstream of the fan was much finer than standard to limit the
numerical mixing of the wake along the bypass duct. With the long bypass duct of these
configurations this led to the large total mesh size.

The RANS problem was solved in the frame of reference rotating with the fan, but
all walls were set as stationary in the absolute frame except for the spinner and fan hub
which move with the fan. The rotor tip gap was modelled using the standard tip gap size
recommended for rig rotor blades.

Boundary conditions for the RANS CFD were

• Prescribed total pressure (including the casing boundary layer), total temperature,
and whirl and radial flow angles at the inflow plane.

• Radial equilibrium static pressure profile at the bypass duct outflow.

• Radial equilibrium static pressure profile at the core duct outflow, scaled to achieve
a prescribed mass flow split (bypass ratio) between the bypass flow and core flow.
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• An inflow turbulent intensity of 0.5% of the mean inflow axial velocity. This is used
to define the inflow turbulent kinetic energy

kinflow =
(
0.005Ux

)2
. (B.6)

• An inflow dissipation rate calculated by setting(
µT
µ

)
inflow

= 10. (B.7)

The bypass duct static pressure is scaled to achieve a specific operating point of the fan
system. In general a range of operating points are calculated to give a prediction of the fan
characteristics, and the solution for a particular working line is defined at the operating
point where the fan pressure ratio characteristic coincided with the working line itself.

Note that the hotwire measurements of the fan inflow free-stream turbulence discussed
later actually suggest an inflow turbulence intensity of around 1%. This difference is not
though expected to have any significant effect on the overall fan performance and wake
turbulence prediction.



Appendix C

Fitting skewed wake function to mean
wakes

In Section 8.2.1 an asymmetric wake function was proposed to describe the measured
ensemble averaged rotor wakes. The coefficients of its polynomial terms have been deter-
mined from the LSFR mean wake data. This appendix describes the process employed to
choose their values.

For each hotwire measurement coefficients ai were used to fit the function

f(η) = exp
[
a1η

2 + a2η
3 + a3η

4
]

(C.1)

to the experimental data using a least-squares method. Example values, plotted against
normalised measurement radius R̂, are shown in Figure C.1 for measurements made at
50% fan speed, working line 5, at Pos.1. Also shown are the mean values for each ai and
a 95% confidence interval. No strong radial variations are seen in the fitted values of ai.
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Figure C.1 – Values of the fitting coefficients ai plotted against normalised radius R̂ for mea-
surements at 50% fan speed, working line 5, at Pos.1. Also marked are the mean values and 95%
confidence intervals for each measurement i.

The fitted mean values and 95% confidence intervals for all cases are shown in Fig-
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ure C.2. All Pos.1 values at 35% and 50% fan speed are in reasonable agreement, but
considerable differences are seen as either the axial distance or fan speed is increased. In
particular, the large confidence intervals associated with the higher fan speeds indicate a
large spread of the fitted values due to probe vibration, whilst the Pos.2 and Pos.3 results
are internally consistent but show a tendency towards a more symmetric sinusoidal shape,
as noted in Section 8.2.1. Working line appears to have no systematic effect on wake profile
shape.
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Figure C.2 – Mean values and 95% confidence intervals for fitting coefficients ai for all hotwire
measurements.

In light of the consistency in shape of the low fan speed cases at Pos.1, the mean
derived from these four cases is used for the polynomial coefficients. These values and the
corresponding 95% confidence interval are shown on the far right hand side of Figure C.2.

The values of ai produced using this method result in an incorrect value of L0 = 0.96
for the new wake function in Equation (C.1). The width of the wake function was corrected
by scaling η by 0.96 to give the function given in Equation (8.3), reproduced below:

fS(η) = exp
[
−0.661η2 + 0.165η3 − 0.072η4

]
.



Appendix D

Deducing sound power from in-duct
sound pressure measurements

The rear-arc noise measurements taken on the Large Scale Fan Rig (LSFR) are records
of sound pressure rather than the sound power predictions obtained from the cascade
and single airfoil noise models. In order that the simulation data can be validated it is
necessary to infer sound power from the sound pressure measurements.

The bypass duct is assumed to be a hemi-diffuse field where all cut-on modes carry
equal power. In such a field the intensity is given by

I =
〈
p̄2〉

2ρ0c0
, (D.1)

where
〈
p̄2〉 is the spatially averaged mean-square pressure, ρ0 is the density and c0 is the

sound speed. The mean-square pressure at the duct wall is given to be

p̄2
w = 2

〈
p̄2
〉
. (D.2)

Combining Equations (D.1) and (D.2) and integrating across the entire duct area results
in the following expression for the total sound power

W = S
p̄2
w

4ρ0c0
, (D.3)

where S is the area of the duct. Recalling the relation between the reference pressure and
power

p2
ref = ρ0c0Wref , (D.4)

substitution of Equation (D.3) into the definition of the sound power level yields

PWL = 10 log10

(
p̄2
w

p2
ref

)
+ 10 log10

(
S

4

)
. (D.5)

The annular are of the LSFR downstream measurement section is S = 0.4 m2. The last
‘correction’ term in Equation (D.5) therefore has the value -10 dB.
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