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Abstract

Vibratory micro-machined gyroscopes utilize Coriolis force to detect the rotation rate.
Recently it has been proved that embedding the gyroscope in an electromechanical £A modulator
(EMSDM), results in increased linearity, rate detection range, and immunity to fabrication
variations. In addition, this architecture can be deployed as a A modulator (SDM) analogue to
digital converter (ADC), providing a digital bit stream that can be used directly by any digital
signal processing system (e.g. micro-processors). Furthermore, recent research has proved that
higher order EMSDMs proved to deliver better performance in terms of signal to noise ratio while
retaining linearity, dynamic range, fabrication tolerance and bandwidth advantages. Furthermore,
in the view of ADC performance, higher order SDMs achieve higher resolution performance
which is a desired feature for an ADC. Considering all these advantages, there have been attempts
to deploy this approach in designing micro-machined gyroscopes interface in form of low-pass
and band-pass EMSDM in order to achieve detection of high angular rate motions and angular
motions with faster variation (which requires higher band width). However, the fabrication
process of vibratory micro machined gyroscopes just like any other micro fabrication process is
prone to flaws and inaccuracies. One of these flaws in the case of vibratory gyroscopes is the root
cause of a mechanical coupling that occurs between the excitation direction and detection
direction. This coupling results in appearance of an error signal in the detection direction which is
known as quadrature error. Existence of this mechanical error results in reduction of performance
in this type of gyroscopes and most importantly it limits the dynamic range of the sensor. In this
work, a novel interface is proposed that eliminates the quadrature error while retaining the
advantages of EMSDM for micro-machined gyroscopes system. The approach is a combination of
quadrature amplitude modulation technique which is quite mature in communication systems,
time division modulation in digital systems and the fundamental theory of EMSDM. A system
level model of the novel architecture has been developed by using Matlab and Simulink. The
system level simulation of the novel interface indicates that attenuation of -80dB can be achieved
for the quadrature error signal. Furthermore, circuit level simulation model has been developed
using Orcad/Pspice, in order to verify the consistency of the system level simulation. Finally a
prototype PCB has been built characterized to evaluate the practical system performance. The
measurement results on the hardware implementation show that the quadrature error power
spectral density is attenuated by -70dB. In another words, the quadrature error is attenuated by

about 3 orders of magnitude in the hardware implementation prototype.
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Chapter 1 Introduction

1.1. Introduction

Micro-system technologies (MSTs) and micro electro-mechanical systems (MEMS) have
opened new horizons for a large variety of applications in different sectors of science and
commerce. In addition, this rapidly advancing technology has resulted in innovative solutions to
many existing problems and challenges in medical, automotive and aviation fields. It is now
possible to design and implement applications such as pressure sensing, motion detection and
biomedical applications in micro scale dimensions. The capability of batch fabrication and
integration of these with some electronics interfaces on a single chip, are considered as the
advantages of MEMS sensors. These advantages result in reduced costs and an improvement in the
utilization and accuracy that this technology can deliver [1] [2] [3] [4]. It is intriguing to know that
these instruments have been deployed even in order to assist the film and cinema industry by
improving the camera movement control [5] [6].

Moreover, the aviation and automotive industries in both the military and commercial sectors,
have found many areas for deploying MEMS sensors. One type of sensor which has drawn a lot of
interest is MEMS gyroscope. The design of these sensors is based on the principle of the Coriolis
force which results from the angular motions of a resonating object. Gyroscope sensors are usually
used to monitor the angular velocity of an object (e.g. airplane, car, missile ...) and assist the
control system to keep the balance of the structure while travelling [7]. Also, these types of sensors
are used for different aspects of controlling a car such as roll-over and cruise control systems and
the development and deployment of such sensors promises to deliver even safer and more
comfortable vehicles [8].

Just like any other new technology, some imperfections come along with all the advantages.
For example, DRIE (Deep Reactive Ion Etching) is a fabrication technology which is used to
fabricate micro accelerometers. Fabricated accelerometers suffer from issues such as nonparallel
comb fingers in its sensing mass due to imperfections in this process [9] [10]. Such problems make
research and development in the field of micro scale inertial sensors even more challenging for
reaching performance levels which are crucial for applications such as airplane cruise control.

In this work, the focus is on rectifying an effect of fabrication imperfection, on the
performance of closed-loop micro-machined vibratory gyroscopes. In simple terms, in this type of
gyroscope a mechanical structure of the micro-gyroscopes (sensing element) is embedded in an
electromechanical sigma delta modulator (EMSDM) to form a closed-loop vibratory micro-
gyroscope. The gyroscope system measures the rate of an angular motion of the object which the
system is attached to. The in-depth and scientific explanation of closed-loop vibratory micro-

gyroscope operations will be presented in chapter 2. In this report the micro-machined mechanical



structure of the gyroscope is referred as the sensing element and the complete closed-loop system is

referred as the micro-gyroscope.

1.2. Motivation

One of the researches on improving the performance has been on deploying the concept of
EMSDM as mentioned in section 1.1. These works have made further progress in delivering higher
order EMSDM for micro-machined gyroscopes, in the view of improving performance figures such
as resolution, linearity, bandwidth, tolerance to fabrication imperfection, etc. However, there is one
defect which limits the performance of any gyroscope system, regardless of its operating mode
(open-loop or closed loop). This error is known as quadrature error which in the absence of a
compensation mechanism can cause significant performance deterioration such as limiting the
dynamic range. The effect of this error is even more limiting when a sensing element has got quite
high sensitivity. It can limit the dynamic range of such gyroscopes down to a rate as low as 100
deg/s. Therefore it is quite crucial to deploy a quadrature error compensation method to prevent
such problems and enable a gyroscope system to sustain its performance in spite of the effect of
this error.

As stated in the previous section the focus of this project is on higher order EMSDM for
micro-machined gyroscopes. The goal is to design a new gyroscope system which will retain the
advantages of higher order EMSDM and compensates the quadrature error effect simultaneously.
Also it is desirable to design the system in a way that a large number of sensing elements from
different vendors can be incorporated. This approach in the design strategy makes the new system

highly versatile in terms of applicability.

1.3. Thesis structure

In chapter 2, the fundamental principle of a micro-machined gyroscope is described by
explaining the physical significance of the underlying phenomena, which is from the bases of
vibratory gyroscope operations and determine the performance figures for any gyroscope system.
Then mathematical equations and transfer functions which rule the operation of the mechanical
structure is presented. Then, the theory of sigma-delta modulator (SDM) for low-pass and band-
pass architectures is presented and quantization noise and signal to noise ratio (SNR) in SDM
systems are explained. Afterwards, the idea of embedding the sensing element in a SDM structure
to form an EMSDM is explained. In addition, the performance figures and linear equations for
signal transfer function (STF), electronic noise transfer function (ENTF) and quantization noise
transfer function (QNTF) are presented. By using these transfer functions, a system can be assessed
from linear control theory point of view. Also in chapter 2, quadrature error in micro-vibratory

gyroscopes is described and the sources of this error and its effect are introduced and explained.



In chapter 3, a review of previous works on improving the performance of micro-machined
gyroscopes (on both sensing element and closed-loop gyroscope system) is presented. In addition,
as one of the objectives of this project is to implement the system in hardware, a review on
different methods of implementing the read-out circuit for capacitive variation (in this case the
gyroscope) is added to the literature review. Then the focus of the review moves on to different
quadrature error cancellation methods which have been proposed so far. At the end of the chapter a
critical a brief review is presented along with tables of comparisons to support the new idea.

In chapter 4, first a new design method based on the MATLAB programming language and
SIMULINK, is introduced and the design of an existing architecture with the new design system is
analyzed. Then this simulation model is used to introduce the effect of quadrature error on
performance of the band-pass EMSDM for micro-machined gyroscopes in terms of dynamic range.
Afterwards, the idea of the novel design for cancelling quadrature error in band-pass EMSDM is
presented. Then the SIMULINK system-level model of the novel design is presented and it is
shown that how the new MATLAB tool assists to calculate all the coefficients for the new design.
Ultimately, some performance figures are presented to show how the novel system has eliminated
the effect of quadrature error at system level.

In chapter 5, the novel system architecture is designed in circuit level simulation environment
by using PSPICE equivalent models of the electronic components. In this model the behavioral
model of the sensing element is embedded in an electronic circuit which is formed based on the
PSPICE models of commercial components. The chapter ends by presenting the behavior of the
novel system in eliminating the effect of quadrature error. Also, a comparison between system- and
circuit-level simulation results is presented.

In chapter 6, the hardware implementation of the system is presented including a description
on practical circuit issues which were encountered during the implementation of the system. Also,
some performance figures including quadrature error attenuation, signal to noise ratio and bias
stability are presented. In addition, a comparison between the hardware implementation and
simulation results at system level (SIMULINK) and circuit level (PSPICE) is delivered. The
chapter ends with a conclusion on the achievements towards the objective of this project.

In chapter 7, some ideas on how the proposed system can be further improved, are discussed.
In this regard, the possibility of incorporating digital (microcontroller) system to automate some
aspects of system operation is assessed. Also, using some alternative architecture for this system

with the aim of simplifying the design is brought to attention.



Chapter 2 Fundamental theory

2.1. Operation theory of micro-machined gyroscopes
2.1.1. Mechanical structure and equations

Before describing the structure and operations of micro-machined gyroscopes, it is useful to
describe the simpler structure of a micro-machined accelerometer as its theory of operation is

similar in terms of external excitation and proof mass movement.
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Figure 2.1: A micro-machined accelerometer (a) mechanical structure and (b)mechanical
lumped model of an mass-damper-spring system (representing an accelerometer)

As shown in Figure 2.1a, an accelerometer consists of a proof mass suspended by compliant
beams anchored to a fixed frame. The proof mass has a mass of M, the suspension beams have an
effective spring constant of K, and there is a damping factor (D) affecting the dynamic movement
of the mass. As shown in fig 2.1b, the accelerometer can be modeled by a second-order mass-
damper-spring system. When an external acceleration is posed, the support frame is displaced
relative to the proof mass, which in turn changes the internal stress in the suspension spring. Both
this relative displacement and the suspension-beam stress can be used as a measure of the external
acceleration. By using Newton’s second law and the accelerometer model, the mechanical transfer
function betw