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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF PHYSICAL AND APPLIED SCIENCES

Electronics and Computer Science

Doctor of Philosophy

END-USER DATA-CENTRIC INTERACTIONS OVER LINKED DATA

by Igor O. Popov

The ability to build tools that support gathering and querying information from dis-

tributed sources on the Web rests on the availability of structured data. Linked Data,

as a way for publishing and linking distributed structured data sources on the Web,

provides an opportunity to create this kind of tools. Currently, however, the ability to

complete such tasks over Linked Data sources is limited to users with advanced technical

skills, resulting in an online information space largely inaccessible to non-technical end

users. This thesis explores the challenges of designing user interfaces for end users, those

without technical skills, to use Linked Data to solve information tasks that require com-

bining information from multiple sources. The thesis explores the design space around

interfaces that support access to Linked Data on demand, suggests potential use cases

and stakeholders, and proposes several direct manipulation tools for end users with di-

verse needs and skills. User studies indicate that the tools built offer solutions to various

challenges in accessing Linked Data that are identified in this thesis.
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Chapter 1

Introduction

The World Wide Web (WWW) is arguably the single most used information medium

for answering our information needs. Whenever we need to access information on the

Web, we usually turn to Web search engines, which enable us to find relevant Web pages

through a simple keyword search interface. Keyword search is undoubtedly the preva-

lent model to support various forms of information-seeking activities on the Web, from

simple fact-finding activities such as ”look up the weather forecast” to more complex

information-gathering activities such as ”finding the best apartment to rent”. While

search algorithms that rank documents are continuously improved, the biggest factor of

success in a keyword search query still lies in the existence of a document on the Web

that contains all the relevant information we require to complete the information task.

In other words, if the information we require for a particular need is scattered across

several pages, then search engines can, at best, only surface the individual Web pages

containing parts of the relevant information. In such situations we are left to manually

perform the task of gathering, structuring and combining the relevant information.

To illustrate these challenges consider the following examples. For simple information

needs, for example, if one needs to get information about the GDP per capita for the

UK, one simply needs to look up this information in the corresponding Wikipedia article

for that country1. Similarly, if one wants to compare the UK to other countries, one

can find this aggregate information on a specially dedicated Wikipedia page2, which

lists data about countries in a table and allows users to sort columns on the topic.

However, if one needs to find the geographic distribution of the bottom 25% of countries

according to GDP per capita that have a population of 10-20M, then one would find it

difficult to find a single Web page containing exactly that fact. Even a more modest

information request, for example, finding a page that has the information of GDP per

capita alongside the population data, would prove difficult to find (Figure 1.1). As the

1http://en.wikipedia.org/wiki/United_Kingdom
2http://en.wikipedia.org/wiki/List_of_countries_by_GDP_(PPP)_per_capita

1

http://en.wikipedia.org/wiki/United_Kingdom
http://en.wikipedia.org/wiki/List_of_countries_by_GDP_(PPP)_per_capita
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search results3 displayed in Figure 1.1 show, a keyword search would only yield various

Web documents that are relevant to the query, however no single page containing all the

relevant data in one place.

Figure 1.1: A Google search result page showing results for a query attempt-
ing to find a web page showing GDP per capita alongside population data for
countries.

Thus, to complete the task we would have to spend a significant time doing data-related

activities. In a hypothetical scenario of being given such an information task, we would

need to first select the bottom 25% low-income countries from the Wikipedia page on

GDP per capita data, and then store this information into a tool such as a spreadsheet

or a note-taking tool for further processing. What follows is the tedious task of looking

up other countries population in the second page in order to filter out those that do not

have a population size of 10-20M. Once the final list of countries is compiled, we would

need to look up geographic information, or alternatively use a mapping tool, preferably

one that allows us to make an input of the set of countries into an aggregate, in order

to mitigate the need of individually looking up the location of each country. As the

scenario suggests, the cost of finding the answer to these types of data-centric queries

3The query was performed on the Google search engine, November 2012
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is significantly higher in the absence of a single web page containing all of the required

information.

The reason why the Web falls short when dealing with this sort of data-centric queries is

due to the fact that the Web is largely comprised of unstructured, text-based documents.

Therefore, at present, the best available method to support data-centric interactions is

to manually do the task of extracting, combining, and integrating data gathered from

multiple websites.

The solution to providing more efficient data-centric interactions begins with the avail-

ability of structured data on the Web. Today the Web begins to include access to

structured data in various forms - from RSS feeds, to data APIs, and data dumps i.e.

downloadable documents of structured data. While publishing structured data is an

important first step, it still does not provide a solution to the problem of of integrating

multiple data sources on demand. Linked Data4 is an effort to publish structured data

on the Web that addresses the challenges of data integration (Heath and Bizer (2011)).

Once the data is published as Linked Data, links can be established between the entities

of different sources of Linked Data, much like documents can be linked on the Web.

By establishing links between entities from different datasets, the Linked Data effort

essentially aims at creating a Web of Data alongside the established Web of Documents.

Linked Data provides an infrastructure for accessing data on the Web. At present,

however, access to Linked Data still requires substantial technical skills, thus denying use

of these information resources to users with no technical know-how. This thesis argues

that usable tools can be built for non-technical users, ones without any programming

skills, that use the affordances of Linked Data to meet information needs that require

combining and querying data from several information sources. The thesis accomplishes

this goal by taking a user-centred approach to derive requirements for building such

tools, and developing a series of interactive prototypes, each of which builds on the

results of the previous attempt that advances the usability of end-user data-centric

tools. By developing tools that use structured data published on the Web rather than

unstructured sources, this thesis provides a substantial improvement over the current

breed of tools used to support combining and querying distributed information sources,

which often require an substantial time and effort to accomplish this kind of tasks.

1.1 Problem Definition and Scope

Structured data sources are increasingly available on the Web; however, as we pointed

out, some tasks require data to be combined from several sources in order to solve a

data-centric information need. Relative to the whole set of information-seeking activities

4http://linkeddata.org

http://linkeddata.org
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preformed on the Web, these kind of data-centric questions belong to the long tail of

information needs - the property that rare information needs cumulatively rivals the

number of occurrences of commonly occurring information needs. Thus data-centric

needs are so specific that they rarely warrant creation of a dedicated Web page or an

application. Therefore this kind of queries can only be supported by enabling real-

time data-centric interactions. Linked Data provides a technical framework that aims

at making data integration on demand easy, by a priori providing links between data

sources as part of the publishing process. However, deploying such tools in the real

world, includes both technical and interaction challenges.

Linked Data

End User

UI/Tools
Explore 

Combine
Answer

CIA Factbook

Member of

Belgium

Located in

Brussels

EU
Ca

pit
al

Interaction 
Challenges

Scalability
Heterogeneity
Co-reference

Backend 
Challenges

Thesis Problem Space

Legend
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Entity

Link

DBPedia

data.gov.uk

Figure 1.2: Scope of thesis from the whole set of challenges of delivering data
browsers over Linked Data.

The technical challenges of enabling end-user tools over Linked Data include issues

of scalability and data heterogeneity. The fact that Linked Data is envisioned as a

distributed system results in scalability issues with respect to querying data from dis-

tributed datasets. Since real-time interaction requires quick and responsive query times

scalability remains a crucial requirement. Research into federated queries - queries that

run over several datasets - attempt to provide solutions to this problem (Schwarte et al.

(2011); Ladwig and Tran (2010)). Data heterogeneity, on the other hand, can introduce

data consistency problems in the interface (Euzenat and Shvaiko (2007)). Terminolog-

ical heterogeneity or co-reference problems relate to identifying if two entities are the



Chapter 1 Introduction 5

same which can largely depend on the context; for example if the state of Germany as an

entity is the same with an entity describing Germany during World War II. Structural

heterogeneity, on the other hand, refers to having different schemas for the same data;

for example having a single string for an address in one dataset versus separate fields

for road, address number and post code in another. Supporting users who deal with

issues of heterogeneity can be useful for better supporting users with some skills in data

representation; however more often than not it is far too complex for average end users.

This thesis is concerned with the interaction challenges of providing tools that enable

combining Linked Data to answer information needs. The scope of this thesis is depicted

in Figure 1.4. As the Figure shows, even if the technical challenges associated with

Linked Data are largely solved, how end users, those without technical knowledge, can

access the data still remains a challenge. By users without technical knowledge we denote

users without programming or database skills; this kind of users have knowledge of

interacting with data only to the extent of using end user data tools such as spreadsheet

applications. This thesis looks at one specific case of tools for end users: tools that allow

data to be combined and queried in real time to solve data-centric needs. It attempts at

identifying the requirements for enabling such tools, and suggests solutions to interaction

challenges by developing several interactive prototypes that address these challenges.

1.2 Research Challenges

The problem of developing usable tools for end-users that leverage Linked Data for

exploring, finding, and combining data to solve data-centric needs can be broken down

into the following research challenges:

RC1. What are the requirements for developing usable end-user data-centric

interactions over Linked Data?

As with any novel design space, a key challenge is identifying what are the core require-

ments or the core problems that need to be solved in order to have usable interfaces that

allow data-centric interactions over Linked Data. Eliciting a list of requirements also

serves as a benchmark for comparing various end users Linked Data tools. Additionally

it allows us to examine how existing solutions on data-centric interactions apply over

the problems associated with tools using Linked Data. For example, how does research

related to data-centric tools coming from the Human-Computer Interaction and Infor-

mation Retrieval fields inform the design requirements of data-centric tools over Linked

Data? How does the current breed of mashup tools differ from mashing Linked Data

sources? What are the differences related to research on interfaces from the database

community? Finally, can these requirements inform on additions to Linked Data as

a technology in its present form and conversely how does Linked Data as a particular
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technology and method of publishing data currently influences the design of data-centric

tools.

RC2. How do we represent graph-based structured data to non-technical

users?

An immediate problem in providing end-users access to Linked Data is how data is

represented to users. The choice of data representation is influenced by several factors.

First, data representation is influenced by how generic the tool is by design, i.e. if

the tool allows immediate data representation without the need of additional formal

descriptions (e.g. templates). This allows Linked Data to be accessed with the tool on

demand, without any additional configuration, relying only on human-readable values

in the data for rendering a representation in the tool.

Data browsers such as Disco5, for example, displays one entity per page, which includes

information about each property and property value to which the entity links. The page

also includes information about other entities that has link to the entity being inspected.

Early browsers focused on publishing RDF, such as IsaViz6, directly portrayed the un-

derlying structure of the data being accessed by providing graph visualisations in the

interface. Browsers such as Tabulator, on the other hand, visualise graphs by displaying

entities in nested tables (Berners-lee et al. (2006)). For facilitating richer representations

of Linked Data, other tools introduce the concept of lenses - a template-like descriptions

that inform the interface how to render the data. Lenses vary based on the granularity

of data they render - some are used to just render entities in the dataset, while others

can take entire subsets of data and be used as a widget-like representation.

If the tool provides exploration capabilities i.e. are able to pull in related data sources on

demand, a suitable representation is needed to represent this process. The Tabulator for

example uses a nested table metaphor to display navigation from one entity to another

(Berners-lee et al. (2006)). Parallax, a browser over Freebase7 introduces set-oriented

browsing, where each navigation step in a graph is done simultaneously with multiple

entities that share a common property (Huynh and Karger (2009b)). This form of

navigation is demonstrated by representing successive sets of entities as a collection in

a new page. While this type of ”data navigation” is a core concept of data browsers,

there have been very few studies evaluating various approaches to representing data

navigation.

Finally, data representation is also informed by the purpose of the tool. Tabulator and

Parallax, for example, are designed to empower the user to engage in sense-making

activities over Linked Data. Both tools allow explored data to be presented in various

representations such as maps, timelines, charts etc. Other tools may have been built with

5http://www4.wiwiss.fu-berlin.de/bizer/ng4j/disco/
6http://www.w3.org/2001/11/IsaViz/
7http://freebase.com

http://www4.wiwiss.fu-berlin.de/bizer/ng4j/disco/
http://www.w3.org/2001/11/IsaViz/
http://freebase.com
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other motivations in mind. For example, tools such as gFacet or BrowseRDF provide

end-users with a data querying interface over Linked Data - thus both interfaces build

upon the familiar hierarchical faceted browsing paradigm to provide queries over Linked

Data (Heim et al. (2010); Oren et al. (2006)).

RC3. How do we let users quickly interrogate and find the data they need

in unfamiliar datasets?

Linked Data is often described as one global distributed database; however for the

most part it is structured around datasets - Linked Data repositories, published and

maintained by a single publisher. When searching for data one might find a relevant

dataset that can potentially contain the data needed to answer a data-centric need,

however, often the case is that these datasets themselves still contain data on a vast

number of topics. Thus, similar to consuming information from Web sites, often users

will only need a small fraction of the data from the overall dataset. This means that

mechanisms are needed that facilitate efficient interrogation of Linked Datasets.

This problem can be broken down in several parts. The first deals with how users

begin exploring a dataset. For example, in Tabulator the search begins by inputting a

machine readable URI (Berners-lee et al. (2006)). Clearly, users have little knowledge

of a machine-readable URI representing a description of a real world object, and even

less any ways to find them. Other tools, such as Parallax and gFacet begin with list of

the ontology or schema level concepts of the dataset, displaying these as collections of

entities in the interface (e.g. People, Presidents, Cars etc.) (Huynh and Karger (2009b);

Heim et al. (2010)). Some tools, such as VisiNav rely on keyword search to surface both

ontology concepts and specific entities (Harth (2009)).

More important than the exploration starting point is how users explore a dataset to find

the subset of data needed to answer an information need. The solution needs to provide

users with tools to query a dataset. While various approaches exist to querying struc-

tured data, this thesis is concerned with direct manipulation approaches - approaches

that empower the user to directly query a dataset through manipulating objects in the

interface (Shneiderman (1983)). Faceted browsers are an example of direct manipulation

tools for exploring single-concept collections of information (Yee et al. (2003)). Data

browsers are direct manipulation interfaces designed to query multi-concept collections

of information such as graphs of data. Direct manipulation interfaces are also better

suited for exploratory queries.

Direct manipulation tools for querying Linked Data vary substantially in design. For

example, the gFacet interface represents navigation of a graph dataset as building a

custom hierarchical faceted browser (Heim et al. (2010)). Parallax uses set-oriented

navigation, a technique of navigating multiple entities simultaneously through a com-

mon property, to facilitate similar exploration (Huynh and Karger (2009b)). Tabulator

uses a query-by-example approach - users can expand (or navigate) one entity at a time;
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the interface then allows patterns to be specified along this trail of navigation to find

similar data (Berners-lee et al. (2006)). The problem with navigational direct manipu-

lation interfaces is that the scale of graph datasets is sometimes so large that relying on

navigation to find how entities are connected can be viewed as navigating a maze with

no map.

RC4. How do we deal with information overflow?

Even with a good exploration tool that abstracts machine-readable data and allows

users to perform various queries, datasets can still be difficult to explore. They can hold

enormous amounts of data, thus frequently requiring users to find and filter through

a small portion of the dataset. This problem is particularly challenging when users

are engaged in an exploratory search - search where users have no specific information

goal but rather engage in exploration. For example, users might want to see what

interesting data they can find about the major cities in the UK. Thus users are left

with the task of figuring out which properties would make sense to combine, visualise,

or which properties would make good facets for filtering. Doing such iterations can be

very time-consuming in a generic tool. The authors of BrowseRDF were the first to take

note of this issue by trying out an automatic way of detecting useful facets to combine

(Oren et al. (2006)). They acknowledge, however, that automatic approaches are limited

and that additional knowledge about the ontology is required. While on the long run

data-centric browsers could analyse graphs of data and offer recommended views based

on established ontologies, such capabilities are not feasible in the foreseeable future.

RC5. Can we leverage the usability of custom made applications designed

over fixed datasets to facilitate data-centric interactions that are typically

provided by less usable, generic data-browsing applications?

If a data-centric tool is more generic by design, it allows immediate access to Linked

Data sources; however it does so by usually deploying a generic representation scheme

for displaying the data e.g. tables or simple lists. Thus while data can be accessed

through the tool quickly and on demand, generic data tools tend to be less appealing or

more ”geeky” then custom-made applications which are created and customised around

a fixed and known sources of data. For example, for finding nearby restaurants at a

selected location a custom-built application or a search on Yelp8 could provide that

information by simply entering a location. If raw data is available, the same query could

be answered by using a generic data browser, although at a much higher cost. On the

other hand if you want to view the locations of restaurants in relation to bus stops,

a custom application not providing bus information would be unable to answer that

question even if raw data is available about bus stops. At best we would need to use

another application and do the data integration manually. If Linked Data was available,

8http://www.yelp.com

http://www.yelp.com
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however, a generic browser could be hypothetically used to merge the data on demand

and find a suitable answer.

The problem of both approaches is that they sit at the end of two extremes - one is

very versatile yet not as usable, while the other is very usable yet not versatile. Thus

the challenge is how to find a solution, one that retains the usability of custom applica-

tions, and benefits from the interoperability of merging sources of Linked Data. Several

approaches have been proposed. Tim Berners-Lee Design Notes on a Semantic Web

Clipboard9 envisions applications able to share data with each other. The approach

described, however, requires a substantial amount of effort including writing data con-

vertors, accounting for different ontologies and data vocabularies and rules. Another

possible approach is to use configurable data-mapping approaches. These allow applica-

tions to be configured and set up over data without any programming. This approach,

however, is often inapplicable for end users since it often requires technical know-how

and the configuration process is too time-consuming to be able to do so on demand.

1.3 Approach

The approach this thesis takes in solving the problem of providing data-centric interac-

tions over Linked Data is divided into three areas:

• Deriving requirements for end-user data-centric tools. Identifying the areas that

present interaction challenges for end-user use of Linked Data for data-centric

tasks;

• Supporting data-centric interactions for non-technical data users - users with cer-

tain knowledge in end user data tools such as spreadsheets, but no knowledge in

database technologies or programming. Such users can be supported with generic

data tools such as data browsers;

• Supporting data-centric interactions for casual Web users - users that only experi-

ence data through rich Web applications. Such users can be supported by closely

associating data-centric interactions with how they use the Web today.

1.3.1 Deriving Requirements for End-user Data-centric Tools

This thesis first approaches the problem of delivering usable data-centric tools over

Linked Data by using scenario-based design and presents examples of personas in order

to derive high-level requirements for data-centric interfaces. Personas are hypothetical

descriptions of specific potential users along with scenarios of typical problems they

9http://www.w3.org/DesignIssues/SemanticClipboard

http://www.w3.org/DesignIssues/SemanticClipboard


10 Chapter 1 Introduction

encounter and current solutions that are used to solve these problems. The scenarios

described through personas can be then broken down into specific requirements that a

system needs to provide in order to facilitate data-centric interactions.

This thesis identifies four core requirements for delivering data-centric tools over Linked

Data:

• Discoverability. Provide a suitable way to find data sources from publishers over

the Web as a starting point of exploration.

• Legibility. Represent data that facilitates understanding about what data is

available, and how this data is linked throughout the graph.

• Triage. Allow versatile interactions which enable efficient triage/exploration/brows-

ing of data sources.

• Tools for Analysis and Sense-making. Supply the user with easy-to-use tools

of displaying data in various ways that facilitate sense-making.

The thesis then puts forward an analysis on how different data-centric tools approach

these core requirements. At the same time it examines relevant work coming from the

Human-Computer Interaction community and discusses potential applicable solutions

to data-centric problems, as well as solutions that tend to be specific to Linked Data

and thus need different solutions.

To explore these challenges in further detail, this thesis first focuses on supporting

a particular group of users - spreadsheet users - end-users knowledgeable in manipu-

lating spreadsheet data, but have no knowledge in advanced technical skills such as

database querying or programming. Spreadsheets have gained wide popularity among

non-programmers both because of their ability to perform custom computations with

data as well as support sense-making tasks (Nardi and Miller (1990); Russell et al.

(2008)). As S. Hudson notes (Hudson (1994)):

“Spreadsheets are one of the few true success stories among systems for end-

user programming - that is, systems designed to allow non-programming

users to create computations of their own design”.

Recent use of tabular representations of data has also been picked up by online com-

munities outside the professional arena. For example, social data sharing sites such as

ManyEyes10 allow users to input tabular data, visualise it in numerous ways and discuss

the results with peers (Viegas et al. (2007)).

10http://manyeyes.alphaworks.ibm.com/manyeyes/

http://manyeyes.alphaworks.ibm.com/manyeyes/
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Figure 1.3: The GEORDi generic data browsers showing a spreadsheet gener-
ated from Linked Data and a graph widget to visualise the data.

In order to explore the challenges of bridging the gap between Linked Data and spread-

sheet use, this thesis goes on to present a generic-data browser named GEORDi (Figure

1.3) which builds upon a spreadsheet metaphor to support both data exploration and

representation. In order to explore graph datasets, GEORDi uses an unfolding column

metaphor - each column constitutes a set of entities, and a new column could be added

by selecting a property which is shared by the entities in the column. Because graphs

are not tabular in nature, a tree-based, nested tabular representation is used in order

to show the relationships between entities described in different columns. Once users

generate a spreadsheet of data they need, a number of visualisation tools, such as charts

and maps, are available to make sense of the data.

1.3.2 Visor: Exploring Unknown Data Domains

The deployment and testing of GEORDi over several publicly available Linked Datasets

unveiled a number of challenges with data browsers in general as well as with some of

the approaches used in GEORDi.

First, the tree-nested spreadsheet visualisation proved difficult to comprehend beyond

several columns. This was particularly the case when the tool was used to explore and

find data in an unfamiliar dataset. In this case, the number of columns grew increasingly

large and it was difficult to follow which column was derived from which previous column.

Second, as with other browsers, the concept of browsing graph data did not prove useful

for exploring unknown graph datasets, i.e. when the number of concepts in the ontology

of the dataset is large. For example, it is difficult to solely rely on browsing when one

needs to find different ways that two entities or sets of entities are connected through
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Figure 1.4: The Visor browser offering an overview-first, instance data on de-
mand way of browsing a Linked Dataset.

the graph. Such queries are common if a user is unfamiliar with the content or schema

of a dataset. Thus it became apparent that users would need additional tools that go

beyond navigation to support exploration of unfamiliar datasets.

To tackle these challenges this thesis presents a tool called Visor, which extends naviga-

tional exploration with multi-pivoting - a technique to help the user explore unfamiliar

datasets. Visor includes several concepts that sets it apart from traditional end-user

Linked Data tools. First, exploration can be initiated by selecting multiple items of

interest i.e. a user can select different sets of entities through selecting concepts from

the ontology. The system then helps the users to semi-automatically find how selected

concepts can be linked. Second, the interface follows “an overview first, instance data

on demand approach. This allows users to quickly gain an understanding of the different

types of data in a dataset and how these are linked without being overloaded by instance

data. Additionally, unlike other data browsers that allow only forward navigation, Visor

allows links to be used in both directions. Once the required data is identified the user

can specify which parts of the data should be used to create a spreadsheet which can be

exported.
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1.3.3 mashpoint: Linking Data-centric Web Applications

Both Visor and GEORDi are built on the assumption that a large number of users famil-

iar with end-user data technologies, such as spreadsheets, can be supported with tools

enabling data-centric interactions over Linked Data. Still, a majority of the users on the

Web today are not spreadsheet users - these are users that interact with data through

visually rich and custom-built Web applications. In order to support data-centric inter-

actions for casual Web users this thesis presents a mashpoint, a framework that allows

distributed data-centric Web applications to be linked based on the similarities of the

entities in their datasets. Once integrated into the framework, it allows users to pivot

with an arbitrary set of selected entities from one application to another - essentially

enabling data-centric navigation on the Web. This navigation is simply presented to

the user as an extended version of Web navigation between Web documents. By using

data-centric navigation, users can easily perform many of the interactions needed for

querying information from distributed data sources, without having to manually extract

data from the Web pages or use a generic data browser.

a b

Browser focused on first application Browser navigated to second application with the corresponding entities 

Figure 1.5: Browsing for one data-centric Web page to another with a set of
entities.

Figure 1.5 shows the concept of data-centric interaction between two data-centric appli-

cations on the Web. The first application (1.5a) displays GDP per capita data about

countries. The Figure shows that the set of all the countries is filtered to a set of five

countries. Data-centric navigation in mashpoint allows the selection of entities made in

one application to be used to refocus on a particular set of entities in another data-centric

application (1.5b), or in this case CIA factbook data about countries.

mashpoint is built on the idea that there are many data-centric applications on the

Web that inherently talk about the same entities in their datasets. If an application

displays certain data about entities and then asks for other data about the same entities
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in another application, it would be essentially equivalent to navigating raw Linked Data.

In this case, however, the user now has the benefit of viewing the data through a lens of a

custom made application. From this perspective, applications on the Web of Data can be

viewed as lenses offering higher level abstractions over a certain subset of Linked Data.

By allowing these lenses to communicate the entities they describe in the application,

mashpoint can support data-centric operations for end users without any need of using

a generic browser.

1.3.4 Scope and Limitations

This thesis is concerned with the interaction challenges associated with accessing, ex-

ploring and manipulating vast amounts of graph data. As we discussed, many back-end

challenges persist in delivering fully functional data browsers that can operate over a

truly distributed Web of Data. Thus, while the solutions in this thesis are currently

capable of operating over single large graphs of data they are designed with the inten-

tion to support browsing of truly distributed and heterogeneous data on the Web when

the corresponding back-end infrastructure technology matures. In particular this thesis

makes the following two assumptions:

• In this thesis I assume that problem of data heterogeneity is one that requires

solutions at the back-end before generic browsers can truly operate over dis-

tributed datasets. While user interfaces that expose heterogeneity and support

non-programmers in data reconciliation tasks do exist, this task can be supported

in a very limited fashion and is usually beyond the scope of a truly casual user. In

order to deliver truly usable data browsers, reconciliation needs to be supported

and resolved before data is accessed by a browser.

• Most of the experiments and prototypes developed in this thesis either operate

over datasets that can be queried or can be accessed in a fast and reasonable time

while providing sufficient fidelity of accessing large amounts of graph data. In

order to truly access the Web of Data, however, a web browser will need to query

multiple distributed data repositories simultaneously. These types of federated

queries, however, are currently relatively slow for the kind of responsiveness we

require in a data browser.

1.4 Contributions

The statement of this thesis is:
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Usable tools can be built over Linked Data on the Web that allow non-technical

end users to answer information needs that require combining and querying data

from several information sources.

The thesis makes the following contributions:

• First, it provides a map of the core interaction challenges associated with using

generic data-browsers over Linked Data.

• Second, it contributes multi-pivoting, an approach to improve exploring unfamil-

iar linked datasets, by assisting users in finding relationships between arbitrary

selections of data within a dataset. With multi-pivoting we offer a way of users to

quickly find and focus on the specific data types and relationships within a dataset

which are relevant to answering a data-oriented query.

• Third, it contributes mashpoint, an approach to linking existing applications built

over Linked Data that allows data-centric navigation between applications. By

allowing data-centric navigation between web applications, the approach offers a

solution to the challenges of rich data representation and information overload,

associated with generic data-browsers.

• Fourth, by offering a lightweight approach to linking applications, this thesis

demonstrates that rich interactions can be provided to end users without the need

of data publishers to implement the full complex stack of Semantic Web technolo-

gies.

• Finally, by developing and studying various systems that provide tools, which

allow users to explore and answer questions by combining Linked Data, this thesis

provides a map of interaction challenges and best practices associated with building

data-exploration interfaces over Linked Data for non-technical users.

1.4.1 Publications relating to thesis work

The following publications were published as a result of the work presented in this thesis:

Put in your postcode, out comes the data: A Case Study

Tope Omitola, Christos L. Koumenides, Igor O. Popov, Yang Yang, Manuel Salvadores,

Martin Szomszor, Tim Berners-Lee, Nicholas Gibbins, Wendy Hall, m. c. schraefel, and

Nigel Shadbolt. Put in your postcode, out comes the data: A case study. In ESWC (1),

pages 318-332, 2010.

Note: This paper won best paper award at the Semantic Web In-use Track at ESWC

2010.
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Figure 1.6: Thesis chapter organisation based on work conducted.

Accessable at: http://eprints.ecs.soton.ac.uk/18765/

Data Picking Linked Data: Enabling Users to create Faceted Browsers

Smith, D., Popov, I. and schraefel, m. (2010) Data Picking Linked Data: Enabling

Users to create Faceted Browsers. In: Web Science Conference 2010, 26-27 April, 2010,

Raleigh, NC, USA.

Accessable at: http://eprints.ecs.soton.ac.uk/20804/

Will this work for Susan? Challenges for Delivering Usable and Useful

Generic Linked Data Browsers

schraefel, m., Smith, D., Popov, I. , Van Kleek, M. and Shadbolt, N. (2010) Will this

work for Susan? Challenges for Delivering Usable and Useful Generic Linked Data

http://eprints.ecs.soton.ac.uk/18765/
http://eprints.ecs.soton.ac.uk/20804/
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Browsers. Technical Report , School of Electronics and Computer Science, University

of Southampton.

Accessable at: http://eprints.ecs.soton.ac.uk/21967/

Connecting the Dots: A Multi-pivot Approach to Data Exploration

Popov, I., schraefel, m., Hall, W. and Shadbolt, N. (2011) Connecting the Dots: A

Multi-pivot Approach to Data Exploration. In: International Semantic Web Conference,

23-27 October 2011, Bonn, Germany. (In Press)

Accessable at: http://eprints.ecs.soton.ac.uk/22784/

GEORDi: Supporting lightweight end-user authoring and exploration of

Linked Data

Popov, I., Smith, D. A., Van Kleek, M., schraefel, m., Correndo, G. and Shadbolt, N.

(2010) GEORDi: Supporting lightweight end-user authoring and exploration of Linked

Data. Technical Report , School of Electronics and Computer Science, University of

Southampton.

Interacting with the Web of Data through a Web of inter-connected lenses.

Popov, I., schraefel, m., Correndo, G. Hall, W. and Shadbolt, N. Interacting with the Web

of Data through a Web of inter-connected lenses.. In, WWW2012 Workshop: Linked

Data on the Web (LDOW2012), Lyon, FR, 16 Apr 2012. 9pp.

Accessable at: http://eprints.soton.ac.uk/336573/

mashpoint: Supporting Data-centric Navigation on the Web.

Popov, I. mashpoint: Supporting Data-centric Navigation on the Web. Poster Presenta-

tion, At CHI 2012, Austin, Texas, 05 - 12 May 2012..

Accessable at: http://eprints.soton.ac.uk/273237/

mashpoint: Browsing the Web Along Structured Lines.

Popov, I., schraefel, m., Hall, W. and Shadbolt, N. (2012) mashpoint: Browsing the

Web Along Structured Lines. At UIST (ACM Symposium on User Interface Software

and Technology) 2012, Cambridge, US, 07 - 12 Oct 2012.

Accessable at: http://eprints.soton.ac.uk/342523/

1.4.2 Other Publications

Trust Me, I’m Partially Right: Incremental Visualization Lets Analysts Ex-

plore Large Datasets Faster

Fisher, D., Popov, I., Drucker S., and schraefel, m. (2012) Trust Me, I’m Partially

Right: Incremental Visualization Lets Analysts Explore Large Datasets Faster. In: CHI

2012

http://eprints.ecs.soton.ac.uk/21967/
http://eprints.ecs.soton.ac.uk/22784/
http://eprints.soton.ac.uk/336573/
http://eprints.soton.ac.uk/273237/
http://eprints.soton.ac.uk/342523/
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Accessable at: http://eprints.soton.ac.uk/273149/

1.5 Thesis Overview

The rest of the mini-thesis is structured in six chapters:

Chapter Two: Background and Related Work Following the introduction, Chap-

ter 2 discusses background topics and related work in the space of end-user interfaces

over Linked Data. First, it introduces the concept of structured data and the use of

structured data to power new methods of information exploration. Second, it provides

an overview of the evolution of structured data on the Web, starting from database-

powered Web sites and embedded data on Web pages to the vision of the Semantic Web

and a Web of Data. Finally, it maps the broader area of end user tools over Linked

Data, including tools for data exploration, querying and data visualisation.

Chapter Three, Four and Five present solutions to the research challenges stated in the

Introduction. The structure of each Chapter is shown in Figure 1.6.

Chapter Three: Design Process for Generic Linked Data Browsers Chapter

Three starts off by suggesting different personas as a way to elicit core requirement for

data-tools that allow data interactions over Linked Data. Using these requirements as a

benchmark, it examines existing end user Linked Data tools and interaction techniques

particularly focusing on generic data browsers. It then describes GEORDi - a generic

browser aimed at users familiar with spreadsheets. GEORDi associates all aspects of

data-browsing using a spreadsheet metaphor - it uses a tree-based nested spreadsheet

visualisation to represent graph data as well as uses unfolding columns as a way to nav-

igate and discover new data. The Chapter describes the lessons learned from deploying

GEORDi over a number of Linked Datasets.

Chapter Four: Multi-pivot Exploration of Data on the Web Chapter Four

presents Visor, a data-browser that implements multi-pivoting, a method aimed at im-

proving the shortcomings of data navigation as a mechanism for exploring unfamil-

iar Linked Datasets. Visor also uses “an overview first, instance data on demand ap-

proach, allows bi-directional navigation and allows generation of custom spreadsheets.

The Chapter provides the motivations for this approach, describes the user experience

and provides implementation details. Finally, it presents the evaluation results from an

exploratory user study that was conducted with Visor to ascertain the viability of the

approach.

Chapter Five: mashpoint - Browsing the Web along Structured Lines Chapter

Five tackles the problem of supporting data-centric interactions for casual end users -

those that experience data only through the lens of a rich Web application and have no

http://eprints.soton.ac.uk/273149/
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familiarity with spreadsheets. I present mashpoint - a framework aimed at linking data-

centric Web pages based on the similarities of their entities, which in turn allows Web

browsing to be extended with data-centric behaviours. It also describes the lightweight

URI-only approach of the mashpoint architecture. In addition to supporting casual end

users the Chapter uses mashpoint lightweight approach as an economic argument about

what can be achieved by using only the minimal amount of Semantic Web technologies.

Chapter Six: Discussion: Implications for Design Chapter Six reflects on the

tools successes and future directions for these tools as the field of Linked Data evolves

and matures.

Chapter Seven: Conclusion and Future Work Chapter Seven reviews the contri-

butions of this thesis and articulates a vision for the future of data-centric interactions

on the Web.





Chapter 2

Background and Related Work

This thesis investigates how to design data-browsing interfaces that allow end users,

those without technical knowledge in databases, formal query languages or programming,

to use Linked Data to solve data-centric information needs that are otherwise difficult

to solve using unstructured, text-based documents on the Web. This Chapter serves

to provide a background to a number of relevant topics. First, it lays out a definition

of structured data and discusses the affordances of structured data in providing better

access to information. Second, it describes the current sources and uses of structured

data on the Web. This is followed by a discussion of the notion of a Semantic Web and a

Web of Linked Data, as a proposed evolution of publishing structured data on the Web.

The Chapter then turns to the implications of having a Web of Linked Data on end-user

data-centric interactions. First, it provides use cases for end-user data-centric interfaces

over Linked Data and briefly discusses the core challenges of building such interfaces.

This is followed by an overview of a number of active research areas centred on data

interfaces for end users. The Chapter then provides an overview of existing designs of

data-centric interfaces over Linked Data. The Chapter concludes with a discussion on

limitations and challenges of reviewed approaches.

2.1 Structured Data

In a world of exceedingly accessible information, users rely on evermore sophisticated

search interfaces and algorithms to help us find and filter out needed information. While

keyword search predominates in finding documents with relevant content, we often lend

ourselves to more specialised form of search, particularly when we wish to query for

more granular sources of information. Take, for example, the task of buying a phone

on a typical online shopping site, as shown in Figure 2.1. Commonly our first task

would be to try and narrow down the vast information about various phones based on

21
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certain preferences, such as price, manufacturer, and carrier. The ability of systems

that allow us to filter down information according to different facets as shown in Figure

2.1, is due to the fact that the information about phones is structured in a certain

format. The term structured data refers to information represented in a way that there is

identifiable format in which the data is described. In most cases, besides the information

itself, additional information (also known as metadata) is provided. In this example,

information about phones is somewhere explicitly stated - this allows a machine to

“know” which part refers to the price and which to the manufacturer. Data can be

structured in various formats. Spreadsheets are another common example of structuring

information, where each column name represents the kind of information contained

in each cell of the column. Relational databases structure and store information in

multiple tables with relationships defined between rows in each table. The Web today

is increasingly becoming just a lens through which we interact with structured data.

A majority of Web sites are powered by backend databases over which web pages and

applications of content are presented to users. These databases that power web sites

are sometimes referred as the Deep Web (He et al. (2007)). While estimates vary, most

conclude that the structured information contained in the Deep Web today is several

orders of magnitude larger than the surface Web.

Figure 2.1: A typical online shopping site offering data-centric features to filter
for information.

2.1.1 Uses of Structured Data in Information Exploration

Structured information can be deployed in a variety of formats to serve different pur-

poses. For example, collections of text documents or Web sites can be assigned metadata

in order to convey the general content of the document. Another example would be a

web site organising its site hierarchy to improve navigation to relevant documents on the

site. Online digital libraries, for example, provide metadata on top of their documents

to enable easy access and better document retrieval. Apart from adding structured in-

formation to documents, the biggest source of structured data comes from databases
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that structure content around real-world objects on a much finer granularity. A large

portion of Web applications today (e.g. online shopping sites, social networking sites

etc.) use some sort of database, which is queried through structured languages, over

which a layer of application logic controlled from a website provides a bridge to access

the data.

Deploying information in structured format allows new ways for end-users to interact

with information. Structured content is most commonly used to support advance search

and query features that differ from keyword search queries. Both types of search have

their strengths and weaknesses. Keyword search allows freedom of expression and a

relatively simple interaction model - the user enters keywords and is given a list of

relevant results. Structured search allows content to be filtered according to specific

criteria. Both keyword and structured search have been extensively used in different

areas; while keyword search has predominately been used to search the Web, the latter

has been employed for browsing more contained collections of data on data-powered

websites (e.g. online shopping sites). Additional affordances of structure in information

include the ability of retrieved information to be more easily visualised and represented

in multiple ways. Other uses include the ability to perform data-centric operations, such

as sorting. In the following section we discuss the areas where structured information is

used to support information interactions.

2.1.1.1 Organisation of Information Content

One of the most common uses of structured information is for organising digital content;

for example, organising information in categories and hierarchies. A large number of

Web sites, for example, provide content on a variety of subjects and topics. A common

feature on such Web pages is to provide some categorisation of the content that allows

users to quickly narrow down information to the particular content they are interested

in. For example, a site offering media content might provide categorisations such as

music, movies, TV shows etc. The simplest type of categorisations is flat categories

where every item falls into exactly one category. Hierarchical categories, on the other

hand, allow for association with multiple categories, where the categories are arranged

in a hierarchy. In a hierarchical ordering of information each item of information is

contained in one path in the hierarchy. Hierarchies are still used today to navigate

large online information content providers. In the early days of the Web, searching for

web pages that have previously been categorised in hierarchies was also commonly used.

Directories of web sites such as Yahoo1 and later on the Open Directory Project (ODP)2

were popular ways to find content on the Web (Pollock and Hockley (1997)). As the

growth in the number of Web sites increased and with the emergence of reliable search

engines the importance of general web directories declined.

1http://www.yahoo.com/
2http://www.dmoz.org/
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2.1.1.2 Faceted Browsing and Filtering

Often documents can discuss multiple things simultaneously. In such cases, documents

do not naturally fit in any single hierarchy. Faceted classification allows documents to

be assigned values of any category of a predefined set of categories (or facets). For

example, when given a collection about cars, each car can be assigned one or multiple

values of a list of categories; in our case these might be the manufacturer (BMW,

Mercedes, Ford, etc.), colour (red, white, grey etc.), and price (10000£- 20000£, 20000£-

30000£, etc.). Hearst et al. (2002) describe faceted metadata as being composed of

“orthogonal” sets of categories. Each category describes an independent aspect of the

information item. Faceted categorisation is often attributed to for introducing the idea

with his colon classification system, which suggested describing information items by

multiple classes (Ranganathan (1933)). Bates (1988) supported faceted library catalogue

representations in the 1980’s. The use of a faceted classification for browsing, however,

was first pioneered by Allen (1995) for browsing document collections that did not

naturally fit together to form a single hierarchy.

A faceted browser allows narrowing down the collection of items by selecting values

associated with a facet. Using a faceted browser, a selection of a value in a certain

category filters for documents that have the relevant value assigned for that particular

facet. When a particular value of a facet is selected, the rest of the facet choices get

updated to reflect the remaining choices for narrowing down the current list of items.

Every subsequent selection filters down the resulting set of items to according to the

selected values. In essence, faceted browsing allows users to custom build their own

hierarchy on the fly.

Faceted browsing has been extremely popular on the Web and is commonly adopted in

many online shopping sites because different users have different criteria for choosing

products. Figure 2.2, for example, shows the Flamenco faceted browser for browsing col-

lections of art works (Yee et al. (2003)). Research studies around faceted navigation have

shown both improved task performance and user preferences of using faceted browsers

instead of keyword search when browsing information collections (Hearst (2000); Hearst

et al. (2002); Yee et al. (2003); Hearst (2006)).

Faceted browser can vary in design. For example, faceted browsers can be either direc-

tional or non-directional. In a directional faceted browser the filtering of facets goes in

one direction. Browsers such as mSpace and iTunes, for example, support directional

facets (schraefel et al. (2005)). Additionally, faceted browsers have been researched ex-

tensively to improve performance in navigation and exploration. In directional browsers,

for example, techniques like backward highlighting have been researched to study the

effects of showing alternative paths that users could have taken to the items currently

displayed (Wilson et al. (2008)). Other examples include displaying the number of

items in each facet which is a contribution brought over from query preview interfaces
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Figure 2.2: The Flamenco faceted browser.

(Plaisant et al. (1999)). Displaying the number of items presents users with a summari-

sation of the distribution of data and can additionally help identify potentially erroneous

choices. Other approaches to displaying cardinality include representing them with a

visualisation. For example, the Relation Browser and the Elastic Lists browser both use

visualisations instead of using a textual representation to represent the distribution of

items across facets (Zhang and Marchionini (2005); Stefaner and Muller (2007)). Rep-

resenting facet selections can also vary depending of the data presently under inspection

in the faceted browser. For example, studied different selection widgets with embedded

visualisations for navigating through different types of content (Willett et al. (2007)).

Since faceted browsers immediately expose the metadata associated with an information

space they have been extensively studied in the context of exploratory search - a search

scenario where the user is unfamiliar with a domain (Marchionini and White (2008)).

A survey of different approaches to faceted browsing including visual design, interaction

and structural design can be found in (Clarkson et al. (2009)).

2.1.1.3 Visualisations and Multiple Representations

The same information can show different insights when presented differently (Figure 2.3).

For example, a map showing the major impact sites of a natural disaster might offer very

different insights to only listing the sites in a tabular format. Charts are frequently used

for comparison of quantitative aspects of data. The usefulness of data representation is

often dependent on the users tasks. For example the iTunes3 music player allows people

3http://www.apple.com/itunes/
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to browse through their music collections in several views, including a list of songs view

in a tabular format or an album cover view format showing albums as thumbnails. In

searching for a particular album, the latter would be a more appropriate representation

to work with. A list of alphabetically ordered songs, on the other hand, might be a more

appropriate choice when searching for a particular song. Data representation can also

influence how data is selected for filtering. For example, geographic filtering would be

facilitated better if a user can directly draw a region on a map, rather than specify a

region by adding quantitative information about polygons. Likewise, events data might

be more useful to access and select through a calendar application. Selection of a specific

time period can be supported better by working directly on a timeline.

Figure 2.3: The Spotfire tool using different visualisations over the same source
of structured data (Tanin et al. (1997)).

2.1.1.4 Data-centric operations

In addition to supporting structured search, information in structured format allows

users to perform data-centric operations, such as sorting and filtering. For example, cases

where the attributes of the information items have an understandable sequential order

allows them to be arranged in a particular order. For example, a set of mobile phones

can be sorted based on price (for example from most expensive to least expensive). For
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nominal attributes which do not have a meaningful order, it is common to provide users

with a filtering option that can be used in conjunction with sorting. Filtering is thus

used to eliminate some records to help focus on categories of interest. Faceted browsing

is considered to be a particular form of filtering.

Filtering and sorting are common features on many data-intensive websites and have

been extensively used in a variety of other tools, such as personal information manage-

ment tools and e-mail clients. Cutrell et al. (2006), for example, did a longitudinal study

of the use of the Phlat personal information management system with more than 200

people over an 8-month period. They found that 47% of all queries used some kind of

filter, one third of all searches that used filters used more than one filter, and 17% of

searches used only filters, with no initial query term at all.

2.2 Structured Data on the Web

In the previous section, this Chapter discussed how having structured data improves

finding, exploring, and interacting with information. In this section, the Chapter turns

its attention specifically to structured information and data on the Web. The Web

has undeniably been the single most significant medium in providing users with un-

precedented access to information. While the Web is considered a global distributed

repository of documents or web applications, it inherently draws most of its information

resources from structured repositories (most commonly databases) of the individual Web

publishers. The raw data content of these repositories is currently inaccessible directly

on the Web (Figure 2.4) - the content is only accessible through the tailored experiences

of the web site. Initiatives, such as the Linked Data, attempt to surface up raw data

on the Web and advocate for publishing of structured data on the Web based on Web

principles. In effect, the Linked Data movement promotes creating a global repository

of structured information, one that can be queried, searched and the data can be reused

in any number of applications. In this section, this thesis discusses sources of structured

data on the Web and the technologies and principles of Linked Data publishing.

2.2.1 Sources of Structured Data

The amount of structured data on the Web today vastly outnumbers the information

contained in static documents. Structured information is published throughout the use

of database technologies; it can be user contributed through social media, embedded

into documents or created into structured format out of unstructured documents. The

following sections examine the most common sources of structured data on the Web

today.
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Figure 2.4: Different forms and uses of structured data on the Web.

2.2.1.1 Use of Data Technologies on the Web

The early Web was an entirely document-based enterprise; HTML documents embed-

ded the information to be presented to users and the documents were placed as static

artefacts on the Web. The information contained in the documents, however, rarely

contained any structure or metadata about the content of the document; rather the

only structure in the document was how the document was to be rendered in a browser.

Quite soon after its initial inception, however, dynamically generated documents were

required to handle increasing amounts of data. To facilitate this demand, websites were

increasingly being joined with backend databases; the databases provided scalable data

storage and ability to perform data-intensive operations, while the web document acted

as the lens through which information was presented to users. Database technologies,

complemented with server-side templating technologies such as ASP4, PHP5, and JSP6,

4http://www.asp.net/
5http://www.php.net/
6http://www.oracle.com/technetwork/java/javaee/jsp/index.html

http://www.asp.net/
http://www.php.net/
http://www.oracle.com/technetwork/java/javaee/jsp/index.html
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allows todays publishers to publish large quantities of information efficiently and offer

data-centric features such as sorting, searching, and filtering.

Using databased-powered websites promotes the paradigm of separation of data-storage

and data-oriented tasks from the logic of the application and presentation of content.

Unfortunately, the structured information which has already been provided gets reverted

to unstructured information once it reaches the browser. Until now, the choice has been

economically justified - unless other users could reuse the information, adding additional

structure to the web page provides additional overhead and yet another concern to the

website publisher. Additionally, in order to control access to what sort of data is reusable

most data-intensive websites use APIs, which provides stricter access to structured data.

More recently, the demand for richer web applications have promoted populating the

client side application with structured information. Data markup embedded into web

documents is one example. Rich client development frameworks allow data to be stored

into the client. The new specifications of HTML5, for example, implement a local storage

feature that is a key-value pair storage on the browser. Despite these advances, it is still

difficult to get raw data out of the information we see on Web pages. At present the only

viable options are relying on a publishers API or scraping the HTML for data. There

are very few instances of interfaces such as Exhibit, which allow the data underlying the

information presented on the website to be surfaced with a click of a button (Huynh

et al. (2007b)).

2.2.1.2 User Contributed Content

The initial proposal for a Web of Documents, outlined by Tim Berners-Lee was originally

conceived as a medium not only for consuming information but also as a collaborative

space where users can contribute to the content of a website. The first Web browser7,

for example, enabled link editing to any Web document accessible on the Web. De-

spite the popularity of the Web as a content consumption medium, it was not until

the advent of Web 2.0 that casual users actually became active participants in gener-

ating content. Currently casual users contribute a large amount of the Web’s content

through blogs, wikis, social networks and micro-blogs. Most of the data is collected

through contributed content, and stored into databases with predefined schemas. Sev-

eral instances exist where users contribute structured data directly. One such example

is perhaps Wikipedia8, where in addition to authoring articles, users can add content

to Wikipedia’s info-boxes which hold structured data about an article. The Wikidata

Project9, aims to extend this functionality onto a specialised service (Vrandečić (2012)).

Another similar example is Freebase10 Bollacker et al. (2008), which is an open database

7http://www.w3.org/People/Berners-Lee/WorldWideWeb.html
8http://www.wikipedia.org/
9http://meta.wikimedia.org/wiki/Wikidata

10http://www.freebase.com/

http://www.w3.org/People/Berners-Lee/WorldWideWeb.html
http://www.wikipedia.org/
http://meta.wikimedia.org/wiki/Wikidata
http://www.freebase.com/
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where users can contribute structured data in a similar way to how users contribute

articles to Wikipedia.

2.2.1.3 Structuring Unstructured Data

The lack of structured information about content on Web sites has been the motiva-

tion behind several approaches to extract structure by using the document structure

of webpages. Various algorithms exist to identify records from web pages; for example

algorithms relying on partial tree alignments (Zhai and Liu (2005), Shen and Karger

(2007)), tree edit distance (Reis et al. (2004)), and tabular structures (Lerman et al.

(2004)). Depending on whether the user is involved in accurately identifying records,

approaches to finding structure in web documents can range from completely supervised

to unsupervised. End user tools that support structuring of web content can use the

derived structure for different purposes; some tools use the derived structure to allow

people to clip particular portions of a website for supporting information gathering tasks;

other tools use identified structures to augment existing webpages with new function-

alities. For example, tools like Hunter Gatherer allow users to select components out

of webpages and add them to custom collections of content (schraefel et al. (2002)),

while tools such as WebSummaries allow users to select or add specific metadata and

save extraction patterns to be shared with other users (Dontcheva et al. (2006, 2008)).

In other cases, tools such as Sifter serve to augment a Web site through adding facets

from metadata extracted from websites by analysing its content (Huynh et al. (2006)).

Piggy Bank , on the other hand, allows keeping a personalised collection of information

through an automated extraction which can then be visualised and explored (Huynh

et al. (2007a)). This allows browsing through the data with additional facets that might

not be provided by the data publisher. Other approaches are not motivated by end

user concerns but rather by being able to repurpose the data. The DPedia project,

for example, is a database created by extracting data from Wikipedia info-boxes and

mapping them to a predefined schema. The data gathered can then be repurposed in

other applications (Auer et al. (2007)).

2.2.1.4 Page Markup

Web pages appear quite static to the outside world despite their dynamic generation;

usually the databases that power them work in the background and are inaccessible to the

outside world. Extracting structured data from unstructured documents uses heuristic

algorithms and are thus prone to errors and often require user intervention. Another

source of structured data in webpages comes from web publishers who provide some

additional metadata mark-up to the content. Several services have recently emerged

that have incentivised publishers to mark-up their websites with additional metadata.

For example connecting websites content to Facebook allows users to share and support
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particular content through its “Like” feature. Initiatives like schema.org11, for example,

allow for mark-up to be picked up and processed by search engines, which can render

rich descriptions of websites once results are retrieved from a search (see Figure 2.5).

Most of the mark-up is enabled through a number of data-markup languages such as

Micro-data, Micro-formats and RDFa (Adida and Birbeck (2008)).

Figure 2.5: A Google search on recipes shows rich visual feedback due to struc-
tured data imbedded in web sites.

2.2.2 The Semantic Web

Information-oriented applications clearly benefit from using structured data by provid-

ing richer interactions through data-centric features. The tools in the examples shown

in previous sections, however, suffer from one core limitation; each tool is a tailored

experience, specifically designed to support only the data for which it was originally

designed. In other words, those tools do not allow us to easily integrate and use several

sources of information, nor do they make it easy to pick up the structured information

and reuse it in another tool.

The Semantic Web is a proposal to make structured data more directly accessible on

the Web. It proposes extending the Web to include the data published using common

formats based on Web principles (Berners-Lee et al. (2001); Shadbolt et al. (2006)). The

infrastructure of structured information would be published in addition to the Web of

documents and applications, allowing web applications and developers to access data

that is globally accessible on the Web. The Semantic Web vision advocates publishing

structured information on the Web based on adopting a common stack of technologies

(Figure 2.6). The core principles include representing structured information with a

common data model, resources being uniquely identified with global, Web identifiers,

the ability of these resources to refer to one another and describing the conceptual

characteristics in commonly accepted languages. In effect, the Semantic Web promotes

establishing a global distributed database of structured information sources to be glob-

ally accessible to applications. Unlike the document Web which is only accessible to

human users, the original Semantic Web proposal envisions a machine readable layer

11http://schema.org

http://schema.org
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over which applications can share and reuse data. The vision of the Semantic Web is

summarised by Berners-Lee et al. (2001) in which they define it as:

“... an extension of the current Web in which information is given well-

defined meaning, better enabling computer and people to work in coopera-

tion.”

Figure 2.6: The Semantic Web technology layer cake.

2.2.2.1 The Web of Linked Data

The Semantic Web is a vision for a Web where intelligent programs or agents can oper-

ate over distributed data sources to either automate certain tasks or work together with

end-users to accomplish tasks on demand. This scenario of a Web of highly interoper-

able information over which autonomous agents can interact with information requires

enabling most of the technology stack shown in Figure 2.6. The basic foundations of the

Semantic Web, however, start with publishing structured data using common standards

and in a way that is compliant with the general architecture on the Web. Because of

the many technical limitations of efficiently utilising the upper stack technologies and

still evolving standards, the Linked Data initiative aims to utilise the lower stack of

technologies as a way of publishing for the purposes of basic data integration and data

repurposing. Often the terms Linked Data and Semantic Web are used interchangeably,

however strictly speaking Linked Data is just a way of publishing data on the Web ac-

cording to a number of principles outlined in Berners-Lee (2006). In the past five years,

the amount of data published through Linked Data principles has risen steadily. Figure
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2.7 shows available data sources and datasets published as Linked Data. Each node on

the figure represents a dataset of Linked Data published either by a single data publisher

or a data source - a community of publishers of particular type of data (for example

FOAF Brickley and Miller (2010)). Each arc on the Figure is denoting that links exist

between the data of the two data sources.

Figure 2.7: The Linked Open Data cloud shows datasets publicly available on
the Web and the links they have to other datasets.

2.2.2.2 Concepts

Publishing Linked Data rests upon two basic technologies: first the notion of unique

identification on the Web through URIs and an adoption of a common model for de-

scribing data through using RDF. In the following section we describe these two core

concepts. Additionally, we describe concepts such as schemas and ontologies. Ontolo-

gies12 are not a prerequisite to publishing Linked Data, although by publishing data one

implicitly defines a schema. In this section we briefly discuss ontologies as a concept

because frequently schema level information is published alongside the data (particularly

through RDFs), and adopting vocabularies and schemas from other data publishers is a

common occurrence on the Web of Data.

12By ontologies here I mean machine readable descriptions about the conceptual level description
about the data.
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Unique identification. Structured resources on the Web need global identification in

a similar way to how webpages also need unique addressing to be accessed. Tradition-

ally URIs have been used to uniquely refer to Web pages and these have been more

commonly known as Unique Resource Locator (URL)13. When publishing Linked Data,

the basic unit of publishing is a resource which is usually a real-world or abstract object

- for example a resource might be a particular person, event, city, or perhaps a media

type, such as a blog post, micro-note or status update. When publishing Linked Data,

individual resources are identified through URIs, which in effect makes each resource a

first-class citizen on the Web. The principles of Linked Data mandate that the identi-

fiers of resources be HTTP URIs which means that they will then need to be resolvable

through the HTTP protocol14. HTTP URIs enable information about the resource to be

retrieved once resolved in a browser or requested by other applications through HTTP.

Common data model. The commonly adopted model for describing data on the Web

is the Resource Description Framework (RDF)15, a graph based model for describing

data. RDF describes data in terms of statements (also known as triples) where each

statement is composed of a subject, a predicate and an object. For example, Figure

2.8a shows a simple statement saying that the book, “Lord of the Rings”, is authored

by “J.R.R Tolkin”. In RDF, a resource and a property are identified through URIs i.e.

they are both resources, while an object can be either another resource in which case it

is again a URI, or can be a literal (Figure 2.8b), a string-like value that denotes some

attribute of the resource that is not a resource itself - for example a book’s title, price,

or number of pages.

(a) <http://example.com/book/Lord_of_the_rings> <http://example.com/bookauthor> <http://example.com/author/JRRTolkin>

(b) <http://example.com/author/JRRTolkin> <http://xmlns.com/foaf/0.1/name> "J.R.R. Tolkin"

Figure 2.8: Information about the book “Lord of the Rings” in RDF.

On the Web the most granular unit of information is a Web document, which can contain

unstructured information about multiple topics. RDF, on the other hand, provides a

data model, that can be used to describe data at arbitrary levels of granularity. For

example, RDF can be used to model data in relation to real world objects or it can

be used to model data in an described data model (e.g. a tabular representation of

data in RDF). A Web document is a media type created for human consumption -

the information is joined with a presentation template created by the publisher. RDF,

on the other hand, is just a data-model, one that can be serialised, i.e. represented

using a number of languages, such as RDF\XML and N3. By publishing data using

common standards and principles, the aim of the Linked Data project is to create a

13http://www.w3.org/Addressing/
14http://www.w3.org/Protocols/
15http://www.w3.org/TR/rdf-primer/

http://www.w3.org/Addressing/
http://www.w3.org/Protocols/
http://www.w3.org/TR/rdf-primer/
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global information space of structured information where data is inter-linked in a similar

way to how the Web is a global space of inter-linked documents.

Ontologies and schemas Ontologies describe conceptual level information about the

domain of some structured data. Gruber (1993) describes ontology specification of a

conceptualisation. Ontologies capture essential information including what type of data

is contained, what are the relationships between entities in the data, and any specific

rules. For example, if our domain is publishing data about books, the ontology would

inform that instances can be of type books and authors, that the books can have one

or several authors, that the information about books contains information regarding

the number of pages, references etc. Ontologies can be diverse with respect to the

level of description they provide. An ontology can range from simple representation

of knowledge such as taxonomies or thesauri, to more complex knowledge and more

formal representations (McGuinness (2003)). Similar to how the data itself is described

in structured format, an ontology can be described formally using languages such as

RDFs16 and OWL17. The former is generally used to formalise basic information about

a domain, such as classes, properties, property domains and ranges, while the set of OWL

languages provide greater expressivity which includes things such as specifying axioms,

cardinality, equivalences etc. We should note that ontologies have a different meaning

in the context of the Semantic Web; by definition an ontology is a conceptualisation of

a domain; however in the context of the Semantic Web an ontology is the expression

of the domain in languages such as OWL and should be considered more related to a

database schema.

2.3 Data-centric Interfaces over Linked Data

The ultimate aim of the Semantic Web is one in which software agents can perform vari-

ous tasks over Linked Data, including organising and enabling more efficient exploration

of information than traditional models based on keyword search. This thesis, however,

attempts to answer a more modest problem: can Linked Data, as a medium of raw

structured information on the Web, be directly accessed by non-technical users in order

to solve information tasks that require combining several data sources? This problem

can be broken down into several sub-problems. First, what are the main challenges to

developing generic tools that can provide access to Linked Data on demand? How can

potential users triage a large and complex set of data in a dataset and figure out if the

data contained in a dataset can be used to answer a particular question? How do we

best represent data in machine readable format to facilitate certain tasks? Who are the

users, and what are the potential use-cases? What biases and constraints do they bring

to a system?

16http://www.w3.org/TR/rdf-schema/
17http://www.w3.org/TR/owl-features/

http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/owl-features/
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This thesis is primarily concerned with the afore-mentioned interaction challenges. In

addition to the interaction challenges, accessing Linked Data in a truly distribute way

requires solving a number of technical, back-end challenges. Providing solutions to these

problems, however, is out of the scope of this thesis since these problems present general

problems to consuming Linked Data and adoption of the Semantic Web, and thus do

not only relate to end-user interaction. In the following section, this thesis argues why

end-users would benefit from having access to Linked Data on the Web, and presents

the key challenges to enabling such interfaces. It also reviews related work in a number

of active areas of research around data-centric interfaces. It also briefly presents some of

the back-end issues and discusses the limit of potential end-user contributions to solving

some of these challenges.

2.3.1 Defining Data-centric Interfaces for End Users

Interfaces over Linked Data come in various forms and for different purposes. In most

cases, it is likely that interfaces over Linked Data would only replace databases as the

data access layer and provide the same tools that are built over databases today. Thus,

in order to distinguish these instances of interfaces from data-centric interfaces we adopt,

the following criteria for defining a data-centric interface:

• Interfaces that are neither assembled over a particular dataset nor mandate an

input from a particular type of data, but rather access data on demand.

• Interactions that facilitate finding, combining and querying multiple sources of

data using the links in a graph of data.

• Interactions that allow sense-making of graphs of data for the purposes of meeting

data-centric needs.

The most common example of data-centric interactions over Linked Data is generic data

browsers. Generic data browsers use an analogy of a Web browser; however, instead of

browsing documents, it supports browsing data.

2.3.2 The Case for Supporting Data-centric Interactions over Linked

Data

Throughout this Chapter, various examples about ways of how structured data enables

new exploration features were given. The examples listed so far, however, exhibit one

common pattern - all of the examples are tools that were custom built to enable a par-

ticular set of interactions over some predefined data. In other words, we are allowed to

interact with the data only in ways provided by the publisher or application developer.
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While such interfaces promote the case of using structured information, they restrict

us from either reusing the data for other purposes or using it together with other data

sources. Take for example a faceted browser used to browse over data about mobile

phones: the browser might offer finding phones through common facets: price, man-

ufacturer, phone model. However, what if we wanted to filter through a property not

supplied by the browser e.g. battery life? Or what if we wanted to compare prices across

multiple online shops, and perhaps render a nice bar chart visualisation to convey the

comparisons? At best we would have to go through each phone we found on the first

site and do a search for each phone on another online site. Additionally we would be re-

strained by the inability to quickly extract these information resources - rather we would

have to resort to copying and pasting text snippets and aggregate them in a spreadsheet

to generate a desired visualisation. By having data represented in common formats and

integrated through linkages as Linked Data, we can begin to envision interfaces which

can gather, and represent data about related topics in a way that suits the needs and

requirements of the user.

2.3.3 Challenges of Developing Data-centric Tools for Exploring Linked

Data

Challenges in delivering end user data interfaces over Linked Data include both back-end

challenges and front-end challenges. Back-end challenges typically address problems of

scalability and data heterogeneity. Front end challenges include having sensible repre-

sentations of data and interactions that allow users to find and interact with data in

ways that are usable and take advantage of the inherent linkages that exist between

data sources. This section gives a brief overview of the key problems, both front end

and back-end, in order to give readers a holistic view of the challenges of having fully

fledged, generic data-centric tools over distributed data on the Web.

2.3.3.1 Front-end Challenges

Defining Sense-making over Linked Data

Publishing Linked Data is based on the notion that accessible data on the Web can be

reused by other parties, typically technical users, such as developers, in developing new

services. Data-centric tools, such as data browsers for casual users, explore the possibility

of having nontechnical end-users, those without technical skills, to access and reuse this

data for their own data-oriented information needs. Thus, one of the challenges of having

data-centric browsers is to allow sense-making over unfamiliar datasets containing raw

data published on the Web.

Russell et al. (1993) defines sense-making as the process of searching for a representation

and encoding data in the representation to meet a particular information need. Pirolli



38 Chapter 2 Background and Related Work

and Card (2005) reinforces this idea by arguing that sense-making is the ability to

represent data into a schema, whether internal or external which can aid analysis. Klein

et al. (2003) data-frame theory views the sense-making phenomenon in a similar context.

However, Linked Data on the Web is already structured data and published based on

some schema which the data publisher has already used to publish the data. Thus the

task of sense-making over Linked Data needs to be seen in another light; sense-making

over Linked Data is the ability of end users to explore and find appropriate data sources

combined with the ability to piece the various information sources in order to meet an

information need. This challenge can be broken down further. First, what sort of data

representations can the user handle? For example, some users can easily use more generic

representations, such as tables and spreadsheets, while other, less data-savvy users need

richer representations typically facilitated by custom build applications. Second, how

do people use the links between resources in Linked Data to find and combine different

data sources? Most of the generic data tools currently use navigation in the RDF graph

to facilitate finding related data resources starting from a selected set of resources.

Presenting data Since RDF by principle promotes separation of data from presen-

tation, finding suitable data representations for to the user is a significant challenge.

Creating data-centric browsers involves decisions on how closely the representations of

data in the browser relates to the underlying RDF data model. If a browser imposes a

level of presentation that highly abstracts the underlying data, then there is a danger of

losing its generic attribute. On the other hand, if the browser chooses to closely relate

to the underlying model, the user experience can be confusing for casual users with no

knowledge in data representation models and schemas. Commonly, generic browsers rely

solely on the structure of the RDF data model, i.e. the notion that everything is a triple

for representing data in the browser. A RDF resource is thus often used as the small-

est piece of information that can be represented in a browser. This, however, assumes

that all RDF resources can be considered as self-contained information resources that

are self-describable. While this is usually the case with most data published as Linked

Data, it cannot be assumed as a general case. Perhaps standardisation in publishing -

for example adopting minimal conventions (e.g. all resources must have a label property

used for rendering data in human readable formats) and use of a small set of common

vocabularies (e.g. labels are always described with the rdfs:label property) can give more

structure upon which generic data browsers can build on.

2.3.3.2 Back-end Challenges

Scalability Depending on various implementations, Linked Data browsers can process

either single or a relatively few RDF resources simultaneously, or can choose to enable

browsing over large volumes of data. This typically depends on the interaction that the

Linked Data browser intends to support. For example, earlier data browsers mimicked
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how normal Web browsers worked - browsing was typically done one RDF resource at

a time. Dereferencing a single RDF resource into a browser is not more computation-

ally or network intensive than rendering a Web page in a browser. Using dereferencing,

however, would make browsers that support browsing through large volumes of data

unresponsive. For example, it would be difficult to support faceted browsing over more

than a few hundred items without the use of a database. To facilitate such data in-

tensive features, large publishers of Linked Data rely on centralised triple stores with

query capabilities such as SPARQL to store and query graph data (Prudhommeaux and

Seaborne (2008)). Unfortunately, this once again results in fragmented Linked Data

sources on the Web, which require back-end support to be integrated into a single store

where they can be queried jointly. While research into federated queries is an active

topic in the Linked Data community (see Hartig et al. (2009)), these frameworks do not

yet provide execution of queries with response times required to match the necessary

responsiveness needed for a data-centric user interface.

Co-reference One of the core principles of the Semantic Web is to use URIs to iden-

tify real-world objects. However, different data publishers might use different URIs

to identify the same object. For example, the two URIs http://cities.com/paris

http://capitals.com/paris can be used to identify the same thing - in this case the

city of Paris. In the early days of the Semantic Web it was advocated to use the same

URIs to identify same resources across different data publishers. Since the initial Seman-

tic Web proposal, however, this approach was seen as the biggest scalability impediment

for a world-scale data publishing effort. Additionally, as publishing data using the Linked

Data principles began to emerge, requiring URIs to be resolvable inevitably meant that

only the publisher of a particular URI can make statements about the object that the

URI identifies. The Linked Data community has thus embraced this heterogeneity and

the use of dereferencable URIs actually now deterred publishers from reusing URIs for

identifying concepts (Booth (2009)). The problem of using different identifiers to iden-

tify concepts is known as the co-reference problem. A common practice nowadays is

for publishers to add equivalence links between instances identifying same concepts. In

terms of consuming data, however, this adds to the responsibility of dealing with this

problem on the part of the application consuming the data.

Heterogeneity

Publishing data on the Semantic Web mandates using RDF as a common model for

publishing data. However, using a common model for publishing data does not insure

that two resources of the same concept follow the same structure. This problem is known

as structural heterogeneity. Structural heterogeneity arises from the use of different

ontologies for structuring data. For example, a data publisher might choose not to reuse

an existing ontology like FOAF for describing people, but rather to create a custom

ontology to suit the particular application needs. The result means that any application

wanting to blend data from publishers that use and do not use FOAF needs to align
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the ontologies (i.e. provide mappings) of both resources to present a unified view over

the data. This creates problems for generic browsers, since most of them are only

aware of the common data model (subject, object, and property) and need additional

knowledge to jointly represent resources that are structured using different ontologies.

Alternatively, generic data browsers can choose to expose data heterogeneity to users and

support them in aligning the heterogeneous resources themselves (e.g. Potluck Huynh

et al. (2008)). Data alignment, however, is a laborious job even with good support, and

is unlikely to be picked up by casual users.

2.4 Areas Related to End-user Data-centric Interfaces

Research relating to data-centric interactions for non-technical users is presented in

several communities. In the database community, for example, a number of Visual

Query Languages aimed at improving database management by replacing command-

line SQL commands with graphical user interfaces. With the arrival of the Web, and in

the absence of structured data on Web pages, mashup tools aimed at helping to structure

data directly from Web pages. The scraped data could be used to support information-

gathering tasks or analysing information from several sources. Some mashups are also

designed as end-user programming tools, allowing people to combine or execute actions

over sources of structured information such as RSS or ATOM feeds and APIs.

2.4.1 Visual Query Languages

Since RDF is just another data-representation model, browsers designed to navigate

graphs of RDF data have similar concepts to visual query interfaces that have been de-

veloped in the years following the wide adoption of relational databases (e.g. Derthick

et al. (1997), Azmoodeh and Du (1989), Zloof (1977)). A comprehensive survey and clas-

sification of relational database visual query tools is given in Catarci et al. (1997). While

some interaction principles are common with existing data browsers, there are several

notable differences. First, most of these interfaces were designed to be used in a database

with a limited dataset and not part of much wider, Web-scale datasets in mind. Thus,

these interfaces do not have to account for large numbers of relationships and serendip-

itous discovery of data. Second, many Visual Query Languages were designed with the

intention of providing better administration and management of databases, rather than

to provide and empower the end-user for the purposes of sense-making. Some examples

that have tried to marry aspects of visual query languages with direct-manipulation

visualisation tools for the purposes of analysing data include Visage (Figure 2.9) and

SnapTogether (Derthick et al. (1997); North and Shneiderman (2000)).
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Figure 2.9: The Visage tool integrating visualisations with a visual query lan-
guage (Derthick et al. (1997)).

2.4.2 End User Mashup Tools

Recently, a popularised method of publishing content on the Web is creating mashups

i.e. publishing aggregated content from several sources into a coherent representation.

While mashups have sprung up all over the Web (e.g. an RSS reader can be considered a

mashup), most of these are tailored made Web resources developed by programmers and

offered to end users with little or no flexibility for adding new sources or representing

existing resources in multiple ways. Mashup interfaces for end users have been researched

in both the context of mixing up web content as well as for mixing raw data on the Web.

The lack of structured data on the Web, and inability to organise content on a more

granular level than web pages, provides the motivation for many end-user mashup tools.

For example, WebSummaries is a tool that allows people to specify patterns in data-

rich websites and create collections of structured information (Figure 2.10) (Dontcheva
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et al. (2006, 2008)). The Intel mash maker also searches and extracts structured data

out of multiple Web sites that can then be visualised and represented in multiple ways

(Ennals et al. (2007)). Reform allows programmer-contributed widgets and browser

extensions to be used by the end-user as a way of augmenting and viewing information

on websites in different ways. Some approaches use unsupervised ways of structuring

unstructured content (Toomim et al. (2009)). PiggyBank, for example, allows data to

be automatically extracted from multiple pages to form collections that can then be

browsed using a faceted interface (Huynh et al. (2007a)). Miro also uses a sophisticated

data detection method that matches the semantic context of a Web page to potential user

goals (Faaborg and Lieberman (2006) ). TX2 uses connections found from gathering and

mining interactions of users with web forms to integrate the search results from multiple

pages by context in a single results page (Bigham et al. (2009)).

Figure 2.10: The WebSummaries tool Dontcheva et al. (2006).

There are also many mashup tools that allow end users to create mashups outside web

browsing activities. Systems such as Yahoo Pipes18 (Figure 2.11), Marmite Wong and

18http://pipes.yahoo.com/pipes/

http://pipes.yahoo.com/pipes/
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Hong (2007), Microsoft Popy19, IBM QEDWiki20, and Anthracite21 support combing

data in an application-like interface using drag-and-drop interactions that graphically

chart data flows and actions. The end-user programming method of these interfaces,

however, hasn’t been widely adopted despite being around for several years. For ex-

ample, two of the three major tech companies offering end user mashup editors have

discontinued these projects (Google’s Mashup Editor22 and Microsoft’s Popfly23, the

only one remaining being Yahoo Pipes).

Figure 2.11: The YahooPipes user interface.

2.5 User Interfaces over Linked Data

In the previous sections, this thesis discussed sources of structured data on the Web, the

aims and vision of the Semantic Web and it gave an overview of the general challenges

19http://en.wikipedia.org/wiki/Microsoft_Popfly
20http://www.youtube.com/watch?v=63qIq9t9Gqs
21http://www.metafy.com/products/anthracite/
22http://en.wikipedia.org/wiki/Google_Mashup_Editor
23http://en.wikipedia.org/wiki/Microsoft_Popfly

http://en.wikipedia.org/wiki/Microsoft_Popfly
http://www.youtube.com/watch?v=63qIq9t9Gqs
http://www.metafy.com/products/anthracite/
http://en.wikipedia.org/wiki/Google_Mashup_Editor
http://en.wikipedia.org/wiki/Microsoft_Popfly
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and requirements for having usable data-centric interfaces over Linked Data. This sec-

tion attempts to give a wide overview of the general area of interfaces over Linked Data

designed for end users. The section touches upon several topics: various forms of inter-

faces, visualisations and interactions over Linked Data. Apart from giving an overview

of Linked Data interfaces for end users, the core aim of this section is to present two fun-

damentally different approaches of applying interfaces for end users over Linked Data:

the first, a data-mapping approach of applying interfaces over Linked Data that allows

configurable interfaces to be added over predefined aggregation of Linked Data, and

the second, data-centric interfaces that enable interactions over arbitrary Linked Data

resources through navigation and browsing.

2.5.1 Representing Data

In general, two approaches can be used to represent data in a tool: (1) a direct vi-

sualisation approach which requires no configuration or requires no representational

information in addition to the data, and (2) representing data through representational

information, such as templates. A survey of various ways of visualising Linked Data in

tools is given by Dadzie and Rowe (2011).

2.5.1.1 Direct Visualisation Approaches

Since RDF is essentially a graph of inter-linked resources, early Semantic Web interfaces

used this inherent structure to present data in browsers as network graph visualisations.

From a purely visualisation standpoint, some studies (typically in the domain of social

networks) have shown utility of graph visualisations; however they usually tend to be

utilised in specific circumstances. Graph-based visualisations can be useful for under-

standing data only when the number of nodes and edges is relatively small, for example

when visualising your personal social graph (Heer and Boyd (2005)). Uses of large-scale

visualisations of network graphs have been used showing certain aggregate attributes

of data, e.g. showing density of connections between things in data and these usually

tend to be used in conjunction with other visualisation aids such as colour, node ar-

rangement and edge length and statistical information to make clusters visible (Perer

and Shneiderman (2008)).

Graph visualisations for browsing data are typically found in interfaces which include

authoring capabilities, both on the instance and ontology level. Examples of interfaces

offering graph visualisation are IsaViz24 and Fenfire (Hastrup et al. (2008)). Many

ontology authoring tools such as Protegè25 typically use graph visualisations to convey

complex ontology domain and numerous approaches have been proposed to visualise

24http://www.w3.org/2001/11/IsaViz/
25http://protege.stanford.edu/.

http://www.w3.org/2001/11/IsaViz/
http://protege.stanford.edu/.
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and browse ontologies at scale (Xiong et al. (2006); Motta et al. (2011); Howse et al.

(2011)). Ontology visualisation, however, is appropriate for users that are knowledgeable

in semantic technologies and data publishers rather than end users. m.c. schraefel and

Karger (2006) argue that graph visualisations of instance level data do not offer any extra

affordances for casual users and rather expose them unnecessarily to the complexities

of the underlying data model. As an analogy, they point out that even though the Web

itself represents a graph, it is never represented to the user as such.

Another approach of directly representing RDF data is to represent each RDF resource

as a Web page where the properties linking from and linking to the particular resources

are represented as hyperlinks. This approach has been adopted by early generic browsers,

such as Disco26, and is also an adopted paradigm for Linked Data publishers who usu-

ally resort to this particular type of representation when a URI is dereferenced from a

browser. These representations are useful for technically oriented consumers of Linked

Data, but are of little use when richer data-oriented interactions are required.

2.5.1.2 Use of Lenses and Templates

Machine readable data should never be surfaced up to the user, so most data-centric

browsers utilise literal values in the RDF which are used to represent data to users.

However, data can be shown in many different ways; for example each single RDF

resource can be accompanied with a visual representation, or another example would be

multiple RDF resources sharing common properties to be bundled up in order to show

an appropriate aggregate representation. In order to facilitate multiple representations,

reusable constructs such as lenses and other forms of templating (commonly used in

server side powered webpages) have been used to capture knowledge about how RDF

should be presented in an interface. An example (Figure 2.12) of a simple snippet

of data represented through two different lenses illustrates this concept. The example

shows data about UK local regions by applying two different lenses. The first lens is

applied to each individual region which can be used to show a list of regions alongside

information about their respective area size and pollution level. The second lens can take

data from several regions, compute the total pollution relative to the area of each region

and display them as an aggregate intensity map. Because the principle behind RDF

by design advocates strict separation of knowledge and presentation, representation is

usually left to the interface consuming the data.

Deploying representations of data can be either contributed by the developer of an

interface over Linked Data or by the users which use the interface. Fresnel lenses, for

example are encoded in RDF, and specify which portions of a RDF need to be selected for

a given resource or resources of which have common attributes (Pietriga et al. (2006)).

The Template Attribute Language (TAL) for RDF offers lightweight descriptions for

26http://www4.wiwiss.fu-berlin.de/bizer/ng4j/disco/

http://www4.wiwiss.fu-berlin.de/bizer/ng4j/disco/
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<example.com/nuts/Mendlp> 
          <rdfs:label> "Mendlp" .
          <example:polution> "1021000 metric tons" .
          <example:area> "739.44km2" .
          <example:latlong> "51.27,-2.59" 

<example.com/nuts/WindsorAndMaidenhead> 
          <rdfs:label> "Windsor And Maidenhead" .
          <example:polution> "1257000 metric tons" .
          <example:area> "198.43km2" .
          <example:latlong> "52.27,-3.59" 

<example.com/nuts/Hambleton> 
          <rdfs:label> "Hambleton" .
          <example:polution> "1021000 metric tons" .
          <example:area> "1331.23km2" .
          <example:latlong> "52.94,-0.96" 

Lens

Lens

Lens

Raw Data Lens UI

Linked Data Publisher Linked Data Consumer

Lens

Figure 2.12: Use of lenses to display RDF data. Lens can be deployed per
resource or can be used to show aggregate views of multiple RDF resources.

generating XML (typically XHTML) and textual representation of resources out of RDF

(Champin (2009)). These approaches are typically used by developers of interfaces over

Linked Data. Other approaches, such as SemLens allow displays of data in more raw and

generic formats, such as lists and tables, to be selected and visualised through the use of

widgets that can take data selections as input (Heim et al. (2011)). Dido allows users to

add new visualisations and structured information about the lens through WYSIWYG

interface (Karger et al. (2009)).

Concepts such as lenses are applicable to interfaces that can be configured to finite data

sources. Because a dataset is finite, a publisher of a user interface can provide lenses

for all the data because the data source is known a priori. Generic interfaces, however,

assume that they can directly access any raw data and thus try to display data through

various basic heuristics - for example looking for common properties, such as labels,

titles and literal values. Both have advantages and disadvantages; in the former case,

the lack of any representational information can result in a poor user experience, but it

can offer greater flexibility and customisation to users, who can create representations

that fit their needs. The latter, on the other hand, can offer a more usable experience of

data and display useful visualisations and representations. A balanced approach would

offer both suggested rich views and the ability to access the raw data on demand, but

interfaces with such capabilities are rare, especially for generic data browsers. One

possible example are Exhibit and Dido which offer users the option of exporting the
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data used by the interface, but both tools are still fundamentally interfaces that support

browsing over finite datasets and do not allow browsing through arbitrary Linked Data.

2.5.2 Data-mapping Interfaces

When rich interactive browsing experiences are published on the Web, the data is usually

collected and maintained by the same party that designs and develops the interface

through which the users access the data. While modules and reusable components exist,

the implementation is usually tailor-made for each data publisher. One of the advocated

benefits of Linked Data is that applications can be reused and deployed faster and more

efficiently due to data publishing, using common standards. In this direction, there have

been a number of proposals for generalising browsing interfaces in a way that allows any

data in RDF to be quickly mapped or configured to the components of the user interfaces.

These data-mapping approaches are applicable when the scope of the dataset is finite

and needs to be contrasted with generic browsers that are designed with the assumption

that they can operate over arbitrary sources of Linked Data.

2.5.2.1 Faceted Browsers over Linked Data

Several Semantic Web interfaces have leveraged the power of faceted browsing, due

to their relative ease of use, expressive power to construct complex queries, as well

as preventing dead-end queries which yield no results. Since faceted browsing does

not require an organisational hierarchy for the data beforehand, it has been a popular

method for applying interfaces over graph data. Faceted browsers implementations over

graph data vary in terms of how they provide mappings and configuration over data,

how well they scale and various levels of functionalities they provide.

mSpace (schraefel et al. (2005)) is a faceted interface which arose from an attempt to

generalise an implementation of an earlier interface - the CSAKTiveSpace Shadbolt et al.

(2004). Typically used for collection of items about a particular topic, the mSpace is a

faceted browser that allows the user to switch and select facets and arrange them in a

hierarchy in which they wish to explore the information space (Figure 2.13). mSpace can

be mapped on an RDF dataset through the use of the Facet Ontology - an abstraction

over RDF data to provide mappings of RDF data to the mSpace data model (Smith and

mc schraefel (2008)). Alternatively, the DataPicker interface allows easy installation of

mSpace interface over a SPARQL repository of RDF data by picking a goal object (the

items for which the mSpace is for) and select facets through connections in the graph

(Smith et al. (2010)).

/facet is another faceted browser for RDF. /facet allows a large number of facets to be

simultaneously deployed on a faceted browser, by applying it to various collections of



48 Chapter 2 Background and Related Work

Figure 2.13: The mSpace column faceted browser supporting backward high-
lighting.

items in a domain (Hildebrand et al. (2006)). For example, data about the Art domain

can include collections about Artworks, Painters etc. and each of these collections have

a number of facets. The tool allows the user to switch between collections to combine

the filters from each collection. Thus, if the initial items were constrained by filtering

and using some facets, the corresponding switching operation reflects this by showing

only the corresponding items and facets.

To offer fast and responsive faceted browsing, all of the aforementioned tools require that

the data is put in some database storage to facilitate fast querying over large datasets.

Exhibit, on the other hand, provides faceted navigation interface over small datasets

that can be easily deployed by a casual user knowledgeable only in HTML (Huynh et al.

(2007b)). Exhibit intentionally hides the complexity of implementing a faceted browser

by allowing users to only specify the using simple HTML constructs.

BrowseRDF is a faceted browser which allows faceted browsing without any need of

an a priori configuration (Oren et al. (2006)). In addition to basic selection of facets,

BrowseRDF allows existential selection, join selection, and intersection on facets as

well as an inverse operation on these. Since it follows a non-configuration approach,

the authors recognise that all properties in a particular collection of RDF data do not

make suitable facets and propose a ranking mechanism to foreground potentially useful

facets to the user. The ranking is done by viewing faceted browsing as constructing a

decision tree, showing useful facets according to the predicate balance, object cardinality

and predicate frequency after each faceted selection. This problem of identifying useful

facets again gives rise to the problem of lenses - lenses can not only be utilised to show

presentational aspects of the data, but also serve to denote other useful aspects; for

example which groups of properties make good facets together for browsing.

2.5.2.2 Widget Library Approaches

Another common approach to generating interfaces over Linked Data is through the use

of widget libraries that allow portions of data in RDF to be mapped to widgets. These

widgets can then be assembled and added to interface implementations. In this respect
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Exhibit and Dido can be viewed as widget libraries. Hildebrand and van Ossenbruggen

(2009) allows autocompletion and faceted browsing to be used as off-the-self widget

components. A similar approach is taken by Paggr which additionally allows data to be

passed by widgets (Nowack (2009)).

2.5.3 Data-Browsers and Navigational Interfaces

The approaches described so far follow a common paradigm: they allow interfaces sup-

porting interactions over data to be easily added on top of predetermined dataset. This

allows the publishers of data-oriented interfaces total control over the experience and

interactions of data. A distributed data-connected Web of Data, however, offers the

possibility to access, integrate and use data on demand and not be limited by the user

interface. Similar to how a Web browser allows access to any webpage on the Web, we

need tools which allow us to access data - any data published on the Web. Facilitating

access of data on demand, however, is significantly more complex. While the Web is a

collection of documents where content and presentation are combined and routed to the

browser, the Web of Data is raw information without any presentation. Thus, represen-

tation is left to the data consumer. Additionally, access and navigation on the Web of

Documents is a relatively simple concept - access is one page at a time and navigation

takes the user to another page. Links on Linked Data, on the other hand, are typed and

this allows for richer navigation with access to one or several resources at a time.

Data Browsers are commonly used to facilitate access and navigation of Linked Data

on demand. The simplest approach to navigating arbitrary graphs of data is to view

any RDF resource as a web page. Browsers such as Disco27, Marbles28 and Zitgist29

follow this approach. The browser renders one RDF resource per page, showing all the

properties and property values for each RDF resource. If a value of a property links

to another RDF resource, this is rendered as a hyperlink to that RDF resource. These

browsers, however, do not offer much more utility over viewing the same information

on a regular web page. For example, a Wikipedia article about Berlin is a much better

experience than viewing the corresponding information in a generic browser’s rendering

of the Berlin DBPedia resource. While some of these types of browsers do provide lenses

over data, they still do not add any additional value over Web documents. Haystack, a

personal information management tool, also facilitates one resource at a time browsing,

however multiple instances can be joined in collections for presentation purposes (e.g.

multiple calendar events presented on a calendar) (Quan and Karger (2004)). In addition

to presentations, Haystack also allows authoring of semantically described services that

can invoke operations on data or resources that are in current view.

27http://www4.wiwiss.fu-berlin.de/bizer/ng4j/disco/
28http://www5.wiwiss.fu-berlin.de/marbles/
29http://dataviewer.zitgist.com/

http://www4.wiwiss.fu-berlin.de/bizer/ng4j/disco/
http://www5.wiwiss.fu-berlin.de/marbles/
http://dataviewer.zitgist.com/
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Pivoting or set-oriented browsing (sometimes referred to as link-sliding) is a technique

of refocusing a view on a particular set of items by simultaneously navigating through

a common property. It is an extension of the one-to-one browsing paradigm, which has

been the prevalent browsing mode on the Web, to a many-to-many browsing mode.

Small Studio 
Appartment

Room in
a Duplex

Portswood

hasRentals

hasRentals

hasRentals

Rentals Facets
Price
Size

AvailabilityhasRentals

Area Facets
Crime

Population

Items Link-slide operation Item Facets

2 Bedroom
House

Shirly
1 Bedroom 
Appartment

Figure 2.14: A pivoting example showing a pivot from a collection of places to
rentals.

Pivoting is a more natural type of interaction with data rather than documents since

the items of interaction are typically real-world concepts and properties have a meaning

associated with them. The general concept of pivoting is shown through an example in

Figure 2.14. In a browser supporting pivoting, users can access several resources at a

time (in the example resource of type “place”). They then simultaneously get or pivot

to all other available resources (in our case rentals items) through the common property

(in this case the hasRentals property. Such interaction is currently unsupported on

the document Web; to gather all of the required information a user would have to go

through several pages and only one at a time in order to retrieve the required information.

Pivoting over graph data reduces this to a single step by leveraging common properties

in sets of resources.

Implementation of pivoting varies across browsers. The Tabulator (Figure 2.15) can be

considered as an early example of pivoting (Berners-lee et al. (2006), Berners-Lee et al.

(2007)). Users browse starting from a single resource following links to other resources.

Tabulator then allows users to select a pattern by selecting fields in explored context

and tabulate any results that are following the same pattern. Explorator uses pivoting
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Figure 2.15: The Tabulator interface for exploring Linked Data. Each navi-
gated resource is displayed as a nested concept of the resource from which the
navigation originated.

as a metaphor for querying, where users select subjects, objects and predicates to create

sets of things, subsequently combining them with unions and intersections operations

(Araujo et al. (2009)). The Humboldt browser provides a list of items and faceted

filters from which the user can choose to pivot or refocus (Kobilarov and Dickinson

(2008)). Parallax (Figure 2.16) shows the current items, a list of facets and a list of

connections showing the available properties to perform a pivoting operation (Huynh

and Karger (2009b)). In VisiNav users can drag and drop properties and instances in

order to pivot and filter through results (Harth (2009)). A common characteristic of

these interfaces is the notion that pivoting never occurs in branching i.e. a user cannot

pivot with two different properties from the current focus and keep the context of both

trails of exploration. In Parallax, however, this is supported to some extent in the

tabular view where generating a table allows this feature. gFacet also mitigates the

problem of branching (Heim et al. (2010, 2008)). In gFacet, exploration starts from a

collection of items. Users can get related lists of items through a selected property. The

lists of items, generated through successive pivoting operations, are used as facets and

spatially arranged in a graph visualisation.
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Figure 2.16: The Parallax browser. It allows set-oriented interaction with mul-
tiple resources. It supports faceted filtering of each collection (left) and a list of
connection to which the collection can pivot (upper right).

2.5.4 Mashup Editors

Mashup editors and end user programming approaches have also been used as a tem-

plate for building interfaces over arbitrary sources of Linked Data. This concept of

visually building and querying for resources has been adopted by a number of interfaces

over RDF data (Jarrar and Dikaiakos (2008); Morbidoni et al. (2007); Le-Phuoc et al.

(2009)). Another approach to mashing data has been adopted by Potluck, which allows

combining data from several Exhibits (Huynh et al. (2008)). Potluck uses drag and drop

to combine resources from two Exhibits to create a single Exhibit of aggregated data.

It also offers lightweight alignment tools to align potentially different data formats (e.g.

editing telephone numbers - one that includes area codes and one that does not - across

multiple cells simultaneously). Depending on their user target group, the complexity in

all of the aforementioned approaches varies. In most cases, however, mashup editors are

often too complex and time consuming for end users and do not offer enough flexibility

to programmers.

2.5.5 Keyword Search and Natural-Language Processing

The browsers and data-centric tools presented so far are direct manipulation tools - they

rely on users to interact the interface of data browsing and manipulate objects or input

commands (textually or visually) to query for particular results. Another approach of

data browsing is to rely on keyword search, a familiar and well-established way of finding

information on the Web. Most of the semantic search engines (e.g. Sindice) use keyword

search for entity retrieval of RDF resources (Tummarello et al. (2007)). Another text-

based approach is providing Natural Language Interfaces (NLIs). NLIs use Natural
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Language Processing (NLP) techniques to map complex queries required as free text to

structured queries understood by computers. In a study performed by Kaufmann and

Bernstein (2007), Kaufmann and Bernstein (2010), four variants of NL interfaces (NLI)

were used to test the usability of natural language interfaces for querying structured

data. The four interfaces included various levels of expressivity, starting from completely

uncontrolled up to constrained language. The study showed that the full-sentence query

option with feedback and iteration was significantly preferred to keywords, a menu-

guided, and a graphical query language. The study, however, was done exclusively with

well-formed fact-finding questions, i.e. questions that are not exploratory in nature.

Thus, the performance of natural language tools versus direct manipulation tools for

exploratory tasks is still an unexplored area.

2.6 Summary

This Chapter presented background work and a general overview of approaches to end

user interfaces over Linked Data. It discussed the uses of structured data, and how

interfaces can power novel ways of searching and querying for information over structured

data. It also presented the core principles of Linked Data, and its aim to provide a global,

distributed platform where data is published using common principles. The main points

of this Chapter can be summarised as follows:

• Existing data browsing interfaces typically offer interactions over fixed datasets,

thus fragmenting data sources by encapsulating them in tailor-made interfaces.

Since Linked Data, in principle, allows data to be published using common stan-

dards and is linked to other resources before consumption, it potentially allows

novel interfaces to be built, which would take the advantage of Linked Data over

integrated data on demand to provide sense-making.

• The related work in Linked Data interfaces described two approaches of end-user

interactions over data; the first attempts to generalise existing browsing interfaces,

so that they can be easily configured over arbitrary datasets and thus deploy

interfaces with ease, and second, generic data browsers that do not require a priori

configuration over fixed data, but currently suffer from usability challenges because

of their inherent generality. The Chapter also discussed some of the infrastructure

and back-end limitations of deploying fully fledged, generic data-centric interfaces

such as data browsers.





Chapter 3

Design Process for Data-centric

Interactions over Linked Data

The original description of the Semantic Web envisioned applications that could wander

through a linked world of thousands of different data resources, learning and discovering

new sources of information in real time, and combining all the information to produce

valuable answers to users. By enabling data-centric interactions, this thesis proposes

placing the users directly in this loop; rather than having intelligent applications that

gather information, users are empowered with tools that allow them to interrogate, ex-

plore and combine data sources on demand. Thus, such interfaces need to be generic, in

the sense that they can access a source of Linked Data with no or minimal configuration,

they need to be open-ended in design, meaning that users can serendipitously discover

and add new data, and they need to be designed to handle the amounts of data which

the Semantic Web envisions to be available on the Web.

Yet, as a class of applications we still know relatively little about design principles for

data-centric interfaces designed for nontechnical end-users. Design challenges present

themselves in several areas. The first challenge is defining good use-cases of data-centric

interactions. In terms of higher-level information seeking processes, what sort of tasks

are best supported by data-centric interactions? People use the Web for a wide array of

information-related activities, from simple fact finding queries, to long-term information

gathering (Sellen et al. (2002)). What sort of activities would benefit from having data-

centric interfaces over Linked Data? Who are the potential users of such systems, and

what biases and constraints do they bring to such interfaces? Upon answering such

questions, we can begin diving into specific problems associated with tool design. For

example, where does a user start exploring data? How is data browsing and exploration

facilitated? How is data, represented internally as a graph, represented to users? How

are individual resources represented? What additional tools would help users make sense

and explore unknown datasets more efficiently?

55
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With the increasing number of available data on the Web as Linked Data, a number of

data-centric browsers have been proposed with end-users in mind. While these browsers

share similar goals and rely on similar concepts - i.e. allowing end-users exploration,

browsing and querying over arbitrary data sources - their implementations vary de-

pending on how exploration is conducted, how data is represented, and how queries are

executed. Therefore, there has been very little research on specific design considerations

when building generic data browsers, leaving questions, such as which representations

work best for which kinds of tasks, or comparing browsing techniques, largely unan-

swered.

To tackle the tasks of designing interfaces that offer data-centric interactions and data

browsers in particular, this Chapter presents a design process framework. The de-

sign process is an attempt to formally approach the problem of designing data-centric

browsers. It first attempts to characterise data-centric interactions by providing suffi-

ciently realistic use case scenarios. Using these scenarios, the design process attempts

to identify the attributes and challenges of designing data-centric browsers, by going

through a requirements analysis exercise. By identifying attributes of data-centric

browsers, it analyses and compares existing browsers on particular features and, when

appropriate, suggests potential solutions from related areas. Combining this information,

this Chapter describes an early prototyping effort of designing a generic data browser

over Linked Data named GEORDi1. Finally it synthesises the information gathered

in the analysis to elicit a list of challenges associated with end-user access over Linked

Data.

3.1 Design Process Goals

At its core, Linked Data is a method of publishing structured information on the Web

about real-world entities. The links established between entities from local and dis-

tributed data sources reinforce an image of a Web of Data, where the basic unit of

information is a resource of structured information that is addressable and accessible

through a URI, in much the same way as documents on the Web. The image of a

Web of Data intuitively suggests that one can replicate the notion of “browsing” data

as an analogy to browsing documents on the Web. This premise has been the driving

motivation in designing early data browsers over Linked Data. However, while access

to a particular Web page is usually done in order to obtain information that has been

intentionally packaged for consumption upon request, access of raw data is rarely a goal

in itself - rather, it is the first step of solving a data-centric need, which includes the

1A note on collaboration: The prototyping exercise described in this Chapter is partially a result of
a collaboration among several researchers. The original designs of GEORDi were done in collaboration
with Dr. Max Van Kleek. Implementation and coding of the prototype was done in collaboration among
Dr. Max Van Kleek and Dr. Daniel A. Smith and myself. The observation and problems identified were
the result of my own research.
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ability to query, combine and analyse multiple data sources. For example, for typical

end users, accessing structured, machine-readable information about London offers no

better experience than accessing the Wikipedia page about London - in fact, without a

presentational template the experience would be worse. On the other hand, accessing

and comparing information for multiple cities, by making a custom chart visualisation

might be achieved easier if structured data was available on the Web. This would save us

time and effort of going through multiple web sites scraping the unstructured data to get

an answer to the question. Thus, simply providing any access to structured information

cannot be considered being a data-centric interaction - by that token, simply download-

ing a spreadsheet file on the Web might be considered a data-centric interaction.

In order to begin designing data-browsing interfaces we must clearly define what are high-

level information-seeking activities that we want to support, and how Linked Data can be

a contributor to having efficient data-centric interactions. Thus, the goal of this Chapter

is to fashion a design process around which to investigate data-centric interactions over

Linked Data. The described design process aims at gaining an understanding of the

following:

• Characterise the activity of browsing and sense-making over Linked

Data. What sort of information-seeking activities that require combining data do

we want to support, and why does Linked Data provide a good platform for these

types of activities?

• Identify attributes of data-centric interfaces. Existing instances of data-

centric interfaces such as data browsers are inherently an entropic set of tools - they

differ extensively in their intended audiences, their purpose and consequently the

interactions they offer. How can we classify or compare data browsing interfaces?

How are they different in design? What are the attributes along which these

interfaces can be compared?

• Identify problems and challenges. By beginning to understand the high-level

processes we want to support and provide a map of the attributes of data-centric

browsers, and we can start to identify challenges to specific problems and potential

solutions.

3.2 Method

For most design problems, the process exists in order to lend guidance to an inherently

entropic set of tools and techniques. Such processes are first aimed at getting the right

design i.e. selecting the best idea in a pool of many ideas, and then at getting the

design right i.e. executing the chosen idea (Tohidi et al. (2006)). However, the initial

challenge we are confronted with when approaching this particular design space is not
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only generating ideas and selecting (and possibly executing) the best one, but identify-

ing specific areas where browsing/exploring/interacting with Linked Data represents a

challenge that needs to be addressed.

In order to create a design process to uncover as many as these areas as possible we used

a method inspired by the scenario-based design (Rosson and Carroll (2003)) (Figure

3.1). The design process method described throughout this Chapter includes five steps:

Figure 3.1: The Scenario-based design process proposed by Rosson and Carroll
(2003).

• Propose personas The design process begins by portraying personas which de-

scribe situations where data-centric interactions are required to solve an information-

seeking task. In addition to portraying two data-centric interactions we also in-

clude descriptions of the types of stakeholders in each one, in order to suggest

users with different backgrounds, skills and biases.

• Break down the process of data-centric interactions into specific activi-

ties The next step in the design process is to break down the scenarios described

in the personas into specific activities/requirements. A functional analysis of the

requirements is carried out by looking at what tools currently support the accom-

plishment of the task outlined in the scenario/use case and identifying potential

gaps. This analysis is described as a walkthrough - it lists the activities that the

user needs to take in order to accomplish the task by using information sources

and tools available on the document Web. We then make a similar iteration over

the same scenario, based on the assumption that now we have a case where raw
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information sources of Linked Data are available that can hypothetically be used

to solve the same task. During the second iteration we try to identify problems

in accessing Linked Data and try to identify existing research, HCI theory, and/or

tools over interfaces over structured data which can potentially inform possible

approaches to solving the identified problems.

• Analyse existing interfaces and approaches offering data-centric inter-

actions over Linked Data Once specific activities/functions are identified in

accessing Linked Data, we can use these to analyse the solutions presented in the

existing set of tools that offer end-user access over Linked Data. For each of the

listed challenges, we examine the corresponding component or interaction of the

tool, note similarities or differences in their approaches and identify challenges for

interaction and application design. When needed to illustrate how each tool ap-

proaches an identified challenge, we resort to describing the component through

the hypothetical Linked Data sources provided earlier. Unfortunately, further test-

ing of these tools on live data was not an option, since many of these tools are

either inactive or publicly unavailable.

• Prototyping, evaluation and reflection Based on the requirements gained

through the analysis, we engage in a prototyping exercise by designing a generic

data browser named GEORDi. The purpose of this prototyping exercise is to

iterate over the initial set of identified challenges and use deployment over live

Linked Data in order to either refine these challenges or identify new ones. We

outline specific design goals for GEORDi and include initial observations by testing

execution of data-driven tasks over several different datasets.

• Identify Challenges Based on the walkthrough, an analysis of existing systems,

and our own experience in prototyping, we can begin by proposing an initial set of

challenges for building usable generic data browsers. These challenges can either

be functions or affordances that current tools do not provide but are deemed

necessary to complete a task or they might be design issues with functionalities

provided in existing browsers. Challenges need to be directly associated to specific

tasks described in the scenarios, which in turn can be attributed to a specific

function in a data-centric browser.

3.3 Personas for Data-centric Interactions

The hypothesis for approaching the problem of creating data-centric browsers is that we

will generate the most useful results if we focus this interrogation through a sufficiently

challenging and realistic use case. To choose appropriate personas requires several crite-

ria: (1) the persona must describe a situation where a task cannot be completed without
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consulting multiple dataset, (2) personas can be differentiated based on the setting, con-

text and current tools used to integrate data from multiple sources.Thus, we choose two

personas inspired from both documented problems in end-user data interactions and

real-life experience. Our personas are also based on two types of stakeholders. The first

type of stakeholder is a data-journalist, a typical knowledge worker, familiar with end-

user data manipulation tools such as spreadsheets. This type of user, however, rarely

possesses advanced technical skills, such as programming and database administration.

The second type of stakeholder is a graduate student who is largely unfamiliar with

end-user data manipulation software. Rather, all searches and combining of information

are done manually using the Web and possibly with the use of note-taking tools in or-

der to combine and log information. To keep the personas sufficiently realistic we base

our examples on real life situations. For the data-journalist stakeholder, the example

scenarios are derived from several examples in the Data Journalism Handbook (Gray

et al. (2012)). For our graduate student, the chosen scenario was based on the real life

experience of graduate students when making travel arrangements to attend conferences

abroad.

Persona 1

Chris, is a 32 year old data journalist working for the Economist. Chris is

currently working on an investigative piece on the increasing rise and de-

velopment of third-world countries. Over the past 10 years multiple articles

have suggested that many developing countries have made great strides to-

wards becoming developed countries themselves, and in fact so much that it

becomes increasingly meaningless to classify all these countries as simply the

“developing. Indeed, enormous differences in development levels exist among

these countries. Chris’s current piece attempts to create a comprehensive

study supported by various data sources examining this phenomenon from

different angles using different sets of data. For example, he would like to

include and examine how this phenomenon is distributed along different re-

gions in the world by examining GDP growth, poverty levels, trade etc. In

addition to looking at standard development indicators, he wants to bring in

additional factors to his analysis; for example information about how much of

this development has been tied to investments in infrastructure projects such

as transportation systems, or how is governance and corruption in particu-

lar correlated to development indicators. In addition to social and economic

indicators, he would also like to examine cultural indicators that suggest that

developing countries are catching up. For example, he would like to see the

number of developing countries that have hosted major world events such as

the Olympic Games and the World Cup, which have historically been hosted

by more developed countries. Chris is a computer-literate professional that

is knowledgeable in manipulating spreadsheets of data and visualising them
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by using charts and graphs. However, for many of the unstructured sources

he wants to integrate, he would need the services of a programmer.

Persona 2

Anna, is a 25 year old UK graduate student working on her PhD in Neuro-

science. Anna just published her first paper at an international conference in

Lyon, France. In order to attend the conference, except for registering, she

also needs travel arrangements, which include booking a hotel and a flight to

Lyon. Being a PhD student, Anna knows that her annual travel budget is

limited, so she needs to find suitable accommodation and travel arrangements

at a reasonable price. In addition to the price limitation, she also has other

requirements; she wants the hotel to be relatively close to the conference cen-

tre or at least close to a local transportation station with links going to the

conference centre. Furthermore, she would like to be able to visit the old part

of city, so she wants the hotel to be also accessible to that part of the town.

To find good prices, she knows that she can get deals if she were to combine

her flight with her hotel booking on a variety of travel sites. Additionally, the

conference has listed several hotels on their site that provide discount prices

for conference attendees. Anna has previously used and usually bookmarks

pages of information when her tasks require gathering information from mul-

tiple websites.

3.3.1 Walkthrough

In the following section we provide a walkthrough and examine the challenges in accom-

plishing each of the tasks with available resources on the Web today.

Walkthrough 1

Chris’s task at hand requires him to do several things. First, he needs to find as much

information he can about the various attributes or data he wants to include in his analysis

about developing countries and then he wants to be able to iteratively explore the data

as a whole i.e. be able to filter and compare different countries by various criteria in

order to find interesting patterns to report. Chris imagines that his task would involve

generating a customised spreadsheet that aggregates data about the various things he

wants to examine. For example, he would imagine that his end result would be a

spreadsheet that starts with a column of all the developing countries and have all the

subsequent columns contain data related to the countries. The additional columns, for

example, would list the countries GDP per capita, development index, inequality index,

number of infrastructure investments, number of hosted Olympic games or World Cups

and other data he might deem important to his analysis.
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To complete his first task he starts by searching for development data about countries

from websites known to him such as the World Band2, the IMF3 and UN statistics

site4. These sites offer a number of ways to explore what sort of data each dataset

contains. For example, the World Bank offers a selection of indicators, along with a

written explanation of the indicator.

Once these datasets are examined, Chris decides that the best sources of data are the

IMF and World Bank datasets. He needs to combine both for different purposes; however

he faces challenges. For example, while the World Bank data contains good data about

various development indicators, these refer to all of the world countries and do not

provide any groups. The IMF dataset, on the other hand, provides groups of countries

as filters, including developing countries. Chris wants to use the IMF list of developed

countries to filter the countries in the World Bank dataset and get the indicator data only

for the corresponding countries. One sign of relief for Chris is the fact that these sites

provide data in structured format, that is, as spreadsheets. However, even with having

the data in a structured format he faces challenges. He notices that certain countries

are named differently in the respective datasets. For example, the name of the country

of China in the World Bank dataset simply stands as “China”, while the IMF dataset

names China as the “People’s Republic of China”. Thus, once he copies and pastes

the data in a single spreadsheet, he has the task of reconciling these differences. Every

additional dataset he wants to add requires the tedious task of checking the names of the

countries in the dataset with the names of the countries in the aggregate spreadsheet.

This problem includes adding data that is not directly relevant to the analysis, but

rather used for filtering or grouping purposes. For example, he sorts the data by GDP

per capita; however he wants to group the countries by region in order to examine which

are the highest developed ones by this criterion. Since none of the current datasets

include a region, he needs to enter this information manually or find another source of

information, organize it if it is unstructured, and reconcile the data.

After analysing some preliminary data, Chris wants to include additional data that

showcases how these development levels are showcased in specific visible examples. For

example, he needs to find data about the total investments in infrastructure projects,

such as transportation and energy systems. He finds data about both requirements,

but he notices that there is no data about all countries, and rather per regions within

countries. For example, transportation systems such as subways are broken down by

city data. Thus, Chris must go through the arduous task of finding the country for each

of these cities and then combine the data to get the full information. The same problem

occurs when trying to find how much of the cultural events (e.g. the Olympic Games)

are now hosted by developing countries. He finds unstructured data on the Wikipedia5

2http://data.worldbank.org/
3http://www.imf.org/external/data.htm
4http://unstats.un.org/unsd/default.htm
5http://wikipedia.org

http://data.worldbank.org/
http://www.imf.org/external/data.htm
http://unstats.un.org/unsd/default.htm
http://wikipedia.org
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for Olympic Games, but the information on the hosts is only by city. Once again, in

addition to structuring unstructured data, he needs to find the corresponding country

for each city and combine them to find the number of sporting events that each country

has hosted. Once all the data Chris needs is in place, he can try to further filter or

visualise the aggregated set in order to find interesting patterns for his report.

Walkthrough 2

Anna first opens the conference web site and navigates to the “Attendees” section. She

notices that the conference organisers have listed twelve hotels that offer lower rates for

conference attendees. She then opens another tab on her browser and tries to make travel

arrangements for flying from London to Lyon through popular sites such as Expedia6

and Kayak7. Unfortunately, both websites offer a long list of over 150 offers of flights

and hotels for the specified dates, and Anna is left to herself to figure out if any of

these include the twelve hotels listed on the conference website. She also realises that

she needs to find if any of the offers are in fact cheaper with the discount offered by

the conference. Thus, Anna is left with the task of manually looking up the price for

each hotel individually. Some websites offer just a search by inputting travel dates

and do not allow searching by hotel; in those cases Anna needs to find the hotel in

the list of search results. In order to keep the information organised, she opens up a

notepad and copies the 12 hotels from the conference website. Going through the data

she can see that there are some hotels which in fact cheaper than the ones listed on

the conference website besides the discount, but not by much. To make a decision she

tries to look up reviews about these hotels on TripAdvisor8. Again, she needs to go

through the task of looking up one hotel at a time, recording the ratings in her notepad

for each hotel. Finally, she wants to include information about the geographical location

of these hotels in order to see if any of them are far away from the conference centre

and, if appropriate, whether transport links are available. Most of the travel websites

allow hotels to be viewed on a map; however once again Anna cannot filter the hotels

she is already considering in her notepad; rather she can only display all the hotels by

going back to the search results. Given the large number of results, the map is of a

very little use to her. So she decides to use Google Maps9 in order to create a custom

map and input the hotel addresses one by one. However, now she faces problems with

filtering the ones which have access to good transportation links. While Google map

provides information about bus and tram stops, it does not include information about

transport lines. Anna finds a dedicated website about the city transportation that allows

her to input addresses, and the website lists the available transport routes along with

transport times. Thus, she is again forced to look up and input the address for each

6http://expedia.co.uk/
7http://www.kayak.com/
8http://tripadvisor.com
9http://www.google.com/

http://expedia.co.uk/
http://www.kayak.com/
http://tripadvisor.com
http://www.google.com/
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hotel individually. Finally, after multiple iterations taking a couple of hours, she finally

decides on a particular hotel.

3.3.2 Task analysis

Chriss and Anna’s tasks, while specific to their needs, represent typical search engage-

ments expressed as information retrieval and sense-making tasks (summarised in Wilson

et al. (2009)): (1) source discovery - initial review of kinds of needed information, seeking

out available sources (2) triage - from the available sources, assess each one rapidly to see

if it is worth further probing; (3) once a data set is determined to be useful, interrogate

it further in order to produce a result; (4) Integrate multiple data sources and organise

information in a way that is required to complete a task; (5) represent the data in a

way that allows insight or completion of a task. These tasks are both very similar to

the sense-making model proposed by Pirolli and Card (2005). The sense-making model

proposed by Pirolli and Card (2005) includes two major loops - a foraging loop where

users iteratively search, find, filter and query for information, and a sense-making loop

where users engage in an iteration of schematising or organising this information, stating

hypothesis and representing data that provides insight. While the sense-making model

proposed by Pirolli and Card (2005) was developed by observing analysts and specialised

knowledge workers in sense-making tasks, we can observe that both tasks described in

the walkthroughs, while specific in the type of task and accessed information, exhibit

general similarities with this model. In the following section we break down and examine

the various functions that Chris and Anna are engaged in, while preforming their task.

Source Discovery. Chris’s and Anna’s tasks both start by finding relevant information

sources, in their case websites, where they can search for information pertaining to their

tasks. In Chris’s case, he starts by searching for information on a number of known data

portals and in Anna’s case, web sites offering travel information services. Such tasks

present minor challenges since available sources of information provided on a website

are easily searchable through web search engines.

Triage. For the second stage of their quest, both Chris and Anna need to interro-

gate if the information in the information sources under consideration is of any use in

completing their tasks. We can notice that this is done per information source - for

example Chris can filter through the various attributes on the World Bank data website

to see the various data he can find about countries. Triage of information is usually well

supported on websites powered by structured information since all the data provided is

known at the time of development and thus different ways of interacting with the data

can be anticipated and accounted through development of the interface. As mentioned

in Chapter 2, many websites utilise powerful browsing techniques such as filtering, key-

word search and visualisation to provide customised search of data. In our examples,

the World Bank data website allows users to explore, chart and filter for the datasets
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provided by the website. Similarly, travel sites, such as Expedia, aim at providing high

quality of query functions to users in order to efficiently find the best travel offers.

Data integration, organisation and schematisation. Going through both walk-

throughs, one can easily notice that the most challenging part of Chriss and Annas tasks

are integrating multiple sources of information that are located on distributed websites.

As we can notice from the given examples, none of the websites that Chris and Anna

access neither provide all the required data to solve their tasks, nor do they allow adding

external data sources. Since these sites provide only custom views and interactions of

their data, both Chris and Anna are forced to manually try to perform the task of data

integration. For example, as described in the tasks, both of them need external data

sources or services over external data sources for filtering purposes. For example, Chris

needs to find the groups of (developing) countries provided in the IMF dataset and filter

the data he can use in the World Bank dataset. Similarly, Anna needs the hotels pro-

vided on the conference website in order to filter out the ones that are provided in the

search results on Expedia. We notice a similar problem when they try to merge data

sources. For example, Chris’s task of merging data from different countries is made dif-

ficult by the fact that the countries are not named the same across datasets. We also see

that merging of data is difficult in cases where information is not provided on equivalent

information resources. For example, when Chris tries to find data about Olympic Games

hosted by countries, he finds only information about the city host. Therefore he needs

to manually find each country for the city in the dataset so he can effectively merge

the data to his existing spreadsheet centred on countries. Moreover, we can notice that

these sort of data integration tasks are often time consuming because they often require

working with multiple data resources at the same time. For example, Chris needs to

aggregate data around a set of countries (i.e. developing countries) instead of one par-

ticular country. Anna needs to work with multiple hotels at a time. In order to do data

integration, both Chris and Anna resort to improvisations and customised organisation

of their information. In Chris’s case he needs to combine and organise his information

in a spreadsheet, while Anna uses a note-taking tool to record various information she

encounters from the websites she uses.

Legibility and Data Transformation. Besides integrating various data sources, other

challenges of using distributed data sources are: customised representation or legibility

used for the purposes of further analysis, and additional data transformations. For

example, in our second example, Anna tries to create a geographic representation of

the data about hotels by inputting them in a custom Google Maps map. This again,

requires her to input one data resource at a time. On the other hand, Chris faces data

transformation challenges in combining his data. For example, rather than the actual

information which lists the Olympic Games hosted by city, he only needs the sum of each

one grouped by country. Thus, he is forced to do this sort of manual data transformation

in order to get the corresponding count of Olympic Games hosted by each country.
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3.3.2.1 Stakeholders

As a final analysis of our tasks we also need to examine and note the differences in the

stakeholders described in these personas. As we have noticed, both tasks exhibit similar

patterns. However, their approaches differ in noticeable ways. Chris is a knowledge

worker and his approach to solving his task is very much influenced by his skills. While

Chris does not have advanced programming skills to either query a database or write a

script to structure data, he is comfortable with end user data tools such as spreadsheets

and can thus handle raw information sources, if these are provided in a suitable and

understandable format. Unlike Chris, however, Anna’s use of information is strictly

confined to the access of available tools on the Web. Her view and ability to query

and visualise data is strictly confined to the availability of an end user application that

is domain specific. This is also obvious from the fact that Anna uses no data model

or more formal representations in organising her information. For example, most of

the information she records is scrappy note-taking i.e. it does not exhibit any strong

structure as, for example, spreadsheets do. As we can see, she collects information about

hotel addresses and then uses an end user tool, in this case Google Maps, to display the

hotels geographically.

Another important note to make is the differences in the structure of information Chris

and Anna want to access. From the personas and walkthroughs we notice that Chris is

purposefully looking at more raw information sources. While the World Bank dataset

allows plotting charts directly from their website, Chris is more interested in making his

own analysis and visualisations in order to find data patterns. Anna’s exploration of the

data is more task-oriented - combining data is done for the purpose of accomplishing

a task and not engaging in an in-depth exploratory search or data analysis. Thus, for

Anna, who represents a typical “Web user”, even if more raw structured information

for her task were to be available, it is unlikely that she would interact with raw data

representations and manual visualisations over data.

3.3.3 Linked Data Scenario

In the subsequent steps of our design process, we concentrate our efforts on the first

scenario. The reason why we choose to tackle the first scenario and the first type of

stakeholders was based on two factors: (1) most of the related work in this area included

generic browsing interfaces that used generic representations of data to provide access to

Linked Data on demand and (2) based on the notion that we were also building a generic

tool that could access Linked Data on demand, some sort of generic data representation

design was intuitively suggested; given the substantial validation of spreadsheet software

as the most used end-user generic data tool, our initial scenario seemed a more natural fit.

Indeed our initial design brainstorming sessions considered that a generic data browser
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offering the easy use of spreadsheets might naturally extend to users who were previously

unfamiliar with spreadsheet software. Thus, many of the observations on designing our

first type of stakeholder informed us how much complexity could be handled by a person

with even less data-related skills.

In this section we examine a hypothetical scenario in which our first persona, Chris,

instead of iterating and collecting data from sources on the document Web, is able

to iterate over Linked Data sources that can potentially help him solve his task more

efficiently i.e. help him face the myriad of data integration problems in solving his task

by combining data about developing countries. Our scenario is used in order to identify

the gaps or areas where Chris would have difficulties in accessing and interacting with

Linked Data. Given a sufficiently realistic example of available and relevant Linked Data

published on the Web, we raise the question of how would the tasks Chris is engaged

with be performed over Linked Data on the Web. For example, how can he find datasets

of Linked Data, how can he triage and interrogate to see if any of these have potential

relevant sources, what sort of data interactions would he be required to do in order to

find and combine all the data he needs for developed countries and what are the inherent

challenges in accessing data over documents.

In order to select our scenario, we first examine the current set of Linked Data publishing

practices and provide an example of Linked Data data space centred on these data

publishing practices. Given these data publishing principles we examine the anatomy

of a generic data browser i.e. around what principles can a generic data browser be

designed that allow access to Linked Data sources on demand based on current publishing

practices. Finally, we provide an overview of the challenges of executing the task over

Linked Data, by examining the gaps between the task described in the walkthrough and

a hypothetical scenario using a generic data browser.

3.3.3.1 Linked Data Publishing Practices

The principles of publishing Linked Data are outlined in Berners-Lee (2006). As noted

in Chapter 2, Linked Data sources should be available by dereferencing a URI i.e. ev-

ery resource named with a URI should be accessible through dereferencing that URI.

The third principle requires returning useful information upon request, and while there

has been a debate if the RDF standard should be mandatory upon a recommendation

for modelling data sources (see Does Linked Data need RDF?10), most of the Linked

Data available on the Web today is published using the RDF standard. Apart from

dereferencing URIs, a common way to provide access to Linked Data is allowing access

through a SPARQL endpoints, which allow database-like queries to be executed over

RDF by remote clients (Prudhommeaux and Seaborne (2008)). While the rest of tech-

nology standards which are part of the Semantic Web stack are compatible to use when

10http://cloudofdata.com/2009/07/does-linked-data-need-rdf/

http://cloudofdata.com/2009/07/does-linked-data-need-rdf/
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publishing Linked Data, they are not part of the principles behind publishing Linked

Data.

As a global distributed space of data published on the Web, most of the data published

as Linked Data is clustered around Linked Datasets - data sources published and/or

maintained by a single publishing entity. Thus, rather than looking at one homogeneous

global data repository, Linked Data, for the most part, represents a global dataset

of repositories linked between each other on the resource definition layer. This is an

important observation, since searching for data sources can be based on datasets as well

as searching Linked Data on the Web as a whole. To describe datasets, VoID, a machine

readable ontology has been proposed to publish structured data describing a Linked

Dataset published on the Web (Alexander et al. (2009)).

Another important thing to note is the use of data vocabularies on the Web of Linked

Data. Whenever Linked Data is published, a data vocabulary is defined to describe the

data. These include naming of properties and classes of data, which are the staple of the

structure that this data will use. When publishing Linked Data, reuse of existing vo-

cabularies is encouraged when possible (Heath and Bizer (2011)). Statistics over Linked

Data, however, suggest that the reuse of vocabularies is mostly concentrated around a

few vocabularies (such as the FOAF11, Dublin Core12, SKOS13, RDFS14 etc.), which

tend to define properties, such as attributes for human readable labels, identification of

classes, specifying hierarchies etc (Bizer et al. (2011)).

Finally, we should note that publishing principles are evolving as Linked Data technology

matures and many problems and errors in publishing do persist (Hogan et al. (2010)).

In general, we can rely on these current publishing practices as a guide for this purpose

of designing tools over arbitrary sources of Linked Data.

3.3.3.2 Anatomy of a Linked Data Generic Browser

Generic interfaces offering raw data access over Linked Data, should theoretically provide

access to Linked Data on demand without any or with minimal effort of configuration

by the end user. Given the current publishing practices of Linked Data stated earlier,

a generic browser can provide interaction over Linked Data based on a minimal set of

certainties about the data:

• The common triple-based data model of RDF A generic data browser can

currently only base its interaction upon the “knowledge” that the data is modelled

using the RDF data model. Access from a data browser can thus be done at the

11http://www.foaf-project.org/
12http://dublincore.org/
13http://www.w3.org/2004/02/skos/
14http://www.w3.org/TR/rdf-schema/

http://www.foaf-project.org/
http://dublincore.org/
http://www.w3.org/2004/02/skos/
http://www.w3.org/TR/rdf-schema/
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level of RDF resources - either accessing a single or multiple RDF resources at

a time. Additionally, since the data model is known (i.e. it is a graph model),

navigation is permitted to access additional resources - i.e. accessing a link in

one or a common link (equivalent property) in multiple resources will return the

corresponding link resource(s). An example of an early generic data browser is

depicted in Figure 3.2, displaying an RDF resource of a person.

• Use of heuristics over known vocabularies In order to display data to a

user, a generic browser needs to choose how the data will be rendered in the

browser. The most obvious solution is to use its “knowledge” of the triple-based

data model to provide a list of property - object tuples for each resource currently

under inspection in the browser. However, such data rendering will yield data

representation in machine readable format. For a human readable representation

a browser needs to access the human readable labels in the data (assuming the

data is published with the best practices and has human readable labels - for

statistics on the use of human readable labels see Ell et al. (2011)). This means

that for every property and object value a human readable label must be accessed.

Given commonly used vocabularies, a Linked Data browser might search for human

readable information. For example, rdfs:label and a foaf:name are commonly

used properties to find the human readable labels for RDF resources.

3.3.3.3 Available Linked Data

Based on the description of the tasks in the case of our first persona, let us hypotheti-

cally assume that data relevant for the task is available on the Web as Linked Data. In

order to better illustrate the later described challenges, we provide a snapshot of exam-

ple sources of Linked Data relevant for the task described in our first persona. Figure

3.3 depicts an ontology representation of a subset Linked Data with data relevant for

Chris’s task. In the Figure, we use circles that represent classes, and the inside rectangles

denote literal properties on instances of these classes. For example, “Countries” have

literal properties such as “Label” and “GPD per Capita” and links to resources of other

classes such as “Politicians” and “Cities”. Instances of these classes have themselves

literal properties and links to other resources, for example “Cities” have “Name” and

“Population” properties and links to “Subways” and “Olympic Games”. The relation-

ships between resources are displayed as arcs, which denote that instances between two

classes can be linked through a particular property. Finally, as the Figure shows, various

data might reside in different datasets, although there also might be a case where the

entire data resides or is republished in one dataset.
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Figure 3.2: The Disco Generic Data Browser.

3.3.3.4 Challenges in Interacting over Linked Data

Given that relevant Linked Data sources are available on the Web, let us examine the

challenges Chris would encounter using an end user data-centric tool, such as generic

data browser to access the data. A generic data browser would need to facilitate all the

processes Chris needs to go through: finding potentially relevant data sources, interro-

gating them, exploring and integrating relevant data sources, and using the data in a

way that facilitates analysis and answers questions..
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Figure 3.3: A conceptual ontology for data about UK Members of Parliament.

Dataset discovery and exploration starting point. The initial challenge for Chris

would be to find suitable Linked Datasets that might potentially have relevant informa-

tion. Even finding one potentially relevant dataset might be useful, since links to other

data sources might provide him with a way of accessing all the other data he needs. For

example, by finding the countries in the World Bank Linked Dataset he can follow links

to other data he requires.

We notice that on the document Web, Chris can search for repositories of data which are

accessible through a Web interface. Sites offering data sources, such as the World Bank

or Google Public Data15, offer catalogue-like features for finding relevant datasets. In

contrast, very few services exist that offer similar services for Linked Datasets. Descrip-

tions about Linked Datasets, are usually provided in Linked Data format themselves,

15http://www.google.com/publicdata/directory

http://www.google.com/publicdata/directory
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using vocabularies such as VoID (Alexander et al. (2009)). Aggregations of VoID descrip-

tions or VoID stores16 17 exist to query over such data. However, no human accessible

interface allows a user to browse or explore aggregates of VoID descriptions. These

services can be easily implemented if a standardised vocabulary is assumed. A more

important problem than finding potentially relevant datasets is how can end users, such

as Chris, start exploring an identified dataset, assuming one can be found in a catalogue.

Should a generic browser require him to input a URI, similar to inputting URL in a Web

browser? How would Chris start exploring the content of an unfamiliar dataset? What

should the access to a dataset provide to him in order to begin interrogating a dataset?

Data Exploration, Navigation and Representation. As we’ve noted, from a purely

technology viewpoint, the purpose of a generic data browser is to provide the users with

an access to Linked Data resources and the ability to browse or navigate through related

resources via semantically typed links. However, how do such browsers enable Chris to

perform his tasks? For example, let us assume that Chris is able to retrieve the country

resources from the World Bank Dataset. How does he browse through all the data he

requires - country data from the IMF dataset, data about infrastructure projects, to

Olympic Games? As we can note from the example in Figure 3.3, in some cases Chris

would have to navigate several steps from his initial starting data resources in other to get

relevant data. How, in the absence of knowledge of a dataset, can he effectively navigate,

query and filter data from a complex and densely connected graph? Finally, how would

browsing in a generic browser be best represented to (1) make Chris understand complex

graphs of data in a way that would allow him to formulate a query, (2) how would

navigation steps and exploration of data through navigation be represented in a browser

in a way that is compatible with his task?

Tools for representation and analysis. Finally, assuming that a generic browser is

designed to support sense-making tasks, how can data access be combined with easy-

to-use tools for representing and analysing data? Can data transformations and visu-

alisations which are a key enabler of sense-making be easily made available over graph

data accessed from a generic browser (Russell et al. (2008)). For example, spreadsheets

allow users to create and organise data; however they also provide end users with tools

for data transformation and visualisation.

3.4 Analysis of Interfaces Supporting Data-centric Inter-

actions over Linked Data

In this section we analyse existing instances of data browsers and examine the different

ways they provide data-centric interactions over Linked Data. Our selection includes

16http://kwijibo.talis.com/voiD/Describer
17http://void.rkbexplorer.com/

http://kwijibo.talis.com/voiD/Describer
http://void.rkbexplorer.com/
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ten different data browsers, which we select based on the following criteria:

• The browser needs to be designed for end users with no or minimal knowledge of

data-related technologies.

• It supports navigation, browsing and interaction over graph data on demand.

• It is specifically designed to explore, browse and query data to support information

seeking needs.

• It allows interactions over sets of resources instead of individual resources. We

chose this criteria since data interactions usually require querying, filtering and

operations that allow interaction over several data resources. By resources, in this

context, we mean the smallest unit of information presented in the browser. Since

all browsers use a single RDF resource as the smallest unit of information the term

resource can be considered synonymous with an RDF resource. Browsers such as

Disco18, Marbles19 and Zitgist20 are not considered, because they support simple

RDF browsing with individual RDF resources displayed as Web documents and

thus do not provide any exploration or query capabilities.

Throughout this section we use the example Linked Data depicted in Figure 3.3 to illus-

trate concepts and interactions in various browsers. Based on the challenges identified

in the previous section we examine the browsers in the following areas:

• Exploration Starting Point How do users initiate an exploration task in a data

browser? Data browsers need to provide a starting point where the user can enter

an initial input or query.

• Navigation and Browsing How do users navigate and browse through data in

the browser? Are there different aspects of browsing and how are they supported?

What affordances does each of these potentially provide? Do browsers rely only on

graph navigation to explore relations between remote resources or are other tools

provided? How is the context between resources accessed in navigation shown

between several browsing steps?

• Data representation How is data represented in the browser? Data represen-

tation is examined at two levels: first how the data is presented of the lowest

data granularity offered in the browser (e.g. a RDF resource) and second, how is

navigation represented and visualised between resources of data.

• Query and Filtering How is data querying and filtering supported in the system?

18http://www4.wiwiss.fu-berlin.de/bizer/ng4j/disco/
19http://marbles.sourceforge.net/
20http://dataviewer.zitgist.com/

http://www4.wiwiss.fu-berlin.de/bizer/ng4j/disco/
http://marbles.sourceforge.net/
http://dataviewer.zitgist.com/
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• Tools for representation and analysis What additional utilities does the tool

provide to add different data representations apart from the generic one, and what

tools are offered for further analysis?

3.4.1 Exploration Starting Point

Most browsers have a notion of a starting point of exploration, an initial input that

results in some data after which the user can use the navigational and filtering features

of the user interfaces. As we noted, while Linked Data is a wholly global distributed space

of data on the Web, publishing practices suggest that data will be clustered in datasets

where datasets are repositories of data published by a single identifiable publisher. Thus,

a data browser could take the publication of different datasets and offer datasets or the

metadata (using VoID descriptions for example Alexander et al. (2009)) in the dataset as

a starting point. A majority of browsers we surveyed are prototyped over a single dataset

because of scalability issues, especially in cases where the data browser uses advanced

query features (such as SPARQL) which are available in single datasets contained in one

database. In accessing datasets or data sources, we identify three approaches which are

commonly used by data browsers as exploration starting points:

Using URIs One approach to start an exploration in a data browser is to provide a

URI, as an analogy to a URL entered in a Web browser. The data retrieved about that

resource is displayed in the browser and used for subsequent navigation and browsing.

The concept of using URIs in this context might be foreign to most end users, since

most users associate a URI with a link to a web page rather than an identifier denoting

a real world object.

Keyword search Another common approach is to use keyword search over a dataset

as a starting point. Unlike keyword interfaces in search engines or natural language

interfaces, keyword search across browsers is rarely used to formulate the full query or

intention of the user, but rather to find entry points in the data, therefore replacing

knowing specific URIs as a requirement to start browsing. Keyword search is usually

performed either with the goal of identifying specific resources (e.g. a specific Country

such as “UK”) or to find a particular collection of resources by finding their class or

type (e.g. Countries). Once selected, the single or multiple resources are the initial set

of resources from which exploration and browsing is further conducted.

Class hierarchy A third alternative is to provide users with browsing the class hierarchy

of a dataset. Classes are useful descriptors about the content of a dataset (they provide

users with a list of the different types of available information resources - e.g. Countries,

Politicians, Cities etc.), and some interfaces provide hierarchical browsing through the

class hierarchy, if one is provided in a dataset. This allows users to familiarise themselves
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Tool Starting point

Tabulator User entering a single URI.

VisiNav Keyword search usually for finding instances or classes where
to start with navigation. It can additionally provide more
structured search through drag and dropping URIs into a
search bar (e.g. drag foaf:person URI identifier to retrieve
all the people).

Humboldt A list of all resources that can be aggregated by their classes
(i.e. types).

Parallax Keyword search over individual resources (topics in Paral-
lax terminology) and or classes (collections of resources in
Parallax).

Explorator Keyword search for individual resources or set of resources
from a certain class.

BrowseRDF None described. Authors presume that initial set of re-
sources are from a certain class.

gFacet Keyword search over classes.

tFacet Selecting a class through browsing the class hierarchy of a
dataset.

Falcons Ex-
plorer

Keyword search for individual resources or set of resources
of a certain class.

Sewelis Selection from classes or using a constrained query-
completion language.

Table 3.1: Exploration starting point implementations across different browsers.

with the content of a dataset, and is usually supplemented with a keyword search as

well.

Table 3.1 shows approaches to exploration starting points across different browsers.

3.4.2 Navigation and Browsing

Once the initial set of resources have been discovered, all browsers rely on navigation

through the links in the graph to explore and browse related data. We identified that

navigation facilitates two functions; first it allows a user to explore and learn about

unfamiliar datasets and second, query formulation in the interfaces is conducted by nav-

igating and creating a trail of exploration. In the following, we examine different aspects

of navigation through graph data in various browsers. Table 3.2 shows approaches to

different aspects across browsers.

Browsing Browsing in the majority of browsers is implemented through pivoting i.e.

refocusing from an initial set of resources to another set of resources via a common

link. The links available for navigating from the initial set of resources is a union of

the properties for each of the resources currently under inspection, and are presented

to users as options through which they can pivot. For example, we might start from an
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Tool Browsing
method

Bi-directional
navigation

Branching Relationships
finding

Tabulator Query-by-
example

Yes Yes No

VisiNav Pivoting No No No

Humboldt Pivoting No No No

Parallax Pivoting No No No

Explorator Finding
links in sets
of resources

Yes Yes Limited to one
hop away

BrowseRDF Pivoting Yes Yes No

gFacet Pivoting No Yes No

tFacet Pivoting No Yes No

Falcons Ex-
plorer

Pivoting No Yes No

Sewelis Pivoting Yes Yes No

Table 3.2: Browsing methods supported in different browsers.

initial set of “Countries”, and navigate through the “contains city” property to find all

of the corresponding “Cities” for which there is available data (Figure 3.4). Once we get

related data about “Cites”, we can pivot again to find those which have hosted “Olympic

Games”. This approach is used by the majority of browsers such as Parallax, VisiNav,

Humboldt and gFacet. While using the same fundamental technique to navigate through

data, the implementation metaphor across browsers is significantly different (Figure 3.5).

For example, Humboldt looks like a standard faceted browser that allows refocusing on

a selected facet. gFacet is a faceted browser visualised as a graph. The tFacet interface

uses pivoting through a hierarchical-like interface in order to select sets that will be

used as facets on the initial set of resources. Sewelis also follows a similar paradigm,

where selected facets are used in combination with a constrained-language query and

selection lists. These browsers try to extend a hierarchical faceted browsing paradigm

over RDF data as a way of browsing a graph. Set-oriented approaches, on the other

hand, distinguish facets for filtering and connections to pivot other sets. Immediate links

can be used to filter the current set of resources or to navigate a related set of resources.

An example of set-oriented approaches are Parallax and VisiNav.

Another approach to use pivoting is to navigate a graph starting from a single resource,

and then use the navigation trail to formulate a query i.e. use the trail as a query-

by-example. This is the approach taken by Tabulator and is based on navigating a

single resource at a time. Once a path with a single resource is defined a user can then

select and define a pattern by selecting specific properties and values as constraints in

a query template. The overall results are then tabulated and presented in a table. One

notable exception to the pivoting paradigm approach is Explorator, which allows users

to instantiate multiple initial sets of resources. The Explorator interface then allows

these resources to be linked if properties that link the individual items exist between
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Countries Cities Olympic Games

Starting set of Resources Pivoting operation Pivoting operation

Figure 3.4: Pivoting with sets of resources.

Figure 3.5: Tabulator, Humboldt and gFacet showing different data browsing
visualisations

them; however the user interface only searches for the existence of direct links between

sets of resources.
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Directionality Since links in a RDF graph are directional, a browser can support

browsing either by only using outgoing links from sets of resources or include back-links

- links that other resources have to link to the current set of resources in the browser.

Including back-links is important because they can increase the browsers expressivity.

An open question remains however if the directionality of links needs to be explicitly

stated to users or they can simply be treated equally as normal links.

Branching Data browsers allow users to navigate from several data resources to several

other resources using common properties. However, given a set of resources a browser

may allow users to choose a several of the offered properties to branch the current

exploration, thus effectively instantiating several avenues of exploration at the same

time. The process can then be repeated in each of the resulting sets of a branch. Figure

3.6 illustrates the concept of branching. The example shows that a data browser starts

by focusing on a set of “Countries”. From there two pivoting operations are undertaken:

one finds all the corresponding “Politicians”, while the other finds all the corresponding

“Cities”. Then another branch is generated after two pivoting operations are taken from

“Cities” to “Subways” and “Olympic Games”. Branching is important since it allows

better expressivity in querying: in our example, if we were to ask for “All the politicians

from countries whose cities have hosted the Olympic Games?” we would have to use

branching to formulate that query.

Olympic 
GameCity

Subway

Country

Politician

1

2

3

4

Pivoting 
operation

Pivoting 
operation

Pivoting 
operation

Pivoting 
operation

Figure 3.6: Example concept of branching in a generic data browser.

Thus, from our surveyed browsers we can distinguish tools based on the numbers of trails

they can support. A trail is a sequence of pivoting operations, where every pivoting

operation has exactly one predecessor and one successor. In principle, browsers can:

• Allow users to follow one trail at a time only. Some pivoting interfaces currently

support navigation through a single trail with the ability to move back and re-direct

the current browsing trail. Examples of such browsers are Parallax, Humboldt and
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VisiNav. Each of them provides hierarchical breadcrumbs to navigate between

pivoting operations. Whenever a new pivoting operation is initiated from a set of

items in the middle of the trail, the previous trails gets discarded.

• Allow users to follow multiple trails at a time. Browsers can allow users to con-

duct multiple pivoting operations from a single set of items. This is, for exam-

ple, the case with the gFacet interface, which combines faceted browsing with a

schema-level graph visualisation. tFacet and Sewelis allow branching in the used

hierarchical navigation to select facets for the initial records. Tabulator also allows

multiple trails of navigation when browsing a single resource.

Finding relationships

As we notice, all of the browsers currently rely on navigation to find related data in a

graph of data. This approach may be suitable for information seeking when we are brows-

ing serendipitously for data, or when we already know how the schema of a database

works. However, if the schema level information is unknown to a user, it may be a

daunting task to rely solely on navigation to connect to data that can potentially be

multiple links. One of the approaches to this problem is having the user interface support

finding relationships between remote resources. The RelFinder interface, for example,

allows finding relationships between several individual resources, but it does not support

relationship findings on sets (Lohmann et al. (2010)). The interface might be adapted to

enable a query-by-example system similar to Tabulator; however then the assumption

is that users will have to somehow have prior knowledge of instances of a particular set.

3.4.3 Data Representation

Since RDF is strictly machine readable, it is up to the data browser to figure out how

data is going to be represented in the browser. Generic browsers that deal with sets

of resources need to support the representation of individual RDF resources as and

representations of sets of RDF resources for their set-oriented paradigm. Table 3.3

shows how data is represented throughout browsers.

3.4.3.1 Representation of individual resources

Most of the generic data browsers use a single RDF resource as the smallest resource

of information to be displayed in a browser. While this comes as a natural choice since

each RDF resource should identify a recognisable real-world object, there are issues on

how to best represent them. Representation approaches vary from browser to browser

and usually depend on whether the representation is suitable for the specific purpose of

the application. Common approaches are to display RDF resources by using its label, or
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Tool Individual
resources

Data representation/interaction model

Tabulator Labels Resource and properties are represented in a nested
table. Opening each resource creates a nested box of
another resource.

VisiNav Labels Current focus are sets of resource with multiple views
as a list or tabular representation.

Humboldt Labels List of the set of resources with side facets which can
be used to pivot and refocus.

Parallax Fixed
Lenses

List of the set of resources with side facets for filtering
and connections which are used to pivot to the next
set. Alternative visualisations are available, such as
tables, maps and charts over the current view.

Explorator Labels Multiple lists on the same screen can show multiple
resources and are expanded to show an individual re-
source. Users combine the list with a set of operations
in a side bar to create new set of resources.

BrowseRDF Labels Faceted browser with side facets that can be config-
ured. The result set is a list of resources.

gFacet Labels A faceted browser where the facets are represented in
a graph based on the navigation path. New facets
are created by adding a link from an existing facet.
Users can specify which of the facets is a result set, in
which case all other faceted choices are used to filter
the result set.

tFacet Labels Hierarchical navigation to select facets form an ini-
tial set shown as a table. The result set view allows
different facets to be added as columns in the table.

Falcons Ex-
plorer

Labels The initial set of items are shown as a table where
properties from the set can be added as columns. To
pivot, a user selects a column which in turn refocuses
to a new table with the items in the selected column
as a new focus.

Sewelis Labels A simple faceted browsing interface with a list result
set and list of facets. Additionally a textual represen-
tation of a query can be used to show the context of
the exploration path.

Table 3.3: Data representation across browsers.
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using heuristics by testing for additional literal properties that are suitable for resource

representation. Other more generic approaches include representing a resource by listing

all of its properties, although this approach is often not taken when an interaction in the

interfaces is done with sets of resources. In some datasets (e.g. in Freebase’s Parallax)

an individual RDF resource can easily be mapped to a representation because certain

properties are assumed for every single resource (e.g. a label, abstract, and depiction

property). However, this is not the case in all RDF data that exist out in the wild.

Lenses - visualisation templates about RDF resources - can lead to increased usability

and accessibility of data in the browser; however it might be disruptive to the generic

approach of the entire interaction model of an interface which is based on a single

RDF. In our example data, an “Olympic Game” resource can be represented using

values of resources several hops away from the resource it describes (e.g. using data

about the Country, for example). If these are surfaced in the browser when pivoting is

implemented on the RDF resource level this can lead to the display of several sets of

things into focus and thus can be confusing when subsequent pivoting is engaged. For

example, if “Olympic Game” resources show information about the “Country”, then a

pivoting operation to get the “Countries” through “Cities” is redundant. Such problems

make it hard to bring lenses to generic data browsers. Additionally, lenses need to be

published by some party, either the original data publisher or another party, which places

an additional burden on the already published raw data. Therefore, we rarely see the

use of lenses in generic data browsers. This problem of representation of individual data

sources is the reason we can see a big regress in usability and overall user experience

when comparing configured user interfaces (such as Parallax) to more generic interfaces

e.g. Tabulator. Thus, adopting minimal conventions for describing RDF resources,

such as the OpenGraph21 protocol does (e.g. mandate basic properties such as labels,

depictions, descriptions and types for all resources) can result in increased usability of

data displayed in generic data browsers.

3.4.3.2 Representation of sets

Since pivoting assumes navigation from one set of resources to another, browsers need to

represent the plurality between pivoting operations in order to provide context between

multiple pivoting operations. Representation and visualisation between multiple related

sets of resources, however, varies between browsers depending on the interaction model

and the purpose of data browser. In this respect, we made a distinction between two

types of browsers:

• Browsers extending a faceted browsing paradigm. Browsers that use a

faceted browsing metaphor over graph data use pivoting navigation in order to

21http://ogp.me/

http://ogp.me/
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browse the graph for suitable facets on the initial set of items. Additionally, these

interfaces allow refocusing i.e. each of the facets can become the result set of the

faceted browsing interface. Since these browsers put forward a faceted browsing

paradigm over graph data, visualisation of plural relationships between sets is

not shown - rather relationships can be viewed by filtering the faceted browsing

interface. For example, a browser can start from “Olympic Games” and navigate

to “Cities” and “Countries” and select these sets or some of their literal properties

as facets to “Countries”. Thus, if a user wants to view which of the Olympic

Games has been hosted by a particular country (e.g. the UK) the UK facet can

be selected to filter for the corresponding Olympic Games.

• Browsers supporting visual representations. Browsers such as Parallax and

Tabulator allow navigation through the graph and support visualisations that show

the context between multiple navigation steps. In Tabulator, this is facilitated

through a nested visualisation of resources or tabulation when multiple resources

are tabulated. In Parallax, after a pivoting operation each set is replaced on the

screen with the resulting set. In order to view relationships between items of two

related sets, each new item in the set contains a header that shows its relation with

items in the previous set. However, the context of the first set will not be viewable if

another pivoting operation occurs, since Parallax only shows this context between

two “neighbouring” sets. Alternatively, Parallax allows users to create tables with

selected columns by specifying a pivoting trail (Figure 3.7). Because items can

exhibit many-to-many relationships the table is not grid-like but irregular - a cell

in a column can hold multiple values.

Another aspect of representation is how navigation trails are represented in a browser. As

we’ve seen, browsing through data can produce multiple browsing trails in the graph.

These can be quite complex trees that might need to be looked jointly to perform a

specific query - thus in viewing this context supporting a quick refocusing on different

parts of the trail is important. In our example, if we start from “Countries” we may

need to navigate to “Cities” and “Olympic Games” if we need to answer queries such as

“Which countries with Cities that are under a million have hosted the Olympic Games?”

Thus we may be required to go through the different portions in our exploration to

select or filter for particular bits of data. Browsers support this in a variety of ways.

In Parallax and Humboldt, for example, since only navigation along a single trail is

allowed, navigation steps taken by users are represented with simple breadcrumbs. In

gFacet the entire faceted interface is laid out in a graph, therefore showing the entire

context of the exploration. In Sewelis, no browsing trail is shown - rather the query

completion interface can be used to view and refocus on a particular part of a query.
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Figure 3.7: Parallax showing multiple navigational trails displayed in a spread-
sheet.

3.4.3.3 Visual aids and tools for analytics

Most browsers focus solely on exploration and querying data. Some browsers, however,

provide additional features that not only allow browsing and querying data, but also

data gathering for the purpose of visualising, re-representing or analysing data, therefore

supporting different views, rather than just resorting to the generic representations of

raw data offered by a browser. Only two of the tools in this survey support such features

- Tabulator and Parallax. Tabulator allows users to represent tabulated data queried

through its interface using a variety of widgets that support different views: charts,

maps, timelines, and calendar views. Parallax offers similar extensions. A depiction of

visualisation widgets in both interfaces is shown in Figure 3.8.

3.4.4 Query and Filtering

3.4.4.1 Filtering across trails of navigation

Distinction between browsers can also be made based on how they allow users to filter

data. Filtering in this case is examined based on how filtering is propagated in navigation

trails. As we already know, generic browsers such as Humbolt, gFacet, BrowseRDF,

tFacet and Sewelis aim to extend faceted browsing to RDF data. Therefore, filtering for
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Figure 3.8: Visual aids offered in Tabulator and Parallax to visualize and analyse
collected data.

data follows the same pattern as any faceted browser with hierarchies of facets. On the

other hand, set-oriented approaches distinguish between pivoting as navigation among

related sets of resources, and filtering through facets, which can filter the current focus

set of resources in the browsers based on the resources attributes. For example, in

Parallax and Falcons Explorer, filters over trails of navigation apply unidirectional i.e.

if a set is filtered in the middle of a browsing trail the results of the filtering are only

reflected in the direction of the trail. In order to filter in the opposite direction, these

browsers need to start from the set of resources and re-navigate to the previous initial

set.
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Tool User studies/Evaluation Method

Tabulator None

VisiNav Small descriptive “loud thinking” user studies during devel-
opment. No comprehensive studies with final interface.

Humboldt Small-scale usability study.

Parallax None

Explorator Pilot study and a small-scale experiment.

BrowseRDF Formal evaluation of interface by comparison with other
faceted browsers and a user study. During the study users
were given the schema of a dataset to help them formulate
queries.

gFacet Comparative task performance evaluation with Parallax.

tFacet None

Falcons Ex-
plorer

None

Sewelis Usability evaluation with 20 people over a variety of differ-
ent tasks with increasing level of difficulties in a number of
categories.

Table 3.4: Evaluation and user studies made on Linked Data browsers.

3.4.4.2 Additional filtering options

In addition to selecting filters through facets and pivoting from one set of resources to an-

other, data in browsers can provide additional filtering options. Examples mostly include

adding Boolean and set operations to the query interface. For example, BrowseRDF al-

lows a selection based on existential operators. Both BrowseRDF and Sewilis allow

negation operators. Explorator is built on the notion of instantiating different sets of

attributes and combining them with set operators such as intersection to find common

resources. Hearst (2009) notes, however, that such advanced query operations have often

been found to be unusable and have not seen wide adoption.

3.4.4.3 User Studies and Evaluation

The final step of our analysis is to investigate if and how these browsers have been

evaluated, if any of them were submitted for general usability testing, or if the evaluation

targeted a proposed design around a specific problem. The evaluation undertaken by

browsers is shown in Figure 3.4.

3.4.5 Observations and Conclusions

As we can observe from our analysis, numerous attributes need to be taken into consid-

eration when designing data browsers. From the browsers described in the survey, we

can notice that design implementations between browsers differ extensively. However,
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one might also observe general commonalities between data browsers. First, we notice

that all browsers use minimal generic data representations, and except in special cir-

cumstances, they never try to include richer representations using, for example, lenses.

In the analysis, we gave both design and economic reasons behind such decisions. This

point, however, suggests that a (truly) generic browser can only provide more raw data

access, and thus its designs should be aimed at audiences that are able to handle data

in a more raw format - users such as Chris - the user in our first persona. Second, based

on the overall design and stated motivation, we find that we can group existing browsers

into tools that provide:

• Grafting faceted browser interfaces onto graph data. All of the interfaces

in the survey are motivated by the fact that browsing graph data is inherently

hard in the absence of any technical knowhow. More than half of the approaches,

however, are designed with the purpose of facilitating exploratory search and/or

query answering over large graph datasets by adapting established models of data

interaction on RDF. As we’ve seen, browsers such as gFacet, tFacet, Humboldt,

BrowseRDF, and Sewelis focus around grafting faceted search interfaces onto ar-

bitrary graph datasets. Thus, the concept and interactions of browsers revolves

around specifying a result set and facets to be used for filtering. Thus, this inter-

action can effectively be seen as end-user created faceted browsing interfaces over

RDF on demand.

• Extending faceted browsing paradigm. Another class of Linked Data browsers

are those that extend the faceted browsing paradigm to data containing multiple

entity types. Additionally the purpose of these tools is not only for exploring and

answering data-centric questions, but to provide an interface for mashing and pre-

senting data from multiple sources. Thus these browsers tend to resemble mashup

tools as opposed to just faceted browsers. As such, the metaphors around how

the data is browsed, queried and represented are done with that specific purpose

in mind. For example, browsers such as Parallax and Tabulator use pivoting (al-

beit in different ways) to find and gather data, both allow querying of data and

tabulating them with visualisation widgets to represent and further analyse the

data in other, useful representations. Similarly, while Falcons Explorer does not in-

clude data visualisation tools, its envisioned use is a tabular end-user programming

paradigm.

Given these two categorisations, we can notice that only Tabulator and Parallax are

designed with the motivation to provide interactions over Linked Data similar to the

ones described in our first persona.
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3.5 Prototyping a Generic Data Browser - The GEORDi

Experience

The design process described in this Chapter attempts to suggest challenges in end-

user interactions over Linked Data by going through a requirements elicitation exercise.

It first examined the activities end users engage with when dealing with typical data

centric interactions, and provided examples where the Web falls short in providing data-

centric capabilities. Second, it examined the functionalities offered by current generic

data browsers. We noticed that out of ten browsers, only two were designed with the

motivation to provide exploration and sense-making over Linked Data in a way described

in at least one of our personas. Given the number of functionalities that might impact a

design of a generic data browser, we might ask: Are the proposed functionalities in the

current set of generic browsers suitable to address all the challenges end users face when

accessing Linked Data? What areas of end-user access to Linked Data are challenging

and require different solutions?

In order to identify these areas, we present the results from a prototyping exercise that

included designing and implementing a generic data browser, named GEORDi, around

the requirements stated in our first persona. The reason we choose to build our own

generic browser instead of using existing ones is that none of the current set of browsers

fully satisfies the requirements for accessing datasets in a way described in our first

persona. As we noted in the previous section, most generic browsers are designed as

interfaces enabling faceted browsing over Linked Data on demand, which satisfies only

part of the overall process of data-centric interactions as described in the scenario. For

example, most of them did not use a tabular or other visualisation that resembles a

spreadsheet, a metaphor around which we wanted to build our interface, nor did they

provide any tools for data analytics. The two generic browsers that are designed to

support data-centric interactions similar to those described in the scenario, Tabulator

and Parallax, have significant drawbacks. The first, Tabulator, is a query-by-example

interface, which represents a step back in usability when compared with current advanced

search interfaces that offer querying functionalities through interfaces such as faceted

browsing. Additionally, its reliance on dereferencing URIs for querying is very limited,

as more interactive exploration over data requires database capabilities. Parallax, on

the other hand, represents a hybrid interface, which seems to be tailored for users both

with and without basic end-user data manipulation skills. Additionally, Parallax is built

specifically for the Freebase dataset, and thus relies on several underlying assumptions

which are specific to the Freebase dataset. For our prototyping exercise, we need a

browser that can access various data repositories on demand.

In the following sections, we describe (1) the design rationales and system descrip-

tion of GEORDi, and (2) observations and identified challenges from internal testing of

GEORDi over several Linked Datasets.
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3.5.1 Design Goals

GEORDi design goals were motivated by the scenario we described in our first persona

i.e. supporting end-users with experience in end-user data tools, such as spreadsheets,

in exploring and interacting with data from various Linked Datasets published on the

Web. Given our first persona scenario as a template, GEORDi was designed along the

following goals:

• Be able to open different datasets on demand. Our first design decision was

to be able to access numerous Linked Datasets on demand. Given the requirements

for accessing and filtering through multiple data entries, a generic browser will

need to use advanced interactions that require database capabilities. Thus we

only included datasets that are accessible through a live SPARQL endpoint.

• Represent data and data browsing using a spreadsheet metaphor. Spread-

sheets are a WYSIWYG interface - people can perform entry of data, interact with

data and visualisations directly from the spreadsheet representation of the data.

Thus, in order to leverage familiarity with spreadsheets by using spreadsheets as

a metaphor, we decided to implement both data representation and browsing to

be as closely associated to spreadsheets as possible.

• Use set-oriented browsing. Since the scenario described includes finding and

integrating data about multiple data resource simultaneously, we decided to utilise

set-oriented browsing in our browser.

• Include tools for visualisation and analysis. The use of spreadsheets was

also motivated by the fact that an easy to use spreadsheet visualisation of graph

data can be easily visualised in other formats. Thus we decided to include simple

chart and map visualisations as part of our generic browser.

3.5.2 System Description

In this section we describe the GEORDi interface in more detail. The descriptions

focus on the key features of the systems: (1) dataset discovery, (2) data representation

and browsing, and (3) advanced representations of linked data through lenses and user

generated visualisations.

3.5.2.1 Exploration Starting Point

In GEORDi users can discover potential Linked Data sources either through a catalogue

of datasets that GEORDi knows about, or alternatively use keyword search that returns
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Figure 3.9: The GEORDi catalogue of datasets.

Figure 3.10: Collections contained within a dataset represented in GEORDi.

associated RDF resources, classes or datasets. Alternatively, if a SPARQL endpoint

URL is known, it might be inputted and added to the catalogue.

Figure 3.9 depicts the catalogue in the early GEORDi prototype. Each entry in the

catalogue holds the name of the dataset, a short description of the data one might

find in the dataset and some additional provenance information, like the institution or
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person publishing the information and a Web site where the user can refer to for more

information about the publisher. Dataset information was easily derived from VoID

descriptors of the Linked Datasets. While the information is a few short lines, it serves

as a preview or a cue to users about the sort of data they might find in a particular

dataset, so they can decide whether it is worth diving in a particular dataset to search

for any useful data.

If users decide to explore a dataset, they can simply click the “Explore Dataset” button

which yields a list of classes defined in a dataset. To use a more user-friendly wording,

in GEORDi these are named as collections, because they provide groups of resources

of a particular item. Collections serve as a starting point from which the user can

start exploring the actual data. Similar to the data catalogue each collection shows a

brief description. Figure 3.10 shows the collections contained in the “UK Parliament”

datasets. As the Figure shows, a user can start exploring these datasets by opening the

Constituency collection, Person collection etc.

The catalogue and collection mode allows users to browse through datasets whenever

their search is of an exploratory nature. GEORDi, however, allows users to also do a

keyword search which returns relevant RDF instances, collections or datasets.

GEORDi is implemented in such a way that each dataset actually corresponds to a single

public SPARQL endpoint, and the collections in each dataset represent a determined

set types of classes from which the user can start exploring the graph. While data from

multiple datasources can be opened simultaneously, these cannot be easily combined

and queried jointly because of the limitations of current SPARQL stores. This might be

available in the future, when more mature frameworks offer the possibility of responsive,

federated queries on demand.

3.5.2.2 Data Representation and Browsing

Data described using the RDF model include many-to-many relationships. Relational

databases deal with many-to-many relationships by using multiple standard tables (i.e.

tables that have equal number of cells in each row and column). Relationships between

these tables are established by using primary and foreign keys (Codd (1983)). In order

to represent many-to-many relationships in GEORDi, we chose a simpler method by

using irregular (nested) table representation of graph data. Figure 3.11 illustrates this

concept by visualising sample data from the example represented in Figure 3.3.

Through the nested table representation, GEORDi implements the set-oriented paradigm

to provide maximum context for the entire trail of pivoting operations. The represen-

tation also allows branching of exploration trails. Once a user finds a dataset for ex-

ploration and chooses a particular collection to start exploring, selecting that particular

collection instantiates a list showing all the resources or instances of that collection
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United Kingdom London 8,174,100

502,900

Germany Berlin

1,378,176

3,515,473

1,802,041

Political 
Leader

Elisabeth II

David Cameron

Joachim Gauck

Angela Merkel

Major CityCountry Population

Female

Male

Gender

Manchester

Hamburg
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Figure 3.11: Concept of an irregular table to visualise graphs of data. The
Figure shows entities described in cells. The red relationships illustrates how
the entities are linked; the type of relationship is indicated in the column header.

1
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4

Figure 3.12: An example showing set-oriented operations in GEORDi over sta-
tistical data of UK government linked datasets. Users can open up new columns
from any existing column.

(Figure 3.12 (1)). The header of the list contains a “property slider” that, if selected,

displays a collection of the properties about those resources (Figure 3.12 (2)). This
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collection represents a union of all the properties of the RDF resources shown in that

list. Selection of a particular property in the menu produces another resource column

that is appended to the initial column. The resources of the new column represent cor-

responding resources that are linked from the resources in the initial column with that

property (Figure 3.12 (3,4)).

Thus data-exploration in GEORDi is effectively represented as a spreadsheet generation,

where a user generates new columns with data through multiple link-slides. The nested

table representation is calculated in such a way that the height of a single resource

cell is equal to the maximum height of all the resources which have been derived from

that resource by pivoting. As with the initial column, the user has the ability to pivot

from any other column, therefore to slowly unpack the graph by building up a custom

spreadsheet. As mentioned previously, the users can view the entire context of their

pivoting operations, thus allowing them to view relationships between items beyond

successive pivoting operations only. In addition to generating a spreadsheet out of

Linked Data, the user can filter results of any of the column as shown in Figure 3.13.

GEORDi allows the user to instantiate as many spreadsheets as they like, either by

reopening the catalogue and selecting another dataset or collection. Additionally, users

can create duplicates of the current spreadsheet and then take to link-sliding across

different paths allowing them to see the results of both spreadsheets side-by-side.

Figure 3.13: Filtering in GEORDi. The filters allow users to filter through the
unique values of each of the columns.

3.5.2.3 Tools for Visualisations and Analysis

As part of the initial GEORDi prototype we included tools to visualise and analyse data

that were shown in spreadsheets. This included visualising numeric and ordinal data in

charts, time data in timelines and geographic points on a map. Figure 3.14 displays data

from a spreadsheet visualised using a chart widget. While GEORDi allows exporting

data as spreadsheets, which allows data to be used by more powerful and commercial
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end-user spreadsheet tools, we included a set of simple visualisation tools in order to

offer users a quick way to visualise data without requiring them to go back and forth a

spreadsheet program.

Figure 3.14: The final GEORDi prototype showing tools to visualise and analyse
collected data.

3.5.3 Deployment and Observations

In order to ascertain if we could carry out data centric tasks as well as inspect the

usability of GEORDi we undertook a series of preliminary informal tests by deploying

GEORDi and accessing 16 different Linked Datasets. The goal of these tests was to

observe and pinpoint specific problems in browsing Linked Datasets. In order to test

various data-exploration concepts in GEORDi, our set included both datasets that were

publicly available and were unfamiliar to us, as well as datasets we have previously pub-

lished as Linked Data ourselves (described in Omitola et al. (2010)) whose structure was

highly familiar to us. Our initial set of tasks included well-defined problems (e.g. “Find

countries that only have cities with population over 3 million and do not have a subway

system.”) as well as more open-ended tasks (e.g. “a freelance exercise to find interesting

data about Countries in the CIA Factbook” or “What interesting relationships or con-

nections can we find between countries and their political leaders”). Even during these

informal tests several observations were immediately noticeable:

• Our most noticeable difficulty was in exploring unknown datasets i.e. datasets

in which we had no knowledge of the schema. This proved particularly diffi-

cult in cases where the dataset contained many collections and graph data was

highly dense i.e. the number of links between resources was high (e.g. the DB-

Pedia dataset). Even with the ability to quickly iterate by opening multiple new
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columns, we were overwhelmed when we were confronted with large datasets, such

as DBPedia, which had numerous collections and property linking resources. This

observation is also reinforced by the fact that some of the user studies over data

browsers (e.g. Oren et al. (2006)) were designed in such a way that users were

given schema level information during sessions in order to formulate queries in

the interface. Additionally, formulating more exploratory queries, such as how do

instances from one class connect with instances in another class that might not be

immediately linked, was difficult when one was forced to choose a single starting

exploration point in the browser.

• In addition to difficulties in finding and exploring large datasets only by navigation

we noticed that our spreadsheet visualisation of graph data did not make it easy

for us to understand the schema or ontology of a dataset. For example, following

which column was derived out of which column was difficult to follow after ten or

more set-oriented explorations.

• The GEORDi browser was designed as a single direction browser; it allowed pivot-

ing by selecting one of many out-going links. We noticed, however, that several of

our queries were significantly more difficult to answer because navigation was only

permitted in one direction. In order to use the back-links, we needed to make two

forward-link pivoting operations which added redundant data to our spreadsheet.

Our observations pointed out that a major problem of navigational generic browsers

was the fact that none of them provided a way for users to effectively explore unfamiliar

datasets. We concluded that exploring rich and complex Linked Datasets by navigation

does not allow for efficient exploration of large unfamiliar datasets. Given that reuse

of others data is among the most advocated reasons for publishing data on the Web

as Linked Data, we concluded that interrogation of datasets required solutions beyond

navigation as a tool to aggregate and query a dataset.

3.6 Summary

In this Chapter we described a design process intended to guide the design of data-centric

interfaces over Linked Data. We proposed two scenarios that engage in data-centric in-

teractions where combining data is the key to solving their tasks. Assuming that Linked

Data can improve and make such tasks more efficient if proper interfaces for end-users

exist, we elicited the required activities to accomplish these tasks, compared Linked Data

alternatives and analysed if and how existing data-browsers support these activities. Our

analysis points out that very few browsers are designed around specific use-cases. Addi-

tionally, few user studies are designed to test for specific novel interactions introduced

in these browsers. Finally, through this analysis and the prototyping efforts in GEORDi
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we pinpointed several challenges using generic browsers that are based on pivoting. The

challenges from the design process can be organised along two major challenges:

• First, the design process described in this Chapter suggested two different per-

sonas, with different types of stakeholders engaging in data-centric interactions.

We can notice, however, that most of the generic browsers we surveyed, as well

as the GEORDi prototype, are by design, closely associated with the underlying

triple data model of RDF. Even by using labels, or perhaps even employing lenses

per resource level, these interfaces still expose the user closely to the underlying

machine representational format. Thus, generic browsers such as the ones we de-

scribed throughout this Chapter can only be usable for people with interest in

interacting with data in a more raw format - for example users such as described

in our first persona. In our second persona we described a scenario in which data-

centric interactions were performed by users which do not have skills to handle raw

data; rather they experience data only through the lens of an application. Thus

our first challenge is how one can bring data-centric interactions closer to the Web

experiences the users are accustomed to without having the data-silo attributes

that are usually associated with Web applications.

• Second, our analysis showed that generic data browsers and the GEORDi proto-

type used navigation as a technique to both query and explore datasets. Prelim-

inary testing of GEORDI however, suggested that data navigation and pivoting

is not an effective technique to explore large unfamiliar datasets of Linked Data.

Additionally, we found that existing representations of instance level data provided

a poor representation of schema level information of a dataset. Finally, we also

noticed that navigation or assembling query through the use of back-links was just

as important as navigation provided through out-going links.

The following two Chapters describe solutions to these challenges. In the next Chapter

(Chapter 4) we present Visor, a generic data browser that builds on our experiences using

GEORDi and introduces multi-pivoting, an attempt to extend navigational interfaces to

better support exploration in unfamiliar datasets. In Chapter 5, we present mashpoint,

a framework that allows data-oriented applications to be linked based on the similarities

of the entities in their data. By linking applications in mashpoint, we provide a way to

support concepts like data navigation through links, which allows data-centric interac-

tions to be performed without the use of generic data browsers. Thus mashpoint allows

the Web to exhibit data-like interactions, making data-centric interactions accessible to

more casual users.





Chapter 4

Multi-pivot Exploration of Data

on the Web

Challenges in browsing large graph datasets are rich: large numbers of ontology concepts,

and high entropy and diversity in links between individual data instances often make

it hard to understand both the overall content of a dataset, as well as understand and

find the particular bits of data that might be of an interest. Such problems can often

overshadow the benefits of interacting over large highly interconnected data. The goal

of generic data browsers has been, in part, to tackle the problem of making sense of

such rich and complex data domains. As discussed in Chapter 3, a common technique

that has been adopted by a number of data browsers for exploring large graphs of data

is pivoting. In this Chapter1 we focus on the limitations imposed by several commonly

observed design patterns found in pivot-based data browsers: (1) exploration is often

restricted to starting from a single point in the data, (2) navigation is typically supported

in a single direction, and (3) immediate instance level exploration is regularly preferred

without gaining familiarity with the domain or setting the exploration context first.

This thesis argues that these characteristics impose a number of limitations: in the

case of: (1) they reduce flexibility and therefore the ability to quickly find data that

are related to the initial set multiple hops away; in the case of: (2) they unnecessarily

reduce the expressivity of the browser, and in the case of: (3) the absence of an overview

of the domain under exploration can often lead to difficulties in retracing exploration

steps as well as make potential alternative exploration paths difficult to recognise. In

this Chapter, we introduce a novel approach called a multi-pivot which extends the

traditional pivoting techniques to mitigate the aforementioned limitations. We also

describe a demonstrator tool named Visor which implements this approach and we

describe the results of a user study to test the viability of this approach.

1Parts of this chapter were included in a paper published at ISWC2011 (http://eprints.ecs.soton.
ac.uk/22784/
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The outline of this Chapter is as follows. In the following section we discuss the multi-

pivot approach, and lay out key design requirements for this approach. Section 4.3

describes Visor, a tool which was developed to test the multi-pivot technique. In Section

4.4 we carry out an evaluation study to test the viability of the approach and discuss

implications for design.

4.1 Limitations of Navigation-based Browsers

In Chapter 3 we briefly described some of the limitations of pivoting as an interaction

technique for exploring and interrogating unfamiliar datasets. In this section we describe

these limitations in more detail. To better illustrate these, we consider a hypothetical

situation of a data-finding activity based on the scenario that was used in the first per-

sona described in Chapter 3. In that scenario the user had the task of finding data about

countries. A particular part of the data-finding task was finding data about Olympic

Games held in a selected subset of countries. In our example, we make the task more

complex by adding additional data-finding tasks. For example, a data-finding task where

the user needs to find all the Olympic Games, including the country they were held in as

well as the people that performed the opening ceremonies. If we suppose that the user

can answer this question using the DBpedia dataset, a user would have to find and query

a particular part of the dataset (Bizer et al. (2009)) . Figure 4.1a depicts the subset

of the DBPedia dataset needed to answer the given query. To illustrate the challenges

of finding this subset of data we consider the following statistics about the entire DB-

Pedia dataset. The DBPedia2 dataset contains 272 Classes (i.e. the DBPedia domain

ontology), 8813 edges, 24448 datatype properties (links to literals), 627 object properties

(links between entities). Figure 4.2, gives a visual representation of the complexity the

DBPedia dataset3 and its relative size compared to the subset needed to answer the

query. Given that users will often need to filter and use only a small subset of data from

the entire dataset, a data-browsing interface needs to facilitate efficient interrogation of

datasets in order to quickly ascertain whether a dataset has particular data in order to

answer a data-centric question or not. To illustrate how navigation-based browsers limit

efficient interrogation of graph datasets we examine the data-finding scenario through

the attributes of navigational-based browsers identified in Chapter 3.

Exploration starts for a single point. As discussed in Chapter 3, in a standard

navigation-based browser, exploration of a dataset begins with a particular set of in-

stances. The initial set of instances usually pertains to instances from a certain class

that is typically found through a keyword search or a catalogue of classes. In the exam-

ple, users can start their exploration from either “Countries” or “Olympic Games. Once

the initial instances are shown, users are presented with a number of properties which

2These were calculated in March 2011.
3http://wiki.dbpedia.org/Ontology

http://wiki.dbpedia.org/Ontology
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Countries Olympic 
Games

Cities Person

Contains Host city

Opened By

Figure 4.1: A portion of the DBPedia ontology showing the links between in-
stances of the classes Olympic Games, Countries, Cities and Person needed to
answer a query.

can be selected to navigate and simultaneously get all the instances which are related

to the instances in the first set through that property. In such a way the graph naviga-

tion is facilitated. Let us suppose that either by keyword search or selection of classes,

“Countries or “Olympic Games are among the choices for the exploration starting point.

At this point users can choose to start with the instances of either class as their initial

set. Let us suppose users choose “Olympic Games. As can be seen from Figure 4.1 users

would need to perform two pivoting operations to get to “Countries. Since the two are

not directly linked, users would need to do some exploring using navigation to find out

the relation between “Olympic Games and “Countries. Unfortunately, no cues are given

to guide users in which direction to start exploring since generic data browsers only

show context and information about one navigation step ahead. In a situation where

the domain is unfamiliar, this presents a problem. Property labels, which are used to

show what is being navigated, do not hold any information about the path two or three

arcs away of the current set of instances. The problem is further exacerbated when there

are a high number of possible choices for pivoting and the number of choices increases

exponentially if the relating instances of interest are multiple arcs away. For example, in

the DBPedia dataset, on average, 32 property links are available for navigation, starting

from a collection of instances of a certain class.

Navigation is unidirectional. As we pointed out in Chapter 3, the direction of

pivoting in navigational-based browsers is often unidirectional i.e. navigation is enabled

only with outgoing links from the instances in the current focus. This restriction can

sometimes limit the query expressivity of the interface, or require the user to go through

unnecessary navigational steps. In our example (refer to Figure 4.1) we notice that
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Figure 4.2: A graph visualisation of the DBPedia dataset ontology showing
which classes are linked. Each node represents a class and each arc means that
there is at least one property connecting instances between two classes. The
Figure highlights the classes described in Figure 4.1.

whatever set of instances users start from (“Countries or “Olympic Games alike), they

cannot pivot in a single direction to all the sets of instances they need, since the direction

of the links they require for pivoting in “Cities are all incoming links.

Exploration and domain overview absence. Current data-browsers are predomi-

nantly instance-centric i.e. interaction is predominately over instance level data. Relying

on instance data only to understand the overall structure of a dataset is often difficult,

since representation of instance data is usually done in tables, whereas tree-like visuali-

sations often result in a lack of overview about the sub-domain being explored as part of

the exploration. The lack of overview can often lead to users missing unseen data rela-

tions and thus contribute to a lack of understanding about the domain being explored.

For example, if the task in our example was more exploratory e.g. finding anything of

an interest around Olympic Games, the user would need to quickly know about rela-

tionships between instances from different classes that might be several hops away in

the graph and be able to scan multiple potential paths simultaneously. Research from

the HCI community suggests that when confronted with complex information spaces,
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information-seeking interfaces should follow the Visual Information Seeking Mantra:

first an overview, zoom and filter, then details-on-demand (Shneiderman (1996)). The

complexity and size of large datasets suggests that using such a paradigm might be

suitable for data browsers.

4.2 Approach

In the previous section we pointed out several challenges to pivoting or navigation as an

interaction technique for exploring graph-based datasets. In the following sections we

introduce an approach that aims at mitigating these limitations. Based on the specific

functions and interactions in data browsers that we identified as the causes of such

challenges, we base the design of this approach around four general requirements (R1 -

R4):

R1. Use multi-pivoting approach - navigation can be initiated by selecting

multiple items of interest. Rather than being limited by starting with a single

exploration point as in most browsers, our approach needs to allow users to start from

multiple points of interest, and discover how the selected points of interest are connected

to each other. In situations in which there are multiple ways that selected starting

points can connect, the tool would need to provide users with the ability to find an

appropriate path through a graph. An analogy to such a design would be a puzzle-

solving example. When solving a puzzle, the solvers can start piecing the puzzle from

multiple points: they can select several different pieces, find pieces that match, create

several greater pieces and then piece these together to slowly gain an understanding of

the overall picture. Similarly, our approach should let users grab different portions of

the domain simultaneously, navigate either back or forth using normal links or back-

links, build their own subset of the domain related to their interest. Since there was no

central point where the exploration starts and users would be able to pivot freely from

anywhere in any direction we named this approach a multi-pivot since it extends the

standard navigational, pivoting approach4.

R2. Overview first, instance data on demand. The approach should not overbur-

den users by immediately exposing instance data during exploration of the structure of

an unfamiliar dataset. Rather, the approach needs to show navigation and exploration

to users with information on the ontology level first, only showing potential exploration

paths in the datasets. However, the approach should allow users to quickly access the

individual instance data if required.

4A multi-pivot approach is defined as one where instead of using a single trail of navigation, the
interface allows multiple trails of navigation to explore a dataset, independent if this is on the instance
or ontology level. Thus the rest of design decisions described are strictly related to the specific instance
of an interface using the multi-pivot approach.
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R3. Allow navigation to be two-directional. In addition to being able to start from

multiple points, the approach needs to support navigation in both directions using both

outgoing and incoming links. This capability should also be available in formulating

queries to retrieve instance data needs.

R4. Query and retrieve instance data based on exploration path. Once users

have created and explored a sub-domain of classes of the dataset they can query the

sub-domain and retrieve instance data.

4.3 User Interface

In order to test the multi-pivot approach outlined in Section 4.2 we designed a demon-

strator tool called Visor5 that implemented these design requirements. Visor is a generic

data explorer that can be used to access Linked Data on any arbitrary SPARQL end-

point. For the purposes of testing and evaluating Visor, we made an initial deployment

on the DBPedia6 SPARQL endpoint. The following sections describe the user experience

in Visor. Throughout the section we refer to specific areas where the description of the

UI meets the design characteristics outlined in Section 4.2.

4.3.1 Data and Ontology Exploration

In Visor, exploration starts by selecting ontological classes of interest (named collections

in Visor to provide a user-friendly name). Users can choose among the collections either

by viewing an entire list of all the known collections or browse in the hierarchical view

of the collections. Collections are listed in a panel on the right hand side of the user

interface (Figure 4.3c). Alternatively a search bar is provided where the user can execute

a keyword search to get results to both individual instances and collections of data.

Instead of choosing a single collection as a starting point of exploration, Visor allows

users to select multiple collections simultaneously. The UI represents a canvas where a

graph rendering of selected collections takes place. The graph rendering consists of the

following nodes:

• Selected collections. Collections selected through the collections menu or searched

are rendered with the title of the collection on top (Figure 4.3a).

• Relations. If there are properties linking instances between two selected col-

lections, the interface indicates to the user that items from these collections are

inter-related by displaying an arc with a blue node in the middle (Figure 4.3b).

5A demo version of Visor is available online at http://visor.psi.enakting.org/
6http://dbpedia.org/sparql

http://visor.psi.enakting.org/
http://dbpedia.org/sparql
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b

Relations

a

Selected Collections

c

All Collections

Figure 4.3: Generating a subset of the DBPedia ontology generated by selecting
concepts in the ontology in Visor. Selected concepts (e.g. “Olympic Games)
are coloured in green, while suggested concepts are coloured in grey. The arcs
between the two collections with a blue node in the middle indicate links between
items (e.g. “Olympic Games has direct relationship with “Cities.

The number in the middle of the blue node is an indicator of the total number of

properties (named relations in Visor) that link instances between the two collec-

tions in either direction. Since large graph datasets can have a large number of

properties connecting instances of two classes, we adopt this approach to mitigate

the generation of a large and incomprehensible graph (m.c. schraefel and Karger

(2006)).

• Intermediary collections. In some cases there are no properties linking two

collections. In such a circumstance, Visor tries to find the shortest path in the

ontology by seeking an intermediate collection to which both selected collections

can be linked. If there is none, a path with two intermediary collections is looked

up. The process is repeated until a path is found. Currently, Visor finds the first

shortest path it can find and suggests it to the user by adding it to the current

graph. While multiple shortest paths might exist, Visor recommends only the first

one it finds. In cases where users want to find another path in the ontology they
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a

Collection Inspector

c

Relationships Inspector
b

Instance Inspector

Figure 4.4: Inspectors showing diverse information on the concepts in the on-
tology. Information about “Countries is shown in (a), and information about a
particular country (in this case Singapore) is shown in (b). The various links
that exist between “Countries and “Cities is shown in (c).

can simply select another collection, and the interface will attempt to link the

last selected collection to all other selected collections. In this way we ensure that

whatever collections are selected the resulting sub-ontology is always connected and

thus query-able. To distinguish selected and intermediary collections the latter are

coloured in grey and are smaller in size.

The graph representation is rendered using a force directed layout Fruchterman and

Reingold (1991) and can be zoomed and dragged to improve visibility. Each node can

be double clicked which then opens up different inspector windows. These allow a view

of the details about the sub-domain. In the following we describe the different kind of

inspector windows in Visor.
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Figure 4.5: Displaying properties in the collection ispector that link from or to
items of a collection.

4.3.1.1 Collection inspector

Double clicking on a collection node brings up a collection inspector (Figure 4.4a). The

inspector shows the individual instances which are part of the collection, a description of

the collection, if available, and a list showing the possible properties that instances from

that collection can have. In Visor, object and datatype properties are listed separately.

Object properties (or relations) are shown together with a corresponding collection to

which they link (Figure 4.5). Furthermore, object properties linking to and from another

collection are shown in separate lists (Figure 4.5). Users can then add these classes to

the canvas. In such a way we support two-directional set-oriented navigation; however

in Visor we do so on the ontology level which serves as a potential roadmap for querying

(Design requirement R3). Users can also view filters of instances in the inspector by

selecting any property (object or datatype). This shows the instances that only have

that property and show the corresponding property value.
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4.3.1.2 Instance inspector

Clicking on any of the instances in the collection inspector opens up an instance inspector

where all the data pertaining to the individual RDF resource is shown (Figure 4.4c). A

simple lens that searches for commonly used properties is used to render the individual

resources, including rendering images, if any exist, a description of the resource and the

data associated with that resource. If geographic coordinates are found for the instance,

the user is presented with a map. Additionally, we show the collections that include the

particular instance (i.e. the classes that are stated as a type property in the resource).

In the data panel, links to other resources open the instance inspector associated with

that resource. In such a way, browsing from one instance resource to another is also

supported in Visor.

4.3.1.3 Relations inspector.

The relation nodes (the blue nodes in the visualisation) can also be inspected in order to

quickly access properties that link instances from two collections (Figure 4.4b). Clicking

on any of the relations will display the instances from both collections linked with that

property.

By selecting collections, users can create a subset of the ontology that is composed of

concepts of their interest without restricting them to selecting a single collection, and

use navigation (Design requirement R1) to find related collections. With the inspector

windows, users can surface up the data on demand (Design requirement R2) to explore

how collections are related, what are their individual instances, and if required, inspect

the instances themselves.

4.3.2 Spreadsheet Creation

The implementation of the fourth requirement (Design requirement R4) is tool-specific,

and it relates to how instance data is retrieved and visualised to the end user. Based

on the assumption made in Chapter 3, that our first type of end-users are spreadsheet-

friendly users, we designed the retrieval of instance data and queries similar to that

of GEORDi. In a similar fashion, in Visor, a user generates a custom spreadsheet by

specifying the parts of the explored sub-domain using the previous steps. The tools

leaves more advanced representation and visualisation approaches of a more suitable

and powerful tool. Thus, spreadsheets created in Visor can be exported in a variety

of formats which can be picked up and reused in different applications. For example,

they can be published as visualisations using ManyEyes or published on the Web as a

standalone dataset using an Exhibit or simply be used in a spreadsheet application for

further analysis (Viegas et al. (2007); Huynh et al. (2007b)).
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In Visor, once a subset of the ontology is selected the user can query this information

space by creating custom spreadsheets based on the selected concepts and relations

from the ontology subset. After the spreadsheet has been created users can export

their custom made data collection in a format of their particular needs. Visor currently

supports exporting data in CSV and JSON formats; however the system is extendable

and multiple formats may be supported. In the following section, we describe the query

interface and procedure for creating custom spreadsheets.

4.3.2.1 Main collection.

The “Create a table button located in the top menu of the UI opens up a query interface

which guides users in selecting things from the previously explored domain (Figure 4.6).

The first step in creating a spreadsheet is selecting the main collection i.e. the collection

that will be the focus of the spreadsheet (Figure 4.6a). This will instantiate a spreadsheet

with a single column (the main column) composed of the instances from the main

collection. All subsequent columns added to the table will be facets of the first column,

each created by specifying a path showing how the items of the newly created column

are related to the items from the first column.

4.3.2.2 Adding columns.

Once the main collection is selected, adding additional columns is the next step. The first

choice of columns are the datatype properties of the main collection shown in Figure

4.6b. Users can select a property and click on the “Add column button to add the

column to the table. By default, when a column is added, Visor queries and tries to find

a corresponding value for all the instances in the main collection. If such a value does

not exist a “No value cell informs users that the item in the main column does not have

that property. The default option corresponds to generating a SPARQL query with a

OPTIONAL statement. To filter for non-empty values users can check the “Show only

option before adding the column. In such a way, users have the flexibility of selecting

which columns are optional and which required having a value in each cell. Additionally,

users can also choose the “Count option to count the values in a cell in the corresponding

to the item in the main column. Similarly, selecting the “Count option corresponds to

having a COUNT query in the SPARQL query.

4.3.2.3 Defining column paths.

Users can also add columns based on other collections in the current sub-domain. The

query interface allows users to specify a path that connects items from the main collec-

tion, to items in the newly added column. This can be implemented in two ways:
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a
b

c

d

e

Figure 4.6: Spreadsheet creating/query interface in Visor. Users start by select-
ing the main collection (a) datatype properties (b) columns from other collec-
tions in the sub-ontology by specifying relations to the main collection (c) and
(d). A preview of the columns is shown in (e).

1. The first way of doing this is by using a path creation tool (Figure 4.6c). The

path creation tool starts a path with the first element being the main collection.
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Select Collection Select Property

Figure 4.7: Specifying a path from the main collection to an arbitrary collection
in Visor.

Users can then select a collection that is related to the main one using a drop-

down list of available choices (Figure 4.7). Once a related collection is selected,

a property that links them is selected again from a selection of choices in a drop-

down list. Then another collection can be chained to the previous one and again a

property between them is specified and so on. When a column is added based on

the specified path the column pertains to instances from the last collection in the

path. We note that the path creation tool enables users to connect the collections

by properties going in both directions (the left and right arrows shown in Figure

4.6c,d).

2. To help speed up the process, an alternative way of adding columns is supported.

In the “Add columns from other collections section of the generator interface, a

tab panel allows choosing a collection that is part of the sub-ontology domain.

Each tab panel contains suggested paths for reaching that node (Figure 4.6d). It

lists all the paths from the main collection to the collection specified in the tab.

Users need only to specify the properties in-between the collections. This saves

time to the users, as well as gives cues into all the different ways that items from

two collections can be related.

Users can update the current spreadsheet to monitor their progress at any time. An

overview of selected columns is shown to the user (Figure 4.6e) which allows backtracking

on choices made as well as rearranging the ordering. The spreadsheet also supports

filtering for specific values in a column. Once users are satisfied with their custom

spreadsheet they can choose to export it in a number of different formats.

4.3.3 Implementation

The implementation in Visor is composed of a front end (UI) and a back-end system.

The UI is based on HTML5 and Javascript and the visualisation of the ontology was

implemented using Protovis visualisation toolkit (Bostock and Heer (2009)). The Visor

back-end server is a Python/Django application that serves data in a JSON format to

the front-end by exposing a RESTful interface. Thus the UI side of the application does
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not rely on any raw SPARQL query generation or parsing SPARQL results. The system

is generic, and can be used on any Linked dataset that is available through a SPARQL

endpoint.

4.4 User Study

In order to ascertain whether people will be able to learn and use Visor to explore

unfamiliar datasets we conducted a user study. The purpose of our study was twofold:

(1) we wanted to test if there were any major issues in the users ability to comprehend

and use the tool and (2) identify specific usability problems and areas where interaction

can be improved. Thus, the goal of the study was to test if our approach was viable.

4.4.1 Study Design and Procedure

For the study, we recruited ten participants through an email advertisement among

graduate students at the University of Southampton. Seven of the participants were

male and three female and their ages ranged 21-41. All users were regular users of

spreadsheet tools. Additionally, we wanted to have a diverse group of users with respect

to gained knowledge of Semantic Web/Linked Data technologies and see if there were

any particular difficulties among users with different skill levels. We asked them to rate

their knowledge of Semantic Web/Linked Data technologies on a scale of one to three,

one being ”very basic understanding or no knowledge”, two being ”some knowledge and

understanding”, and three being ”high or expert knowledge”. To gain further insight in

their skills, we asked them to rate their knowledge on the same scale to several specific

areas: (1) Linked Data application development, (2) Use of SPARQL, and (3) Ontol-

ogy Engineering and/or data authoring. Half or the participants had no or very little

understanding of Semantic/Linked data technologies, 3 participants had intermediary

knowledge and 2 participants had expert knowledge. No users had any prior knowledge

about the structure of the DBPedia dataset used in the study.

The study used the cooperative protocol analysis or “think aloud method (Dix et al.

(2003)). We chose this method because we wanted to pinpoint any potential usability is-

sues introduced by the design requirements R1-R4 and get users insights into identifying

the problems.

Each participant went through a study session that took approximately one hour to

complete. A session was structured in the following way. First, the participant was

shown a 6 minute video7 tutorial of Visor. The tutorial explained the terminology used

in the tool and showed a complete example, worked out in Visor. Second, the participants

were handed three written tasks to complete. During this time the “think aloud protocol

7The video is available at: http://vimeo.com/24174055

http://vimeo.com/24174055


Chapter 4 Multi-pivot Exploration of Data on the Web 111

was observed, and we recorded the users screen and audio. Finally, participants were

required to fill in a questionnaire, in order to reflect and give feedback based on the

entire session with questions targeting specific portions of the UI.

Two of the tasks were structured tasks i.e. the users were given a concrete task with a

clear result. The first task required a three column table with generated one-hop links

in a single direction, while the second required more columns, specifying a loop pattern,

and setting paths with two-directional patterns. The third task was unstructured i.e.

we gave users a general area of browsing and exploring and coming up with some data

of their particular interest. The following tasks were used in the study:

• Find all the parks located in cities, show the city and the country where the city

is located

• Find royals who have intermarried and find the country they came from

• Find data of your choice related to universities, scientists and science awards

4.4.2 Results

During the execution of these tasks, we focused on observing three things: (1) Observ-

ing user actions during data finding tasks, (2) observing when users chose to view the

actual instance data and for what reasons and (3) observing what problems participants

experienced when attempting to create their spreadsheets.

Data finding. When searching for collections to build their sub-domain in order to

complete their tasks, most participants (nine out of ten) chose to use multiple collec-

tion selection rather than navigation after selecting their first collection. Only when the

resulting connections contained intermediary nodes that did not meet the requirements

of the sub-domain, did they resort to navigating through other potentially useful col-

lections. This was particularly the case during the exploratory task. Most users used a

keyword search option to search for collections. Beyond using it for finding collections,

participants suggested additional ways that search can be useful for finding additional

data. For example, one user commented that the use of synonyms would be helpful to

find collections. Another user, for example, wanted to search for a particular instance

during the exploratory task because the user wasn’t sure in which collection that par-

ticular item can be found. Beyond searching for instances and collections, we observed

that some users tried looking up things that we currently did not support e.g. searching

for relations. For example, one user thought that there might be a collection named

“Spouses before realising that it might be a relation instead.

Showing instance data. We also observed users in order to see how much they would

need to rely on viewing the underlying instance data during various stages and across



112 Chapter 4 Multi-pivot Exploration of Data on the Web

0	
  

1	
  

2	
  

3	
  

4	
  

5	
  

6	
  

7	
  

Open	
  without	
  inspec6on	
   Casual	
  inspec6on	
   Inspect	
  instances	
  first	
  

Inspec6on	
  of	
  instance	
  data	
  during	
  
structured	
  tasks	
  

Inspec6on	
  of	
  instance	
  data	
  during	
  
unstructured	
  tasks	
  

Figure 4.8: Reliance in showing instance level data as opposed to collection
overviews in Visor.

different tasks. We concentrated our observations on two things. One was to observe if

users needed to examine the underlying data during the initial exploration phase when

the user was building a sub-domain of data. Second, we wanted to test if they can

specify relationships that were three or more hops away without seeing the intermediary

related data. During the structured tasks, we found that users spent very little time

or none at all exploring the generated sub-domains with the inspector tools (Figure

4.8). Six participants chose to directly open the spreadsheet creation tool mentioning

that they felt confident they had everything they needed to answer the query. Three

others noted that they just wanted to open up the inspectors to explore the instance

data before making a query, however, they mentioned no particular reason except a

casual exploration. While we observed a slight increase in using the inspector tools

during the exploratory tasks, we did notice that the spreadsheet creation tool was used

as an exploratory tool as well. When creating their spreadsheet more than half of

the participants chose to view their progress with each added column. At the start of

the sessions, novice and intermediary users reported difficulties in grasping how paths

worked, but once they were explained they felt confident in generating paths two or

more hops away without viewing the intermediary data.

Spreadsheet creation. Users found the spreadsheet creation tool was the most difficult

part of the interface the user can learn and use. Some suggested better integration with

the visualisation by either selecting or being able to drag and drop directly from the

graph into the header row of the spreadsheet. In hindsight, we realised that a simpler

design, one that is directly integrated with the visualisations in the system would have

produced a much more usable design. Designing a simpler spreadsheet creation tool in

this case is purely a matter of refining the system as part of perfecting a prototype tool.
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While for the two expert participants and one non-expert specifying the direction of

relationship made sense, for most other participants specifying the direction of relation-

ship seemed irrelevant. When asked what they would prefer, most of them responded

that they would like a single list of how to relate two collections instead of two sepa-

rate lists. However, we observed that users had no difficulty in specifying paths when

two-directional patterns occurred.

When faced with the choice of using the template paths or create them manually, the

preference of participants was split among these two choices. The participants recom-

mended, however, that they would like to be able to reuse paths from existing columns

which were sub-paths of the new path, rather than specifying a new path every time

they add a new one.

Task completion and survey. Task completion was generally high: eight out of

ten participants were able to complete all three tasks and create spreadsheets to the

specified requirements of each task without any errors. Overall, we found that the users

were able to easily learn and create their spreadsheets after the one-hour session. After

going through the tasks, participants were asked to submit a survey and rate the overall

difficulty of using the tool on a Likert scale of one to five. Two participants reported

that they found the tool very easy: (1) to use, six reported it easy (2), one user reported

it average (3) and one user reported it difficult (4) to use. When asked to rate specific

tool components or functions, most participants (8 out of 10) reported that the graph

visualisation is useful and easy to use, while they gave the spreadsheet creation tool an

average (3.2) score.

4.4.3 Implications for Design

Based on the results we can compile a set of recommendations which could be considered

useful to future designers of data-centred exploration interfaces.

Integrate keyword search with direct manipulation techniques. The multi-pivot

approach showed that a more flexible approach to exploring data is a viable approach for

exploring Linked Datasets. We noticed that users not only took advantage of this flexi-

bility, they even wanted more freedom when trying to find the portion of data domain of

their interest. Thus rather than being able to just add multiple collections, users should

be able to search more freely for things, such as properties, instance data and view how

they are relevant in the already explored data. Currently Visor only allows adding col-

lections - a future tool that allows discovery and structure understanding, such as Visor,

can make all of these objects first-class citizens to the visualisation. Integrating keyword

search techniques that allow finding these with direct manipulation techniques that sup-

port the discovery and exploration process may further improve exploration of unfamiliar

datasets. So far, the two techniques have been deployed separately; direct manipulation
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techniques have been mostly focused on supporting direct manipulation techniques for

navigating graph data only, while interfaces supporting keyword search have focused

on entity retrieval or answering questions. Future designers of data browsers should

be encouraged to consider closely integrating keyword search with direct manipulation

features of the data browser.

Support two-directional navigation. In Chapter 3, we noted that some interfaces

support navigation in a single direction only i.e. only from outgoing properties. This

limits the expressivity of the queries that can be answered by the data browsing tool.

While from an implementation point, supporting back-links on the open Web of Data is

much harder a task than when the data is contained in a single store, our study shows

that from an interaction point of view supporting both does not have any significant

impact on users when browsing. Thus back-links and forward-links can be treated

equally.

Show data on demand. One of the things our study shows is that users can browse

and query for data without relying on viewing instance level data. As we pointed out

in Chapter 3, most browsers visualise exploration of a dataset by representing instance

level data in their tools. However, when exploring unfamiliar datasets showing instance

level information does very little to convey structure (i.e. schema) level information

about a dataset. Instead of real-estate being used on massive amount of instance data,

overviews and other summarising information about the dataset can be used to improve

the understanding of unfamiliar datasets before querying and retrieving instance data.

Retaining context while exploring or combining querying with visual aids can be utilised

to give an overview of the exploration path and make querying easier. Users should,

however, always retain the option of viewing the instance data of the current result of

an exploration at any time. Visor is one example, using a graph-based visualisation

to summarise ontology level information and give access to instance data on demand.

Other types of visualisations might be used. For example, Zhang and Heflin (2011) use

a tag cloud representation of a dataset to summarise the content and provide statistics

about a dataset.

4.5 Summary

In this Chapter, we examined some of the interaction challenges associated with data

navigation as an exploration technique in data browsers. To address these challenges we

presented multi-pivoting, an extension to pivoting that aims at improving exploration

of unfamiliar datasets. We presented Visor, a tool that implements this approach by

allowing users to create their own sub-domains of interest by combining selection and

automatic link recommendations. Our study showed that users were able to find and

solve tasks from a large dataset that was unfamiliar to them. Our approach shows
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that with proper tools even large Linked Datasets with complex domains can be effec-

tively explored. Future work might produce different approaches that extend or improve

existing approaches for exploring unfamiliar domains.





Chapter 5

mashpoint - Browsing the Web

along Structured Lines

The work presented thus far focused on generic data browsers - tools that allow access

to Linked Data on-demand. In most cases, generic data browsers make raw Linked

Data available to non-technical users. In Chapter 3, we proposed two personas and

thus described two scenarios, in order to distinguish use cases where users engaged in

data-centric interactions needed access to raw data, from users that engage in data-

centric interactions through data-driven applications. So far, the tools we presented

focused on the first type of users. In this Chapter, we tackle the problem of providing

data-centric interactions for casual users, users that experience data only through data-

driven applications.

As our analysis of data browsers in Chapter 3 showed, all generic browsers exhibit similar

attributes: they use generic data representations, use limited heuristics to figure out how

to represent the data, and allow navigation through graph data (usually using pivoting

i.e. set-oriented navigation). Additionally widgets and tools can be provided in order

for the users to quickly create domain dependent data representations upon finding data

of their interest. However, navigating and finding data in generic browsers, even when

abstracted from its machine readable format is still not a trivial task: it requires finding

the right data from potentially large data sources, figuring out which data would be

interesting or need to be combined, gathering the data and finally representing them in

a format other than the one supported by the generic browser. This might be too much

of a price for users that are used to just point-and-click browsing and keyword search

engines to find information on the Web. While in the future, recommendations based on

additional representation knowledge might improve the usability of generic browsers, we

are a long way off having generic browsers accommodating automatic representations and

recommendations for all possible Linked Data sources on the Web. On the other hand,

in Chapter 2 we examined data-mapping approaches, approaches that allow developers

117
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to quickly assemble powerful visualisations and data-centric interactions over data using

components, libraries or custom solutions. These tailor-made interfaces, although useful

and usable, are designed to be grafted over limited datasets and thus do not enable

integrating information from a Web of Data. Thus, a trade-off of is evident when we are

confronted with choosing among generic, data-mapping and custom-made approaches:

either we need to sacrifice navigability and the affordances of using Linked Data as a

resource that allows easy data integration and be satisfied with islands of applications

over limited data sources, or use generic approaches that allow access to raw data,

making it unusable for large numbers of users that experience data only through rich

data-driven applications.

In this Chapter we present mashpoint - a framework that attempts to find middle ground

between these approaches. The framework allows data-centric applications to be linked

based on the similarity of entities in their datasets and thus be used as a higher level

abstraction or lenses over linked data on the Web. Linked in this way, data-centric

applications can pivot with selections of entities, enabling similar data-centric navigation

found in generic browsers to be performed using distributed data-driven applications.

This Chapter is organised as follows: first we present the overall concept and design of

the mashpoint framework, and discuss how mashpoint can be looked at from different

perspectives of data browsing. We then discuss the case of having data-centric applica-

tions as higher level abstractions over the Web of Data and how this approach can be

used to effectively solve a number of challenges common to generic data browsing. Next,

we briefly present implementation details of the mashpoint prototype. We then report

on an exploratory user study we carried out to identify any usability issues with using

applications linked with mashpoint to solve data-centric tasks. Based on the study, we

introduce improvements to the framework and carry out a second, more comprehensive

study to ascertain the effectiveness of the solutions to the issues identified in our first

study.

5.1 mashpoint - Concepts and Design

The Web today is populated by many applications offering data-centric interactions. In

Chapter 2, we noted how data-centric features are a pervasive feature on many online

sites offering content based on data. Such online websites exhibit similar patterns of

design when offering data-centric features. They usually provide filtering and finding

data either by categorising or through faceted browsing interfaces over single or multiple

collections of common items. For example, an online shopping site might provide and

filter information about various products. A travel website might be able to filter through

hotels and flights. While different websites might offer different information about what
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are essentially the same entities, it is difficult to easily combine data from multiple sites

or filter one sites information by another sites filters.

To better illustrate this point, we again consider the example described in our second

scenario in Chapter 3. The scenario describes a situation where a user, in this case

Anna, needs to combine and filter information about hotel bookings. In the scenario,

Anna needs to find the hotel and flight bookings on travel websites, but filter only for

hotels which are on the conference discount list and further filter those that have good

transport links to the conference site. Let us imagine that Anna needs to combine this

information from three websites: first a travel website containing information about

flight and hotel packages; second, the conference website which lists information about

the discount hotels, and a local transport website that provides transport links though

inputting location information e.g. postcodes. As we described in the scenario, currently

Anna would not be able to easily filter the information found across these three websites;

she would have to go one hotel at a time, copying and pasting information between

these websites and checking if the information is about the right hotel and if it meets

the criteria she has set for finding the right hotel. Since she is looking up multiple

hotels, her task would be time-consuming. As we can see these websites have various

information about the same entities; in the case of hotels both the travel website and

conference website have information about “Hotel entities, while the conference website

and the transport website have various information about “postcode entities, and in the

case of the conference one, the postcodes of the hotels, while the travel website links the

postcodes it recognizes with local transport information.

On the Web, applications that are built either by deploying the underlying data as Linked

Data or through reusing Linked Data will expose URIs to denote individual entities in

the data. While different publishers might provide different URIs, publishing practices

on the Web of Data requires users to link to other similar resources in order to identify

semantic similarity. Thus, if entities between applications are reconciled, a simple com-

munication protocol that allows entities to be communicated from one application to

another can be used to allow applications to cooperate and answer data-oriented needs.

With the mashpoint framework, we leverage the fact that data-driven applications built

on data from the Web of Data will be able to expose entities that are uniquely identified,

and we use this fact to provide a framework that allows for pivoting with data between

applications. In the following section, we describe the pivoting between applications in

terms of the users experience.

5.1.1 User Experience

To illustrate pivoting between applications we present an example of two applications

that have already been linked by using the mashpoint framework. Figure 5.1 shows

two different applications that are connected through mashpoint. The first application
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Figure 5.1: An example of pivoting with data between two applications in mash-
point.

(Figure 5.1a), is a simple data-oriented application showing levels of income per capita

for world countries. It allows users to view population and income levels of countries, as

well as to filter them by a number of facets: geographic area, income level, membership

in international organisations etc. The other application in our example, is another

data-driven application that shows data about countries from the CIA Factbook1. The

application shows charts of birth-rate versus death-rate and allows this information to

be filtered by countries population, region etc. As we can see, each application has

different information and provides different filters over the same entities, in this case

countries. Let us suppose now, that we are interested in finding the birth-rates vs.

death-rates for countries with a high GDP per capita. Neither applications hold all the

1https://www.cia.gov/library/publications/the-world-factbook/

https://www.cia.gov/library/publications/the-world-factbook/
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data we need to answer this question; the first application has information about GDP

per capita and allows filtering by income levels but has no information about birth-rates

or death-rates. Conversely, the second application does have data about birth and death

rates, but no information about GDP. When applications are linked in mashpoint two

things are enabled: (1) applications that share similar entities can be discovered, and (2)

a selection of entities in one application can be communicated in another application,

thus allowing pivoting between applications that share similar entities. This interaction

is shown in Figure 5.1. When added to the mashpoint framework, each application

embeds a mashpoint button (Figure 5.1b), which, when clicked, opens up a window

that offers other applications that can take the current selection of entities and new

insights about the selected entities in the first application. In the example, we first

filter the application to get countries that have a high income. When the mashpoint

button is pressed, the window shows all the other applications that can show information

about either all of the selected countries or a subset of them. We can then select the

CIA Factbook application from the list. When shown, the list of countries in the CIA

application will reflect the selection we made in the first application.

a

c

b Flags on a map

Migrations map

Currency codes

Figure 5.2: Example applications linked with the mashpoint framework.

As part of the development of this framework, we started adapting and linking existing

data-centric applications on the Web. Figure 5.2, shows three other applications that
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were adapted and linked up using the mashpoint framework. The first one2 (Figure 5.2a)

is a simple Exhibit showing images of world currencies, and the currency code. The

second application3 (Figure 5.2b) is a simple exploration application which allows users

to view and browse countries flags depicted on a map. The third application4 (Figure

5.2c) is an existing open source application found on the Web5 displaying migration data

geographically after being integrated with the framework.

In the following section, we describe several examples how combining and navigating

through different data selections can produce some interesting insights into the data:

• In the previous example we used an application that showed World Bank data

about GDP/per capita (Figure 5.1a). A user can browse data in that application

using the provided facets; however, the application provides only a single data

representation, a list of countries and the corresponding information. A user may

wish to view countries geographically on a map in order to see how countries of

different income groups are distributed geographically (for example, where are the

most “Low income countries located?). Using current tools on the Web, a user

would be required to copy and paste each country in another application (e.g.

Google Maps) to answer this question. Using mashpoint, however, the user can

take any selection of data and find applications that are able to provide geographic

information and data representations about the data. For example, after filtering

for “Low income countries, the user can open the mashpoint dialog and select the

Flags on a map application (Figure 5.2a), which can display the current selection

of countries on a map as little flag markers. It is immediately clear that out of all

the low income countries only a single one (Haiti) is in the Americas, while the

rest of the low income countries are in sub-Saharan Africa, Central and South-east

Asia.

• Drawing from the previous example, once viewed geographically, a user can choose

to view additional data about the selected “Low income countries by pivoting to

the CIA Factbook application (Figure 5.1b) and explore data about birth rates

and death rates for the selected, low income countries. If a user decides to compare

these with high income countries, a user can repeat the same navigation, only this

time starting with high income countries in the first application. A user can then

conclude that there is a great diversity in both birth rates and death rates in low

income countries as opposed to high income countries where death rates are fairly

consistent, and birth-rates experience small variations.

2http://mashpoint.net/demoapps/currencycodes/index.html
3http://mashpoint.net/demoapps/flagsonamap/index.html
4http://mashpoint.net/demoapps/mapmigrations/index.html
5http://migrationsmap.net/
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• Similar to the previous example, a user might choose to view migration patterns

of countries in a particular geographic region. For example, pivoting from Middle-

eastern countries selected in the Income Levels application (Figure 5.1a) to the

Map Migrations app (Figure 5.2c) can reveal to the user that people from those

countries typically migrate to countries in the same region and to countries of

Western Europe and Northern America.

• A user is planning a trip across Europe, traveling to multiple European countries.

While aware that some European countries share a single currency, the user, not

knowing if all the visiting countries use the same currency decides to check this

information for each country separately. Deciding that the best way to quickly

select the countries of interest is to use a map, the user selects the countries of

interest on the Flags on a map application (Figure 5.2a). By selecting the Currency

codes application (Figure 5.2b) the user is able to pivot with the current selection of

countries, obtaining the corresponding currencies of each country. This saves time

to the user since the alternative would be to look up each country and integrate

the information manually.

If we examine all of the above examples carefully, an interesting observation can be made

of each example. Each application by itself offers very limited capabilities - they only

allow data-centric interactions over the dataset used in the application. By enabling

selections of entities to be pivoted or shifted to other applications, we allow users to

interact and complete data-centric tasks that usually require tedious manual work.

5.1.2 Interaction Concepts

We notice that in the examples we’ve provided so far that all of the applications provide

data around a single collection of entities i.e. countries. As we know, browsing and

using Linked Data connects information and data about entities of different types e.g.

countries link to cities, people etc. Additionally, we notice that all of the applications

have the same cardinality i.e. all the applications have information about all the coun-

tries. This might not always be the case. In this section we describe different situations

that can occur as a result of data-oriented navigation in mashpoint and we describe how

these situations are handled in the framework.

5.1.2.1 Homogeneous Collections between Applications

Entities used in two different applications are considered homogeneous when both the

application we are navigating from and navigating to are centred on a common infor-

mation concept. In our previous examples, all applications provided information about

countries. Two different situations might arise when navigating between applications
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Figure 5.3: Displaying different types of information in the mashpoint applica-
tion selector window.

with homogeneous collections. The first case is when the cardinality of the entities in

each application is the same. For example, two applications can have an identical set

of entities i.e. if they both surface entities which correspond to countries and they both

provide data about all the countries in the world. This means that for every entity se-

lected in the first application, a corresponding entity will be displayed in the navigating

application. The other case is when the cardinality is not the same i.e. when the appli-

cation users are navigating to gain information about a subset of the entities in the first

application. For example, one application might have data about all the world countries,

while another holds data about EU countries only. To solve these situations for users we

added additional tools in the mashpoint window (Figure 5.3). First, whenever the user

hovers over an application selection, the user is presented with information on how many

of the entities will be displayed in the selected application. If an application can show

the full range of selected entities, a green indicator is displayed (Figure 5.3c); otherwise

the indicator is red (Figure 5.3d). There may be situations where users might want

to get additional information about exactly which entities can or cannot be displayed.

To do this, users can hit the Inspect button, which opens an Inspector sidebar on the

left side of the mashpoint window (Figure 5.3b). The sidebar shows the list of all the

entities and indicates which ones are available, and which ones are not in a selected

application. Users can search or filter for particular entities. Additionally, users can

select any subset of the available entities and restrict navigating to an application with

only that particular selection of entities.
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Figure 5.4: Navigation between applications which support entities from differ-
ent information concept types.

5.1.2.2 Different Information-concept Collections between Applications

A data-oriented application can support entities of many different concepts. For ex-

ample, an application can combine information that includes cities and countries. The

application might choose to show data about cities, and include facets such as coun-

tries, to enable filtering of the cities by country. In mashpoint, both sets of entities can

be exposed as separate collections of entities. Since, the application exposes country

entities as well as city entities it can choose to pivot applications with either set of en-

tities. This is shown in Figure 5.4. The first application shows data about countries

CO2 emission levels, while the second application shows a list of the 25 most polluted

cities, which can be filtered by countries. If we select a subset of countries in the first

application, we can then see which of the selected countries have cities which rank in
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the top 25 most polluted cities. In mashpoint, each collection of sets is treated sepa-

rately - one can choose to pivot other applications with one or the other set. Figure

5.3a shows an example where the mashpoint window provides a way for users to choose

whether to pivot applications that accept the “City entities or to applications that ac-

cept the “Country entities. Although navigation between instances of the same type

corresponds to navigating through a owl:sameAs property in a generic browser, by en-

abling an application to expose several collections of entities, mashpoint provides data

browsing capabilities equivalent to generic browsers navigating between RDF instances

of different types, linked through an arbitrary property.

5.1.3 Defining mashpoint

By enabling applications to exchange information about entities, mashpoint enables

data pivoting between multiple applications. In effect, the mashpoint framework allows

the same interaction mechanism of pivoting that has been discussed throughout this

thesis, but rather than doing it on the raw data level like most generic browsers, it

adds a level of abstraction to the raw data by using applications built over Linked

Data. However, mashpoint can also be viewed from several different perspectives. In

the following section, we discuss some of these perspectives.

5.1.3.1 Lens Perspective

One way of looking at the applications connected through the mashpoint framework is

to view each application as a lens over some Linked Data. Figure 5.5 illustrates this

perspective. The figure shows ontology of data about countries, their population, size,

birth rate, death rate, GDP, and currency including a currency code, and currency value.

The circles in the figure represent classes in the ontology, while the ellipses represent

literal data entities. Applications that are built over subsets of this data (depicted by the

dashed-line rectangles) can be seen as lenses or views over the data. Each application can

show one or more collection of items. For example, the first application (Application 1)

can be seen as a lens over data about countries by taking information about the countries

birth rate and death rate and representing the information as a scatter plot. The second

application (Application 2), on the other hand, takes different data about countries

(in this case area size, population and GDP) and provides a faceted browsing interface

over countries and their GDP per capita. It holds facets such as geographic area and

different income levels. The third application (Application 3), on the other hand, shows

data about two collections: currencies and countries. The application shows diverse

currency information, such as currency code and value, as well as the country which can

be used to pivot with the other two applications that have information about countries.
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Figure 5.5: Applications in mashpoint viewed as lenses over a graph of data.
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5.1.3.2 Application Pipelining Perspective

Another way of viewing the link between the applications is by considering them in a

pipelining metaphor. In computer science the concept of pipelining is used to consider

applications that can be chained - i.e. the output of one application can be used as

an input in another application. This concept of interactions dates back to pipelining

of Unix-based terminal commands and later on in graphical user interfaces (GUIs) by

dragging and dropping between applications. Applications in mashpoint can be viewed

in a similar analogy. Each application can be viewed as an application that can take

some input (in this case a collection of entities) and can produce some output - produce

an interface that is able to represent and further manipulate the data. Once the user

manipulates this output using the tools in the second application, it can again be used as

an input in a third application. The use of data across different applications processed

over RDF as a same data model has been discussed by Huynh and Karger (2009a)

although in a more generalised notion than just browsing.

5.1.3.3 Structured Data Clipboard

Yet another way to view mashpoint is to view pivoting between applications as a struc-

tured data clipboard. In one of his design notes6, Tim Berners-Lee suggests that one way

of looking at the Semantic Web is to view it as a way of breaking down barriers between

applications. Berners-Lee suggests a semantic clipboard as an example where data from

one application can be copied and pasted in another application. For example, copying

and pasting data from a photo sharing application on a calendar application will show

chronological information about the photos. mashpoint can be seen as a lightweight

version of a Semantic Web clipboard. While Berners-Lee’s proposal suggests that data

moves between applications, mashpoint suggests that selections of entities move between

applications. The latter approach is much more easily implementable and scalable, since

reconciling identifiers is much easier than reconciling data in general, which requires that

applications have prior knowledge of the schema of the incoming data.

5.2 The Case for Application Level Abstractions

Throughout the previous Chapters we noted various limitations and problems with

generic data browsers. The mashpoint framework provides solutions and improvements

to a number of problems encountered with generic browsers. In the following section,

we discuss how application level abstractions can solve several noted problems inherent

to generic data browsers:

6http://www.w3.org/DesignIssues/SemanticClipboard

http://www.w3.org/DesignIssues/SemanticClipboard
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5.2.1 Representation Problem

In Chapter 2 we noted that, unlike the Web, where each page is carefully crafted for

human consumption, a Web of RDF data is purposely devoid of any presentational

content as an adherence to the principle of separation of content from presentation.

Therefore, the responsibility is transferred to the browser to figure out how to represent

data once fetched. As shown in the tools developed so far, generic browsers operate over

raw, machine readable data and thus, by design, bear the responsibility for how the data

is represented to users. Since they are generic, they often resort to generic approaches

to representing data in structures, such as tables, graphs etc. We also discussed various

problems of adding data about lenses in generic browsers. By having applications level

abstractions over data that act as lenses over Linked Data, we can always be sure that

the data is shown within a rich custom made context of the application.

5.2.2 Dealing with Fine-grained Raw Data

Often times the data that the data browser exposes is much too granular information

for end users, often requiring them to do complex transformations or many selections

before they can complete an information related task. For example, a simple question of

viewing a visualisation of countries GDP/per capita on a map will require multiple steps

to complete. Normally, a user would first have to explore the graph and find resources of

“Countries that will probably be associated with properties, such as latitude, longitude,

GDP and population. Then, a user would have to find and specify which properties will

be used to query. Moreover, GDP per capita might not be available, so a user would

have to combine the overall GDP and population data before the data can be used in,

for example, a chart visualisation widget. Eventually, the user can reach the desired

result; however the process can be long and error prone. As our casual end-user persona

described in Chapter 2 suggest, these interactions are often too complex for end users

accustomed to rich, custom made applications.

5.2.3 Data Overload

Data browsing over vast amounts of data can take significant time even if filtering

features are well supported. Sometimes this search will be exploratory - users might

want to triage for interesting data about particular entities. But finding which data

to select, combine, and visualise from vast amounts of resources can be challenging,

and even if we can quickly filter the data it still requires significant time and effort.

For example, if we want to visualise countries income per capita on a map we would

first need to find the countries as resources. Second we would need to check if they

attributes such as latitude and longitude exist so we can plot them on a map. Then



130 Chapter 5 mashpoint - Browsing the Web along Structured Lines

we would need to figure out if data about GDP per capita is available. It might be

the case that no data about GDP per capita is available but rather that there is data

about the countries population and overall GDP. Thus we would need to combine and

transform these resources in order to get the desired information. Doing this repeatedly,

trying to combine different properties can be time-consuming. Thus, the applications

in the mashpoint framework can be seen as recommended views over sub-domains of a

dataset. If we want access to the raw data, an application could provide accessing them

in a generic browser. This approach would be similar to the approach of Exhibit, which

allows users to directly access the raw data straight from the user interface (Huynh et al.

(2007b)).

5.2.4 Social Contribution Factor

By design, mashpoint sets forward a paradigm that has an inherent, social factor of

contribution, which is similar to the social nature of publishing and linking in the original

Web. The reason why applying data-mapping tools such as Exhibit (Huynh et al.

(2007c)) have seen much wider acceptance than generic browsers such as Tabulator

(Berners-lee et al. (2006)) is because a publisher of an Exhibit can control the look

and feel of data and immediately see value in providing a rich data-centric interface over

data. The original Web followed a similar pattern; a published Web site offered a custom

made document and presence on the Web - linking to other web sites only improved the

quality of the web site by providing convenience in finding relating information. For

example, a web page about events in Southampton is by itself a useful contribution to

the Web, and the publisher can increase the value of information by providing links

to other pages (e.g. the Wikipedia page for Southampton or other related web pages

offering events information about Southampton). However, it is important to note that

even without the links the web site is useful by itself. As a publishing recommendation

for data-centric applications, mashpoint acts in a very similar way. Applications can

be viewed as contributions which are useful by themselves - they allow some value over

the data they were initially designed for. By linking them and enabling pivoting to

other data-centric applications, the original application can only increase the value of

the original application. In fact, this attribute may provide incentive for publishers

of data-centric applications on the Web to link their data using frameworks such as

mashpoint.

5.3 Implementation

In this section, we describe the implementation details of the mashpoint framework. The

implementation consists of three parts: (1) the applications themselves, which need to

be data-centric in nature and built upon certain requirements, (2) a discovery service
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that allows applications to look up other applications so that the user can pivot between

them and (3) a means of communication between the applications and discovery service.

In the following section, we discuss each part in detail.

5.3.1 Applications

In order to enable pivoting between applications, they need to be designed according

to some specifications and rules. Our choice of specifications was motivated by a desire

to make the integration of new and existing data-centric applications as painless as

possible i.e. not to impose any unnecessary learning curves or restrict developers to use

any particular technology other than what is currently in the Web technology stack.

Thus, to link an application to mashpoint, the applications need to comply with the

following principles:

• Offer Data-centric features. Each application in mashpoint must be such an

application that offers interaction over data with identifiable entities. An applica-

tion can hold multiple collections or grouping of identifiable entities - for example,

be about People, Countries, Events etc. Applications, such as the ones in Figure

5.1 are typical examples of data powered applications that offer browsing over data

about countries. In the data of these particular applications, each country is an

identifiable entity.

• Use of URIs as identifiers. While the data underlying the application does not

necessarily need to be in RDF, an URI needs to be present for each identifiable

resource of data. For example, if the application uses data about countries, then

each Country needs to be associated with an URI.

• Be able to select multiple resources. An application in this framework should

typically enable selection of entities in order to be able to pivot with arbitrary

selections of data. Selections of data can be provided in multiple ways. For

example, items can be selected through filtering by providing various facets over

data and/or allow arbitrary items to be selected. This selection of items will then

be passed on as input to another application. In mashpoint, the current selection

of entities in an application denotes the state of the application. In mashpoint we

require each application to list the current entities in view through a mashpoint

parameter in the URL. Figure 5.6 depicts the saved state in each application.

Figure 5.6a, for example, depicts an application showing a single resource and

a mashpoint that denotes this state. Similarly, Figure 5.6b shows the interface

on a state with two resources. The state can also group entities (Figure 5.6c) in

collections of entities e.g. an interface that displays data about both “Countries

and “Currencies, show two groups of URIs. Whenever an application changes its
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focus (for example a filtering operation occurs), the URL of the application which

shows the state needs to change accordingly7.

• Be able to represent multiple resources on input. By having the state

of the application explicitly stated in the URL, applications allow any arbitrary

selection of URL identifiers to be used as input for that application. Thus, if

an application displays data about country information, any subset of countries

can be displayed on demand through dereferencing the applications URL with the

mashpoint parameter listing the corresponding URIs.

http://application.com/#?mashpoint=collection1,uri11

http://application.com/#?mashpoint=collection1,uri11,uri12

http://application.com/#?mashpoint=Collection1,uri11, uri12 …|Collection2, uri21, uri22, …

a

b

c

Collection name List of entities 
in the collection

Figure 5.6: Preserving the state in a mashpoint-linked application.

The choice of URIs is also an important factor in the current implementation of the

framework. In order to enable pivoting between applications we need identical identifiers

across all mashpoint enabled applications. In our current instantiation of mashpoint we

rely on Freebase8 as a service in which data used in applications need to be reconciled.

Reconciliation is the process of defining that two things have the same meaning in a

given context. In this context, data reconciliation means that entities described between

two publishers need to be confirmed as meaning the same thing. For the mashpoint

prototype we used Freebase9 as a reconciliation point for all the entities described in our

applications. We would like to note that we have chosen Freebase for convenience reasons

- Freebase and the support offered in Google Refine offer tools to quickly reconcile10

arbitrary data with Freebase concepts. While the data in the applications need to be

7While the approach of explicitly saving the state in the URL might not be scalable, approaches such
URL shorteners can mitigate any issues related to scalability due to URL length limits

8http://www.freebase.com
9http://www.freebase.com

10http://code.google.com/p/google-refine/wiki/ReconciliationServiceApi

http://www.freebase.com
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reconciled with Freebase, it does not preclude using other data sources that already

use established URIs. For example applications consuming Open Linked Data can use

resources such as sameas.org11 to either reconcile their data with Freebase or even use

the service in real time (although the former is probably the preferred solution because of

optimisation issues). In essence, it does not particularly matter which URIs we offer as

reconciliation, since the framework requires just reconciliation of identifiers. Moreover,

the architecture could also be redesigned in a different way - it could allow applications

to use whatever URIs they see fit and try to reconcile them and do discovery in real time

through the use services, such as sameAs.org. From a scalability perspective, however,

a priori reconciliation provides a more optimised solution to the co-reference problem,

then reconciliation on demand.

5.3.2 mashpoint Discovery Service

The mashpoint button provided in every mashpoint application openes the mashpoint

window that shows applications from which users can choose to pivot to other appli-

cations. Finding applications which can be used to pivot from the current application

is implemented through a discovery service for mashpoint-enabled applications. The

discovery service is a repository that simply keeps a record about which URI identifiers

can be represented in which applications. Applications, therefore, need to register them-

selves in the discovery service and “subscribe their URI identifiers. Registering with a

set of URIs means that an application can represent and show data about any subset

of identifiers it is subscribed to. Once registered, each application can communicate

with the discovery service to find other applications that can take the current selection

(represented through the URIs in its state) as an input. Figure 5.7 depicts this archi-

tecture. For clarity, the Figure shows URI identifiers represented with dots, squares and

triangles to denote different collections of URIs found across different applications. For

example, Application 1 is registered with the dot identifiers, which means it can take

any subset of these identifiers as an input. Application 2 can either take any subset of

dot identifiers or any subset of square identifiers as an input. Similarly, Application 3

can take subsets of square and triangle identifiers. These groups of URI identifiers are

assigned by the application registering to the discovery service.

5.3.3 Pivoting Across Applications

In order to enable pivoting across applications, applications need to communicate and

request information based on the current state of the application. Each application,

therefore, communicates its state to the discovery service i.e. it sends the URIs that

11http://sameas.org/
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Figure 5.7: Architecture of the mashpoint framework.

currently represent the data viewed in the application, and retrieves back a list of ap-

plications that are able to receive those URIs as an input.

In order to facilitate this communication, each application in mashpoint incorporates

a small JavaScript widget that is able to parse the URL for the URI identifiers and

send them to the mashpoint discovery service (Figure 5.7-1) The discovery service then

retrieves which applications can take the URIs as an input and sends them as a response

with their states reflecting the identifiers in the request (Figure 5.7-2). The widget
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in each application is a third party code that adds the mashpoint button, facilitates

the communication with the discovery service and pops up the mashpoint window that

suggests appropriate applications to users. We note that the discovery mechanism and

widget may be omitted from an application. For example, there may be cases where a

publisher of an application may want to offer pivoting to only a certain, predefined set of

applications. Therefore, the publisher of the application can discover those applications

once, and include them as regular links in the application. This removes the need for a

third party discovery service; however it is now up to the publisher to keep the links to

the other applications consistent with the current state of the application.

5.4 Evaluation

By pivoting with entities between data-driven web applications, the mashpoint frame-

work aims at extending Web navigation to allow data-centric navigation when users need

to perform data oriented queries. To evaluate the usability of formulating data-centric

queries using multiple applications linked in the mashpoint framework we did two rounds

of user studies. The first study was an exploratory think-aloud study designed to: (1)

evaluate if mashpoint’s data-oriented navigation was easily learnable, (2) assess if users

found difficulties in comprehending different situations of data-centric navigation (i.e.

situations when applications have different cardinality and between applications with

different information concepts), and (3) surface any usability issues related to our ini-

tial prototype. Based on the insights gained in the first study, we created an improved

version of mashpoint. We then launched a second user study to investigate the broader

challenge of designing tools that will help users find the right applications when the set

of available applications is large.

5.4.1 Data and Application Gathering

To do our studies we needed to have a reasonable number of applications linked to the

framework. We did not need individual applications holding large amounts of data by

themselves; rather only enough data so that filtering over that data in each individual

application made sense. This also helped us mitigate any performance issues that can

arise with scale. For the purposes of our study we relied on relatively simple sets of

data centred on countries, major cities, currencies, and heads of state. The data around

these concepts were also chosen to be data that most people are familiar with e.g. GDP,

Population, Migration data, etc. We found a number of open source applications that

we could easily modify and integrate in the framework. These included some of the

example applications created with Exhibit (Huynh et al. (2007c)). We created plug-ins

for client-side faceted browsers such as Exhibit and Isotope12 to make these applications

12http://isotope.metafizzy.co/

http://isotope.metafizzy.co/
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mashpoint-enabled. We then used these tools to create additional applications from

various sources on the Web, such as Wikipedia13 lists and its structured-counterpart

DBPedia (Auer et al. (2007)). The applications were created to include different filters,

different visualisations and have an overall different look and feel in order to give them

resemblance as if coming from different publishers.

5.4.2 First User Study

5.4.2.1 Study Design and Procedure

For our first study, we recruited eight participants through an open email advertisement

among graduate students and staff. Six of the students were male and two female. The

ages of participants ranged 25-51. For their participation, each participant was given a

10 GBP gift card as gratuity.

We assembled a set of eleven different applications. Since the focus of our study was

to grasp and understand the usability of various concepts of data-oriented browsing

introduced in the mashpoint context, we needed to minimise the effect of any potential

problems that might occur due to the discoverability aspects of finding appropriate apps

to complete a certain task. Thus, we needed users who already familiar with all of the

applications that were going to be used in the study. To accomplish this, participants

were asked to go through an exercise, where they opened each application used in the

study, and for each one they wrote down what sort of data was used in the application

and, if provided, any options to do filtering and/or sorting. The participants were then

allowed to use what they have written during the entire session. In order to familiarise

users with the interface and concepts of browsing through apps, we ran a hands-on

training session. During the training session participants were given five structured

tasks with increasing difficulty. During the training session participants were allowed to

engage in conversation with the examiner and ask any questions related to either the

tasks or solutions. After completing the training session, participants were handed out

an additional six tasks (five structured and one unstructured task). Both the training

and examination set of tasks had the same structure (see Table 5.1). For example, the

first two tasks needed to be completed with navigation only between applications that

show data about a single collection of entities (Countries), and had the same cardinality

(the applications had data about all countries). The third task required users to use

applications that had different cardinalities (e.g. filtering by navigation to an application

listing only EU countries), but conceptually about the same type of entities. The fourth

and fifth tasks, required navigation between applications that used several different

collections of entities. During the evaluation stage we recorded both the participants

screen as well as an audio recording. After completion, the participants were asked to fill

13http://wikipedia.org/

http://wikipedia.org/
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Figure 5.8: Ranking the difficulty of tasks in the exploratory user study.

in an exit survey and reflect on the tasks. The survey included demographic questions,

as well as ranking the overall usability of interaction with multiple applications on a

(1-7;1 - Very Easy, 7 - Very Hard) Likert scale. We also asked participants to rate the

perceived difficulty of each task (again on a scale from 1-7; 1 - Very Easy, 7 - Very

Hard). Upon ranking the tasks, we asked participants to give an explanation about the

given rankings. Additionally, we asked them for feedback on specific functionalities of

the system.

5.4.2.2 Results

All participants were able to solve the tasks correctly. We gave the participants a

time slot of 20 minutes to complete all five structured tasks (4 minutes per task); all

participants completed their task before the allocated time was up (average time 15m

38s, standard deviation 3m 09s).

By far, the biggest bottleneck for completing tasks was finding the right application

that had a particular filter, even despite the fact that users had gone through all the

applications in the training session. This situation was apparent when either the filter or

the application containing the filter was not an obvious choice. For example, participants

took more time to solve the first task. This was because finding the filter for “African

countries was difficult to locate, since the value was located in a filter named “Member of

which included geographical regions as well as values such as membership in international

organisations that made it difficult to spot. We also observed the number of times users

back-tracked i.e. took a wrong step in solving the tasks. Overall, this happened only



138 Chapter 5 mashpoint - Browsing the Web along Structured Lines

Training Tasks

No. Task Type Task

1 1-to-1 mappings with 2 apps Find low-income countries and then display
them geographically on a map.

2 1-to-1 mappings with more
than 2 apps

Find high income (OECD members), then find
out the ones that have a population between 10-
20M and display migration patterns on a map
for those countries.

3 Same concepts with subsets Find which countries have between 5-10% CO2
emissions change between 2008-2009 and then
find which of these are members of the EU.

4 Heterogeneous collections
with 2 apps

Find countries with high corruption index (In-
dex bellow 3 in 2011) and then find if any of
these countries have a head of state that is
among the top wealthiest heads of state.

5 Heterogeneous collections
with more than 2 apps

Find dirtiest cities with an index of 40-50, then
for those find which are low income countries
and view those countries on a map.

Evaluation Tasks

No. Task Type Task

1 1-to-1 mappings with 2 apps Find African countries that have a population
between 30-20M and then find their GPD per
capita.

2 1-to-1 mappings with more
than 2 apps

Find the worlds low-income countries, then find
out the ones that have a population less than
10M and find the CO2 emissions data for those
countries.

3 Same concepts with subsets Find which countries have between 0-2% change
in their corruption index between 2010-2011 and
then find which of these are members of the EU
and have an area size between 40000 ? 50000
km2.

4 Heterogeneous collections
with 2 apps

Find countries with low corruption index (Index
above 8 in 2011) and then find if any of these
countries have a head of state that is among the
top wealthiest heads of state.

5 Heterogeneous collections
with more than 2 apps

Find the top most liveable cities that are ranked
(0-10) and see if any of them are in countries
where the capital is not the largest city and show
these countries on a map.

6 Freelance task Answer a question of your interest or explore
some data using some of the applications in
mashpoint.

Table 5.1: Training and evaluation tasks used in the user study. Column 2
shows the type of operations involved in completing each task.
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on three occasions in the entire study session. Back-tracking occurred either when a

participant did not have a clue about which application to choose to do a particular

filtering, or if the participant chose a wrong filtering option which in turn caused the

task to be incomplete. In one particular instance, a participant (P7) made an error in

Task 3 when trying to find the EU countries from a set of countries with a 0-2% change

in the Corruption Perception Index. The participant had selected the wrong filter in the

first attempt, which yielded a set with countries, none of which were members of the

EU. Since the set of countries did not include any EU countries, when the mashpoint

window dialog was opened, the application with data exclusively about EU countries

did not appear in the mashpoint dialog window. The participant paused and then tried

to re-examine the task and realised the error. The participant pointed out that showing

the EU application in the previous attempt with zero possible entities would have made

him realise the error much quicker. Surfacing this kind of information can also be used

to indicate to users that a different approach to filtering might have yielded additional

available combinations with other applications. During the open task, users wanted to

do comparison between chains of applications, however with the current prototype they

had to reopen all the applications in the chain if a different filter was selected in an

application that was in the beginning of the chain. Thus, some users commented on the

need for a better support in iterative query refinement.

In the exit survey each participant was asked to reflect on the study and tasks that were

handed out. On a Likert scale of 1-7 (1 - Very Easy, 7 - Very Hard) judging the difficulty

of mashing data using multiple applications in the mashpoint framework, participants

gave an average grade of 1.5 (half of participants gave a mark of 1 and the other half gave

a mark of 2). We also found that there was no substantial difference in the perception

of difficulty in respect to different tasks (Table 5.1). Task Five was given the highest

difficulty rating (Average 2.5); however only one participant specifically mentioned it

specifically in the exit survey stating:

“Initially I was confused about the city/country tabs [in the mashpoint

window], but rereading the task, it should have been clear.

Other perceptions were described by participants when explaining the ratings they have

given for a task. For example one participant noted:

“Initially, Task 3 seemed more challenging, because it seemed more nu-

merical. In actual fact, the presentation of the granularity of filterability of

datasets made the task much simpler than I originally supposed.

When asked to comment on potential improvements to the system, three of the par-

ticipants wanted to have some way of searching for applications when the dialog opens
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with two of them pointing out that a list of possible filters might be helpful. Three

participants wanted support for iterative query refinement or the ability of changes in

filters to propagate through a chain of applications. During the exploratory task, users

also wanted see how individual entities related across applications. When we suggested

that a user can filter for a particular item and re-render the trail again, the partici-

pant responded back by stating that some sort of highlighting an item and propagating

the result through highlighting corresponding items in the trail would make comparison

tasks much easier. One participant noted that some data pertained to different time

periods and suggested that some restrictions or notification should be put in place to

highlight such potential inconsistencies.

5.4.3 Second User Study

Based on the feedback we got from our exploratory study we improved mashpoint in

two ways14: (1) we added support for iterative query refinement and (2) we added

application search capabilities. In order to add support for iterative queries we created

a web application that wraps applications in mashpoint in a browser-like experience

and allows a trail of pivoting operations to be refreshed every time a filtering operation

occurs in some application in the trail. Thus, if we have a situation where a user opens

four applications through pivoting, and wants to filter the results in the first application,

then all the other applications will reflect that filtering operation. In the initial screen of

mashpoint browsers, a user can search for mashpoint-enabled web pages. Upon selecting

an application, the application opens in a new tab similar to how we open new pages in

a browser. With every data-oriented operation the navigating application is displayed as

a separate tab. If users go back to an application in the trail and select a different set of

items, the entire trail of applications is refreshed and the filtering results are propagated

through the trail. We currently support only one trail at a time; if a user does a new

data-oriented operation from an application in the middle of the trail the entire trail

from that point onward is deleted and a new sub-trail starts. In the future, a browser

design can be constructed to support multiple trails. This would go a step further in

better supporting quick iterations of different queries.

In respect to search options, we wanted to test if only keyword search is sufficient when

trying to find an application or if filtering over metadata about the applications would

be a preferred method for discovering applications.

5.4.3.1 Study Design and Procedure

For our second study, we designed two variations of the browsing interface. The first

one (Browser Version) included a keyword search option, which queried over an index of

14see http://mashpoint.net/browser/ and http://mashpoint.net/navigator/

http://mashpoint.net/browser/
http://mashpoint.net/navigator/
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Figure 5.9: Mashpoint applications embedded in a browser-like application and
extended with faceted search.

the application descriptions, and text values in data. In the second version (Navigator

Version), we used the metadata gathered from the training set in our first study to

create a faceted interface to query for application. The facets included the type of data

the browser already dealt with (e.g. Countries), a facet about the facets of data in each

application (e.g. Population) and a facet which shows how data is displayed (e.g. Table,

Bar Chart etc). Additionally we increased the size of the application set to 20; the rest

of the metadata for new applications were provided by asking three other people to go

through the same exercise of describing the applications as the participants in the first

study. In cases where a facet was too vague (e.g. 2008/2009 change), we added the

data type as well. For the study we recruited 22 undergraduate students (students of

Economics and Social Studies), 10 female and 12 male. Their ages ranged from 19 to 25

(average age 21). We choose undergraduate students because of their frequent use of Web

technologies, and in particular we chose students in economics because we wanted to have

participants that would be interested in the data that we were using in our applications

(econimic and social indicators about countries). Working with participants who have

an interest in the data has been found to be especially important in search usability

studies (Borlund and Ingwersen (1997)). Because we wanted to mitigate any carry-over

effects of learning the applications when using the tool, we opted for a between-subjects

study. Thus, participants were divided into two groups of eleven members. Each group

had five females and six males.

Similar to the first study, the participants went through a training session, in which

participants were familiarised with the concepts of mashpoint and the browser-like in-

terface. Unlike the first study, we did not allow users to view or browse through the

application set; during the training session we used applications that were not used later

in the evaluation tasks. We then gave the users four structured tasks to complete with
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Figure 5.10: Average time it took to complete the tasks with Navigator Interface
versus the Browsing interface.

no time limits. The tasks were the same in concept and structure to the first user study.

During the evaluation session we kept a video record of the screen. After finishing, each

participant was asked to fill in an exit survey.

5.4.3.2 Results

We ranked solutions of tasks into three categories: (1) solution is correct, (2) solution

is incorrect, and (3) solution is partially correct (e.g. when a user chose the wrong

filter). Overall 62 (70.45%) tasks were answered correctly, 23 (26.15%) were answered

partially and 3 (3.40%) were incomplete. There was no difference between the groups

in terms of completing tasks correctly. The group using the Navigator version, however,

completed the tasks in an average time of 630 seconds, with a standard deviation of 135

seconds. The group using the Browser version completed the tasks in an average time

of 835 seconds with a standard deviation of 241 seconds. These results are statistically

significant (p < .05).

Again, in the exit survey, each participant was asked to reflect on the study and tasks.

We first asked participants of both groups to judge the overall difficulty of mashing data

using multiple applications in the mashpoint framework. To carry out a more sensitive

reading of the result we switched to a Likert scale of 1-9 (1 - Very Easy, 9 - Very Hard).

The results are shown in Table 5.11. Because the difficulty of tasks had increased, and

since participants were additionally burdened with the task of finding the appropriate

applications, we got worse scores on the overall difficulty when compared to the feedback

we got from users in the first study. However, the rating by the participants using the
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Figure 5.11: Evaluating the difficulty of mashing data using multiple applica-
tions in the mashpoint framework between the two groups using a Likert scale.
The Figure shows two how users from both groups (”Filter” and ”Search”) rated
the difficulty of accomplishing their task on a scale of 1-9 (1 - Very Easy, 9 -
Very Hard).

Navigator version was more favourable than by those using the Browser version, with

the former giving an average score of 3.09 and the latter giving an average score of

4.36. From observing the sessions we noticed that the faceted browser was preferred

over keyword search.

5.5 Enriching Unstructured Content in Websites

So far the applications in mashpoint exhibited two characteristics: (1) they were all data-

oriented applications, and (2) they needed to comply with several principles in order to

exchange entities and allow pivoting to other data-oriented applications. Some applica-

tions on the Web, however, are not data-driven and web pages have only recently begun

including information about entities found in the content of a web page. To showcase

the benefits of having structured information available on demand from existing web

pages on the Web we deployed a tool that allows mashpoint applications to be surfaced

based on entities extracted from unstructured pages. Figure 5.12 illustrates an example

of structured data surfaced from an article found on the CNN15 website. To use mash-

point applications in unstructured webpages, a bookmarklet is added as a bookmark

on a users browser. When the user presses the bookmark, the bookmarklet application

15http://www.cnn.com/

http://www.cnn.com/
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a

Extract Entities 
from Web Page
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Show Data-related
Information 

about Entites

Figure 5.12: Using mashpoint to show structured information about entities in
unstructured pages.

tries to extract entities from the text in the currently open website. The extraction is

done using name-entity recognition services such as OpenCalais16 and AlchemyAPI17.

Once the entities are extracted, a list of applications is retrieved based on those entities.

Thus, if we suppose the user reading a web page article about Germany and France (as

shown in the CNN article in Figure 5.12) has a question whose answer requires structure

data, this information can easily be accessed without the need to use search engines in

order to find the information on other, unstructured pages.

5.6 Summary

In this Chapter, we presented a framework for linking applications on data level, in effect

enabling browsing of Linked Data through the lens of multiple distributed applications.

On a conceptual level, the approach solves some problems that generic browsers currently

experience, by extending data-mapping approaches to data-sharing capabilities. Our

studies show that execution of complex data-centric tasks are easily completed using

mashpoint, and that finding suitable applications to solve a data-centric task can be

supported.

16http://www.opencalais.com/
17http://www.alchemyapi.com/

http://www.opencalais.com/
http://www.alchemyapi.com/


Chapter 6

Discussion: Implications,

Challenges and Future Directions

As one can observe from the tools presented throughout this thesis, designing tools over

Linked Data often requires balancing and making trade-offs with the ability to deploy

the tool over Linked Data with ease, the ability of the tool to access arbitrary data, and

the usability of the tool. For example, currently tools that allow arbitrary access and

ability to navigate the entire Linked Data space are only those that are able to retrieve

data through dereferencing. Since federated queries are still relatively slow in order to

be at the needed level of responsiveness in an end-user tool, these tools cannot provide

advanced filtering and sorting functions usually required of database technologies in the

background. Thus usability is sacrificed at the expense of universal access. If a browser

restricts to only navigating data in datasets that expose a SPARQL endpoint, it can

provide advanced features that require database technologies as well as universal access

to any SPARQL endpoint, but it would not be able to easily query, navigate, or combine

data found in multiple datasets. On the other hand, as our mashpoint framework shows,

large number of data-centric queries can be answered using linked applications with the

usability being generally on par with exploring information in custom made applications;

however the application abstraction results in a reduced flexibility in data manipulations

- i.e. the user is only offered ways to filter or interact with the data offered by individual

applications.

Figure 6.1 shows the landscape of tools that enable interaction over Linked Data. The

X axis indicates the effort needed to deploy the tool over Linked Data. For example,

at the start of the spectrum in the X axis are custom-made applications, since each

application requires the effort of making an application from scratch. Configurable

browsers require less effort because they can be adapted and configured over data sources

with no or minimal amount of programming. Generic data browsers assume no need for

customization of any kind. The Y access indicates ease of use for the tool deployed by

145
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the end user. The size of individual dots denotes the relative ease with which tools can

access data through navigation. As the figure illustrates, tools such as Tabulator, can

access Linked Data on demand with no required configuration and can add or navigate

to any other dataset available as Linked Data. Tools, such as Visor and Parallax, on

the other hand, can access any dataset and provide advanced query features. Data-

mapping approaches and custom made applications need to be built or deployed over

predefined datasets, and generally do not allow navigation or adding any new data on

demand. With mashpoint we began to address the limitations imposed by data-mapping

approaches and custom-made applications.

U
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Pure
Generic Data
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(Tabulator)

Custom 
made apps

Generic Browsers 
over Linked Datasets
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Configureable Simple, 
Data Exploration Tools 
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Figure 6.1: Landscape of data-centric tools over Linked Data.

Linked Data is still an emerging method of publishing data on the Web, one that will still

evolve as technical challenges are overcome, as well as through social processes that will

inevitably cherry pick, adapt and revise certain pieces of the technology when adoption

becomes more mainstream. In this Chapter, we review some of the implications of the

tools and approaches proposed in this thesis, and discuss areas where future directions

might influence the design of tools providing data-centric interactions over Linked Data.
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6.1 Generic Data Browsers

In this section we discuss two issues that influence the design and properties of generic

browsers. First we explore the relation between usability in generic browsers and the

use of common standards or practices in publishing Linked Data. Second, we discuss

the issue of exposing data heterogeneity to end users consuming Linked Data.

6.1.1 Establishing Standard Ontologies or Vocabularies

As we’ve seen throughout this thesis, current generic data browsers must assume very

little about the underlying data. These minimal assumptions are partially the reason

behind poor usability in generic data browsers. While generic browsers cannot provide

solutions that domain-specific applications can, adopting very simple minimal conven-

tions or the use of minimal ontologies when publishing Linked Data can have a big

impact on usability in generic data browses and would contribute to improving Linked

Data quality in general. For example, one can imagine having quality validation of

Linked Data if it satisfies predetermined basic requirements: for example that all en-

tities have and use standard properties for labels, descriptions, images etc. Standard

schemas can also be used in more specific areas, for example for publishing data about

statistics etc. We have seen some work around establishing commonly used vocabular-

ies, for example, VoID for standardising the publishing of information about datasets,

SCOVO, an ontology for publishing statistical information, and SKOS1 for organising

hierarchies, thesauri, and classification schemes (Alexander et al. (2009); Hausenblas

et al. (2009)). However, most of these efforts still have very limited success. The key to

having such specifications lies in having applications which are ready to pick up pub-

lished data. Recent initiatives, such as schema.org2 and Facebook’s Open Graph take

this approach - each standard has been introduced after a clear application of data has

been suggested as an incentive for the publisher to use the format to embed metadata

in their webpages.

6.1.2 End Users and Data Heterogeneity

At the beginning of this thesis we stated that the purpose of this thesis was to investi-

gate end-user interaction over Linked Data for tasks that required data integration. We

also limited the scope of this thesis and were left dealing with heterogeneity, structural

heterogeneity in particular. As one can also notice from our analysis in Chapter 3, no

generic data browsers address the problems of structural heterogeneity directly. While

there are many cases where using Linked Data would be beneficial and can be consumed

1http://www.w3.org/2004/02/skos/
2http://schema.org/

http://schema.org/
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without any need to solve problems of heterogeneity, there might be cases where struc-

tural heterogeneity needs to be resolved in order to use the data. Thus, when designing

data browsers or any other type of data-centric tools that use Linked Data to aggregate

data from multiple sources, there is always a debate whether data heterogeneity should

be exposed in the interface and whether supporting the users with tools will allow solv-

ing heterogeneity problems on-demand, or if heterogeneity should be resolved in the

background and never be surfaced to users. This thesis argues that, although tools for

solving heterogeneity should be available for expert users, most end-users should not

be exposed to heterogeneity issues. Solving heterogeneity is often a complex task that

requires a workload equivalent to or in some cases even greater than the task for which

the data will eventually be used. Even in interfaces designed with casual end-users in

mind, such as Potluck, they still have very limited capabilities. More complex tools,

such as OpenRefine (previously known as Google Refine), still require sound knowledge

of at least writing small code such as spreadsheets macros (see Figure 6.2. Such knowl-

edge cannot be assumed for large portions of end users, and especially casual end-users

with no technical or data-related knowledge. Advances in more automatic approaches

in solving heterogeneity, might facilitate bringing humans in the loop, however, as this

thesis shows, there is a lot of low hanging fruit in using Linked Data to aggregate sources

that do not need to be reconciled for structural heterogeneity.

6.2 Exploring Unfamiliar Datasets

In Chapter 3, we observed that one of the biggest problems of consuming Linked Data

is interrogation and exploration of unfamiliar datasets. With Visor, we have shown one

method of improving exploration of unfamiliar datasets. However, many functionalities

and interaction techniques may exist in improving exploration and finding data in un-

familiar datasets. Researching some of these techniques, however, also depends on the

capabilities in the backend. Currently, the query language for RDF, SPARQL is very

limited for providing basic query functionalities. Upcoming versions of SPARQL, such as

SPARQL 1.13 offer capabilities such as finding property paths4, which allows finding po-

tential paths in data directly through a SPARQL query. This allows exploratory queries

that recommend paths in a graph, such as the ones introduced in Visor, but at a much

higher scale. How these would be represented or utilised by end users is still an open

question. In Visor, we approached this problem by using an over-first details-on-demand

visualisation approach. Improved visualisation tools might provide even better instances

of the overview-first details-on-demand approach. On the other hand, other approaches

might also be viable. For example, recent research into verbalisation of SPARQL queries

might provide a way for a natural language approach to representing property paths (Ell

3http://www.w3.org/TR/sparql11-query/
4http://www.w3.org/TR/2010/WD-sparql11-property-paths-20100126/

http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/2010/WD-sparql11-property-paths-20100126/
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Figure 6.2: Data trasformation from two sources in OpenRefine using macros.
The Figure shows tranforming numeric data by aligning different representations
of rounding.

et al. (2012)). Recent development efforts to explore Facebook’s social graph also use

natural language to support structured queries (Figure 6.4). Google is also moving in

similar areas with its Knowledge Graph (Figure 6.5). For more data-related tasks, tools

similar to Google’s Google Square (Figure 6.3) prototype might use these approaches to

produce a more accurate way of producing spreadsheets, which currently draws its data

based on search heuristics rather than structured queries.

6.3 mashpoint

In this section we examine the problems of co-reference in using mashpoint, and examine

the cost/benefit structures of mashpoint versus Linked Data technologies in general.
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Figure 6.3: The Google Squared tool. After a search results in a list of entities,
users can add columns by typing in column names, which are used as a keyword
to search for those properties in the initial list of entities.

6.3.1 The Co-reference Problem and Approximate Semantics

The early efforts of the Semantic Web were, to a large degree influenced by the vision

of automating many processes done by machines, replacing the human who usually

added the required intelligence in the process loop. Arising from the field of formalising

knowledge and knowledge representation, early Semantic Web research often aimed at

describing data in machine readable formats that left no space for ambiguity. This

led to some initial criticisms of the Semantic Web, stating that it aimed to describe

the world in a unified way, and that such a proposition is impossible because many

descriptions were influenced by the context in which they were used. For example,

should a common identifier about the state of Germany be used to describe present

Germany and Germany of World War Two? What about describing Germany, when

the country was divided into two separate states? When are two things semantically

equivalent? In some situations, the equivalence might hold true; however there might be

cases when the two should be distinguished. Some Semantic Web researchers have argued

that equivalence links (i.e. owl:sameAs links) represent a strict semantic equivalence,



Chapter 6 Discussion: Implications, Challenges and Future Directions 151

Figure 6.4: Facebook’s Graph Search.

Figure 6.5: Google’s Knowledge Graph showing structured information about
planets.

while others have pointed out that there might be multiple representations and meanings

for the particular property (Halpin et al. (2011)). Tools such as sameAs.org5, which is

5http://sameas.org

http://sameas.org
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a website that mines and stores equivalence links on the Web, for example, holds not

a single one, but multiple repositories of equivalence links. Thus, each individual data

publisher states if the entities described in their datasets are equivalent to other entities

in other datasets. This thesis argues that if a loose definition is used, then users can

decide the correctness of the equivalence statement depending on the context. This was

one of the issues we were confronted with in mashpoint. If data-centric browsing on the

Web will become a mainstream technology, problems of context might also surface in

tools such as mashpoint, since the bases of mashpoint is that applications use canonical

identifiers in order to communicate. However, we speculate that it would be better for

users to be able to discover potentially relevant data sources and then decide if the data

obtained through pivoting is right for the given context of exploration.

6.3.2 Cost/Benefit of Using Linked Data Technologies

6.3.2.1 Low Barrier for Entry

One of the biggest barriers of adopting Semantic Web technologies is its high cost for

adopting these technologies. Following the description of the mashpoint framework, we

can notice that none of the applications is required to directly operate or deploy its

data as live Linked Data, nor does the framework require an application to use RDF

data directly. We believe this fact to be an added strength to the framework, since it

only lowers the barrier for linking new applications by not mandating or imposing any

particular data model on the user. This is not to say that the applications using this

framework cannot use standard data-models such as RDF. In fact, as we pointed out in

Chapter 5, one way of defining mashpoint is to view the applications as high-level lenses

over graphs of data. The applications encapsulate views over data, and the relationships

between the data are hidden within the individual applications. Thus, applications can

choose to use either RDF or any other data model and pivoting takes place where these

lenses overlap. Thus, mashpoint can also be one case in point for having Linked Data

without the need of RDF. The RDF data model might be more expressive and in time

may become an adopted standard for publishing data on the Web. At this time, however,

we argue that economic factors such as lowering the costs and showing immediate benefit

should be the challenges that we tackle in order to incentivise users to adopt semantic

technologies, even if in the beginning these are only confined to the simplest cases, such

as providing universal identifiers and reconciling against canonical URIs.

6.3.2.2 Incentives for Publishing and Linking Applications

During the last 3 years, the Linked Data community has been advocating data publishing

using Linked Data standards, and has promoted the use of these standards as a quality
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indicator for data available on the Web6. However, the benefits of publishing Linked

Data and linking to other remote data sources remain elusive for most data publishers

and consumers outside the community. Often the results are data repositories that are

rarely used and provide sparse linkages to other remote datasets. This lack of immediate

value for the effort of converting data as Linked Data can thwart many potential adopters

of these technologies. With mashpoint we attempt to target this problem, particularly in

providing incentives for linking data. From a socio-economic perspective we believe that

publishers of data-centric applications would only increase the value of their applications

by allowing users to find useful, related data without changing the original application,

similar to how they link to other Web sites. By requiring publishers to reconcile their

data we already promote the use of URIs in their datasets, thus promoting semantic

technologies, while showing the immediate benefit of being able to pivot and suggest

related data to the application users.

6http://inkdroid.org/journal/2010/06/04/the-5-stars-of-open-linked-data/





Chapter 7

Conclusions and Future Work

The main motivation behind this thesis is that Linked Data, as a medium for published

data on the Web, should be accessible to non-technical users, which can use the prop-

erties of Linked Data, to support data-centric tasks that require combining structured

information from multiple sources. In this Chapter, we summarise the contributions of

this thesis and continue with possible future directions from this line of investigation.

7.1 Summary of Contributions

In this work we have presented the following contributions:

• Design Process for Data-centric Interfaces over Linked Data. In Chap-

ter 3 we presented a design process for data-centric interfaces over Linked Data.

The design process started by suggesting use-cases, stockholders, going through a

requirement elicitation exercise, an analysis of existing generic data browsers, and

finally a prototyping effort to elicit a list of challenges in generic data-browsers.

Creating a design process is a first attempt in the field to systematically analyse

the requirements and challenges of data-browsing interfaces over Linked Data. It

provides future designers with a map of needed areas and challenges for designing

future data-centric interfaces, as well as basis for comparisons.

• Multi-pivot approach. In Chapter 4, we presented the multi-pivot approach

- a novel approach that aims to improve and mitigate some identified challenges

in using purely navigational models for data exploration in graph datasets. The

results of our study suggest that users can explore large unfamiliar graph datasets,

and that the additional flexibility of multi-pivot approach is preferred over purely

navigational approaches. Additionally the overview-first details-on-demand ap-

proach, suggests that ontology level browsing and instances on demand is a viable

alternative to exposing only instance data to users.
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• A framework for extending pivoting to applications. In Chapter 5, we

introduced mashpoint, a framework aimed at extending pivoting with data over

data-powered applications. The approach is the first attempt to combine the

inherent usability of data-mapping approaches, with navigational extensions which

allow data to be passed from one application to another. The user studies show

that data-centric interactions can be carried out without the need of generic data

tools. Additionally, our second user study suggests that a data space populated

by multiple mashpoint-linked applications is searchable i.e. users equipped with

interfaces and proper search tools allow the user to find needed applications to

complete a data-centric task.

• Lowering the cost of using Semantic Web technologies. Finally, our mash-

point approach shows that even using the basic technologies in the Semantic Web

technology stack only (such as URIs) one can provide affordances that were not

previously possible on the Web. By using only URIs, we have shown that many of

the benefits with data navigation and aggregation that are needed for data-centric

interaction can be achieved without requiring from the publishers of data-centric

applications to include more complex technologies in the upper level of the stack.

This suggests that some of the benefits of semantic technologies come at a much

lower cost.

7.2 Future Work

The Web has transformed the world in which we live and work. Work presented in this

thesis presents a way of transforming the Web by extending it to support data-centric

features, thus allowing access to end users with various needs and skill sets to utilise

structured information published on the Web. In this section, we describe new areas of

research and propose some potential projects that can build upon the work presented in

this thesis.

7.2.1 Collaboration

This thesis presented several examples of data-centric interactions on the Web, and solu-

tions for supporting such data-centric interactions over Linked Data. As one can notice,

however, data-centric interactions can often be a task; tasks that require a substantial

amount of effort and time to explore, gather and analyse information. These sorts of

tasks differ from short-term tasks such as fact-finding tasks or transaction tasks. A po-

tential way to improve efficiency can be to capture and utilise knowledge and processes

in previous user sessions and expose them as solved tasks to other users attempting sim-

ilar tasks. For example, whenever a user explores a dataset and generates a spreadsheet,
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the spreadsheet of data can be potentially saved, so other users, looking for similar data,

can use the data as it is or use it as a starting point and further modify it. This would

prevent other users who have similar tasks starting from scratch. One can envision cap-

turing other information, such as visualisations and data transformations. In effect, a

collaborative effort where users can build upon each others solutions, saving and expos-

ing their results of data-centric interactions can be seen as a community-based effort of

generating lenses or other predefined views of data.

7.2.2 Crowdsourcing Data-oriented Tasks

Human Computation, crowdsourcing and crowd-powered interfaces are parts of an area

that investigates how to bring people as active participants in the computation loop, in

order to solve AI hard problems that are currently unsolvable by computers (Quinn and

Bederson (2011); Kittur et al. (2008); Bernstein et al. (2010)). These relatively novel

areas have only begun with applications in areas such as the Semantic Web/Linked

Data. Several examples include tools for solving tasks, such as ontology alignment and

co-reference problems (Sarasua et al. (2012); Yang et al. (2011)). One can investigate

a number of problems identified in this thesis, to ascertain if crowdsourcing is a viable

solution, and if so what are the challenges that need to be addressed in order to come up

with a solution. Potential areas include improving dataset information by using crowd-

based solutions, or crowdsourcing data-centric queries to generate data spreadsheets.

For tools such as mashpoint, existing approaches to crowdsource reconciliation can begin

addressing the challenge of reconciling large amounts of data. Other areas might include

grouping of applications that provide related content for a set of entities.

7.2.3 Supporting Domain-specific Areas

The adoption of Linked Data technology ultimately depends on having applications and

true use cases that can only be supported by using Linked Data technologies. There are

many domain or task specific areas where data-centric interactions can be applied on a

less generalised scale. For example, content curation on the Web is gaining ever bigger

traction, showcased by tools such as Pinterest1 and Clipboard2. These existing systems

assemble pieces of information on the Web; however exhibit very little metadata. One

might investigate how enriching metadata webpages can support more effective content

curation. Other domain-specific areas, such as bio-medical informatics, also extensively

use complex data domains to collaborate and gather information. Specialised data-

centric tools supporting these areas might provide better solutions than a general data

access tool.

1http://www.pinterest.com
2http://www.clipboard.com

http://www.pinterest.com
http://www.clipboard.com
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