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Modelling the purchase dynamics of insurance customers  

using Markov chains 

 

 

Abstract 

This paper considers how various types of Markov chains can be used to help forecast the 

purchase behaviour of customers. The models are used in a case study of the purchase behaviour 

of the customers of a major insurance company.As well as looking at the impact of relaxing the 

first order Markov and time homogeneity assumptions which are usually used in Markov chain 

models, the paper also looks at models based on mover-stayer ideas and ones which enlarge the 

state space by including the type of purchase as well as the time of purchase. One important 

aspect of long term customer relationships such as those which occur in the insurance and 

assurance industry is the impact of changes in the economy. The final section show how these 

can be incorporated into Markov chain models and how they can make a significant difference 

to the quality of the predictions. 

 

Keywords: Consumer Behavior; Data mining; Probability Models 
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1 Introduction 

The advent of data warehouses with their ability to store and analyse large amounts of 

data, has made it possible for large financial organisations to become better at forecasting what 

their customers are likely to do and hence much more discriminating in their relationships with 

their customers and the marketing of products to them. This enables the organisation to have 

much more sophisticated customer relationship management strategies, especially in the service 

industries (Gronroos 2000) and to develop more accurately the customer lifetime value (CLV). 

CLVs have proved to be a useful concept in customer relationship management (CRM) as 

Dwyer (1989) showed in his work on customer retention and customer migration. It is 

particularly useful in the financial service area of banking and insurance where the length of the 

relationship between customer and service provider can almost be the customer’s actual lifetime. 

One crucial element in building such lifetime value models is to estimate the probability of a 

customer making a purchase in each future time period. This paper develops a range of such 

purchase models.  

 

Markov chain models have proved useful in modelling the dynamics of a random 

process in many different contexts; see the examples in the classic texts of Feller (1957) and 

Iosifescu (1980) and the financial application in Kijima (2003). In the context of customer 

behaviour, Cyert (1962) was the first to develop a Markov chain model of customer’s repayment 

behaviour and although there have only been a limited number of subsequent applications it was 

the advent of the data warehouses that revived interest in such modelling in the consumer credit 

risk area (Ho et al 2004, Trench et al 2003). Schneiderjans and Lock (1994) used Markov chain 

models to model the marketing aspects of customer relationship management in the banking 
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environment. Pfeifer and Carraway (2000) provided a very clear tutorial on how to use Markov 

chain modelling to calculate customer lifetime values and give an example where the states of 

the system describe the recency of a purchase. However this was a hypothetical example and 

used the simplest type of the Markov chain process. It did though point out that once one has 

built a successful Markov chain model one can extend the model to a Markov decision process 

which will optimize the decisions to be made as part of customer relationship management. 

 

This paper looks at a case study of using Markov chain models to estimate the purchase 

dynamics of the customers of an international insurance organisation. As indicated previously, 

getting a valid model of when and how often a customer makes a purchase is a crucial element 

in estimating their lifetime values and hence in building CLV models and supporting CRM 

decisions. The models considered concentrate on the number of purchases so is strongly related 

to the Frequency part of the RFM (Recency, Frequency, Monetary Value) framework (Shepherd 

1995). However the paper also seeks to show the variety of Markov chain models available 

apart from the basic first order stationary chains which have appeared in the literature so far. It 

also indicates the ways of testing whether the models give good fits and examines their 

predictive accuracy. Perhaps the most important class of models developed are those where the 

transition probabilities depend on the current state of the economy. Not only does this provide a 

way of modelling the well established theory  that consumer purchase patterns are affected by 

changes in the economy it also allows the forecasts of future customer purchases, and so of CLV, 

to be consistent with an organisation’ s  forecasts of the likely changes in the economy. This is 

particularly important in sectors like finance and insurance where customer relationships last for 

a long time during which the economy is likely to go through several cycles.  
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 Section two recalls the definitions of the different types of Markov chains and how one 

can use goodness of fit tests to check the appropriateness of a particular model type to explain 

the data. Section three describes the data on customers and their purchase patterns held in the 

data warehouse of the international insurance company, to be used in this case study. Section 

four looks at the results of building the simplest possible Markov chain model – time 

homogeneous and first order Markov – and uses these to determine what is an appropriate base 

transition time period. The next section investigates extensions of this basic model by allowing 

for models with time inhomogeneity and less restrictive Markovity assumptions. Section six 

investigates alternative Markov models with slightly more complex state spaces, while section 

seven deals with the models where the Markov chain transition probabilities are assumed to be 

functions of the underlying economy. In these models the transition probabilities are derived 

using logistic regression approaches. Finally we draw some conclusions on the pros and cons of 

the different models. 

 

 

2 The Markov framework 

Markov chains have proved ubiquitous stochastic processes because their simplicity 

belies their power to model a variety of situations. Formally, we define a discrete time 

{ }0 1, ,..., ,....;ut t t u U∈ and a discrete state space { }1,2,...,S E= Markov chain as a stochastic process 

( ){ }u u U
X t

∈
with the property that u U∈ and ,i j E∈  

( ) ( ) ( ) ( ) ( ) ( )
( )

1 0 0 1 1 1

1

| , ,..., |

,

u u u u

ij u u

X t j X t s X t s X t i X t j X t i

q t t

+ +

+

   = = = = = = =   
=

P = P
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where ( ). ,.ijq is called the probability transition matrix. This is the Markov property and such 

stochastic processes are called first order Markov chains.  

If   ( )( ) ( ) ( )( )1 ,...,’u u E ut t tπ π=S describes the probability distribution of the states of the process at 

time tu, the Markov property implies that the distribution at time tu+1 can be obtained from that at 

time tu by  

∑=
∈

++
Si

uuijuiuj ttqtt ),()()( 11 ππ  

This extends to a m-stage transition matrix so that  

( ) ( ) ( ),m
i u m i u ij u u m

j S

t t q t tπ π+ +
∈

= ∑  

where  
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=
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,..,
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1
1,1 ),()(),(),(

m
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m
ij ttqttqttqttq , for 2m >   

If the time periods between the tu are constant, then the Markov chain is time homogeneous or 

stationary provided  

( )1,ij u u ijq t t q+ =  1, , ,u ut t i j+∀  

Given a set of data, for 1T + time periods u = 0,1,2….T, Anderson and Goodman (1957) describe 

how to obtain the maximum likelihood estimators of the transition probabilities of a Markov 

Chain model of the data.  Let ( )0 1, ,...,u kn s s s be the number of data points which exhibit the 

sequence  

( ) ( ) ( )0 1 1, ,...,u u u k kX t s X t s X t s+ += = =  

Define  

( ) ( )0 0
0

,..., ,...,k u k
u T k

n s s n s s
≤ ≤ −

= ∑     and   ( ) ( )0 0
0 1

,..., ,...,k u k
u T k

N s s n s s
≤ ≤ − −

= ∑  
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as the number of times the sequence of states ( )0 1, ,..., ks s s occurs at any time in the data sample of 

histories, (where N ignores the last period) then the maximum likelihood estimates of the 

transition probabilities for the Markov chain are  

( ) ( )
( )1
,

ˆ , , , , 0 1u
ij u u

u

n i j
q t t i j S u T

n i+ = ∈ ≤ ≤ −  

 

If one assumed that the Markov chain was stationary, then the estimate become  

( )
( )
,

ˆ , ,ij
n i j

q i j S
N i

= ∈  

One can weaken the Markov property and require the information about the future is not all in 

the current state, but is in the current and the last state of the process.  This is called a second 

order Markov chain and formally it satisfies the condition 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

1 0 0 2 2 1 1 1

1 1

| , ..., , , | ,

, ,

u u u u u u u u

jk u u u

X t k X t s X t s X t i X t j X t k X t i X t j

q t t t

+ − − − + −

− +

   = = = = = = = = =   
=

P = P
 

This is equivalent to the process being a first order Markov chain but with state space S S× . The 

concept can be generalized to defining thk -order Markov chains for any k ,  though of course, the 

state space and the size of the transition probability matrices goes up exponentially as 

k increases. The maximum likelihood estimators in the second order case are  

( ) ( ) ( )
( )

1
, 1 1 1

1

, ,
ˆ ˆ, , ,

,
u

ij jk u u ijk u u u
u

n i j k
q t t q t t t

n i j
−

+ − +
−

= =  

with comparable definitions for higher orders. For a second order stationary Markov chain, the 

estimators become 

( ) ( ) ( )
( )

( )
( )

0 2

, , , ,
ˆ ˆ, , ,

,,u
u T

n i j k n i j k
q ij jk q i j k

N i jn i j
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= = =
∑
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To check whether a stationary Markov chain describes the data adequately, Anderson and 

Goodman (1957) made the analogy with contingency tables and so used Pearson goodness of fit 

chi-squared statistics to test the various hypotheses. Firstly one can check the stationarity of the 

process. For time tu this corresponds to the hypothesis that the transition probabilities at that 

time are the same as those if the process was stationary. This corresponds to hypothesis 

( )TH u with chi-square statistic ( )2X u  where 

( ) ( )1: ,T
ij u u ijH u q t t q+ =  ,i j S∀ ∈  

And     ( )
( ) ( ) ( )

( )

( ) ( )
( )

2

1
2

1 1

,
,

,

ij u u i uE E

j t i u

n i j
n t t n t

N i
X u

n i j
n t

N i

+

= =

 
− 

  = ∑∑  

The transition matrix of each Markov chain has E  rows and E  columns and so appears 

to have ( )1E E − independent entries. However it may contain structural zeros i.e. state 

movements which are not possible or not allowed and if there are ( )r i  of these in row i , then the 

degrees of freedom of the chi-square test is ( ) ( )E E-1 r i−∑ .  

This is essentially a diagnosis of where there may be some non-stationarity in the process but 

the true test of stationarity is that these hypothesis hold at all times ut , which we label TH with 

corresponding statistic 2X where 

( )1: ,T
ij u u ijH q t t q+ =  ,i j S∀ ∈   0,..., 1u T∀ = −  

and 

( )
1

2 2

0

T

u

X X u
−

=

= ∑  

 which has ( ) ( ) ( )1 E E-1T r i − − ∑  degrees of freedom. 
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To check the Markovity, so that the process can be described by a stationary Markov 

chain one looks at the hypothesis MH and corresponding chi-square statistic 2Y  where  

( ) ( ) ( ): 1, , 2, , ... , ,MH q i j q i j q E i j= = = ,  ,i j S∈  

( ) ( ) ( )
( )

( ) ( )
( )

2

2

1 1

,
, , ,

,
,

M M

i
k j

n i j
n k i j N k i

N i
Y

n i j
N k i

N i
= =

   −    =  
 
 
  

∑∑  

Y2 has ( )2E E-1 degrees of freedom if there are no structural zeros but could be far less otherwise. 

One can generalize the stationary Markov model by allowing it to be second, third or thk order 

stationary Markov rather than first order Markov. The hypothesis MH
 is essentially a test of first 

order against second order. One way of testing whether a second order model is more 

appropriate than a third order model is to recall that a second order Markov chain is essentially a 

first order on a state space S S× . Similarly, to check if a rth  order chain is suitable, we can check 

if it is first order on the r-fold product space Sx…..xS. We can apply the standard Markov test in 

this case and end up by checking the hypothesis 

( ) ( ) ( )0 1 1 1: 1, ,..., , 2, ,..., , ... , ,..., ,r
r r rH q i i j q i i j q E i i j= = = , for all 1,..., ri i S∈  

If there is non-stationarity it could be caused by several reasons. It could be seasonal, in that the 

time periods are representing different times of the year, and the transition matrices in a given 

season may be assumed to be all the same, but different to the transition matrices in other 

seasons. The most general form of non-stationarity would occur if the transition matrix is 

assumed to be different in each time period. Although this model gives maximum flexibility, it 

is not very useful as a forecasting tool unless we can relate the differences to other variables for 

which one has forecasts. 
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One final extension is the idea that the population whose dynamics the process is seeking to 

describe is not homogenous and in fact groups in the population do not move at all. Thus the 

parameters for a time homogenous version of this ‘mover-stayer’  model are , 1,...,is i E= which 

represent the proportion of the population who  “stay” in state i  (i.e. do not ever change state) 

and ijp which are the probabilities of a ‘mover’  going from state i to state j . Movers make up 

i(1- s )
i∑  of the population and Frydman (1985) gives the Maximum Likelihood estimators for 

these parameters. 

 

3 Data on insurance product purchases 

In the subsequent sections, these Markov chain ideas are used to build models which help 

forecast the future purchase behaviour of customers with an insurance company. Although 

Markov chain models of customer behaviour have been around for many years in the credit risk 

context (Cyert and Thompson 1962) and such models have recently been made more complex 

(Trench, Hand and Hill, Ho and al 2004), the use of Markov chain models in customer 

relationships is much more limited (Pfeifer and Carraway 2000) . 

 

Our models are built using the information on customers and their purchase behaviour, 

which is held in the database of the direct marketing channel of an international insurance 

company. The data covered a period from July 1975 until July 2003, but was only a complete 

record of the transactions in the period January 1999 to July 2003. There were just under 50,000 

customers in the database during this four and half year period, and all their purchases of 

products, their financial payments as part of the product purchase, their (and the firm’ s ) profit 
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from the product and their termination of products were recorded in the database. There were 20 

variables which described the status of the customer and 43 variables detailing the product and 

its performance. The products could be divided into four main groupings: and the appropriate 

details kept on each type. This paper concentrates on the purchasing of new products. By 

definition, anyone in the database must have made at least one purchase and during this period 

there were 5890 purchases of a second product, 1175 purchases of a third product, 137 

purchases of a fourth product and 35 purchases of a fifth or further product. Given the small 

numbers involved  with three or more further purchases, we concentrate on forecasting times for 

the second (one further) purchase and third or higher (2 or more further) purchases are likely to 

occur. 

 

One aspect our modelling investigates is whether there is a relationship between 

purchasing and the prevailing economic conditions. Traditional consumer demand analysis 

focuses on the relation between the prices of goods and consumers’  incomes, while saving 

models include variables such as interest rates, wealth, personal income and consumer sentiment. 

Here we chose variables to reflect the attractiveness of financial investments and the general 

economic and investment climate. The UK economic variables considered are Consumer Prices, 

Consumer Confidence Index, Unemployment Rate, FTSE All Share Index, and Bank of England 

Base Interest Rate. Transformations of these variables are considered in order to conform with 

the macro economic literature, to avoid the problems of non-stationary time series and to have 

variables that relate to the way consumers perceive the economic conditions. In the light of this 

we chose the following variants of five economic measures of the economy’ s impact on the 

consumer 
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• Stock Market returns: quarterly difference in log of the FTSE100. This variable gives the 

yield from stock market and also reflects the fact that a buoyant stock market may 

encourage purchasing of financial products. 

 

• Consumer prices: annual difference of the consumer price index. This represents the 

price inflation felt by customers and high levels may deter customers buying savings 

products. 

 

• Confidence index: the index level (difference between those who are more and those 

who are less confident about the future of the economy) is used because this is a 

stationary process. It remained in negative territory throughout this period.  

 

• Unemployment rate: yearly difference in unemployment rate (unemployed as percentage 

of the population available for work). This reflects the changes in jobs available for 

consumers and may add to the information about the business cycle that is in the 

confidence index.  

 

• Interest rate: The bank of England LIBOR rate is used. It usually impacts on the 

customers through the mortgage repayment rate and hence disposable income. It also 

reflects the opportunity cost of switching savings from bank deposits to financial 

products. 
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It is important to test the validity of the models built in an unbiased way. In order to do 

this we split the sample of 50,000 cases into a development sample consisting of 70% of the 

cases and a hold out sample which is the remaining 30% of the sample. The models are built and 

the parameters estimated on the development sample and their ability to forecast is checked on 

the completely independent holdout sample. This is the easiest way to produce unbiased 

forecasts and is possible because of the large sample available. 

4 Basic Markov model 

The simplest model we consider - our basic model – assumes that the purchase process 

will follow a time-homogeneous first order Markov chain. The states for such a simple model 

are the number of purchases made by the consumer. Since there is only data on the firm’ s 

customers, and not on the general population, everyone in the data set has made at least one 

purchase. Thus the lowest state would be 1 purchase, and the others could be 2,3,4 purchases etc. 

However, as was alluded to in the last section, since only 2% of the purchases are fourth, fifth or 

higher level purchases, we will combine states 3,4,5 etc into the state 3+ in order to develop a 

more robust model. Thus we concentrate on a three state model with states 1, 2 and 3+ 

purchases. This implies that the purchase behaviour for the second purchase is allowed to be 

different from that for the third or higher purchases.  

The second decision to be made is what time periods to use. Although the data on a purchase 

gives a precise purchase date, the infrequency of purchases and the fact that the database is only 

formally updated and archived each month means we will only consider one month or multiples 

of one month as the time interval of a transition period. We investigate which of these is best by 

working out the Pearson goodness of fit statistics for the different time intervals. If the time 

interval is one month, the maximum likelihood estimate of the transition matrix is  
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0.997 0.003 0.000
0.994 0.006

1.000
1 = −

− −
Q  

So the transitions over a three month period are given by multiplying three copies of it to give  

(3)
1

0.991 0.009 0.000
0.982 0.018

1.000
= −

− −
Q  

where n
mQ  is the thn fold transition matrix when the basic period is m months and ( )n

m
ij

q is the 

( ), thi j entry  

Note that although this is a 3x3 matrix there are in fact only 3 probabilities to be estimated 11q , 

12q and 22q  since three of the entries are structural zeros, and three are defined by the stochastic 

matrix condition that the rows must add up to 1. For a model with a three month basic transition 

period, the maximum likelihood estimators lead to a transition matrix 

(1)
3

0.992 0.008 0.000
0.983 0.017

1.000
= −

− −
Q  

which is slightly different to 3
1Q even though they measure transitions over the same time period.  

 

In order to decide on the best base time period we compare the time homogeneity of a 

stationary model for each possible base time period. What we are testing is the hypothesis 

TH that the purchase process can be explained by a time homogeneous first order Markov chain 

as compared with a time nonhomogeneous first order Markov chain with the same base time 

period. Table 1 gives the 2X values for the different possible transition periods m for 1,2,3,4,6,12m = . 
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2 2 2

95% 99.99%lower tail
Transition period

1 477.96 141 1 169.71 212.14
2 371.47 69 1 89.39 121.44

3 221.85 45 1 61.65 89.07
4 242.44 33 1 47.40 72.02
6 155.95 21 1 32.67 53.95
9 83.98 12 1 21.03 39.13

12 78.83 9 1 16.62 33.72

X dof p value χ χ−

 

Table 1.  Stationary tests for different base periods 

 

In no case is the hypothesis TH close to being accepted but we did not expect this to 

happen. We use the 2X values (compared with the corresponding χ2) to get some feel of how 

much time homogeneity there is with each base time period. The results suggest that the 3 

monthly time interval is as competitive as the others, as it is the only one where the X2 value is 

lower than that for larger base time periods. Since one is used to quarters as an appropriate time 

period for economic measurements this is the time period we favour. Transition time periods of 

one or two months lead to less robust models, while longer time periods makes short term 

forecasting impossible. 

 To check how good this 3-month base period model is, we look at how closely it 

satisfies the time homogeneity and the Markovity tests outlined in Section 2. Table 2 gives these 

results. Neither the Markovity not the time homogeneity hypothesis can be accepted though for 

some time periods, the time homogeneous transition matrix is not too distant an approximation. 

There is no pattern of when time homogeneity is a good or poor approximation to the actual 

transition matrix. 
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( )
( )
( )
( )
( )
( )
( )

2 2 2

    lower tail 95% 99.99%
T

T

T

T

T

T

T

Hypothesis X  dof  

H 1 4.565 3 0.79 7.81 21.10

H 2 6.760 3  0.92 7.81 21.10

H 3 29.197 3  1.00 7.81 21.10

H 4 5.694 3  0.87 7.81 21.10

H 5 7.954 3 0.95 7.81 21.10

H 6 9.330 3 0.97 7.81 21.10

H 7 19.981 3 1.

p value χ χ−

( )
( )
( )
( )
( )
( )
( )
( )

T

T

T

T

T

T

T

T

00 7.81 21.10

H 8 12.695 3  0.99 7.81 21.10

H 9 29.574 3 1.00 7.81 21.10

H 10  25.059 3 1.00 7.81 21.10

H 11 0.846 3 0.16 7.81 21.10

H 12 43.741 3 1.00 7.81 21.10

H 13 7.366 3 0.94 7.81 21.10

H 14 3.380  3 0.66 7.81 21.10

H 15 6.280 3 0.90 7.81 2

( )T

T

M

1.10

H 16 9.432 3 0.98 7.81 21.10

H 221.855 45 1.00 61.66 89.07

H 15.966 1 1.00 3.84 15.13

 

Table 2.  Stationary and Markovity tests – 1st order 3-month based Markov 

chain 

 

Another way of assessing a model is to look at its predictive ability. To do this we take 

the holdout sample and compare the estimates of the cumulative number of purchases over 

different time horizons in the future with the actual numbers of purchases made. Let ( ),1mn t be the 

number of customers who enter the holdout sample by making their first purchase in 

the tht period from the start, and only make one purchase in that first period, where the base 

period is m months.. Let ( ),2mn t and ( ),3mn t be the same definitions but for those who make two or 

three purchases in the first month they enter the holdout sample. Period 0 represent those 

already in the data base at its start. The expected number of purchases in the first k periods 



 17 

( k m months) predicted by the model with base period m months can be obtained by first 

calculating the number of customers ( ),mc t i who have made i cumulative purchases by time t . 

These satisfy 

( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1
11

1 1
12 22

1 1
13 23

1,1 ,1 ,1

1,2 ,1 ,2 ,2

1,3 ,1 ,2 ,3 ,2

m m m m

m m m m m m

m m m m m m m

c t c t q n t

c t c t q c t q n t

c t c t q c t q c t n t

+ = +

+ = + +

+ = + + +

 

The predicted number of non-initial purchases by time t is then given by 

( ) ( ) ( ) ( )mC 0 ,1 1 ,2 2 ,3m m mt c t c t c t= + +  

 

The results for the 3-month model are given in Figure 1 where Figure 1a gives the actual and 

forecasted number of cumulative purchases and Figure 1b gives the cumulative forecasting error 

- the difference between the actual and the forecasted number of cumulative purchases. This will 

be used as a bench mark against which to compare future models.   
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Figure 1.b   Cumulative forecast error using basic model 

 

5 Higher order and non-stationary Markov versions of the 

Basic model 

As was suggested in section two, one can generalize the Markov model in two ways, either by 

weakening the Markovity assumption or weakening the time homogeneity assumption. In this 

section we look at both these extensions.  Having determined that quarters ( 3-monthly 

intervals) are the most satisfactory base transition time period we will continue to use this as our 

time period in the generalizations considered hereafter and so drop the subscript m from our 

notation. So hereafter the transition probabilities are denoted ijq . 

 

 Firstly we consider whether the first order Markov assumption on the model is 

satisfactory or should we go for a second order Markov chain. In a second order Markov chain 

the state space is given by ( ).i j where i  is the number of purchases at the start of the last quarter 

and j is the number of purchases at the start of this quarter. The possible states are then (1,1), 
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(1,2), (1,3+), (2,2), (2,3+), (3+,3+) and the model constructs a 6x6 Markov transition matrix on 

these states. One can redefine the states if one wishes as the number of purchases to date and the 

number of purchases in the last quarter, since the state (2,2) would mean two purchases to date 

but none in the last quarter.  The transition matrix for this model is given by 

(2 )

0.992 0.008
0.979 0.021

1.000

0.984 0.016
1.000
1.000

nd order

− − − −
− − − −
− − − − −

=
− − − −
− − − − −
− − − − −

3Q  

To check if this is a better fit than the first order chain, one applies the chi-square test on 

the MH hypothesis. The results were given in Table 2 and suggest that the first order hypothesis 

is not really valid in this case. One might then ask whether the second order Markov property is 

appropriate and to do this one compares the Markov chain on the six states with the Markov 

chain where the states are ( ), ,i j k describing the situation where the cumulative number of 

purchases is currently k , was j at the start of the last period and i at the start of the period before. 

In this case with the forced monotonicity in the way the process moves between states there are 

only ten possible states (1,1,1), (1,1,2), (1,1,3+), (1,2,2), (1,2,3+), (1,3+,3+), (2,2,2), (2,2,3+), 

(2,3+,3+) and (3+,3+,3+). The corresponding transition matrix is given by 

(3 )

0.992 0.008 0.000

0.980 0.020
1.000

0.992 0.008
1.000

1.000
0.983 0.017

1.000
1.000

1.000

rd order

− − − − − − −
− − − − − − − −
− − − − − − − − −
− − − − − − − −
− − − − − − − − −

=
− − − − − − − − −
− − − − − − − −
− − − − − − − − −
− − − − − − − − −
− − − − − − − − −

3Q  

Table 3 gives the hypothesis tests for the time homogeneity and Markovity of the second order 

model. The results indicate again that the data does not really support such hypotheses and so 
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one might repeat the process for the third order model. We will not do so here but sufficient to 

say that the 15 state fourth order model is both difficult to understand and has non-robust 

estimators of the transition probabilities. 

 

( )
( )
( )
( )
( )
( )
( )

2 2 2

95% 99.99%    lower tail
T

T

T

T

T

T

T

Hypothesis X dof 

H 1 5.637 4 0.77 9.49 23.51

H 2 43.240 4 1.00 9.49 23.51

H 3 7.663 4 0.90 9.49 23.51

H 4 9.036 4 0.94 9.49 23.51

H 5 7.642 4 0.89 9.49 23.51

H 6 21.018 4 1.00 9.49 23.51

H 7 11.489 4 0.98 9

p value χ χ−

( )
( )
( )
( )
( )
( )
( )
( )

T

T

T

T

T

T

T

T

T

.49 23.51

H 8 28.187 4 1.00 9.49 23.51

H 9 22.077 4 1.00 9.49 23.51

H 10 2.615 4 0.38 9.49 23.51

H 11 39.270 4 1.00 9.49 23.51

H 12  8.609 4 0.93 9.49 23.51

H 13  2.809 4 0.41 9.49 23.51

H 14 11.157 4 0.98 9.49 23.51

H 15 11.553 4 0.98 9.49 23.51

H 2
M

32.001 56 1.00 74.47 104.13

H 17.439 1 1.00 3.84 15.13

 

Table 3.  Stationary and Markovity tests - 2nd order Markov chain  

 

Clearly going to a higher order of Markovity will always give a slightly better fit but the 

question is whether it is worth the complication. To test this we look again at the forecasts of the 

cumulative number of purchases of the first, second and third order Markov chain against the 

actual number of purchases on the holdout sample. Figure 2 suggests that as one would expect, 

going to a higher order decreases the cumulative error on average (but not necessarily on every 
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time horizon). However the improvements are small and suggest that even if the first order 

hypothesis is not statistically valid, not much is lost in predictive accuracy by using it.  
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Figure 2. Cumulative forecast error using 2nd and 3rd order models 

 

The second way of generalizing the basic quarterly model is to assume it is non-time 

homogeneous. Here we consider two levels of extensions in time non-homogeneity. Firstly we 

assume the process is seasonal, so that there are four transition matrices that describe the 

dynamics of the process. In the first quarter of the year the transition probabilities are given 

by ( )1Q , in the second quarter by ( )2Q and so on. At the start of the next year though the transition 

probabilities in the first quarter are again modelled by ( )1Q . Using our data we found the best 

estimates for the ( )Q i s were 

( )
0.997 0.003 0.000

1 0.994 0.006
1.000

Q = −
− −

 

( )
0.997 0.003 0.000

2 0.991 0.009
1.000

Q = −
− −
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( )
0.997 0.003 0.000

3 0.997 0.003
1.000

Q = −
− −

 

( )
0.998 0.002 0.000

4 0.997 0.003
1.000

Q = −
− −

 

The most notable feature is the increase in third purchases in the second quarter of the year and 

a corresponding drop in such purchases in the final quarter of the year. The former might be due 

to existing savers making another tax free investment just before the end of the tax year on April 

5. Although we have no evidence for this, it is a possible interpretation of this variation. 

 

The most general form of time non-homogeneity is to allow a different matrix of transition 

probabilities for each time period, so there will be matrices ( ) ( ) ( )1 , 2 ,...,Q Q Q T . Table 4 gives the 

values of the transition probabilities for the 16 different quarters in the time horizon available. 

Clearly this must be a better fit than the seasonal and the stationary models. The figures in Table 

1 are essentially the result of testing this against the null hypothesis of complete time 

homogeneity and it is clear one would need to reject that hypothesis whatever the base time 

period. Table 2 gave the results for the 3-month base period model and again overall one cannot 

statistically support time homogeneity. The effects of the non-stationary models on the 

predictions of the number of purchases in the hold out sample are given by Figure 3 and the 

results there again confirm their superiority over the stationary models. 
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11 12 13 22 23Period End month
1 3 0.989 0.011 0.000 0.945 0.055

2 6 0.993 0.007 0.000 0.992 0.008
3 9 0.987 0.013 0.000 0.978 0.022
4 12 0.990 0.010 0.000 0.986 0.014
5 15 0.992 0.008 0.000 0.988 0.012
6 18 0.993 0.007 0.000 0.012 0.008

7 21 0.

q q q q q

995 0.005 0.000 0.988 0.012
8 24 0.993 0.006 0.001 0.985 0.015
9 27 0.995 0.005 0.000 0.995 0.005

10 30 0.996 0.004 0.000 0.995 0.005

11 33 0.989 0.011 0.000 0.983 0.017
12 36 0.987 0.013 0.000 0.970 0.030
13 39 0.988 0.012 0.000 0.979 0.021
14 42 0.994 0.006 0.000 0.989 0.011
15 45 0.991 0.009 0.900 0.980 0.020

16 48 0.993 0.007 0.000 0.973 0.027

 

Table 4.  Transition matrices ( ) ( ) ( )1 , 2 ,..., 16Q Q Q  

( )1Q : Study period: 01/07/1999 to 01/10/1999 

( )16Q : Study period: 01/04/2003 to 01/07/2003 

 

The results show the non-stationary models can deal with the blip in purchases around quarters 

9 to 11, and so the errors for both non-stationary models are superior to the stationary one, over 

the first three years. The fully non-stationary model has lower errors than the seasonal one over 

that period but in the longer period it is worse than the basic stationary model as well as the 

seasonal one. 
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Figure 3.a  Actual and non-stationary model (3-month period) forecast for cumulative number 

of non-initial purchase  
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Figure 3.b Cumulative forecast error using a non-stationary model  

 

 

 

6 Alternative Markov models 

The flexibility of the Markov approach allows a number of variations on these models by 

segmenting the population and building different Markov processes on each segment or 
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alternatively by adding some extra information to the simple state used in the basic model. One 

of the most successful applications of segmenting the population is the mover stayer idea which 

was first used for industrial mobility (Blumen et al 1962) and subsequently used in context of 

consumer credit behaviour (Frydman et al 1985). This is closely related to the customer 

relationship behaviour of this paper and so we can apply the model to the standard {1, 2, 3+} 

state space but assuming only that the stayers will stay in state 1. In terms of the notation in 

section two this means we assume 2 3s 0s = = and it implies that we believe the population is 

divided into two groups – one who only will make one purchase with the company (the stayers) 

and a second to whom it is possible to sell a number of different products. It does not seem 

sensible to assume there are people who will make two and only two purchases with the 

organisation. Using the estimation procedure given by Frydman et al (1985) we found that 

1 0.87s = and that the probability transition matrix for the first order time homogeneous Markov 

chain assumed to describe the movers is of the form 

0.99363 0.0632 0.005
0.9826 0.0174

1.000
moverQ = −

− −
 

The forecasting accuracy of this model is compared with the base model in Figure 4 by looking 

at the estimated cumulative purchases over a number of time periods using the holdout sample. 

This shows the model is quite accurate in the short term future, but the longer term forecasts are 

not as good as the basic model. It is perhaps surprising (and perhaps disappointing to the 

organisation) that the stayers comprise such a large proportion (87%) of the population. 

Predicting who are movers and who are stayers would allow more focussed targeting of the 

marketing effort. This was done by Ho et al (2004) in the case of a Markov chain describing the 
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credit behaviour of bank customers though there one was discriminating between four groups – 

movers, stayers, twitchers and shakers. 

-250

-200

-150

-100

-50

0

50

100

150

200

0 2 4 6 8 10 12 14 16 18

Time period

C
um

ul
at

iv
e 

 fo
re

ca
st

 e
rr

or

Mover-
Stayer
model

Basic model

 Figure 4.  Cumulative forecasting error using mover-stayer model 

 

Instead of using extra information to segment the population and then building models with the 

same state spaces but different transition matrices on each segment, one could include extra 

information in the state space itself. One would expect that the knowledge of the products that 

had been purchased may be useful in predicting future purchase behaviour and so we consider 

two models where this information is included. 

 

 The products sold by the company are segmented into four main types - A,B,C and D -

consisting of investment products and various type of insurance and pension products, though 

for confidentiality we do not name them specifically. In the last purchase model the state is (i, 

X) where i  =1,2 or 3+ is the cumulative number of products purchased and X is the type of the 

last product purchased. Thus we appear to have a Markov chain with 12 states. If however we 

combine the four 3+ states into one since they are all essentially absorbing states we can cut the 

state space down to 9 states. Concentrating on the time homogeneous first order version, we can 
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estimate the transition probabilities in the usual way. The resultant matrix Q  has the following 

form, where the states are ordered (1,A), (1,B),(1,C), (2,A) etc. Notice that each row will only 

have 5 non-zero entries corresponding to staying where it is or moving to the state with one 

more purchase. 

12
mod

0.993 0.007 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.990 0.001 0.005 0.003 0.000 0.000 0.000 0.000 0.000

0.988 0.000 0.001 0.011 0.000 0.000 0.000 0.000 0.000
0.996 0.001 0.001 0.001 0.001 0.000 0.000 0.00

state
el

Q

− − −
− − −
− − −
− − −

=

0 0.000

0.984 0.014 0.001 0.001 0.001
0.970 0.004 0.017 0.009 0.000

0.982 0.001 0.001 0.017 0.000
0.990 0.005 0.000 0.001 0.004

1.000

1.000
1.000

1.000

− − − − − − −
− − − − − − −
− − − − − − −
− − − − − − −
− − − − − − − − − − −
− − − − − − − − − − −
− − − − − − − − − − −
− − − − − − − − − − −

 

What this matrix shows is there is a strong tendency to repeat buy (i.e. the second purchase is of 

the same type as the first). This comes from the probabilities 0.007, 0.005, 0.011 in the first 

three rows. The only exception is product D where the chance of any second purchase is low 

and likely to be of any type (shown by the values 0.996, 0.001, 0.001, 0.001 and 0.001 in the 

fourth row). A similar repeat purchase pattern occurs for the third purchase though the sequence 

B → C is quite likely and the sequence D → A is more likely than D → D. The predictive ability of 

this model is shown in Figure 5. It has consistently lower forecasting error than the base model 

which ignores the purchase type. 
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Figure 5.a  Actual and 12 state model (3-month period) forecast for cumulative number of non-

initial purchase 
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Figure 5.b  Cumulative forecasting error for 12 state model 

 

The next model, the full product type model looks at the cumulative number of purchases of 

each type of product separately. Thus the states are of the form (a,b,c,d) where a is the number 

of A purchase already made, b the number of B purchase already made and similarly for c and d. 

in this model it is possible for a customer to have 0 purchases of a given type and so the values 

of each component could be 0,1,2, etc. Even if we decide to amalgamate all second and higher 
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purchases of a type and so only have states 0,1 and 2+ in each type this leads to a Markov chain 

with 80 states ( (0,0,0,0) is not possible). This is partly because we are distinguishing states with 

up to 8 purchases but it does cause real problems with estimation since many of the states will 

occur very rarely even with a  sample of 50,000.  

 

One way around this is to consider the purchases of each product to be independent of one 

another. This is a very strong assumption but does mean we can separate out the process into 

four independent Markov chains each with a state space of 0,1,2,3+ etc cumulative purchases of 

that type. If we again go with 0,1,2,3+, we end up with 16 states in total (four chains with 4 

states in each) but since only 00 01 02 11 12,  ,  ,  ,  q q q q q  and 22q are independent estimates in each chain  

there are only 24 parameters to estimate. This compares with almost 1000 transition 

probabilities to be estimates if independence is not assumed. We call this the independent type 

model and the simplest version of such a model assumes each of these chains is first order and 

stationary. The estimates from our data were as follows 

( )

( )

( )

0.9995191 0.0004809 0.0000000 0.0000000
0.9933324 0.0066236 0.0000440

0.9859978 0.0140022

1.0000000
0.9994730 0.0005270 0.0000000 0.0000000

0.9952841 0.0047159 0.0000000

0.9889706 0.0110294
1.0000000

Q A

Q B

Q C

−
=

− −
− − −

−
=

− −
− − −

( )

0.9993873 0.0006127 0.0000000 0.0000000
0.9894055 0.0105447 0.0000498

0.9796000 0.0204000
1.0000000

0.9996907 0.0003093 0.0000000 0.0000000

0.9990572 0.0009428 0.0000000
0.9972145 0.0027855

1.0000000

Q D

−
=

− −
− − −

−
=

− −
− − −
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We again can use this model to estimate the total number of purchases in any period by 

estimating the total of each type and then summing these estimates. Using the usual holdout 

sample, Figure 6a gives the expected number of purchases given by the independent type model 

and the actual number of purchases made while Figure 6b compares the error of this 

independent model with that of the basic model. Figure 6 suggests that the independence 

assumption is too strong in that the forecast errors in the cumulative number of purchases are 

worse than in the base case. So this approach does not seem to be particularly appealing in that 

it leads either to Markov chains with large state spaces or to the independent version which loses 

useful information concerning the purchases of the other types of products.  
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Figure 6.b Cumulative forecasting errors for independent full product model 

 

 

7 Economy dependent Markov Chain Models 

In Section 5, the fully non-stationary model where there are different transition probabilities for 

each time period, was shown to give good forecasts of the number of purchase on the hold-out 

sample over the time period it was built on. However this is of no use if one is trying to forecast 

outside the time periods on which the model was developed. If these transition probabilities can 

be related to other variables and one can forecast these other variables for future time periods, 

one could develop transition probability matrices based in these forecasts which can then be 

used for modelling purchase behaviour in future time periods.  

 

Obvious candidates for these external variables are the economic indicators which relate to 

consumers.  To this end we concentrated on the five economic variables described in section 

three, namely stock market returns, consumer price index, consumer confidence index, 

unemployment rate and the interest rate. The stock market returns impact consumer purchase 
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behaviour in several ways. Firstly many of the investment product sold by the insurance 

company have returns dependent on the stock market and so look more attractive when the stock 

market is rising. Also rises in the stock market suggest a growing economy which gives more 

confidence to consumers, while for a small but significant (certainly for pension and investment 

products) group of consumers it increases the bonuses they are likely to get. One would expect 

rises in the consumer price index to mean consumers have less money available for purchasing 

extra products, though of course this would also depend on what is happening to wages at the 

same time (a wage index was tried but added no improvement to the model presented here). 

Rises in consumer confidence could mean that consumers are more willing to risk 

overstretching themselves by purchasing more products or contracting to invest more because 

they are more confident of sustained higher income levels. However this willingness to take 

risks might also mean that for insurance companies there may be a lowering of the purchasing of 

protection products. Initially one might expect that increases in the unemployment rate would 

lead to a drop in the number of new products being purchased, but there are some counter 

arguments. The consumers who invest in insurance company products are usually financially 

aware, tend to have reasonably high incomes and have a propensity to be cautious. These people 

are less likely to lose their jobs than the average person when unemployment rises and for some 

such rises will trigger a need to purchase products that protect themselves and their families. 

Lastly interest rate rises could affect purchase behaviour in both directions. They may trigger 

rises in mortgage rates and hence decrease the disposable income of some of the potential 

purchasers. On the other hand for those with savings but no major interest linked outgoings their 

disposable income will go up. 
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 To build an economy dependent Markov chain model we will continue to use the three 

monthly (quarterly) transition period we chose in section three and  take the value of the 

economic variable in a quarter to be its value at the start of the quarter. Again to keep the 

models as simple as possible we concentrate on building a first order Markov chain. So for each 

of the sixteen quarters in the sample time period we have values of the economic variables 

during the quarter and for each pair of states i  and j  the number of people who started the 

quarter in state i  and start the next quarter in state j . Thus for state 1 we have the number of 

people who stay in state 1, the number who move to state 2 and the number who move to state 

3+ and from this data  we want to relate the probabilities of such moves to the values of the 

economic variables. This can be modelled as a 3-class logistic regression and the obvious 

ordering of the states makes this an obvious candidate for the ordered or cumulative variant of 

such models. In such regressions, if ijq  is the probability of going from state i to state j and 

ik
:

Q ij
j j k

q
≤

= ∑   is the probability of moving to the states k  or less, then if the variables 

are ( )1 2= x , ,.., nx xx  the relationship is 

ln
1

ik
ik ij j

ik j

Q
x

Q
α β

 
= + − 

∑   for all ,i k S∈  

This can be rewritten so that for state 1, if one defined  

1 1k j j
j

x

kA e
α β

 
 +
  =

∑
 

Then       11 1
1

1

1
q

A −=
+

 and 11 12 1
2

1

1
q q

A −+ =
+

 

Similarly for state 2 if  



 34 

2 2k j j
j

x

kB e
α β

 
 +
  =

∑
 

 then  

22 1
2

1

1
q

B −=
+

 

 For each variable jx  if the coefficient jβ  is positive then as jx  increases the values 11q  and 

11 12q q+  also increase. That means there is less chance of a purchase, while if the coefficient jβ  is 

negative then as the variable increases there is more chance of a purchase. 

 

Using the data in the development sample we built for each of the five economic variables a 

single variable model connecting the transition probabilities to that variable. Four of these 

models were unremarkable but in the unemployment variable model, the coefficients were 

negative, which suggests that as unemployment rises the chance of purchase also increases. This 

does seem to be a real feature of the data and suggests the increase in risk aversion as 

unemployment increases more than compensates for the loss of income among those who 

become unemployed.  However we felt the impact of this variable is suspect over a large time 

horizon and so left it out of the subsequent analysis. 

 

If the four remaining economic variables are put in the model together 

theα and β coefficient estimates are given in Table 5. The figures in brackets are the standard 

errors in the estimates and the starred values are the estimates which are significantly non-zero 

at the 95% level. Looking at the effects it seems that in all cases an increase in the stock market 

index leads to an increase in the likelihood of purchase both for consumers who have already 

made 1 or 2 purchases. Similarly increase in the interest rate means both sets (those with 1 and 
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with 2 purchases) of consumers are less likely to purchase which suggests it may be the 

mortgage rate effect which is dominating. Similarly the model suggests that increasing 

consumer confidence means increasing likelihood of purchasing and even if the impact is small 

it is significant. Consumer prices have a less clear impact, since neither the transitions from state 

1 nor the transitions from state 2 have significant coefficients on consumer prices. 

 

1 2

1k

Stock Market Interest Rate Consumer Price Consumer Confidence
Coefficient in state 1  -2.087* 0.197* 0.9396 -0.053* 3.5338* 8.341*
Model q (0.238) (0.034) (3.190) (0.011) (0.170) (0.285)
Coefficient in state 2
Mod

α α

2k

-3.004* 0.505* -17.065 -0.085* 1.635*
el q (0.777) (0.112) (9.947) (0.035) (0.551)

 

Table 5. Coefficients in cumulative logistic model with four economic variables 

 

Since the impact of changes in consumer confidence is small we redo the model with 

this variable left out. Table 6 shows the coefficient estimation values for this simpler model. The 

impacts of the stock market and the interest rate are still significant for both transitions from 

states 1 and states 2 and they still have the same signs. So increases in the stock market 

encourages purchasing and increase in the bank interest rate discourages purchasing. In this 

model consumer prices affect consumers who have made 1 purchase in that rises in prices 

discourages another purchase. This suggests that inflation may affect the sense of economic 

well-being though inflation in itself describes money illusion which should not affect real 

economic behaviour. Perhaps inflation has an effect on sentiment which replaces our (weak) 

consumer confidence variable in Table 5.  
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1 2

1k

2k

Stock Market Interest Rate Consumer Price
Coefficient in state 1  -1,807* 0.093* 7.372* 4.137* 8.945*
Model q (0.226) (0.026) (2.811) (0.122) (0.259)
Coefficient in state 2 -2.088* 0.328* -
Model q (0.638) (0.084)

α α

3.532 2.585*
(7.620) (0.399)

 

Table 6. Coefficients in cumulative logistic model with three economic 

variables 

 

The economy dependent Markov chain models we have constructed can be used to forecast total 

future purchases provided one is able to forecast the future values of the economic variables. 

Such forecasts of purchase numbers would have two sources of error – the modelling error and 

the error in the forecasts of the economic variables. In order to compare this model with the 

previous ones considered we will only consider one of these errors by comparing the actual 

number of purchases on the holdout sample with that predicted by this model on the same four 

year period as the model was built on. We assume that the forecasted value of the economic 

variable was the actual value that occurred i.e. perfect forecasts. It is interesting to compare the 

number of purchases estimated under this model compared with the actual number purchased in 

the hold out sample and the number using the completely non-stationary model. The latter 

model corresponds to getting a perfect description of the time non-homogeneity of the process 

by the changes in the economic variables. The results of Figure 7 show these non-stationary 

models do mimic the kink in actual purchases about quarter 10. Standard Markov chains, on the 

other hand, always lead to a smooth cumulative purchase forecast curve. The economic model is 

also significantly better than the base model in predicting the cumulative number of purchases 

for the first three years. It does not do so well in the final year though and one has to remember 

that in reality one will have errors from forecasting the economic variables as well. The 
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advantage of such a model though is that it is compatible with the insurance organisations other 

business models, most of which include economic forecasts as part of their input. 
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Figure 7.a  Actual and economy dependent model (3-month period) forecast for cumulative 

number of non-initial purchase 
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Figure 7.b  Cumulative forecasting errors using economy dependent model 
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8 Conclusions 

The paper considers how various types of Markov chain model can be used to help forecast the 

purchase behaviour of consumers. The models were used in a case study using purchasing 

behaviour for customers of a major insurance company. This led to some specificity in the 

modelling- for example the state spaces tend not to be very large because the number of 

customers making more than 3 purchases is very  small- but allows one to make comparisons 

with what happened in reality by using holdout samples. The paper looks at how one can choose 

appropriate transition time periods (Here we have assumed they are all the same length, but one 

could increase the length of the transition period the further from the present one is modelling). 

We examine generalizations of the basic time homogeneous first order Markov model - the one 

used almost exclusively in the literature to date to model customer behaviour. The results 

suggest that going to a second order Markov chain could be worthwhile in statistical terms but 

the improvement in performance is not great. Allowing for time non-homogeneity is sensible 

and the seasonal model displays real forecasting improvement. The completely non-

homogeneous time model is also accurate but does not lead to an operable forecasting procedure. 

The way to overcome this is to build an economy dependent Markov chain, and we showed how 

to build such models and that their forecasting accuracy is promising. 

 

One could extend these models in many ways; by looking at second and higher order time 

dependent Markov chains; by allowing time dependent and second order variants of the mover 

stayer models and the product dependent purchase models. One could allow other forms of 

introducing the economic effects into the transition matrices. Ho (2002) for example uses a 

constrained linear regression approach to connect the transition probabilities to the economic 
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variables in a consumer credit risk context. Nickell et al (2000) used an ordered probit model to 

estimate the transition probabilities of the credit rating grades of bonds in terms of the economic 

conditions. One could also use independent logistic regression approaches for each transition 

probability in the row of the transition matrix if one felt there was no ordering within the state 

space. However our aim was to investigate the relative effect of each of these generalizations 

and to build models that are sufficiently simple as to be understandable.  

 

This paper has considered modelling the purchase behaviour of customers. This is the 

most important element in modelling the customers’  overall behaviour and hence in building a 

customer lifetime value model and a customer relationship model. We have not distinguished 

here between products which are still in the process of being purchased and one whose purchase 

is complete. (in insurance and assurance one can be “buying” a product over a number of years) 

but this is only a matter of defining the states as the number of active products as well as the 

total number of purchased products. One can deal with customers who stop using a product by 

allowing transitions to states with a smaller number of active products as well as to ones with 

more active products. One can model customers who sever all connection with the company by 

adding an absorbing state corresponding to the “death” of the customer – in this context this 

could be literally true. 

 

We feel this paper is useful in developing models for customer lifetime value and 

customer relationship management. It shows that Markov chains are a feasible and flexible way 

of developing such models, and thus make it easy to introduce the impact of external economic 

effects into the forecasting procedure. 
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