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Güneş Erdoğan
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This study presents new exact algorithms for the Clustered Vehicle Routing Problem (CluVRP). The

CluVRP is a generalization of the Capacitated Vehicle Routing Problem (CVRP), in which the customers

are grouped into clusters. As in the CVRP, all the customers must be visited exactly once, but a vehicle

visiting one customer in a cluster must visit all the remaining customers therein before leaving it. Based on

an exponential time preprocessing scheme, an integer programming formulation for the CluVRP is presented.

The formulation is enhanced by a polynomial time graph reduction scheme. Two exact algorithms for the

CluVRP, a Branch & Cut as well as a Branch & Cut & Price, are presented. The computational performance

of the algorithms are tested on benchmark instances adapted from the Vehicle Routing Problem literature

as well as real-world instances from a solid waste collection application.
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1. Introduction

In this paper, we focus on the Clustered Vehicle Routing Problem (CluVRP), which is a gener-

alization of the Capacitated Vehicle Routing Problem (CVRP) where customers are partitioned

into clusters. We are given a complete undirected graph G= (V,E), with demands di, i ∈ V \ {0}

associated with the vertices that represent the customers, and costs cij, (i, j) ∈E associated with

the edges. The node 0 is the depot, where a homogeneous fleet of m vehicles is located. Each vehicle

has a capacity Q and provides delivery service at the customer vertices. The customers’ clusters

are disjoint subsets of vertices with cardinality greater or equal to one. The set of all clusters is
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denoted as C. A vehicle visiting one vertex in cluster C ∈ C must visit all vertices i∈C before any

other vertex. The objective of the CluVRP is to determine a set of m vehicle routes with mini-

mum total cost, starting and ending at the depot, servicing each customer exactly once, without

violating the vehicle capacity. The Capacitated Vehicle Routing Problem (CVRP) is a special case

of the CluVRP, where all clusters are singletons. This relationship also proves that the CluVRP is

NP-Hard.

The CluVRP has been introduced by Sevaux and Sörensen (2008) to model a real world appli-

cation involving parcel deliveries or courier companies that use containers with stocked goods. The

items to be delivered to customers in a specific area are stored into a container. All items in a

container have to be delivered, so all the customers in a region or cluster must be served, before

the content of an another container is distributed. In most applications, a single vehicle is expected

to visit all the customers in a given area. Other applications of the CluVRP arise whenever clus-

ters of customers prefer to be (or must be) served by the same vehicle. Typical examples of such

situations are in the transportation of the elderly to recreation centers, where the customers prefer

to be picked up together with friends or neighbors thus forming clusters. Similar constraints arise

in the service of so-called “gated communities”, which are residential or productive areas enclosed

in walled enclaves for safety and protection reasons. Whenever more than one customer from a

gated community requires service, these customers have to be visited by the same vehicle. Finally,

CluVRP plays an important role as a practical tool to enforce route compactness where neighboring

customers have to be served contiguously along the vehicle tours. In particular, in this paper we

consider a case study where the CluVRP is used in the context of solid waste collection in urban

areas. In this case, neighboring collection points are grouped into clusters that must be visited in

sequence so as to enforce a sufficient compactness in the route shape.

The variants of the Vehicle Routing Problem (VRP) are amongst the most studied combinatorial

optimization problems. For recent reviews of the VRP family, we refer the interested reader to

the books by Toth and Vigo (2001) and Golden et al. (2008). The Generalized Vehicle Routing

Problem (GVRP) is the Vehicle Routing Problem variant closest to the CluVRP. In the GVRP the

customers are also grouped into clusters, but visiting a single customer in each cluster suffices to

perform delivery. As we will discuss in the next section, for each CluVRP instance it is possible to

derive an equivalent GVRP instance. However, since the number of vertices in the equivalent GVRP

instance is considerably higher, such transformation is not of practical use for exact approaches.

In spite of the wide practical interest, the current literature on CluVRP is quite limited. The

initial motivation was a large scale application presented by Sörensen et al. (2008) and Sevaux and

Sörensen (2008). In subsequent work, Barthélemy et al. (2010) presented a Simulated Annealing
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algorithm based on inter-tour and intra-tour exchanges. To the best of our knowledge, there is no

study that provides an exact algorithm for the CluVRP.

In this paper, we present a new compact and effective integer programming formulation for

the CluVRP and two resulting exact solution algorithms. The formulation is based on a prepro-

cessing algorithm that simplifies the problem by generating a polynomial number of columns in

exponential time. This formulation is shown to dominate the adaptation of the CVRP two-index

formulation and is the base of two exact algorithms. The first one is a Branch & Cut algorithm

that uses all the columns, whereas the second algorithm is a Branch & Cut & Price algorithm in

which the columns are generated dynamically. These two algorithms proved able to solve realistic

size instances of CluVRP to optimality within limited computing times, with the Branch & Cut

algorithm outperforming the Branch & Cut & Price algorithm.

The paper is organized as follows. In Section 2, we present two integer programming formula-

tions and discuss their properties. We describe the associated preprocessing algorithm and graph

reduction scheme in Section 3. We present the details of our Branch & Cut and Branch & Cut &

Price algorithms in Section 4. We report our computational results on instances from the routing

literature in Section 5. The details of the case study for the waste collection are provided in Section

6. Finally, in Section 7, we draw our conclusions.

2. Integer Programming Formulation

As stated in the introduction, to the best of our knowledge no specific formulation has been derived

so far for the CluVRP. The only related work is a model proposed by Sevaux and Sörensen (2008)

to find the optimal Hamiltonian path across a cluster. It is possible to transform an instance of

CluVRP into an equivalent of GVRP in the following manner. For each cluster in the CluVRP

instance we create a cluster in the GVRP instance and we add a vertex to the GVRP cluster

for each possible entry vertex-exit vertex pair in the CluVRP cluster. This approach, however,

results in a quadratic number of vertices. Hence, the resulting GVRP instances are usually out

of the computational reach even for medium sized instances of CluVRP. Therefore, we propose in

this section two integer programming formulations for our problem. The first one is a straightfor-

ward adaptation of a classical CVRP formulation, while the second one better exploits the cluster

structure and forms the base of our exact approaches.

Following the problem definition given in the introduction, we now introduce the additional

required notation. Let us define the set of edges connecting the vertices in set S to the vertices

outside the set as δ(S) = {(i, j) ∈E : i ∈ S, j /∈ S}, and the set of edges inside a vertex set S ⊆ V as

E(S) = {(i, j) ∈ E : i, j ∈ S}. We define Ē = δ(C1) ∪ δ(C2)∪ ... ∪ δ(C|C|) as the set of inter-cluster

edges, and Ê = E \ Ē as the set of intra-cluster edges. We denote the cluster to which vertex
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i belongs as κ(i). The total demand of cluster C is denoted as dC =
∑

i∈C di, with all clusters

requiring a single visit i.e. dC ≤Q,∀C ∈ C. We write S to denote the set of all the subsets of V .

We write r(S) to denote the degree requirement of a vertex set S, computed as r(S) = ⌈
∑

i∈S
di

Q
⌉.

A first model for the CluVRP is based on the two-index vehicle flow formulation for the CVRP

(see, e.g., Toth and Vigo 2001), in which the edges connecting the vertices in a cluster to any vertex

outside the cluster are constrained to be exactly 2. More precisely, xij variable assumes value 1 if

edge (i, j) is in the solution, and 0 otherwise. The resulting formulation can be stated as:

(CluV RP1) minimize
∑

(i,j)∈E

cijxij (1)

subject to
∑

(i,j)∈δ(i)

xij = 2, ∀i∈ V (2)

∑

(0,i)∈δ(0)

x0i =2m, (3)

∑

(i,j)∈δ(S)

xij ≥ 2r(S), ∀S ∈ S, (4)

∑

(i,j)∈δ(C)

xij =2, ∀C ∈ C (5)

xij ∈ {0,1}, ∀{i, j} ∈E : i 6= 0 or |κ(j)|> 1, (6)

x0j ∈ {0,1,2}, ∀j ∈ V : |κ(j)|=1. (7)

The objective function (1) minimizes the routing costs. Constraints (2) are the customers’ degree

constraints, and constraint (3) determines the degree of the depot. The so-called capacity-cut

constraints (4) impose the capacity restrictions and also eliminate subtours from the solutions.

Constraints (5) state the degree constraints for each cluster, representing the difference from the

classical two-index formulation for the CVRP. Finally, the integrality of the variables is enforced

by constraints (6) and (7).

Albeit simple, this model fails to exploit the special substructure of the clusters. We try to

overcome this drawback by introducing a new formulation. To this end, let us observe that when

the first and last vertices to be visited in a cluster C ∈ C, |C| ≥ 2 are i, j ∈C, finding the optimum

sequence to visit the remaining vertices in C amounts to determine a minimum cost Hamiltonian

Path Problem (HPP). Once the optimal solutions of the HPPs ∀i, j ∈ C : C ∈ C are determined,

a formulation can be constructed by using such information. Denoting the cost of the HPP that

visits the cluster C ∈ C with endpoints i, j ∈ C : i < j as ĉij, let us define a new set of edge costs

as c′ij as c′ij = cij if (i, j) ∈ Ē and c′ij = ĉij if (i, j) ∈ Ê. Using these new edge costs, our problem is

transformed into that of determining m vehicle routes, each respecting the capacity restrictions,
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visiting all the clusters exactly once, traversing a single edge in each cluster (i.e., a Hamiltonian

path), and minimizing the routing cost. Figure 1 depicts an example of the transformation, with

Figure 1a illustrating the solution of the HPP for each such clusters, and Figure 1b showing the

selection of a single edge in each cluster with more than two customers.

We use R to denote the set of all the subsets of clusters in C. The parameter r(R) = ⌈
∑

C∈R
dC

Q
⌉

is the degree requirement of cluster set R ∈R based on the capacity restriction. Let xij be equal

to 1 if the edge (i, j) ∈E is in the solution, and 0 otherwise (note that x0j can assume value 2 if

|κ(j)|=1). The CluVRP can be formulated as follows:

(CluV RP2) minimize
∑

(i,j)∈E

c′ijxij (8)

subject to
∑

j:(i,j)∈E(κ(i))

xij =
∑

j:(i,j)∈δ(κ(i))

xij , ∀i∈ V : |κ(i)|> 1, (9)

∑

(i,j)∈δ(C)

xij =2, ∀C ∈ C (10)

∑

i∈V \{0}

x0i = 2m, (11)

∑

i∈R,j /∈R

xij ≥ 2r(R), ∀R∈R, (12)

xij ∈ {0,1}, ∀{i, j} ∈ Ē : i 6= 0 or |κ(j)|> 1, (13)

x0j ∈ {0,1,2}, ∀j ∈ V : |κ(j)|= 1. (14)

xij ≥ 0, ∀{i, j} ∈ Ê, (15)

The objective function (8) aims at minimizing the routing cost. Constraints (9) impose that in

cluster C ∈ C : |κ(i)|> 1 if a vertex is used as an entry or exit point, then it must be connected

to another vertex within the cluster. Constraints (10) enforce the degree of every cluster to be

equal to 2. Constraints (11) require that m vehicle routes leave the depot. Constraints (12) are

the capacity-cut constraints of CVRP adapted to CluVRP. Constraints (13) and (14) are the

integrality constraints. We would like to stress the fact that the integrality constraints (13) are not

stated for the intra-cluster edge variables, due to the fact that they are forced to integrality by the

constraints (9) whenever the inter-cluster edge variables are integral.

We now give a formal proof that CluVRP2 yields a lower bound that is greater than or equal

to that of CluVRP1. Given a formulation F , let us denote its linear programming relaxation as

FL the value of its optimal solution as v(F ), and the convex hull of its feasible solutions as c(F ).

Furthermore, let us denote the objective function value of a solution x as z(x). Finally, let us
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Figure 1 The transformation used by formulation CluVRP2.

denote the set of edges corresponding to a Hamiltonian path between two vertices i, j in cluster C

as P (i, j). We now show that given any solution x∗∗ ∈ c(CluV RP2L), we can construct a solution

x∗ ∈ c(CluV RP1L) with the same objective function value. For each inter-cluster edge (i, j) ∈ Ē,

set x∗
ij = x∗∗

ij . Initialize x∗
ij = 0 for all intra-cluster edges (i, j) ∈ Ê. For all (p, q) ∈ Ê and for all

(i, j)∈P (p, q), increment x∗
ij by x∗∗

pq .

Lemma 1. Constraints (9) and (10) imply
∑

(i,j)∈E(C) x
∗∗
ij =1.

Proof. Summing up constraints (9) for all i∈ V yields

2
∑

(i,j)∈E(C)

x∗∗
ij =

∑

(i,j)∈δ(C)

x∗∗
ij . (16)

Replacing (10) for the right-hand-side and dividing by 2 yields
∑

(i,j)∈E(C) x
∗∗
ij = 1. �

Proposition 1. Degree constraints (2) are satisfied by x∗.

Proof. Consider vertex i in cluster C, we have:

∑

j∈δ(i)

x∗
ij =

∑

j∈δ(i)∩δ(C)

x∗
ij +

∑

j∈δ(i)∩E(C)

x∗
ij (17)

=
∑

j∈δ(i)∩δ(C)

x∗∗
ij +

∑

j∈δ(i)∩E(C)

x∗
ij (18)
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=
∑

j∈δ(i)∩δ(C)

x∗∗
ij +

∑

(p,q)∈E(C)\δ(i)

2x∗∗
pq +

∑

(p,q)∈E(C)∩δ(i)

x∗∗
pq (19)

=
∑

(p,q)∈E(C)\δ(i)

2x∗∗
pq +

∑

(p,q)∈E(C)∩δ(i)

2x∗∗
pq (20)

= 2
∑

(p,q)∈E(C)

x∗∗
pq (21)

= 2 (22)

Equality (17) is the result of a partitioning of the edges in δ(i) as inter-cluster and intra-cluster.

Equality (18) follows from the transformation from x∗∗ to x∗. Equality (19) follows from the fact

that vertex i has a degree of 2 on a Hamiltonian path in C if it is not an endpoint, and a degree of

1 if it is an endpoint. Equality (20) follows from the fact that the first and third terms in equality

(19) are equal due to constraint set (9) of CluVRP2. Equality (21) is a regrouping of the edges.

Finally, equality (22) follows from Lemma 1. �

Lemma 2. Given a set of customer vertices S ⊂ V \ {0}, with C̄ being the minimal set of clusters

covering S, i.e., ∀i∈ S,∃C ∈ C̄ : i∈C, the inequality
∑

(i,j)∈δ(S) x
∗
ij ≥

∑
(i,j)∈δ(C̄) x

∗
ij holds.

Proof. By induction on |C̄|.

Base case: For |C̄|= 1, let C̄ = {C}. For |C| ≤ 2, the inequality holds as an equality. For |C| ≥ 3,

we have:

∑

(i,j)∈δ(S)

x∗
ij =

∑

(i,j)∈δ(C)

x∗
ij −

∑

(i,j)∈δ(C)∩δ(S)

x∗
ij +

∑

(i,j)∈E(C)∩δ(S)

x∗
ij (23)

=
∑

(i,j)∈δ(C)

x∗
ij −

∑

(i,j)∈δ(C)∩δ(S)

x∗∗
ij +

∑

(i,j)∈E(C)∩δ(S)

x∗
ij (24)

≥
∑

(i,j)∈δ(C)

x∗
ij −

∑

(i,j)∈δ(C)∩δ(S)

x∗∗
ij +

∑

(p,q)∈E(C)∩δ(S)

x∗∗
pq +

∑

(p,q)∈E(C)\δ(S)

2x∗∗
pq (25)

≥
∑

(i,j)∈δ(C)

x∗
ij −

∑

(p,q)∈E(S)

2x∗∗
pq +

∑

(p,q)∈E(C)\δ(S)

2x∗∗
pq (26)

≥
∑

(i,j)∈δ(C)

x∗
ij (27)

Equality (23) states the relationship between
∑

(i,j)∈δ(S) x
∗
ij and

∑
(i,j)∈δ(C) x

∗
ij , where the former

is calculated by removing the inter-cluster edges in δ(C) ∩ δ(S) and by adding the intra-cluster

edges belonging to E(C) ∩ δ(S). Equality (24) follows from the transformation from x∗∗ to x∗.

Inequality (25) follows from the fact that a Hamiltonian path (p, q) in C with one endpoint in S

and the other endpoint in C \S (i.e. (p, q)∈E(C)∩ δ(S)) will cross between S and C \S at least
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once, and at least twice if both p and q are in S or C \S (i.e. (p, q)∈E(C) \ δ(S)). Inequality (26)

is due to the fact that
∑

(i,j)∈δ(C)∩δ(S) x
∗∗
ij =

∑
(p,q)∈E(C)∩δ(S) x

∗∗
pq +

∑
(p,q)∈E(S) 2x

∗∗
pq , an implication of

(9). Finally, (26) follows from the fact that E(S)⊆E(C) \ δ(S).

Inductive step: Assume that the inequality holds for |C̄|= k. For |C̄|= k+1, let us partition S into

two nonempty, disjoint, and complementary subsets S1 and S2. Let C̄1 and C̄2 denote the minimal

sets of clusters covering S1 and S2, respectively. Furthermore, let us choose S1 and S2 such that

C̄1 ∩ C̄2 = ∅. Then,

∑

(i,j)∈δ(S)

x∗
ij =

∑

(i,j)∈δ(S1)

x∗
ij +

∑

(i,j)∈δ(S2)

x∗
ij − 2

∑

(i,j)∈δ(S1)∩δ(S2)

x∗
ij (28)

≥
∑

(i,j)∈δ(C̄1)

x∗
ij +

∑

(i,j)∈δ(C̄2)

x∗
ij − 2

∑

(i,j)∈δ(S1)∩δ(S2)

x∗
ij (29)

≥
∑

(i,j)∈δ(C̄1)

x∗
ij +

∑

(i,j)∈δ(C̄2)

x∗
ij − 2

∑

(i,j)∈δ(C̄1)∩δ(C̄2)

x∗
ij (30)

≥
∑

(i,j)∈δ(C̄)

x∗
ij (31)

Equality (28) states the relationship between the degrees of S, S1, and S2, where the degree of

S is computed as the sum of the degrees of S1 and S2 minus twice the edges in the intersection

of δ(S1) and δ(S2). Inequality (29) follows from the induction hypothesis. Inequality (30) follows

from the fact that δ(S1) ∩ δ(S2) ⊆ δ(C̄1) ∩ δ(C̄2). Finally, (31) is the result of the transformation

used in (28), applied to C̄1 and C̄2. �

Proposition 2. Capacity constraints (4) are satisfied by x∗.

Proof. We have
∑

(i,j)∈δ(S) x
∗
ij ≥

∑
(i,j)∈δ(C) x

∗
ij =

∑
(i,j)∈δ(C) x

∗∗
ij ≥ 2r(C) ≥ 2r(S). The first

inequality follows from Lemma 2. The equality is the result of the transformation from x∗∗ to

x∗. The next inequality is due to constraints (12). The last inequality is due to the fact that

r(C)≥ r(S). �

Proposition 3. v(CluV RP2L)≥ v(CluV RP1L).

Proof. Obviously, z(x∗) = z(x∗∗) and constraints (3) and (5) are honored by x∗ due to the

transformation and the constraints (10) and (11). Constraints (2) are satisfied due to Proposition

1. Finally, constraints (12) are satisfied because of Proposition 2. �
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As a consequence of the above propositions we have that formulation CluVRP2 provides a better

linear relaxation than CluVRP1. In addition, the preprocessing of the Hamiltonian Paths inside

the clusters enable us to discard variables that will never be used, which we explain in detail in

the next section.

3. Preprocessing

The definition of cost matrix ĉ is clearly a crucial aspect of the practical usability of formula-

tion CluVRP2. We now show how we compute the ĉij costs and provide a polynomial time graph

reduction scheme that uses the Hamiltonian path distances and improves the computational per-

formance.

3.1. Computing the Hamiltonian Path Distances

We now give a straightforward algorithm to compute all Hamiltonian path distances inside the

clusters. To exploit existing efficient implementations, we solved this problem as an equivalent

Traveling Salesman Problem (TSP) by means of the simple transformation obtained by setting

cij =−M , where M is an arbitrarily large positive number, and solving the TSP over the vertices

in cluster C. The pseudo-code of the algorithm is given below. Note that this approach is possible

only if the code accepts negative costs. Otherwise one has to add a dummy node that is connected

with zero cost arcs only to i and j and with M cost arcs to all other nodes.

Algorithm 1

For each clusters C ∈ C : |C| ≥ 2

For each vertex pair (i, j)∈E(C)

Store the value cij and set cij =−M .

Solve the TSP on GC = (C,E(C)). Store the optimal solution as well as

the optimal solution value z∗ij.

Set ĉij = z∗ij +M .

Restore the value of cij.

Algorithm 1 requires the solution of
∑

C∈C |C|(|C| − 1)/2 TSP instances. Although

the number of instances looks prohibitive, our computational experience using

CONCORDE (Applegate et al. 2001) to solve the required TSPs shows that instances including

a limited number of vertices per cluster (e.g., 30 to 40 vertices) can be preprocessed within a

reasonable computing time. Considering the largest GVRP instance from the literature (|V |=262)

and aggregating the original clusters (that are small in size) to obtain larger clusters, our
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preprocessing algorithm defines all the Hamiltonian paths for about 12-14 clusters with on average

20 customers each within 10-15 minutes. In addition, this size of clusters is compatible with those

required by most practical applications, as the waste collection problem which is considered in

Section 6. Details about the computational performance of Algorithm 1 will be provided in Section

5.

3.2. Graph Reduction Scheme

Although CluVRP2 is a compact formulation for the CluVRP, our initial computational exper-

iments revealed that its LP relaxation may exploit the cluster structure to attain a weak lower

bound, or a highly fractional solution that renders branching efforts ineffective. In Figure 2, a clus-

ter with four vertices is depicted with four inter-cluster edge variables having values of 0.5 each.

The intra-cluster edge variables may assume any of the three combinations of values depicted as

well as all of their convex combinations. The solution of the LP relaxation naturally looks for the

combination with the lowest cost, hence consisting of fractional solutions that allow splitting the

inter-cluster edge variables as much as possible. This phenomenon occurs for clusters with more

than 4 vertices, because of the number of intra-cluster edge variables exceeding the number of

vertices in the cluster.

Figure 2 Possible fractional values of intra-cluster edge variables, for given fractional values of the inter-cluster

edge variables.

A possible remedy to this shortcoming stems from the observation that many inter-cluster edges

are never used in an optimal solution. Let us consider the example depicted in Figure 3 with

two clusters having three vertices each, arranged in the form of equilateral triangles. In addition,

vertices 2, 3, 4, and 5 are arranged in the form of a trapezoid (to leave alternative optimal solutions

out of consideration) such that the distance between vertices 2 and 4 is slightly larger than that

between vertices 3 and 5, i.e., c24 = c35+ ǫ. Figure 3 enumerates all optimal solutions that connect

these two clusters, for given entry points to the clusters from other clusters. Out of 9 inter-cluster

edges, only a subset of cardinality four is used {(2,4), (2,5), (3,4), (3,5)}, and the remaining 5

inter-cluster edges may be discarded. We now state this observation as a formal result.
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Figure 3 Edges used in optimal solutions connecting two clusters. Note that edges adjacent to vertices 1 and 6

are not used.

Proposition 4. An edge (i, j) ∈ Ē connecting two clusters Ca,Cb ∈ C with i ∈ Ca and j ∈ Cb,

will never be used in an optimal solution if for each p ∈ Ca \ {i}, q ∈ Cb \ {j} there exists (k, l) ∈

(δ(Ca)∩ δ(Cb)) \ {(i, j)} such that

ĉpk + ckl + ĉlq < ĉpi + cij + ĉjq. (32)

Proof. Inequality (32) states that, for each tuple of entry points ∀p∈Ca \{i}, q ∈Cb \{j}, there

exists an edge (k, l) which connects the clusters Ca and Cb at a lower cost than (i, j). Clearly, in

such a case the edge (i, j) will never be used. �

An implication of Proposition 4 is that an inter-cluster edge must be the optimal way of

connecting two clusters for at least one pair of entry points. We now present an algorithm that

marks the edges that are the optimal choice to connect two clusters for given entry points, and

removes those that are never marked.
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Algorithm 2

For each cluster pairs Ca,Cb ∈ C :Ca 6=Cb, |Ca| ≥ 3, |Cb| ≥ 3

Unmark all edges in δ(Ca)∩ δ(Cb).

Set α=+∞.

For each vertex pair p∈Ca, q ∈Cb

For each vertex pair i∈Ca, j ∈Cb : i 6= p, j 6= q

If α> ĉpi + cij + ĉjq then set α= ĉpi+ cij + ĉjq.

For each vertex pair i∈Ca, j ∈Cb : i 6= p, j 6= q

If ĉpi + cij + ĉjq ≤α then mark edge (i, j).

Delete edges in δ(Ca)∩ δ(Cb) that are not marked

As the cardinality of a cluster grows, there are more vertices in the interior of the cluster that

are less likely to be used as connection points, and there is a higher number of candidate edges for

deletion. We would like to emphasize the fact that Algorithm 2 uses the results of Algorithm 1.

The number of operations required by Algorithm 2 is
∑

Ca,Cb∈C:2Ca 6=Cb
|Ca||Cb|(|Ca| − 1)(|Cb| − 1),

which translates to a time complexity of O(|V |4) since
∑

Ca∈C |Ca|= |V | − 1.

4. Exact approaches

In this section we present two different approaches for the exact solution of the CluVRP. The first

one is a Branch & Cut algorithm and the second a Branch & Cut & Price algorithm, both based

on the CluV RP2 formulation.

4.1. Branch & Cut

Our Branch & Cut algorithm is implemented through the CPLEX 12.5 integer programming solver.

The linear relaxation of formulation CluV RP2 can be strengthened through various classes of valid

inequalities. First of all, we used the CPLEX’s embedded cut generation procedures. In addition,

Bektaş et al. (2011) proved that all the CVRP inequalities from the literature can be extended to

the GVRP, through shrinking every cluster into a single vertex and aggregating the edge variables

betwen two clusters into a single variable. This result extends to the CluVRP, which allows us

to utilize the Framed Capacity Inequalities and Hypotour Inequalities introduced by Augerat

(1995), Generalized Large Multistar Inequalities presented by Achuthan et al. (1998), Homogeneous

Multistar Inequalities developed by Letchford et al. (2002), and Strengthened Comb Inequalities
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(Lysgaard et al. 2004). The Branch & Cut algorithm may benefit from these inequalities, as well

as the dynamic separation of the capacity constraints. In particular, the separation procedures we

adopted are those proposed by Lysgaard (2003).

During the extensive preliminary computational testing of our algorithm we observed that includ-

ing the following set of constraints at the root node improved the performance of the algorithm:

∑

(i,j)∈δ(C1)∩δ(C2)

xij ≤ 1, ∀C1,C2 ∈ C, (33)

These constraints, called Generalized Upper Bound (GUB) constraints hereafter, are a subset

of the capacity-cut constraints and guarantee that no more than one edge is connecting a pair of

clusters. In Section 5, the performance of these constraints, in comparison with CVRP inequalities

and CPLEX internal cuts is analyzed in detail.

Finally, we implemented a simple heuristic used to initialize the Branch & Cut. A feasible solution

is constructed by picking a minimum cost Hamiltonian path for each cluster with cardinality grater

than 3 and setting the corresponding intra-cluster edge variable to 1. Then, the Branch & Cut is

applied to this reduced problem to obtain a feasible solution.

4.2. Branch & Cut & Price

Although the overall number of variables is polynomial, the number of intra-cluster edges becomes

considerably large as the cardinalities of the clusters increase. Consequently, the computational

burden of the preprocessing strategy presented in Section 3 may turn out to be prohibitive. There-

fore, we now present a column generation approach that aims at reducing the solution time for the

HPPs by only considering those columns with negative reduced costs.

For clusters C ∈ C with |C| ≤ 3, it is convenient to compute the ĉij,∀(i, j) ∈ E(C) a priori, as

described in Section 3. For the rest of the intra-cluster edges, the reduced costs associated with

variables xij ,∀(i, j) ∈ E(C),C ∈ C : |C| ≥ 4 can be expressed as ĉij − ui − uj where u are the dual

variables associated with constraints (9). The minimum reduced cost Hamiltonian path can be

computed using the following formulation, originally proposed by Sevaux and Sörensen (2008). Let

x̂ij be a binary variable assuming value 1 if the edge (i, j)∈C is traversed. Furthermore, let ŷi be

a binary variable equal to 1 if the node i is one of the endpoints of the Hamiltonian path in C.

The resulting pricing problem is:
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(SubP ) minimize
∑

(i,j)∈E(C)

cijx̂ij −
∑

i∈C

uiŷi (34)

subject to
∑

j:(i,j)∈E(C)

x̂ij = 2− ŷi, ∀i∈C (35)

∑

i∈C

ŷi = 2, (36)

∑

(i,j)∈E(S)

x̂ij ≤ |S| − 1, ∀S ⊂C : |S| ≥ 3 (37)

x̂ij ∈{0,1}, ∀(i, j)∈E(C) (38)

ŷi ∈{0,1}, ∀i∈C. (39)

The objective function (35) minimizes the reduced cost of the column to be generated. Con-

straints (35) impose a unit degree to the vertices that are selected as the endpoints, and a degree

2 for the remaining vertices of the cluster. Constraint (36) enforces the number of endpoints to

be equal to 2. Constraints (37) are the well-known subtour elimination constraints, and (38) -

(39) are the integrality constraints. This problem is NP-hard as it contains the HPP as a special

case. However, it can be solved in a reasonably short time by using a Branch & Cut algorithm for

clusters of size up to 30, in which Constraints (37) are added dynamically in polynomial time.

To accelerate the pricing scheme, we exploit the fact that the reduced cost associated with each

column depends on the endpoints of the cluster. This fact enables us to define a bounding strategy

to minimize the number of HPPs solved at each iteration. Consider a minimum cost Hamiltonian

path H from i ∈C to j ∈C, which has a reduced cost of
∑

(k,l)∈H ckl − ui − uj. Given the cost of

the shortest Hamiltonian path H∗ in C, the following relationship holds:

∑

(k,l)∈H∗

ckl −ui −uj ≤
∑

(k,l)∈H

ckl −ui −uj, (40)

with the left hand side of the inequality yielding a lower bound for the reduced cost of H. Gen-

eralizing the idea to the whole cluster, a lower bound on the minimum of the reduced costs of

Hamiltonian paths in cluster C is given by:

∑

(i,j)∈H∗

cij − max
p,q∈C:p6=q

(up +uq). (41)

Since we are only interested in columns with negative reduced costs, we do not need to solve

any HPPs associated with cluster C if the lower bound (41) is nonnegative. The use of this bound

reduces the number of SubP instances to be solved. Note that H∗ can be determined as part of the
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initial column generation using SubP, and the two vertices in C having the maximum dual values

can be found in O(|C|) time.

Using the above mentioned results we implemented a Branch & Cut & Price algorithm. In

particular, formulation SubP is used for generating columns in conjunction with the bound (41),

and the algorithm incorporates the same cuts implemented in the Branch & Cut approach. The

performance of the resulting algorithms is discussed in the next section.

5. Computational Experiments

We extensively tested the Branch & Cut and Branch & Cut & Price algorithms on instances from

the GVRP and instances we have adapted from the CVRP literature. The exact algorithms were

based on CPLEX 12.5 solver framework and the computational testing was performed on an Intel

i7 PC with 3.40 GHz, operating in Windows.

The first two sets of instances are the GVRP problems proposed by Bektaş et al. (2011) and avail-

able at http://www.personal.soton.ac.uk/tb12v07/gvrp.html. These problem classes, denoted

as GVRPθ2 and GVRPθ3, are adaptations of the CVRP instances from the CVRP-library (see

http://branchandcut.org/VRP/data/). The experimental design to be presented below also fol-

lows that of Bektaş et al. (2011). In particular, a total of 73 CVRP instances are used as a starting

point: namely all those from classes A, B, P and some of the M and G classes. For each CVRP

instance the customer number, demands and coordinates are preserved.

The cardinality of the cluster set is set as |C|= ⌈n/θ⌉, where θ ∈ {2,3}, transforming the CVRP

instances ranging from 16 to 262 customers to CluVRP instances with 6 up to 131 small-sized

clusters. The clustering technique is a seed-based algorithm: the |C| vertices farthest from each other

are selected, and the remaining customers are assigned to the seeds using procedure CLUSTERING

of Fischetti et al. (1997). For each cluster C ∈ C, the demand dC is scaled by a coefficient γ = 1/|C|.

This scaling was proposed to prevent the occurrence of short routes, as it may happen when γ = 1.

The number of vehicles m is computed as the value of the Bin Packing solution obtained by the

algorithm of Martello and Toth (1990). Euclidean distances were rounded to the nearest integer

value.

Each instance is named using the notation X − nY − kZ − CW − V J , where X corresponds

to the original instance set (i.e., A, B, P, M, G), Y is the number of vertices, Z the number of

vehicles in the CVRP instance, W the number of clusters, J the number of vehicles in the CluVRP

instance. We grouped the instances obtained by setting θ=2 (GVRPθ2 ) and the instances obtained

by setting θ = 3 (GVRPθ3 ). Both sets of instances are challenging for CluVRP algorithms in

terms of routing, since the resulting number of clusters is quite large (up to 131 in the instance

G− n262− k25−C131− V 12). On the other hand the average number of customers per cluster
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is 2 and 3 for GVRPθ2 and GVRPθ3, respectively. Hence, these instances are not challenging for

the preprocessing algorithm described in Section 3.

The third set of CluVRP instances, denoted as Clu-Golden, is aimed at considering clusters with

larger size. For this purpose, we used the 20 large-size CVRP instances proposed by Golden et al.

(1998) (available at http://www.rhsmith.umd.edu/faculty/bgolden/vrp_data.htm) with 240

to 483 customers. We have adapted the CVRP instances to the CluVRP using the same procedure

described above, with θ ∈ {5, . . . ,15}. This results in an overall set of 220 instances (available

upon request from the authors). The number of clusters varies from 16 to 97, and the cluster size

varies from a single customer up to 71 customers. Finally, note that we have disregarded the route

duration constraints whenever these were present in the original CVRP instances.

Our computational experiments were designed to evaluate the impact of the different components

of our exact approaches: namely, CluV RP2, the effectiveness of cuts, and the effect of the graph

reduction scheme.

Table 1 Comparison of the effectiveness of CluV RP1 and CluV RP2 models.

θ Number of Inst. Avg. % Dev. CluVRP1 CluVRP2

5 20 0.05 14 18
6 20 0.13 14 17
7 20 0.06 15 18
8 20 0.07 15 19
9 20 0.07 18 19
10 20 0.09 18 20
11 20 0.09 18 20
12 20 0.10 19 20
13 20 0.16 19 20
14 20 0.19 18 20
15 20 0.20 18 20

Total: 220 0.11 186 211

First of all, we compared the performances of CluV RP1 and CluV RP2. To this end, we used

either model as a base for the Branch & Cut algorithm of Section 4.1 and we applied them to

the 220 Clu-Golden instances. Notably, this class of instances was observed to be more useful for

the comparison of the two models, having both larger overall size and cardinality of clusters with

respect to sets GVRPθ1 and GVRPθ2. Table 1 reports the number of optimal solutions obtained

by each algorithm within one hour of computing time, out of the 220 Clu-Golden instances. Note

that in the CluV RP2 results, the graph reduction algorithm, the embedded CPLEX cuts, the

CVRPSep Lib inequalities and the initial upper bound have been disabled, in order to provide a

fair comparison with CluV RP1. The lines of the table report the average results for different values

of θ, each including 20 instances. It can be easily observed that CluV RP2 is considerably more

effective than CluV RP1, being able to solve a much larger number of instances (i.e., 211 versus 186,
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over 220). It should be also noted that the performance of CluV RP2 improves drastically when the

number of clusters decreases (which corresponds to large values of θ), whereas CluV RP1 does not

take a clear advantage by large-sized clusters. As a consequence, CluV RP2 is likely to successfully

handle even larger instances with clusters of large cardinality, whereas CluV RP1 would not.

As proved in Section 2, the root node lower bound value of CluV RP1 is always worse than

that of CluV RP2. However, the average deviation between the lower bounds produced by the two

models is relatively limited, as presented column Avg. % Dev. of Table 1. Therefore, the superior

performance of CluV RP2 is not only due to a stronger lower bound, but also to a better branching

performance. The cost matrix c′ij consists of heterogeneous cost coefficients (the terms correspond

to either Hamiltonian paths or single edge distances) and the resulting objective function is less

flat than in CluV RP1. This characteristic, in our opinion, allows CluV RP2 to obtain a better

overall performance than CluV RP1.

Table 2 Comparison between the Branch & Cut and Branch & Cut & Price algorithms.

GVRPθ2 GVRPθ3
B&C&P B&C B&C&P B&C

Opt. Avg. Opt. Preproc. B&C Opt. Avg. Opt. Preproc. B&C
time time time time time time

A(27) 27 168.87 27 1.07 6.77 27 42.52 27 3.48 4.84
B(23) 23 16.62 23 1.05 2.22 23 7.69 23 4.39 4.99
P(24) 22 36.70 24 1.48 5.26 24 0.48 24 3.17 3.77
CMT/G(5) 1 113.70 3 3.00 8.50 2 157.25 4 8.00 25.44

Total(79): 73 77 76 78
Avg: 80.31 4.90 21.72 1.27

We next compared the performances of the Branch & Cut and the Branch & Cut & Price

algorithms, disabling in both algorithms the CPLEX embedded cuts, the CVRPSep inequalities, as

well as the Upper Bound (UB) and Graph Reduction (GR) scheme (where applicable). The results

of this test are shown in Table 2 and are based on instance sets GVRPθ2 and GVRPθ3, because

the Branch & Cut & Price was not capable of solving the large-sized instances in the Clu-Golden

set. It can be seen that the Branch & Cut algorithm solved to optimality 6 instances more than

the Branch & Cut & Price. Namely, four additional problems in the CMT/G group with θ= 2 and

two with θ=3 are solved by the Branch & Cut. In addition, the computing times for the Branch &

Cut are remarkably smaller, even considering the time required for the preprocessing. Note that,

although the clusters are small, increasing the value of θ from 2 to 3 (and the average cardinality

of clusters from 2 to 3) more than doubles the preprocessing time. The average number of columns

generated is 33.49 when θ= 2, and it is 44.67 when θ= 3.

A detailed analysis of preprocessing times is presented in Figure 4, where the minimum, average

and maximum time, expressed in 104 CPU seconds, spent for the preprocessing of the Clu-Golden
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Figure 4 Preprocessing computing time.

instances with different θ values is presented. Note that there is a large variability among com-

puting times due to the erratic behavior of the clustering algorithm, which sometimes generates

subsets of nodes with similar cardinalities and other times results in clusters with quite variable

cardinalities. When the latter happens, the largest clusters substantially increase the time required

for preprocessing. The maximum preprocessing time within out experimentation has been observed

to be 20541 seconds (i.e., less than 6 hours), which is acceptable since it allows to solve almost all

the large-sized instances belonging to this class.

Table 3 Effects of additional cuts.

No Cuts CPLEX Cuts CPLEX+CVRPsep GUB
Avg. Time # Avg. Time # Avg. Time # Avg. Time #

θ % Dev. (sec.) Opt. % Dev. (sec.) Opt. % Dev. (sec.) Opt. % Dev. (sec.) Opt.

5 0.55 105.55 16 0.55 106.73 15 0.54 115.23 16 0.55 105.43 18
6 0.49 81.88 18 0.49 83.26 17 0.47 97.95 17 0.49 85.79 17
7 0.57 68.1 17 0.57 69.58 18 0.55 75.25 18 0.57 60 18
8 0.50 60.49 19 0.5 60.93 19 0.48 68.89 19 0.50 56.9 19
9 0.45 53.43 19 0.45 53.53 19 0.41 68.96 19 0.45 51.68 19
10 0.45 42.34 19 0.45 42.48 19 0.41 55.43 20 0.45 47.29 20
11 0.43 34.85 20 0.43 34.64 20 0.39 47.1 20 0.43 33.39 20
12 0.53 45.23 20 0.53 41.08 20 0.46 53.86 20 0.53 34.82 20
13 0.46 30.13 20 0.46 30.07 20 0.39 43.83 20 0.46 25.47 20
14 0.44 24.95 20 0.44 24.89 20 0.39 39.88 20 0.44 25.13 20
15 0.36 19.21 20 0.36 19.16 20 0.32 31.97 20 0.36 21.26 20

Avg. 0.48 51.47 18.91 0.48 51.49 18.82 0.44 63.49 19.00 0.48 49.74 19.18
Avg.> 9 0.45 32.79 19.83 0.45 32.05 19.83 0.39 45.35 20.00 0.45 31.23 20.00
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We also performed a number of tests to assess the contribution of additional cuts: we included

in turn in our Branch & Cut algorithm the inequalities from the CPLEX cuts, the CVRPSep Lib

inequalities (as described in Section 4) and the GUB Constraints (33). For each experiment, Table

3 reports the average percentage deviation from the best known solution at the root node, the

corresponding computing time (in seconds), and the number of optimal solutions obtained within

one hour of computing time by the Branch & Cut algorithm. It is interesting to note that, at

least for smaller θ values, neither CPLEX cuts nor CVRPsep cuts are substantially improving

the performance of the algorithm. We attribute this to the large size of the instance and the

large number of variables involved, CPLEX and CVRPsep cuts increase of about 10% the average

root node computing time and reduce the root average deviation by only 0.04% (denoted by

the line marked Avg that reports the average values over all instances). On the other hand the

GUB constraints reduce both the average computing time and allow for solving to optimality two

more instances that the CPLEX+CVRPsep algorithm. Therefore, we opted to include only GUB

constraints in the standard version of our algorithm. However, as previously mentioned, the benefit

of using CPLEX and CVRPsep cuts is more noticeable for larger θ values as reported by the last

line (marked as Avg.> 9) which gives the average of the results for instances with θ larger than

9. We note that in this case the root node deviation is better than that of GUB with a moderate

increase of the average computing time. As a consequence, when the average size of clusters is

relatively larger the exact approach may profitably exploit the presence of more sophisticate cuts

in addition to the GUBs.

Table 4 Performance of the upper bound

Avg. Dev. No Feasible Avg. Time
θ (%) Solution (sec.)

5 6.75 1 633.12
6 7.56 1 580.00
7 8.55 0 427.90
8 8.89 0 306.54
9 9.65 0 172.36
10 9.60 0 66.41
11 9.74 0 45.57
12 9.80 0 35.29
13 9.89 0 21.90
14 9.87 0 16.14
15 10.01 0 26.39

Avg. 9.12 154.70

Finally, in our experiments, we have observed that the Branch & Cut algorithm benefits from

the presence of an initial upper bound value. As described in Section 4.1, this is computed by

picking a minimum cost Hamiltonian path for each cluster with cardinality grater than 3, setting

the corresponding intra-cluster edge variable to 1, and applying the Branch & Cut on this reduced
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problem. The performance of such a simple upper bound is presented in Table 4, where the deviation

from the best known solutions, the number of instances for which the heuristic was able to find

a feasible solution, and the average computing time are reported for the Clu-Golden instances.

Contrary to our expectations, the most convenient Hamiltonian paths do not lead to high quality

routing solutions: the average optimality gap for the upper bound is in fact as large as about 10%

and the average computing time is 154.70 seconds. Moreover, in two instances the Branch & Cut

was not capable of finding any integer solution, within the one hour time limit. This emphasizes

the need for more sophisticated heuristics for the CluVRP.
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Figure 5 Graph reduction effectiveness: % of edges disregarded by varying θ.

Table 5 Performance of the upper bound and the graph reduction scheme.

B&C
basic GR UB GR+UB

Avg. # Avg. # Avg. # Avg. #
θ Opt. Time Opt. Time Opt. Time Opt. Time Opt.

5 17 364.72 18 431.97 18 492.09 17 363.00 17
6 16 198.59 17 136.15 19 185.19 17 86.65 19
7 17 110.40 18 143.08 19 202.39 17 109.71 19
8 19 224.76 19 90.10 19 184.63 19 93.86 19
9 19 117.28 19 87.92 19 140.70 19 92.18 19
10 19 42.83 20 62.14 20 84.28 19 48.82 20
11 20 129.71 20 80.33 20 242.03 20 72.23 20
12 20 96.04 20 45.29 20 83.09 20 48.71 20
13 20 56.19 20 42.24 20 64.50 20 40.20 20
14 20 93.43 20 41.12 20 101.03 20 39.18 20
15 20 44.50 20 24.73 20 68.45 20 23.09 20

Avg. 207 130.26 211 102.38 214 162.97 208 88.66 213

Finally, we analyze the effect of the GR and the UB on the performance of the Branch & Cut

algorithm. Figure 5 depicts the percentage number of edges discarded by the GR, by varying θ.
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Remarkably, a maximum 89.90% of the edges are discarded, when θ = 13. When the size of the

clusters are increased, the GR scheme proves to be more effective, but the % of edges disregarded

stabilizes when θ > 10.

Table 5 reports the average computing times in seconds for the Branch & Cut in which neither

upper bound nor the graph reduction scheme is applied (column marked Basic). The following

columns present the average computing times when only the UB is used, when only the GR is

applied, and when both UB and GR are utilized, respectively. The UB does not improve the root

node solution time, but allows for solving an extra instance to optimality. The GR is effective in

reducing the average root time by roughly 20%, and provides three additional optimal solutions,

The combined use of the GR and UB reduces drastically the average root node computing time

(approximately 33%) and 213 instances are solved to optimality. These results confirm the impor-

tance of the GR scheme, and provide motivation for further research for high quality heuristics.

6. Case Study

The exact approach for CluVRP has been tested on a real-world application of urban garbage

collection, a challenging application of street routing (see, e.g., Bodin et al. 2003 and Sahoo et al.

2005). In this type of problems, practitioners place a strong emphasis on the so-called route visual

attractiveness. Although this concept is quite intuitive, it is not easy to be defined quantitatively

and mainly refers to the fact that the routes serving a given area “should not cross each other too

much” (see, e.g., Poot et al. 2002). As illustrated by Figure 6, heuristic solutions may be shorter

but much less compact (thus less visually attractive) than typical manually constructed solutions,

which are often built starting from a partition of the service area into zones assigned to different

vehicles. Benefits of visually attractive routes are manifold in practical applications and they often

greatly compensate a smaller efficiency in terms of variable costs. First of all, they are more likely

to be accepted by planners and drivers, being closer to their usual practice. Second, they often

require a much smaller effort to be implemented, reducing the time required to instruct the drivers

about the routes. Finally, they may be more stable in performance along time since they refer to

more homogeneous areas in terms of traffic condition and are subject to continuous refinement by

exploiting driver familiarity with the area served by the route.

Introducing visual attractiveness into route building procedures is a non-trivial task from the

algorithmic point of view, due to both the fuzzy and subjective definition of the property and

the great variability of situations that have to be faced by considering various urban shapes and

density of collection points. In the rather limited literature on this subject, it is often achieved by

using algorithms which can incorporate some route compactness mechanisms coupled by manual

editing of the routes into GIS-based decision support systems (see, e.g., Poot et al. 2002).
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Figure 6 Comparison between hand-made and heuristic solutions of a real-world waste collection problem with

four routes. The hand-made solution (left) is about 4% longer but more compact than the heuristic one

(right).

A practical way to keep route compactness and to allow users to “customize” this aspect is to let

the customer cluster the collection points. In this case, by varying the average size of the clusters the

user may easily trade-off between route compactness and potential cost of sub-optimality associated

with territory-based routes. Within these settings the possibility of solving CluVRP problems to

optimality represents a very interesting opportunity for achieving cost-effective solutions which also

incorporate a good degree of visual attractiveness. To evaluate such an opportunity in more depth,

we conducted some experiments on a real-world dataset obtained from the solid waste collection

in a town in the north of Italy. The data refers to a district of the town where 456 large street bins

are located at 385 collection points. To make the evaluation of visual attractiveness easier, we used

Euclidean distances rather than road distances between points, since the latter may quite strongly

distort the shape of routes because of one way and turning restrictions. The vehicles available for

the service have a capacity of 250 bins and are located at a depot that is considerably far away

from the district. The company provided us with instances consisting of several clustering patterns:

the maximum cardinality of the clusters varies between 5 and 30 bins, corresponding to an average

of 4 to 23 collection points. For each clustering pattern, we compared the solutions obtained by

our exact approach with those obtained by a commercial solver used by the company.

The results are summarized in Table 6. For each clustering pattern, the table reports the num-

ber of clusters and the corresponding maximum and average sizes. Columns marked “Heuristic
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solution” include the results obtained by the commercial heuristic when applied to the instance:

the table reports the solution value, the percentage deviation with respect to the optimal solution

value and the computing time in seconds. The last six columns of the table present the results of

the exact approach, including the time for the computation of the Hamiltonian paths, the results

of the upper bound computation, the optimal solution value, and the total computing time in

seconds.

The exact algorithm is capable of solving efficiently instances from real world applications with

reasonable size. In particular, if we consider the cases with cluster size between 10 and 20, which

provide a very good compromise between quality and compactness, the computing time of the exact

approach is comparable or smaller than the heuristic and obtains solutions which are much better

in quality. In addition, this experiment indicates the possibility of handling even larger instances

within the time limit of one hour of computing time provided the total number of clusters is smaller

than 80-100, thus resulting in a number of customers which can be 4-5 times larger than those

in the current real-world problem. On the average, the UB is improving the heuristic solutions of

9.07%, the exact approach improves the same result of 12.93%.

Table 6 Results or real-world instances from solid waste collection.

Exact solution
Clusters Heuristic solution Preproc. Initial UB Optimal Total

Problem Number Max size Avg size Value % Time Time Value % Time Value Time

R05 100 5 4 63397 116.5 356.0 40.0 55569 102.1 618.8 54424 2328.4
R08 63 8 6 66548 117.6 238.0 68.0 57775 102.1 20.6 56576 106.3
R10 50 10 8 65038 115.0 197.0 89.0 58684 103.7 62.8 56578 342.2
R15 34 15 11 61585 110.6 148.0 181.0 58656 105.3 31.8 55694 43.6
R20 25 20 15 61615 108.8 124.0 273.0 58995 104.2 44.1 56612 52.4
R25 20 25 19 63566 112.3 107.0 364.0 58284 103.0 0.2 56609 39.0
R30 17 30 23 60739 109.7 90.0 446.0 57901 104.6 46.0 55347 47.5

Average 112.9 180.0 208.7 103.6 117.8 422.8

The results of the exact approach are quite stable in terms of quality when the number of clusters

is varied, as further illustrated by Figure 7 where the value of the optimal solution corresponding

to the different clustering patterns is reported. It can be observed that the solution value does not

worsen significantly when the size of the clusters increase. On the other hand when the cluster size

is relatively larger, solution compactness is greatly increased as shown by Figure 6 which shows an

example of the exact solution for the case labeled R08 (where each label is the cluster id associated

to a garbage collection point).

7. Conclusion

In this study, we have developed an integer programming formulation for the CluVRP, based

on a preprocessing algorithm that simplifies the problem structure. The preprocessing algorithm
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Figure 7 Solution value by varying the number of clusters.

Figure 8 Example of solution in the garbage collection application.

requires the solution of a quadratic number of small TSP instances, which were observed to be

within computational reach. The result of the preprocessing algorithm can be further utilized to

discard variables through an effective graph reduction scheme. Two exact algorithms are presented,

a Branch & Cut as well as a Branch & Cut & Price, into which the valid CVRP inequalities from
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the literature are incorporated. The results achieved by the Branch & Cut algorithm has been

extensively tested on test instances from literature benchmarks and on real-world data from a

garbage collection application. The Branch & Cut algorithm was observed to be capable of solving

large-sized instances within reasonable computing time and outperformed the results obtained by

alternative formulations not benefiting from the preprocessing algorithm and the graph reduction

scheme. As shown in our case study, the exact approaches proved able to produce solutions whose

quality is considerably superior with respect to commercial heuristics in relatively short comput-

ing times. Future research may be devoted to develop effective metaheuristic algorithms for the

CluVRP.
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