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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF BUSINESS AND LAW

Management School

Doctor of Philosophy

MODELS FOR PRODUCTION AND INVENTORY SYSTEMS FOR

DETERIORATING ITEMS WITH A SUPPLY-CHAIN PERSPECTIVE

by Yousef Ghiami

This thesis in the field of inventory management for deteriorating items studies the effects

of deterioration on optimal policies in inventory and production-inventory models. Four

different models are developed and analysed to address some of the gaps identified in this

part of the inventory management literature. The first two models have been studied

adopting the classic approach towards inventory modelling, where the holding cost is

assumed to be proportional to a known exogenous unit holding cost parameter. Taking

this approach, first a two-echelon (single-buyer, single-supplier) model is investigated in

which the capacity is considered to be limited. In this model also the exact inventory level

over time of the supplier is obtained whereas the literature to date has only considered

the average inventory level. As the analysis shows, this results in a complex model,

and therefore a heuristic is developed. In the second model, a single supplier, multiple

buyers system is developed where there is a (in)finite production rate. It has been

identified that the literature fails to calculate accurately the average inventory level of

the supplier in situations where the production rate is finite. In this model this issue

has been addressed, and further analysis reveals the significance of the more accurate

modelling approach developed.

The literature evaluates inventory models in different ways in terms of objective function.

A body of research is identified in the literature that assumes an equivalence between

profit maximisation and cost minimisation, and it often seems logical to discard rev-

enues and minimise the cost function. This equivalence, however, is not always easily

established when the objective function is to maximise the Net Present Value (NPV)

of the profit function. In the third model of this thesis, this equivalence is analysed in
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detail, and it is shown that taking a cost minimisation model instead of a profit max-

imisation objective in some cases should be done cautiously and in the best case only

adopted after establishing the relevant equivalence conditions using NPV Equivalence

Analysis (NPVEA). Finally, in a fourth model a two-echelon supply chain with capac-

ity constrains is developed using the NPV criterion. In this model a modification in

the inventory level is suggested which makes the model more practical compared to the

existing models in cases that the customers are serviced from the own warehouse.
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1.1 Overview

In the marketplace the goal for many businesses is to have their item/service available

with high quality when the demand arises. Failing to do so can result in not only

loss in profit that could have been gained by selling the item/service, but may also

damage the business’s reputation which indeed takes a long time to build up. On

the other hand, being able to completely meet the demand for the item/service could

impose a considerable level of capital tied up. With this regard, making reasonable

trade-offs between service level and tied up capital in businesses have always been a

challenge. These concerns and the relevant research works conducted by academics and

professionals, have shaped the concepts such as Inventory Management and in a more

holistic view, Logistics.

Increasing competition in the marketplace has made businesses seek any improvement

opportunity to secure their market share and even leave the competitors behind. Over

decades, competitiveness has resulted in the development of techniques and approaches

applied to different processes such as logistics, finance and purchasing (see Lambert

et al., 1998) within one organisation or firm. In these single-echelon systems, decisions

almost at all levels, from strategic to operational, have been made with little concern

about how they may affect the suppliers or the downstream business customers.

Later some leading companies took initiatives in areas such as logistics, procurement and

information systems that in a way involved other businesses (Ayers, 2006). Successful

results of these initiatives conceptualised Business Partnerships and Collaboration which

resulted in the emergence of the Supply Chain Management (SCM) concept. In the

literature the division between SCM and Logistics has been controversial. Lambert et al.

(1998), state the definition for logistics adopted by the Council of Logistics Management

as “. . . that part of the supply chain process that plans, implements, and controls the

efficient, effective flow and storage of goods, services, and related information from the

point-of-origin to the point-of-consumption in order to meet customers’ requirements”.

Cooper et al. (1997) and Lambert et al. (1998) introduce a conceptual framework for

SCM, and state that the implementation of SCM necessitates in addition to logistics

integration, the integration within business units and across their supply chain. This,

however, is not an easy task due to differences in priorities and conflicting objectives.

Despite the obstacles, some of the efforts towards collaboration and integration have
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been fruitful and resulted in the establishment of many multi-echelon systems in the

marketplace.

Ever since Harris (1913) developed the foundation of inventory management by pre-

senting the Economic Order Quantity (EOQ) model, researchers have strived to extend

to different inventory systems by fine-tuning certain assumptions in order to get closer

to real-world cases. In fact, the long history of research has shaped what inventory

management and its many subareas are. To get an overview of key literature, see Clark

(1972), Silver (1981), Belobaba (1987), Aksoy and Erenguc (1988), Porteus (1990), Lee

and Nahmias (1993), Drexl and Kimms (1997), Chan et al. (2004), and Andersson et al.

(2010).

The inventory management literature is largely based on the assumption that an item in

stock suffers no loss in quality. This, however, cannot hold in practice for many products.

A distinction can be made between an item with a constant quality but limited constant

life-time (Nahmias, 1975) and an item for which the quality gradually depletes over time

(Mak, 1982). Despite the minor variations, researchers define deterioration/perishability

in a similar way. Raafat (1991) defines deterioration as a process (of e.g. decay, damage,

spoilage, or evaporation) that results in loss of value in an item, hence a decrease in the

quality.

In order to address this characteristic, researchers started to incorporate deterioration in

modelling to get better interpretation of the relevant systems since the 1950s (Goyal and

Giri, 2001). The initial application for such models was to analyse blood-bank systems.

Later, other researchers strived to apply these models to different types of deteriorating

items. Raafat (1991) argues that over these years this view on inventory theory has

grown and found its place within other areas of research.

Goyal and Giri (2001) state that Ghare and Schrader (1963) are the first researchers

to model a deteriorating item with exponentially decaying pattern. In fact, the item

has an exponential life-time which due to the property of being memoryless results in a

constant rate of deterioration of on-hand inventory.

Yet, the area of study on deterioration has still a long way to go to reach the sophistica-

tion gained by the main stream of the inventory management literature. For instance,
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just recently a number of researchers started developing models which consider a multi-

echelon supply chain for a deteriorating item (see Bakker et al., 2012). This makes the

inventory management literature of deteriorating items an interesting area of research.

The literature of inventory management for deteriorating items characterises some fac-

tors that researchers make assumptions on while building up models. However as this

area is emerging, identifying clusters of studies in this field seems to be difficult. This has

resulted in numerous research works with a diverse set of assumptions in the literature.

1.2 Key factors in deteriorating item’s modelling

In order to give a clearer overview, here a categorisation of the literature is suggested.

The main criteria based on which the literature is categorised are the structure of the

supply chain and also the approach taken towards opportunity cost. This categorisation

identifies four subsets of the literature and makes a framework for this thesis, see also

Figure 1.1.

Figure 1.1: A categorisation in the deteriorating item literature

In each of these categories, researchers make assumptions on a group of factors to eval-

uate and analyse specific models. The key factors considered by the researchers are

further described in subsequent sections.
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1.2.1 Deterioration rate

The basic assumption in this literature is that the items lose value while kept in stock.

The pattern of deterioration is the factor that shows the distribution of the item’s life-

time.

Deterministic life-time: In some research works it is assumed that the quality of the

items stays unchanged for certain units of time (deterministic life-time) after which the

item is no longer usable and should be disposed of (see e.g. Bhunia and Maiti, 1998a,

Chern et al., 2008).

Stochastic life-time: The life-time for items is often assumed to be negative exponentially

distributed, see e.g. Liao et al. (2000), Chung and Huang (2007), and Yang et al. (2010a).

Ghare and Schrader (1963) show how this life-time distribution results in decaying of

a constant percentage of the on-hand inventory. Another life-time distribution which

has been widely used in this literature is Weibull pattern with two parameters. This

distribution could be more generic as by assigning different values to the parameters, the

rate of deterioration could be decreased or increased over the time, hence it is capable of

representing a wide range of items’ life-time distribution, see e.g. Wee and Law (2001)

and Skouri et al. (2009).

In this thesis, the models developed in Chapters 2, 3, and 5 assume the life-time of the

items to be based on a negative exponential distribution. In Chapter 4 a time-dependent

deterioration rate is considered of which a special case results in a life-time with Weibull

distribution.

1.2.2 Demand

The literature identifies two main streams of research regarding the demand pattern,

deterministic or stochastic.

Deterministic demand: The literature of deteriorating items, identifies mainly four types

of deterministic demand, namely; constant rate, time-dependent, price-dependent, and

stock-dependent.

A large part of the literature considers a constant rate for demand, see e.g. Mak (1982),

Abad (2000), and Ouyang et al. (2009). In some research works, it is assumed that the
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demand is time-dependent. This could be the case for the grocery retailing industry

where the demand for some items varies in different weekdays, see e.g. Chang and Dye

(1999) and Lee and Hsu (2009). The model analysed in Chapter 3 of this thesis is

assumed to have a constant rate for demand.

In another group of studies, the demand factor is considered to be ramp type which is a

combination of constant rate and time-dependent demand. This type of function divides

the planning horizon into two or more intervals and considers different constant rates

of demand in each interval (see e.g. Manna and Chaudhuri, 2006; Panda et al., 2008;

Skouri et al., 2009; Agrawal et al., 2013). This demand pattern could be applicable to a

new consumer good which is being introduced to the market. The demand for this new

product is low at the beginning while it may increase in a stepwise pattern over time.

For the case of price-elastic items, where the demand is influenced by the price, a body

of research suggests a price-dependent demand function, see e.g. Yang (2004b) and Dye

et al. (2007b). This demand function is assumed for the model developed in Chapter 4.

A subset of the literature argues that the demand for some products can be influenced by

the amount of the product presented on shelves. To capture this demand pattern, it is

suggested to assume a stock-dependent demand function, see e.g. Mandal and Phaujdar

(1989), Giri et al. (1996), and Hou (2006). This pattern is adopted for the demand in

the models developed in Chapters 2 and 5.

Stochastic demand: The literature of deteriorating items with stochastic demand has

not been addressed as extensively as the deterministic demand literature. There are

a few research works in which the demand is stochastic, however, identifying clusters

of research seems to be difficult. A few researchers assume Poisson distribution for the

demand function (see e.g. Ravichandran, 1995; Liu and Yang, 1999; Olsson and Tydesjö,

2010). A group of researchers studies models that respect Markov properties, see e.g.

Cohen (1976), Manuel et al. (2008), and Lian et al. (2009).

1.2.3 Lead-time

Two main streams of research are identified in the literature regarding lead-times, de-

terministic or stochastic. It is noted that occasionally a fuzzy lead-time is adopted to

model an inventory system, see e.g. Rong et al. (2008).
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Deterministic lead-time: In most of models with deterministic lead-time, this factor is

assumed to be zero which means that any placed order is replenished instantly (see e.g.

Bose et al., 1995; Chen, 1998; Papachristos and Skouri, 2003; Min and Zhou, 2009).

A group of research works is conducted assuming a positive lead-time for orders to be

replenished (see e.g. Giri et al., 1996; Yang, 2004b; Chung and Huang, 2007; Yang et al.,

2010b), however, this assumption may have a limited influence on the results as these

studies are conducted with a classic approach. This could no longer be true in an NPV

framework, but few studies to date has addressed this case.

Stochastic lead-time: This assumption has drawn little attention in the literature, al-

though in some cases it seems to be more realistic to consider a stochastic time factor

between order placement and replenishment as there may be randomness in both produc-

tion and transportation activities, see e.g. Ravichandran (1995), Liu and Yang (1999),

and Manuel et al. (2008).

In all the models developed in this thesis, the lead-time is assumed to be negligible.

1.2.4 Shortages

Depending on the product characteristics, customer loyalty and brand image, businesses

adopt different policies regarding shortages.

A body of research has addressed the case that shortages are not allowed, see e.g. Wee

(1998), Wang and Chen (2001), Teng and Chang (2005), Chung and Huang (2007), Liao

(2007), and Yang et al. (2010b).

For the case when shortages are allowed, the unmet demand could be either lost, partially

backlogged or completely backlogged. A cluster of research works has been based on

the assumption of lost sale such as Burnetas and Smith (2000), Chatwin (2000), Lu

et al. (2008), and Broekmeulen and Donselaar (2009), while a large number of studies

on deteriorating items have considered complete backlogging in case of shortages, see e.g.

Cohen (1976), Mak (1982), Sarker et al. (1997), Chung and Lin (2001), and Olsson and

Tydesjö (2010).

Wee (1993) argues that although the literature has mainly considered either complete

backlogging or lost sale when shortages occur, in most cases in real-world problems the

demand is partially backlogged. Chang and Dye (1999), Moon et al. (2005), Yang (2005),
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Law and Wee (2006), and Yang and Chang (2013) are of those examples who consider

partial backlogging in their models. Apart from Chapter 3 in which shortages are not

allowed, in all the other models studied in this thesis in case of shortages it is assumed

that the demand is partially backlogged.

1.2.5 Warehouse capacity

Most of the studies in the area of inventory management for deteriorating products

assume no limit for warehouse capacity, see e.g. Raafat et al. (1991), Mandal and

Maiti (1999), Balkhi and Benkherouf (2004), Dye and Ouyang (2005), and Pal et al.

(2006). However, disregarding capacity limits of a warehouse in some real cases may

lead to infeasible solutions. Capacity constraint is assumed to model systems analysed

in Chapters 3 and 4.

In order to model some practical situations, a group of research works is conducted

based on the assumption of capacity constraint for a warehouse. These studies also

assume that if the capacity of the owned warehouse (OW) is insufficient, the company

has the option of using a rented warehouse (RW). This assumption has resulted in the

emergence of a new category of studies which are known as two-warehouse models, see

e.g. Yang (2006), Hsieh et al. (2008), Singh et al. (2009), Lee and Hsu (2009), and

Agrawal et al. (2013). The inventory systems studied in Chapters 2 and 5 are assumed

to have a limited warehouse capacity.

1.2.6 Review policy

Another key factor in modelling an inventory system is how the system is monitored.

There are two main policies for reviewing the inventory level, namely continuous and

periodic.

Continuous review: This policy is mainly used for high value products that according

to their price, keeping them in stock is highly expensive. This policy may also be

used for the cases that suppliers are highly flexible with timing and order quantity.

There are a number of researchers who adopt the continuous review policy considering

the characteristics of the system, see e.g. Mandal and Phaujdar (1989), Ravichandran

(1995), Chen (1998), Liu and Yang (1999), Manuel et al. (2007), and Olsson and Tydesjö

(2010).
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Periodic review: In some real-world problems, companies may prefer to have fixed in-

ventory/production cycles due to high cost of continuous review. The majority of re-

searchers have developed models with a periodic review policy for deteriorating items,

see e.g. Mak (1982), Sarker et al. (1997), Yang (2004a), Ouyang et al. (2005), Liao

(2007), and Yang and Chang (2013). In all the models analysed in this thesis, it is

assumed that the inventory level is reviewed periodically.

1.3 Supply chain structure

A supply chain represents all the stages at which value is added to a (semi-) manu-

factured product, including the supply of raw materials and intermediate components,

finished-goods manufacture, packaging, transportation, warehousing, and logistics (Hall

and Potts, 2003). Considering this characteristic of the systems studied, one can divide

the literature into two main groups in terms of the structure of the supply chain, namely

single-echelon and multi-echelon supply chains.

1.3.1 Single-echelon supply chains

The inventory management theory was founded to address stock-related issues within

company boundaries. There are numerous studies to optimise production-inventory pro-

cesses in a single-echelon model as an independent entity. The absence of a supply chain

concept was not an issue as businesses could still enjoy high margins by optimising their

processes independently (Lummus and Vokurka, 1999). Although taking a single-echelon

scope in modelling an inventory system makes it difficult to associate the outcomes to

some current real-world situations, it is a base for incrementally building realistic mod-

els. This scope of research is still dominating the literature, however, the multi-echelon

models are emerging.

In this thesis, this scope of modelling is adopted in Chapter 4 where the aim is to initiate

and analyse a basic and fundamental concept which has not been addressed properly in

the literature.
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1.3.2 Multi-echelon supply chains

As the competition has become more fierce and severe, companies have to think of

solutions to sustain competitive advantage in their businesses. Lummus and Vokurka

(1999) argue that since the 1980s companies started to incorporate the concept of supply

chain management by going beyond their business’s boundaries through collaboration

with other actors in their supply chain.

Integration in supply chains has been investigated in different ways and levels. Power

(2005) indicates that the process of integration in a supply chain is typically a strategic

partnership and can only be based on a solid infrastructure of information flows and

collaborative arrangements. Only after building up close and long-term partnership, the

integration in the supply chain can be implemented at tactical and operational levels.

In this thesis (see Chapters 2, 3, and 5) we look into supply chain integration practices in

an operational level where an strategic partnership between partners is well-established.

1.4 Approaches towards opportunity cost

Inventory management is a well-developed area of research. The fundamental property

of inventory models is that they seek for the optimal trade-off between inventory holding

costs and other costs. The next question would be how to accurately capture, value,

and compare these costs.

In order to make an investment, a firm should compare all available alternatives and

make sure that it chooses the one which gives the highest return on the investment. Only

in this case will the investors be certain that they are going to make the best out of

their capital. Brealey and Myers (2003) argue that the next best investment alternative

could be a suitable measurement for the opportunity cost of capital. With this regard,

the capital rate of the next best available option can be used to put a cost on any stock

held.

The literature captures the opportunity cost of capital by means of either the Classic or

the Net Present Value approach.
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1.4.1 Classic models

Harris (1913) introduced the EOQ model mainly on the basis of trade-offs between

inventory holding cost and other types of costs in a system. Classic models characterise

holding costs as the average cost of stock during an inventory cycle of length T , using a

unit holding cost h that represents the cost per stock keeping unit per unit of time, and

is often assumed to be a known exogenous and constant parameter. In order to capture

the opportunity cost of capital, Silver et al. (1998) define h as follows:

h = αv + f, (1.1)

where α represents the rate for opportunity cost of capital, v is the money invested per

unit of item kept in stock, and f is unit out-of-pocket holding cost. The average holding

cost of the system is hence given by:

E(H) =
h

T

∫ T

0
I(t)dt = hE(I) (1.2)

where I(t) is the inventory level at time t.

Chapters 2 and 3 of this thesis are conducted taking the classic approach towards in-

ventory.

The classic approach is thought to result in fairly accurate solutions in cases that either

the opportunity cost of capital is very low or else, that T remains small. If these

conditions do not hold then taking a classic approach may cause some classic models

not to be an accurate representation of the system. In these cases, one can increase the

model’s accuracy by accounting for cash-flows and the time they take place.

1.4.2 Net Present Value approach

The objective of inventory (production-inventory) systems in an economic context is

arguably to either minimise the total cost or maximise the total profit of future cash-

flows. With this regard, the decision makers should be able to evaluate the real value of

different costs. In a group of research works it is proven that some classic models are not

accurately accounting for the impact of the opportunity cost of capital on the profits of
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the firm(s), see e.g. Teunter and van der Laan (2002) and Beullens and Janssens (2011,

2013). These researchers assume a discounted cash-flow using a discounting rate which

represents the opportunity cost of capital.

In some cases the classic approach falls short to capture the real values of costs and

revenues as it is not sensitive to the time that they occur. In order to circumvent the

use of (1.2), the net present value (NPV) approach suggests developing profit functions

for each party starting from a principle which is valuing cash-flows as they occur.

Considering a capital rate α ≥ 0, the NPV approach allows for the exact characterisation

of cost parameters (unit holding, lost sale, backorder, and deterioration costs) used in

the classic approach. As an example, in order to value cash-flow hI(t) (this could

represent an out-of-pocket holding cost which is a function of I(t), on-hand inventory),

NPV approach discounts the costs as they are incurred using discounting rate α:

NPV (H) =

∫ ∞
0

hI(t)e−αtdt (1.3)

The fact that the NPV approach values the costs and the revenues based on the time

they take place, enables this approach to precisely measure the values that are put in

inventory and also the revenues that are created, hence the capital cost of the system.

As the classic approach is not capable of valuing this capital cost, in the literature a

value is assigned (see Brealey and Myers, 2003) to capture the capital tied over time.

Regarding these shortcomings of the classic approach, Grubbström (1980) shows that in

some situations taking the NPV approach to evaluate inventories and work-in-progress

results in more accurate measures of their capital cost.

The models in Chapters 4 and 5 adopt the NPV approach where a discounted cash-flow

of future costs and revenues is optimised.

1.5 Structure of the thesis

The main focus of this thesis is the analysis of novel inventory and production-inventory

models for deteriorating items. As some of the models developed in the literature of

deteriorating items are by far simpler than real-world problems, in this thesis the aim is

to relax some of the existing assumptions in order to take a few steps towards real cases.
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This thesis follows a paper-based approach. Table 1.1 lists the research papers that have

been conducted as part of the thesis.

Table 1.1: List of research papers of this thesis

Chapter of the thesis Publication

Chapter 2 “A Two-echelon Inventory Model for a Deteriorating Item with
Stock-dependent Demand, Partial Backlogging and Capacity
Constraints”, Ghiami et al. (2013)

Chapter 3 “A Two-echelon Production-Inventory Model for Deteriorating
Items with Multiple Buyers”, Ghiami and Williams (2013)

Chapter 4 “Net Present Value Equivalence Analysis for an Inventory of
a Deteriorating Item with Partial Backlogging and Finite
Production Rate”, Ghiami and Beullens (2013)

Chapter 5 “A Net Present Value Model for a Two-echelon System of a
Deteriorating Item with Capacity Constraints”,
Beullens and Ghiami (2013)

Chapter 2, analyses a two-echelon inventory model for a deteriorating item with limited

capacity taking a classic inventory modelling approach. The supply chain in this model

includes one wholesaler and one retailer. The demand rate at the retailer is stock-

dependent and shortages are partially backlogged. The supply chain is optimised both

with independent and integrated approach and the results are compared. In order to

numerically analyse the model a heuristic is developed.

Chapter 3, studies a two-echelon production-inventory model with the classic approach,

evaluates the exact inventory level of the supplier, and compares the results with the

existing models from the literature. The supply chain in this model consists of single-

manufacturer and multiple-buyers. The demand at the retailer is constant and the

shortages are not allowed.

Chapter 4, develops a single-echelon production-inventory model with the net present

value approach and a profit maximisation objective function. The study compares the

model with cost minimisation models in the literature and seeks for the relevant equiv-

alence conditions.

Chapter 5, investigates a similar model as in Chapter 2 with the net present value

approach and a modification in the inventory level assumptions with a more practical

viewpoint.
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Finally, Chapter 6, summarises the contribution of all these research works. It also

presents the limitations of this thesis work and suggests directions for future research.



Chapter 2

A Two-echelon Inventory Model

for a Deteriorating Item with

Stock-dependent Demand, Partial

Backlogging and Capacity

Constraints
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Chapter 2 A Two-echelon Inventory Model for a Deteriorating Item with
Stock-dependent Demand, Partial Backlogging and Capacity Constraints

Abstract

This study investigates a two-echelon supply chain model for deteriorating inventory in

which the retailer’s warehouse has a limited capacity. The system includes one wholesaler

and one retailer and aims to minimise the total cost. The demand rate seen by the retailer

is stock-dependent and in case of any shortages, the demand is partially backlogged.

The warehouse capacity in the retailer (OW) is limited, therefore, the retailer can rent

a warehouse (RW) if needed, with a higher cost compared to the OW. The optimisation

is done with both independent and integrated approach. In order to solve the problem a

genetic algorithm is devised. After developing a heuristic, a numerical example together

with sensitivity analysis are presented.

2.1 Introduction and literature review

In the classic inventory model for deteriorating products it is usually assumed that the

warehouse has no limits in the capacity. However, in real-life problems the situation

could be different. There are a number of factors which influence the optimal solution

in different ways. Sometimes these factors may suggest retailers to buy more than their

own warehouse (OW) capacity. In these situations, the retailers can benefit from a

rented warehouse (RW).

Another assumption that can greatly influence the optimal policies is to take a supply

chain perspective when analysing inventory models. In multi-echelon inventory models,

actors try to integrate their businesses in order to improve the overall performance of the

system (e.g. higher service level, higher profit, or lower cost). Implementing such inte-

grated models, however, remains challenging especially when the actors are independent

businesses and should collaborate closely (see Fawcett and Magnan, 2002; Power, 2005).

In such cases apart from close collaboration between players in the supply chain, there

should be a fair mechanism to distribute the incentives between the actors to encourage

the integration. Prajogo and Olhager (2012) argue that establishing any mechanisms

for supply chain integration is only possible if there is a long-term relationship between

the supply chain partners.

To date, very few studies on deteriorating inventory in two-echelon systems have been

carried out (see Nahmias, 1982; Raafat, 1991; Goyal and Giri, 2001; Li et al., 2010 and
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Bakker et al., 2012). One can argue that deteriorating product literature is still in its

infancy and has a long way to go compared to the maturity acquired by general product

literature related to supply chains.

As Cohen (1976) notes, Zyl (1964) is one of the first researchers who addresses de-

teriorating inventory. Zyl (1964) considers a perishable product with fixed life-time.

Cohen (1976) develops a model for a deteriorating item with m-period life-time. In this

single echelon model, the demand is stochastic and any shortages are completely back-

logged. Mak (1982) considers the same set of assumptions with constant rate of demand.

The researcher chooses continuous variables and analyses the system using differential

equations, which is the most popular analytical approach in analysing a deteriorating

product’s inventory level.

When working on models for deteriorating items, researchers consider specific factors

based on which they make assumptions. The main factors considered in developing new

models include demand pattern, lead-time, deterioration rate, shortages, supply chain

structure, reviewing policy, system type (inventory versus production-inventory) and

warehouse capacity, see Chapter 1.

The definition of the deteriorating item includes a wide spectrum of products such as

food, fruit, blood, flower, medicine and clothes. The demand for these deteriorating

items therefore varies depending on the product characteristics and the consumption

pattern followed by customers. A large group of researchers considers a constant rate

for demand, see Mak (1982), Wee (1993, 1998), Chung et al. (1997), Abad (2000), Yang

and Wee (2000), Rau et al. (2003), Dye et al. (2007b), Ouyang et al. (2009), and Yan

et al. (2011).

Bhunia and Maiti (1998b), Chung and Tsai (2001), Moon et al. (2005), Yang (2005),

and Lee and Hsu (2009) assume the demand to be time-dependent. Examples for appli-

cation of time-dependent demand can be seen in the grocery retailing industry where the

demand for some items varies across weekdays. Another example is clothing industry in

which seasonality changes the demand level in different seasons. Wu and Ouyang (2000)

and Manna and Chaudhuri (2006) develop models with ramp-type demand which is a

combination of constant rate and time-dependent demand. One example for this de-

mand pattern is when a new consumer good is introduced to the market. The demand

for this new product (in case of success) increases as the time passes, before it may

converge to a specific constant level (Wu and Ouyang, 2000).
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Some products are price-elastic, which means that by changing the price of the product,

the demand will change, however, the elasticity may vary from one product group to

another. Yang (2004a) and Dye (2007) explore systems with price-dependent demand.

Changes in demand over different periods mean that retailers that would follow the

changes in demand by storing inventory or changing inventory policies frequently may

have excessive order costs in their supply chain, in particular if the demand fluctuations

are large. Hence, they strive to benefit from the elasticity of demand and influence the

demand pattern to minimise their supply chain cost.

Hou (2006) discusses that for some products such as consumer goods the demand may

be influenced by the amount of the product displayed on shelves. With this regard a

group of researchers have considered stock-dependent demand in their research such as

Mandal and Phaujdar (1989), Giri et al. (1996), and Hou (2006). Similar to the case of

price-dependent demand, retailers use this characteristic to stimulate the demand rate

for a product by displaying a large amount of that item on shelves. Therefore they can

increase their sale on the product, which may further result in lower cost.

Researchers make different assumptions regarding policies on shortages when considering

the product and market characteristics. Liao (2007) and Yang et al. (2010b) develop

models where shortages are not allowed. This is a critical assumption when developing

a blood bank model or optimising a distribution system for a group of pharmaceuticals.

In this type of models, service level is the objective function rather than cost or benefit

as these products are connected to health issues.

For some products when a retailer is out of stock, the demand is lost which means the

customer finds the item or a similar one in another store. Hsu (2000) and Lu et al.

(2008) study models in which any shortages are lost. This case may happen when there

are similar products in the market and differences are negligible such as milk or bread

that can be found in every grocery shop.

Sometimes customers tend to wait or have to wait for inventory replenishment in case of

shortages. The reason for this can be a specific characteristic, for example the outstand-

ing quality of the product (such as a special type of cheese) or the limited availability of

the product elsewhere. Some researchers such as Yang (2004b) and Olsson and Tydesjö

(2010) study systems with shortages and consider that any unmet demand is backlogged.
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Yang (2005), Law and Wee (2006) and Dye (2007) challenge the last two groups of re-

search and discuss that most of the time the situation lies somewhere in between, where

the unsatisfied demand is partially backlogged.

When analysing inventory models for deteriorating items, researchers have mainly con-

sidered single-echelon systems and have strived for optimising models from a single

business point-of-view. In recent years, however the supply chain perspective for deteri-

orating items has gained more attention. Even though developing logistics models with

a supply chain perspective makes the models perform better, implementing these models

is complicated and requires collaboration between the supply chain members. Yang and

Wee (2000) and Yang et al. (2010a) develop an inventory model for a two-echelon sys-

tem with constant rate for demand and deterioration in which shortages are not allowed.

Yan et al. (2011) develop a similar model with a difference in input pattern as the model

is a production-inventory system. Yang (2004b) studies a two-echelon inventory model,

similar to the above mentioned models, in which the demand is a function of price and

the lead-time is constant. Another important feature of this study is the influence of

the time value of money which is taken into account. Law and Wee (2006) and Lo

et al. (2007) investigate a two-echelon system with partial backlogging, two-parameter

deterioration rate and constant rate of demand. The former research is conducted al-

lowing for permissible delays in payment while the latter considers inflation rate in its

calculations. Zanoni and Zavanella (2007) study a two-echelon system for determining

optimal inventory policies with constant rate of demand and no shortages. In this model

the perishable product has a constant life-time.

In most of the studies, researchers consider no limit for the capacity of a warehouse. This

however, can be an important issue in a real-world situation. Sarma (1987) was first to

develop a model while assuming a limited capacity for the owned warehouse (OW). In

this model extra capacity can be obtained by renting additional warehouse space (RW).

Yang (2004a) studies an inventory system with limited capacity. The demand rate is

constant and any shortages are completely backlogged. The item’s life-time is based on

an exponential function (constant rate of on-hand inventory is deteriorated). In another

study, Yang (2006) develops a similar model with partial backlogging. Wee et al. (2005)

investigate a model with partial backlogging in which the product life-time is based on

a two-parameter Weibull distribution. Pal et al. (2005) explore a deteriorating item

with a two-warehouse system in which the demand is time-dependent and shortages are

partially backlogged. Lee (2006) develops a production-inventory model in which the
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inventory level is increased by a finite production rate disregarding the effects of inflation.

The other assumptions in this model are similar to the research done by Yang (2004a).

Chung and Huang (2007) study an inventory model with no shortages, and permissible

delays in payments are assumed. Hsieh et al. (2008) study an inventory system similar to

Yang (2004a) and optimise the model taking a net present value approach. Rong et al.

(2008) consider an inventory model with fuzzy lead-time and complete backlogging in

which the demand is connected to price. Singh et al. (2009) explore a two-warehouse

model with complete backlogging and time-dependent demand. This model is analysed

and optimised considering permissible delays in payments. Lee and Hsu (2009) develop

a production-inventory model with time-dependent demand and no shortages. Gayen

and Pal (2009) analyse an inventory model in which shortages are not allowed and the

demand is stock-dependent. Liao and Huang (2010) investigate a similar model to Chung

and Huang (2007) by adopting a different approach. One can find many examples where

a retailer needs to rent a warehouse. A new business on high street where space is very

expensive can be one example. In such case the retailer uses the space to display the

items and moves the warehousing processes to less costly areas. Only after securing a

high demand level, the retailer would think about owning a warehouse as a strategic

decision if feasible.

Almost in all the deterministic studies on deteriorating items, the objective function is

to either maximise the profit or minimise the cost. In stochastic models however there

are models with an objective function on service level. Surveys of deteriorating item

models are given in Nahmias (1982), Raafat (1991), Goyal and Giri (2001), Li et al.

(2010), and Bakker et al. (2012).

All the two-warehouse inventory models are based on a single company’s point of view

and they fall short of taking an overall supply chain perspective. In this study we consider

a two-echelon system consisting of a wholesaler and a retailer in which there is a limit in

the retailer’s warehouse capacity. The demand is considered to be stock-dependent and

the product is deteriorated with a constant rate. An analytical model is developed based

on the above mentioned assumptions and the costs incurred by retailer and wholesaler

are analysed. Using this optimisation model, the optimal inventory policies for both

actors in this two-echelon system are obtained. In order to solve the problem a heuristic

method is developed.
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2.2 Model description

In this chapter a two-echelon system is considered that delivers a deteriorating item to

the end customer. This system consists of one wholesaler and one retailer. The item is

supplied to the retailer solely by the mentioned supplier and in the same way the retailer

is the only downstream actor to which the deteriorating item is sent. The product has

exponential life-time which means there is a constant rate for deterioration. The lead

time for both retailer and wholesaler is zero. Shortages are allowed at the retailing level

and are partially backlogged while this is not allowed at the wholesaler level.

The retailer has a capacity of W at the OW which is limited; therefore, if the order

quantity exceeds this capacity, the retailer rents a temporary warehouse which has higher

carrying costs and unlimited capacity. In the case that the retailer uses a RW, the

consumption of goods from the OW starts only after the inventory at the RW is depleted

at t = tr (see also Figure 2.1). The inventory level at the OW reaches zero at t = to,

and from this time to the end of the inventory period (t = TR), shortages occur and

are partially backlogged until the next replenishment. The wholesaler has unlimited

warehouse capacity. During one inventory period at the wholesaler (TW ), k inventory

cycles of the retailer are covered (TW = kTR). The deteriorated items cannot be repaired

or replaced. This model is an inventory system with fixed inventory period and order

quantity and the optimal solution will specify how much and how often the members

of this supply chain should order. The total cost of the system consists of purchasing,

holding and deterioration cost for both members and shortage cost for the retailer.

Purchasing cost for both members is a linear function of their order quantity including

the replenishment cost. The unit deterioration cost and the unit holding cost per unit

of time are constant. The unit lost sale cost and the unit shortage cost per unit of time

for the backlogged demand are also constant.

The demand arises at the retailer at the rate of D(t) = y + zIo(t) where y and z are

constants and Io(t) represents the inventory level at the OW. Considering the capacity

of the warehouse at the retailer, after receiving an order quantity (QR), the first W

items are stored at the OW and the rest are put in the RW. In the next section the

inventory level and the cost functions at the retailer and the wholesaler are discussed in

detail.
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2.3 Mathematical model

2.3.1 Inventory level at the retailer (OW and RW)

At the RW the inventory level is depleted due to the deterioration and the demand rate.

The following differential equation presents the changes of this level between t = 0 and

t = tr:

dIr(t)

dt
= −zIo(t)− y − θrIr(t), 0 ≤ t ≤ tr. (2.1)

While the retailer is using the inventory at the RW to meet the demand, the inventory

level at the OW goes down with a constant rate (θo) due to the deterioration. The

following differential equation shows the changes of the inventory level at the OW:

dIo(t)

dt
= −θoIo(t), 0 ≤ t ≤ tr. (2.2)

At t = tr the inventory at the RW reaches zero, therefore the retailer starts using the

OW to meet the demand. The inventory level at the OW decreases due to the demand

and deterioration until the retailer runs out of stock at t = to. This change in the

inventory level is presented as follows:

dIo(t)

dt
= −zIo(t)− y − θoIo(t), tr ≤ t ≤ to. (2.3)

At t = to the out-of-stock period starts and lasts until t = TR. During this shortage

period the unmet demand is partially backlogged. The following differential equation

shows the change in the shortage level:

dB(t)

dt
= βy, to ≤ t ≤ TR. (2.4)

All the changes of inventory level at the RW and the OW are depicted graphically in

Figure 2.1.

In order to solve the presented differential equations, the following boundary conditions

should be considered:

Io(0) = W, (2.5)
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Figure 2.1: The inventory level at the retailer (the RW and the OW)

Io(to) = 0, (2.6)

and

Ir(tr) = 0. (2.7)

By solving the differential equations in (2.1)-(2.4), the inventory and shortage levels at

the OW and the RW are obtained:

Ir(t) =
y

θr
(eθr(tr−t) − 1) +

zWe−θot

θr − θo
(e(θr−θo)(tr−t) − 1), 0 ≤ t ≤ tr, (2.8)

Io(t) = We−θot, 0 ≤ t ≤ tr, (2.9)

Io(t) =
y

z + θo
(e(z+θo)(to−t) − 1), tr ≤ t ≤ to, (2.10)

and

B(t) = βy(t− to), to ≤ t ≤ TR. (2.11)

The inventory level at the OW at t = tr obtained from (2.9) and (2.10) is unique,

therefore to is a function of tr:

to = tr +
1

z + θo
ln

(
1 +

z + θo
y

We−θotr
)
. (2.12)
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This means:

TR = tr +
1

z + θo
ln

(
1 +

z + θo
y

We−θotr
)

+ ts. (2.13)

The order quantity for the retailer is the sum of the initial inventory level at the RW

and the OW and the total backlogged demand during one inventory period:

QR =
y

θr
(eθrtr − 1) +

zW

θr − θo
(e(θr−θo)tr − 1) +W + βyts. (2.14)

As shown in (2.13) and (2.14), the inventory policies at the retailer are functions of tr

and ts.

2.3.2 Inventory level at the wholesaler

The inventory policies for the wholesaler are QW and TW . If it is assumed that TW is

a multiplication of TR (TW = kTR), then k should be an integer. If k is not an integer,

it means that the wholesaler receives a new batch in their warehouse while there is no

demand for new replenishment from the retailer as the retailer still has some items at

stock hence not willing to order yet until the end of its inventory period. This means for

that fraction of TR, the wholesaler is carrying inventory and bearing deterioration costs

which are not needed until the end of the retailer inventory period. Thus, k should be

an integer.

The items held at the wholesaler during one inventory cycle, TW , is to cover k inventory

cycles of the retailer, TW = kTR. This means after each period of TR the wholesaler

sends a batch of QR to the retailer. Therefore, one inventory cycle at the wholesaler

consists of k intervals. During each of these intervals the inventory level at the wholesaler

is depleted only due to deterioration. The following differential equation shows how the

inventory level changes over interval i:

dIiW (t)

dt
= −θIiW (t), i = 1, 2, . . . k − 1. (2.15)

The order quantity for the wholesaler is equal to the inventory needed for k periods at

the retailer, plus the amount of deterioration during the wholesaler inventory cycle. The
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Figure 2.2: The inventory level at the wholesaler

order quantity of the wholesaler is then given by:

QW = kQR +QD, (2.16)

where QD is the number of deteriorated items over one inventory period at the whole-

saler.

Figure 2.2 illustrates the inventory level at the wholesaler. It is noted that the inventory

level at the wholesaler at t = (k− 1)TR just before sending the last batch to the retailer

should be QR. This can be used as a boundary condition for the inventory level during

the interval between (k − 2)TR and (k − 1)TR:

Ik−1W (t) = QRe
θ[(k−1)TR−t], (k − 2)TR ≤ t ≤ (k − 1)TR. (2.17)

According to (2.17), the inventory level at the wholesaler at t = (k − 2)TR, just before

sending a batch to the retailer is QR(eθTR + 1). Using this inventory level as a boundary

condition, the inventory level of the (k − 2)th interval is:

Ik−2W (t) = QR(eθTR + 1)eθ[(k−2)TR−t], (k − 3)TR ≤ t ≤ (k − 2)TR. (2.18)
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The inventory level at the wholesaler during ith interval, hence, is given by:

IiW (t) =QRe
θ(iTR−t)

k−i−1∑
m=0

emθTR

=QRe
θ(iTR−t) e

θ(k−i)TR − 1

eθTR − 1
, (i− 1)TR ≤ t ≤ iTR, i = 1, 2, ..., k − 1.

(2.19)

Using (2.19), one can find the inventory level at the wholesaler at t = 0 just after sending

the first batch to the retailer:

I1W (0) = QR
ekθTR − eθTR
eθTR − 1

, (2.20)

and therefore the wholesaler order quantity is given by:

QW =I1W (0) +QR

=QR
ekθTR − 1

eθTR − 1
.

(2.21)

Using (2.16) and (2.21), the total number of deteriorated items at the wholesaler over

one inventory cycle is obtained:

QD = QR

(
ekθTR − 1

eθTR − 1
− k
)
. (2.22)

As shown in this section, the inventory policies at the wholesaler are functions of the

retailer inventory policy hence tr and ts. In the next section, the cost functions are

analysed.

2.3.3 Cost functions at the retailer

The retailer has five types of cost; purchasing, carrying, deterioration, shortage and lost

sale costs. The retailer has to pay sR as the purchasing fixed cost when placing an order.

The item price for the retailer is pR, therefore the purchasing cost for the retailer in each

inventory cycle is:

PCR = sR + pRQR. (2.23)
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The retailer incurs an inventory holding cost at the rate (per item per unit of time) of

fr and fo for the items kept at the RW and the OW respectively:

HCRW =fr

∫ tr

0
Ir(t)dt

=
frzWe−θotr

θr − θo

[
1

θr
(eθrtr − 1)− 1

θo
(eθotr − 1)

]
+
fry

θr

[
1

θr
(eθrtr − 1)− tr

]
,

(2.24)

and

HCOW =fo

∫ tr

0
Io(t)dt+ fo

∫ to

tr

Io(t)dt

=
foW

θo
(1− e−θotr) +

foy

z + θo

[
1

z + θo
(e(z+θo)(to−tr) − 1)− (to − tr)

]
.

(2.25)

Considering (2.24) and (2.25), the total inventory carrying cost at the retailer during

one inventory period is as follows:

HCR = HCRW +HCOW . (2.26)

It is assumed each item that deteriorates, cost its purchasing price. Therefore, consider-

ing inventory levels at the RW and the OW presented in (2.8)-(2.10), the deterioration

cost at the RW and the OW are given by:

DCRW =pR

∫ tr

0
θrIr(t)dt

=
pRθrzWe−θotr

θr − θo

[
1

θr
(eθrtr − 1)− 1

θo
(eθotr − 1)

]
+ pRy

[
1

θr
(eθrtr − 1)− tr

]
,

(2.27)

and

DCOW =pR

∫ tr

0
θoIo(t)dt+ pR

∫ to

tr

θoIo(t)dt

=pRW (1− e−θotr) +
pRθoy

z + θo

[
1

z + θo
(e(z+θo)(to−tr) − 1)− (to − tr)

]
,

(2.28)

hence, the deterioration cost at the retailer in one inventory cycle is:

DCR = DCRW +DCOW . (2.29)

During the shortage period, the demand is partially backlogged which results in two
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types of cost; backlogging cost (b) which is per item that is backlogged per unit of time

and lost sale cost (π) which is incurred per unit of demand which is lost. Therefore the

shortage cost and lost sale cost at the retailer during one inventory cycle are:

BCR =

∫ TR

to

bβy(t− to)dt

=
1

2
bβyt2s,

(2.30)

and

LCR =

∫ TR

to

π(1− β)ydt

=π(1− β)yts,

(2.31)

respectively.

2.3.4 Cost functions at the wholesaler

There are three different types of cost at the wholesaler; purchasing, inventory carrying

and deterioration cost.

There is a fixed cost sW for the wholesaler when placing an order at the beginning of

each inventory cycle and the the item price is pW . With this regard the purchasing cost

for each period at the wholesaler is:

PCW = sW + pWQW . (2.32)

The inventory incurs a holding cost at the rate of f at the wholesaler. Using (2.19), the

inventory carrying cost for the wholesaler during the ith interval is:

HCiW =

∫ iTR

(i−1)TR
fIiW (t)dt

=
fQR
θ

(eθ(k−i)TR − 1),

(2.33)

therefore the holding cost at the wholesaler over one inventory period is given by:

HCW =

k−1∑
i=1

HCiW

=
fQR
θ

(
eθkTR − 1

eθTR − 1
− k
)
.

(2.34)
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In a similar way, the deterioration cost over one inventory cycle at the wholesaler can

be obtained. It should be noted that each item costs pW when deteriorates:

DCW = pWQR

(
eθkTR − 1

eθTR − 1
− k
)
, (2.35)

which can also be obtained using (2.22).

Considering the costs incurred at the retailer and the wholesaler, the average total cost

of the supply chain is given by:

TCSC =
1

TR
(PCR +HCR +DCR +BCR +LCR) +

1

TW
(PCW +HCW +DCW ) (2.36)

which is a function of ts, tr and k. Therefore the cost minimisation problem is:

Min TCSC(tr, ts, k)

Subject to tr, ts > 0, k ∈ {1, 2, . . . }.
(2.37)

In the next section a solution method is developed and analysed.

2.4 Optimisation

In order to solve problem (2.37), enumeration can be used as k cannot take a very large

value. In this case the problem can be solved for different values of k (e.g. 1, 2, ...

30) and the best optimal solution and the relevant k can be considered as the optimal

solution for the problem. Appendix A presents an analytical solution for this problem.

This method however can result in an exhaustive search if k tends to get large values. In

studies with similar models and objective functions in terms of complexity, researchers

develop a heuristic to solve the problem to avoid time consuming solution process (see

Yang and Wee, 2002; Pal et al., 2005; Yan et al., 2011). In this research a heuristic

is suggested that combines genetic algorithm (GA) and a neighbouring search which

searches the feasible area, solves the problem in a short time and gives a near-optimal

solution. The steps of the GA are as follow:

Step 1. Deciding about parameters in GA: population, number of generations, the per-

centage of the next generation which should be generated by mutation, reinsertion and

crossover and when to stop the algorithm;

Step 2. Producing the first generation and calculating the fitness function (gen=1);
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Step 3. Saving the best solution in the population;

Step 4. If the planned number of generations has been produced go to Step 9;

Step 5. Using the previous generation to produce a new generation by mutation, rein-

sertion and crossover and calculating the fitness function;

Step 6. Saving the solution in the population;

Step 7. In case of no improvement compare to the previous generation go to Step 9;

Step 8. Go to Step 4;

Step 9. Saving the optimal solution;

Step 10. Stop.

In order to implement this genetic algorithm, similar components as in Maiti et al. (2006)

and Gupta et al. (2007) are considered:

• Parameters of genetic algorithm (Population size, maximum number of genera-

tions, the probabilities used in the genetic operations);

• Chromosome representation;

• Initial population;

• Fitness function;

• Selection process;

• Genetic operations (crossover, mutation and reinsertion).

2.4.1 Parameters of genetic algorithm

Firstly, all the parameters of the genetic algorithm should be defined. These parameters

are the population size (MPOP), maximum number of generations (MGEN), probability

of reinsertion (PREIN), probability of mutation (PMUT) and probability of cross over

(PCROS). In this research the values of the introduced parameters are around the values

defined in Maiti et al. (2006): MPOP=200, MGEN=200, PREIN=0.1, PMUT=0.15,

PCROS=0.75. Larger population size however is to guarantee high quality in crossovers

as in this study a smaller percentage of the population is produced using this operation

compared to Maiti et al. (2006). Higher probability for mutation, is to increase the

random solutions to give the model the opportunity of searching the feasible area more
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thoroughly. Setting the parameters as mentioned and running the algorithm for 15

generations, shows that the improvement from generation 14 to 15 is considerable. With

this regard, a larger value is assigned as the maximum number of generations in order

to give the algorithm a sufficient number of iterations to find a near-optimal solution.

2.4.2 Chromosome representation

A three-dimensional vector, X = (tr, ts, k), is used to represent a person in the popula-

tion (a solution). In this vector tr and ts are real numbers and k is an integer.

2.4.3 Initial population

The first generation is generated by assigning random values to the decision variables

within the relevant feasible range. This process continues until the desired number of

solutions in the population is obtained. In this research for the first two decision variables

a uniformly distributed number is used and the value for the third decision variable is

chosen randomly from a set of integer values.

2.4.4 Fitness function

After obtaining the initial generation, the quality of each solution, called fitness func-

tion, should be evaluated based on the relevant objective function. In this research

the objective function is the total cost of the system. In order to use the conventional

selection process as in Maiti et al. (2006) and Maiti and Maiti (2007), there is a need

for modification as the objective function in their research works is profit maximisation.

In this research the fitness function of a solution is considered to be the total cost of

the system incurred by that solution to the power of −1 therefore a chromosome with a

lower cost function has a higher chance to be selected (higher fitness function).

2.4.5 Selection process

Considering the fitness function, it is guaranteed that the solution with lower cost func-

tion has a higher chance to be selected. In this study the selection process used in Maiti

et al. (2006) is considered.
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2.4.6 Genetic operations

Solutions/persons in the second and any other generation are generated by the ones in the

previous generation using three main operations; crossover, mutation and reinsertion.

Genetic algorithm continues until one of the termination condition is held; either a

specific number of generations are produced or there is no improvement in the optimal

solution from one generation to the next.

• Crossover operation: The majority of the population in any generation is pro-

duced by the crossover operator (predetermined percentage). In this study one

point crossover is used. After choosing the parents by selection process, crossover

operation generates a random value which shows what part of these two solutions

should be exchanged in order to have two new solutions. In the next step, the

fitness function for the new solutions is calculated. This process is repeated until

reaching the percentage of the population for the new generation.

• Mutation operation: A small percentage of the new generation is generated using

mutation operation. After choosing a chromosome using the selection process,

the mutation operation randomly picks one of the decision variables in the chosen

solution and assigns a new value to the decision variable within the bounds. In

the next step the corresponding fitness function is found. These steps are repeated

until the desired population generated by mutation operation is obtained.

• Reinsertion operation: Reinsertion operation creates a very small number of so-

lutions in the new generation. Reinsertion selects one of the solutions randomly

using the selection process from the last generation and moves that to the new

generation with no change.

Using GA with appropriate generating tools guarantees feasible area coverage but not

optimality. Therefore in this study after producing the last generation, each individual in

the last generation is studied to see if there is any local optimum in the neighbourhood.

To do this, all the neighbouring solutions to each individual are found and evaluated.

Each solution has three decision variables and a neighbouring solution is exactly the

same as the base solution except for one of the decision variables which has a difference

of one unit compared to the base solution. In this study each solution has six neigh-

bouring solutions. After examining all the neighbouring solutions, the best neighbour
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is considered as the base and in a similar way all the neighbouring solutions to the

new base are evaluated. This algorithm is repeated until a local optimum is reached.

This local search is conducted for each individual in the last generation. The best local

optimum is considered as the solution to problem (2.37).

2.5 Numerical examples

To illustrate the result of the analysis conducted in Section 2.3, the following numerical

examples are considered and the heuristic method is applied. In order to see the advan-

tage of the supply chain perspective and the benefits that the retailer and the wholesaler

gain through integrated planning, in these examples the inventory system is optimised

both with supply chain and single company point of view.

In order to optimise the system of the retailer and the wholesaler independently (non-

integrated approach), first the inventory system of the retailer is optimised. Having the

inventory policies calculated for the retailer, the inventory system of the wholesaler is

optimised using an analytical approach (see Appendix B). The results of this optimisa-

tion are also presented in the following numerical examples.

Example 1. Let the time unit to be one day, demand function, D(t) = 0.2Io(t) + 200,

warehouse capacity at the OW, 200, the deterioration at the OW, 5%, the deterioration

rate at the RW, 8%, the deterioration rate at the wholesaler, 3%, the backlogging rate

during shortage period, 50%, fixed ordering cost for the retailer, 1500, fixed ordering

cost for the wholesaler, 2500, the retailer purchasing price, 8, the wholesaler purchasing

price, 3.5, the unit holding cost at the OW, 0.4, the unit holding cost at the RW, 0.5,

the unit holding cost at the wholesaler, 0.3, the unit backorder cost, 4 and the unit lost

sale cost, 20.

Table 2.1: Results of the numerical example 1

k QR TR QW TW TC TCR TCW

Before integration - 200 0.9 1520 6.3 5021 3522 1499
After integration 3 390 2.8 1275 8.4 4299 3299 1000
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As Table 2.1 shows, the total cost of the system is decreased by 14% when optimising

the system with a supply chain perspective. As a result of this integration, the total

cost of the retailer and the wholesaler drop by 6% and 33% respectively.

The optimal values for tr and ts are 0 and 1.9 respectively which means the model does

not suggest using the RW. The shortage period is 1.9 days during which 380 units are de-

manded but only 50% of this demand is backlogged. Therefore the demand for 190 units

of the product is backlogged waiting for the new replenishment. As soon as a new batch

is received (order quantity= 390), 190 units are used to meet the backlogged demand

from previous period and the rest of the order quantity is stored in the warehouse.

Example 2. Let the time unit to be one day, demand function, D(t) = 0.1Io(t) + 100,

the OW’s warehouse capacity, 50, the OW’s deterioration, 5%, the deterioration rate at

the RW, 8%, the deterioration rate at the wholesaler, 3%, the backlogging rate during

shortage period, 40%, fixed ordering cost for the retailer, 1000, fixed ordering cost for

the wholesaler, 2500, the retailer purchasing price, 8, the wholesaler purchasing price,

3.5, the unit holding cost at the OW, 0.4, the unit holding cost at the RW, 0.5, the unit

holding cost at the wholesaler, 0.3, the unit backorder cost, 4 and the unit lost sale cost,

30.

The effect of changes in parameters’ values on the total cost and decision variables is

studied by means of a sensitivity analysis. In order to carry out the analysis, all the

parameters in the model are set equal to two different levels apart from the initial value

in the example (20% decrease and increase compared to the original level) and the change

in total cost (CTC) is calculated as follows:

CTC =
TCnew − TC∗

TC∗
100%. (2.38)

Table 2.2 presents the results of this numerical example. For the integrated system,

it is suggested that the inventory period at the retailer should be 5.0 days and that a

quantity of 381 units of the product should be ordered at the beginning of each period.

During the first 2.0 days of each cycle, the inventory stored at the RW is used to meet

the demand. After this time the inventory at the OW is used as there is no item at the

RW. The inventory at the OW is depleted completely at t = 2.4 after which there is a

shortage period of 2.6 days.
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Table 2.2: Results of the numerical example 2

tr ts k to QR TR QW TW TC TCR TCW

Before integration 2.0 0 - 2.4 277 2.4 1238 9.6 4572 3677 895
After integration 2.0 2.6 2 2.4 381 5.0 825 10.0 2838 2220 618

The model also suggests that the wholesaler’s inventory cycle should be 10.0 days and

that at the beginning of each period an order of 825 units should be placed. As can

be seen in Table 2.2, the total cost of the system per unit of time is 2838. For further

analysis, Table 2.3 presents the changes in different parameters and the effects of these

changes on the optimal solution.

Table 2.3: Sensitivity analysis of parameters on integrated total cost

value tr ts k to QR TR QW TW TC CTC(%)

z 0.12 2.0 2.6 2 2.4 383 5.0 829 10.0 2852 0.5
0.08 2.1 2.5 2 2.5 387 5.0 838 10.0 2824 -0.5

y 120 2.0 2.2 2 2.4 426 4.6 915 9.2 3315 16.8
80 2.0 3.1 2 2.5 333 5.6 727 11.2 2351 -17.2

W 60 1.2 2.0 3 1.7 273 3.7 921 11.1 2832 -0.2
40 2.2 2.6 2 2.5 394 5.1 853 10.2 2841 0.1

θo 6% 1.9 2.7 2 2.3 373 5.0 804 10.0 2861 0.8
4% 2.1 2.5 2 2.5 390 5.0 843 10.0 2823 -0.5

θr 9.6% 1.3 2.0 3 1.8 275 3.8 928 11.4 2845 0.2
6.4% 2.1 2.6 2 2.5 389 5.1 844 10.2 2847 0.3

θ 3.6% 2.0 2.5 2 2.4 377 4.9 828 9.8 2848 0.4
2.4% 1.5 2.0 3 1.9 297 3.9 983 11.7 2825 -0.5

β 48% 1.9 2.6 2 2.3 390 4.9 842 9.8 2788 -1.8
32% 2.2 2.5 2 2.6 382 5.1 827 10.2 2886 1.7

sR 1200 2.1 2.7 2 2.5 398 5.2 863 10.4 2877 1.4
800 1.3 1.8 3 1.8 266 3.6 890 10.8 2788 -1.8

sW 3000 1.5 2.1 3 1.9 301 4.0 1025 12.0 2884 1.6
2000 1.9 2.3 2 2.3 357 4.6 767 9.2 2786 -1.8

pR 9.6 0.6 2.8 3 1.1 226 3.9 767 11.7 3000 5.7
6.4 2.8 1.4 2 3.2 434 4.6 933 9.2 2602 -8.3

pW 4.2 1.9 2.7 2 2.3 373 5.0 807 10.0 2899 2.1
2.8 2.2 2.4 2 2.6 398 5.0 861 10.0 2775 -2.2

fo 0.48 2.0 2.6 2 2.4 381 5.0 825 10.0 2840 0.1
0.32 2.0 2.6 2 2.4 381 5.0 825 10.0 2836 -0.1

fr 0.6 2.0 2.6 2 2.4 381 5.0 825 10.0 2842 0.1
0.4 2.1 2.5 2 2.5 390 5.0 843 10.0 2833 -0.2

f 0.36 2.0 2.5 2 2.4 377 4.9 815 9.8 2850 0.4
0.24 1.5 2.0 3 1.9 297 3.9 1008 11.7 2822 -0.6

π 36 2.1 0.6 3 2.5 314 3.1 1036 9.3 2975 4.8
24 0.6 3.0 3 1.1 234 4.1 799 12.3 2615 -7.9

b 4.8 1.5 1.8 3 1.9 289 3.7 974 11.1 2856 0.6
3.2 1.9 3.0 2 2.3 385 5.3 837 10.6 2814 -0.8

After examining the effects of the changes on the total cost function, the inventory
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policies of both the retailer and the wholesaler are considered to investigate how these

values react in the case of any changes in parameters (Table 2.4).

Table 2.4: Sensitivity analysis of parameters on inventory policies (%)

value QR TR QW TW value QR TR QW TW

z 0.12 0.5 0.0 0.5 0.0 sW 3000 -21.0 -20.0 24.2 20.0
0.08 1.6 0.0 1.6 0.0 2000 -6.3 -8.0 -7.0 -8.0

y 120 11.8 -8.0 10.9 -8.0 pR 9.6 -40.7 -22.0 -7.0 17.0
80 -12.6 12.0 -11.9 12.0 6.4 13.9 -8.0 13.1 -8.0

W 60 -28.3 -26.0 11.6 11.0 pW 4.2 -2.1 0.0 -2.2 0.0
40 3.4 2.0 3.4 2.0 2.8 4.5 0.0 4.4 0.0

θo 6% -2.1 0.0 -2.5 0.0 fo 0.48 0.0 0.0 0.0 0.0
4% 2.4 0.0 2.2 0.0 0.32 0.0 0.0 0.0 0.0

θr 9.6% -27.8 -24.0 12.5 14.0 fr 0.6 0.0 0.0 0.0 0.0
6.4% 2.1 2.0 2.3 2.0 0.4 2.4 0.0 2.2 0.0

θ 3.6% -1.0 -2.0 0.4 -2.0 f 0.36 -1.0 -2.0 -1.2 -2.0
2.4% -22.0 -22.0 19.2 17.0 0.24 -22.0 -22.0 22.2 17.0

β 48% 2.4 -2.0 2.1 -2.0 π 36 -17.6 -38.0 25.6 -7.0
32% 0.3 2.0 0.2 2.0 24 -38.6 -18.0 -3.2 23.0

sR 1200 4.5 4.0 4.6 4.0 b 4.8 -24.1 -26.0 18.1 11.0
800 -30.2 -28.0 7.9 8.0 3.2 1.0 6.0 1.5 6.0

Studying the output of the sensitivity analysis, the following points can be made:

1. As the results in Table 2.3 show, the total cost is most sensitive to y of which a 20%

change can make a change of nearly 17% in the same direction. It should be noted that

this model is based on the total cost and not profit, therefore this increase in cost cannot

be interpreted without considering the total profit of the system.

2. The total cost shows the second highest sensitivity to pR, π and pW . According to

Table 2.3, all these factors change the total cost in the same direction. As the total

cost of the system is sensitive to the purchasing price that both the retailer and the

wholesaler pay, applying discounting models in their business is highly recommended.

Nevertheless buying larger amount necessitates both retailer and wholesaler to focus

more on marketing in order to increase the demand. As mentioned before, the cost

function is highly sensitive to demand, which means that the retailer can decrease its

margins on the product and influence the demand (in case the product is price elastic)

which enables the retailer to purchase in larger quantities and enjoy lower prices.

3. The cost of unmet demand per unit of product which becomes lost sale is very

complicated to quantify as it depends on many factors. If there are also competing

products on shelves, shortages may cause the product to lose the competition to those
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which are available. In some cases when the product obtains especial characteristics,

the customer may go to another store in search of the desired item and they may do

the whole shopping in the second store and this could be considered as a lost profit for

the first store. The shortage of the product may have a negative effect on the image of

the product brand or the retailer as well. Usually the cost of lost sale is a managerial

evaluation as it needs experience and knowledge about the market and the competition.

4. The total cost is least sensitive to W , fo and fr. In the case of a 20% change in these

parameters the change in the total cost function is almost zero. This however maybe the

case for this numerical example with these specific values assigned to the parameters.

As warehouse capacity is a strategic decision which may cause a huge amount of cost or

saving for a retailer, studying the influence of warehouse capacity on total cost needs a

more detailed sensitivity analysis. Considering the same product with the same market,

a change in warehouse capacity from 50 to 150 decreases the total cost by 9%. In case

the distribution system is to deliver a product of which the service level is relatively high

(from a modelling point of view the cost of shortage per unit of product is considered to

be a large number), the total cost of the system would be 3014. In this case (no shortages

allowed) the change in warehouse capacity from 50 to 150, decreases the total cost by

14%. However evaluating the trade-offs between the cost of expanding the warehouse

capacity and the decrease in total cost in order to make this strategic decision is a

managerial task.

5. The effects of changes in the parameters on the inventory policies of the retailer and

the wholesaler are presented in Table 2.4. As can be seen a 20% increase in pR shows

40% and 22% decrease in QR and TR respectively which means that the model suggests

the retailer a higher frequency with smaller order quantity.

6. Increase in W , b and θr, make a decrease in QR and TR. In case of an increase

in W , the model tries to minimise the shortages and the usage of RW by using extra

capacity through higher frequency in replenishments. Higher shortage cost (b) has the

same influence on the optimal solution as the model tries to avoid shortages. Due

to deterioration and the capacity limits the model cannot increase the order quantity,

therefore it suggests higher frequency with smaller order quantities. Higher level of

deterioration at the RW also motivates the model to adopt lower order quantities and

inventory periods for the retailer to minimise the cost of using the RW.
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7. A decrease in sR, θ and f suggests lower order quantity and shorter inventory period

for the retailer. For the case of sR this change is intuitive. In case of a decrease in θ and

f , the model tends to keep the inventory at the wholesaler to avoid the higher holding

cost and deterioration rate at the retailer level.

8. As presented in Table 2.4, in general the decision variables related to the wholesaler

show less sensitivity to the changes in the parameters. In case of a 20% decrease in sW ,

f and θ, the model suggests the wholesaler to order larger quantities with less frequency.

9. Some parameters that are related to the retailer may indirectly influence the decision

variables of the wholesaler. In case of an increase in π for instance, the model suggests

less shortages at the retailer. This decrease in shortage level is obtained through 17%

and 38% decrease in the retailer’s order quantity and inventory period respectively. In

order to meet this demand (which is higher than the initial example) the wholesaler is

suggested to have shorter inventory period (a decrease of 7%) but larger order quantity

(an increase of 25.6%).

2.6 Conclusions

In this chapter an analytical model for deteriorating inventory is developed considering a

limit for warehouse capacity at the retailer. One of the main features which characterises

this model is the supply chain perspective where costs of the wholesaler and the retailer

are considered and minimised simultaneously. Most of the studies in this area are from

a single company point of view. In this model purchasing cost, inventory carrying cost

and deterioration cost for both the wholesaler and the retailer and shortage cost at the

retailer are taken into account. In the solution part, a heuristic method is developed to

find a fairly good solution to avoid time consuming calculations. Another feature of this

model is that it is more generic compared to other models; e.g. by setting z = 0 the

model will be converted to a model with constant demand. In addition, this model can

change to a model with complete backlogging or lost sale.

As this model considers a percentage of on-hand inventory getting deteriorated, it cannot

be applied to the distribution systems delivering products with fixed life-time. Although

this two-echelon model differs greatly from many real-world problems, it requires com-

plex mathematical calculations. This means relaxing more assumptions to get closer to
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some real cases will result in even more complexity. This shows the importance of using

efficient heuristics in solving such models.

In order to make this model more realistic, some extension opportunities are suggested.

For further research the inflation rate is suggested to be considered in cost calculation

which sometimes is part of the real-life problems. In some cases wholesalers accept delays

in payments by retailers in order to motivate them to increase their order quantity.

This model considers and analyses a distribution system which consists of one retailer

and one wholesaler. Normally that cannot be the case in reality as distribution systems

consist of multiple retailers and multiple wholesalers. Therefore an extension to this

model could be considering multi-suppliers and multi-retailers. Few studies have been

conducted on deteriorating inventory models for multi-product systems, and as there

is competition between products for shelf and warehouse space, this assumption is also

suggested for further research. Finally, quantity discount models and transportation

models between echelons are recommended for future research.
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Abstract

In a production-inventory system, the manufacturer produces the items at a rate, e.g. R,

dispatches the order quantities to the customers in specific intervals and stores the excess

inventory for subsequent deliveries. Therefore each inventory cycle of the manufacturer

can be divided into two phases, first is the period of production, the second is when

the manufacturer does not do any production and utilises the inventory that is in stock.

One of the challenges in these models is how to obtain the inventory level of the supplier

when there is deterioration. Previous literature that considers multi-echelon systems,

analyses the deterioration/inventory cost of these echelons in a way that may not be

sufficiently accurate for some cases. In this chapter, a production-inventory supply

chain including one manufacturer and N retailers is studied. The analysis conducted in

this chapter shows that there are situations that the existing literature does not analyse

the inventory level at the supplier accurately and hence, the cost of the deterioration

and inventory holding.

3.1 Introduction and literature review

The deteriorating item inventory models have increasingly drawn attention in recent

years. For an overview of the deteriorating item’s literature see Nahmias (1982), Raafat

(1991), Goyal and Giri (2001), Li et al. (2010), and Bakker et al. (2012). This literature

mainly includes single-echelon inventory models. Very few research works however have

addressed a production-inventory multi-echelon supply chain.

One of the challenges in modelling a multi-echelon supply chain of a deteriorating item

is how to evaluate the inventory level at the supplier. Ghiami et al. (2013) evaluate

the exact inventory level of the supplier of a two-echelon system (a single-buyer, single-

supplier model). Assuming finite production rate (production-inventory model) with

multiple buyers changes this model in a way that necessitates using another approach

to obtain the manufacturer inventory level.

One of the first studies which analyses a multi-echelon supply chain for a deteriorating

item with finite production rate is done by Yang and Wee (2000). The authors consider

single buyer-single vendor where the vendor produces the items with a finite production

rate. The objective is to minimise the total cost function of the supply chain. Later Yang
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and Wee (2002) extend the work done by Yang and Wee (2000) by considering multi

buyers and aim to minimise the total cost of the system. Law and Wee (2006) consider

a single-buyer, single-vendor supply chain which produces and delivers a product of

which the raw material is livestock. The manufacturer buys young livestock and grows

them, the mature livestock is then used to make food. This food is delivered to the

buyer in batches. In their investigation, Law and Wee (2006) consider the time value

of money by discounting the cost with a specific rate, ultimately minimising the total

cost of the system. Taking a discounted cash flow approach, Lo et al. (2007) model a

production-inventory system which consists of one buyer and one manufacturer. Similar

to the previous research works, Lo et al. (2007) aim to minimise the total cost of the

system. The way that the above-mentioned studies calculate the inventory level of the

manufacturer is questionable which in some situations it may result in large errors. Yang

and Wee (2002) are the first researchers who develop a single-manufacturer, multi-buyer

model for a production-inventory system but no further research work is known. With

this regard, in this research work, the same model is considered, analysed, and improved

upon.

In their research in order to calculate the average inventory cost of the supplier, Yang and

Wee (2002) assume that the inventory level of the manufacturer is as shown in Figure

3.1. The inventory cycle at the supplier is T = T1 + T2, where T1 is the production

period and T2 is the non-production interval.

Figure 3.1: Inventory level of the supplier (Yang and Wee, 2002)

This supplier delivers the deteriorating item to N buyers which have a constant demand

rate. The inventory level of the buyer i is shown in Figure 3.2.



44
Chapter 3 A Two-echelon Production-Inventory Model for Deteriorating Items with

Multiple Buyers

Figure 3.2: Inventory level of buyer i (Yang and Wee, 2002)

Considering the inventory level at the supplier and the buyers, depicted in Figure 3.1

and Figure 3.2, Yang and Wee (2002) calculate the supplier’s inventory holding cost as

follows:

HCYWv =
pvFv
T

[∫ T1

0
Iv1(t1)dt1 +

∫ T2

0
Iv2(t2)dt2 −

N∑
i=1

ni

∫ T
ni

0
Ibi(t)dt

]
. (3.1)

In order to calculate the inventory holding cost of the supplier presented in (3.1), the

echelon stock concept is used as in Joglekar (1988). Echelon stock of an entity in a supply

chain refers to the sum of physical inventory in that business unit and all the downstream

firms. As buyer i is delivering the product to the end customer, his echelon stock, Ĩbi(t),

is the same as his physical inventory, Ibi(t), hence Ĩbi(t) = Ibi(t). The echelon stock of

the supplier, Ĩv(t), is the sum of the physical inventory of the supplier, Iv(t), and the

total echelon stock of the downstream buyers, Ĩb(t). Therefore the inventory level of the

supplier is:

Iv(t) = Ĩv(t)− Ĩb(t), 0 ≤ t ≤ T, (3.2)

where

Ĩb(t) =

N∑
i=1

Ĩbi(t)

=
N∑
i=1

Ibi(t), 0 ≤ t ≤ T.

(3.3)

By using (3.1), Yang and Wee (2002) aim to use the echelon stock concept to calculate

the manufacturer inventory level and therefore the average holding cost. The researchers
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however make assumptions on the inventory level of the supplier in a way that in some

cases fall short to obtain the average holding cost accurately. This will be discussed in

detail in Section 3.2.

Yan et al. (2011) examine an integrated single-buyer, single-supplier model with finite

production rate. Although the researchers graphically present the exact inventory level

for the supplier, they use an approximation method to calculate the inventory level at

both echelons which in some cases fails to capture the real influence of deterioration.

Yan et al. (2011) do not use differential equations to find the inventory levels. The

researchers assume that a percentage of the order quantity (not the on-hand inventory)

deteriorates over the inventory cycle. This assumption overestimates the (average) de-

terioration at the buyer (considering the number of replenishments fixed). Higher level

of deterioration results in larger order quantities which increases the (average) inventory

level of the buyer. This approximation however does not bring large error to the buyer’s

average inventory. On the supplier’s side, the method used by Yan et al. (2011) does not

present clearly how it captures the effect of the deterioration on the inventory level. The

numerical example discussed in Yan et al. (2011) is considered and analysed in Section

3.3 to show the accuracy of the approximation used.

In order to optimise an inventory system when cost and benefit have the first priority,

researchers aim to either maximise the total profit or minimise the total cost. However

in some cases these two objective functions are not equivalent and result in different

optimal solutions. Therefore the decision of which objective function to choose should

be made carefully. Only in situations when the revenue is not a function of decision

variables can profit maximisation be replaced by cost minimisation. Let TPv, TPbi, and

TPb to be the total profit function of the supplier, buyer i, and the sum of the profit

functions of all buyers respectively. These values can be obtained from relevant revenue

and cost functions which are TRv and TCv for the supplier, TRbi and TCbi for buyer i

and TRb and TCb for the group of buyers. The total profit of the supply chain (TP ) is

the sum of the total profit functions:

TP =TPv + TPb

=TRv − TCv + TRb − TCb.
(3.4)

In case of constant demand with no shortages (or with complete backlogging), where

total sale (in terms of quantity) of the buyer is equal to the total demand and hence,
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independent of the decision variables (T and ni) as in this model, minimising the total

cost is equivalent to maximising the total profit as the derivatives of TRb and TRv with

respect to the decision variables are zero (relaxing the integrality assumption on ni),

therefore:
∂TP

∂T
= −∂(TCv + TCb)

∂T
, (3.5)

and
∂TP

∂ni
= −∂(TCv + TCb)

∂ni
. (3.6)

Here also it is implicitly assumed that the opportunity cost of capital is negligible,

therefore, taking the classic approach does not result in errors in the optimal solution.

This will no longer be true in general when using a Net Present Value (NPV) approach,

as it values costs and revenues based on the time they take place, hence captures the

opportunity cost of capital accurately.

3.2 Model

In this chapter a supply chain including one manufacturer and N buyers is considered.

The assumptions and notations are as in Yang and Wee (2002) (see Appendix C.1). The

inventory period of the manufacturer in Yang and Wee (2002) consists of two parts (see

Figure 3.1). In the current model, however, the inventory period is assumed to have

three parts (see Figure 3.3).

The inventory level at buyer i is as shown in Figure 3.2. The manufacturer’s physical

inventory dt units of time before dispatching the order quantities to the buyers is equal

to the sum of the order quantities (
∑N

i=1 Imi). This level goes to zero after dispatching

the order quantities to the buyers. The echelon stock however does not drop to zero

(as the batches are now in the buyers’ inventory) but gradually decreases due to the

demand and the deterioration. In Figure 3.3 the physical inventory (solid line) and the

echelon stock (dashed line) of the supplier are shown.

As can be seen in Figure 3.3, finding the physical inventory level of the supplier is

complicated while finding the echelon stock is trivial. The following differential equations

represent the change of the echelon stock of the supply chain over T :
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Figure 3.3: Inventory level and echelon stock of the supplier

dĨv1(t1)

dt1
= p−

N∑
i=1

di − θĨv1(t1), 0 ≤ t1 ≤ T1, (3.7)

dĨv2(t2)

dt2
= −

N∑
i=1

di − θĨv2(t2), 0 ≤ t2 ≤ T2, (3.8)

and

dĨv3(t3)

dt3
= p−

N∑
i=1

di − θĨv3(t3), 0 ≤ t3 ≤ T3. (3.9)

In a similar way the following differential equation holds for the inventory level at buyer

i:
dIbi(t)

dt
= −di − θIbi(t), 0 ≤ t ≤ T

ni
, i = 1, 2, ...N. (3.10)

The inventory level at buyer i reaches zero at T/ni. Considering this boundary condition

together with (3.10), the inventory level of buyer i is as follows:
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Ibi(t) =
di
θ

[exp( θTni )− exp(θt)
exp(θt)

]
≈di

( T
ni
− t
)[

1 +
θ( Tni − t)

2

]
, 0 ≤ t ≤ T

ni
, i = 1, 2, ...N.

(3.11)

By setting t equal to zero, the maximum inventory level of buyer i (optimal order

quantity) is obtained:

Imi =
di
θ

[
exp(

θT

ni
)− 1

]
, i = 1, 2, ...N. (3.12)

Using Taylor’s expansion (ex ≈ 1 + x+ x2/2), maximum inventory level of the buyer is:

Imi ≈
diT

ni

(
1 +

θT

2ni

)
, i = 1, 2, ...N. (3.13)

In order to find the echelon stock level of the supplier, the relevant boundary conditions

should be considered; Ĩv1(0) =
∑N

i=1 Imi, Ĩv2(T −T1) = 0 (this is due to the fact that in

case production does not start at T1+T2, Ĩv2 will reach zero at T ) and Ĩv3(T−T1−T2) =∑N
i=1 Imi. The results drawn from these boundary conditions are:

Ĩv1(t1) =
p−

∑N
i=1 di
θ

(1− exp(−θt1)) + exp(−θt1)
N∑
i=1

Imi, (3.14)

Ĩv2(t2) =

∑N
i=1 di
θ

(exp(θ(T − T1 − t2))− 1), (3.15)

and

Ĩv3(t3) =
p−

∑N
i=1 di
θ

+
( N∑
i=1

Imi −
p−

∑N
i=1 di
θ

)
exp(θ(T − T1 − T2 − t3)). (3.16)

By using Taylor’s expansion and knowing that Ĩv1(T1) = Ĩv2(0), Ĩv2(T2) = Ĩv3(0) and

T = T1 + T2 + T3 the value of T1, T2 and T3 are obtained as functions of T :

T1 ≈
T

p

(
N∑
i=1

di(1−
1

ni
) +

θT

2

N∑
i=1

di(1−
1

n2i
)

)
, (3.17)
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T2 ≈ T −
T

p
(1 +

θT

2
)
N∑
i=1

di, (3.18)

and

T3 ≈
T

p

N∑
i=1

di
ni

(
1 +

θT

2ni

)
. (3.19)

The annual inventory holding cost for all the buyers and the supplier are as shown in

(3.20) and (3.21). In order to simplify the calculations, Taylor’s expansion is used:

HCb =
pbFb
T

N∑
i=1

ni

∫ T/ni

0
Ibi(t)dt ≈

pbFbT

2

N∑
i=1

di
ni

(1 +
θT

3ni
), (3.20)

and

HCv =
pvFv
T

[∫ T1

0
Ĩv1(t1)dt1 +

∫ T2

0
Ĩv2(t2)dt2 +

∫ T3

0
Ĩv3(t3)dt3 −

N∑
i=1

ni

∫ T/ni

0
Ibi(t)dt

]
≈pvFv

T

[p−∑N
i=1 di

2
T 2
1 + (1− θT1

2
)T1

N∑
i=1

Imi + T2(T3 +
T2
2

)

N∑
i=1

di

+
θT2T3(T − T1)

2

N∑
i=1

di + (1 +
θT3
2

)T3

N∑
i=1

Imi −
T 2
3

2
(1 +

θT3
3

)(p−
N∑
i=1

di)

−T
2

2

N∑
i=1

di
ni

(1 +
θT

3ni
)
]
.

(3.21)

Using (3.13), the deterioration cost for all the buyers and the supplier are as follow:

DCb =

N∑
i=1

nipb
T

(
Imi −

Tdi
ni

)
≈ pbθT

2

N∑
i=1

di
ni
, (3.22)

and

DCv =
pv
T

(
p(T − T2)−

N∑
i=1

niImi

)
≈ pvθT

2

N∑
i=1

di

(
1− 1

ni

)
. (3.23)

In a cost minimisation model it is necessary to consider these costs, however in a profit

maximisation model these costs are captured as the deteriorated items incur purchasing

cost while not producing any revenues.
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The purchasing cost at the buyers and the supplier are as follow:

SCb =
Csb
T

N∑
i=1

ni, (3.24)

and

SCv =
Csv
T
. (3.25)

The total cost functions of all the buyers, the supplier and the whole supply chain are:

TCb = HCb +DCb + SCb, (3.26)

TCv = HCv +DCb + SCv, (3.27)

and

TC = TCb + TCv, (3.28)

respectively.

In order to optimise this supply chain the following non-linear program should be solved:

Min TC(T, ni)

Subject to ni ∈ {1, 2, 3, . . . }, for i ∈ {1, 2, . . . , N}.
(3.29)

As the number of inventory periods of the buyers within one supplier’s inventory period

cannot be a large number, enumeration is suggested. In case the number of retailers,

N , is large, enumeration may take a long time to find a reasonable solution. With this

regard a heuristic similar to Yang and Wee (2002) is developed which can solve the

problem when N is relatively large:

Step 1. Assume ni = n for i = 1, 2, ..., N . For a range of values assigned to n (enumer-

ation), find the optimal value for T . As shown in Appendix D, the second derivative

of the total cost function with respect to T is positive. Therefore by assuming n to be

constant, there is one global optimum for T ;

Step 2. In the range of values assigned to n, find the optimal value which results in the

lowest cost, and denote this value as n∗;

Step 3. Set all ni values equal to n∗ (ni values are candidates for the optimal solution);

Step 4. For retailer j, having fixed ni (i 6= j), find the corrected value of nj , j = 1, 2, ,̇N

which satisfies the following inequalities:
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TC(nj , ni) ≤ TC(nj − 1, ni) & TC(nj, ni) ≤ TC(nξ1 + 1, nξi );

Step 5. If in Steps 4 all ni values remain unchanged, then n∗i = ni and go to Step 6,

otherwise repeat Steps 4;

Step 6. Stop.

3.3 Numerical examples and analysis

Example 1. In this part the same example as in Yang and Wee (2002) is considered in

which N = 2, p = 20× 105, d1 = 4× 104, d2 = 8× 104, Fv = 0.15, Fb = 0.17, Csb = 200.

Csv = 5000, pv = 10, pb = 12, and θ = 0.1. The results of the example are presented

in Table 3.1. It should be noted that T1 + T3 represents the production period in the

supplier’s inventory cycle.

Table 3.1: Optimal solution

n1 n2 T1 + T3 T2 T TCb TCv TC

Yang and Wee (2002) 2 2 0.0115 0.1784 0.1899 22,732 38,252 60,983
Current model 2 3 0.0116 0.1784 0.1900 19,650 43,497 63,148

The optimal production-inventory policy for this supply chain is as shown in Table 3.1.

As can be seen the results of Yang and Wee (2002) and the ones obtained in this research

are different. This difference is due to the error in the supplier’s average inventory and

also the approximation used in both research works. As mentioned earlier, Yang and

Wee (2002) fall short to calculate the supplier’s inventory level accurately, hence the

optimal solution. For the optimal solution obtained in this research (0.1900,2,3) this

miscalculation (the difference between (3.1) and (3.21)) results in an error of −7.03%

(Error = 100 × (HCYWv − HCv)/HCv) in the supplier’s average holding cost. As

expected, ignoring T3 in Yang and Wee (2002) results in a lower average inventory at the

supplier. In this example there is a huge surplus in production capacity at the supplier

(due to the deterioration the excess capacity is less than 20× 105− (4 + 8)× 104) which

normally does not take place in reality as manufacturers aim to exploit their capacity.

By setting the supplier’s capacity to 20× 104 (which leaves a small excess capacity) this

error goes to −58.86%. To show the error caused by this miscalculation, the optimal

total cost has been calculated for different production rates using the model developed

in Section 3.2 and the one in Yang and Wee (2002). The results are presented in Figure

3.4.
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Table 3.2 presents the optimal solution using the current model and the model developed

by Yang and Wee (2002) for two different cases; when the production rate is 20 × 104

and when the production rate extends infinitely. As can be seen the error of Yang and

Wee (2002) is negligible when there is an inventory system (infinite production rate).

This shows that for some cases the model of Yang and Wee (2002) results in sufficiently

accurate solutions.

Table 3.2: Optimal solution

p = 20× 104 n1 n2 T1 T2 T3 T TCb TCv TC

Yang and Wee (2002) 3 4 0.2004 0.1327 0 0.3331 22,225 16,244 38,468
Current model 4 5 0.1094 0.0902 0.0299 0.2295 17,520 41,729 59,248
p→∞
Yang and Wee (2002) 2 2 ε∗ 0.1829 0 0.1829 22,187 41,127 63,314
Current model 2 2 ε∗ 0.1835 ε∗ 0.1835 22,230 40,985 63,215

*ε is a very small positive value

Figure 3.4: Optimal TC when p changes, current model versus Yang and Wee (2002)

Example 2. In this part the example analysed by Yan et al. (2011) is considered (for

details of assumptions and notations see Appendix C.2). The data set for this is as

follows: p = 19200, Csv = 600, pv = 50, Fv = 6/50, d = 4800, Csb = 25, pb = 50,

Fb = 7/50, F = 50, V = 1, and θ = 0. In order to model the same system as Yan et al.

(2011) and include F and V in the calculations, (3.24) should be modified as follows:
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SCb =
Csb + F + V

∑N
i=1 Imi

T

N∑
i=1

ni. (3.30)

Table 3.3 shows the optimal solutions of Yan et al. (2011) and also the results from the

current model when the deterioration rate changes. It should be noted that the errors

in the analyses done by Yan et al. (2011) take place at the buyer and the supplier in

different directions therefore to some extent they cancel out in the integrated model.

That is the reason of the small difference between total cost values although the optimal

solutions are different.

Table 3.3: A comparison on the optimal solution of current model and Yan et al.
(2011)

deterioration rate 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2

Yan et al. (2011)
Num. of deliveries 3 3 3 3 3 3 3 3 3
Total cycle time 0.2353 0.2148 0.1990 0.1858 0.1751 0.1663 0.1587 0.1518 0.1455
Total cost 11388 12014 12589 13126 13630 14108 14562 14997 15413

Current model
Num. of deliveries 3 3 3 3 2 2 2 2 2
Total cycle time 0.2353 0.2133 0.1965 0.1832 0.1615 0.1533 0.1463 0.1401 0.1347
Total cost 11388 12065 12684 13258 13772 14250 14705 15140 15557

In order to investigate the accuracy level of the model studied by Yan et al. (2011), first,

for each optimal solution presented, the average deterioration (dSbuy/T and dSsup/T )

and the average inventory (Sbuy/T and Ssup/T ) at both the buyer and the supplier for

different deterioration rates are calculated. These values are obtained using the model

developed in Yan et al. (2011) and presented in Table 3.4. In the next step, for each

optimal solution obtained by Yan et al. (2011), the average deterioration/inventory costs

at the buyer/supplier are calculated more accurately using current model, (3.20)-(3.23).

It should be noted that (3.20)-(3.23) represent average deterioration/inventory cost and

not the level of deterioration/inventory. Table 3.4 shows that as the deterioration rate

increases, the model in Yan et al. (2011) shows decrease in average inventory both at

the buyer and the supplier. The current model however shows that for those optimal

solutions suggested by Yan et al. (2011), the average inventory increases slightly. Similar

analysis shows that the method used by Yan et al. (2011) underestimates the increase in

average deterioration and hence the relevant cost. The current model however calculates

these costs more accurately and suggests shorter inventory period compared to Yan et al.

(2011) and also less frequency in replenishment for higher deterioration rates. Figure
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3.5 illustrates the level of errors in average deterioration/inventory at the buyer/supplier

when using the model developed by Yan et al. (2011).

Table 3.4: The errors in the deterioration/inventory levels at the buyer/supplier

deterioration rate 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2

Yan et al. (2011)

Buyer:
Ave. inventory 188.24 172.00 159.50 149.00 140.50 133.50 127.50 122.00 117.00
Ave. deterioration 0 4.30 7.97 11.17 14.05 16.69 19.15 21.35 23.40
Supplier:
Ave. inventory 329.43 301.00 279.12 260.75 245.87 233.62 223.12 213.50 204.75
Ave. deterioration 0 7.52 13.96 19.56 24.59 29.20 33.47 37.36 40.95

Current model:

Buyer:
Ave. inventory 188.24 188.36 188.49 188.61 188.73 188.85 188.98 189.10 189.22
Ave. deterioration 0 4.71 9.41 14.12 18.82 23.53 28.24 32.94 37.65
Supplier:
Ave. inventory 329.42 329.54 329.66 329.78 329.90 330.03 330.15 330.28 330.41
Ave. deterioration 0 9.41 18.82 28.24 37.65 47.06 56.47 65.88 75.30

Errors (%):

Buyer:
Ave. inventory 0 -8.68 -15.38 -21.00 -25.55 -29.31 -32.53 -35.48 -38.17
Ave. deterioration NA -8.70 -15.30 -20.89 -25.34 -29.07 -32.19 -35.18 -37.85
Supplier:
Ave. inventory 0 -8.66 -15.33 -20.93 -25.47 -29.21 -32.42 -35.36 -38.03
Ave. deterioration NA -20.08 -25.82 -30.74 -34.69 -37.95 -40.73 -43.29 -45.62

Figure 3.5: Error in the average deterioration/inventory at the buyer/supplier com-
pared to Yan et al. (2011)
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3.4 Conclusions

In this chapter a production-inventory model is developed in which a manufacturer

(vendor) is delivering a perishable product to N retailers. Similar models have been

addressed in the literature however they fall short to accurately calculate the supplier’s

inventory level for some cases as they use approximation.

In this study the inventory level of the vendor is analysed using the echelon stock concept.

Also it is shown how large the errors in the vendor’s holding cost can be in some cases

when using the Yang and Wee (2000, 2002) method. It is also shown that such models

are more accurate when the system is an inventory model or in case of a finite production

rate, that the rate is large relative to the total demand rate.

Yan et al. (2011) argue that their model is a simplified version which results in fairly

accurate solutions when deterioration rate is low. The model developed in this chapter

calculates the exact inventory levels at the echelons while it can be used for the cases

with high deterioration rates. The current model shows that the approximation method

used by Yan et al. (2011) can result in large errors as it does not take into account

the real influence of the deterioration rate on the inventory levels. Using differential

equation seems to be the better method when a percentage of the on-hand inventory

deteriorates over time.

Implementation of supply chain models remains a huge challenge and highly depends on

the relations within the supply chains and the level of collaboration between the partners

in the supply chain. This model can be extended in different ways in order to get closer

to real-world problems. It is suggested to consider the time value of money in the model

as it can have significant impact on optimality, especially when the opportunity cost of

capital is high. Also studying the effects of backlogging on the optimal solutions may

be interesting in case of high purchasing price which results in a high capital cost.
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Abstract

Inventory management finds its roots in the traditional operational research perspective

of cost minimisation, and it is thus not unexpected that many inventory models in the

NPV literature are cost-minimising models based on the traditional concepts of unit

holding costs, unit backorder costs, and unit lost sales costs. The conditions under

which we can be assured that these models will maximise the NPV of future profits for

the firm need to be studied. Therefore we develop a new profit-maximising NPV model

based on cash-flow functions for a situation of a deteriorating item that can be partially

backlogged, with a more general payment structure related to backorders. We next apply

the technique of NPV Equivalence Analysis (NPVEA), and derive the conditions under

which equivalence holds for two cost-minimisation NPV models that characterise two

different approaches found in the literature. We find that the cost parameters in these

models cannot be arbitrarily chosen but are, in practical applications, interdependent.

We discuss the non-triviality of the equivalence results. We present numerical results

for further insights.

4.1 Introduction and literature review

The management of an inventory of deteriorating items has been widely addressed in

the literature. Surveys of deterministic and stochastic models include Nahmias (1982),

Raafat (1991), Goyal and Giri (2001), Li et al. (2010) and Bakker et al. (2012). Most

models minimise the average costs. This chapter considers the class of models that use

the Net Present Value (NPV) criterion instead. Inventory can be short and demand

(partially) backlogged. In comparison to average cost models, NPV offers arguably a

more accurate approach to capturing time value of money effects. It should be quite

natural, when building NPV models, to maximise profits based on the relevant incoming

and outgoing cash-flows and their timing. Many NPV models in the current literature,

however, are cost-minimising models using the classic inventory concepts of unit holding

costs, unit backorder costs, and unit lost sales costs. It is not discussed in the literature

what the values of these cost parameters should be, nor if there would be any relation-

ship between them. It is quite generally accepted that quantifying these parameters in

practise is difficult (Winston, 1994).
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An approach to retrieving insight into unit holding costs is through comparing models

using these parameters with NPV models based on cash-flows, see Grubbström (1980),

Çorbacioğlu and van der Laan (2007), and Beullens and Janssens (2011), and references

therein. In Grubbström (1998), an interpretation of the unit backorder cost is also re-

trieved. While these results are all valid, one should interpret these findings with some

care. Indeed, Beullens and Janssens (2011) illustrate that depending on the boundary

conditions imposed on the NPV model, different NPV models and hence different inter-

pretations for the classic model can be arrived at. They formalise this by introducing the

Anchor Point (AP) in the supply chain. They prove that in some simple cases a classic

inventory model’s objective function cannot be made equivalent to optimising the NPV

function of the firm, and identify which corrections are needed. Beullens and Janssens

(2013) refer to the latter as a case of repairable equivalence. They further argue that

since a classic model does not specify the actual payments occurring, nor their actual

timing, one should in order to be fair allow its comparison with many potential reference

NPV models. Those different reference NPV models can be arrived at by making differ-

ent assumptions, about e.g. the number and types of outside firms with which the firm

exchanges cash-flows, about the position of APs, and about payment structures adopted.

They formalise the quest for interpretation of (classic) models through investigation of

reference NPV models as NPV Equivalence Analysis (NPVEA).

We adopt NPVEA with the aim to test under which conditions the NPV-minimisation

of classic cost components in a model with partial backlogging of a deteriorating item is

equivalent to the NPV-maximisation of future profits in one fairly general but neverthe-

less specific reference model. We illustrate how equivalence provides valid interpretations

of these cost-minimisation models, and gives an approach as to the calculation of their

cost parameters.

Very few papers, studying deterioration with backlogging, model the problem as one of

maximising an NPV function whereby revenue streams are explicitly incorporated, and

they do so for obvious reasons. Wee and Law (2001) consider price-dependent demand

and complete backlogging for an item with a Weibull distributed life-time. Hou (2006)

develop a similar model but the demand is now also a function of inventory level; the

item’s life-time is negative exponentially distributed. Dye et al. (2007b) generalise Wee

and Law (2001) in that the deterioration rate is a general function of time. Singh et al.

(2009) consider time-dependent demand with backlogging and a capacitated warehouse

OW, but any excess inventory can be stocked in another uncapacitated warehouse RW.
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Having different deterioration rates in each warehouse, the optimal number of replenish-

ments from RW to OW has to be found as well. Yang et al. (2010b) extend Hou (2006)

by assuming partial backlogging, but demand is no longer a function of price. Hsieh and

Dye (2010) can be viewed as an extension to Yang et al. (2010b) by considering demand

to be price and time dependent. Hou and Lin (2011) develop a model somewhat similar

to Hou and Lin (2006) but where demand only depends on price and shortages are not

allowed; they consider trade credits and permissible delays in payments. Because of the

explicit attention given to the demand, it comes very natural in these models to adopt

profit maximisation under NPV.

Many models in the NPV literature are built around the minimisation of discounted

classic inventory cost components. Jaggi and Aggarwal (1994) are perhaps first in mod-

elling item deterioration with NPV, and consider three different cases with respect to

the use of credit periods, and Aggarwal and Jaggi (1995) the case of permissible delays.

A cluster of research grew out of these models, including Liao et al. (2000); Sarker et al.

(2000); Chung and Liao (2006); Chang et al. (2010); Liao and Huang (2010); Balkhi

(2011). A stream of literature deals with the OW/RW setting, see Yang (2004a, 2006

and 2012), Wee et al. (2005) and Hsieh et al. (2008). A small minority of work con-

cerns inventory management across multiple echelons in the supply chain, see e.g. Law

and Wee (2006) and Lo et al. (2007), who are also one of the few that consider item

deterioration (amelioration) in a context of a finite production rate.

The contributions of this chapter are as follow. First, we model the situation of a finite

production rate for a deteriorating item with partial backlogging, and compare with the

case of batch deliveries (i.e. an infinite rate). The model differs fundamentally from the

finite production models of Law and Wee (2006) and Lo et al. (2007) in that we do not

minimise a discounted period-average, but minimise the NPV of the cash-flow function as

defined in Grubbström (1980). It also models a more general payment structure related

to backorders. Second, the model is also unique compared to all existing NPV models

on item deterioration with backlogging in the way that we are deliberately avoiding

the use of the classic inventory cost parameters of unit holding cost, unit backorder

cost, and unit lost sales (or shortage) cost. It illustrates that we do not have to rely

on these traditional concepts in the development of an inventory decision model with

a clear interpretation. Third, we use this model as a reference to conduct an NPV

Equivalence Analysis, and demonstrate how this leads to an interpretation of NPV cost

models that use classic inventory cost parameters, with clear specifications on how to set
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the parameters in those models. As there are several variants of NPV cost minimisation

models which all use the same labels for their parameters (as will be further discussed)

the analysis illustrates in addition that these parameters may have to be interpreted

differently.

Section 4.2 illustrates how a reference NPV model is set up, while Section 4.3 develops

the corresponding mathematical equations. In Section 4.4 we investigate under which

conditions two different types of cost minimisation modelling approaches from the litera-

ture produce the same results as our reference model. Equivalence is found to be subject

to a set of conditions from which a useful specification of the classic cost parameters

follows. Numerical examples in Section 4.5 highlight the impact of finite production

rates and some other novel parameters in the model, and illustrate the gaps between the

reference model and the cost minimisation model when classic cost parameters deviate

from the identified equivalence conditions.

4.2 The NPV reference model

NPVEA starts from a conjecture about which reference model might produce a result

of (repairable) equivalence with an existing model from the literature, and this is then

verified through the equivalence analysis (see also Section 4.4). NPVEA differs from

traditional (NPV) modelling of systems of inventory in that the reference model is

purely based on cash-flow functions: we hence abandon the use of any classic inventory

model parameters but instead start from a set of assumptions on how firms involved

in the activity reward each other through payment structures superimposed on events

that take place in the logistics process. There is no particular reason for preferring one

reference model above another one, as long as the reference model leads to (repairable)

equivalence, as otherwise there is little insight to be gained from the comparison with

the classic model. For a detailed description of the principles of NPVEA, we refer

to Beullens and Janssens (2013). We emphasize that our reference model, described

below, is only one of many possible useful ones. Therefore, there is no guarantee that

equivalence results and interpretations of parameters carry over when comparing with

other reference models.
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4.2.1 The activity

This is what we assume. Consider a firm involved in the activity of meeting demand

for a particular type of item. For the sales price p per (unit of) item, and when the

item is in stock, the demand rate y per unit of time is assumed to be a non-increasing

function y(p). Whenever the item is not in stock, the demand rate drops to βy, where β

(0 ≤ β ≤ 1) is a suitably chosen constant1. When the firm places an order for acquiring

additional items, a production process is initiated and runs for some time, during which

items are generated at a finite production rate R per unit of time. It is assumed that

R > y; hence the production process is intermittent.

Figure 4.1: Inventory level of the system

The logistics process is assumed to be as follows; see also Figure 4.1, which displays the

stock position as a function of time. The system starts at time t = 0 with zero inventory

and with the initiation of the first production run. From this moment onwards, all future

demand has to be met immediately, if possible. This can be achieved during the time

of this production run, T1, and since R > y, stock I(t) > 0 is built up in addition. At

time t = T1 the production stops. For some time period T2, demand can still be met

immediately from stock. At t = T1 + T2, however, stock has reduced to zero, at which

point the demand rate drops to βy, and this demand is backlogged. From this moment,

a negative stock position or hence a positive shortage level B(t) = −I(t) > 0 is built up.

This situation is allowed to proceed for a length of time T3. At time t = T1 + T2 + T3,

the production process is initiated a second time. During some length of time T4, the

demand that arisen at rate βy is instantaneously satisfied from this production process,

while the excess production capacity (R − βy) goes towards satisfying the backlogged

demand (in, let’s say, a ‘first-in-first-satisfied’ manner). Hence, while for a length of time

T3 the shortage level B(t) is building up according to rate βy, it is reduced during the

1It is conceivable that β can take values larger than one when backorders receive reduced sales prices
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length of time T4 at rate (R−βy). At t = T1 +T2 +T3 +T4 ≡ T , the inventory position

is back at zero, at which point all demand that occurred in the past has been satisfied.

The logistics process is hence back in a state it was in at the beginning t = 0 (safe the

fact that production has already started), and this process repeats itself at infinitum.

We call T the inventory cycle time and say that every additional T time units in the

future, a new inventory cycle starts.

The items deteriorate and this process is modelled, in a deterministic fashion, as fol-

lows. Given a non-negative inventory level I(t), where t measures the time from the

production run initiation, the rate of deterioration is θγtγ−1, where θ and γ are two

suitably chosen constants. Note that although this corresponds to the failure rate of

a Weibull distribution f(t) = θγtγ−1e−θt
γ
, where θ and γ are the scale and the shape

parameter, respectively, we are not suggesting that we model that the life-times of items

on the shelf are i.i.d. random variables. In case that γ = 1, we have a constant failure

rate which we can view as a characteristic of a negative exponentially distributed deteri-

oration process. Note that as a consequence, the positive inventory level I(t) from t = 0

to t = T1 + T2 increases/decreases in a non-linear fashion due to the item deterioration.

In case that γ < 1, the failure rate becomes a decreasing function over time which may

not be relevant in practice.

4.2.2 The cash-flows

It is the firm’s objective to manage the inventory process as to maximise the Net Present

Value of relevant future profits associated with the activity described in Section 4.2.1.

For this purpose, the firm looks at the cash-flows exchanged with relevant others; these

are assumed to be customers, a producer, a recycling company, and a parent company,

respectively. It is this aspect which is key in NPVEA: payment structures between

the firm and its outside world replace in principle all of the classic inventory cost (and

revenue) parameters. The payment structure is assumed to be as follows; see also Figure

4.2.

Customers pay whenever they receive an item. For any demand that arises when the

stock position is strictly positive, payment of p occurs at the moment that demand

arises. Therefore there is an income at the annuity stream level py during the periods

associated with T1 and T2. Payment is also immediate during the period associated with
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Figure 4.2: Cash-flows of the profit maximisation model

T4 for the demand generated at rate βy during that period, and there is an income at the

annuity stream level pβy. During the period of stock-out associated with T3, demand is

partially backlogged. Customers pay a deposit g the moment they raise the demand. In

addition they are promised a reduction r on the sales price as a compensation for the

waiting time. A customer for which a backorder of a product was created will hence pay

when receiving the product the amount of p − g − r only. Assume that 0 ≤ g + r ≤ p,

where g or r can be zero. In T4, the backlog is reduced at the rate (R − βy) and since

customers pay p− g − r per item, the annuity stream level is (p− g − r)(R− βy).

The producer is paid the set-up cost s at the moment production initiates, and also the

unit price c for every item delivered; as this happens at rate R the firm’s variable cost

is at the annuity stream level cR for a time spanning the period T1 + T2 in the first

production run, and for a time spanning T4 + T1 + T2 for any subsequent production

run. During the period spanning T1 + T2, the items that deteriorate at any time t are

immediately removed from stock and disposed of for a cost of d per unit of product,

immediately paid out to the recycling company.

The firm rents shelf space from the parent company at a price f per unit of item and unit

of time, paid out instantaneously. Whenever the inventory position is non-positive, a

fine is paid to the parent company of π per unit of demand lost; it is paid as a continuous

outflow of cash at the annuity stream level (1−β)πy during the period spanning T3+T4.

Also, the parent company will fine the firm for any inventory of backorders by asking the

immediate payment of b per unit of outstanding demand and unit of time. The firm’s

opportunity cost of capital rate, used in calculating the NPV of cash-flows functions, is

denoted by α. We consider an infinite horizon.
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4.3 Mathematical model

4.3.1 Inventory and shortage levels

At the start of the inventory cycle, production accumulates inventory while deterioration

and demand decrease the inventory level. This pattern starts at time zero (for the

first period) until the production stops at time T1. The following differential equation

represents the inventory level in this period:

dI(t)

dt
= R− y − θγtγ−1I(t), 0 ≤ t ≤ T1, I(0) = 0. (4.1)

By solving the differential equation (4.1), the inventory level in this period is obtained:

I(t) = (R− y)e−θt
γ

∫ t

0
eθu

γ
du, 0 ≤ t ≤ T1. (4.2)

At time T1 the production stops and the demand is covered using the produced items;

this pattern continues until the inventory level reaches zero at T1 + T2:

dI(t)

dt
= −y − θγtγ−1I(t), T1 ≤ t ≤ T1 + T2, I(T1 + T2) = 0. (4.3)

The inventory level in this interval is hence as follows:

I(t) = ye−θt
γ

(∫ T1+T2

T1

eθu
γ
du−

∫ t

T1

eθu
γ
du

)
, T1 ≤ t ≤ T1 + T2. (4.4)

As I(t) takes on a unique value at t = T1, there hence holds a relation between T1 and T2

obtained from (4.2) and (4.4); we further consider T1 as a function of T2, or T1 = g(T2),

as implicitly given by this condition (for approximate solutions, see Appendix E).

During the out-of-stock period and before the production starts again, the shortage level

increases as a percentage of the demand is backordered:

dB(t)

dt
= βy, T1 + T2 ≤ t ≤ T − T4, B(T1 + T2) = 0. (4.5)

The shortage level within this period is therefore:

B(t) = βy(t− T1 − T2), T1 + T2 ≤ t ≤ T − T4. (4.6)
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When the production starts at T − T4 as the inventory level is zero a percentage of the

demand (1−β) is lost and the rest is met with no delay. The excess production capacity

is used to satisfy the backorders accumulated between T1 +T2 and T −T4 and decreases

the shortage level:

dB(t)

dt
= −(R− βy), T − T4 ≤ t ≤ T,B(T ) = 0. (4.7)

The corresponding shortage level is:

B(t) = (R− βy)(T − t), T − T4 ≤ t ≤ T. (4.8)

Considering the intersection point of (4.6) and (4.8) at t = T−T4, the following equation

is obtained:

T4 =
βy

R− βy
T3, (4.9)

therefore

T = g(T2) + T2 +
R

R− βy
T3. (4.10)

In conclusion, we can take T2 and T3 as the independent decision variables for the firm

since T1, T4, and T then follow from above relationships.

4.3.2 Annuity streams of cash-flows

As shown in Figure 4.2, a revenue at the rate of py is continuously received between 0

and T1 + T2. As the present value of this revenue for the first inventory cycle only, is

given by:

R1 =py

∫ T1+T2

0
e−αtdt

=
py

α
(1− e−α(T1+T2)),

(4.11)

The equivalent annuity stream of all such revenues enjoyed over an infinite number of

future inventory cycles, is:

ASR1 =R1

∞∑
i=0

αe−iαT

=py
1− e−α(T1+T2)

1− e−αT
.

(4.12)
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During the interval T1 +T2 ≤ t ≤ T −T4, due to the out-of-stock situation, a percentage

of the demand is backlogged and the customers pay a deposit g to receive their item later

when the production starts again. The corresponding annuity stream of this revenue is

hence:

ASR2 =gβy

∫ T−T4

T1+T2

e−αtdt
∞∑
i=0

αe−iαT

=gβy

[
1− e−α(T−T4)

1− e−αT
− 1− e−α(T1+T2)

1− e−αT

]
.

(4.13)

Revenues are also received in the first inventory cycle when production restarts at T−T4,

and until T . The first part of this revenue is to be associated with the delayed fulfilment

of backlogged demand that arose in the interval T1 +T2 ≤ t ≤ T −T4, and as this is sold

at a discount, it generates revenue at the rate (p− g− r)(R− βy); the second part with

the immediate fulfilment of demand that arises in T − T4 ≤ t ≤ T , and thus produces

revenue at rate pβy. The annuity stream of this revenue is given by:

ASR3 = ((p− g − r)(R− βy) + pβy) e−α(T−T4)
∫ T4

0
e−αtdt

∞∑
i=0

αe−iαT

= ((p− g − r)(R− βy) + pβy)

[
1− 1− e−α(T−T4)

1− e−αT

]
.

(4.14)

The set-up cost of production s is incurred at t = 0 for the first production run, and

then at a time T4 earlier relative to the start of every subsequent inventory cycle. The

relevant annuity stream is as follows:

SC =αs(1 + e−α(T−T4) + e−α(T−T4)e−αT + e−α(T−T4)e−2αT + ...)

=αs

(
1 +

e−α(T−T4)

1− e−αT

)
.

(4.15)

The cost of production at rate cR is incurred between nT−T4 and nT+T1 (n = 1, 2, 3, ...)

except for the first period in which the production takes place between 0 and T1. The

annuity stream of the production cost is:

PC =αcR

∫ T1

0
e−αtdt+ αcRe−α(T−T4)(1 + e−αT + e−2αT + ...)

∫ T1+T4

0
e−αtdt

=cR

[
1 +

1− e−αT1
1− e−αT

− 1− e−α(T−T4)

1− e−αT

]
.

(4.16)



68
Chapter 4 Net Present Value Equivalence Analysis for an Inventory of a Deteriorating

Item with Partial Backlogging and Finite Production Rate

The cost of renting warehouse space in the first period consists of two parts and consid-

ering the inventory level presented in (4.2) and (4.4), the corresponding present value of

these costs are (for approximate solutions, see Appendix E):

HC1 =f

∫ T1

0
I(t)e−αtdt (4.17)

and

HC2 =f

∫ T1+T2

T1

I(t)e−αtdt. (4.18)

The rental cost is incurred at all periods, however, and therefore the equivalent annuity

stream of all such future costs is given by:

HC =
α

1− e−αT
(HC1 +HC2). (4.19)

Outstanding (unsatisfied) demand arises between T1 + T2 and T , during which a back-

order penalty cost b per unit of item and time has to be paid to the parent company.

Using the shortage levels presented in (4.6) and (4.8), the present value of this penalty

in the first inventory period is:

BC1 =bβy

∫ T−T4

T1+T2

(t− T1 − T2)e−αtdt

=
bβy

α
e−α(T1+T2)

[
1

α
(1− e−αT3)− T3e−αT3

] (4.20)

and

BC2 =b(R− βy)

∫ T

T−T4
(T − t)e−αtdt

=
b(R− βy)

α
e−α(T−T4)

[
T4 −

1

α
(1− e−αT4)

]
.

(4.21)

Thus the annuity stream of this cost over an infinite horizon is:

BC =
α

1− e−αT
(BC1 +BC2)

=
bR

α

[
1− e−α(T−T4)

1− e−αT

]
− bβy

α

[
1− e−α(T1+T2)

1− e−αT

]
− b

α
(R− βy).

(4.22)
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A penalty of π per unit of lost sale is also due to the parent company and with immediate

effect. The annuity stream of this lost sale cost is:

LC =
α

1− e−αT
πy(1− β)

∫ T

T1+T2

e−αtdt

=πy(1− β)

[
1− 1− e−α(T1+T2)

1− e−αT

]
.

(4.23)

A deteriorated item incurs a net cost d ≥ 0 for the firm to cover the disposal or recycling

fees, or represents a net revenue d < 0 if the deteriorated item retains a salvage value

that other industries are willing to pay. The annuity cost for disposal is given by:

DC =
α

1− e−αT
d

∫ T1+T2

0
θγtγ−1I(t)e−αtdt. (4.24)

Hence, the firm’s annuity stream profit function to be maximised is:

ASP = ASR1 +ASR2 +ASR3 − (SC + PC +HC +BC + LC +DC), (4.25)

where T2, T3, and p are the firm’s decision variables.

4.3.3 Special case

We present the special case that γ = 1 (negative exponentially distributed deteriora-

tion) for which explicit analytical solutions, to be used in Section 4.4, can be easily

obtained. The shortage level equations (4.6) and (4.8) and boundary condition (4.9)

remain unaltered. The inventory levels as previously given by (4.2) and (4.4) are now:

I(t) =
(R− y)

θ
(1− e−θt), 0 ≤ t ≤ T1 (4.26)

and

I(t) =
y

θ
(eθ(T1+T2−t) − 1), T1 ≤ t ≤ T1 + T2. (4.27)

The intersection point of (4.26) and (4.27) at T1 results in the following boundary con-

dition:

eθT2 =
R

y
− (

R

y
− 1)e−θT1 . (4.28)
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The deterioration cost, previously (4.24), is now:

DC =
α

1− e−αT
dθ

∫ T1+T2

0
I(t)e−αtdt

=
d(R− y)

1− e−αT

[
1− e−αT1 − α

α+ θ
(1− e−(α+θ)T1)

]
+

dy

1− e−αT

[
α

α+ θ
e−αT1(eθT2 − e−αT2)− e−αT1 + e−α(T1+T2)

]
=

dθ

α+ θ

[
R

1− e−αT1
1− e−αT

− y1− e−α(T1+T2)

1− e−αT

]
.

(4.29)

The annuity stream of the holding cost can be found in a similar way:

HC =
f

α+ θ

[
R

1− e−αT1
1− e−αT

− y1− e−α(T1+T2)

1− e−αT

]
. (4.30)

The firm’s annuity stream profit function is the sum of (4.12), (4.13), (4.14), minus the

sum of (4.15), (4.16), (4.22), (4.23), (4.29), and (4.30):

ASP =(p− c)R− (g + r)(R− βy) +
b(R− βy)

α
− π(1− β)y − αs

(
1 +

e−α(T−T4)

1− e−αT

)

+y

[
p− gβ +

dθ + f

α+ θ
+
bβ

α
+ π(1− β)

]
1− e−α(T1+T2)

1− e−αT

−
[
(p− c− g − r)R+ rβy +

bR

α

]
1− e−α(T−T4)

1− e−αT
−R

[
c+

dθ + f

α+ θ

]
1− e−αT1
1− e−αT

.

(4.31)

4.4 Equivalence Analysis

Given an activity A and the set A of feasible scenarios X ∈ A of how to undertake

it, equivalence analysis seeks to derive if, and if so under which conditions, a reference

optimisation model and an existing optimisation model can agree on the optimality of

a scenario. In Beullens and Janssens (2013), as the reference model was an NPV model

while the existing model was an average cost model with opportunity costs, the condi-

tions included that the linear approximation of the NPV model is sufficiently accurate

to represent its optimisation function. As the existing model is now also an NPV model,
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taking the linear approximation is not needed. Instead, we have to compare a cost min-

imising NPV model with a profit maximising reference NPV model. Let ASC(X) be

the annuity stream function of the former model, and ASP (X) that of the latter. Given

the subset X∗ ⊂ A for which X∗ =arg minX∈A ASC(X), it is to be established under

which conditions X∗ =arg maxX∈A ASP (X). If it is assumed that the reference model

is a more accurate description of the ‘real-world’, then we can interpret the conditions

derived as providing a valid interpretation of the ASC model. To keep the analysis

tractable, we use the special case developed in Section 4.3.3 as the reference model.

4.4.1 Opportunity holding cost models

With the first model we aim to represent models from the literature in which the op-

portunity cost of investments in stock is incorporated in the unit holding cost h. Next

to h, these models introduce a unit backorder cost hb, a unit lost sales cost hl, a unit

deterioration cost hd, and a set-up cost s, the latter having a similar meaning as in our

reference model. Papers in this stream include Yang (2004a, 2006 and 2012). Note that

our model is not capturing all the features of these different models, but merely follows

in spirit their common modelling logic.

We construct an NPV cost minimisation model for the activity A that also has been used

in the reference model, i.e. as described in Section 4.2.1 for the special case of γ = 1.

Instead of following the logic of Section 4.2.2, however, the function is developed based on

the consideration of the annuity stream cost of set-ups as in (4.15), and annuity-stream-

like costs of holding stock, backorders, lost sales, and deterioration, using parameters h,

hb, hl, and hd, according to:

HC =

[∫ T1+T2

0
hI(t)e−αtdt

] ∞∑
i=0

αe−αiT

=
h

α+ θ

[
R

1− e−αT1
1− e−αT

− y1− e−α(T1+T2)

1− e−αT

]
,

(4.32)

BC =

[∫ T

T1+T2

hbB(t)e−αtdt

] ∞∑
i=0

αe−αiT

=
hbR

α

[
1− e−α(T−T4)

1− e−αT

]
− hbβy

α

[
1− e−α(T1+T2)

1− e−αT

]
− hb
α

(R− βy),

(4.33)
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LC =

[∫ T

T1+T2

hl(1− β)ye−αtdt

] ∞∑
i=0

αe−αiT

=hly(1− β)

[
1− 1− e−α(T1+T2)

1− e−αT

]
,

(4.34)

and

DC =

[∫ T1+T2

0
hdθI(t)e−αtdt

] ∞∑
i=0

αe−αiT

=
hdθ

α+ θ

[
R

1− e−αT1
1− e−αT

− y1− e−α(T1+T2)

1− e−αT

]
.

(4.35)

Hence, the annuity stream cost function that we arrive at is as follows:

ASC =hl(1− β)y − hb(R− βy)

α
+ αs

(
1 +

e−α(T−T4)

1− e−αT

)

−y
[
hdθ + h

α+ θ
+
hbβ

α
+ hl(1− β)

]
1− e−α(T1+T2)

1− e−αT

+
hbR

α

[
1− e−α(T−T4)

1− e−αT

]
+
R(hdθ + h)

(α+ θ)

[
1− e−αT1
1− e−αT

]
.

(4.36)

Note that the model (4.36) captures the traditional inventory modelling approach, ex-

emplified in its most simple form by the EOQ model (Harris, 1913), in which neither

variable purchasing costs nor revenue streams are explicitly considered. We must hence

for obvious reasons assume that final demand y is constant; the decision variables are

the cycle times.

Theorem 1. Sufficient conditions for equivalence are:

hdθ + h = (d+ c)θ + αc+ f, (4.37)

hb = α(p− c)− αg − αr(1− βy

R
) + b, (4.38)

hl = (p− c) + r
β

1− β
(1− βy

R
) + π. (4.39)

Proof. The proof is based on a variation to the algebraic derivation method developed

in Grubbström (1996), or alternatively, to the difference approach in Grubbström (1998).

Let Σ be the sum of (4.31) and (4.36), i.e.:
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Σ =(p− c)R− (g + r)(R− βy)− 1

α
(hb − b)(R− βy) + (hl − π)(1− β)y

+y

[
p− gβ +

(d− hd)θ + f − h
α+ θ

− (hb − b)β
α

− (hl − π)(1− β)

]
1− e−α(T1+T2)

1− e−αT

−
[
(p− c− g − r)R+ rβy − (hb − b)R

α

]
1− e−α(T−T4)

1− e−αT

−R
[
c+

(d− hd)θ + f − h
α+ θ

]
1− e−αT1
1− e−αT

.

(4.40)

We now seek for the conditions under which Σ is independent of the decision variables.

It is observable that this is only true when (4.37), (4.38), and (4.39) hold. Hence,

under these conditions it holds for sure that X∗ ≡arg minX∈A ASC(X) =arg maxX∈A

ASP (X). This ends the proof.

The interpretation of (4.37) to (4.39) corresponds to intuition reasonably well, as ex-

plained further below, but may still be very hard to establish if not having been explicitly

derived. This hence underlines the value of NPVEA. From (4.37), we see that there is a

degree of freedom of how to set h and hd in relation to each other, but the most obvious

solution would be to take h = αc+ f , as this corresponds to the classic interpretation of

this parameter, see Silver et al. (1998), from which it follows that hd = d+ c. For every

item that deteriorates, the relevant disposal cost should include the initial purchasing

cost c. Note that in case that d < 0 (a salvage value), its absolute value typically is

smaller than the cost price c, and hence hd > 0, as otherwise it would be economical to

purchase items for supplying a market of deteriorated items with a net marginal profit.

The first component of the unit backorder cost according to (4.38) is α(p−c), i.e. a capi-

tal cost of deferred marginal profits. It is re-assuring that this result has previously been

suggested to hold in Grubbström (1998) in a stochastic setting, as this conjecture led

to the most logical explanation of the different results between a reference NPV model

and a classic average cost model. As in our case both models are unapproximated NPV

models, we have an exact result in the sense that it is an essential part of a set of suffi-

cient conditions for equivalence. As our reference NPV model is slightly more complex

in terms of payment structures, we have in addition to account for the effect of other

parameters on hb: the deposit g, paid in for a backordered item the moment the demand

occurs, corrects (i.e. reduces) the capital loss on backordered sales; the loss in sales price

by r for backordered items, because it is deferred, also reduces the capital cost of hb
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(since 1−βy/R > 0); and finally, there is a cost b that is similar in interpretation as the

f in h: an out-of-pocket backorder cost the moment the backordered demand occurs.

Since it must be that p − g − r − c > 0 for backordering to make economical sense, we

find hb > 0. The lost sales cost hl, as given by (4.39), demonstrates the importance to

account for the loss in profits through p−c, but shows in addition the somewhat peculiar

impact from the cost r that is experienced for items that are sold with backordering.

Similar counter-intuitive results also occur in the context of remanufacturing, see e.g.

Çorbacioğlu and van der Laan (2007).

Note that, while sufficient, we have not proven the mathematical necessity of the de-

rived conditions (4.37) to (4.39) for equivalence to hold for only optimal solutions X∗.

The equivalence conditions derived, although mathematically perhaps too restrictive, do

preserve the relative comparison of any solution to an optimum, and are hence arguably

of more practical relevance.

4.4.2 Holding cost models excluding opportunity costs

This second model aims to represent the common logic adopted in models in which the

timing of the purchasing/production costs are explicitly modelled. Papers in this group

include Moon et al. (2005), Jaggi et al. (2006), Law and Wee (2006), Lo et al. (2007);

Hsieh et al. (2008), and Chern et al. (2008). Exactly the same calculations (4.32) to

(4.35) are used as in Section 4.4.1 for the costs related to parameters h, hb, hl, hd, and

(4.15) related to s. In addition, the annuity stream production cost is explicitly modelled

as in (4.16). We again assume in our model that y is constant, and that revenue streams

are not explicitly modelled.

Theorem 2. Sufficient conditions for equivalence are:

hdθ + h = dθ + f, (4.41)

hb = αp− αg − αr(1− βy

R
) + b, (4.42)

and

hl = p+ r
β

1− β
(1− βy

R
) + π. (4.43)
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Proof. Details are omitted, as it follows the approach as before based on:

Σ =pR− (g + r)(R− βy)− 1

α
(hb − b)(R− βy) + (hl − π)(1− β)y

+y

[
p− gβ +

(d− hd)θ + f − h
α+ θ

− (hb − b)β
α

− (hl − π)(1− β)

]
1− e−α(T1+T2)

1− e−αT

−
[
(p− g − r)R+ rβy − (hb − b)R

α

]
1− e−α(T−T4)

1− e−αT

−R
[

(d− hd)θ + f − h
α+ θ

]
1− e−αT1
1− e−αT

.

(4.44)

End of proof.

Interpretations can be derived as previously in Section 4.4.1. Hence from (4.41) we take

h = f and hd = d. The opportunity cost of capital is no longer to be included into

the unit holding cost, and the unit deterioration cost has only to capture the disposal

cost/salvage value (hence, hd < 0 is now possible). As the impact of purchasing/produc-

tion is explicitly modelled, its impact should not only be excluded from h, but also from

hb and hl. Again, it can be argued that the results seem fairly intuitive, but that it is

perhaps not so obvious to produce in particular (4.42) and (4.43) purely from intuitive

reasoning alone.

4.4.3 The non-triviality of the equivalence results

It should be emphasised that the equivalence results obtained are not at all trivial.

Indeed, the general expression for an operation like (4.32) is:∫ ∞
0

hI(t)e−αtdt, (4.45)

and we have just found that, for equivalence to hold, it must be that h = αc+ f . This

is not conform to the common interpretation of how to calculate the NPV. Besides the

intuition that an operation like (4.45) might lead to an effect of double-discounting,

there are two oddities in (4.45) when compared to the common definition of NPV,

namely (1) that NPV should only be based on real cash-flows, which h by virtue of

containing a capital cost αc does not satisfy, and (2) that the NPV should be based

on the exact timing of these real cash-flows, which again is not satisfied by (4.45). For

R → ∞, for example, the purchasing/production cost occurs at the start of a cycle.

It is therefore surprising that these two seemingly wrong assumptions about the real
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cash-flow structure of the reference model are able to neutralise each other so that the

end result is still compatible with conventional NPV thinking. We note that the use of

(4.45) is not restricted to the literature on deterioration but also occurs in e.g. Moon

and Lee (2000) and Yang (2010). Similarly, we should be surprised to have found that

a similar operation of the unit backorder cost, as in (4.33), for which it again turns out

that hb = α(p− c) + ..., does produce equivalence.

4.4.4 Interdependence of cost parameters

Given the established equivalence conditions for the two representative cost models, we

shortly discuss to which degree such models can arbitrarily assume numerical values

for their parameters h, hd, hb, and hl. The good news is that, given the conditions as

derived, the classic parameters can indeed be set rather independently across a wide

valid range. This is particularly so in the presence of the four independent components

f , d, b, and π, since by giving these arbitrary values, the interdependence imposed by

the other components is weakened. This can offer a justification for the fact that many

papers in these two streams of literature have assumed in their numerical evaluations

of their models rather arbitrarily specified values. It is hence reassuring that in the

mathematical sense, the degrees of freedom are not much restricted by the equivalence

conditions. There are exceptions. For the model in Section 4.4.1, for example, the

special case of f = π = g = r = b = d = 0, and R→∞, implies that the range of values

becomes restricted by the relationships hd = h/α, and hb = αhl.

On the other hand, if the model is to be used in a specific context, delivering a specific

item to a specific market with a specific production technology, most of the right-hand-

side parameters of the equivalence conditions will have to remain rather fixed. For

example, varying the values of g and r may influence demand during stock-outs βy, and

varying the price p may influence nominal demand y. Experimenting with different val-

ues for g and p from some status quo situation, in which their impact on the exogenously

assumed β and y is not incorporated, does not lead to any useful practical insights from

the cost model. It is in this practical sense that the equivalence conditions impose rather

strict relationships between the values of the cost parameters.
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4.5 Numerical examples

4.5.1 The reference model

The reference model developed in Section 4.3 is to determine the values of cycle time

components T1 to T4, and sales price p(y), as to maximise the future profits of the firm.

We present a limited report on a numerical analysis to provide some basic intuition

behind the impact of some parameters.

As the independent parameters are p, T2, and T3 only, see Section 4.3.2, we have set

up a simple exhaustive search routine in three nested loops, whereby values for these

parameters are incremented across a range. While not expecting this to produce the

most efficient running times, typical scenarios are solved fairly quick even with small

step sizes. We have compared with numerical values reported in Wee and Law (2001)

by setting our parameters accordingly, and arrived at a reasonable correspondence.

We report solutions in Table 4.1 for the following data set valid for all examples: α =

0.08; y = 200− 4p; s = 80; f = 0.6; b = 1.4; r = 2; c = 5; π = g = d = 0; θ = 0.05. The

original example takes γ = 1.5 (an increasing deterioration rate over time), β = 0.5, and

R = 150 (having checked that y∗ < 150 in all cases.) The 7 special cases that follow

change one or more values for β, γ, R, and r, as indicated. Special case 6 corresponds

most closely to the model and parameter settings of Wee and Law (2001), of which their

results are cited in the last row. The small difference in numerical values is thought to

be due to the effect of the finite horizon in that model, whereas we have assumed an

infinite horizon.

Comparing each time with the original example (unless indicated otherwise), we derive

the following insights. Case 1 shows the value of introducing a shortage period when

there are no lost sales: the loss of postponed revenues is not as large as the savings made

on avoiding deterioration costs. Case 2 and 3 illustrate that when items deteriorate less,

there may be value in increasing production cycles and this is rather insensitive to the

level of lost sales. Case 4 and 5 illustrate that finite production rates are better that

infinite rates (for which obviously T1 = T4 = 0) in terms of profit. Case 6 and 7 are

best compared with cases 4 and 5: they illustrate the large sensitivity to r. It is much

more profitable not to provide any discounts for backordered items, and if this can be

done, one may have more reasons to introduce a period of backorders. This remains a
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‘ceteris paribus’ exercise, as in practise the value of r might well influence βy (recall the

discussion at the end of Section 4.4.4).

Table 4.1: The numerical results of the example presented in Section 4.5.1

T1 T2 T3 T4 T p Profit (AS)

The original example 1.087 0.674 0 0 1.761 27.393 1934.429

The special case 1
β = 1 1.087 0.674 0.051 0.077 1.889 27.393 1934.912

The special case 2
γ = 1 1.200 0.751 0 0 1.951 27.353 1937.969

The special case 3
β = 1 and γ = 1 1.200 0.751 0 0 1.951 27.353 1937.969

The special case 4
R→∞ 0 1.163 0 0 1.163 27.838 1883.857

The special case 5
R→∞, β = 1 0 1.166 0 0 1.166 27.830 1883.856

The special case 6
R→∞, β = 1, r = 0 0 0.993 0.416 0 1.409 27.760 1905.546

The special case 7
R→∞, β = 1, γ = 1, r = 0 0 0.998 0.422 0 1.420 27.759 1903.900

The original example
in Wee and Law (2001) NA 0.894 0.356 NA 1.250 27.734 1898.765

Table 4.2 illustrates the impact of R in more detail, using instance data almost identical

to the original example of Table 4.1 (hence the almost identical results for R = 150 and

β = 1). It illustrates our general finding (based on more extensive analysis not reported

here) that lowering the production rate increases overall cycle times and boost profits.

The waiting time between items produced and sold becomes relatively shorter when R

decreases, and hence it is intuitive that the optimal T1 tends to increase. The optimal

value T2 decreases, but not as drastically. The impact of β on profits remains almost

negligible, at least in the range between 0.5 and 1, but planning for backorders becomes

part of the optimal policy the higher its value and the lower R. It can be intuitively

understood that the lower R the longer it takes to fulfil backorders, and hence that T4

will increase. The optimal price levels p are only slightly decreasing the lower R and β.

(Also, for infinite production rates, see cases 4 and 5 in Table 4.1.)

In another series of experiments (not reported here) we let the value of γ vary in the

range between 1.2 and 1.6 for various settings close in range to those of Table 4.1. Items

that deteriorate increasingly more over time generate less profits; the optimal cycle times

decrease; the introduction of a small period during which there are backorders becomes

more profitable, at least for high β values and r ≤ 2, as the savings in deterioration and

holding costs seem to cover for the losses from delayed profits.
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Table 4.2: The numerical results when production rate changes

R β T1 T2 T3 T4 T p Profit (AS)

130 0.5 1.473 0.582 0 0 2.055 27.212 1945.451
1 1.445 0.571 0.067 0.158 2.241 27.198 1946.430

140 0.5 1.241 0.630 0 0 1.871 27.300 1939.412
1 1.241 0.630 0.059 0.109 2.039 27.300 1940.105

150 0.5 1.085 0.670 0 0 1.755 27.346 1934.603
1 1.085 0.670 0.050 0.076 1.881 27.346 1935.079

160 0.5 0.972 0.710 0 0 1.682 27.418 1930.668
1 0.972 0.710 0.041 0.053 1.777 27.418 1930.977

170 0.5 0.881 0.742 0 0 1.623 27.479 1927.348
1 0.881 0.742 0.033 0.037 1.693 27.479 1927.539

4.5.2 Profit maximisation versus cost minimisation

In Section 4.4 we have parametrically obtained the settings for a cost minimisation model

for constant demand, so that it will achieve the same optimal results as the reference

NPV model, but only for the special case that γ = 1. We have already made the

argument that deriving these relationships purely from intuition seems not trivial, but

let us assume that they are known.

We test whether an intuitive setting of the parameters, based on these results, could

result in near-optimal solutions for the more general setting of Weibull-based deterio-

ration. We have to assume, however, a constant demand and price. We consider the

parameter settings of the original example reported in Section 4.5.1, except that we take

p = 9, y = 100, f = 1.6, r = 0, β = 0.8, and b = 1.72.

To do the experiment, we first use the algorithm developed for reporting results in

Section 4.5.1 directly for maximising the objective function of the reference NPV model,

but where we only have to search for the fixed value of p.

Subsequently, we have modified this version of the algorithm so that it works to minimise

a cost NPV version of a model similar to the one given by (4.36), but properly adapted for

the case of the Weibull-based deterioration model. Based on (4.37) to (4.39), we assume

the following relationships h = αc+f , hd = d+c, hb = α(p−c)+b, and hl = (p−c)+π.

We hence guess that h = 0.08(5)+1.6 = 2, hd = 0+5 = 5, hb = 0.08(9−5)+1.72 = 2.04,

and hl = 4 + 0 = 4. The error terms δX = 100(X∗ASC −X∗ASP )/X∗ASP further reported
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measure the percentage gap of the optimal cycle time value X derived in the cost model

to the optimal value of X found with the reference model, where X ∈ {T2, T3}. We first

tested the Weibull algorithm for the exponential case i.e. γ = 1, ceteris paribus, in order

to check that the equivalence relationships derived in Section 4.4.1 can be numerically

confirmed. We indeed find a close correspondence as |δT2 |+ |δT3 | < 0.5%.

Table 4.3 and Figure 4.3 illustrate the comparison between the two models when γ = 1.5.

In each scenario, we take hb = 2.04, hd = 5, and hl = 4, but as we cannot be sure of

these relationships to hold in case of the Weibull failure rate, we solve for various values

of h in the range from 1.6 to 2.8.

Table 4.3: Comparison between profit maximisation and cost minimisation for
the case presented in Section 4.5.2

Objective function h T1 T2 T3 T4 T Profit (AS) δT2(%) δT3(%)

Profit max - 0.924 0.443 0.191 0.218 1.776 290.191 - -

Cost (AS)

Cost min 1.6 1.112 0.526 0.122 0.139 1.899 100.244 19 -36
1.8 1.041 0.495 0.154 0.176 1.866 104.655 12 -19
2.0 0.980 0.468 0.182 0.208 1.838 108.641 6 -5
2.2 0.927 0.444 0.208 0.238 1.817 112.261 0 9
2.4 0.881 0.423 0.232 0.265 1.801 115.564 -5 21
2.6 0.837 0.403 0.253 0.289 1.782 118.589 -9 32
2.8 0.799 0.386 0.273 0.312 1.770 121.370 -13 43

As can be observed, the value for h = 2, given the values of the other parameters, is not

optimal. Even deviating from this value h = 2 does not seem to produce the optimal

values for T2 or T3 simultaneously for one setting of the parameters. The total costs

obviously change, but this gives us no real information. In the absence of a reference

model, it is difficult to detect the sub-optimality of the cost model, and more specifically

what goes wrong, or how to correct the parameter values. After extensive computational

calculations, we have found that the set of parameters that produce the closest results

to the profit reference model should be h = 2.25, hd = 5, hb = 1.95, and hl = 4. See

also Figure 4.4. Hence, there seems to be a more complex relationship between the

parameters h and hb that what is the case for γ = 1. These numerical errors are not

overly great and may in some practical contexts still be acceptable. In the absence of an

equivalence result, however, one cannot be sure about how well the cost minimisation

model will perform in other settings.
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Figure 4.3: Errors in decision variables (hl = 4, hd = 5, hb = 2.04)

Figure 4.4: Errors in decision variables (hl = 4, hd = 5, hb = 1.95)

4.6 Conclusions

We have presented a profit-maximising NPV model for a Weibull-type deteriorating item

and partial backlogging under (in)finite production rates, incorporating various degrees

of freedom in terms of payment structures related to backordered items. The model can

be used as a starting point for more detailed modelling, for example, in the context of

investigating how the payment structure related to backorders may influence the demand

during stock-outs, and therefore optimal policies and profits.

Using the model as a reference for the special case of negative exponential deterioration

(γ = 1) allowed us to interpret two strands of cost- minimising NPV models which use,

at the surface, the same cost parameters. The results of this analysis are two-sided.
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On the one hand, we have proven the equivalence of the basic modelling logic of these

two strands of models from the literature in this particular context. It is reassuring

that these models can indeed be used to maximise profits in the case of exogenous

demand. The equivalence conditions derived illustrate that a practical approach to set

their parameters accurately may be identified.

On the other hand, the analysis also reveals potential pitfalls related to cost minimisation

under NPV. First, the two strands of models differ, but only slightly, in the settings their

parameters should receive. We have argued that this seems in the end reasonably in

line with intuition, but nevertheless difficult to arrive at without having conducted the

equivalence analysis with a reference profit maximising model. Second, we illustrated

numerically that, even when an equivalence result is obtained for a simpler setting, that

this may not necessarily carry over when the modelling logic is more complicated. Third,

we have pointed out that the straightforward discounting of cost functions from classic

inventory theory is not conform to the common understanding that net present values

are to be derived from real cash-flows and their timing only. While this procedural

difference with conventional NPV modelling did not seem to impact the equivalence

results obtained, one cannot be sure that this approach guarantees equivalence to other

reference models.
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Abstract

Warehouse capacity is one of the main constraints when modelling an inventory system

in a real-world problem. Most of the models in the inventory management literature

relax this assumption and consider unlimited capacity. Deteriorating item inventory

literature as one of the subsets of inventory management literature is not an exception

in this regard. A group of researchers modelling inventory systems for deteriorating

items, assume a limit for the owned warehouse (OW) capacity and allow the system

to be able to rent extra warehouse capacity (RW) if needed (two-warehouse models).

Almost all the two-warehouse models in the literature developed for deteriorating items

are single-echelon. In this Chapter a single-buyer, single-supplier model is developed

where the capacity at the buyer (retailer) is limited. Compared to the literature, in this

study a modified version for the inventory level at the OW and the RW is suggested

and the effect of this modification is analysed and presented through some numerical

examples.

5.1 Introduction and literature review

Deterioration first was incorporated in modelling to address a blood bank system. Blood

supply can be kept in stock for certain number of days after which they should be

disposed of (Goyal and Giri, 2001). This specific application has caused the emergence

of deteriorating item literature as a subset of inventory management area. Ever since

a great number of researchers, have considered deterioration in their modelling. In this

literature different streams of research can be identified. For an overview of the literature

of a deteriorating inventory see Nahmias (1982), Raafat (1991), Goyal and Giri (2001),

Li et al. (2010) and Bakker et al. (2012).

In the literature of deteriorating items, mainly models include a single-echelon system

of which the total cost is minimised. This study considers the subset of literature where

the time value of money is important. Therefore a Net Present Value (NPV) approach

is adopted in which all the cash-flows that will take place in future are discounted to

the present time.

In many inventory models (for deteriorating products) warehouses are assumed to have

unlimited capacity. There are a number of factors which influence the decision model,
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and hence the optimal inventory policy, when this assumption is relaxed. The literature

introduces a new structure named two-warehouse model to address this assumption. Re-

searchers argue that it may be beneficial for the retailer to use (rent) an additional ware-

house (RW), or warehouse space, as this allows purchasing products in larger batches

than the capacity of the retailer’s owned warehouse (OW). Therefore, the capacity of

the warehouse could play an important role in making trade-offs in these two-warehouse

models. Yang (2004b) develops a two-warehouse model for an item with exponential

life-time distribution with complete backlogging in the case of shortages. Later, Yang

(2006) extends Yang (2004b) by assuming partial backlogging. Wee et al. (2005) study a

model with varying rate of deterioration and partial backlogging. Jaggi et al. (2011) in-

vestigate a two-warehouse model with partial backlogging and time-dependent demand.

Yang (2012) considers a model similar to that in Yang (2006) but where the deteriora-

tion rate is based on a three-parameter Weibull distribution. Yang and Chang (2013)

extend Yang (2006) by assuming permissible delays in payments.

Law and Wee (2006) analyse a production-inventory model for an item with Weibull

distributed life-time in which shortages are partially backlogged. This model is developed

considering livestock as the raw material and hence the factor of amelioration is included.

Lo et al. (2007) develop a comparable model with time-dependent deterioration rate and

no amelioration.

To date, very few studies on deteriorating inventory consider multi-echelon supply chains

which indicates that studying such models and the influence of the integration within

the supply chains need more attention by researchers.

In all the above-mentioned two-warehouse models the goal is to minimise the average

of the discounted cost function of the first inventory cycle. This objective function,

however, is hard to interpret as it is not clear what exactly it captures and how well this

represents the performance of the system. A group of researchers improved this objec-

tive function by minimising (maximising) the present value of total cost (profit) when

developing two-warehouse models (see Dey et al., 2008; Hsieh et al., 2008; Singh et al.,

2009). These studies are however limited to the models with single-echelon structure. It

is noted that the very few research works on two-warehouse multi-echelon models take

a cost minimisation approach using the classic inventory modelling parameters of (1)

unit holding cost, (2) unit lost sale cost, and (3) unit backorder cost. As Ghiami and

Beullens (2013) argue (see also Chapter 4), taking a profit maximisation approach based
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on the cash-flow structure in a relevant reference NPV model is safer, unless researchers

can reasonably justify the equivalence between the cost minimisation model they adopt

and the profit maximisation reference model, by appropriately choosing the values of

cost parameters (unit holding, lost sale, backorder and deterioration cost). This is while

none of the above-mentioned cost minimisation models give a clear explanation on how

they assign values to these cost parameters.

In the literature on two-warehouse models, researchers assume that the retailer uses the

inventory stored at the RW to meet the demand. This implies that the RW is fairly

close to the retailer’s market or else, that the cost of delivering from the RW to the OW

is negligible. This assumption has been made by Dey et al. (2008) in a single-echelon

model, however, the researchers do not bring any discussion on how this assumption

could affect the results. Most of researchers assume that both the deterioration rate

and the (out-of-pocket) holding cost at the RW are higher than the ones at the OW.

Therefore, it seems reasonable to replace what is deteriorated at the OW by fresh items

from the RW. This in fact should not be costly due to the implicit assumption in the

literature that considers the two warehouses to be relatively close. This replenishment

policy keeps the OW inventory level at W that could influence the optimal solution, in

particular when the demand is stock dependent.

The contributions of this research work are as follow. Firstly, an integrated inventory

model is developed in which due to limits in the warehouse capacity the retailer has the

option to use a second warehouse. This is while all the two-warehouse NPV models in

the existing literature have a single-echelon structure. The demand is stock-dependent

and in case of shortages, unmet demand is partially backlogged. Secondly, the objective

is to maximise the annuity stream of the profit function derived from cash-flows. These

cash-flows are themselves functions of the payment structures agreed between the firms

involved in the logistics process. In the literature in contrast, most researchers minimise

cost function using the classic unit holding, lost sale, and backorder cost parameters.

This objective function is studied further to illustrate the effects of the integration on

this supply chain. Finally, the inventory level at the OW and the RW are modified to a

more practical manner and the influence of this change on the optimality is studied.

Section 5.2.2 presents the model assumptions and the cash-flow structure between the

retailer and the wholesaler. In Section 5.3 the mathematical model of the integrated

system is analysed and the effects of the capacity constraints together with the supply
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chain property are studied. To investigate how the modified inventory level influences

the whole integrated system, in Section 5.4 a similar model is developed in which the

inventory level assumptions of the OW and the RW are based on the literature. Some

numerical examples are presented in Section 5.5 which are followed with a discussion

and conclusion in Section 5.6.

5.2 The NPV reference model

5.2.1 The activity

In this integrated system, a retailer cooperates with its upstream supplier to deliver

a deteriorating product to the final customer(s). Figure 5.1 illustrates how the stock

position changes at the retailer over time. The demand at the retailer is the function

D(t) = y + zIo(t), where y and z are constants and Io(t) represents the inventory level

at the OW. The retailer places an order to the supplier and receives the batch promptly.

The retailer stores W items of the received quantity at time t = 0 in the OW and uses

the RW for the excess inventory. From t = 0 to t = tr the demand takes place at the

rate D(t) = y+ zW as the OW is full. At time tr when the RW inventory level depletes

completely, the retailer starts depleting the OW to meet the demand. At t = to the

OW runs out of inventory and hence the demand rate drops to y and stays at this level

until the next replenishment (t = TR). During this shortage period, only a percentage

of the demand (β) is backlogged while the rest is lost. On the arrival of the next batch,

the backlogged demand is met immediately. The described inventory position between

0 and TR at the retailer takes place over next intervals of length TR at infinitum.

Each inventory cycle at the wholesaler is to cover k inventory cycles of the retailer

(TW = kTR). The wholesaler receives the first batch at t = 0 and immediately dispatches

the first order quantity (QR − βyts) to the retailer and stores the rest of the items. As

at the end of the first period there will be some backlogged demand at the retailer,

the order quantity for the second period and the following periods become QR. This

results in drops of QR at the wholesaler inventory level in TR intervals. Between each

two deliveries to the retailer, the inventory level at the wholesaler decreases due to

a constant rate of deterioration (θ). This pattern continues until the inventory level

reaches zero at t = (k − 1)TR. At time t = kTR the wholesaler replenishes its inventory

and immediately sends the next batch (QR) to the retailer. At this point, the inventory
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Figure 5.1: Inventory level at the retailer

Figure 5.2: Inventory level at the wholesaler

position is exactly as it was at t = 0. This logistics pattern repeats itself indefinitely.

Figure 5.2 depicts the change of the inventory level at the wholesaler.

5.2.2 The cash-flows

The objective of this integrated supply chain is to maximise the NPV of all future cash-

flows. With this regard, the payment structure of the whole supply chain is considered.

It is assumed the transfer prices which take place between the two members of this

two-echelon model do not affect the optimal solution of the integrated system as the

relevant assumptions hold, see Beullens and Janssens (2013). For comparison purposes,

however, the transfer prices are considered to evaluate the performance of the both firms
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independently. The payment structures of the retailer and the wholesaler are illustrated

in Figures 5.3 and 5.4. Figure 5.5 shows the payment structure of the whole system.

Figure 5.3: Payment structure at the retailer

Figure 5.4: Payment structure at the wholesaler

It is assumed that when the demand arises and the retailer’s stock position is strictly

positive the relevant revenue is immediately enjoyed by the retailer. As the inventory

level at the OW is at maximum during the period associated with tr, the revenue over

this period is at the annuity stream level p(y + zW ). During the time interval between

tr and to the revenue at the retailer is a continuous function of the inventory level,

p(y+ zIo(t)). Shortage period starts at t = to after which the retailer receives a deposit

g ≥ 0 for each unit of the demand which is backlogged. This makes a revenue at the
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annuity stream level gβy between to and TR. At the end of an inventory period when

the retailer replenishes its inventory level, the backlogged demand is met immediately

and the retailer gives a reduction of r ≥ 0 per unit of backordered item which creates a

revenue of βyts(p− g − r).

The retailer incurs a set-up cost sR at the beginning of each inventory period when

placing an order to the wholesaler. At the same time the retailer should pay the pur-

chasing price, pRQR (except for the first inventory period where it is pR(QR − βyts)),

to the wholesaler. The retailer pays an out-of-pocket holding cost of fo and fr per unit

of time per unit of item at the OW and the RW respectively. Each deteriorated item

at the OW and the RW creates an instantaneous out-of-pocket cost of dR which is paid

to a recycling company to dispose of. During this shortage period the retailer incurs

backorder cost b per item per unit of time. The retailer also has to pay a penalty of π

for each unit of lost sale which creates an annuity stream cost of π(1 − β)y during the

stock-out period.

Figure 5.5: Payment structure of the supply chain

The wholesaler receives lump sum revenues of pRQR in TR intervals, except for the first

revenue at t = 0 where it is pR(QR − βyts) only. At the start of each inventory period

i.e. at times t = iTW , the wholesaler incurs a fixed set-up cost of sW to place an order to

the upstream supplier. The wholesaler then also pays the purchasing cost proportional

to the order quantity QW to the external supplier at t = iTW . There is an out-of-pocket

holding cost for stock at the wholesaler, f , which should be paid per item per unit of

time. During the in-stock period, each deteriorated item creates a disposal cost of dW

for the wholesaler that should be paid to a recycling company.
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5.3 Mathematical model

5.3.1 Inventory and shortage levels at the retailer

In this research is is assumed that the demand is a function of on-hand inventory. The

following shows the demand function:

D(t) = y + zIo(t). (5.1)

As the demand is a function of inventory level at the OW, therefore the retailer should

aim to keep the inventory level of the OW at maximum W . To do so, the retailer

replaces deteriorated items at the OW with fresh ones from the RW. Other factors which

decrease the inventory level at the RW are deterioration at the RW and the demand.

This inventory level finally reaches zero at t = tr. This boundary condition, Ir(tr) = 0,

is used to find the inventory level. The following differential equation shows the changes

of the inventory level at the RW:

dIr(t)

dt
= −(zW + y)− θrIr(t)− θoW, 0 ≤ t ≤ tr. (5.2)

By solving the differential equation presented in (5.2), the inventory level of the RW

during this interval is obtained:

Ir(t) =
(z + θo)W + y

θr
(eθr(tr−t) − 1), 0 ≤ t ≤ tr. (5.3)

There is no change in the level of inventory at the OW between t = 0 and t = tr

(dIo(t)/dt = 0) with the initial inventory level of W , hence the inventory level is:

Io(t) = W, 0 ≤ t ≤ tr. (5.4)

At t = tr the inventory level at the RW is depleted totally and the retailer starts using

the items at the OW. The following differential equation shows how this inventory level

changes due to the demand and the deterioration until it reaches zero at t = to:

dIo(t)

dt
= −zIo(t)− y − θoIo(t), tr ≤ t ≤ to, (5.5)
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therefore

Io(t) =
y

z + θo
(e(z+θo)(to−t) − 1), tr ≤ t ≤ to. (5.6)

The shortage period starts at t = to when the retailer runs out of inventory at the OW

and continues to the end of the cycle t = TR, during which only a percentage, β, of

the demand is backordered. The shortage level is presented by the following differential

equation:
dB(t)

dt
= βy, to ≤ t ≤ TR. (5.7)

Considering the relevant boundary condition, B(to) = 0, the shortage level is:

B(t) = βy(t− to), to ≤ t ≤ TR. (5.8)

Io(t) has a unique value at t = tr and therefore can be obtained using both (5.4) and

(5.6):

to = tr +
1

z + θo
ln

(
1 +

z + θo
y

W

)
. (5.9)

Having to as a function of tr, the inventory period at the retailer is as follows:

TR = tr +
1

z + θo
ln(1 +

z + θo
y

W ) + ts. (5.10)

The retailer’s batch size for the second period onward is the sum of the backordered

items and the initial inventory level:

QR =Ir(0) + Io(0) +B(TR)

=
(z + θo)W + y

θr
(eθrtr − 1) +W + βyts.

(5.11)

5.3.2 Inventory level at the wholesaler

The wholesaler covers k inventory cycles of the retailer during each of its inventory

periods TW . This divides the inventory cycle at the wholesaler into k intervals of length

TR. The stock level at the wholesaler drops by QR at the beginning of each of these

intervals when a batch is sent to the retailer. During each interval the inventory level at

the wholesaler is depleted due to deterioration. It is clear that after sending a batch to

the retailer to cover the kth interval at the retailer, it is optimal that the wholesaler does

not keep any items in stock until receiving the next order from its upstream supplier.
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This means that the inventory level at the wholesaler is zero in the interval between

t = (k − 1)TR and t = kTR. The following differential equation shows the change in the

stock level over interval i:

dIiW (t)

dt
= −θIiW (t), i = 1, 2, . . . k − 1. (5.12)

The inventory level at the wholesaler at t = (k−1)TR, just before sending the last batch

to the retailer, is QR. Considering this boundary condition the inventory level at the

wholesaler between (k − 2)TR and (k − 1)TR is given by:

Ik−1W (t) = QRe
θ[(k−1)TR−t], (k − 2)TR ≤ t ≤ (k − 1)TR. (5.13)

According to (5.13), the inventory level at the wholesaler at t = (k − 2)TR just before

sending a batch to the retailer is QR(eθTR + 1). Using this inventory level as a boundary

condition, the inventory level of (k − 2)th interval is:

Ik−2W (t) = QR(eθTR + 1)eθ[(k−2)TR−t], (k − 3)TR ≤ t ≤ (k − 2)TR. (5.14)

The inventory level at the wholesaler during ith interval hence is given by:

IiW (t) =QRe
θ(iTR−t)

k−i−1∑
m=0

emθTR

=QRe
θ(iTR−t) e

θ(k−i)TR − 1

eθTR − 1
, (i− 1)TR ≤ t ≤ iTR, i = 1, 2, ..., k − 1.

(5.15)

Using (5.15), one can find the inventory level at the wholesaler at t = 0 just after sending

the first batch to the retailer:

I1W (0) = QR
ekθTR − eθTR
eθTR − 1

, (5.16)

and therefore, the wholesaler order quantity is given by I1W (0) +QR, hence:

QW = QR
ekθTR − 1

eθTR − 1
. (5.17)

In the next two sections, the relevant revenues and costs of the both members are

analysed.
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5.3.3 Revenues and costs at the retailer

The continuous revenue enjoyed by the retailer during the time interval between t = 0

and t = tr at the beginning of all inventory cycles is p(y+ zW ). The equivalent annuity

stream of all such revenues over an infinite horizon is:

ASRR1 = p(y + zW )
1− e−αtr
1− e−αTR

. (5.18)

The revenue function of the retailer changes to p(y + zIo(t)) between tr and to. The

equivalent annuity stream of these revenues over an infinite horizon is hence given by:

ASRR2 =
α

1− e−αTR

∫ to

tr

p(y + zIo(t))e
−αtdt

=pye−αto
eα(to−tr) − 1

1− e−αTR

+
αpyze−αto

(z + θo)(1− e−αTR)

[
1

α+ z + θo
(e(α+z+θo)(to−tr) − 1)− 1

α
(eα(to−tr) − 1)

]
.

(5.19)

In each inventory cycle at the retailer over a shortage period (between t = to and t = TR),

the retailer receives a deposit of g for each backordered item which creates an annuity

revenue of gβy in that cycle. The equivalent annuity stream of revenues obtained from

deposits in all cycles over an infinite horizon is:

ASRR3 = gβy
e−αto − e−αTR

1− e−αTR
. (5.20)

Just after the inventory has been replenished at the retailer, the backordered demand

is met immediately, creating a lump sum revenue of (p− g − r)βyts at the end of each

inventory cycle. The equivalent annuity stream of all these lump sum revenues over an

infinite horizon is as follows:

ASRR4 = (p− g − r)βyts
αe−αTR

1− e−αTR
. (5.21)

The annuity stream of all revenues at the retailer over an infinite horizon is:

ASRR = ASRR1 +ASRR2 +ASRR3 +ASRR4. (5.22)
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At the start of each inventory cycle, the retailer incurs a set-up cost of sR. The annuity

stream of all set-up costs over an infinite horizon is given by:

SCR = sR
α

1− e−αTR
. (5.23)

The retailer pays the purchasing price when placing an order at the beginning of each

inventory cycle. It should be noted that the order quantity of the first inventory cycle

is smaller as no backordered demand exists. The annuity stream of all purchasing costs

over an infinite horizon is then:

PCR = pRQR
α

1− e−αTR
− αpRβyts. (5.24)

The present value of out-of-pocket holding cost at the OW and the RW only for the first

period are:

HCo = fo

∫ to

0
Io(t)e

−αtdt, (5.25)

and

HCr = fr

∫ tr

0
Ir(t)e

−αtdt, (5.26)

respectively.

The equivalent annuity stream of all out-of-pocket holding costs at the retailer over an

infinite horizon is then given by:

HCR = HCOW +HCRW , (5.27)

where

HCOW =
α

1− e−αTR
HCo

=foW
1− e−αtr
1− e−αTR

+
foy

z + θo

[
α

z + θo + α

(
e(z+θo)(to−tr)−αtr − e−αto

1− e−αTR

)
− e−αtr − e−αto

1− e−αTR

]
,

(5.28)
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and

HCRW =
α

1− e−αTR
HCr

=
fr ((z + θo)W + y)

θr

[
α

α+ θr

(
eθrtr − 1

1− e−αTR

)
− θr
α+ θr

(
1− e−αtr
1− e−αTR

)]
.

(5.29)

The retailer has to pay dR per unit of deteriorated item to dump/recycle to a recycling

company. This cost is incurred immediately after an item deteriorates. The annuity

stream of the deterioration cost of all inventory cycles over an infinite horizon is given

by:

DCR = DCOW +DCRW , (5.30)

where

DCOW =dRθoW
1− e−αtr
1− e−αTR

+
dRθoy

z + θo

[
α

z + θo + α

(
e(z+θo)(to−tr)−αtr − e−αto

1− e−αTR

)
− e−αtr − e−αto

1− e−αTR

]
,

(5.31)

and

DCRW = dR ((z + θo)W + y)

[
α

α+ θr

(
eθrtr − 1

1− e−αTR

)
− θr
α+ θr

(
1− e−αtr
1− e−αTR

)]
. (5.32)

During the out-of-stock period, each backordered item creates a backorder penalty cost

of b per item per unit of time. The present value of this shortage cost for the first period

only, is:

BC =

∫ TR

to

bβy(t− to)e−αtdt

=
bβy

α

(
e−αto

α
(1− e−αts)− tse−αTR

)
,

(5.33)

and therefore the equivalent annuity stream of all shortage costs over an infinite horizon

is given by:

BCR =
α

1− e−αTR
BC

=bβy

(
e−αto

α

(
1− e−αts
1− e−αTR

)
− ts

e−αTR

1− e−αTR

)
.

(5.34)

A penalty of π per unit of lost sale is paid by the retailer which creates a cost of πy(1−β)

over the time interval between t = to and t = TR. The equivalent annuity stream of all
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lost sale costs over an infinite horizon is:

LCR =
α

1− e−αTR
πy(1− β)

∫ TR

to

e−αtdt

=πy(1− β)

(
e−αto − e−αTR

1− e−αTR

)
.

(5.35)

Considering the annuity streams of profit in (5.18) - (5.21) and annuity streams of cost

in (5.23), (5.24), (5.27), (5.30), (5.34) and (5.35), the annuity stream profit function at

the retailer is given by:

ASPR = ASRR − (SCR + PCR +HCR +BCR + LCR +DCR). (5.36)

5.3.4 Revenues and costs at the wholesaler

The wholesaler receives revenues of pRQR at t = iTR (i = 1, 2, 3, ...) associated with

the batches sent to the retailer. The revenues at t = 0, however, is less as there are no

backlogged items at the retailer yet. The equivalent annuity stream of all the revenues

over an infinite horizon is given by:

ASRW =αpR(QR − βyts) + αpRQRe
−αTR(1 + e−αTR + e−2αTR + ...)

=pRQR
α

1− e−αTR
− αpRβyts.

(5.37)

The set-up cost of purchasing for the wholesaler, sW , is incurred at the beginning of

each of wholesaler’s inventory cycle. The equivalent annuity stream of all set-up costs

paid over an infinite horizon is given by:

SCW = sW
α

1− e−αkTR
. (5.38)

The wholesaler purchases the item in batches of size QW at the price of pW per item.

These costs are incurred at the beginning of the wholesaler’s inventory cycles. The first

wholesaler’s batch is QW − βyts, due to there being no backorders at the retailer at

t = 0. The corresponding annuity stream of all purchasing costs at the wholesaler is

consequently given by:

PCW = pWQW
α

1− e−αkTR
− αpWβyts. (5.39)
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The inventory period at the wholesaler consists of k inventory cycles of the retailer.

Considering the inventory level of ith interval presented in (5.15), the present value of

holding cost at the wholesaler for the first inventory cycle only, is:

HCW1 =
k−1∑
i=1

∫ iTR

(i−1)TR
fIiW (t)e−αtdt

=
fQR(e(θ+α)TR − 1)

(θ + α)(eθTR − 1)

[
eθkTR

e−(θ+α)TR − e−(θ+α)kTR
1− e−(θ+α)TR

− e−αTR − e−αkTR
1− e−αTR

]
,

(5.40)

and therefore the annuity stream of all holding costs at the wholesaler over an infinite

horizon is:

HCW = HCW1
α

1− e−αkTR
. (5.41)

The deterioration cost at the wholesaler is incurred exactly at the same time as the

out-of-pocket holding cost, and occurs at the rate dW θ. The annuity stream of this cost

over an infinite horizon is given by:

DCW =
αdW θQR(e(θ+α)TR − 1)

(θ + α)(eθTR − 1)(1− e−αkTR)

[
eθkTR

e−(θ+α)TR − e−(θ+α)kTR
1− e−(θ+α)TR

− e−αTR − e−αkTR
1− e−αTR

]
.

(5.42)

Using the revenues and costs presented in (5.37) - (5.39), (5.41) and (5.42) the annuity

stream of profit function at the wholesaler is obtained:

ASPW = ASRW − (SCW + PCW +HCW +DCW ). (5.43)

Considering the same capital rate for both the retailer and the wholesaler, the annuity

stream profit function of the supply chain is:

ASPSC =ASPR +ASPW

=ASRR

− (SCR +HCR +BCR + LCR +DCR + SCW + PCW +HCW +DCW ).

(5.44)
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5.4 A comparison with the existing literature

As discussed in Section 5.1, in the literature, two-warehouse systems are modelled in

a different way in terms of replenishments between the OW and the RW. In order to

see how this difference can influence the optimality, a model is presented based on the

assumptions in the literature. As an example, the model developed by Ghiami et al.

(2013) is considered (see Chapter 2). Figure 5.6 graphically illustrates how the inventory

level at the OW and the RW change based on the assumptions in the literature.

Figure 5.6: The inventory level at the RW and the OW based on the existing literature
(Ghiami et al., 2013)

Each inventory period at the retailer, TR = to + ts, is divided into three parts, (1) the

start of the inventory when the RW is in use, (2) the interval between tr and to when

the stock held at the OW used to meet the demand, and (3) the shortage period.

The following differential equation represent the change in the inventory level at the

RW:
dI ′r(t)

dt
= −θrI ′r(t)− (y + zI ′o(t)), 0 ≤ t ≤ t′r. (5.45)

Considering the boundary condition, I ′r(tr) = 0, for the differential equation presented

in (5.45), the inventory level of this time interval is obtained:

I ′r(t) =
y

θr
(eθr(t

′
r−t) − 1) +

zWe−θot

θr − θo
(e(θr−θo)(t

′
r−t) − 1), 0 ≤ t ≤ t′r. (5.46)
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In the literature it is assumed that during the time that the RW is in use, the inventory

level at the OW goes down due to deterioration:

dI ′o(t)

dt
= −θoI ′o(t), 0 ≤ t ≤ t′r. (5.47)

Using the boundary condition, I ′o(0) = W , the inventory level is obtained:

I ′o(t) = We−θot, 0 ≤ t ≤ t′r. (5.48)

The change in the inventory level at the OW between t = t′r and t = t′o is as shown in

the following differential equation:

dI ′o(t)

dt
= −zI ′o(t)− y − θoI ′o(t), t′r ≤ t ≤ t′o, (5.49)

and therefore:

I ′o(t) =
y

z + θo
(e(z+θo)(t

′
o−t) − 1), t′r ≤ t ≤ t′o. (5.50)

Considering the unique value for I ′o(t) at t = t′r obtained from (5.48) and (5.50), the

value of t′o is as follows:

t′o = t′r +
1

z + θo
ln

(
1 +

z + θo
y

We−θot
′
r

)
, (5.51)

and as TR = to + ts, therefore:

T ′R = t′r +
1

z + θo
ln

(
1 +

z + θo
y

We−θot
′
r

)
+ t′s. (5.52)

The retailer’s batch size for the second period onwards is:

Q′R =
y

θr
(eθrt

′
r − 1) +

zW

θr − θo
(e(θr−θo)t

′
r − 1) +W + βyt′s. (5.53)

The revenue received by the retailer between t = 0 and t = t′r is p(y + zI ′o(t)). The

annuity stream of all such revenues over an infinite horizon is hence given by:

ASR′R1 = py
1− e−αt′r
1− e−αT ′R

+
αpzW

θo + α

(
1− e−(θo+α)t′r

1− e−αT ′R

)
. (5.54)
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The other revenue terms for the retailer are as presented in (5.19) - (5.21):

ASR′R2 =pye−αt
′
o
eα(t

′
o−t′r) − 1

1− e−αT ′R

+
αpyze−αt

′
o

(z + θo)(1− e−αT
′
R)

[
1

α+ z + θo
(e(α+z+θo)(t

′
o−t′r) − 1)− 1

α
(eα(t

′
o−t′r) − 1)

]
,

(5.55)

ASR′R3 = gβy
e−αt

′
o − e−αT ′R

1− e−αT ′R
, (5.56)

and

ASR′R4 = (p− g − r)βyt′s
αe−αT

′
R

1− e−αT ′R
. (5.57)

The annuity stream of revenues at the retailer is hence:

ASR′R = ASR′R1 +ASR′R2 +ASR′R3 +ASR′R4. (5.58)

Taking the same approach as in Section 5.3.3, the present value of holding cost at the

OW and the RW only for the first period are:

HC ′o = fo

∫ t′o

0
I ′o(t)e

−αtdt, (5.59)

and

HC ′r = fr

∫ t′r

0
I ′r(t)e

−αtdt. (5.60)

The annuity stream of holding cost at the retailer over an infinite horizon is hence given

by:

HC ′R = HC ′OW +HC ′RW , (5.61)

where

HC ′OW =
α

1− e−αT ′R
HC ′o

=
αfoW

α+ θo

(
1− e−(α+θo)t′r

1− e−αT ′R

)

+
foy

z + θo

[
α

α+ z + θo

(
e(z+θo)(t

′
o−t′r)−αt′r − e−αt′o
1− e−αT ′R

)
− e−αt

′
r − e−αt′o

1− e−αT ′R

]
,

(5.62)
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and

HC ′RW =
α

1− e−αT ′R
HC ′r

=
αfr(e

θrt′r − e−αt′r)
(α+ θr)(1− e−αT

′
R)

(
y

θr
+
zWe−θot

′
r

θr − θo

)

− fry

θr

(
1− e−αt′r
1− e−αT ′R

)
− αfrzW

(α+ θo)(θr − θo)

(
1− e−(α+θo)t′r

1− e−αT ′R

)
.

(5.63)

The present value of deterioration cost at the OW and the RW for the first period are:

DC ′o = dR

∫ t′o

0
θoI
′
o(t)e

−αtdt, (5.64)

and

DC ′r = dR

∫ t′r

0
θrI
′
r(t)e

−αtdt. (5.65)

Therefore, the annuity stream of deteriorating cost at the retailer over an infinite horizon

is:

DC ′R = DC ′OW +DC ′RW , (5.66)

where

DC ′OW =
α

1− e−αT ′R
DC ′o

=
αdRθoW

α+ θo

(
1− e−(α+θo)t′r

1− e−αT ′R

)

+
dRθoy

z + θo

[
α

α+ z + θo

(
e(z+θo)(t

′
o−t′r)−αt′r − e−αt′o
1− e−αT ′R

)
− e−αt

′
r − e−αt′o

1− e−αT ′R

]
,

(5.67)

and

DC ′RW =
α

1− e−αT ′R
DC ′r

=
αdRθr(e

θrt′r − e−αt′r)
(α+ θr)(1− e−αT

′
R)

(
y

θr
+
zWe−θot

′
r

θr − θo

)

− dRθry

θr

(
1− e−αt′r
1− e−αT ′R

)
− αdRθrzW

(α+ θo)(θr − θo)

(
1− e−(α+θo)t′r

1− e−αT ′R

)
.

(5.68)
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The annuity stream of backorder cost and lost sale cost at the retailer are obtained as

in (5.34) and (5.35):

BC ′R = bβy

(
e−αt

′
o

α

(
1− e−αt′s
1− e−αT ′R

)
− t′s

e−αT
′
R

1− e−αT ′R

)
, (5.69)

and

LC ′R = πy(1− β)

(
e−αt

′
o − e−αT ′R

1− e−αT ′R

)
. (5.70)

Therefore, the annuity stream of the profit function at the retailer is:

ASP ′R = ASR′R − (SC ′R + PC ′R +HC ′R +DC ′R +BC ′R + LC ′R). (5.71)

The annuity stream function of revenue ASR′W and costs SC ′W , PC ′W , HC ′W , and DC ′W

at the wholesaler are the same as (5.37) - (5.39), (5.41) and (5.42). The annuity stream

profit function of the supply chain is hence given by:

ASP ′SC = ASR′R− (SC ′R+HC ′R+BC ′R+LC ′R+DC ′R+SC ′W +PC ′W +HC ′W +DC ′W ).

(5.72)

In the next section, the difference between the two models presented in Section 5.2 and

5.4 is analysed in more detail.

5.5 Numerical examples

5.5.1 Impact of integration

In order to analyse the influence of integration on this system, first an integrated ap-

proach is adopted in analysing the model where the inventory policies of the whole

supply chain are optimised. In the next step, the whole system is optimised with an

independent sequential approach. In the latter approach first the retailer optimises its

inventory policies. Then the wholesaler maximises its profit, using the retailer’s optimal

policies. The sum of the two profit functions gives the total profit of the supply chain,

ASPSeq. The improvement obtained after integration δimp is then given by:
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δimp = 100×
ASP ∗SC −ASP ∗Seq

ASP ∗Seq
. (5.73)

For this purpose, the following data set is assumed in this numerical example: W = 200,

y = 200, z = 0.2, θo = 0.05, θr = 0.09, θ = 0.03, β = 0.7, p = 13, pr = 8, pw = 3.5,

α = 0.05, g = 0, r = 0, sR = 500, sW = 2000, fo = 0.4, fr = 0.8, f = 0.3, b = 2, π = 0,

d = 0, dW = 0.

The decision variables are k, tr and ts when solving the integrated system and as a

maximum can be assumed for these variables, an exhaustive search is conducted. Table

5.1 reports the results of this analysis.

Table 5.1: Numerical results for integrated and sequential approach

TR QR ASPR k TW QW ASPW ASPSC

Integrated approach 2.49 630 485.613 2 4.98 1309 555.165 1040.778

ASPSeq

Independent sequential 1.99 437 580.667 - - - - -
approach - - - 3 5.97 1392 343.126 -

923.793

δimp (%) 12.7

As shown in Table 5.1, the integrated approach results in a better performance for

the whole supply chain, which is an increase of 12.7% in the total profit. Taking the

integrated approach however causes a loss in profit for the retailer. Therefore the success

of the integration depends on how the actors in this supply chain distribute the value

generated from adopting the integrated policy amongst themselves.

The incentive can be divided between the retailer and the wholesaler by reaching an

agreement on the transfer price (pr). In the current model, whenever the retailer pays

for the items (purchasing cost for the retailer), the money is received immediately by the

wholesaler (revenue for the wholesaler). This means in the integrated approach for the

whole supply chain, these two values cancel out and therefore do not have any influence

on the supply chain optimal solution. Each of the members however sees their profit

function sensitive to pr. Table 5.2 shows how the profit gained by the retailer and the

wholesaler change when different values are assigned to pr.
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Table 5.2: The retailer’s and the wholesaler’s profit when pr changes, integrated
approach

pr TR QR ASPR k TW QW ASPW ASPSC

4 2.49 630 1561.323 2 4.98 1309 -520.545 1040.778
6 2.49 630 1023.468 2 4.98 1309 17.310 1040.778
8 2.49 630 485.613 2 4.98 1309 555.165 1040.778
10 2.49 630 -52.242 2 4.98 1309 1093.020 1040.778

In this numerical example the integration results in 12.7% improvement in the profit

function. In order to see the influence of both integration and changes in marginal

profit, a range of values is assigned to p, and the values of pr and pw are adjusted

proportionately. For instance, when p = 9, pr and pw are set equal to 5.54 and 2.42

respectively, therefore p − pw = 6.58 and for the case p = 16, pr and pw are assigned

values of 9.85 and 4.31 respectively, hence p − pw = 11.69. Figure 5.7 shows that

when the margins are tighter and the market is highly competitive, the improvement by

integration is greater, while in less competitive market with high margins the increase

in the total profit of the supply chain gained after integration tends to be small.

Figure 5.7: Improvement (%) in the ASP after integration

5.5.2 Difference with the model of the literature

This example looks into the difference between the reference model (Model 1) and the

literature (Model 2) and examines how this difference influences the optimal solution.

For this purpose models developed in Section 5.2 and 5.4 are solved using the following

data set: W = 200, y = 50, z = 0.7, θo = 0.08, θr = 0.09, θ = 0.03, β = 0.7, p = 7.5,
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pr = 5, pw = 3, α = 0.05, g = 3, r = 1, sR = 300, sW = 1200, fo = 0.4, fr = 0.5,

f = 0.1, b = 2, π = 0, d = 0 and dW = 0.

Table 5.3 presents the results of this numerical analysis including ∆ which captures the

difference between the two models:

∆ = 100×
ASP ∗SC(Model 2)−ASP ∗SC(Model 1)

ASP ∗SC(Model 1)
. (5.74)

As presented in the table, Model 2 results in an optimal solution with almost 20% lower

profit. This is however due to the characteristics of this item and the relevant market.

The demand for this item mainly depends on the on-hand inventory (relatively small

value for y and large value for z) and the margins are relatively low.

Table 5.3: Numerical results of the comparison between Models 1 and 2

TR QR k TW QW ASPSC
Model 1
(Reference Model) 3.32 531 2 6.63 1117 61.076

Model 2
(Literature) 3.29 512 2 6.59 1077 48.938

∆ (%) -0.67 -3.58 - -0.67 -3.61 -19.87

In order to see how the profit margin changes, these two models are solved across a range

of values assigned to p. As discussed in Section 5.5.1, the transfer price does not have any

influences on the optimal solution, therefore here the profit margin of the supply chain

(p − pw) and the relevant effects on the optimal solution is studied. For this purpose,

pw is first set equal to 3 while p is given a range of values, and the two models are then

solved whereby the values of ∆ are calculated. The result of this analysis is illustrated

in Figure 5.8. As the figure shows, the error can be considerable when the margins are

low. This implies that Model 2 underestimates the profits hence is not a very accurate

representation for the system studied in this chapter. In the current case, for instance,

when p = 7.1, Model 1 shows an annuity stream profit of 2.986. This indicates that

there is an optimal solution with profit while Model 2 shows no feasible solution for this

situation (ASPSC = −7.402).
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Figure 5.8: The relative difference between both models with respect to p

5.6 Conclusions

In this chapter a distribution system for a perishable item is considered which consists of

a retailer and a wholesaler. The retailer has a limited capacity at the owned warehouse

(OW) but there is an opportunity of using a second warehouse (RW) with a higher

rate of deterioration and of cost. Compared to the two-warehouse models’ literature,

we have presented a modified version in which the assumptions on the replenishment

process between the two parties are revised with a more practical manner.

In this study it is shown numerically that the transfer price does not affect the supply

chain optimum. Also it is discussed that although the transfer price is not playing a role

in the optimal policies of the supply chain, it can be used as a tool to fairly share the

supply chain’s gaining between the parties involved.

The analysis conducted in this chapter confirms the benefits of integration discussed in

the literature. We show in this study that the significance of these benefits could be

small under some circumstances e.g. when the margins are high.

Further in this chapter a comparison is conducted between models developed in the

literature and the reference model of this study to see how the model can be modified

from a practical viewpoint. The analysis performed in this research work shows that

suggested modification in this chapter can result in a better solution. Also numerically

it is shown that in some cases in which the models from the literature cannot find any

optimum, the modified model presented in this chapter offers an optimum.
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6.1 Overview

The main focus of this thesis work is deteriorating item and both inventory and production-

inventory supply chains delivering this type of product to the downstream costumers.

First, in Chapter 1 a categorisation of deteriorating item inventory literature is pre-

sented which later is used as a framework to identify and address some of the existing

gaps. In Chapters 2 - 5 four models are presented and analysed. Chapter 6 briefly out-

lines the important points of these four models (chapters) and highlights the relevant

contributions.

Moreover, this chapter presents the limitations of the models developed in this research

work and finally illustrates some directions/topics for future research.

6.2 Chapter 2: A Two-echelon Inventory Model for a De-

teriorating Item with Stock-dependent Demand, Par-

tial Backlogging and Capacity Constraints

A two-warehouse supply chain model is considered in which a supplier and a buyer are

collaborating. In the literature few models have addressed two-echelon systems (e.g.

Yang and Wee, 2002; Rau et al., 2003; Yang, 2004b; Law and Wee, 2006; Lo et al.,

2007). These models do not assume any limits for the warehouse capacity. There are,

however, some cases that the capacity of the warehouse could be an issue. One of the

contributions of this chapter is to model such cases.

Yang (2004b) develops an inventory model (and not a production-inventory model) and

appropriately obtains the average inventory level (and not the inventory level) of the

supplier using the concept of echelon stock. In the model developed in Chapter 2, a

different method has been used which not only gives the average inventory level but

also presents the exact inventory level of the supplier as a function of time. The value

of this method is more appreciated when taking the NPV approach as in that case the

inventory level is needed. This method later is used to calculate the supplier’s (out-of-

pocket) holding and deterioration cost with the NPV approach in Chapter 5.

As the model obtained in this chapter is complex and cannot be solved analytically, a

heuristic is developed which combines a genetic algorithm and a local search method.
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Enumeration can also be used for solving this problem but numerical results are then

less accurate. It is shown that for higher accuracy in the decision variable values, the

heuristic developed can be much more efficient and faster compared to enumeration.

6.3 Chapter 3: A Two-echelon Production-Inventory Model

for Deteriorating Items with Multiple Buyers

In the literature of deteriorating items few researchers have addressed multi-echelon

models. Bakker et al. (2012) make a list of research works that model such systems. We

argue that some of the papers (e.g. Lee, 2006; Chung and Huang, 2007; Dye et al., 2007a;

Hsieh et al., 2008; Rong et al., 2008) categorised in Bakker et al. (2012) as multi-echelon

are rather single-echelon systems which analyse two-warehouse models.

The few research works on multi-echelon production-inventory supply chain (e.g. Yang

and Wee, 2002; Rau et al., 2003; Lo et al., 2007; Chung and Wee, 2011), define the

inventory period at the supplier by dropping some part of the production period. In

some of these research works (Yang and Wee, 2002; Law and Wee, 2006; Lo et al., 2007)

the production rate is assumed to be considerably greater than the demand rate. This

makes the missing part of the production period very small and hence negligible. Having

a huge surplus in production capacity, however, is not always feasible nor desirable as it

could impose a high tied-up capital. With this regard, in the model developed in Chapter

3 the assumption of having a great surplus in the production capacity is relaxed.

This assumption, however, is not made in the other group of production-inventory multi-

echelon models (Yang and Wee, 2003; Rau et al., 2003; Chung and Wee, 2011; Yan et al.,

2011). This leaves a difference between the defined production period and the real time

of production. In Chapter 3, a single-manufacturer, multi-buyer model is developed in

which the production period is properly defined. In the next step the average inventory

level of the supplier is obtained using its echelon stock which subsequently is used to

calculate the average inventory holding cost. Two numerical examples from the existing

literature are analysed to see how the above mentioned method may improve the accu-

racy of the model. This study shows that in cases with a limited surplus in production

capacity, the approach we have developed is considerably more accurate in comparison

to the existing models in the literature.
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6.4 Chapter 4: Net Present Value Equivalence Analysis

for an Inventory of a Deteriorating Item with Partial

Backlogging and Finite Production Rate

In Chapters 2 and 3, models are developed and analysed with the classic approach. This

approach however may have some shortcomings when for instance the interest rates are

high, as in such cases the real value of money (costs and revenues) should be determined

based on the time that the cash-flows take place. As a classic approach is unable to do

this, the NPV approach has been adopted in Chapter 4.

There are a few research works that model inventory (e.g see Hsieh et al., 2008; Balkhi,

2011) and production-inventory (e.g. see Law and Wee, 2006; Chung and Wee, 2008)

systems with the NPV approach. Some of these models minimise the total cost of the

system. In a business, in fact, the goal is to maximise the profit rather than to minimise

the cost. In basic models of the inventory theory where the demand is constant and

shortages are not allowed, the revenues are constant and independent of the decision

variables. Therefore, it is mathematically correct to minimise the cost. With this

regard, taking a cost minimisation instead of profit maximisation could be done only if

this replacement does not affect the optimal solution.

In Chapter 4 an NPV reference model is developed and analysed in which the goal is to

maximise the profit. Also a Net Present Value Equivalence Analysis is conducted in order

to find conditions under which a cost minimisation model results in the same optimal

solution as the reference model. This study shows that there is a clear interpretation

for all the cost parameters used in the cost minimisation model in accordance with the

reference model. Moreover, it confirms that in some situations deviation from these

equivalence conditions could result in differences between the solutions obtained from

the two models.
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6.5 Chapter 5: A Net Present Value Model for a Two-

echelon System of a Deteriorating Item with Capacity

Constraints

The NPV models for a deteriorating item inventory with capacity constraints are few

(e.g. see Dey et al., 2008; Jaggi et al., 2011; Yang, 2012) and are all single-echelon

models. In Chapter 5 a two-echelon model is developed in which the retailer has a limit

on the warehouse capacity. The objective function is to maximise the profit to avoid the

use of the classic cost parameters (see Chapter 4).

Another contribution of this model is that assumptions regarding the level of the in-

ventory at the OW and the RW are modified with a more practical perspective. The

assumption in the literature is that as long as the stock position of the RW is positive

(during tr), the inventory at the OW stays untouched. This means that the level of

the inventory at the OW decreases due to the deterioration. The retailer satisfies the

demand using the RW and this in fact means that either the RW is at the marketplace

(very close to the OW) or the cost of transferring the items (one by one) from the RW

to the OW is negligible. Considering the assumption of higher deterioration rate and

holding cost at the RW, we suggest to replenish the OW continuously and keep the

inventory level at maximum. The results of this study illustrate that for some cases the

models in the literature find no feasible solution, while this model shows that an optimal

solution can be found.

6.6 Limitations of the thesis and directions for future re-

search

Considering the models developed in this thesis and what is needed in real cases, some

points could be highlighted as the limitations of this study and accordingly some areas

could be identified for further research.

Firstly, the lead-time has been assumed to be zero in all the models analysed in this

thesis. Although that is the assumption of a large part of the literature, some situations

would be better modelled with a positive lead-time. This assumption may not affect

models developed with the classic approach (Chapters 2 and 3) as this approach is not
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sensitive to time that cash-flows take place. This, however, is not the case when taking

the NPV approach (Chapters 4 and 5) as paying for items and receiving them in a later

time changes the NPV of future profits.

Incorporating a positive lead-time either deterministic or stochastic is suggested for

models with the NPV approach. Considering real cases, lead-time could be included in

different ways when it comes to payment structure. Depending on the agreement between

a supplier and a buyer, the price for items could be paid at the time of ordering while the

buyer has to wait for some time to receive the batch or the buyer pays for items when

the items are delivered. The influence of lead-time on the optimal solution regarding

the supply chain structure (single- or multi-echelon) could also be an interesting topic

for research. In Chapter 4, it is assumed that transfer prices are received by the supplier

immediately when paid by the buyer and in Chapter 5 that the buyer pays for a batch

and instantly can sell the items and receive revenues. In both cases assuming a positive

lead-time will result in new outcomes which need further research.

Secondly, the demand in the marketplace may be stochastic and could be a function

of different factors such as price and time. The demand pattern and the distribution

vary from one item to another and can greatly influence the mathematical aspects of

these models and hence, the results and the analyses. This assumption, however, has

been relaxed in this research. Taking a stochastic demand function would be a better

option in modelling some situations with uncertainties that cannot be captured by these

deterministic models.

Thirdly, in the retail industry, in particular, inventory systems often distribute a bundle

of items rather than a single one. This imposes some constraints to the inventory problem

in setting the policies considering the limits on frequency and capacity of vehicles. In

this research all the models address systems delivering a single item.

It is suggested to combine transportation and inventory problems. Including transporta-

tion into the models developed in this research, results in a system which could give some

insights into real distribution models. This transportation system may consist of some

types of vehicles with different capacity and cost. From a practical point of view this

inventory-transportation problem would be the more interesting in cases of multi-item

distribution systems. This added complexity to the model requires more research.
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Finally, one of the factors that could directly affect the demand is the service level.

Facing out-of-stock situations will result in loss of goodwill besides the loss of revenue.

In this thesis all the models allow some levels of shortage and by assigning the relevant

cost parameters we have tried to capture the loss of revenue. The loss of goodwill,

however, is hard to quantify and should be captured in some other ways. Shortages

(low service level) mainly result in a decrease in the future demand function, therefore

in order to model the loss of goodwill, the demand functions of these models should be

modified in a way that accounts for the service level offered as well. One way towards

implementing this in a model would be to link the demand function to service level and

also the backlogging rate to waiting time.

A general comment that could be made on the inventory literature of deteriorating items

is that it is mainly developed from a theoretical point of view and case studies are scarce

in this area. The development and analysis of these models have been done with little

contribution from practitioners. For instance, in the case of adopting a deterioration

pattern and assigning values to the parameters of Exponential or Weibull functions, it

would be more practical to check these values with practitioners to clarify what group

of items is exactly being addressed. It may also lead to the identification of special

features which are of great relevance to this particular application context and can be

incorporated into the models. Therefore, developing some research based on real cases

can give a constructive insight into practice in this part of the literature.





Appendix A

Analytical solution for the model

presented in Chapter 2

In order to solve the problem (2.37) analytically, first the objective function should be

simplified using some approximations. The error of this approximation is acceptable

only when TR and kTR have relatively small values. (2.21) can be rewritten as follows:

QW = XQR (A.1)

where:

X =
ekθTR − 1

eθTR − 1
. (A.2)

Using Taylor expansion, the value of X changes to:

X ≈ (1 + (k − 1)θTR)(k +
1

2
kθTR −

1

2
k2θTR). (A.3)

The second derivatives of the total cost function with respect to ts is as follows:

d2TC

dt2s
≈ 2

T 2
R

(
A

TR
−B

)
+
csvδd

TR
+

2

kT 2
R

(
C

TR
−D

)
+

1

kTR

dD

dts
(A.4)

where:

A = PCR + ICCR +DCR + SCR, (A.5)

B =
dA

dts
= pRδd+ csf (1− δ)d+ csvδdts, (A.6)
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C = PCW + ICCEW +DCW , (A.7)

D =
dC

dtS
=

(
δdX +QR

dX

dts

)(
2pW +

hW
γ

)
− kδd

(
pW +

hW
γ

)
, (A.8)

and

dX

dts
≈ k(k − 1)γ +

1

2
k(k + 1)γ + k(k − 1)γ2TR. (A.9)

By having k and tr set and changing ts from zero to a large number that it can possibly

take, the second derivative of the total cost function with respect to ts presented in (A.4),

takes a positive value. It however necessitates complex analysis to show the convexity

of the total cost function.

An exhaustive search can be conducted to find the global optimum as an upper bound

can be assumed for each of the decision variables. There is however a trade-off between

the accuracy of the decision variables and the solution time.

In order to conduct an exhaustive search it is assumed that k can get a maximum

value of 30. tr and ts are assumed to be less than 5 years with the accuracy of e − 01

(The heuristics is solved with the same accuracy). As shown in Table A.1, the search

results in the same optimal solution but the solution time is much longer. Conducting

the exhaustive search with a higher accuracy will increase the solution time while this

increase in the genetic algorithm time is small (see Table A.1).

Table A.1: Results of the numerical example 2 (Chapter 2) and the run time.

Accuracy tr ts k to QR TR QW TW Run time (seconds)

Heuristics e− 01 2.0 2.6 2 2.4 381 5.0 824 10.1 1.9112
Enumeration e− 01 2.0 2.6 2 2.4 381 5.0 824 10.1 148.3035
Heuristics e− 02 2.03 2.56 2 2.47 383 5.03 829 10.05 6.0971
Enumeration e− 02 Ma

a The run time extends infinitely



Appendix B

Independent approach in

analysing the system presented in

Chapter 2

In this part the inventory system presented in Chapter 2 is optimised with an inde-

pendent approach. For this purpose, two problems are analysed. Firstly the retailer’s

inventory system is optimised and the inventory policies are set. In the next step using

the retailer’s optimal inventory policies, the wholesaler’s inventory system is analysed.

Based on analyses done in Section 2.3.3, the inventory cost for retailer per unit of time

is as follows:

TCR =
1

TR
(PCR +HCR +DCR +BCR + LCR) (B.1)

The cost function contains TR and QR, therefore partial derivatives of these two terms

with respect to ts and tr are also needed. Based on (2.13) and (2.14) the derivatives are

as follow:
dTR
dtr

= 1− Wαe−αtr

d+ (c+ α)We−αtr
, (B.2)

dTR
dts

= 1, (B.3)

dQR
dtr

= cWe(β−α)tr + deβtr (B.4)
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and
dQR
dts

= δd. (B.5)

The total cost of the retailer is a function of ts and tr. To minimise the total cost, the

derivatives of the cost function with respect to ts and tr are found and set equal to zero,

dTCR
dts

= 0 (B.6)

and
dTCR
dtr

= 0. (B.7)

The derivatives of the total cost function with respect to ts and tr are as follow:

dTCR
dts

=
1

T 2
R

{
pRδdTR −AR − pRQR − ICCR −DCR + TR(csf (1− δ)d+ csvδdts)

−csf (1− δ)dts −
1

2
csvδdt

2
s

}
(B.8)
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and

dTCR
dtr

=
1

T 2
R

{
pRTRe

βtr(cWe−αtr + d)−
(

1− αWe−αtr

d+ (c+ α)We−αtr

)
(AR + pRQR)

+
hrcWTRe

−αtr

β
(eβtr − 1) +

hrdTR
β

(eβtr − 1) + hoWTRe
−αtr

− αhodWTRe
−αtr

(c+ α)
(
d+ (c+ α)We−αtr

)(e(c+α)(to−tr) − 1
)

−
(

1− αWe−αtr

d+ (c+ α)We−αtr

)(hrcWe−αtr

β − α

( 1

β
(eβtr − 1)− 1

α
(eαtr − 1)

)
+
hrd

β

( 1

β
(eβtr − 1)− tr

)
+
hoW

α
(1− e−αtr)

+
hod

c+ α

[1

d
We−αtr − 1

c+ α
ln
(

1 +
c+ α

d
We−αtr

)])
+αpRTRWe−αtr

(
1− α

c+ α

(
1− d

d+ (c+ α)We−αtr

))
+βpRTRe

βtr
( d
β

+
cWe−αtr

β − α

)
− αcpRTRWe−αtr(eβtr − 1)

β − α
− βcTRWe−αtr

β − α
− dTR

−
(

1− αWe−αtr

d+ (c+ α)We−αtr

)(
pRW (1− e−αtr)

+
αdpR
c+ α

(1

d
We−αtr − 1

c+ α
ln
(

1 +
c+ α

d
We−αtr

))
+pR(eβtr − 1)

( d
β

+
cWe−αtr

β − α

)
+
βcW (e−αtr − 1)

α(β − α)
− dtr

+csf (1− δ)dts +
1

2
csvδdt

2
s

)}
.

(B.9)

As can be seen (B.8) and (B.9) construct a system of non-linear equations which gives

the optimal ts and tr to minimise the retailer cost. After realisation of ts and tr, the

optimal inventory period and order quantity for the retailer are calculated. The analysis

of the wholesaler inventory cost is exactly the same as what has been done in Section

2.3.4. It is important to note that when the retailer and the wholesaler plan separately,

the inventory period and the order quantity of the retailer are not decision variables

any more while optimising the wholesaler cost. The cost function of the wholesaler per

unit of time is as follows and the only decision variable is k (the number of retailer’s

inventory period that should be covered with one wholesaler’s inventory period):

TCW =
1

TW
(PCW + ICCW +DCW ). (B.10)
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The optimal value for k, denoted as k∗, can be derived from the following set of inequal-

ities:

TCW (k∗) ≤ TCW (k∗ − 1) (B.11)

and

TCW (k∗) ≤ TCW (k∗ + 1). (B.12)



Appendix C

The assumptions of the models

from the literature used in

Chapter 3

C.1 Assumptions and notations of the model developed by

Yang and Wee (2002)

A single item with constant rate of deterioration in a single-vendor, multi-buyers is as-

sumed.

Shortages are not allowed.

No repair or replacement is done to deteriorated items.

There is a finite production rate which is greater than the sum of the demand at all

buyers.

θ the deterioration rate

N number of buyers

di the demand rate per year for buyer i, i = 1, 2, . . . , N

p the production rate per year

T time length of each cycle, where T = T1 + T2

T1 the length of production time in each production cycle T
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T2 the length of non-production time in each production cycle T

Iv1(t1) inventory level for vendor when t1 is between 0 and T1

Iv2(t2) inventory level for vendor when t2 is between 0 and T2

Ibi(t) inventory level for buyer i when t is between 0 and T/ni

ni delivery times per period T for buyer i, where i = 1, 2, . . . , N

Imv the maximum inventory level of vendor

Imi the maximum inventory level of buyer i

pv the unit production cost for vendor

pb the unit price for buyer

Csv the set-up cost of each production cycle for vendor

Csb the set-up or ordering cost per order for buyer

Fv the holding cost per dollar per year for vendor

Fb the holding cost per dollar per year for buyer

V C the cost of vendor per unit time

BC the cost of all buyers per unit time

TC the integrated cost of vendor and all buyer per unit time

C.2 Assumptions and notations of the model developed by

Yan et al. (2011)

The operating environment is deterministic.

The suppliers production rate and the demand rate on the buyer are constant.

The inventory item’s deterioration is a constant fraction of its on-hand inventory.

The production rate is greater than the demand rate.

The buyer pays transportation and order handling costs.

The cost of the deteriorating item is constant.

Shortages are not allowed.

The deterioration rate is sufficiently small, such that its square or higher powers can be

ignored.

N the number of deliveries per production batch cycle

Q the production lot size per batch cycle (units)
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T total cycle time of the supplier

T1 production cycle of the supplier during T

T2 non-production cycle of the supplier during T

T3 inventory cycle at the retailer

q delivery lot size

d the item’s deterioration rate

x the number of deteriorated units at the retailer during T3

y the number of deteriorated units at the supplier during T

Cd the cost of deterioration per unit($)

p production rate (units/time unit)

C set-up cost for a production batch ($/set-up)

HS inventory holding cost in $/unit/time unit

Ssup area under the supplier’s inventory level curve

D demand rate in units/time unit

A ordering cost in $/order

HB inventory holding cost in $/unit/time unit

F fixed transportation cost per delivery ($)

V unit variable cost for order handling and receiving ($)

Sbuy area under the buyer’s inventory level curve

The summary of the analysis done by Yan et al. (2011) is as follows:

(a) Set-up cost per unit time for the supplier = C/T ,

(b) Holding cost per unit time for the supplier = HSSsup/T ,

(c) Deterioration cost per unit time for the supplier = CddSsup/T ,

(d) Ordering cost per unit for the buyer = A/T ,

(e) Holding cost per unit time for the buyer = HBSbuy/T ,

(f) Transportation and handling cost per unit time for the buyer = NF + V Nq/T ,

(g) Deterioration cost per unit time for the buyer = CddSbuy/T .

The buyer’s inventory cost model:

q = DT3 + dqT3
2

T = 2Nq
2D+dq

dSbuy = Nq −DT
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Sbuy = Nq−DT
d

therefore:

TCbuy(q,N) =
(
D
Nq + d

2N

)
(A+NF + V Nq) + q

2(HB + Cdd)

The supplier’s inventory cost model:

y = dSsup

y + dqT
2 = dT

(
D
p q + Nq+y

2
P−D
P

)
Ssup = y

d = qT
(
D
P −

1
2 + N

2 −
DN
2P

)
TCsup(q,N) =

(
D
Nq + d

2N

)
C + (HS + Cdd)q

(
D
P −

1
2 + N

2 −
DN
2P

)
The Integrated inventory cost model:

TC(q,N) = TCbuy + TCsup



Appendix D

The derivatives of the total cost

function of the model presented

in Chapter 3

The second derivative of the total cost function presented in (3.28) with respect to T is

as follows:

∂2TC

∂T 2
=

1

3
pbFb(d− b) +

pvFvθ

p2
(
d2(p− d) + abp+ ad(d− a) + a3

)
+

2pvFvθd
2

p

+
θb

3
(pbFb − pvFv) +

2Csb
∑N

i=1 ni
T 3

+
2Csv
T 3

(D.1)

where a =
∑N

i=1
di
ni

, b =
∑N

i=1
di
n2
i

and d =
∑N

i=1 di.

The second derivative of the total cost function, presented in (D.1), is positive for all

the values of T .
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Appendix E

An approximated inventory

holding cost for the model

presented in Chapter 4

One may use the following Maclaurin expansion approximations for (4.2) and (4.4) as

in Wee and Law (2001):

I(t) = (R− y)e−θt
γ

(
t+

θtγ+1

γ + 1

)
, 0 ≤ t ≤ T1, (E.1)

I(t) = ye−θt
γ

(
T1 + T2 − t+

θ

γ + 1

(
(T1 + T2)

γ+1 − tγ+1
))

, T1 ≤ t ≤ T1 + T2.

(E.2)

If we use the approximations (E.1) and (E.2), then T1 = g(T2) is implicit in:

(1− y

R
)T1 +

θT γ+1
1

γ + 1
=
y

R

(
T2 +

θ

γ + 1
(T1 + T2)

γ+1

)
(E.3)

and the values for HC1 and HC2 are given by:

HC1 =f

∫ T1

0
I(t)e−αtdt

≈f(R− y)

(
T 2
1

2T
− αT 3

1

3T
− θγT γ+2

1

(γ + 1)(γ + 2)T
+
αT 2

1

4

) (E.4)
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Chapter 4

and

HC2 =f

∫ T1+T2

T1

I(t)e−αtdt

≈fy
[T2(T1 + T2)

T
+
αT2

2
(T1 + T2)−

1

2

(
1

T
+
α

2

)(
(T1 + T2)

2 − T 2
1

)
+

θT2
T (γ + 1)

(T1 + T2)
γ+1 − θ

T (γ + 1)(γ + 2)

(
(T1 + T2)

γ+2 − T γ+2
1

)
− α(T1 + T2)

2T

(
(T1 + T2)

2 − T 2
1

)
+

α

3T

(
(T1 + T2)

3 − T 3
1

)
− θ(T1 + T2)

T (γ + 1)

(
(T1 + T2)

γ+1 − T γ+1
1

)
+

θ

T (γ + 2)

(
(T1 + T2)

γ+2 − T γ+2
1

)]
.

(E.5)
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