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a b s t r a c t

This paper uses a 2D system setting in the form of repetitive process stability theory to design an iterative
learning control law that is robust against model uncertainty. In iterative learning control the same finite
duration operation, known as a trial over the trial length, is performed over and over again with resetting
to the starting location once each is complete, or a stoppage at the end of the current trial before the
next one begins. The basic idea of this form of control is to use information from the previous trial, or
a finite number thereof, to compute the control input for the next trial. At any instant on the current
trial, data from the complete previous trial is available and hence noncausal information in the trial
length indeterminate can be used. This paper also shows how the new 2D system based design algorithms
provide a setting for the effective deployment of such information.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Many systems complete the same finite duration operation over
and over again, where each execution is known as a trial and the
duration the trial length. The exact sequence is that on completion
of each trial, the system resets to the starting location and the
next one begins. A common application is replicated by a robot
undertaking a pick and place task over and over again, i.e., collect
an object from a specified location, transfer it over a finite duration,
deposit it at a fixed location or onto a moving conveyor, return to
the starting location and then repeat this sequence of operations. In
this paper, the notation used is yk(p), 0 ≤ p ≤ α−1, k ≥ 0, where
y is the vector or scalar variable under consideration, α < ∞ is the
number of samples along the trial length and k is the trial number.
Also if yref (p), 0 ≤ p ≤ α − 1, is a given reference trajectory
for the output, which is assumed to be a member of the signal
space chosen for the output of the controlled system, ek(p) =

yref (p)−yk(p) is the error on trial k and in iterative learning control
(ILC) the novel feature is the use of the previous trial error in the
computation of the control input applied on the next trial, with a
generalization to higher-order ILC where the errors from a finite
number l > 1 of previous trials are used.
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Since its inception,widely credited to [1], ILC has seen extensive
developments from theory through to experimental benchmarking
and actual applications. The survey papers [2,3] are starting points
for the literature and these together with subsequent publications
show a wide range of applications from industrial robotics
to residual vibration suppression, microelectronics fabrication,
process control and recently a technology transfer to healthcare
in the form of robotic-assisted upper limb stroke rehabilitation. In
this latter application [4] the patient makes repeated attempts to
follow a reference trajectory replicating daily living tasks, such as
reaching out to a cup across a table top, assisted by a robot andwith
electrical stimulation applied to the relevant muscles. At the end
of each trial, the patient’s arm is returned to the starting location
and ILC used to compute the electrical stimulation to be applied
on the next trial based on the previous trial error. If the patient
is improving with increasing trial number then his/her voluntary
effort should increase and the applied stimulation decrease and
this has been confirmed in clinical trials.

In ILC, all previous trial data are available before the next trial
begins and hence there is not a requirement that only causal in p
previous trial data is used in the computation of the current trial
input, i.e., the control applied at p ∈ [0, α] on trial k can use
previous trial data at p = p + 1, . . . , α. The ability to use the
noncausal information is a novel feature of ILC andmany successful
implementations use the special case of phase-lead where a term
in ek(p+λ), λ > 0 is used to form the control input uk+1(p) on the
next trial, where λ = 1 is common. In such cases, one alternative
to consider is the inclusion of a weighted sum of previous trial
error phase-lead terms or a weighted sum of such terms and ILC
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lag terms ek(p − β), β > 0. The aim of this paper is to provide
the basis of ILC design where the use of such information can be
evaluated as a necessary step toward implementation.

If the along the trial dynamics are discrete then one setting
for ILC design is, since the trial length is finite, to define super-
vectors for the variables. For example, let the system be single-
input single-output for the ease of presentation with a natural
extension to the vector case. Then the error super-vector is Ek =
ek(0) ek(1) . . . ek(α − 1)

T and the ILC error dynamics can
hence be written as a system of linear difference equations in k of
the form Ek+1 = HEk.

Due to the finite trial length, error convergence in k can occur
even if the system has an unstable state matrix. The solution via
lifting design is to first design a stabilizing feedback control law
and then apply ILC to the resulting controlled system. Also for
robust control based on norm bounded or polytopic uncertainty,
the entries in the matrix H will contain products of the matrices
describing the uncertainty and thismakes the analysis significantly
more involved. Moreover, robustness analysis in the frequency
domain is approximated as ILC controllers operate on a finite time
interval, the trial length. Use of the Fourier transformon the infinite
time interval will give a linear time-invariant control law but
over the finite trial length errors may result in the initial part of
the transient response; an example to support this fact is given
in [5]. A robust H∞ based ILC design with noncausal finite trial
length is also given in [5] but is somewhat involved and choosing
exactly what noncausal data to include is also lacking somewhat in
transparency.

An alternative to the liftedmodel analysis is to exploit the natu-
ral 2D system structure of ILCwhere one direction of information is
from trial-to-trial, indexed by the subscript k, and the other along
a trial, indexed by p. The first results on 2D system based ILC anal-
ysis is credited to [6] where a Roesser state-space model was used.
Repetitive processes [7] are another class of 2D systems where
information propagation in p is over a finite duration and there-
fore a more obvious setting for analysis. The previous work on ILC
laws designed using repetitive process control theory with exper-
imental verification includes [8,9]. This setting also extends to dif-
ferential dynamics and for robust control studies avoids products
of matrices describing the uncertainty assumed. This paper will
show that the repetitive process setting enables control law de-
sign where a weighted sum of noncausal and/or causal in p is used
and hence, for a given example, different combinations of previous
trial terms can be considered in the search for a design that meets
the performance specifications, with an extension to robust con-
trol. The relative merits of this design method are also discussed.

Throughout this paper, the null and identity matrices with the
required dimensions are denoted by 0 and I respectively. Also
M ≻ 0 (≺ 0) denotes a real symmetric positive (negative) definite
matrix and X ≼ Y is used to represent the case when X − Y is
a negative semi-definite matrix. Finally, diag {· · ·} denotes a block
diagonal matrix.

2. System representation and design

2.1. Discrete linear repetitive processes

Discrete linear repetitive processes evolve over the subset of the
positive quadrant in the 2D plane defined by {(p, k) : 0 ≤ p ≤

α − 1, k ≥ 0}, and the basic state-space model for their dynamics
has the following form [7]:

x̃k+1(p + 1) = Ax̃k+1(p) + Bũk+1(p) + B0ỹk(p),
ỹk+1(p) = Cx̃k+1(p) + Dũk+1(p) + D0ỹk(p).

(1)

In this model on pass k, x̃k(p) ∈ Rn is the state vector, ỹk(p) ∈ Rm

is the pass profile vector, and ũk(p) ∈ Rr is the vector of control
inputs. The simplest form of boundary conditions is x̃k+1(0) =

dk+1, k ≥ 0,where then×1 vector dk+1 has knownconstant entries
and ỹ0(p) = f (p), where f (p) is anm× 1 vector whose entries are
known functions of p.

Repetitive process has their origins in the coal mining industry
where in longwall coal cutting the machine rests on the previous
pass profile, which is the height of the stone/coal interface above
some datum line, during the production of the current pass profile.
It is therefore unrealistic to assume that at instance p on the
current pass the only previous pass profile contribution comes
from the same instance on the previous pass. An alternative model
is

x̃k+1(p + 1) = Ax̃k+1(p) + Bũk+1(p) +

wh
i=−wl

Biỹk(p + i),

ỹk+1(p) = Cx̃k+1(p) + Dũk+1(p) +

wh
i=−wl

Diỹk(p + i),

(2)

wherewl andwh are positive integers and the boundary conditions
applied in this paper are those for (1), with the additional
assumption that

ỹk(p) = 0, p ∈ {−wl, . . . ,−1} ∪ {α, . . . , α + wh − 1}. (3)

Setting wl = 0 and wh = 0 recovers the previous model. In this
alternativemodel on pass k and instance p the previous pass profile
contribution is modeled as a linear sum of those at 0 ≤ p − wl ≤

p ≤ p + wh ≤ α − 1. The resulting model structure has no 2D
discrete linear system state-space model interpretation, such as
the Roesser model [10]. This paper applies the stability theory for
this repetitive process model to ILC design.

2.2. Iterative learning control (ILC)

The systems considered are assumed to be modeled by linear
time-invariant dynamics in the discrete domain with state-space
model triple {Ad, Bd, Cd}. In ILC analysis, notation for the trial
dependence is required. In this paper the subscript k is used, giving
the following description:

xk(p + 1) = Adxk(p) + Bduk(p), xk+1(0) = dk+1

yk(p) = Cdxk(p), 0 ≤ p ≤ α − 1,
(4)

where k ≥ 0 is the trial number, α < ∞ is the number of samples
along the trial, xk(p) ∈ Rn is the state vector, yk(p) ∈ Rm is the out-
put vector, uk(p) ∈ Rl is the control input vector and the entries in
dk+1 are known constants.

Let yref (p) ∈ Rm denote the reference vector, which is assumed
to be a member of the signal space chosen for the output of the
controlled system, and hence the error on trial k is

ek(p) = yref (p) − yk(p). (5)

A commonly used ILC strategy constructs the current trial input
as sum of that used on the previous one plus a corrective term,
i.e.,

uk+1(p) = uk(p) + ∆uk+1(p), k ≥ 0, (6)

where ∆uk+1(p) denotes the correction term.
Introduce, for analysis purposes only, the vector

ηk+1(p + 1) = xk+1(p) − xk(p).

Suppose also that in the ILC law (6)

∆uk+1(p) = K1ηk+1(p + 1) + K2ek(p + 1), (7)
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where K1 and K2 are matrices to be designed. Then the application
of this control law to (4) gives the controlled dynamics state-space
model

ηk+1(p + 1) =Aηk+1(p) +B0ek(p),

ek+1(p) =Cηk+1(p) +D0ek(p), (8)

whereA = Ad + BdK1, B0 = BdK2,C = −Cd (Ad + BdK1) , D0 = I − CdBdK2. (9)

The state-space model (8) is that of a discrete linear repetitive
process of the form (1) with the input terms deleted and pass
output and state vectors ek+1 and ηk+1, respectively, once the
boundary conditions are specified, i.e., the pass state initial vector
ηk(0), k ≥ 0, and the initial pass profile e0(p), 0 ≤ p ≤ α − 1.
As this paper uses the repetitive process setting for analysis and
design, the word pass will be used instead of trial from this point
onward. Without loss of generality, it is assumed that ηk+1(0) =

0, k ≥ 0.
In [8], LMI based formulas for the computation of the control

law matrices K1 and K2 are developed and for implementation the
control law can be written using (6) and (7) as

uk(p) = uk−1(p) + K1(xk(p) − xk−1(p))

+ K2(yref (p + 1) − yk−1(p + 1)) (10)

and the term K2(yref (p + 1) − yk−1(p + 1)) is phase-lead ILC,
i.e., noncausal in p. This control law also requires all entries in
the state vector to be available for measurement and [9] produces
an alternative where the difference in the state vectors on two
successive trials is replaced by the difference in the trial output
vectors on the same two trials.

The use of noncausal information is a major novel feature of
ILC where many of the similar model designs that have been
implemented use a form of phase-lead. As with all other simple
structure control laws, there will be cases where such action will
not be able to meet the performance specifications. In such cases,
one alternative to consider is the inclusion of a weighted sum of
previous trial error phase-lead terms or a weighted sum of such
terms and ILC lag terms ek(p − β), β > 0. This paper develops an
LMI based design for such a law based on the repetitive process
state-space model (2) with an extension to robust control.

Consider the case when (7) is replaced by

∆uk+1(p) = Kηk+1(p + 1) +

wh
i=−wl

Kiek(p + i + 1). (11)

Then, following the analysis for the application of the control law
(11), the controlled dynamics state-space model is

ηk+1(p + 1) =Aηk+1(p) +B0ek(p) +

wh
i=−wl
i≠0

Biek(p − i),

ek+1(p) =Cηk+1(p) +D0ek(p) −

wh
i=−wl
i≠0

Diek(p − i),

(12)

which is of the form of (2) withA = Ad + BdK , B0 = BdK0,C = −Cd (Ad + BdK) , D0 = I − CdBdK0,Bi = BdKi, Di = −CdBdKi, i = −wl, . . . , wh, i ≠ 0

(13)

and the assumption that

ek(p) = 0, p ∈ {−wl, . . . ,−1} ∪ {α, . . . , α + wh − 1}. (14)
The stability problem for linear repetitive processes is that the
sequence of pass profiles can contain oscillations that increase in
amplitude from pass-to-pass (k variable) and the stability theory
for linear constant pass length examples is defined using an
abstract model of the dynamics in a Banach space setting [7]. In
this model, the pass-to-pass updating is of the form yk+1 = Lαyk
where yk ∈ Eα is a Banach space and Lα is a bounded linear operator
mapping Eα into itself. The property of stability along the pass
requires the existence of finite real scalars M∞ > 0 and λ∞ ∈

(0, 1) such that ∥Lkα∥ ≤ M∞λk
∞
. For the autonomous case, i.e., the

only contribution to the current trial pass profile is the previous
one, this condition will ensure that the sequence of pass profiles
produced will converge in k to zero. In the ILC application, the pass
profile on any pass is the error and hence the direct application of
repetitive process stability theory to ILC error convergence.

One way of characterizing the stability of discrete linear repeti-
tive processes that also leads to control law design algorithms is to
use a Lyapunov function that is the sum of quadratic terms in the
current pass state vector and the previous pass profile respectively.
Stability along the pass then holds if the increment of this function,
again the sum of that for each term, is negative definite. Using this
approach gives the following result with formulas for the matrices
in the ILC law (11).

Theorem 1. The repetitive process representing the ILC scheme
of (12) is stable along the pass if there exist matrices P ≻ 0,N,Qi ≻

0, and Ni, i = −wl, . . . , wh, such that the following LMI is feasible:
−P (ĀP + B̄N )T

ĀP + B̄N −P


≺ 0, (15)

where

Ā =


Ad 0 · · · 0 I 0 · · · 0

−CdAd 0 · · · 0 I 0 · · · 0
...

...
. . .

...
...

...
. . .

...
−CdAd 0 · · · 0 I 0 · · · 0

 ,

B̄ =


Bd · · · Bd

−CdBd · · · −CdBd
...

. . .
...

−CdBd · · · −CdBd

 ,

(16)

and

P = diag

P,Q−wl , . . . ,Q0, . . . ,Qwh


,

N = diag

N,N−wl , . . . ,N0, . . . ,Nwh


.

(17)

If the LMI of (15) holds, stabilizing matrices in the control law
(11) are given by

K = NP−1,

Ki = NiQ−1
i , i = −wl, . . . , wh.

(18)

Proof. Introduce the Lyapunov function; see also [11],

V (k, p) = V1(k, p) + V2(k, p), (19)

where

V1(k, p) =

wh
i=−wl

yTk (p + i)Qiyk(p + i), (20)

and

V2(k, p) = xTk (p)Pxk(p), (21)
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with P ≻ 0 and Qi ≻ 0, i = −wl, . . . , wh. The term V1(k, p) cap-
tures the pass-to-pass energy change and V2(k, p) the change in
energy along a pass. Moreover, the associated increment is

∆V (k, p) = yTk+1(p)


wh

i=−wl

Qi


yk+1(p)

+ xTk+1(p + 1)Pxk+1(p + 1)

−

wh
i=−wl

yTk (p + i)Qiyk(p + i) − xTk+1(p)Pxk+1(p). (22)

Summing from p = 0 to p = α − 1 gives the global Lyapunov
function

V (k) =

α−1
p=0

V (k, p), (23)

with associated increment

∆V (k) =

α−1
p=0

∆V (k, p). (24)

Following the steps in the proof of the Lyapunov function charac-
terization for a process described by (1) in [7] gives that (2) is stable
along the pass if

∆V (k) < 0. (25)

The proof is complete since (15) is a direct consequence of (25) on
routine application of a congruence transform and use of Schur’s
complement formula.

The control lawmatrices Ki, i = −wl, . . . , wh, in this last result
can be parameterized using the optimization procedure

maximize


wh

i=−wl

tr (Qi) +

wh
i=−wl

se (Ni)


(26a)

subject to:
−P (ĀP + B̄N )T

ĀP + B̄N −P


< 0, (26b)

ζ · tr (Qi) ≤ se (Ni) , i = −wl, . . . , wh, (26c)

where tr (·) denotes the trace of a square matrix, se (·) is the sum
of all elements in a matrix and the value of ζ in (26c) is chosen
for a particular case by trial and error to guarantee the fastest
pass-to-pass error convergence compatible with other design
specifications.

3. Robust control

In this section the case considered is when the model matrices
Ad, Bd of (4) belong to a convex bounded (polytope type) uncertain
domain D , where any uncertain matrix can be written as a convex
combination of its vertices

D =


[Ad(ξ(k, p)), Bd(ξ(k, p))] : [Ad(ξ(k, p)), Bd(ξ(k, p))]

=

nv
v=1

ξv(k, p) [Adv, Bdv] ;
nv

v=1

ξv(k, p) = 1;

ξv(k, p) ≥ 0; k ≥ 0; 0 ≤ p ≤ α − 1


, (27)

where Adv, Bdv are the corresponding matrix vertices and nv

denotes the number of them. This description allows variability
of the model parameters in both k (pass-to-pass) and along the
pass (p) within the assumed polytope. The matrix Cd describing
the contribution of the current pass state vector to the current pass
profile, i.e. measured outputs, is assumed not to be uncertain since
otherwise the repetitive processmatrices do not form a convex set.

The state-space model of the repetitive process dynamics with
the polytopic uncertainty (27) is obtained by replacing (4) with

xk(p + 1) = Ad(ξ(k, p))xk(p) + Bd(ξ(k, p))uk(p),
yk(p) = Cdxk(p),

(28)

and the robust ILC dynamics are described by

ηk+1(p + 1) = A(ξ(k, p))ηk+1(p) +B0(ξ(k, p))ek(p)

+

wh
i=−wl
i≠0

Bi(ξ(k, p))ek(p − i),

ek+1(p) = C(ξ(k, p))ηk+1(p) +D0(ξ(k, p))ek(p)

−

wh
i=−wl
i≠0

Di(ξ(k, p))ek(p − i),

(29)

whereA(ξ(k, p)) = Ad(ξ(k, p)) + Bd(ξ(k, p))K ,B0(ξ(k, p)) = Bd(ξ(k, p))K0,C(ξ(k, p)) = −Cd


Ad(ξ(k, p)) + Bd(ξ(k, p))K


,D0(ξ(k, p)) = I − CdBd(ξ(k, p))K0,Bi(ξ(k, p)) = Bd(ξ(k, p))KiDi(ξ(k, p)) = −CdBd(ξ(k, p))Ki,

i = −wl, . . . , wh, i ≠ 0

(30)

and

Ad(ξ(k, p)) =

nv
v=1

ξv(k, p)Adv,

Bd(ξ(k, p)) =

nv
v=1

ξv(k, p)Bdv.

(31)

The following result enables robust ILC design.

Theorem 2. The repetitive process representing the uncertain ILC
dynamics of (29) is stable along the pass if there exist matrices P >
0,N,Qi > 0, and Ni, i = −wl, . . . , wh, such that the following LMI
is feasible:

−P (ĀvP + B̄vN )T

ĀvP + B̄vN −P


≺ 0 (32)

for v = 1, . . . , nv , which represent underlying matrix vertices, and

Āv =


Adv 0 · · · 0 I 0 · · · 0

−CdAdv 0 · · · 0 I 0 · · · 0
...

...
. . .

...
...

...
. . .

...
−CdAdv 0 · · · 0 I 0 · · · 0

 ,

B̄v =


Bdv · · · Bdv

−CdBdv · · · −CdBdv
...

. . .
...

−CdBdv · · · −CdBdv

 ,

(33)

where the matrices P and N are given by (17).
If the LMI of (32) holds, stabilizing matrices in the control law

(11) are given by (18).
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Table 1
Parameters.

Sym. Description SI value SI unit Per unit

J Total inertia 0.47 × 10−4 kg m2 0.0267
VB Viscous coeff. 1.1 × 10−4 N m s 0.0625
Ld d-axis inductance 7.0 × 10−3 H 0.4120
Lq q-axis inductance 7.0 × 10−3 H 0.4120
Rs Resistance 2.98 Ohm 0.2781
φmg Flux linkage due to permanent magnet 0.125 Wb 0.9102
irated Nominal current 2.9 A 0.36
np No. of pole pairs 2
Proof. The uncertain process is stable along the pass if every
‘vertex’ system has this property. The proof now follows identical
steps to that of Theorem 1 for each matrix vertex.

In this result as the uncertainty bound increases the feasibility
of the LMI (32) could be restricted. Even if LMIs are feasible and
control law matrices obtained, slow convergence or excessive
control demands could result, as in robust control of other systems.
Theorem 2 uses a single Lyapunov function for all polytopes and
hence there could be conservativeness associated with the control
law design. To reduce the effects of this and potentially augment
the uncertainty bounds, a parameter dependent Lyapunov function
approach can be used and this is the subject of ongoing research.
The results in this paper transfer to norm bounded uncertainty
with routine changes and hence the details are omitted.

As in Theorem 1, the control lawmatrices can be parameterized
using the optimization procedure

maximize


wh

i=−wl

tr (Qi) +

wh
i=−wl

se (Ni)


(34a)

subject to:
−P (ĀvP + B̄vN )T

ĀvP + B̄vN −P


≺ 0, (34b)

ζ tr (Qi) ≤ se (Ni) , i = −wl, . . . , wh. (34c)

For implementation, the control law for either form of uncer-
tainty is

uk(p) = uk−1(p) + K

xk(p) − xk−1(p)


+

wh
i=−wl

Ki


yref (p + i + 1) − yk−1(p + i + 1)


. (35)

This control law includes the commonly used phase-lead non-
causal ILC law uk(p) = uk−1(p)+K1(yref (p+1)− yk−1(p+1)) as a
special case. In general, a moving window of previous trial output
information togetherwith the state actuated second term is used to
compute the next trial input. If all entries in the state vector are not
available for measurement, the results in this paper generalize to a
control law of the form (35) where the term K


xk(p) − xk−1(p)


is replaced by Kyk(p) − yk−1(p)


but a preliminary stabilizing

control loop may be required. This form of output only control law
without the moving window has been experimentally verified [9].
The new feature of the moving window has the dual purpose of
reducing conservativeness and improving performance. The static
control law using output only information is, in general, weaker
that its state vector based alternative and the resulting LMIs can
be more conservative.

The window can be symmetrical around the reference point k
or non-symmetrical; also its length can be adjusted in accordance
with needs of a particular application,where thewider thewindow
the greater the numerical cost. Moreover, it is not possible to
develop formulas for determining the selection of the moving
window parameters wl and wh and instead these must be decided
on a case-by-case basis. The choice of the parameterwh determines
how the noncausal data is included in the control law and, given
that there is no formula for any currently available ILC design using
noncausal data, can be varied in simulation to determine the value
appropriate for a given application. One other possible benefit from
the choice of the parameters wl and wh is to obtain a control law
with less conservative LMIs and acceptable performance. It is also
possible to modify this approach to the ‘‘sparse’’ case when not
all points within {−wl, wh} are used. The design developed in this
paper provides an alternative to the frequency domain design in [5]
and its relativemerits are discussed again in the conclusion section.
Next a case study is given.

4. Case study

In this section the ILC design of the previous sections is applied
to the model of an electric motor system, similar to that used
in repetitive control studies [12], with dynamics described, with
disturbances assumed negligible, by

dωm(t)
dt

=
1
J


3
2
npφmg iq(t) − VBωm(t)


,

˙iq(t) = −
1
γ
iq(t) +

1
γ
i∗q(t),

˙θ(t) = ωm(t) ·

 ωb

2π


,

(36)

where ωb = 315.315 (rad/s), γ = 6.8 × 10−4, i∗q(t) is the input,
θ(t) is the output and TL(t) is the disturbance acting on the system.
Per unit parameters are used and are given in Table 1.

Introducing the state vector, input and output

x(t) =


ωm(t)
iq(t)
θ(t)


, u(t) = i∗q(t), y(t) = θ(t), (37)

gives the system state-space model

ẋ(t) = Acx(t) + Bcu(t),
y(t) = Ccx(t),

(38)

where

Ac =


−

VB

J
3npφmg

2J
0

0 −
1
γ

0
ωb

2γ
0 0

 ,

Bc =

 0
1
γ
0

 , Cc =

0 0 1


.

(39)
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Fig. 1. The root mean square error for the nominal model design where the very
small non-zero values after k = 20 are due to numerical approximations.

For control law design the state-space dynamics have been sam-
pled at Ts = 200µs, the pass length is 2 s and the reference signal is

yref (t) = sin(π t) + 0.5 sin(2π t) + 0.5 sin(3π t) (40)

with boundary conditions

x0(p) = 0, u0(p) = 0, 0 ≤ p ≤ α − 1, (41)

xk(p) = 0, uk(p) = 0, ek(p) = 0, yk(p) = 0,
p ∈ {−wl, . . . ,−1} ∪ {α, . . . , α + wh − 1},

(42)

where α = 10,000 and wl = wh = 1.
For the following motor parameters in Table 1

VB = 0.0625, J = 0.0267,
φmg = 0.9102, ωb = 315.315

(43)

the optimization procedure (26a)–(26c) gives the control law ma-
trices for the nominal model based design with ζ = 2.1.

K =

−0.0716 −6.7888 × 10−4

−6.7629

,

K−1 = K1 = 2.2065, K0 = 6.1011.

Pass-to-pass error convergence is measured by the root mean
square error

erms(k) =

 1
α

α−1
p=0

ek(p)T ek(p). (44)

Fig. 1 shows erms(k) for this design and Fig. 2 the output on
the first six passes, which confirms that tracking of the reference
occurs after a few passes.

In any motor, the φmg parameter can vary and to assess the
robust design it is assumed that

φmg ∈ [0.6, 0.95]. (45)

This gives a polytopic uncertainty with two vertices given by the
matrices
vertex 1:

Ad1 =

0.9995 0.0117 0
0 0.7452 0

0.01 6.1481 × 10−5 1

 ,

Bd1 =

 17.174
1.0959 × 103

0.0904

 ,
Fig. 2. The output on passes k = 2, 4 and 6 compared with the reference signal for
the nominal model design.

Fig. 3. The root mean square error for the robust design with the value of φmg
switched at k = 20 and k = 60.

vertex 2:

Ad2 =

0.9995 0.0185 0
0 0.7452 0

0.01 9.7344 × 10−5 1

 ,

Bd2 =

 27.192
1.0959 × 103

0.1432

 ,

and the nominal model φmg = 0.9102 is within the considered
polytope.

The optimization procedure (34a)–(34c) with ζ = 1.1 gives
following control law matrices for this case:

K =

−0.066 −6.8027 × 10−4

−4.8474

,

K−1 = K1 = 1.0504, K0 = 2.78.

The controlled system has been simulated with φmg = 0.6, until
k = 20 when the value of this parameter was switched to φmg =

0.95 and finally at k = 60 was switched back to its starting value,
resulting in Figs. 3–5. As expected, the pass error increases step-
wise each time the value ofφmg changes but is quickly reduced over
the next few passes.

Fig. 4 shows the reference and output signals for passes k =

19, 20 and 21, i.e, before, on and after the first switch and Fig. 5
likewise for the second switch. In both cases, only a segment of
the along the pass dynamics is shown for clarity. These confirm
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Fig. 4. A segment of the output on passes k = 19, 20 and 21 compared with the
reference signal for the robust design just before and after the first switch in φmg .

Fig. 5. A segment of the output on passes k = 59, 60 and 61 compared with the
reference signal for the robust design just before and after the second switch inφmg .

that there is an error induced on the pass where the switch occurs
but is damped out on the next trial. This demonstrates that the
new ILC law is robustly stable along the pass and can ensure fast
pass-to-pass error convergence. The switch between φmg = 0.6
and φmg = 0.95 is maximum realistic with physical motors of
the form considered and for this uncertainty bound the design is
feasible. This provides supporting evidence as to the viability of
this design in applications and motivates further development to
provide design support for users.

To illustrate the use of noncausal data, a comparison with
the robust control law of (10) has been undertaken. Applying a
simplified version of Theorem 3 in [8] gives the following control
law matrices:

K1 =

−0.0629 −6.8003 × 10−4

−3.8375

,

K2 = 1.4319.

Fig. 6 shows the root mean error for this last control law and in
comparison to Fig. 3 its convergence is much slower. Simulations
also show better relative performance for this new design just
before and after the switches in φmg .

5. Conclusions

This paper has developed new results on ILC design in the repet-
itive process setting, with particular emphasis on the inclusion of
noncausal previous pass data in the control law and robustness.
The main result is an LMI based design whose performance has
been assessed in simulation on a motor model from the literature,
Fig. 6. The root mean square error for the robust control law design in [9].

demonstrating that the use of previous trial data in ILC can make
a significant difference to the performance achieved. Areas for
further development include design with disturbance rejection,
performance bounds and trade-offs, for which an H∞ setting is a
starting pointwhere [7] contains basic results for similar repetitive
process problems. As in all other control design algorithms there
are parameters thatmust be chosen based on the knowledge of the
application and this is the case forwl andwh in the control law (35).

The analysis and case study in this paper have established
that the use of noncausal previous trial data beyond a single
phase-lead term has merits in ILC design and provides the results
necessary for design to begin, i.e., pass-to-pass error convergence
and control law design formulas with an extension to robustness.
In the latter aspect, the repetitive process setting does not, in
comparison to the lifting design, encounter products of matrices
defining the uncertainty. A detailed comparison with the lifted
approach and other design alternatives can only be attempted after
significant further development for which some areas for possible
investigation have also been given.
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