The University of Southampton
University of Southampton Institutional Repository

Sea-level change, monsoon variability, and eastern Mediterranean climate over the Late Pleistocene

Sea-level change, monsoon variability, and eastern Mediterranean climate over the Late Pleistocene
Sea-level change, monsoon variability, and eastern Mediterranean climate over the Late Pleistocene
A new, radiometrically constrained chronology is developed for a continuous, highresolution relative sea-level (RSL) record from the Red Sea that spans the past 500,000 years (500 ka BP). The method is based on indirect correlation of the RSL record with speleothem ?18O records from Soreq cave, Israel (for the period 0-150 ka BP), and from Sanbao Cave, China (for the period 150-500 ka BP). The new RSL record allows ice-volume (sea-level) phase relationships with key climate-system variables to be examined, without bias from icecore or orbital timescales. The effects of ice-volume changes on monsoon variability are also examined. In a separate development, the Soreq-synchronised interval of the RSL record is used to produce residual oxygen isotope (?18O) records for the eastern Mediterranean; these represent regional environmental signals which are unbiased by ice-volume and sourcewater effects.

Results suggest that, over the last glacial cycle, changes in polar climate and ice-volume were tightly coupled, with centennial-scale response times, and rates of sea-level rise reached at least 1.2 m per century during periods of significant ice-volume reduction. Results also suggest that, at the last five glacial terminations, ice-volume changes generally lagged insolation and atmospheric CO2 rises by ~2-7 kyr. This supports the Milankovitch theory of ice-age cycles, and disputes suggestions that CO2-driven feedback processes initiated glacial terminations.

It is shown that ice-volume changes can partly explain East Asian monsoon (EAM) variability. In particular, rapid rates of ice-volume reduction at glacial terminations can account for rapid, millennial-scale variability in summer and winter EAM proxies. This observation is consistent with meltwater pulses into the North Atlantic at terminations leading to a delayed intensification of the summer EAM. Evidence also suggests that changes in different monsoon systems of the northern hemisphere were synchronous during periods of ice-volume minima. Regarding the East African summer monsoon (EAfSM), no systematic phasing is observed between precession minima and EAfSM maxima, and so the common use of a 3-kyr lag to date EAfSM records appears to be too generalised.

The new palaeo-environmental reconstructions for the Mediterranean presented here suggest that local precipitation did not increase substantially during the deposition of sapropels S1, S3 and S4, whereas net moisture availability may have been elevated during the interval of sapropel S5 deposition, and within colder glacial periods of the last glacial cycle. The most climatically variable period of the last glacial cycle in the Mediterranean (~30-60 ka BP) coincides with marine isotope stage (MIS) 3.
Grant, Katharine M.
f9d9fa1b-62f3-4e90-a6f0-b46bc213fdb2
Grant, Katharine M.
f9d9fa1b-62f3-4e90-a6f0-b46bc213fdb2
Rohling, Eelco
a2a27ef2-fcce-4c71-907b-e692b5ecc685

(2013) Sea-level change, monsoon variability, and eastern Mediterranean climate over the Late Pleistocene. University of Southampton, Ocean and Earth Science, Doctoral Thesis, 176pp.

Record type: Thesis (Doctoral)

Abstract

A new, radiometrically constrained chronology is developed for a continuous, highresolution relative sea-level (RSL) record from the Red Sea that spans the past 500,000 years (500 ka BP). The method is based on indirect correlation of the RSL record with speleothem ?18O records from Soreq cave, Israel (for the period 0-150 ka BP), and from Sanbao Cave, China (for the period 150-500 ka BP). The new RSL record allows ice-volume (sea-level) phase relationships with key climate-system variables to be examined, without bias from icecore or orbital timescales. The effects of ice-volume changes on monsoon variability are also examined. In a separate development, the Soreq-synchronised interval of the RSL record is used to produce residual oxygen isotope (?18O) records for the eastern Mediterranean; these represent regional environmental signals which are unbiased by ice-volume and sourcewater effects.

Results suggest that, over the last glacial cycle, changes in polar climate and ice-volume were tightly coupled, with centennial-scale response times, and rates of sea-level rise reached at least 1.2 m per century during periods of significant ice-volume reduction. Results also suggest that, at the last five glacial terminations, ice-volume changes generally lagged insolation and atmospheric CO2 rises by ~2-7 kyr. This supports the Milankovitch theory of ice-age cycles, and disputes suggestions that CO2-driven feedback processes initiated glacial terminations.

It is shown that ice-volume changes can partly explain East Asian monsoon (EAM) variability. In particular, rapid rates of ice-volume reduction at glacial terminations can account for rapid, millennial-scale variability in summer and winter EAM proxies. This observation is consistent with meltwater pulses into the North Atlantic at terminations leading to a delayed intensification of the summer EAM. Evidence also suggests that changes in different monsoon systems of the northern hemisphere were synchronous during periods of ice-volume minima. Regarding the East African summer monsoon (EAfSM), no systematic phasing is observed between precession minima and EAfSM maxima, and so the common use of a 3-kyr lag to date EAfSM records appears to be too generalised.

The new palaeo-environmental reconstructions for the Mediterranean presented here suggest that local precipitation did not increase substantially during the deposition of sapropels S1, S3 and S4, whereas net moisture availability may have been elevated during the interval of sapropel S5 deposition, and within colder glacial periods of the last glacial cycle. The most climatically variable period of the last glacial cycle in the Mediterranean (~30-60 ka BP) coincides with marine isotope stage (MIS) 3.

PDF
Grant_Thesis.pdf - Other
Download (11MB)

More information

Published date: 30 July 2013
Organisations: University of Southampton, Ocean and Earth Science

Identifiers

Local EPrints ID: 362005
URI: http://eprints.soton.ac.uk/id/eprint/362005
PURE UUID: 6ba3b716-95ab-46f8-8582-2458e5b105b6
ORCID for Eelco Rohling: ORCID iD orcid.org/0000-0001-5349-2158

Catalogue record

Date deposited: 13 Feb 2014 10:58
Last modified: 06 Jun 2018 13:06

Export record

Contributors

Author: Katharine M. Grant
Thesis advisor: Eelco Rohling ORCID iD

University divisions

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×