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ABSTRACT
The thermal profile of multicore systems vary both within
an application’s execution (intra) and also when the sys-
tem switches from one application to another (inter). In
this paper, we propose an adaptive thermal management
approach to improve the lifetime reliability of multicore sys-
tems by considering both inter- and intra-application ther-
mal variations. Fundamental to this approach is a reinforce-
ment learning algorithm, which learns the relationship be-
tween the mapping of threads to cores, the frequency of
a core and its temperature (sampled from on-board ther-
mal sensors). Action is provided by overriding the oper-
ating system’s mapping decisions using affinity masks and
dynamically changing CPU frequency using in-kernel gover-
nors. Lifetime improvement is achieved by controlling not
only the peak and average temperatures but also thermal
cycling, which is an emerging wear-out concern in modern
systems. The proposed approach is validated experimen-
tally using an Intel quad-core platform executing a diverse
set of multimedia benchmarks. Results demonstrate that
the proposed approach minimizes average temperature, peak
temperature and thermal cycling, improving the mean-time-
to-failure (MTTF) by an average of 2x for intra-application
and 3x for inter-application scenarios when compared to ex-
isting thermal management techniques. Furthermore, the
dynamic and static energy consumption are also reduced by
an average 10% and 11% respectively.

1. INTRODUCTION
A major challenge of modern multicore systems is decreasing
lifetime reliability, threatened by high power densities and
hence elevated operating temperatures. This leads to an ac-
celeration of device wear-out. Thermal management has at-
tracted significant attention both in industry and academia.
Examples include dynamic thermal management using volt-
age and frequency scaling [7], slack time management [10],
peak temperature management through system-level task
scheduling [3] and thermal stress management through ap-
plication task mapping [2] (refer to Section 2 for a summary
of related works). These approaches, however, suffer from
the following limitations.

First, modern multicore systems switch between appli-
cations exhibiting wide performance and workload varia-
tions, and therefore the thermal behavior of these systems
vary both within (intra) and across (inter) applications. Al-
though intra-application thermal variations are considered
in existing studies, inter-application variations are not ad-
dressed. Second, the existing studies focus on average tem-
perature reduction; thermal cycling is not accounted. Last,
the existing adaptive techniques are either implemented on
a simulator or rely on time-consuming thermal prediction
from the HotSpot tool [14], limiting their scalability.
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In this paper, we address the above gaps and present a
dynamic thermal management approach for multicore sys-
tems that adapts to thermal variations within (intra) and
across (inter) applications. Fundamental to this approach
is a run-time system, which interfaces with the on-board
thermal sensors and uses reinforcement learning to learn
the relationship between the mapping of threads to cores,
the frequency of a core and its temperature. The aim is
to control the average temperature and the thermal cycling
to achieve an extended mean time to failure (MTTF). This
paper makes the following contributions:

1. inter-and intra-application thermal management using
thread-to-core allocation (through CPU affinity) and
dynamic frequency control (through CPU governors)1;

2. separation of the temperature sampling interval from
the decision interval of the conventional reinforcement
learning algorithm to accurately model (and hence con-
trol) the average temperature and thermal cycling; and

3. implementation of the run-time system incorporating
the machine learning algorithm on a real platform.

The proposed approach is implemented on an Intel quad-
core platform running Linux kernel 3.8.0. A set of multime-
dia applications from the ALPBench suite [11] are executed
on the platform. Results demonstrate that the proposed ap-
proach minimizes average temperature and thermal cycling,
leading to a significant improvement in MTTF as demon-
strated in Section 6.

The remainder of this paper is organized as follows. A
brief introduction to related works is presented in Section 2
and the motivation in Section 3. This is followed by the pre-
liminaries on reliability in Section 4 and an overview of the
reinforcement learning-based approach in Section 5. Evalua-
tion of the proposed technique is presented next in Section 6
and the paper is concluded in Section 7.

2. RELATED WORKS
The existing studies on thermal optimization can be classi-
fied into two categories – static and dynamic. Static tech-
niques determine application mapping and scheduling offline
to minimize peak temperature or thermal cycles [17]. Dy-
namic techniques optimize temperature at run-time. Since
this work belongs to the latter category, dynamic thermal
management techniques are discussed in depth. A slack bor-
rowing technique is proposed in [10] to dynamically manage
peak temperature for MPEG-2 decoder. A reinforcement-
learning based adaptive technique is proposed in [3] to op-
timize temperature by controlling task mapping based on
the temperature of the current iteration. A neural network
based adaptive technique is proposed in [9] to reduce peak
temperature. Both these techniques rely on the HotSpot
tool for temperature prediction. The relationship between
temperature and voltage and frequency of operation is for-
mulated in [8, 12]. Based on this, an online heuristic is pro-
posed to determine the voltage and frequency of the cores
to minimize the temperature. This technique does not per-
form learning, resulting in re-performing the same optimiza-
tion for the same environment. A reinforcement learning al-
gorithm is proposed in [7] to manage performance-thermal

1CPU affinity enables the binding of a thread of an application
to a physical core or a range of cores.
CPU governors are power schemes for the CPU deciding the fre-
quency of operation of the cores.



Table 1. Summary of related Works
Related Machine Inter- Thermal Temperature

Platform
Works Learning Application Cycling Measurements

[6]
√

× × thermal gun FPGA

[3]
√

×
√

HotSpot multicore

[2] × ×
√

HotSpot simulation

[9]
√

× × HotSpot simulation

[8,12] ×
√

× thermal model simulation

[7]
√

× × sensors multicore

Proposed
√ √ √

sensors multicore

trade-offs by sampling temperature data from the on-board
thermal sensors. A distributed learning agent is proposed
in [6] to optimize peak temperature with a given power
budget. The technique is implemented on an FPGA with
temperature measurement using an external thermal gun.

Table 1 summarizes the related works. As can be seen,
some of the existing studies rely on the HotSpot tool for
temperature prediction. Although the HotSpot tool can be
used to validate static thermal management policies, the
high simulation time of the tool can potentially cause dead-
line misses for dynamic thermal management of real-time
systems. In some of the existing works, temperature is es-
timated by solving a RC equivalent thermal model. These
models are usually complex and difficult to solve using direct
mathematical techniques such as LU decomposition. Ther-
mal guns have also been used to measure the temperature;
however, this suffers from limited accuracy, especially to cap-
ture thermal cycling. Furthermore, deploying thermal guns
for real system is not practical. Finally, using performance
counter for estimating temperature can lead to inaccuracy
in the thermal values. These motivate the use of thermal
sensors, even at the expense of limited speed of operation,
and as such [7] is used to compare the proposed approach.

3. MOTIVATIONAL EXAMPLE
Thermal management using voltage and frequency control is
already demonstrated in prior works (e.g. [7]). To establish
the importance of thread allocation on the thermal behavior
of applications, an experiment is conducted on an Intel quad-
core platform by executing two multi-threaded (6 threads)
applications (face recognition and mpeg2 encoding) back-to-
back. The thermal profiles obtained using Linux’s default
thread-to-core allocation and scheduling is shown in red in
Figure 1. From the thermal profiles it can be seen that face
recognition is characterized by a higher average temperature
with lower thermal cycling leading to peak temperature re-
lated reliability issues such as electro-migration (EM) and
negative bias temperature instability (NBTI). Application
mpeg2 encoding on the other hand exhibits lower average
temperature with higher thermal cycling leading to thermal
fatigue and its associated reliability problems.

This difference in thermal behavior of the two different
applications can be explained as follows. The thread work-
loads of the face recognition application are characterized by
longer duration of thread-independent high activity cycles
followed by shorter duration of inter-thread dependent low
activity cycles. When these threads are allocated to cores,
the longer independent high-activity cycles of a thread over-
lap partially with the shorter dependent low-activity cycles
of other threads. This is due to the Linux’s default thread
allocation, where threads are often migrated to balance load
on the architecture. This leads to a higher temperature with
lower thermal cycling. For the mpeg2 encoding application,
the thread-independent high-activity cycles are shorter in
duration, while the inter-thread dependent cycles are rel-
atively long compared to the face recognition application.
When these threads are allocated by Linux, only few of the
available cores are being used. The default allocation re-
sults in a combination of independent high-activity cycles
(of more than one threads), which overlap with each other
(leading to a higher temperature) and similarly, the longer
low-activity inter-thread dependent cycles overlap (leading
to a lower temperature). This results in alternating high
and low temperature triggering high thermal cycling.

Next, the same experiment is repeated by arbitrarily fixing
the assignment of threads to cores (two cores execute two
threads each and the other two cores execute one thread
each) and leaving only the thread scheduling decision to
the operating system. This is performed by changing all
thread’s affinity masks, forcing the Linux kernel to migrate
these threads to the cores specified. The new thermal pro-
files are shown in blue in the same figure. As can be seen
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Figure 1. Thread-to-core affinity influences thermal profile

from the plot, this arbitrary thread assignment results in
higher average temperature with higher thermal cycling for
the face recognition application triggering all temperature
related reliability concerns. This is because when threads
are fixed to cores, the longer high-activity cycles of differ-
ent threads overlap and so do the shorter low-activity cycles
resulting in higher temperature and higher thermal cycling.
When the same control is applied for mpeg2 encoding, the
shorter high-activity cycles are not combined but are over-
lapped with each other. The temperature however increases,
but for a shorter duration. This results in reduction of both
the average temperature and thermal cycling thereby im-
proving the lifetime. This example demonstrates two key
aspects – thermal profile varies with application; and thread
allocation influences thermal profile. This motivates the im-
portance of an adaptive algorithm to learn the thermal be-
havior of an application and control it using appropriate
thread-to-core assignment.

4. RELIABILITY COMPUTATION

4.1 Temperature Related MTTF

The lifetime reliability of a core is given by R(t) = e−(t·A)β ,
where A is the Thermal Aging of the core (refer to [4, 15]).

A =
∑
i

∆ti

tp × α(Ti)
(1)

where tp is the execution time of the application, α(Ti) is the
fault density (typically Weibull or Lognormal distribution)
and Ti is the average temperature in the interval ∆ti. This
equation allows to model any wear-out effect such as electro-
migration and negative bias temperature instability consid-
ered individually or as sum-of-failure-rate (SOFR). Mathe-
matically, the MTTF of the core is

MTTF =

∫ ∞
0

R(t)dt =

∫ ∞
0

e
−(t·A)β

dt (2)

Thus, maximizing the MTTF is equivalent to minimizing
the aging of the cores.

4.2 Thermal Cycling Related MTTF
Thermal cycling related MTTF is computed in three steps.

1. Calculating the thermal cycles from a thermal profile
using Downing simple rainbow counting algorithm [5].

2. Calculating, from each thermal cycle, the number of
cycles to failure using Coffin-Mansion’s rule.

NTC (i) = ATC
(
δTi − TTh

)−b
e

Ea
KTmax(i) (3)

where NTC(i) is the number of cycles to failure due
to ith thermal cycle, ATC is an empirically determined
constant, δTi is the amplitude of the ith thermal cycle,
TTh is the temperature at which elastic deformation
begins, b is the Coffin-Manson exponent constant, Ea

is the activation energy and Tmax(i) is the maximum
temperature in the ith thermal cycle.

3. Calculating the MTTF using Miner’s rule.

MTTF =
NTC

∑m
i=1 ti

m
(4)

where ti is the time for the ith thermal cycle, m is the
number of thermal cycles obtained in step 1 and NTC

is the effective cycles to failure determined using

NTC =
m∑m

i=1
1

NTC (i)

(5)



/* Affinity mask & Governor*/
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Figure 2. Proposed system level approach

Combining Equations 3-5, MTTF =
ATC

∑m
i=1 ti

Thermal Stress
, where

Thermal Stress is an indication of the stress experi-
enced by a core due to the thermal cycling. This is
obtained using the following equation.

Thermal Stress =
m∑
i=1

(δTi − TTh)
b × e

−Ea
KTmax(i) (6)

Thus, maximizing the MTTF of a core due to thermal cy-
cling is equivalent to minimizing its stress.

5. PROPOSED APPROACH
Figure 2 illustrates the proposed dynamic thermal manage-
ment approach as part of the system software layer and its
interaction with the operating system, the application and
the hardware layer. We adopted Q-Learning [18] as the re-
inforcement learning algorithm, where the learning agent
maintains a Q-Table with entries corresponding to every
state-action pair. The approach interfaces with the appli-
cation layer to determine the performance requirement. For
video applications such as mpeg2 encoding/decoding, the per-
formance is measured as frames per second while for other
applications such as image processing, performance refers to
the execution time. A point to note here is that, although
the above metrics are used for performance, the proposed al-
gorithm can be trivially used with any reward function such
as the performance counter based metric of [7].

The operating system samples the on board thermal sen-
sors and reads the performance counters at the sampling in-
terval to compute the thermal stress, aging and to monitor
performance. The stress and aging values form the states
of the Q-Table. The learning agent selects action at a fixed
interval, called the “decision epoch”. Each action comprises
of thread affinity and voltage and frequency of operation
and is enforced by the operating system on the underlying
cores of the hardware layer. In most existing works on Q-
learning based thermal management, the decision epoch is
used to sample the temperature; actions are selected based
on the instantaneous temperature from the sensor, which is
not a true indication of the average temperature or thermal
cycling in the interval. Since temperature-related reliabil-
ity is governed by average temperature and thermal cycling,
which need to be measured over a period of time, we used a
sampling interval different than than of the decision epoch.

At the start of every decision epoch, the learning agent
first computes the reward (or penalty) of the previous action
based on three parameters – previous state, previous action
and current state. The Q-Table entry corresponding to the
previous state and previous action is updated according to
the following equation [7, 18].

Q(Ei,ℵi) + = α

R(Ei, Ei+1) + γ max
ℵj

(
Q(Ei+1,ℵj) − Q(Ei,ℵi)

) (7)

where α is the learning rate and is an indication of adapta-
tion rate of the Q values and γ ([0, 1]) is the discount rate.

Subsequently, the learning agent selects the action with
the highest Q-value for the current state. This action is first
decoded by the operating system to determine the affinity
masks for the threads and voltage and frequency of the cores.
The threads are then migrated to the cores specified by the
corresponding mask and the CPU governor settings are up-
dated to enforce the voltage-frequency pair. Initially, the
actions selected by the agent may not be optimal; the deci-
sions are, however, refined over time. Algorithm 1 provides

ALGORITHM 1: Reinforcement Learning Algorithm

Input: Temperature reading from sensors T .
Output: Thread affinity and CPU governors ℵi.
Initialize the Q-Table, E0 = 0, ℵ0 = 0, i = 1, α = 1;
TRec.push(T ); //Record temperature;
if |TRec| == Decision Epoch then

Calculate MAs(i) and MAa(i);
∆MAs = |MAs(i)−MAs(i− 1)| and ∆MAa = |MAa(i)−MAa(i− 1)|;
if ((∆MALs ≤ ∆MAs < ∆MAUs ) || (∆MALa ≤ ∆MAa < ∆MAUa )) then

Q ← Qexp and α ← αexp; //Intra workload variation;

end

if ((∆MAs ≥ ∆MAUs ) || (∆MAa ≥ ∆MAUa )) then
Q ← Q0 and α ← 1; //Inter workload variation;

end
Ei = IdentifyState(TRec);

R = CalculateReward(Ei−1, Ei) //Equation 8;

Q(Ei−1,ℵi−1) = UpdateQtable(Q,R, α) //Equation 7;

ℵi = SelectAction(Q, Ei);
α = UpdateLearningRate(α, Ei);
TRec = ∅, i = i + 1;

end
sleep(temperature sampling interval);

the pseudo-code of the learning agent. Details of this algo-
rithm are provided in the following subsections.

5.1 Selecting the State and Action Space
The state space of our Q-Learning algorithm is composed
of stress (determined using Equation 6) and aging (deter-
mined using Equation 1). To limit state space explosion, the
working range of these parameters are divided into Na and
Ns disjoint intervals respectively. Specifically, stress is the
set S = {(0, s0], (s0, s1], · · · , (sNs−1, sNs ]} and the symbol
ŝi is used to represent the interval (si, si+1]. Similarly, ag-
ing is the set A = {(0, a0], (a0, a1], · · · , (aNa−1 , aNa ]} and
the symbol âi is used to represent the interval (ai, ai+1].
The environment is represented as E : (A× S). The action
space of the agent is composed of thread affinity-based as-
signments and five CPU governors (ondemand, conservative,
performance, powersave and userspace). The number of dif-
ferent affinity masks grows exponentially with the number
of threads and cores. To restrict the action space, only a few
of the alternatives are explored. Similarly, three frequency
levels are selected for the userspace CPU governor. The ac-
tion space is denoted by ℵ : (M×G) where M is the set of
thread affinity mappings and G is the set of governors.

5.2 Computing the Reward

The reward function R(Ei, Ei+1) is given by

R(Ei, Ei+1) =

{
−ŝi × âi if (ŝi = ŝNs

) or (âi = âNa
)

f(âi, ŝi) + (Pc − P ) otherwise
(8)

where P is the performance, Pc is the performance con-
straint and the function f is determined empirically as f =
(a.K1.stress+b.K2.aging), where a and b are relative impor-
tance of stress and aging : For mpeg (large thermal cycles),
a > b and for tachyon (high average temperature), b > a.
Two sets of a and b values are used based on the mean of
stress and aging. K1(K2) is the learning weight and is a
Gaussian function of the stress (aging) values. This distri-
bution assigns lower rewards to thermally unstable as well
as the thermal stable states and thus allows the algorithm
to explore other states and prevent Q-Table clustering.

For the design of the reward function, two cases are con-
sidered. If the stress or aging falls in the unsafe zone (the
last interval), the decision is penalized. This is indicated
with a negative value of the reward function, which decreases
the Q value (refer to Equation 7) so that the corresponding
action is avoided in the future. For all other cases, the re-
ward function is composed of performance penalty and the
thermal safety of the state. Specifically, if the performance
requirement is not satisfied, (Pc − P ) is negative and the
reward (or penalty) is governed by the function f . Finally,
rewards are guaranteed if an action leads to a thermal safe
state while satisfying the performance requirements.

5.3 Learning Phases
The Q-learning algorithm is composed of three phases – ex-
ploration, exploration-exploitation and exploitation. In the
exploration phase, the agent selects action arbitrarily to de-
termine the corresponding reward. This phase is character-
ized by α values close to 1 to enable a significant fraction
of the reward values to contribute towards the Q-Table en-
tries. In the exploration-explotation phase, the agent selects
the best action (with the highest Q value) for the current
state and updates the Q-Table entry with a part of the re-
ward value. Finally, in the exploitation phase, the algo-
rithm still selects the action corresponding to the highest



Table 2. MTTF (in years) of reinforcement learning algorithm for three applications. The scaling parameters for computing MTTF are so
selected such that the MTTF of an unstressed core (i.e. an idle core) is 10 years.

Benchmarks Average Temperature (oC) Peak Temperature (oC) Thermal cycling MTTF Average temperature MTTF

Application Data Linux Ge et. al [7] Proposed Linux Ge et. al [7] Proposed Linux Ge et. al [7] Proposed Linux Ge et. al [7] Proposed

tachyon
set 1 69.2 52.6 50.6 71.5 63.0 60.0 7.1 2.3 5.5 0.7 3.0 3.6

set 2 50.5 44.5 43.8 57.3 56.3 52.0 2.8 4.3 5.3 2.6 4.5 4.8

set 3 50.8 44.7 41.6 57.8 54.5 48.8 1.3 3.8 6.5 2.4 4.1 5.5

mpeg dec
clip 1 36.0 34.0 34.2 42.7 41.3 39.0 2.1 0.8 6.4 3.7 4.5 4.4

clip 2 35.6 34.4 34.2 42.3 42.0 39.3 1.1 0.9 4.7 3.8 4.3 4.4

clip 3 34.3 34.4 34.0 43.0 39.7 44.3 1.6 3.4 3.7 4.3 4.2 4.5

mpeg enc
seq 1 33.7 34.1 32.6 41.0 40.7 40.3 4.3 4.4 5.2 4.6 4.5 5.2

seq 2 34.4 33.5 32.3 41.3 39.7 41.7 3.9 6.2 4.8 4.3 4.7 5.4

seq 3 33.2 33.7 31.8 40.3 40.0 41.0 4.6 5.1 5.1 4.9 4.6 5.7

Q-value for the current state; however, the Q-table entries
are not updated (or updated with negligible fraction of the
reward value). This phase is characterized with α values
close to 0. To facilitate transition between the three phases
of the algorithm, an exponentially decreasing function is se-
lected for the α value. This function is implemented in the
UpdateLearningRate subroutine.

5.4 Adaptation to Workload Variation
To incorporate intra- and inter-application workload varia-
tions, moving averages of the stress and the aging are de-
termined at the start of every decision epoch. The change
in the moving averages are identified in the algorithm as
∆MAs and ∆MAa. Two thresholds are maintained for each
of these quantities identified with the superscript L and U ,
respectively. The learning agent considers a change in the
moving average as intra-application variation if the change
is greater than the lower threshold and lower than the upper
threshold (for example when ∆MAL

s ≤ ∆MAs < ∆MAU
s ).

This causes the Q-table to be updated with the Q values
from the end of the exploration phase. The alpha value is
also updated accordingly. On the other hand, the agent con-
siders a change in the moving average as inter-application
variation, if the change is greater than the upper threshold.
In this case, the Q-Table entries are initialized to 0 and α
value initialized to 1 to start learning again. This is the
implicit learning technique adopted in this work. The αexp,
lower and upper threshold are determined empirically from
the set of applications at hand. A point to note here is that,
the agent maintains two Q-Tables – one with static Q values
from the end of the exploration phase and the other with Q
values that are updated at each decision epoch.

Algorithm 1 provides the pseudo-code of the reinforcement
learning algorithm. Important parameters of the algorithm
are the temperature sampling interval, decision epoch and
the number of states and actions. We adopt a systematic
approach to decide these parameters.

6. RESULTS AND DISCUSSIONS
The proposed run-time approach is validated experimentally
on an Intel quad-core CPU running Linux kernel 3.8.0. Per-
formance is monitored using perf [1]; temperature is mea-
sured by sampling the thermal sensors directly; power/energy
consumption is recorded using likwid powermeter [16]. A
set of multi-threaded multimedia applications are considered
from the ALPBench [11] benchmark suite. These bench-
marks are mpeg enc, mpeg dec, face recognition, sphinx and
tachyon and are representative of the multimedia workloads
for most multicore systems. The number of threads in each
of these applications is configurable and, in this paper, six
threads are considered to exploit the full benefit of the four
cores. The device parameters used for computing the aging
and stress of a core are the same as that used in [2, 17].

6.1 Intra-Application
Table 2 reports the average temperature, peak temperature
and MTTF due to average temperature (equivalently aging)
and thermal cycling (equivalently stress) of the proposed
technique in comparison with Linux’s ondemand [13] and
the technique proposed in [7]. Results are reported for three
different applications, each of which are executed for three
sets of input data. There are a few trends to follow from
this table. First, the technique in [7] minimizes instanta-
neous temperature achieving a lower aging (higher MTTF)
than Linux (refer to columns 3-4 & columns 12-13). This
signifies the importance of the thermal management feature
for operating systems. However, thermal cycling is not ac-
counted for in this technique and therefore does not guar-
antee reduction of stress. This is evident from the thermal
cycling-related MTTF values for scenarios such as tachyon
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on set 1 and mpeg dec on clip 1, where the MTTF values
obtained using [7] is lower than that of Linux.

Second, the proposed reinforcement learning algorithm
minimizes the average temperature by upto 18.6oC and the
peak temperature by upto 11.5oC. This reduction leads to
an improvement in MTTF due to aging by upto 5x (average
82%). For applications such as mpeg dec, the improvement is
less as the average temperature is usually lower, leading to a
limited scope to further improve aging. The thermal cycling
effect dominates in this application. For other applications
such as tachyon, the improvement is significant due to the
large scope for improving both aging and stress. Third, the
proposed adaptive algorithm also minimizes thermal cycling
which is not considered in Linux and [7]. This is highlighted
in columns 9-11. An important point to note is that for the
tachyon application with set 1 data, the MTTF due to stress
using Linux’s default thread assignment is higher (7.1 years);
however, the MTTF due to aging is lower (0.7 years). The
proposed technique balances the two effects and improves
the MTTF due to aging by 5x with less than 25% sacrifice
in MTTF due to stress (while still maintaining a satisfactory
MTTF of 5.5 years). For all other applications and data sets,
the proposed reinforcement learning algorithm outperforms
Linux in terms of thermal cycling by an average 2.3x.

Last, the proposed approach outperforms [7] both in terms
of aging (an average 13% higher average temperature related
MTTF) and stress (an average 2x higher thermal cycling re-
lated MTTF). While the improvement of thermal cycling is
expected (as this is incorporated explicitly in the proposed
approach), the improvement in aging is due to the follow-
ing. First, the decoupling of the temperature sampling inter-
val from the decision epoch (enabling a finer control on the
average temperature); second, careful choice of the design
parameters as demonstrated in Figure 6 & 7.

6.2 Inter-Application
Figure 3 plots the normalized MTTF due to thermal cy-
cling obtained using the proposed technique in comparison
with that obtained using the modified technique of [7] for
six different inter-application scenarios. The MTTF values
are normalized with respect to the MTTF obtained using
Linux’s ondemand governor. Furthermore, the technique
of [7] is modified to consider application switching using
explicit indication from the application layer. The pro-
posed approach however, detects application switching au-
tonomously (without communication from the application
layer) and performs re-learning (as discussed in Section 5).

There are six inter-application scenarios considered in this
experiment. A scenario appA-appB indicate that appA is



Figure 4. Exploration phase of the learning algorithm

Figure 5. Exploitation phase of the learning algorithm

executed first followed by application appB. As can be seen
from the figure, the technique of Ge et. al [7] results in
higher MTTF than Linux. For some inter-application sce-
narios such as mpegdec-tachyon and tachyon-mpegdec, the
improvements are less (≈ 8%). For other inter-application
scenarios, this improvement is higher. On average, for all
the scenarios, [7] increases MTTF by 80% as compared to
Linux. The approach proposed in this paper outperforms
both Linux and that of [7] in terms of thermal cycling,
achieving 5x improvement with respect to Linux and 3x
improvement with respect to [7]. A point to note from
the figure is that, the MTTF improvement (over [7]) using
the proposed approach, increases with frequent application
switching. This is evident from the higher MTTF improve-
ment of 3.5x obtained for the three-application scenarios
(mpegdec-tachyon-mpegenc and tachyon-mpegenc-mpegdec)
as compared to improvements obtained for the four other
two-application scenarios. Thus, the proposed approach im-
proves thermal cycling related MTTF significantly for inter-
application scenarios. The improvement increases with an
increase in application switching (typical of a modern mul-
ticore system).

6.3 Phases of the Reinforcement Learn-
ing Algorithm

To further demonstrate the temperature profile obtained us-
ing the proposed algorithm, Figures 4 and 5 plot the explo-
ration and the exploitation phases, respectively in compari-
son with Linux’s popular and default ondemand governor for
the face recognition application. As can be seen, at the be-
ginning of the exploration phase, the temperature obtained
using the proposed algorithm is comparable to that obtained
using Linux. This is because, at this phase, the proposed al-
gorithm explores the impact of CPU affinity and operating
frequency choices on the temperature of a core. However,
when the proposed model learns the impact of these param-
eters on temperature (i.e. in the exploitation phase), the
CPU affinities and operating frequencies are selected such
that the average temperature is reduced (Figure 5).

6.4 Selection of Design Parameters
Figure 6 plots the impact of varying the interval of sampling
temperature from the on-board thermal sensors on thermal
stress and performance for the tachyon application. The
figure also plots the auto-correlation of temperature sam-
ples which is a measure of how much the temperature val-
ues change across consecutive samples. Specifically, a high
auto-correlation indicates a small difference between con-
secutive thermal data. As can be seen from the figure, the
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Figure 7. Effect of the length of decision epoch

auto-correlation is high for lower sampling intervals. This is
expected as temperature variation is usually slower, being
dependent on the thermal property of silicon, ambient tem-
perature and cooling technology used. The MTTF value in-
creases with an increase in size of the sampling interval. This
is, however, an over estimation of the actual MTTF value
(corresponding to the sampling interval of 1 sec). This over-
estimation is due to the loss of temperature accuracy with
increasing sampling interval resulting in a lower stress and
hence higher MTTF. Finally, the number of cache-misses
and page faults decrease with an increase in the sampling
interval, clearly signifying the performance improvement.
Based on these trade-offs, a sampling interval of 3 sec is se-
lected for the tachyon application. Similarly, the sampling
interval for other applications are determined. An interval
of 3 sec provides the best trade-off for most of the applica-
tions. In future, determination of the sampling interval can
be incorporated as part of the learning algorithm itself.

Figure 7 plots the performance of the algorithm with in-
creasing decision epochs for the three applications. The ex-
ecution time, dynamic energy consumption and the adapta-
tion time are compared. The execution time refers to the
completion time with a fixed length of input data. For the
mpeg enc (or mpeg dec) application, this is the time to en-
code(decode) 10MB of video. For the tachyon application,
the time is measured as the rendering time of 300 images.
The execution time using the reinforcement learning algo-
rithm is normalized with respect to the execution time of
Linux (with no adaptation) for the same input data. As can
be seen from Figure 7(a), for all applications, the execution
time overhead is higher for smaller decision epochs due to
the overhead associated with frequent decision changes. The
execution time overhead reduces with larger decision epochs.
Figure 7(b) reports the dynamic energy consumption of the
proposed approach for the same input data normalized with
respect to the Linux (without adaptation). As expected,
the energy consumption is also higher for smaller decision
epochs due to the frequent adaptation of the approach. Fi-
nally, Figure 7(c) plots the training time i.e. the time re-
quired for the algorithm to learn the thermal behavior of an
application. The results are normalized with respect to the
training time of the algorithm with a decision epoch of 5sec.
As can be seen, the training time increases with an increase
in the decision epoch. This is because the training time is
a function of decision epoch and number of iterations. The
decision epoch for our algorithm is selected based on this
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Table 3. Execution time (in sec) of the proposed approach.

App.
Linux Ge et. al

Proposed
ondemand powersave 2.4GHz 3.4GHz [7]

tachyon 629 1337 913 627 1137 810

mpeg dec 1208 1222 1183 1127 1328 1204

mpeg enc 1623 1655 1628 1571 1676 1599

energy, execution and training time trade-off.
Figure 8 plots the convergence time of the proposed al-

gorithm for the mpeg decoding application with a varying
number of states and actions. The convergence time is mea-
sured by the number of decision epochs needed to train the
proposed learning algorithm. As can be seen from the figure,
the number iterations i.e. the training time increases with
an increase in the number of actions and/or states. This is
expected as an increase in the states and/or actions leads
to an increase in the size of the Q-Table and therefore more
iterations are needed to learn (fill the table entries). The
figure also reports the MTTF as coordinates (stress, aging)
for each design point. As the size of the Q-Table increases,
the reinforcement learning algorithm has finer control on
the temperature resulting in an improvement in the MTTF.
The number of states and actions are chosen based on this
learning time and solution quality trade-off.

6.5 Performance and Energy Trade-offs
Table 3 reports the execution time of the proposed approach
in comparison with the one proposed in [7] and the Linux-
based approach for ondemand, powersave and user-space
power governors. Two user frequencies (2.4GHz and 3.4GHz)
are shown in the table. The execution time with the highest
frequency of 3.4GHz is the least for all the applications. This
is expected as the execution time decreases with an increase
in frequency. For the same reason, the execution time with
the lowest frequency (powersave) is the highest. However,
the power overhead is least (as explained next). For some ap-
plications such as tachyon, the proposed approach has higher
execution time than the Linux’s ondemand governor by upto
30%. This is because the workload in the tachyon applica-
tion forces the kernel to execute always at the highest fre-
quency of 3.4GHz in the ondemand power mode. Thus, the
execution time for Linux’s ondemand and userspace-3.4GHz
are comparable. The proposed approach on the other hand
explores different power modes to reduce thermal stress and
aging and therefore trades-off performance. For other appli-
cations such as mpeg enc and mpeg dec, the execution time
of the proposed approach is lower than that of Linux’s onde-
mand power mode. Finally, with respect to [7], the proposed
approach reduces execution time by an average 14%.

Figure 9 plots the average dynamic power and energy con-
sumption (measured using likwid-powermeter) of the pro-
posed algorithm in comparison with that of [7] and the Linux
governors. Although the power and energy overhead are not
reported in [7], these are calculated here for a comparative
study. As can be seen from the figure, the proposed ap-
proach reduces power consumption by an average 6% in com-
parison with Linux ondemand governor with 10% increase
in execution time. Although the dynamic power consump-
tion of [7] is lower than the proposed approach (on aver-
age 4% lower), the energy consumption (which incorporates
both power and performance) of the proposed approach is
10% lower than [7] (within 3% of the energy consumption of
Linux’s ondemand governor).

An interesting point to note here is that, by reducing the
average temperature the proposed technique improves the
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Figure 9. Power comparison of the reinforcement learning algorithm

leakage power. Although leakage power is not measured on
the board, the established models for the same (such as the
one proposed in [17]) indicate that the proposed algorithm
improves leakage energy by an average 15% as compared to
Linux’s ondemand governor and 11% as compared to [7].

7. CONCLUSIONS
We have proposed a reinforcement learning-based run-time
approach for multicore system to adapt to thermal varia-
tions both within an application as well as when the system
switches from one application to another. The control is
provided by overriding the operating system mapping de-
cisions using affinity masks and dynamically changing the
frequency of cores using CPU governors. The approach is
validated experimentally using an Intel quad-core platform
running Linux kernel 3.8.0. Results demonstrate that the
proposed approach is able to improve MTTF by an average
2x for intra-application and 3x for inter-application scenar-
ios as compared to the existing dynamic thermal manage-
ment technique. Furthermore, the approach also improves
dynamic energy consumption by an average 10% and static
energy by 11%. In future, the approach can be extended to
consider concurrent applications and heterogeneous cores.
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