The University of Southampton
University of Southampton Institutional Repository

The design and performance of feedback controllers for the attenuation of road noise in vehicles

The design and performance of feedback controllers for the attenuation of road noise in vehicles
The design and performance of feedback controllers for the attenuation of road noise in vehicles
Active noise control systems offer a potential method of reducing the weight of acoustic treatments in vehicles and, therefore, of increasing fuel efficiency. The commercialisation of active noise control has not been widespread, however, partly due to the cost of implementation. This paper investigates the design and performance of feedback road noise control systems, which could be implemented cost-effectively by using the car audio loudspeakers as control sources and low-cost microphones as error sensors. Three feedback control systems are investigated, of increasing complexity: a single-input single-output (SISO) controller; a SISO controller employing weighted arrays of error sensors and control sources; and a fully-coupled multi-input multi-output (MIMO) controller. For each of the three controllers robustness and disturbance enhancement constraints are defined and by formulating the three controllers using an Internal Model Control (IMC) architecture, and using frequency discretisation, the constrained optimisation problems are solvable using sequential quadratic programming. The performance of the three controllers and the associated design methods are first evaluated in a simulated environment, which allows the physical limits on performance to be understood. Finally, to validate the results in the simulated environment, the performance of the three controllers has been calculated using data measured in a car cabin and it has been shown that the fully-coupled MIMO controller is able to achieve significant low frequency road noise control, at the expense of increased implementation complexity compared to the SISO and SISO weighted transducer arrays feedback controllers
1027-5851
155-164
Cheer, Jordan
8e452f50-4c7d-4d4e-913a-34015e99b9dc
Elliott, Stephen J.
721dc55c-8c3e-4895-b9c4-82f62abd3567
Cheer, Jordan
8e452f50-4c7d-4d4e-913a-34015e99b9dc
Elliott, Stephen J.
721dc55c-8c3e-4895-b9c4-82f62abd3567

Cheer, Jordan and Elliott, Stephen J. (2014) The design and performance of feedback controllers for the attenuation of road noise in vehicles. International Journal of Acoustics and Vibration, 19 (3), 155-164.

Record type: Article

Abstract

Active noise control systems offer a potential method of reducing the weight of acoustic treatments in vehicles and, therefore, of increasing fuel efficiency. The commercialisation of active noise control has not been widespread, however, partly due to the cost of implementation. This paper investigates the design and performance of feedback road noise control systems, which could be implemented cost-effectively by using the car audio loudspeakers as control sources and low-cost microphones as error sensors. Three feedback control systems are investigated, of increasing complexity: a single-input single-output (SISO) controller; a SISO controller employing weighted arrays of error sensors and control sources; and a fully-coupled multi-input multi-output (MIMO) controller. For each of the three controllers robustness and disturbance enhancement constraints are defined and by formulating the three controllers using an Internal Model Control (IMC) architecture, and using frequency discretisation, the constrained optimisation problems are solvable using sequential quadratic programming. The performance of the three controllers and the associated design methods are first evaluated in a simulated environment, which allows the physical limits on performance to be understood. Finally, to validate the results in the simulated environment, the performance of the three controllers has been calculated using data measured in a car cabin and it has been shown that the fully-coupled MIMO controller is able to achieve significant low frequency road noise control, at the expense of increased implementation complexity compared to the SISO and SISO weighted transducer arrays feedback controllers

Text
Road_Noise_Feedback_controllers.pdf - Author's Original
Download (201kB)

More information

Published date: 1 September 2014
Organisations: Signal Processing & Control Grp

Identifiers

Local EPrints ID: 362078
URI: http://eprints.soton.ac.uk/id/eprint/362078
ISSN: 1027-5851
PURE UUID: 6e57504b-59de-4bb1-bdf6-6c8e7ee66cbe
ORCID for Jordan Cheer: ORCID iD orcid.org/0000-0002-0552-5506

Catalogue record

Date deposited: 14 Feb 2014 09:32
Last modified: 15 Mar 2024 03:37

Export record

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×