HJNIVERSITY OF

Southampton

University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk



http://eprints.soton.ac.uk/

UNIVERSITY OF SOUTHAMPTON

FACULTY OF PHYSICAL SCIENCES AND ENGINEERING

School of Physics and Astronomy

Model Building and Phenomenological Aspects of F-Theory GUTs

by

James C. E. Callaghan

Supervisor: Prof. Stephen F. King

Thesis for the degree of Doctor of Philosophy

December 2013


mailto:james.callaghan@soton.ac.uk




UNIVERSITY OF SOUTHAMPTON
ABSTRACT

FACULTY OF PHYSICAL SCIENCES AND ENGINEERING
School of Physics and Astronomy

Doctor of Philosophy

MODEL BUILDING AND PHENOMENOLOGICAL ASPECTS OF F-THEORY GUTS

by James C. E. Callaghan

In recent years, Grand Unified Theories (GUTs) constructed from F-theory have been exten-
sively studied due to the substantial scope for model building and phenomenology which they
provide. This thesis will motivate and introduce the basic tools required for model building in
the setting of local F-theory. Starting with GUT groups of Eg, SO(10) and SU(5), a group the-
oretic dictionary between the three types of theory is formulated, which provides considerable
insight into how to build a realistic model. The spectral cover formalism is then applied to each
case, enabling the possible low energy spectra after flux breaking of the GUT group to be found.
Using these results an Eg based model is constructed that demonstrates, for the first time, that
it is possible to construct a phenomenologically viable model which leads to the MSSM at low
energies. In addition to the MSSM model, the Eg starting point is also used to build F-theory
models in which the low energy supersymmetric theory contains the particle content of three 27
dimensional representations of the underlying E¢ gauge group, with the possibility of a gauged
U(1) group surviving down to the TeV scale. The models with TeV scale exotics initially appear
to be inconsistent due to a splitting of the gauge couplings at the unification scale which is too
large, and incompatible with the formalism. However, in Eg models with flux breaking, there are
bulk exotics coming from the 78 dimensional adjoint representation which are always present in
the spectrum, and it turns out that a set of these exotics provide a natural way to achieve gauge
coupling unification at the one-loop level, even for models with TeV exotics. This motivates a
detailed study of bulk exotics, where specific topological formulae determining the multiplici-
ties of bulk states are investigated, and the constraints imposed by these relations applied to the
spectra of the models previously studied. In particular, bulk exotics are relevant to the almost
miraculous restoration of gauge coupling unification in the case of the models with TeV scale
exotics. The consistent local F-theory models with low energy exotics have distinctive charac-
teristics when compared with other, similar models, and so provide potential opportunities to be
tested at the LHC.
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NOMENCLATURE

X1X

“All that is now
All that is gone
All that’s to come
And everything under the sun is in tune,

But the sun is eclipsed by the moon.”

Pink Floyd






Chapter 1

Introduction

1.1 Motivation and outline

The Standard Model (SM) is one of the great triumphs of modern day physics, successfully
explaining many aspects of Electroweak and Strong interactions, confirmed through decades
of precise experimental data. Following the announcement in July 2012 of the discovery of a
particle whose properties are consistent with those of a Higgs boson, the long awaited missing
link of the SM, it would seem that the expected picture of the SM is complete. However, despite
the incredible achievements of the theory, there are several theoretical reasons why we expect it
not to be the whole story when it comes to a theory describing the physics of our universe. In
fact, we expect the SM to be an ‘effective theory’, valid up to some cutoff scale A, where a new

‘beyond the Standard Model’ (BSM) theory is the correct description of nature.

The first shortcoming of the SM is that gravity is not included, and so it cannot possibly be a
Theory of Everything. A second reason for moving beyond the Standard Model is that if the
three SM gauge couplings are run up to a high energy, it appears that they may merge at a
common scale. This hints at the possibility that the SM gauge group is embedded in a bigger
symmetry group, suggesting the existence of a Grand Unified Theory (GUT).

Another issue is the so called ‘hierarchy problem’ which is concerned with the question of why
the weak force is 1032 times stronger than the gravitational force. Phrased in another way, this
is considered a problem because the Higgs mass squared parameter of the SM is UV sensitive,
meaning that the quantum corrections to the Higgs mass squared scale with A%. As such, based
on what we know about the Higgs boson, a natural explanation would require A ~ 1TeV, with
the SM being replaced by some other physics at the TeV scale. However, this explanation is
constrained by Electroweak precision data, as if A ~ 17eV, we would expect to have already
seen evidence of higher dimensional operators constructed from SM fields [4], and as such
we are led to consider a non natural explanation. One explanation would be that there is a

large fine-tuned cancellation between the radiative corrections and the bare mass of the Higgs,
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but this ‘unnatural’ explanation is considered unsatisfactory by physicists. A more satisfactory
explanation would be that A is higher than a TeV, but there are cancellations due to a symmetry
in the UV theory. This is the case if supersymmetry (SUSY) is introduced, where there is a
symmetry relating fermions and bosons, with each SM particle having a superpartner whose
spin differs by % Due to the fact that fermions and bosons with the same gauge quantum
numbers give opposite sign contributions to the Higgs mass squared, the quadratic divergences

to the Higgs mass exactly cancel.

A BSM framework which incorporates SUSY and GUTs is that of String Theory, where we
have ten space-time dimensions where six are compactified and very small, and instead of fun-
damental point-like particles, we now have one-dimensional strings. A major motivation for
string theory is that it provides a consistent formulation of quantum gravity, the effects of which
are expected to become important at the Planck scale. With this achievement though, comes
the drawback that it is very hard to predict anything about low energy physics, due to the vast
numbers of consistent solutions to the string theory equations of motion. If, however, we follow
the arguments of [5] and impose the conditions of unification and decoupling on the search for
realistic models, the possibilities are severely restricted. Unification refers to the existence of a
GUT structure whereby the strong, weak and electromagnetic forces are described by a single
gauge group and a single coupling constant at some high energy scale. The fact that gravity is
observed to be much weaker than the other forces is linked to the term decoupling, which refers
to the existence of a theoretical limit where A]}I/[GJ — 0. A class of models which satisfy both

Planck

the criteria of unification and decoupling are F-theory GUTs.

Recently there has been considerable activity [6, 7, 8, 9, 10, 11] in the reformulation of GUTs
in the context of F-theory (for reviews and related work see e.g. [12, 13, 14, 15, 16]). The
reason for the renewed interest is that F-theory provides new opportunities for addressing some
of the outstanding issues facing GUTs, such as GUT breaking and Higgs doublet-triplet split-
ting by flux [9, 8]. In this setting, there has been great progress in both global and local model
building in the last few years [17, 18], where global models focus on the construction of el-
liptically fibered Calabi-Yau four-folds, and local models deal with the effective field theory
where the GUT symmetry is realised on a 7-brane wrapping a 4-dimensional surface S. The so
called ‘semi-local’ approach imposes constraints from requiring that S is embedded into a local
Calabi-Yau four-fold, which in practice leads to the presence of a local Eg singularity [19]. All
Yukawa couplings originate from this single point of Eg enhancement, and we can learn about
the matter and couplings of the semi-local theory by decomposing the adjoint of Eg in terms
of representations of the GUT group and the perpendicular gauge group. In terms of the local
picture, matter is localised on curves where the GUT brane intersects other 7-branes with extra
U (1) symmetries associated to them, with this matter transforming in bi-fundamental represen-
tations of the GUT group and the U(1). Yukawa couplings are then induced at points where

three matter curves intersect, corresponding to a further enhancement of the gauge group.

With this structure in place, there are many possibilities for model building. A considerable
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amount of this work deals with the reconciliation of F-theory models with the low energy Stan-
dard Model and the related phenomenology. These include papers related to fermion mass
structure and the computation of Yukawa couplings in the context of F-theory and del Pezzo
singularities [17, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29]. In particular, some interesting mech-
anisms were suggested to generate Yukawa hierarchy either with the use of fluxes [17, 26]
and the notion of T-branes [30] or with the implementation of the Froggatt-Nielsen mecha-
nism [22, 23, 24, 25, 27]. More specifically, in [26] it is argued that when three-form fluxes are
turned on in F-theory compactifications, rank-one fermion mass matrices are modified, leading
to masses for lighter generations and CKM mixing. Ibanez et al [29] have recently shown that
flux and instanton effects can generate a realistic hierarchy of fermion masses. In the F-theory
context, such non-perturbative contributions were computed in [31], although the magnitude of

such corrections remains somewhat unclear.

Larger GUT groups than SU (5) have also been considered, such as the F-theory Eg model of ref
[32] where non-Abelian fluxes are introduced to break the symmetry. Flipped SU(5) [17, 33,
23, 34, 35] has also been considered, including an attempt using an SU(4) spectral cover [36].
Some examples of SO(10) F-theory models were also considered in [17, 37, 38, 39].

Many (or all) of these models predict exotic states below the unification scale, and the renor-
malization group (RG) analysis of gauge coupling unification including the effect of such states
and flux effects has been discussed in a series of papers [40]-[41]. Other phenomenological
issues such as neutrinos from KK-modes[42], proton decay [43] and the origin of CP viola-
tion [44] have also been discussed. The possibility of obtaining the Standard Model directly
from F-theory [45] has also been considered.

Following this work some generic challenges have been identified that result from the highly
constrained nature of the constructions, in particular the constraints related to the compatibility
of unification (due to the appearance of exotics), the suppression of proton decay (due to R-
parity violating operators and dimension-5 operators), the suppression of the pt term and the
generation of realistic Yukawa couplings. These occur when flux is used to break the GUT
group and generate doublet-triplet splitting. Prior to the work contained in this thesis, no fully
realistic model had been constructed using just the symmetries descending from the underlying
unified gauge group [22, 27, 46] and this provides additional motivation for the work presented

here.

The layout of the rest of the thesis is as follows. In the remainder of the introduction, the
Standard Model is introduced and the theoretical reasons for wanting to move beyond it are
explained. Two such extensions are then explored, namely the ideas of Supersymetry and Grand
Unification, and issues such as proton decay are discussed in the context of these theories. String
theory is then introduced as a framework which combines SUSY and GUTs, and the issues of
trying to realise the SM from perturbative D branes are discussed. This motivates the case for
moving to F-theory, and the basic tools for model building in the local setting are presented.

In Chapter 2, a group theory dictionary between Eg, SO(10) and SU(5) models is established,
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and the spectral cover formalism is introduced and applied to the case of each GUT group in
order to compute the homology classes of matter curves. This information is then utilised in
Chapter 3, where an Eg based model is formulated which demonstrates, for the first time, that
it is possible to construct a phenomenologically viable model which leads to the MSSM at low
energies. Chapter 4 again deals with models based on Ejg, but instead of realising the MSSM,
the low energy theories contain the particle content of three 27 dimensional representations of
the underlying E¢ gauge group, with the possibility of a gauged U(1) group surviving down to
the TeV scale. Chapter 5 is dedicated to the discussion of bulk exotics coming from the adjoint
representation of Eg, and these are shown to play an especially crucial role in the context of the

models with TeV scale exotics. Finally, Chapter 6 concludes the thesis.

1.2 The Standard Model

The Standard Model is a formulation in terms of gauge theories of three of the four fundamental
forces of nature- the strong, weak and electromagnetic interactions. The formalism is based
on the gauge group SU(3)¢c x SU(2)r x U(1)y, where SU(3)c is the gauge group of Quantum
Chromodynamics (QCD) and SU (2),, x U(1)y is the group of the Electroweak theory. Particles
are then classified according to their transformations under these symmetry groups, as well as
being grouped into two categories based on their spin- fermions possessing half-odd-integer
spins, and bosons possessing integer spins. The fermions of the SM transform in a spin %
representation of the Lorentz group and interact with each other by exchanging spin 1 vector
bosons, while the only Lorentz scalar of the SM is the Higgs boson which is responsible for

generating mass for the other particles.

The SM is a chiral theory with left-handed fermions transforming as doublets of SU(2), and
right-handed fermions transforming as singlets of this group. Associated with SU(2), are three
gauge bosons- W', W~ and Z- which mediate weak interactions and explain the short range
of the force due to their large masses relative to those of nucleons. The Electroweak group
is broken at low energies to U(1).,, the gauge group of Electromagnetism, and this force is
mediated by the massless photon. Applying the principles of gauge theory to QCD leads to the
notion of colour, where quarks can be ‘blue’, ‘green’ or ‘red’ and gauge transformations are
local transformations between quarks of different colours. The gauge bosons of QCD which
mediate the Strong interactions are called gluons, and together with the gauge bosons of the
Electroweak theory complete the ‘force carriers’ of the SM. The fermionic matter content of the
SM can be divided into three generations, with each member of a generation having greater mass
than those of lower generations. Each generation is comprised of 1 left-handed lepton doublet
(Ve,e7), 1 right-handed lepton e}, 3 left-handed quark doublets (u,d);, 3 right-handed up type
quarks ug and 3 right-handed down type quarks dg (the factors of 3 for quarks coming from the

existence of 3 colours).
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1.2.1 Dirac, Weyl and Majorana spinors

Due to the chiral nature of the SM gauge group, it is convenient to work in a chiral basis of

two-component Weyl spinors. A Dirac spinor yp satisfies the Dirac equation

(i 0y —m)yp =0 (1.1)

and we can write a Dirac spinor in terms of two Weyl spinors &y and ™% = ()¢

V== (x"%&) (1.2)

where & = 1,2 and & = 1,2. Undotted indices denote the first two components of a Dirac
spinor and dotted indices denote the second two. This notation is adopted due to the fact that the
two types of spinor transform differently under Lorentz transformations, &, being a left-handed
Weyl spinor, and " being a right-handed Weyl spinor. This can be seen by introducing the

projection operators in the Weyl representation for the gamma matrices:

1
P = 5(1 -%)

1
Pr= 5(14‘?’5)

Acting with P, and Pk on a Dirac spinor projects out the left and right-handed parts respectively

_ [ Se (0
PL‘l/D—(O , PRYD = Ll

Taking the hermitian conjugate of a left-handed Weyl spinor gives a right-handed Weyl spinor

and vice-versa

(€)' =(ENa=¢,
(') =x“
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Given left handed and right handed Weyl spinors y; and yg, charge conjugation is defined by

Vi =io’y;,  yg=—ic’y; (1.3)

where 67 is the second Pauli matrix, and given y; = &, and yi = 7%, we have Yy = ET% and
Wi = Xa- As such, it can be seen that the charge conjugate of a right-handed field transforms
as a left-handed field and vice-versa. This means that we can adopt the notation y and y* for
right and left-handed fields respectively. Whenever spinor indices are raised or lowered, it is
achieved by using the antisymmetric tensor €*# with £, = 1. Indices can be omitted provided
the contraction of two left-handed spinors is taken to be &y = &%y, and the contraction of two

right-handed spinors to be &7y = &1y,

A four-component Majorana spinor is defined in terms of the Dirac spinor by imposing y = &,

Yy = (;:;)

Wy = (E%,E]) (1.4)

leading to

We can now write the Dirac Lagrangian in terms of two-component Weyl spinors for the cases

of the Dirac and Majorana spinors using Egs. (1.2) and (1.4), giving

Zp =Yp(iy"dy —mp)yp
=iE"SH I E +ix T ux —mp(Ex+ETXT) (1.5)

i 1
L = V/M(Eyuau - gmM)‘l/M

= iETGHIuE — Smu(EE+E1ET) (16

where, in the Weyl representation for the gamma matrices
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with o = (61, o2, 63), o' being the Pauli matrices. It can be seen from Eqs. (1.5) and (1.6) that

the Dirac mass term couples fields of different chiralities together, whereas the Majorana mass

term couples both left-handed and right-handed fields to themselves.

1.2.2 Abelian gauge transformations and QED

The Dirac Lagrangian density .2 = Y(iy* dy, — m)y is invariant under complex phase transfor-

mations of the fermionic field

vy, Yo Oy

The group of such transformations is U(1), and under infinitesimal transformations of the form

¢® =1+ iw+ 0(w?), the wavefunction transforms as ¥ — w -+ Sy with

oy =iy, O0y=-—ioy

The idea behind gauge transformations is to allow an independent symmetry transformation at
each point in space-time. As such, the parameter @ will now depend on x* and the Lagrangian
will no longer be invariant. Under such local transformations, the Lagrangian will become
L — L+ 6L with

0.2 = —y(x)yu(du(x))y(x)

However, we can restore the local invariance by introducing the covariant derivative Dy, and

replacing the partial derivative in the Lagrangian by D/,, where

Dy = oy +ieAy (1.7)

The Lagrangian is now invariant under local transformations of the fermion fields, provided that

we demand that the vector field A, simultaneously transforms as

1

Interpreting this in the case where the U (1) symmetry is that of Electromagnetism tells us that e
corresponds to the electric charge of the fermion field, and the gauge field A, corresponds to the
photon field. The importance of the gauge field is now clear, as its existence allows us to write
down an invariant Lagrangian involving derivatives of y. Meanwhile, the presence of the gauge

field in the covariant derivative leads to an interaction term in the Lagrangian, and so it can be
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seen that the invariance only exists if the fermions are not free particles. The construction of
a complete locally invariant Lagrangian is not complete though, as we must also write down a

kinetic term for A;;. We can define a gauge invariant field strength by

Fu_v — aHAV - avAH (1,9)

and add a Lorentz invariant kinetic term — %F#VF 1V to the Lagrangian, with the numerical factor
ensuring that the equations of motion match up with Maxwell’s equations. This is not yet the
whole story though as we have to quantise the Electromagnetic field, and in doing so we need
to find the Feynman rule for the photon propagator. However, if we go about this in the usual
way by looking for the part of the action quadratic in the photon field, we run into trouble
due to gauge invariance. In the language of functional integrals of the type [ P2AeSA) | the
integral is badly defined because we are integrating over infinitely many physically equivalent
field configurations. In order to solve this problem, Faddeev and Popov invented the trick of
taking a function G(A) and setting it to zero as a gauge fixing condition, by means of introducing
a delta function 6 (G(A)) in the functional integral. In this way, the part of the functional integral
is isolated which only counts each physical configuration once. This is equivalent to breaking

2
the gauge symmetry in the Lagrangian by adding a term — (8“2’2”) in such a way as to preserve

the gauge symmetry in observables. In computations a specific value of & can be chosen (for
example & = 1 corresponds to Feynman gauge), but the Fadeev-Popov method ensures that the
value of a correlation function of gauge invariant operators will be independent of this value

[47]. Taking into account the gauge fixing term, the Lagrangian for QED in Feynman gauge is
1 V | 55 1 2
gQED: —ZFIJVF” +w(ly“D#—m)w—§(8uA“) (1.10)

1.2.3 Non-Abelian gauge theories and QCD

The concepts of Abelian gauge symmetries can now be applied to non-Abelian groups. If we

consider n free fermionic fields

Vi
L%)

A

the Lagrangian density will be given by

L =Y (i —m)y; (L.11)



Chapter 1 Introduction 9

This Lagrangian is invariant under SU (N) transformations in field space acting on y, where an

arbitrary SU (N) matrix U which mixes up the y; can be written as

U — ei(l)aTa

where T“ are the generators of SU(N) and the @ are real parameters. The generators are related

to the antisymmetric structure constants £ by the commutator

[Ta7 Tb] — ifabCTC

and the normalisation for SU(N) is taken to be

1
Tr(T°T?) = E(Sab

We now proceed as for the Abelian case by defining the covariant derivative

Dy = 9y +igT AS, (1.12)

where g is the coupling constant and we now have the same number of gauge fields as generators
of SU(N), (N*> —1). Non-Abelian gauge invariance will now exist if we have the following

infinitesimal transformation laws for y and A},

y— (1+i0TY)y

1

a a a abc b ..

Ay = AL+ ;9“(0 + AL o

In order to write down a kinetic term for the gauge bosons, we must again use the field strength

be g b
F, = duAy — dvAy — g ALAY, (1.13)
meaning that we have the gauge invariant term —%Flj’vF @iV Expanding this term out in terms
of the gauge fields shows that in non-Abelian gauge theories there are three and four-point
interaction terms between them, meaning that the gauge bosons interact with each other, unlike

the Abelian case.
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1.2.4 Spontaneous symmetry breaking and the GWS theory

Spontaneous symmetry breaking (SSB) is a crucial aspect of the Standard Model, as it is the
mechanism responsible for breaking the SU(2), x U(1)y Glashow-Weinberg-Salam (GSW) the-
ory of weak interactions to the U(1),,, group of Electromagnetism at low energies. The idea is
that at some energy scale, a field can take on some non zero global value which can violate a
symmetry of the Lagrangian, hence breaking the symmetry of the field theory. As such, even
though the Lagrangian may be invariant under a certain set of transformations, the ground state
will not be invariant in a spontaneously broken theory. In the context of the SM, the relevant
transformations are gauge transformations, and spontaneous breaking will occur if at least one
generator of the gauge group does not annihilate the vacuum. Goldstone’s theorem states that as-
sociated with every broken generator of the group, there is a massless particle called a Goldstone

boson, who’s quantum numbers mirror those of the corresponding generator.

These concepts can be made more concrete in the context of the SU(2),, x U(1)y part of the SM
gauge group. If we consider a complex scalar Higgs doublet, @ (with quantum numbers (2, %)
under SU(2); x U(1)y) and the relevant gauge fields, we can write down the gauge invariant

Lagrangian

1 1
L= = FlFHY — GG+ [Dy@f - V(@) (1.14)
where F, and Gy are the field strengths for the SU(2), and U(1)y gauge bosons, W, and By,

respectively, and D, ® is the covariant derivative, given by

. / .
18 18
with ¢ the Pauli matrices, and g, g’ the coupling constants of SU(2), and U(1)y. If we take

the scalar potential to be

V(®) = —u’d & + A (D] D)? (1.15)

we can see that it has a minimum if <IDZTCD" = % This equation corresponds to an infinite number
of states with the same minimum energy, and the symmetry breaking occurs when a choice is
made and one of the minima is picked out to be the true vacuum. It is said that the field ®
acquires a non zero vacuum expectation value (VEV), and in this case we can choose the VEV
to be

_ Loy s
@)_\/E(v)’ NG (1.16)
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From the four generators of SU(2), x U(1)y

o _(0 3\ o _(0 -3\ o _ 0 (=0 (1.17)
2 o) 2 i 0) 2 1)’ 0 ‘

it can be seen that only one linear combination, (Y + %), annihilates this vacuum, so we have

O wI=
D=
D=

three broken generators and hence three Goldstone bosons. However, as the generators asso-
ciated with the Goldstone bosons can act on the vacuum to give states inconsistent with the
original gauge choice, the Goldstone bosons must not correspond to physical, massless particles
in the same way as in the case of a spontaneously broken global symmetry. In order to see what
happens to these three degrees of freedom, we can expand @' around the choice of VEV in Eq.
(1.16), and write

o L[ 01—
V2 \v+H+ig

where the ¢; and H fields have zero VEV. Putting this into Eq. (1.15) shows that the ¢; fields
do not acquire mass terms, but the H field does. As such, we identify ¢;, ¢ and ¢y with the
Goldstone bosons, and H with the Higgs scalar. In fact, we can make a choice of gauge called
the ‘unitary gauge’, where all of the ¢; can be set to zero. Writing ‘DMQD‘Z in this gauge shows
that we get a mass term for WMi = W’}%;Wﬁ and the linear combination gWﬁ — ¢'By. Introducing

the Weinberg angle 6,,, we can diagonalise this system by writing

B, = cos6,A; —sin6,,Z,

WE = sin6,,A, +cos 6,,Z,

We now have three massive vector bosons Wj and Z;, with masses My« = % = My cos 6,,, and
one massless vector boson, Ay, which is identified with the photon. The physical interpretation
is that whilst a massless vector boson has two degrees of freedom, a massive one has three,
and so in this context the three Goldstone bosons provide the three degrees of freedom required
to make the W and Z bosons massive. Meanwhile, the charge generator which annihilates the
vacuum can be identified with the electric charge, and so with 73 being the eigenvalue of % of

a state and Y being that of the hypercharge generator, we can write

0=Y+T; (1.18)
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1.2.5 Yukawa couplings and the origins of fermion masses

It can be seen from Eq. (1.5) that we cannot have an explicit mass term for the quarks and
charged leptons due to the fact that it would mix right and left handed fermions. However, we
can write down gauge invariant couplings involving the Higgs doublet ®, namely the Yukawa

interactions:

Ly = A0 ugiHy + A 0 idriHy + AV LpieriH +h.c. (1.19)

where H, = ioyH , i and j are family indices, and A,, A4 and A, are the Yukawa couplings. Once
the Higgs acquires a VEV of the form in Eq. (1.16), this part of the Lagrangian can be written

in terms of mass matrices m, = vA,, , mgy = vA; and m, = vA, as follows

Ly = m;jﬁLiMRj+mggLide+mijELi€Rj+h-C- (1.20)

It is clear that the Yukawa terms mix quarks and charged leptons of different generations, but
the physical particles are those which diagonalise the mass matrices. Focusing on the quarks for

now, we can write the three isodoublets of left handed fermions as

() () o (1),

where the three u! quarks are linked by the charge-changing weak interactions involving W*

bosons to the following unitary rotation of the di quarks

dr d
st =Vexm | s | Vexm=Vv) (1.21)
by, b

Vekwm 1s the ‘Cabibbo-Kobayashi-Maskawa’ (CKM) matrix, and VLf &R are the unitary matrices
which diagonalise the Yukawa couplings; the basis transformations between weak eigenstates

(ure, -..) and mass eigenstates (uz;, ...) being given by

ure = Vi gitris  ura = Viygittris  dra = Vigdii,  dra =V gidri (1.22)

and the diagonal matrices being given by VFy, VR and VdLdef . In general, a 3 X 3 unitary ma-
trix has nine independent parameters, but we can absorb five of these as relative phases between
the six quark fields, and so we are left with four parameters of the CKM matrix, which can be

interpreted as three mixing angles and a complex phase. In the charged lepton sector, without
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right handed neutrinos, weak and mass eigenstates can be chosen to coincide meaning that there
is no mixing in the leptonic charged current. As such, the nature of neutrinos has to be discussed

in order to understand leptonic masses and mixings.

1.2.6 Neutrinos

In the Standard Model, neutrinos are massless, and so unlike the cases of quarks and charged
leptons where both right and left handed fields exist, in the neutrino sector there are only left
handed neutrinos. However, neutrino oscillations are obsevred in nature whereby a source of
neutrinos is produced with a specific flavour, and the probability of finding a neutrino of a dif-
ferent flavour at a suitably large distance from the source is non zero. This implies the existence
of neutrino flavour mixing in the leptonic charged current, in an analogous way to the mixing in
the quark sector. As such, neutrinos must have masses, with experiments suggesting that these
masses are very small- the upper limit being around a factor of 10 smaller than the smallest

mass in the quark and charged lepton sectors.

The crucial difference between neutrinos and charged fermions when it comes to mass genera-
tion is that while we can only write down Dirac mass terms for the charged fermions, we are also
able to write down Majorana masses for neutrinos. Nevertheless, the simplest way to introduce
neutrino masses is to assume that they are Dirac particles, where the Yukawa interaction is given
by

LY = A LiivgiH) +h.c. (1.23)
In order for this term to be gauge invariant, the right handed neutrino must be a singlet under

SU(3)c and SU(2),, and must also carry zero hypercharge. The mass terms arising from this

equation and the equivalent one for charged leptons are

L= mi,jVLiVRj+mijELi€Rj+h.C. (1.24)

In a similar way to the quark sector, the mass matrices can now be diagonalised, with the mass

eigenstates (with Latin indices) and weak eigenstates (with Greek indices) related by

Vig = V(Lv)a,-VLi, VRo = V(Ii)a,-VRi, eroq = V(lé)aieLiv eRq = V(I:)aieRi (1.25)

It then follows that the leptonic charged current written in terms of weak eigenstates .2, . ~

Via y”eLﬁWj , can be written in terms of mass eigenstates as

L~ VL,-y“vLj)l.av(’;)a LWy (1.26)
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where the matrix describing leptonic mixing, Vl-fMN S = V(LVT)Z. aV(I;) aj is the ‘Pontecorvo-Maki-

Nakagawa-Sakata’ (PMNS) matrix.

The problem with Dirac neutrinos is that naturally we would expect the Yukawa coupling to be of
the same order as those for the quarks and charged leptons. However, as we know experimentally
that neutrino masses are much smaller, a mechanism to explain this fact is desired. One such
mechanism is the ‘Seesaw mechanism’ [48] whereby a Majorana mass term is introduced for
the right handed neutrinos, which ends up explaining the light neutrino masses in a natural and

beautiful way. The terms of interest in the Lagrangian are now

L 1 .
f)}} = }L‘I,JLLiVRjHl + EMljchiij +h.c. (1.27)

The key to the Seesaw mechanism is that the Majorana mass term is not generated by the Higgs
mechanism, and so can be much larger than the masses for quarks and charged leptons. After

spontaneous symmetry breaking, we have both Dirac and Majorana mass terms given by

. |
v _
gM = m”vL,'ij + EM”VCRiVRj +h.c.

v [ O ) () ne (1.28)
- L R mT M VR L. .

In the approximation that M >> m the matrix in Eq. (1.28) can be diagonalised to give effec-
tive Majorana masses for the light neutrinos, once the heavy right handed neutrinos have been

integrated out

my =—-mM 'm" (1.29)

It is clear from this Seesaw mass relation that if M >> m, we have m, << m, hence giving a

natural explanation for the small size of neutrino masses.

1.2.7 Renormalisation and effective field theory

In a quantum field theory (QFT) such as the Standard Model, in addition to tree level Feynman
diagrams for a certain process, there will also be loop diagrams of higher order in the coupling
constant which can give rise to divergent contributions. The reason for this is that the momenta
in a loop are only constrained by momentum conservation at the vertices, and so the computation
of the diagram will involve integration over all possible loop momenta. Depending on the form

of the integral, this can lead to infinite terms in the calculation of a physical process. Clearly this
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is unacceptable, so we must find a way of dealing with these infinities in order to ‘regularise’

the theory.

The essential objects which describe physical observables in QFT are n-point Green functions,
and in light of the divergences that can arise, instead of integrating momenta to infinity we could
integrate to some cutoff scale, A. The Green functions will then depend on A, and it follows that
the fields, couplings and masses in the Lagrangian will also depend on A. As such, we have the
notion of a bare field ¢o(x,A), a bare coupling Ay(A) and a bare mass my(A), which all depend

on the cutoff scale. As an example, we can consider the Lagrangian for A¢* theory

1 1
Z = §9u¢03“¢0 - Em(z)(])g -

Ao

2% (1.30)

Firstly, we can express the bare field in terms of a renormalised field and a potentially divergent
coefficient, Z. The bare field, mass and coupling can then be removed from the Lagrangian by

using this redefinition, as well as redefinitions involving the renormalised mass and coupling

o =VZor, O;=7Z—1, Sp=Zmd—m?, & =ZA—A (1.31)

In these definitions, m and A are the remormalised mass and coupling constant, and correspond
to the physically measured quantities. In order to make this statement precise, remormalisation
conditions are chosen, where m? is defined to be the location of the pole in the propagator,
and A is defined as the magnitude of the four point scattering amplitude at zero momentum
(although we could equally well choose a different momentum scale in this definition). Using

these definitions, the Lagrangian can now be written as

1 1 A 1 1 6
L= {28M¢R8“¢R - 5m2¢1% - 4!‘7’13} + {2529;1‘1’1%9“% - 55"1‘?1% - 4/}‘1513‘}

=Lr+ Lot (1.32)

where .Z% is the original Lagrangian written in terms of the renormalised field, mass and cou-
pling constant, and Z¢r is the counterterm Lagrangian, which has absorbed the infinite shifts
between the bare parameters and the renormalised ones. In this way, the counterterms introduce

a new set of Feynman rules which must be taken into account when computing an amplitude.

Due to loop integrals in diagrams, UV divergences will occur, so we must introduce a regular-
isation procedure in order to deal with the infinities in a consistent way. One gauge invariant
method of regularisation is know as ‘dimensional regularisation’, which involves exploiting the
fact that most symmetries do not depend on the number of dimensions. As such, integrals are

calculated in d dimensions, where the integral is finite, and an analytic continuation is then made
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in d by setting d =4 — € and then taking the limit of € — 0. The divergences will appear as sim-
ple poles at d =4, and so when the integrals are performed, there will be a pole part proportional
to %, plus terms which are finite in the limit € — 0. Then a scheme such as the ‘MS scheme’
can be used, where just the pole part is associated with the counterterm. Divergences in a given
amplitude can then be cancelled by choosing 8z, 6, and &, in such a way as to maintain the
renormalisation conditions, meaning that infinities are cancelled by a lower order diagram with

a counterterm insertion.

The key to a renormalisable theory is that we should be able to cancel all the divergences in
the theory with a finite number of counterterms. In the 2¢* example it was outlined how the
divergences in the two and four point functions could be cancelled with the introduction of three
infinite constants. Now we could go to higher order and examine the six point function and
even higher order Green functions. In the Feynman diagrams which contribute to these Green
functions, we could potentially have divergent subgraphs whose infinites are already removed
by the process of remormalising lower order Green functions. However, if it is not possible to
split a diagram into two disconnected pieces by making a cut along a single line, the diagram
is called ‘one-particle irreducible’ (1PI), and can potentially give rise to new divergences. If a
new divergence does occur for an n-point function, a new infinite counterterm proportional to
¢" must be added to the Lagrangian, and this process is repeated until all the divergences can be
cancelled by the counterterms. If this process carries on indefinitely, the theory is called non-
renormalisable. We should note that the issue with non-renormalisable theories is not that they
are mathematically inconsistent, as all the infinities can still be removed. However, in doing so

we have to introduce an infinite number of parameters.

In order to determine whether a specific Feynman diagram contains a UV divergence, naively
we could simply count powers of momentum. Each loop brings an integral [ d*k, and so could
potentially lead to an infinity. However, seeing as each propagator brings either one or two pow-
ers of momentum to the denominator, divergences could possibly be avoided. The ‘superficial
degree of divergence’ D, is defined to be the power of momentum in the numerator minus the
power in the denominator. In the naive sense, a diagram will diverge if D > 0, and will be finite
if D < 0. This statement is not completely true, due to the fact that a diagram with negative D
could contain a divergent subgraph, or a superficially divergent diagram could include symme-
try cancellations. However, the divergences produced by diagrams with D < 0 are cured by the
renormalisation of lower order Green functions, and so the criterion for a renormalisable theory
is that there should only exist a finite number of Green functions with D > 0. In the context of
A@" theory this criterion translates into the requirement that n < 4, and due to the fact that the
action is dimensionless, this means that terms in the Lagrangian with coefficients (e.g the cou-
pling constant A) whose mass dimension is greater or equal to zero are renormalisable, whereas
terms whose coefficients have negative mass dimension are non-renormalisable. This turns out
to be true in general, and can be understood intuitively by considering a coupling constant with
1

dimension [M]~". In this case, each vertex gives a factor of 57, which for dimensional reasons
A

means that we expect to find divergences with increasing powers of ;. Taking the case where
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i = 2 and assuming that we just have one typical energy scale, E, we can expand an N-point

amplitude up to order A2 as in [49]

E2 E2n
An(E) = AY(E) <1+C‘1\42+"'+C”W) (1.33)
Once all the amplitudes with smaller N have been renormalised, all the c coefficients apart from
¢, are finite and calculable. On the surface, it may seem like we have a lack of predictability
for the non-renormalisable theory because we have to fix ¢, by comparison with experiment.
This lack of predictability is only an issue though if E is of the same order of magnitude as
M. Otherwise, in the low energy case £ << M, the ¢, term is suppressed by %, and the non-
renormalisable theory is perfectly acceptable for describing low energy physics. This underlines
the fact that non-renormalisable theories have a basic mass scale associated with them, which

tells us about their range of validity.

Although the idea of renormalisability is extremely important, the modern perspective on QFT is
that if we are only interested in physics at a certain energy scale, it is not important what happens
at infinitely high energies, and so the question of whether the theory is renormalisable is not that
physically meaninful. For example, QED is a renormalisable theory, but we know that it is not
the correct description of nature above the Electroweak scale, and the non-renormalisable Fermi
theory, whilst not describing the full Electroweak theory, is still a good approximation when
considering low energy processes. As such, modern theoretical physics concerns itself with the
idea of effective field theory, where we do not necessarily have to have a full, UV complete

theory in order to understand physics at lower energies.

An important consequence of the renormalisation procedure is that coupling constants and
masses become dependent on the energy scale, and are said to ‘run’ with energy. In the brief
discussion of the systematics of renormalisation, we chose a specific renormalisation condition
for the scale u, but noted that we could have equally well chosen another p at which to renor-
malise our theory. The renormalised n-point functions I'r will depend on this renormalisation
scale but have no dependence on the cutoff, whereas conversely the bare n-point functions Iy
will depend on the cutoff but not on u. The relation between I'y and I'g is given by (where the
coupling in a general theory is now denoted by g)

Lo(pi,g0(A),A) = Z2 (g0(A), = )Tr(pir 8r, 1) (1.34)

A
u
Assuming that the typical energy scales are much bigger than the masses involved, we can
neglect mass terms, and using the fact that I'y is independent of the renormalisation scale, we

have

ary [,

Ozudu H@

d
+ﬁ(gR)TgR +ny(gr) | Tr(pi, &r, 1) (1.35)
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where the 8 and 7 functions are defined as

dgr

1 d
T Mew=sugnZ (136)

B(gr) = 2" du

As such, it is the beta functions which encode the information about the running of coupling
constants, and one-loop beta functions will be used in the context of real models in later chapters,

in order to run the low energy gauge couplings of the SM up to the GUT scale.

1.2.8 Anomalies

In order to prove that a renormalised theory is gauge invariant, it is necessary to use relations
between Green functions which follow from gauge invariance (know as ‘Ward-Takahashi’ iden-
tities in QED). When a classical Lagrangian is invariant under a gauge symmetry, a direct con-
sequence is the existence of a conserved current j*(x) which satisfies the conservation equation
duj*(x) = 0. The Ward identity is then concerned with imposing the symmetry on amplitudes
in the quantum theory in such a way that we still have a conserved gauge current at the quantum
level. However, there are a set of diagrams which do not satisfy these identities and so would
ruin the renormalisability of a gauge theory unless they are eliminated. These diagrams cor-
respond to cases where a symmetry of the classical Lagrangian is not a good symmetry of the

quantum theory, and give rise to the phenomenon of anomalies.

The simplest example of an anomaly is in the case of chiral transformations of massless Dirac
fermions [50]. This anomaly can be understood in terms of the non-invariance of the fermion
measure [ 2y 2V under these transformations. Under local transformations of the fermion
fields w(x) — U(x)y(x), where U is a matrix acting on the indices of the gauge group represen-

tation, the fermion measure transforms as

2w 2y — (DetU) ! (DetU) ' 2y 2y (1.37)

If U is of the form U(x) = ¢€" (e where the 1, are generators of the gauge symmetry and
a possible global flavour symmetry, it can be seen that U = U~! and the fermion measure is
invariant. However, if we take the case of a unitary chiral transformation, U (x) = o€ Wta¥s it
can be shown that U = U, and so the fermion measure transforms with the prefactor (DetU) 2.

In a non trivial calculation (outlined in [50]), this quantity can be computed to be

1

-2 _ Lifd*xe%q(x —
(DetU) 2 = ¢!/ ¢'xe%a(x) aa(x)——@

where ay is known as the anomaly function. In this expression, the trace is a matrix trace

over the indices of the gamma, gauge and flavour matrices, and the field strengths are given by
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Figure 1.1: Triangle anomaly diagrams

Fuy = Ffvtﬁ, where the ¢, have been defined to include a factor of the gauge coupling constant.
As such, it can be seen that for a gauge theory with a single coupling constant g, the anomaly
is proportional to g>. Combined with the Adler-Bardeen theorem which states that the anomaly
only occurs at one-loop order, it is clear that the anomaly arises from the triangle diagrams of
Figure 1.1, with one of the gauge fields coupling to the axial current, and the other two coupling

to the vector current.

As the Standard Model is a chiral theory, we must know about the significance of the axial
current in the context of a chiral gauge theory. Considering the case of massless chiral fermions

where only the left handed part couples to the gauge field, the matter Lagrangian is given by

L = iYIPry +iVPPLY (1.39)

This Lagrangian is manifestly not gauge invariant, as the right handed fields do not couple to the
gauge field, so to start we can just consider the gauge invariant kinetic term for the left handed
fields, . = iWIpP,y. We can compute the anomaly by considering the triangle diagrams of
Figure 1.1, and inserting a projection operator Py, at every vertex. The result of this calculation

is that the anomaly is proportional to the coefficient

D¢ = Te[T* {T°, T}] (1.40)

where the trace is taken over the group generator matrices in representation R. It is useful now to
write right handed fields in terms of left handed fields by y, = 62 y;;. Rewriting the Lagrangian
for the right handed fields and using the fact that generators in the conjugate representation 75,
are related to those in R by T = — (T$)T, shows that the new fields y; transform in the conjugate
representation to R. This fact means that when R is real (meaning that R is equivalent to R), the
anomaly coefficient is zero and the theory is automatically anomaly free. When a gauge group
has complex representations, it must be checked that anomalies are cancelled in order to have a

consistent theory, and this can indeed be shown to be true for the Standard Model.

As such, the SM is a renormalisable, anomaly free theory, but for reasons explained in the

motivation section for this thesis, there are many questions to which it cannot give satisfactory
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answers. In accord, we now turn our attention to some BSM topics which will provide the

groundwork for building GUT models in an F-theory context.

1.3 Supersymmetry

As hinted at in the motivation for this thesis, the Standard Model with a fundamental Higgs
boson suffers from the issue that m%, is quadratically sensitive to heavy mass scales, Mmpeayy, tO
which the Higgs couples. In fact, even after A% divergences are subtracted by renormalisation,
one still has mﬁeavy terms. This is due to the fact that there is no symmetry in the SM which
‘protects’ the Higgs mass in the same way, for example, that the photon is ensured to be massless

at all orders in perturbation theory by the exact U(1) gauge symmetry of QED.

This property of the radiative corrections to the Higgs mass is suggestive of a symmetry in the
UV theory which manifests itself in the systematic cancellation of quadratic divergences. In-
deed, if we have a symmetry relating fermions and bosons, fermions and bosons with the same
gauge quantum numbers give opposite sign contributions to the Higgs mass squared, and the
quadratic divergences to the Higgs mass exactly cancel (provided that we have equal numbers
of bosonic and fermionic degrees of freedom), leaving only logarithmic divergences. The gen-
erators of such a ‘supersymmetry’ (SUSY) will act on a bosonic state to give a fermionic one

and vice versa:

Q|Boson) = |Fermion), Q |Fermion) = |Boson) (1.41)

In 1967 though, the ‘no-go’ theorem of Coleman and Mandula [51] demonstrated that it is
impossible to combine space-time and internal symmetries in any but a trivial way. The impli-
cations of this theorem would be that internal symmetries would not be able to relate particles
with different masses or spins, clearly seeming to forbid the fundamental starting point of SUSY.
However, the Haag-Lopuszariski-Sohnius theorem [52] evades this restriction by considering
extending the Poincaré group to include symmetries whose generators are fermionic, obeying
anticommutation relations. The theorem proved that SUSY is the only possible extension of the
Poincaré algebra, with the algebra written in terms of the additional generator Q, (@ = 1,2)
which can be chosen to transform as a left handed Weyl spinor, and its Hermitian conjugate QB’

a right handed Weyl spinor:

{0a:05} = {040y } =0 (1.42)
[Qa,Pu] =0 (1.43)
{0u. 04} =20 P, (1.44)
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The particles of a supersymmetric theory fall into supermultiplets containing both bosonic and
fermionic fields, which are known as superpartners of each other. As the mass-squared operator
Py P* commutes with the operators Q and O which transform different members of a supermul-
tiplet into each other, it follows that the superpartners must have equal masses. Also, as the
SUSY generators commute with the generators of gauge transformations, particles in the same

supermultiplet transform in the same representation of the SM gauge group.

There are a few important consequences of the anticommutation relation in Eq. (1.44); the first
of which can be seen by considering the operator (—1)% as in [53], where s is the spin quantum
number. This operator has an eigenvalue of 41 when acting on a bosonic state and —1 when
acting on a fermionic state, and due to the fact that the operator Q, turns bosons into fermions

and vice versa, we have

(_I)ZSQa — _Qa(_l)Zs

Bearing this anticommutation property in mind, we can consider a finite dimensional represen-

tation of the algebra, and take the following trace over the set of states in the supermultiplet

Te [(_1)25{%’6{3” —Tr [—Q“(_I)ZSGB +(—1)2sGBQa]
:1}[—Qac—w%65—%Qab—U%C¥]
=0

where on the second line the cyclic property of the trace has been used. From Eq. (1.44) this

implies that

20, Tr[(—1)*Py] =0

meaning that for a given non-zero Py, Tr(—1)* = 0. As the operator (—1)* has equal and
opposite value 1 for bosons and fermions, this implies that in any supermultiplet we must

have equal numbers of bosonic and fermionic degrees of freedom

ng = ng (1.45)

Another important consequence of Eq. (1.44) can be seen by multiplying both sides by (6")3“

and using the relation 6#G" = nHY 420" [54], leading to

(6")°*{0a, 0y } = 4P"
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Taking the matrix element of the v = 0 component gives

1

(w|P°|w) = — (W] 010 + Qi Q1 + 0205+ 0:0: W)

(W] 0a(Qa)* + (0a)*Qu|y) >0 (1.46)

Bl— A

As such, the energy of any non-vacuum state is positive definite and the vacuum energy is zero.
This has important consequences for the spontaneous breaking of supersymmetry, as for SUSY
to be spontaneously broken, the physical vacuum state |0) should not be annihilated by all the
SUSY generators. Therefore, whenever SUSY is broken in the vacuum state it has positive
energy, and all possible supersymmetric vacuua are degenerate with zero energy. Thus, the
effective potential must possess no supersymmetric minimum in order for its global minimum

corresponding to the physical vacuum to be non-supersymmetric.

1.3.1 Supermultiplets

From Eq. (1.45), the simplest example of a supermultiplet satisfying this constraint would be the
case of a single Weyl fermion and a single complex scalar field. This combination is known as
a chiral supermultiplet, and all the fermions of the Standard Model fit into such multiplets. The
names for the spin-0 partners of the quarks and leptons are ‘squarks’ and ‘sleptons’ respectively,
with the right and left handed parts of the fermionic fields having their own complex scalar
partners, as shown in Table 1.1. As the Higgs boson is a spin-0 particle, it clearly must reside
in a chiral superfield, but as seen from Table 1.1 we actually require two Higgs supermultiplets,
H, and H,. This is in order to cancel Electroweak gauge anomalies and to give masses to both

up and down type quarks as shall be demonstrated later.

The next simplest example of a supermultiplet is the so called vector supermultiplet, consisting
of a massless spin-1 vector boson and a massless spin—% Weyl fermion. The gauge bosons of
the Standard Model fit into such multiplets alongside their fermionic partners, the ‘gauginos’,
as summarised in Table 1.2. As the gauge bosons transform in the adjoint representation of
the associated gauge group, the gauginos must as well, meaning that the left and right handed
components of the gaugino fields must have the same transformation properties due to the reality
of adjoint representations. It is for this reason that the fermions of the SM all have to be placed

in chiral supermultiplets rather than vector ones.

1.3.2 Superspace and superfields

The mechanics of supersymmetry can be conveniently described by introducing the notion of

superspace (reviewed in, for example, [55, 56]), where instead of fields just being functions of
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Chiral supermultiplet || spin O spin % SU(3)c, SU2)L, U(1)y
o (ﬂde) (uLvdL) (3727 %)

u 1’77? ”}; (§7 1, _%)

d d dy 3.1,Y

L (f/,EL) (V,eL) (1,2,—%)

e & eh (1,1,1)

H, (B, HY) | (A A) | (1,2,7)

Hy (HY,Hy) | (A,H;) | (1,2,—%)

Table 1.1: Chiral supermultiplets in the MSSM

Vector supermultiplet || spin 1 spin 1 SU3)c, SU(2)L, U(1)y
Gluino, Gluon g g (8,1,0)
Wino, W boson WE WO | wE wO | (1,3,0)
Bino, B boson B° B? (1,1,0)

Table 1.2: Vector supermultiplets in the MSSM

the space-time coordinates x*, a superfield S(x,0,8) is also a function of the anticommuting
two-component Grassmann variables 6, and 8. Due to the anticommuting nature of the extra
coordinates, a general superfield can be expanded as a power series in 8 and 6, with no more
than two powers of 8 and 6 included in the expansion. In this formalism the fields contained in a
particular supermultiplet are united into a single superfield, which is a function of the superspace

coordinates. A finite SUSY transformation can now be written as

G(x*,6,0) =exp [i(6Q+6Q —x*P,)] (1.47)

where the indices have been dropped on the spinors 6, Q, and their conjugates. A superfield

S(x*,6,6) now transforms under a SUSY transformation as

G(a*,E,E)S(x",0,0) = S(x* +a" —iEc"O+i0GHE, 0 +E,6 +&) (1.48)

In order to find a representation for the SUSY generators, we can consider infinitesimal trans-

formations of this form

S(x* +a" —iEc"O +i00HE, O +E,0+E)=5S(H",0,0)+ S
s S S

_ _ _ P _
— u Mg u j neEy 7 a_~7 I
S(x*,0,0)+ (a* —ikc"0+i0cHE)—— + & aea-l-éaaéa-i-

p (1.49)

This leads to the following linear representation in terms of differential operators which act on

superfields
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Py =idy (1.50)
a 7.

Qa = P —icgﬁe"aﬂ (1.51)

Q= —azaﬂeﬁo“daﬂ (1.52)

We can now construct covariant derivatives with respect to 6 and :

Do = 50z +i04,0" (1.53)
— 0
Do = R i(—)ﬁcgdau (1.54)

These covariant derivatives anticommute with Q and Q, and also satisfy the algebra

{Da,Dg} = {Da, Dy} =0 (1.55)

{Da,BB} —2ic 3, (1.56)

From the anticommutation relations combined with the form of the infinitesimal SUSY transfor-
mation in Eq. (1.49), it can be seen that s(DgS) = Dy (8sS) and 85(DgS) = D¢ (8sS). As the
derivatives commute with SUSY transformations, they are said to be supersymmetric covariant

and are useful in defining covariant constraints on superfields.

1.3.3 Chiral superfields

A chiral superfield ®(x, 8, 0) is one for which one of the following constraints has been imposed

Da®=0 (1.57)
Dy® =0 (1.58)

where Eq. (1.57) is said to describe a left chiral superfield, and Eq. (1.58) a right chiral one. If

we introduce the coordinates
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v =x"—i0c*0 (1.59)
W=x"+i0c*0 (1.60)

it can be seen that Eq. (1.57) is solved by any function of 6 and yfl due to the fact that Dy 6 =

an# = 0. As such, the general solution written as an expansion in powers of 0 is given by

DY, 0) = ¢ (yi)+ V20 (y)+00F(y) (1.61)

where the fields ¢ and F are complex scalars, and y is a Weyl fermion. Bearing in mind
that the coordinate 0 has mass dimension of —%, ¢ and y can have the usual dimensions of
+1 and —1—% respectively, whereas the scalar field F has mass dimension +2, and is a non-
propagating ‘auxiliary’ field. The expression for the right chiral superfield & is the same, but
with 6 replaced by 6 and yf’ replaced by y'. The SUSY transformations of the component fields

in the superfield expansion of Eq. (1.61) can be found by considering the infinitesimal forms

D — D+ 5D (1.62)
8s® =i(EQ+EQ)P (1.63)
= 8¢ +/2085y + 0065 F (1.64)

Comparing Eq. (1.63) with Eq. (1.64) leads to the transformations

Ssp =\V2Ey (Boson — Fermion) (1.65)
Ssy = V2EF — \@G“gaﬂq) (Fermion — Boson) (1.66)
8F = —iv20, wohE (F — Total derivative) (1.67)

1.3.4 Vector superfields

A vector superfield is one which satisfies the constraint

V(x,0,0)=V'(x,0,0) (1.68)

Starting with a Lorentz invariant superfield and expanding up to quadratic order in both 8 and
0, we can use the fact that we can construct the Lorentz scalars 86 and 66 and the vector
0”6 = —000, and impose Eq. (1.68) to get
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V(x,0,8) = (1+ %eeééauaﬂ)c(x) (6 + %Gecl‘ﬁau)x(x) +(—iB+ %ééc“@&u)f(x)
—i—éGG[M(x)—i-iN(x)} 3 66 [M(x) —iN(x)] — 06 0A, (x)
+i000A(x) —i60OA(x )+% 660D(x) (1.69)

where C, M, N and D are real scalar fields, ¥ and A are Weyl fermions, and V), is a real vector
field. We could alternately form a real vector superfield satisfying Eq. (1.68) by looking at the
following combination of the left and right chiral superfields

i(®—@)=i(¢p—0")+iV2(0y—0W) +iBOF —ifOF"
—06489,(0+97) %eeec#a“w \1[9@00“8”1//

—%ieeééauau(gb—qﬁ') (1.70)

By comparing Eqs. (1.69) and (1.70) and noting the similarities in structure, we can consider

the transformation of a vector superfield under a U(1) ‘supergauge’ transformation to be

V= V4i(®-—o) (1.71)

where @ is a chiral superfield gauge transformation parameter, with the form of Eq. (1.61) in
terms of component fields. This transformation ensures the usual gauge transformation for the
vector boson field in Eq. (1.69), Ay — Ay + du(¢ + ¢*), but can also be used to eliminate the
fields C(x), x(x), M(x) and N(x). Since these fields can be supergauged away, they are not
physical fields, and in the ‘Wess-Zumino gauge’ where they are all chosen to be zero, the vector

superfield appears in a simpler form

_ _ _ - _ 1 _
Vivz(x,0,0) = 06" 0A, (x) +i00OA(x) —iOOOA(x)+ 59996D(x) 1.72)
It can be seen that the field D has mass dimension +2, just like the F field in the chiral superfield

of Eq. (1.61). If a SUSY transformation is applied to the case of the vector superfield, it is found

that D transforms as a total derivative, also analogous to the F field:

8D = —Ect A +EcH A (1.73)

The fact that the F and D fields transform in this way will help greatly in constructing supersym-

metric Lagrangians, as an integral over space-time of a total divergence will vanish provided the
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fields fall off fast enough at infinity. As such, these terms will be able to provide an action which

is invariant under SUSY transformations.

1.3.5 Supersymmetric Lagrangians

The Lagrangian density will be a sum of products of the chiral and vector superfields, and we
have seen that in both cases it is the component of the superfield which has the largest number
of 6 and 0 factors which transforms as a total derivative. As such, we can write an invariant

action as

S = / d*x < / d’0.Lr + / d29d29$D> (1.74)

Integration over Grassmann variables is defined by

/ 46y =0, / 0,d0, = | (1.75)

In order to integrate over superspace, we can define

1 5__ L5 5 ap
@20 = —d6%d0P ey, a0 = —d0udBye® (1.76)

Combining Eqgs. (1.75) and (1.76) gives the results

/d29(09) —1, /dzé(éé) (1.77)

From this we can see that the result of integrating a superfield over d>6 picks out the 66 term;
integrating over d”0 picks out the 60 term, and integrating over d>0d”0 picks out the 66006
term. This is just as required in order to select the highest component field of a chiral or vector
supermultiplet. Now that the mechanics have been developed for building supersymmetric La-
grangians, possible contributions to the Lagrangian can be analysed by looking at products of

superfields.

Firstly, it should be noted that the product of multiple left chiral superfields will always be left
chiral (and similarly for right chiral superfields) as there is no 6 dependence. Any product of
left chiral superfields will always terminate at the 66 term in the expansion due to the fact that
0006 = 0, and so all these types of terms are of the same type as .ZF in Eq. (1.74). Computing
the product of two or three left chiral superfields ®; ; = ¢; + V20 y; + 0 F; and integrating over

superspace coordinates gives the following results
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/d29q>1,LCI)2,L =0+ 0F —yiy (1.78)

/d29<131,L‘1>2,L<1>3,L =010+ 01203+ F10o0s —vidoys — 01y s —ynyngs (1.79)

Note that we cannot have any higher product of superfields of this kind due to the fact that it
would give rise to terms of mass dimension greater than 4 in the Lagrangian, leading to non
renormalisable interactions. In order to find terms of the same type as .%p in Eq. (1.74), we
can consider the product of a left and a right chiral superfield, @LCI)I. Due to the fact that the
conjugate of a left chiral field is right chiral, this term is clearly a vector superfield, and hence it

is of the same type as .Zp:

/ d?0d* 0P, @) = FF* — $d,0"¢* — iyio, o'y (1.80)

It is useful when considering the F-fields to combine Eqs. (1.78) and (1.79) to form the super-

potential

1 .. 1 ..
W(D,) = 5M’Jc1>,-c1>j+ 6y’J"<I>,-<I>ch>k (1.81)

As such, the Lagrangian so far can be written

W (%)
Z o Za¢]a¢

gzz (FF + |0y ¢\ — iy,0,0" y;) + vy +he| (1.82)

where the superpotential is now written as a function of the scalar fields ¢; rather than the
superfields. We can now integrate out the F; fields using their equations of motion, given by

=0, leading to

__[w(e)]
Fi= [ s ] (1.83)

Now our Lagrangian consists of kinetic terms for the scalar and fermion components of a chiral
supermultiplet but no kinetic term for the auxiliary fields F;, as well as terms describing both
fermion and scalar masses, and Yukawa and scalar interactions. However, the Lagrangian does
not yet describe vector (gauge) superfields, and so in order to achieve this, we must consider
consider the superspace Lagrangian for a gauge theory. For simplicity, we will take the case of
a U(1) theory where the vector superfield transforms as in Eq. (1.71), and we will specialise to
the Wess-Zumino gauge where the vector superfield can be written as Eq. (1.72). In order to

write down a field strength, the following spinor chiral superfields are defined
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1, - _ 1 _
Wa =~ (DD)DaV, Wa =~ (DD)DaV (1.84)

It can be shown that W, and W are supergauge invariant, and so hence is the quantity W*W,
which is also a left chiral superfield. As such, the F component (i.e. that associated with the 66

factor) of this term may appear in the superspace Lagrangian

1 1 1 ' — —
32—gzwawoc =~ FiVFIY + DD+ <_;)Laouaﬂza T %),GG#AZ)LC +h.c.> (1.85)

where F),y is the ordinary field strength, Fy, = aﬂAv — 8VAM, and A is the fermionic partner of
the gauge boson A, called the gaugino. In the U(1) case that has been considered here, due to
the fact that the integral over x* of the D-term component of the vector superfield is invariant
under both SUSY and supergauge transformations, we can add a Fayet-Iliopoulos term to the

Lagrangian
gp{ = —2K[V]D =—xD (186)

1.3.6 The Minimal Supersymmetric Standard Model (MSSM)

The matter content in the MSSM is given in Tables 1.1 and 1.2 and the superpotential for the

model is given by

Wissu = yuQHy, — dyaQHa — ey LHy + WH,Hy (1.87)

where y,, y; and y, are dimensionless 3 x 3 Yukawa matrices and the u term is the supersym-
metric generalisation of the SM Higgs mass term. It is the only possible candidate term of this
type due to the holomorphicity of the superpotential with the chiral superfields treated as comn-
plex variables- a fact which also explains the necessity for two Higgs doublets. Another reason
for this requirement is that anomalies will not be cancelled with only one Higgs doublet due to
gauge anomalies associated with triangle diagrams involving higgsinos. These anomalies are
cancelled in the case of two Higgs doublets due to the fact that the two higgsino doublets have
opposite hypercharge.

In addition to the terms written in the superpotential of Eq. (1.87) there are additional terms
which satisfy all the requirements to be included, but are not contained in the MSSM because
they either violate baryon or lepton number conservation. These terms which would be included

in the most general superpotential are
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1 _
War—1 = EALLE—i— A'LQd + u'LH, (1.88)

1 -
Wap=1 = El”lidd (1.89)

The consequences of the presence of these terms with unsuppressed A’ and A" couplings would
be that if both AL =1 and AB =1 terms are included, proton decay would be induced at rapid
rates, clearly incompatible with current experimental bounds. As such, a new symmetry must
be introduced in the MSSM in order to forbid these terms whilst allowing the terms in Eq.
(1.87). Such a symmetry is called R-parity, which is a discrete symmetry under which all the
SM particles and the Higgs boson have Pz = 1 and all the SUSY particles have P = —1

Pr=(—1)3Bu)+2s (1.90)

The consequences of R-parity conservation are that sparticles must be produced in even num-
bers, the lightest supersymmetric particle (LSP) must be stable, and every other SUSY particle
must eventually decay into a final state containing an odd number of LSPs. The existence of
a stable LSP provides a very attractive candidate for dark matter due to the extremely weak

interactions it might have with normal matter.

1.4 Grand Unified Theories (GUTSs)

The basic idea behind grand unification is to embed the three gauge groups and associated gauge
couplings of the Standard Model into one larger group G, with one coupling constant g. In this
way, it is possible to address more of the shortcomings of the SM, in particular by reducing the
number of free parameters, putting symmetry restrictions on aspects of SM which are arbitrary,
and providing an explanation for the apparent merging of the SM gauge couplings at a high scale.
Clearly the first requirement that any potential GUT must satisfy is that the unified group must
contain a SU(3) x SU(2) x U(1) subgroup and have a rank of at least 4, in order to accommodate
the four diagonal generators of the SM. Due to the chiral nature of fermions, it is also clear that G
must have complex representations, and because of renormalisability we must have an anomaly
free theory. Based on these restrictions, the only rank 4 candidate for a GUT is SU(5), although
the rank 5 group SO(10) and the rank 6 group Eg will also be considered in this thesis. The first
proposed GUT was the Georgi-Glashow SU (5) model [57], and it is useful in elucidating some
general features of GUTs to look at this model in some detail.
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1.4.1 The Georgi-Glashow SU (5) model

SU(5) is the group of 5 x 5 complex unitary matrices with determinant one. The group elements

are given by

24
U =exp (—iZﬁij> (1.91)
j=1

where the conditions on the group elements of unitarity and unit determinant mean that the 24
generators L/ are Hermitian and traceless. As we have 24 generators, we will also have 24
associated gauge bosons, and in order to describe them it is useful to define a basis for the 5 x 5
matrices where the SU(3) group acts on the first three rows and columns, and the SU(2) group

acts on the last two. Normalising the generators such that

Tr(L*LY) = %Sab (1.92)

we can embed the SU(3) and SU(2) generators as

0 0 00
| A 0 0 | 0 00
La‘:5 00 |, L971°:5 0 0 (1.93)
0 0 000 000 .,
Gﬂ
0 0 000 00

where A¢ with a = 1, ..., 8 are the Gell-Mann matrices, and ' are the non diagonal Pauli ma-
trices. Two more diagonal generators (in addition to L3 and L8) can be chosen to be proportional

to the third component of weak isospin and the hypercharge generator as follows

1
L= diagE(O,O,O, 1,-1), L2= diag(—2,-2,-2,3,3) (1.94)

1
215
Finally we have the non diagonal generators L'3 L' ... . L2 L** which do not correspond to

any of the SM gauge group generators. They can be chosen as in the following two matrices,

where the other generators are found by following the same pattern.

(1.95)

000 0 00
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It is useful to describe the SU(5) gauge bosons by a linear combination of these generators

1

24
A=Y AL, (1.96)
73t = LA

where it is convenient to introduce the gauge bosons X and Y as

13 | :414 15 :416 17 | 418

5! :A# +iAy X2:A“ +iAy, X3:A# +iAy
H v2 ok vk V2

19 | 1420 21 | 422 23 | 424

:Au +1Au :A# —HA# :A# —HAM

v, ="t L ="t _FK y 1.97
u V2 u V2 u V2 ( )
With these definitions, we have
G- Gl G} X' Y
2 2 w2
G? G~ 7% G2 i L
Ay = G} G G- X Y (1.98)
W 3B Wi +iW
X1 X2 5oonte v
Wi—iWy Wi 3B

In order to place the fermionic content of the Standard Model into SU(5) representations, we
must examine some of the lowest dimensional irreducible representations of SU(5). The funda-
mental 5 dimensional representation is the simplest representation and can be represented by a
5 dimensional column vector. The branching rules for the 5 representation and its conjugate, the
5, when SU (5) is decomposed into SU (3) x SU(2) x U(1) are

5 (3,1)_1+(1,2)
§—>(§,l)%—|—(1,2) | (1.99)

2

=

where it has been noted that the 2 of SU(2) is equivalent to the 2, and the U(1) charges have
been normalised in such a way to facilitate comparisons with the SM hypercharges, related to
the electric charge by Eq. (1.18). Looking at the components of the 5, it can be seen that we can
identify the (3,1) 1 state with the anti-down like quarks and the (1,2)_ 1 with the left-handed
lepton doublet. Utilising the fact that the charge conjugate of a right-handed field transforms as

a left-handed one, we can then express the 5 in terms of left-handed SM states as



Chapter 1 Introduction 33

5= d¢ (1.100)

In order to build other representations of SU(5), we can take products of the fundamental
representation such as 5 x5 = 10+ 15 [58]. The 10 is the antisymmetric product of two 5s,
X = %(a"aj —ald), i,j=1,...,5, where the a' are the components of the 5 representations.
Under the decomposition to the SM gauge group, we have the following branching rule for the

10

m—maa.+6JL%+aJm (1.101)

=]

As such, by comparing the components of the decomposition with SM states, we can embed the

anti-up like quarks, left handed quark doublets and the positron into the 10 as follows:

0 up  —uy —u, —d
| —u 0 u,  —u, —d,

10 = 7 ug —uj 0 —u —d, (1.102)
u U, U 0 —e

It can be seen that the hypercharge in these assignments can be written as ¥ = CL!2, where C'is a
normalisation constant. In order to make this normalisation consistent with the SM hypercharges
and Eq. (1.18), we can note that the electric charges of the states in the 5 representation are given
by O = (%, %, %, —1,0), meaning that

n@%:g:n@m+@ﬁﬂbzéﬂ+@) (1.103)

This implies the ‘GUT normalised’ hypercharge has C = %, with the generator given by

-2 0 0 00
0 -2 0 00
1
Y=310 0 -300 (1.104)
0 0 0 10
0 0 0 01
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The gauge bosons of Eq. (1.98) can be further understood by decomposing the 24 dimensional
adjoint representation of SU(5) under SU (3) x SU(2) x U(1)y

24— (8,1)0+(1,3)0+ (1, 1)0+(3,2)_s +(3,2) (1.105)

=\I%3

The first three terms simply correspond to the SM gauge bosons, whereas the (3,2)% contains
the X, and Y, bosons (which are the 73 = % and T3 = —% components of the SU(2) doublet
respectively), with the (3,2)_ 5 containing X, and Y. Using Eq. (1.18), it can be seen that
X, has electric charge Q = % and Y, has Q = % As the X and Y bosons possess both colour
and charge, they induce interactions between quarks and leptons, and hence mediate baryon
and lepton number violating processes. For this reason, they are called leptoquarks, and these
interactions as well as diquark interactions will be important in the later discussion of proton

decay.

1.4.2 Anomalies in the SU(5) model

The anomaly in any fermion representation of SU(N) is proportional to

D™ =Tr [{Th, TR} TR] = %A(R)d"‘“ (1.106)

where Ty are the generators, A(R) is independent of these generators and d“* is the third order
antisymmetric invariant of SU(N). As A(R) is independent of the generator choice, we can

choose all the generators in Eq. (1.106) to be the charge generator, leading to

A(§)=TrQ§=3(%)3+(—1)3:_§
3 2 3 2 3 1 3 8
A(10) :TrQ10:3(—§) +3(§) +3(—§) +1= 9 (1.107)

As such, A(5)+A(10) = 0, and as long as we have complete 5 + 10 fermion representations we

have freedom from anomalies.

1.4.3 Fermion interactions with X and Y gauge bosons

The couplings between fermions and the X and Y bosons can be found by considering the gauge

invariant kinetic energy terms for the 5 and 10 representations
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Ly = WY (Du¥s)a + V0V (Dpwio)as

— V(i 980 + \%WAZast (i7" 0y 5 + %y’%b)mc (1.108)

The couplings between fermions and the X and Y gauge bosons are given in Figure 1.2.

Figure 1.2: X and Y boson couplings in SU(5)

These vertices will lead to Feynman diagrams which violate Baryon and Lepton number. In
unbroken SU (5), all fields are massless, and these processes would lead to proton instability
which is inconsistent with current experimental data. However, when SU(5) is spontaneously
broken, proton decay can be avoided if the breaking occurs at a scale which is high enough
above the Electroweak scale. As such, the details of spontaneous symmetry breaking in SU(5)

are extremely important in the discussion of a realistic theory.

1.4.4 Spontaneous symmetry breaking

Spontaneous symmetry breaking in SU(5) occurs in two steps- firstly the breaking to the SM
gauge group at a scale Mgyr where the X and Y bosons become massive, and secondly Elec-
troweak symmetry breaking which gives masses to the W* and Z bosons. The first step is
achieved by giving a VEV to an adjoint Higgs multiplet, which we can write as 24 scalar fields,
Y., a=1,...,24. The couplings of gauge fields to ¥, can be found by considering the following

kinetic term and covariant derivative

L= %(DM)Z(D% (1.109)
(DuZ)a = (9 8up — %A; (F)ap)Zp, a,b,c=1,...,24 (1.110)
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where Aj; are the 24 gauge fields of SU(S) and (F€),p are the 24 generators in the adjoint repre-
sentation. The form of the adjoint representation can be seen easily by adopting a tensor product
w1 ) 1)
We can now express an arbitrary state in terms of components in this tensor product space as
[v) = ’Jlljl:> v{lljl”; In this way, it can be seen that we can construct the adjoint representation
by taking the product of a 5 (represented by u’) and a 5 (represented by v ;) as follows:

notation, where the tensor product of n 5s and m 5s is denoted by

. ‘ 1. 1.
u'vi=(u'vj— 55;ukvk) + 55}ukvk (1.111)

5x5=24+1 (1.112)

We can see that the first term in Eq. (1.111) corresponds to a 5 x 5 matrix which is traceless,
hence giving the 24 degrees of freedom of the adjoint, and the second term transforms as a
singlet due to the invariant nature of the 6 tensor under SU(5) transformations. As the Higgs
scalar multiplet ¥, is adjoint valued, it can be represented by a 5 x 5 matrix, X, which transforms

in the same way as the adjoint representation. As such, the covariant derivative is given by

ig

V2

DyY =0X——=[Ay,X] (1.113)
where Ay is as given in Egs. (1.96) and (1.98). When X acquires a VEV, the resulting masses
for the X and Y bosons can be calculated by inserting this expression into Eq. (1.109), leading

to a mass matrix of the following form

Lor (A, (2)]

i = mj, Al AHP (1.114)

In order to understand the possible forms for the VEV in this equation, we must construct a
potential for X. To this end, we can write down the most general gauge invariant scalar potential
with all couplings of dimension 4 or less so as not to spoil renormalisability. The potential can
also be simplified by imposing invariance under a discrete Z, symmetry, X — —X, and with this

choice, the most general form is

2 /
v Koy Apge M

5 1 1 (Trx?)? (1.115)

It follows from Eq. (1.114) that (¥) must be diagonal in order to keep the SM gauge bosons
massless whilst giving masses to the X and Y bosons. We can always make a gauge transforma-
tion which puts ¥ in a diagonal form, and after doing this it can be shown that there is a unique

minimum for the potential which breaks SU(5) down to the SM group:
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(z) = %diag(2,2,2,—3, -3) (1.116)

It can be seen that this is proportional to the hypercharge generator, and putting this form into Eq.
(1.115) and differentiating, shows that there is a non zero solution where we have an extremum

of the potential

2 4u?

which is a minimum provided that g > 0 and 74 +30A’ > 0. Now that a minimum has been
found where the VEV for X breaks SU(5) to SU(3) x SU(2) x U(1), Eq. (1.117) can be inserted
into Eq. (1.114) to obtain the masses of the X and Y bosons after this first stage of SSB

il (1.118)

The second stage of symmetry breaking is now concerned with the Electroweak breaking of the
SM by a Higgs field which is a doublet under SU (2),. Looking at the branching rules for the 5
and 5 representations in Eq. (1.99), it is clear that the simplest possibility is to introduce a Higgs
multiplet which is a 5 of SU(5)

Dy 0
D, 0

H=|D; |, H)=w|0 (1.119)
ht 0
—h° 1

where D is a colour triplet, and the VEV has been chosen to lie in the neutral SU(2), direction
in order to achieve the required symmetry breaking. In analogy with Eq. (1.15), this VEV could

be driven by a potential of the form

1 1
V(H) = —Ev2 ]H\2+Z7L"(]H\2)2 (1.120)

However, this potential cannot be the whole story as it is not able to give masses to the colour
triplet D, and as shall be seen later, this can give rise to dangerously rapid proton decay. Also,
we have not included any terms coupling H and X to each other, so we can add to Eq. (1.120)

the following two gauge invariant terms of mass dimension less than 4

V(Z,H) = o |H|* Tr(2?) + BHE’H (1.121)
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D
Once X has acquired a VEV as in Eq. (1.116), we can write H = (h) and expand Eq. (1.121)

to give

15 15 9
V(Z,H):v2(7a+ﬁ)D*D+v2(7a+ZB)hTh (1.122)

Since v is of the GUT scale, the first of these terms can give a mass to the colour triplet fields at
the GUT scale as required. However, in order to preserve this fact whilst giving the Electroweak
Higgs the desired mass, we must adjust the parameters o and f such that the second term is
small enough. Making this term equal to zero requires the relation o¢ = —% B, and this precise
adjustment is an example of a fine tuning of Lagrangian parameters. This feature is known as
doublet-triplet splitting, and in minimal SU (5) a fine tuned cancellation is the only way to solve
the problem, although we will meet an attractive solution later when discussing breaking SU(5)

by hypercharge flux in the context of F-theory.

1.4.5 Yukawa couplings

As in the SM case, masses arise from the gauge invariant couplings of products of fermion fields

and Higgs scalars, after spontaneous symmetry breaking. In the minimal case, we can just take
D
a single Higgs in the fundamental representation of SU(5), H = <h> , in which case we get the

following renormalisable Yukawa couplings

L = (5m)i¥s105,(55); + Ze,-jk,mloﬂgymo’;;s,, (1.123)

where Y5 and Y;( are Yukawa matrices in generation space and i,j,k,I,m are SU (5) indices. Pick-

ing out the terms involving the light Higgs field h yields

Ly — d°YsQh* + LYseh* +u (Y10 + Y5 Qh (1.124)

Due to the structure of SU(5), it can be seen that Y5 dictates both the down quark and charged
lepton masses once h has acquired a VEV. As such, we can diagonalise Y5 in flavour space and

get the following relations between masses at the GUT scale

mg=me, MmMg=my, nmy,=nm; (1.125)

As is the case for couplings, radiative corrections cause the masses to run as the scale at which
they are measured changes. As such, taking into account this running of the masses, only the pre-

diction my;, = m is acceptable, and in order to rectify the situation we must go beyond minimal
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Figure 1.3: Dimension 6 proton decay diagrams

SU(5). One solution is to introduce a Higgs in the 45 representation as well as the fundamental

one (as in [59]), which can result in the acceptable GUT mass relations

1
m, = gmd, my =3mg, mg=my, (1.126)

1.4.6 SUSY GUTs

Despite the many attractive features of the minimal SU(5) GUT, it has problems which mean
that it cannot be a totally realistic model. Firstly, if the SM gauge couplings are run up to the
GUT scale it is found that they do not meet, and secondly it predicts massless neutrinos which
is in contradiction with experiment. The first of these shortcomings can be addressed if GUTs
are combined with SUSY, as if we take the case of the MSSM with all superpartners at the
TeV scale, we have the beautiful result that the three couplings unify at a single point around
i~ 10'%GeV [60]. Discussion of possible ways of giving mass to neutrinos in the setting of
SUSY GUTs will be postponed until we start looking at semi realistic models resulting from
F-theory GUTs. In the meantime, we can note that the Yukawa sector of Eq. (1.123) is modified
due to the fact that we now have two Higgs doubles, H, coming from a 5 and Hy from a 5. As

such, we can obtain the Yukawa couplings from the following superpotential
Wy = 53 Ys510y5k, + €510y Y1010455, (1.127)

1.4.7 Proton decay

As pointed out previously, the couplings of the X and Y bosons to fermions given in Figure
1.2 can lead to proton decay. The dimension 6 operators resulting from the exchange of these
bosons with GUT scale masses are shown in Figure 1.3, and illustrate the dominant decay mode
by gauge exchange, p — et 7°.

Based on these diagrams, a crude estimate for the lifetime of the proton can be obtained as

4
T, R g’fﬁ, and as such, the GUT scale can be calculated from the measurement of this lifetime.
14
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In SUSY GUTs the GUT scale is around 3 x 10'°GeV, whereas in the non supersymmetric case
it is of order 101°GeV [61, 62, 63]. This leads to a suppression of the dimension 6 operators in
SUSY GUTs, and a lifetime of around 10**~38 years, which is to be compared with results from
the Super-Kamiokande experiment, which give 7(p — et 7%) > 5.0 x 103yrs. Even though
the lifetime in the supersymmetric case is above this bound, this experimental result rules out

minimal SU(5) models where the GUT scale is lower.

In addition to these dimension 6 operators, in SUSY GUTs there are dimension 4 and 5 operators
which could potentially be dangerous with regards to nucleon decay [61]. The dimension 4 terms
can be forbidden as discussed previously by imposing R parity, however there are dimension 5
operators resulting from colour triplet Higgsino exchange which require attention [64]. Starting
from the superpotential terms contained in Eq. (1.127), we have the following couplings for the

H,, H; and associated colour triplet fields D and D

W D Hy(QY,d + LY,e) + D(QYy L + uY,qd)
+ H,QY,u + D(QY40 + uY,ee) (1.128)

where the first line corresponds to the first term in Eq. (1.127), the second line corresponds to
the second term, and the Y matrices in flavour space have been left general in order to describe

any model. Integrating out the colour triplets leads to the following dimension 5 operators

Ws = MlD( ”Y "QiQ;0mLn +Y”Yﬁ"ufe§ufnd§) (1.129)
These operators lead to proton decay via the diagrams shown in Figures 1.4 and 1.5, where the
sparticles are converted to particles by gaugino or Higgsino ‘dressing’, and the dominant decay
mode is p — K+ V. The reason for the presence of a kaon in this decay is due to a symmetry
argument based on the fact that we are dealing with operators built from four bosonic superfields.
We must have all the colour and SU(2), indices correctly antisymmetrised for invariance under
the SM gauge group, but because of the bosonic nature of the superfields the operators must be
totally symmetric under the interchange of all indices. Due to the fact that in both dimension
5 operators we have the appearance of at least two of the same superfields, the family indices
cannot be the same on the identical fields, meaning that we must have the presence of a second

or third family particle in the final state.

The Super-Kamiokande bounds on the proton lifetime put severe constraints on these dimension
5 operators, and in fact minimal SUSY SU(5) is ruled out [65]. One motivation of moving to
F-theory GUTs is that there is the potential for the natural inclusion of additional symmetries
which can forbid dimension 5 operators, and also the existence of intricate flux mechanisms

which can eliminate Higgs colour triplet states from the particle spectrum of a particular model.
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Figure 1.4: Dimension 5 operator from colour triplet Higgsino exchange
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Figure 1.5: Dimension 5 proton decay diagrams

1.4.8 Higher rank GUT groups

The embedding of the Standard Model gauge group into SU(5) is just part of the following
larger chain of embeddings of exceptional groups

E3XU(1)DE4DE5DE63E7DE8 (1.130)

This chain is shown nicely in Figure 1.6, where it can be seen that by starting from the excep-
tional group Ejg, the non-abelian part of the SM can be obtained in steps by deleting one node
from each diagram. In F-theory GUTs this chain is extremely important, as it is assumed that all
the interactions of the theory come from a single point in the internal geometry where the gauge
symmetry is enhanced to Eg. In this thesis, in addition to SU(5), GUT groups of SO(10) and
E¢ will be studied, where all the SM matter plus the right handed neutrino are embedded into
one 16 dimensional representation of SO(10), and this 16 representation is embedded into the
fundamental 27 representation of Eg. It turns out that there is a rich phenomenology associated
with the embedding of these GUT groups inside the parent Eg group, and this provides much

motivation for model building.
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Figure 1.6: Chain of dynkin diagrams from ES to the Standard Model
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1.5 Introducing Strings and Branes

A BSM framework which incorporates SUSY and GUTs is that of String Theory, where we have
ten space-time dimensions where six are compactified and very small, and instead of fundamen-
tal point-like particles, we now have one-dimensional strings. Just as a point particle sweeps out
a worldline in Minkowski space, a string sweeps out a ‘worldsheet’, which we can parameterise
by one timelike coordinate 7, and one spacelike coordinate o, as depicted in Figure 1.7. The
string then sweeps out a surface in spacetime, defining a map from the worldsheet to Minkowski

space, X" (0o, 1).

8

Figure 1.7: The worldline of a particle, and the worldsheets of closed and open strings.

These strings can come in two types- ‘open strings’ and ‘closed strings’- depending on whether
we take o to be periodic, and the strength of interactions between strings is set by the string
coupling constant, g;. Type IIB superstring theory is a variant which includes both open and
closed strings, and we will start by considering the case of g; << 1 in this theory. In this pertur-
bative regime, the particles of the Standard Model are described by excitations of open strings,
whereas the graviton and gravitino are related to closed strings. Motivated by the weakness of

gravity, one could try and formulate the Standard Model by just using open strings.

When dealing with open strings, we must consider the boundary conditions associated with the
end points. It turns out that there are two types of boundary conditions we can impose, which

are consistent with the string action:

e Neumann boundary conditions where the end points the string are allowed to move freely.

e Dirichlet boundary conditions where the end points are fixed at some position X* = c*.

If we consider some coordinates to have Neumann boundary conditions for t =0,....,p and
Dirichlet boundary consitions for u = p+1,...... ,D — 1, the ends of the string are fixed to lie in
a (p+1) dimensional hypersurface in spacetime, which is called a Dp brane. The relevant branes
for F-Theory are D7 branes. Particles in our four dimensional spacetime now correspond to
strings stretched between D branes, and the mass of these particles are related to the tension 7',

and the distance in the internal dimensions between the branes, D.
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M=TxD (1.131)

As all the SM particles are effectively massless, this corresponds to D = 0, so we are interested
in the case where the ends of open strings can coincide in the internal dimensions. If we take
N D7 branes filling the same dimensions (a stack of branes), a U(N) gauge theory is realised,
with the gauge bosons corresponding to strings which begin and end on any of the D7 branes in
the same stack. If, for example, we have a stack of three D7 branes and another stack of two,
there can be an intersection of the branes in two of the internal dimensions. In this case, we
have a U(3) x U(2) gauge group, and we can have massless open strings which begin on the
U (3) stack and end on the U (2) stack, corresponding to states charged under both gauge groups.
These ‘bifundamental’ states are the matter fields of the theory, and in our simple example can
be combined with the U(3) and U(2) gauge bosons into a 5 x 5 matrix of U(5), with the gauge
fields in 3 x 3 and 2 x 2 diagonal blocks, and the matter fields in the off diagonal positions. As
such, at the intersection of the stack of branes, we can embed all the states into a U(5) group,
meaning that we can interpret this set up as a U (5) gauge group at the intersection, broken down
to U(3) x U(2) away from the intersection. If we have a triple intersection of D7 branes, we
again have a further enhancement of the gauge group. Using these ideas, we can try and build

the SM using perturbative, intersecting D-branes, in an SU (5) GUT setting.

In order to realise the 5 and 10 of SU(5), we can consider the intersection of the SU(5) GUT
brane with U(1) branes, so that the symmetry group is enhanced to SU(6) and SO(10) respec-
tively. We can see that these are the enhanced symmetry groups required to realise the 5 and
10 by (purely as a group theory exercise) decomposing the adjoint of the enhanced group into
representations of SU(5) x U(1).

For the 5:

SU(6) — SU(5) x U(1) (1.132)
35 — (24,0) + (1,0) +(5,6) +(5,—6) (1.133)
and for the 10:
SO(10) — SU(5) x U(1) (1.134)
45 — (24,0) + (1,0) + (10, —4) +(10,4) (1.135)

We can now go one step further and try and realise the Yukawa interactions responsible for the

masses of the bottom and top quarks. For the bottom quark, the relevant interaction term is
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51 % Sy % 10y, and this corresponds to an enhancement to SO(12) at a point in the geometry.

To see this, we look at the decomposition

SO(12) — SU(5) x U(1); x U(1), (1.136)
66 — (24,0,0) + (1,0,0) + (10, —4,0) + (10,4,0)
+(5,2,2)+(5,2,-2)+(5,-2,2) +(5,-2,-2) (1.137)

We can now make the identification

5 x Sy x 10y ~ (5,-2,2) x (5,-2,—2) x (10,4,0) (1.138)

and can see that this operator is invariant under U (1); x U(1),. The relevant operator for the top
quark is 55 x 107 x 1044, and unfortunately, this term cannot be realised in the same way. This is
because we are actually realising a U (5) = SU(5) x U(1), gauge theory, and the 55 x 537 x 10y
term is invariant under this, but the 55 x 10,7 x 10, is not. As such, in order to give mass to the
top quark, we must go to the case where g; is of order 1, and F-Theory. In this case, exceptional
gauge groups can be realised, which provides us with the correct structure to accomodate the
Sy % 53 % 104 term. The enhancement for this coupling turns out to be Eg, and we can see this

in the usual way, from the decomposition

Es— SU(S)xU(1); xU(1), (1.139)
78 — (24,0,0) + (1,0,0) + (1,0,0) + (10, —4,0) + (10,4,0)
+(10,1,3) +(10,—1,-3) +(5,-3,3) +(5,3,-3) + (1,—5,-3) +(1,5,3) (1.140)

In fact, in F-Theory GUTs, all the interactions come from a point of Eg enhancement in the

geometry.

1.6 Moving to F-Theory

F-theory is a 12 dimensional, strongly coupled formulation of type IIB superstring theory. For-
mally, F-theory can be defined on a background R*!' x X where R>! is 4 dimensional space time,
and X is a Calabi-Yau (CY) complex fourfold. It is assumed that X is elliptically fibered with a
section over a complex three-fold base, B3 [7, 9]. The meaning of this can be understood more
clearly by considering the example of a fibre bundle, which is a collection of topological spaces

E, B, F, and a continuous surjective (onto) map 7:
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Unification

SUS)Gur

Figure 1.8: The point of E8 enhancement (figure from [5])

Figure 1.9: The Mobius strip as an example of a fibre bundle

E is the Total Space
e B is the Base Space

F is the Fibre

e 7 : E — Bis amap from the total space to the base space

The key is that E must be locally trivial. This means that the total space must locally look like
the trivial bundle, E = B x F, but globally, there can be a twist. This can be understood better
by looking at the example of the Mobius strip, shown in Figure 1.9. Here the base space is the
circle, and the fibres are line segments. Locally, the Mobius strip looks like a cylinder, which is

the trivial bundle.

Going back to our case of a CY fourfold, elliptically fibered over a three-fold base, there fibres
are no longer line segments, but are two-tori. What this means is that each point of the base
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Figure 1.10: CY four-fold, involving an elliptic fibration over a three-fold base, B3
(figure from [66])

B3 is represented by a two-torus. The dimensions occupied by the base are the 6 compactified
dimensions of type IIB string theory, and the complex modulus of the torus fibre encodes the

axion and dilaton (two scalars contained in the bosonic spectrum) at each point on the base:

T=Cot+ie® =Cot — (1.141)

8s
It is a fact that the presence of D7-branes (filling 7 spatial dimensions and 1 time dimension)
affects the profile of the axio-dilaton, 7. As such, the reason that F-theory can be viewed as a
12 dimensional theory is that two dimensions are geometric dimensions which allow us to keep
track of the variation of 7 over the other ten dimensions. The form of the elliptic fibration can

be described in what is known as Weierstrass form as

¥ =23+ f(2)x+g(2) (1.142)

where x,y,z are complex coordinates on C3. x and y are coordinates on a two complex di-
mensional surface S, and z is the coordinate perpendicular to this surface inside the base. The

discriminant of the cubic in x is given by

A=4f3427g% (1.143)

and when this discriminant vanishes, it indicates the presence of D7-branes, and the elliptic
curve becomes singular along a two complex dimensional subspace in B3. The equation A =0

can factorise into irreducible polynomials in coordinates of the base, A = A;...A,, = 0, with each
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Group ay | a | az | ay ag A
SU(2n) O] 1 |n n 2n 2n
SUCn+1) | O | 1 | n | n+l | 2n+1 | 2n+1
SO(10) 1|12 3 5 7
Es 112 ]2 3 5 8
E; 11213 3 5 9
Eg 11213 4 5 10

Table 1.3: Classification of Singularities

equation A; = 0 describing the location of a D7-brane. In terms of the torus fibre, the torus

degenerates (pinches off) at these points.

1.6.1 D7-branes, Gauge Groups and Singularities

In F-theory, the GUT group is realised on a 7-brane which wraps some 2 complex dimensional
surface S. One feature of the analysis of the fibration is that not only does the vanishing dis-
criminant give us the locations of 7-branes, it also gives us information about what gauge group
is supported by the 7-brane, depending on the order to which the discriminant vanishes. Much
mathematical work has been done on this subject, and a classification of which singularities
correspond to which gauge group has been done by Kodaira. In order to describe these singular-
ities, a procedure called Tate’s algorithm can be followed [67, 68]. Taking a coordinate on the
base, z, such that S is defined by z = 0, the coefficients f and g of Eq. (1.143) can be expanded

in powers of z.
f@=Y H, g) =Y gn" (1.144)

These expansions can then be inserted into Eq. (1.142) and the form of the Weierstrass equation

can be studied, depending on to which order in z the discriminant vanishes.

The general Tate form of the Weierstrass equation can be written

y2+a1xy+a3y:x3+a2x2+a4x+a6 (1.145)

Now we can look at a particular singularity by examining the Kodaira classification of singular-
ities, and seeing how the a; must vary with z in order to produce the required singularity. Some
examples of the order to which the coefficients a; ~ 7" and the discriminant A must vanish in

order to give certain gauge groups are shown in Table 1.3.

For example, an SU(5) singularity would be given by the choice

ay = —bs,ay = byz,a3 = —bsz*,as = byz’ a6 = bz’ (1.146)
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leading to the equation

y2 = x> +bo7° +boxz’ + b3yz2 +byx’z+ bsxy (1.147)

where the b; are fibration coefficients which do not depend on z.

So far, everything that has been stated applies to global F-theory, and in a global model, the
structure of the GUT theory is described by the dependence of the b; on the base coordinates.
We can, however, learn a lot by studying so called ’semi-local’ models, where the complications
of global F-theory are avoided by just looking at regions close to the GUT surface S.

1.6.2 Semi-local F-theory and the Role of Eg

The ideas of local F-theory focus on the submanifold S, where the GUT symmetry is localised.
We can consider intersections of the GUT brane (which wraps S) with other 7-branes wrapping
surfaces S; and supporting gauge groups G;. Along these intersections matter will reside, and
so they are known as matter curves, X; = SN S;. Along the matter curves , the local symmetry
group is enhanced to Gy, D Gs x G;. We can go one step further than this and then study the
intersections of matter curves at points in S. When we have an intersection of matter curves,
we induce a Yukawa coupling and there is a further enhancement of the local symmetry to
Gy D Gy, X Gy; X Gy,. In order to study Yukawa couplings in the local setup, we can gain

information by just considering the local area around the point of intersection on the surface S.

The semi-local approach to F-theory assumes that we have a parent Eg gauge theory which is
broken by a position dependent VEV for an adjoint Higgs field. All the interactions in the theory
are assumed to come from a single Eg point of enhancement. At this point, all the matter curves

of the theory meet, and the local symmetry group is enhanced all the way to Eg.

1.6.3 An SU(5) Example and Introducing Monodromy

As an example, we can take the GUT group on S to be SU(5). The breaking of Eg to the GUT

group occurs as

Eg —>SU(5)GUT XSU(S)J_ —)SU(S)GUT X U(l)4 (1.148)

where the commutant of the GUT group inside Eg is called the perpendicular group, and in this
case is SU(5) . The nature of the matter curves of the theory is found by decomposing the

adjoint representation of Eg as follows

248 — (24,1)+(1,24) +(10,5) +(5,10) +(5,10) + (5, 10) (1.149)



50 Chapter 1 Introduction
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Figure 1.11: Branes intersecting at matter curves, which intersect inducing a yukawa
coupling (figure from [69])

This equation shows us that we have twenty four singlet curves (6;;), five 10 curves, and ten
5 curves. The equations of these curves can be written in terms of the weights t; (i = 1, ..,5,
Y t; = 0), of the 5 representation of SU(5), as follows

Yi0:4=0
Y5 —ti—tj:(),i;éj
Ti(ti—t) =0,i#j (1.150)

The fibration coefficients b; of Eq. (1.147) are given by the elementary, symmetric polynomials
of degree i in the weights. These are non-linear relations, and generally there will be relations
identifying some of the #;. The way in which the #; can be identified is determined by the
’monodromy group’. As we are working in the semi-local picture, the full Calabi-Yau geometry
has been decoupled, and so we must choose the monodromy group by hand. By requiring a
tree level top quark Yukawa coupling, we need at least a Z, monodromy identifying two of
the weights. This is because we need the 55 x 10, X 10y, coupling to be invarient under the
perpendicular U (1) symmetries. As the top and anti-top come from the same 10 representation,
they both have charge #;, and the up type Higgs has charge —; — #;, meaning that to cancel the
charges we must have 2¢; —; — 1, = 0. This can only be the case for j = k = i, and so we must
have an identification of at least two of the weights. From now on this minimal Z, case will be

assumed at all times, and we will take #; <> t,.
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1.6.4 Flux Breaking

So far, we have only seen the case where the gauge symmetry on S is SU (5). However, of course
there are other possibilities for the GUT group, and inspired by the Dynkin diagram chain of
Figure 1.6, the work in this thesis will focus on the groups E¢ and SO(10) in addition to SU(5).

The decomposition of Eg into the GUT group and perpendicular group in each case is given by

Eg DE¢xSU(3) .

— SO(10) xU(1)y x SU(3) |

5 SU(S) x U(1); x U(1)y x SU3).
Eg D SO(10) x SU(4) .

—SU(5)x U(1), xSU(4) 1
Es S SU(S) x SU(S) |

As we can see from the above breaking chains, even if we start with Eg or SO(10) as the GUT
group, we can always end up with an SU(5) x U(1)* structure before we can break down to
the Standard Model, by breaking SU(N), to U (1)11_1. Although we could generally turn on
non-Abelian fluxes in the perpendicular groups, in this thesis we will always choose to work
with fluxes in U (1)s. In this case, the only difference between the three pictures is which U(1)s
originate from the GUT group and which originate from the perpendicular group, and in the next
chapter mappings between the different pictures will be established. Throughout this thesis, we
will assume that the GUT group is broken down to SU(3) x SU(2) x U(1)y via flux breaking.

There are two types of flux that can be turned on: there are fluxes in the U(1)s from the per-
pendicular group which preserve the chirality of complete GUT representations, and there are
fluxes that can be turned on in the worldvolume of the 7-brane which break the GUT structure.
Whenever we utilise flux breaking we end up with splitting equations which tell us the net num-
ber of states in a particular representation, for example, breaking SU(5) down to the Standard
Model by turning on a flux in the hypercharge direction gives the following equations for the 10

and 5 representations of SU(5)

_n}J : Mg+ N

Rep. #
| | M Rep. #
Nz, — N3 :
3,2 10
10 = > 32 5= I’lll—nl . M5
1 1 . 3, 3,1
ni] —I’l371 . M]o—N 1 1
17
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We can see from these equations that the flux associated with the integer M respects the GUT
structure, and so is a flux in the perpendicular U(1)s. The flux associated with the integer N
is the hypercharge flux and leads to incomplete SU(5) multiplets. As this breaking is due to
the hypercharge flux, the integer N is given by the flux dotted with the homology class of the
matter curve in question. As such, we can obtain relations between these N integers (and similar
integers for different fluxes) by calculating the homology classes of the matter curves. In order

to do this, we will use the spectral cover formalism.



Chapter 2

The Spectral Cover Formalism

2.1 Semi-Local F-theory and Spectral Covers

As described in the Introduction, a global description of an F-theory GUT is given by the geom-
etry of a CY fourfold, elliptically fibred over a threefold base, B3. A local description, however,
focuses on the effective field theory where the GUT symmetry is realised on a 7-brane wrapping
a 4-dimensional surface, S. Matter fields are then localised on curves within S, and information

about interactions can be found by looking at the points where matter curves intersect.

Another way of looking at F-theory GUTs is the semi-local approach, which involves imposing
constraints from the requirement that S is embedded into a local CY fourfold. These constraints
mean that the local geometry around 7-branes can be viewed as a deformed Eg singularity, which
is unfolded to a Ggyr singularity by the fibration coefficients, b;, of Eq. (1.147). This unfolding
can be viewed as arising from an Eg gauge theory on R>! x S, where the b;s provide information
about the adjoint scalar, ¢, that breaks Eg — Ggyr (more precisely, the b;s give the eigenvalues
of ¢ at different points of S). Generally, the fibration coefficients, b;, depend on the embedding

of S into B3, but in a semi-local model, this information is not specified.

In order to break the Eg gauge theory, the Higgs ¢ gets a position dependent VEV in the adjoint
of the commutant group of Ggyr within Eg. In this thesis, we will study Ggyr = Eg, SO(10)
and SU (5), and look at the breaking

Eg — Ggyr X SU(N)L 2.1)

where N = 3,4,5 for Eg, SO(10) and SU(5) respectively. The eigenvalues of ¢ can be diago-

nalised in a local coordinate patch as

¢ ~diag(t1,....ty), Y.ti=0 (2.2)

i

53
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where the #; are the weights of the fundamental representation of SU(N) . These weights can

be interchanged by the action of monodromies as described in the Introduction.

The spectral cover equation for SU(N), is an N* degree polynomial whose coefficients are the

b; and whose roots are the roots correspond to the local eigenvalues, ¢;.

EN =bosV + ...+ bps" K4+ by =0 (2.3)

As such, whilst the full mathematical language of the Eg breaking is described by the langauge
of Higgs bundles [70], the spectral cover approach simply focuses on the eigenvalues of ¢ at

each point on S.

Before a detailed study of the SU(3),, SU(4), and SU(5), spectral covers is presented, it
is useful to look at some features of spectral cover models by briefly examining the simplest

example, SU(3) . In this case, the spectral cover equation is given by

€3 = b()S3 + b1s2 +bys+b3=0 2.4)

As the roots are given by the SU(3) ; weights, #;, we also have

E3 =bo(s+11)(s+0)(s+1) =0 (2.5)
Comparing the equations gives

by =bo(t1 +12+13)
by = by(tita + 1113 + 1213)
b3 = bot 1 1at3 (2.6)

As such, we can see that the fibration coefficients, b; are given by the elementary, symmetric
polynomials in the #;. Also, it should be noted that due to the tracelessness constraint on the

weights, by will always be zero in these models.

The reason why the spectral cover approach is so useful is that equations for the matter curves
of a given GUT theory can be computed in terms of the b;s. As such, if the homology classes
of the fibration coefficients are known, we can work out the homology classes of the matter
curves. However, we want to know the equations and homologies of the matter curves in the
presence of a monodromy, so the monodromy action must be somehow imposed upon the spec-
tral cover polynomial. In this thesis, the minimal Z, monodromy identifying the weights #; and
f, is always assumed, which in the language of an SU(N), spectral cover corresponds to the

polynomial splitting into a quadratic factor and N — 2 linear factors. As an example, imposing
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the Z, monodromy on the SU (3), spectral cover equation leads to the following splitting of the
polynomial

%> = (a1 +axs+azs®) (as+ ass) 2.7)

The b; coefficients can now be related to the a;s by comparing powers of s, and so the homol-
ogy classes of the a; and the equations of matter curves in terms of the a; can be computed.
Putting this information together gives the homology classes of matter curves in the presence of
a monodromy, which is the key information required to determine the chiral matter content on a
curve after flux breaking, as shall be seen later in this chapter. This is the general spectral cover
procedure which will be applied in detail to each of the three GUT groups studied in this thesis,
but before this detailed analysis, it will prove incredibly useful for model building to develop a

group theory dictionary between the three GUT theories.

2.2 Group Theory Dictionary Between Eg and SU (5)

In this chapter we are concerned with the sequence of rank preserving symmetry breakings
induced by flux breaking. Starting from the Eg point of enhancement in the internal geometry,
there exists a variety of breaking patterns to obtain the Standard Model gauge symmetry. A
complete classification of these possibilities from the F-theory perspective has been given in the
appendix of ref [9]. Here, we shall be interested in the general embeddings discussed in the

Introduction, where the adjoint of Eg decomposes in each case as

Es D EsxSU(3), (2.8)
248 — (78,1)+(27,3)+(27,3) +(1,8) (2.9)
Es D SO(10)xSU(4), (2.10)
248 —  (1,15)+(45,1)+(10,6) + (16,4) + (16,4) (2.11)
Es D SU(5)xSU(5). (2.12)
248 —  (24,1)+(1,24)+(10,5) + (5,10) +(5,10) + (5,10). (2.13)

In particular, the last case has been extensively studied by many authors including [9, 70, 71, 22,
23]. In this case, as described in the Introduction, the matter content of SU(5)gyr transforms

non-trivially under the Cartan subalgebra of SU(5) | with weight vectors #; s satisfying
h+bh+t3+t+1t5=0. (2.14)

In principle, the superpotential can be maximally constrained by four U(1)s according to the
breaking pattern
Eg D SU(5) x SU(5), — SU(5) x U(1)4 (2.15)
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The 5 representation of SU(5), may be expressed in the conventional basis of the five weight

vectors ¢; in which the 4 Cartan generators corresponding to U (l)i are expressed as:

1 1
H, = ~diag(1,—1,0,0,0), H, = ——diag(1,1,—2,0,0),
1=5 g( ), Ha NG g( )
1 1
Hy = ——diag(1,1,1,—3,0), Hy = diag(1,1,1,1,—4). 2.16
N g( ), Hy WiTi g( ) (2.16)

In general, however, there is an action on #;s of a non-trivial monodromy group which is a
subgroup of the Weyl group W (SU (5) 1 ) = Ss. Such subgroups are the alternating groups .27, the
dihedral groups %, and cyclic groups 2, n < 5 and the Klein four-group %, x %;. Throughout

this thesis we shall assume the minimal 2% monodromy, ¢ <> 1.

It is of interest to consider the possibility of a sequence of flux breaking, which may be associ-

ated with different scales. Here we consider the sequence

Es — EgxU(1)? (2.17)
- SO(10) x U(1)y x U(1)% (2.18)
— SU(S)xU(1)y xU(1)y x U(1)3. (2.19)

which for the E¢ representations gives

78— [24(00)+ 10040y +10(_40) + 1(0,0)l4s
[

+ 1013 +53,-3) + L=5-3)16
+  [10013)+533) + 1(53)l76
+ [Looh
27 — [10_11y+53,1+ L-snlie
+ [Be-2+52-20
+ [Loah (2.20)

where the subscripts refer to the U(1),,U(1)y charges and SO(10) representation respectively.
It is convenient to choose a basis for the weight vectors such that the charge generators have the

form

Q, o diag[—1,—1,—1,—1,4]
Qy o diagl,1,1,-3,0]
Q. o diag[l,1,-2,0,0] (2.21)

where Q| is the charge of the U(1), in the breaking pattern of Eq. (2.17) that remains after

imposing the #; <> f, monodromy. This is in fact the same as the conventional basis for the
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E¢ | SO(10) | SU(5) | Weight vector
27,1 16 53 1 +15
2711 16 104 1
27y 16 015 I —1s
27,1 10 51 —h—8
2711 10 5, 1 +14
27,1 1 014 Hh—1u
27% 16 5s 13+15
27,3 16 10, 13
27t§ 16 035 13— 15
27t§ 10 5Hu -2
27z§ 10 54 13+ 14
27t§ 1 034 13—14

Table 2.1: Complete 27s of Eg and their SO(10) and SU(5) decompositions. For the SU(5)
states we use the notation of ref [22] where indices in 5;,10; representations are associated to
the corresponding matter curves Xs;, Xjo;.

SU(5), generators in Eq. (2.16), and the normalisation of the generators is given by identifying,
Hi=H|, Hb=0Q., Hy=Qy, Hi=—-0,. (2.22)

This almost trivial equivalence shows that the SU(5)gyr states in Eq. (2.13) have well defined
Eg charges Qy and Q. For example SU(5) singlets will in general carry Q) and Qy, charges
which originate from E¢ and which may be unbroken. The equivalence will provide insights
into both anomaly cancellation and the origin of R-parity for example, in terms of the underly-
ing Eg structure, in the explicit models discussed later. Throughout this thesis we shall assume
the minimal 25 monodromy, f; <> #; [24] which trivially corresponds to the minimal 25 mon-
odromy, #| <> t5 (where the primes indicate weights of SU(3) | ). It is clear from Eq. (2.16) that
this corresponds to H; = H| being broken leaving only three independent Cartan symmetries

{H»,Hs,Hy} or equivalently {Q ,Qy,0y}.

In this basis the weight vectors t{,t),t; (1] + 15 + 15 = 0) of SU(3), are related to the SU(5) |
weight vectors by 1] =1;+ (4 +15)/3, i =1,2,3. As an example of the use of this dictionary
that will play an important role when building a realistic theory we can now connect the two
independent representations 27, and 27, that appear in the E¢ breaking pattern of Eq. (2.17) to
the SU (5) representations of Eq. (2.19). These are shown in Table 2.1 with SU(5) states given
in the notation of [22].

2.3 Flux breaking and matter content in F-theory GUTs

In this section we determine the light matter content that results if the underlying Eg is broken to

some subgroup by a Higgs bundle on the del-Pezzo surface S [70]. We are interested in the cases
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that the unbroken gauge group is Eg, SO(10) or SU(5). The reason for studying these models
is because they can lead to promising phenomenology based on a high degree of unification,
even though they are subsequently further broken by flux to just the Standard Model. A viable
model will be presented in the next chapter, which will provide the groundwork for building

other related models.

We proceed by studying the spectral cover of the transverse groups for the three cases of interest
E¢ x SU(3) 1, SO(10) x SU(4), and SU(5) x SU(5),. This will allow us to determine the
homology of the matter fields and hence the effect of flux breaking. In dealing with singlets,
we note that for a given surface § with associated singularity Gg, there are singlet fields residing
on curves that extend away from S and can be affected by U(1), fluxes not supported by S.
There are also singlet fields emerging from the decomposition of GUT representations after the
breaking of the covering group G by the flux mechanism. The latter singlets localise on curves
on the surface S, and as a consequence they are affected by the fluxes breaking Gs. In this case
the homologies of the corresponding matter curves can be determined and, as shown in this
chapter, certain properties including chirality and multiplicities can be expressed in terms of a

few integers parameterising the associated U (1) fluxes.

2.3.1 SU(3), Spectral Cover

E models are quite attractive and have been extensively studied in compactifications on Calabi-
Yau manifolds, in the context of the heterotic superstring with underlying Eg x Eg symmetry
(see [72, 73, 74] and references therein). Furthermore, recent phenomenological investigations
based on string motivated versions with Eg gauge symmetry have inspired the exceptional super-
symmetric standard model [75]. This is distinguished from the minimal one by the appearance
of an additional Z’ boson and extra matter content at the TeV scale. Interestingly, although these
new ingredients are also potentially present in the F-theory Eg-analogue, they are subject to
constraints from flux restrictions on matter curves and the topological properties of the compact
manifold. We will study two types of model in later chapters, distinguished by whether the Z’

boson and extra matter have GUT scale masses or TeV scale masses.

In the context of F-theory in which the GUT group on the brane is Eg, we need to look at the
breaking
Es — Eg x SU(3) (2.23)

We can determine what matter curves arise by decomposing the adjoint of Eg as follows

248 — (78,1)+ (27,3) + (27,3) + (1,8) (2.24)
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The Eg content consists of three 27s (and 27s) plus eight singlet matter curves. In terms of the

weight vectors #;, i=1,2,3, of SU(3) | the equations of these curves are

Y7:4;,=0 (2.25)
X1 Ii([i—tj)zo 175] (2.26)

The SU (3) ;. spectral cover polynomial is given by

€3 =bys® +bys+b3 =0 (2.27)

Letting ¢; be the 1 Chern class of the rangent bundle to Sgyr and ¢ (NS) = —t that of the
normal bundle, we define for convenience 11 = 6¢; —t and, we demand that the coefficients by

are sections of
bk . [bk] =1N—- kcy (2.28)

where & spans the integers k = 1,2,3,4,5. The roots of the spectral cover equation

3
0=>b3+bys+bos o< [[(s+1])
i=1

are identified as the SU(3) | weight vectors #/. In the above the coefficient b; is taken to be zero

since it corresponds to the sum of the roots which, for SU (n), is always zero, ;7] = 0.

2.3.1.1 27 and 27 fields

The coefficient b3 is equal to the product of the roots, i.e. b3 = titétg and the X,7 curves where
the corresponding matter multiplets are localized are determined by its three zeros

3
Yo7, by=[]#=0—1=0, i=1,23 (2.29)

i=1
To obtain different curves for 27’s we need to split the spectral cover. (If the polynomial is not
factorized, there is only one matter curve). There are two possible ways to split a third degree
polynomial: either to a binomial-monomial (2 — 1) or to three monomials (1 — 1 — 1). Since we
need to impose a monodromy action, we choose this to be 2 and therefore we get a (2 — 1)

split. The 25 monodromy corresponds to the following split of the spectral cover equation

0=1I3(s) = (a;+ass+azs?)(as+ass)

= ajas+ (apas +ayas)s+ (azas + a3a4)s2 + azass® (2.30)

with s = U/V and q; coefficients, constituting sections of line bundles each of them being of

specific Chern class to be determined.
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Matter Section Homology
27[1‘2 ay n —2c —X
27, ag X—Ci1

Table 2.2: The three columns show the quantum numbers of matter curves under Eg x U(1),,,
the section and the homology class.

The first bracket contains the polynomial factor that corresponds to the 25 monodromy 7| <> 2,
so that the corresponding two Y57 curves lift to a common one in the spectral cover. The X7

curves are found setting s = 0 in the polynomial
b3 =113(0) =ajas =0 — a;=0,a4=0

Thus, after the monodromy action, we obtain two matter curves. When building a realistic
theory it is necessary to assign the three families of quarks and leptons and the Higgs to these
curves. As there are more than one way to do this, the optimal choice will be dictated by

phenomenology.

To determine the distribution of families and Higgs on the two matter curves we need to know
how the flux restricts on the available curves. To do this we first determine their homology
classes [ax] corresponding to the sections ai, k = 1,4. This can be done comparing the coeffi-
cients of Egs. (2.27,2.30). We get

bo = dazds

by, = ayas+azas=0
by = ayas+aias

b3 = dajay

The homology classes [by] of the sections by are given in Eq. (2.28), while those of g; can
be determined by the system of linear equations in one to one correspondence with the above
relations. This linear system consists of four equations with five unknowns [g;], therefore we can
solve the system in terms of one arbitrary parameter. Let as be of some unspecified homology

class [as] = x. For the remaining a;, we find that they are sections of

a])=n—-2c1—x,[a)=n—x—ci, [a]=n—x, as) =x—c1, [as] =% (2.31)

For the two curves we obtain the results of Table 2.2. For the homology classes of the two curves
€3 = ¢,,%, from Eq. (2.30) we get

Cn, = ai + ars + ars* (2.32)
¢, = as+tass (2.33)



Chapter 2 The Spectral Cover Formalism 61

so that their homology classes are given by

[%1,2] =Nn—-x—2ci, [%3] =X—C

Using the data of Table 2.2, we can turn on a .y ;) flux on the external U(1) and find the

restriction on the curves of 27’s:

ny =Fyay M—x—2c1) 3 ny=Fyay-(x—c1) (2.34)

These determine the chiral content of states arising from the decomposition of 27’s along the
matter curves. We have also seen that ¥ is some unspecified homology class (associated to as)
and it can be chosen at will. For acceptable choices it can be seen from Table 2.2 that the two
curves cannot be of the same homology class. Since the two curves belong to different homology
classes, in general flux restricts differently on them. The two conditions can be combined as

follows
ng+n, = Fyay-(n—3c1) = Fyay- (Ber —1t) (2.35)

From Eq. (2.35) we deduce that if 7y (1) - (3¢c; —t) =0, then n;; = —n, i.e., we get opposite flux
restrictions on 27, and 27,,. Notice that the choice (1) - ¢ # 0 implies that the corresponding
gauge boson becomes massive through the Green-Schwarz mechanism. This is not a problem

however, for the extra U(1)s that do not participate in the hypercharge definition !.

2.3.1.2 FEg singlets

Singlet fields are important for the construction of the low energy effective field theory model.
Some of them may develop VEVs that can be used to create mass terms for the fermion gener-
ations and make massive other potentially dangerous fields mediating proton decay. In certain
models, those carrying charges under the weights 7/ undergoing a monodromy action can play
the role of the right handed neutrino [42]. The E¢ singlets 6;; lie in the t— t§- directions of the
corresponding Cartan subalgebra, and because of their central role in phenomenology, it would
be useful to determine their homology classes. If the worldvolume theory on S has gauge group
Ejg, these singlets 0;;, 813 and 6,3 are localised on curves which do not lie within the surface S,
and as such, spectral cover analysis can no longer sctrictly be used to determine their properties.
However, for singlets which carry nontrivial U(1) charges, an index which counts the net num-
ber of zero modes can be computed by considering the projection of the singlet curve in B3 to a
curve in S (by setting z =0) [76]. This can be achieved without knowing the precise nature of the
zero mode wavefunctions, for which a global description would be necessary. However, in [77],
overlap integrals involving singlet fields are computed by using the projections of the curves to

the surface S, although it is noted that in order to correctly normalise the singlet wavefunctions,

! For a recent work on the U(1) symmetries in F-theory see [18].
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a global construction is needed. Nevertheless, there are some calculations in [77] which do not
require the correct normalisation of the singlet curves, such as the relation between proton decay

and exotic masses.

It should also be noted that the discrete group 25 which identifies ¢; <> #, leads also to the
identification of the singlet fields 6y, <> 6,;. This will also lead to geometric identification of
the corresponding matter curves in the covering theory. Therefore these singlets carry no U(1)-
charges and are treated as moduli of the spectral cover and differently from the 6,3 singlet fields,

in accordance with previous studies [70, 19].

2.3.2 SU(4), Spectral Cover
The SO(10) GUT is one of the most promising Unified Theories, and the smallest one incorpo-
rating the right-handed neutrino into the same multiplet with the remaining fundamental parti-

cles (quarks and leptons). For the case that the GUT group on the brane is SO(10) we need to

consider the breaking

Eg — SO(10) x SU(4) (2.36)

We can determine which matter curves arise from the decomposition of the adjoint of Eg:

248 — (1,15) + (45,1) + (10,6) + (16,4) + (16,4) (2.37)

Thus there are four 16 (and 16) matter curves, six 10 matter curves, and fifteen singlets. The

equations for these curves in terms of the weight vectors #;, i=1,2,3,4, of SU(4), are

Yi:ti =0 (2.38)
Si0: (—ti—1;) =0, i#j (2.39)
S iE(f—1,)=0 i (2.40)

where Y ;#; = 0. In order to determine how fluxes restrict on these matter curves, taking into
account the effects of monodromy, the spectral cover approach is again used. In analogy to the
SU(3) spectral cover in the case of an Eg singularity, the SU(4), spectral cover polynomial is

given by

E* =bos* +b1s> +bys® +bys+by =0 (2.41)
:bo(s+t1)(s+t2)(s+t3)(s+t4):O (2.42)
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where the second line reflects the fact that the #; are the roots of the polynomial. This polynomial
describes the 16 matter curves, which are given by setting s to zero in the above equations,
leading to b4 = 0. Equations for the b’s in terms of the #’s can be found by comparing powers of
s in Egs. (2.41) and (2.42). This leads to the following equations, once ¢4 has been eliminated

by using the fact that the sum of the ¢; is zero:

by=—bo(ti+tr+t3+1t4) =0 (2.43)
by = bo(t] +13 +15 + 1112 + 1otz +1113) (2.44)
by =bo(t) +0n)(tr+1)(t1 +13) (2.45)
by = —bot11t3(t) + 1 + 13) (2.46)

It can be seen that the equation b4 = 0 does indeed reproduce Eq. (2.38) for the 16 matter curves

in terms of the ¢;.

2.3.2.1 % Monodromy

Imposing a 25 monodromy implies the splitting of Eq. (2.41) as follows

C* = (a) +ars + azs?) (aq + ass) (ag + azs) (2.47)

The first bracket is quadratic in s reflecting the fact that we have chosen a % monodromy,
which in the weight language corresponds to an identification of two weights #; <> f,. We can

now match powers of s in Egs. (2.41) and (2.47) to get equations for the b; in terms of the g;.

b() = azasay (2-48)
by = apasa; + azasag + azasa; (2.49)
by = ajasa; + arasar + arasag + azasag (2.50)
bz = ajasar + ajasag + arasag (2.51)
by = ajagag (2.52)
Solving for b; = 0 gives 2
ay = —vY(asag + asar) (2.53)
as = yasay (2.54)

2 1t is understood that some solutions of the b; = 0 constraint might lead to additional degeneracies. However,
for each case in this thesis, we pick up the solution which leads to acceptable factorization, avoiding non-Kodaira
singularities. We are also aware that subtleties could in principle appear on split spectral covers. However, we mainly
concentrate on general phenomenological issues of F-GUT model building, and it is not our intention to address all
these issues in this study.
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where 7 is unspecified. Now we can demand that the homology classes of the b,, are

[ba] =1 —ney (2.55)

where, as before, 1 = 6¢; —t, c; is the first Chern class of the tangent bundle to Sy and —t is
the first Chern class of the normal bundle. We can now determine the homology classes of the
a; coefficients by using Eqs. (2.48)-(2.52), setting the homology class of a given b,, equal to the

homology class of each product of a;s on the left hand side of the appropriate equation. This

leads to
n = [asz] + [as] + [a7] (2.56)
N —ci = [az] + [as]| + [a7] (2.57)
N —2c1 = [a1] + [as] + |a7] (2.58)
N —3c; = |a1] + [as] + [a7] (2.59)
N —4c; = |a1] + [as] + [ag] (2.60)

As such, we have 5 equations in 7 unknowns, and so we can solve the equations in terms of two

free parameters, which we can set as

las] = % (2.61)

[a7] = 27 (2.62)

X=X+ (2.63)

Solving the system of equations gives the homology classes of the remaining a;

l[a]=n—2c1—-% (2.64)

la]=n—c1—% (2.65)

las]=n—X (2.60)

lag] = —c1+ 25 (2.67)

la] = —c1+ %7 (2.68)

We now have determined the homology classes of all the a; coefficients (which are summarised

in Table 2.3), and can use them in order to find the homology classes of the matter curves.
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Coefficient = Homology

ai n—2c—%
a n—c—x
as n—x
as —c1+ X5
as x5

as —c1+ X7
az X1

Table 2.3: Homology classes of the a; coefficients.

2.3.2.2 Homology of the 16 Matter Curves

As discussed after Eq. (2.42), the 16 matter curves are given by by = 0. From Eq. (2.52), this

means that the equations of the 16s are

a;=0, a4 =0, ag=0 (2.69)
and so the homology classes are
[161]=n—2c1—% (2.70)
[162] = —c1+ %5 2.71)
[163] = —c1+ 17 (2.72)

2.3.2.3 Homology of the 10 Matter Curves

Just as the correct polynomial to describe the 16 matter curves was the spectral cover polyno-

mial, the polynomial for the 10s is given by

Py = b% H(S +t+ l‘j)

i<j
= b%(s—ﬁ —lz)(s—l—l] —i—lz)(S—ll —t3)(S+t1 —|—t3)(s—t2 —l‘3)(S—|—l‘2 +l3) (2.73)
=S6+C1S5+02S4—|—C3S3 —|—C4s2+C5s+06 (2.74)
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where in Eq. (2.73), #4 has been eliminated by using Y ;#; = 0. Comparing coefficients of s
between Eqs. (2.73) and (2.74) the following equations for the ¢; in terms of the #; are obtained

c1=0 (2.75)
=2+ +83 + 111 +1113+013)b] (2.76)
3 =0 (2.77)
ca = [t} +26 (o +13) + (13 + ot3 +13)> + 13363 + 8113 + 313)

+211(85 + 46313 + 4023 +13)]b§ (2.78)
cs=0 (2.79)
ce=—(t1 +10)*(t1 +13)*(ty +13)° D] (2.80)

We can now use Eqgs. (2.43)-(2.46) to write the ¢; coefficients in terms of the b;. The results are

¢y = —2byby (2.81)
c4 = b3 — 4byby (2.82)
ce = —b3 (2.83)

Substituting into Eq. (2.74) gives
Pio = 5° — 2bobys* + (b3 — 4bybg)s* — b3 (2.84)

As in the case of the 16 polynomial, the 10 matter curves are found by setting s to zero in
this equation, giving b% = 0. In order to know the equations and homology classes for the 10
matter curves when the monodromy is imposed, we must express this equation in terms of the
a; coefficients. From Eq. (2.51), we know b3 in terms of the a;. Substituting Eq. (2.53) in for a;

leads to

by = (a5a6 + a4a7)(a1 — j/a4a6) (2.85)

As such, the 10 matter curves are defined by the equation

(asag +asaz)(a; — Yasas) (asae + asa7)(a; — yasag) =0 (2.86)

We therefore have four 10 matter curves, two of which have homology class [a;] =1 —2¢; —
%, and two of which have homology class [asag] = [as] + [a6] = —c1 + ¥. The information
about the homology classes of all the 16 and 10 matter curves is summarised in Table 2.4. For

convenience, the following notation is introduced
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Matter Equation =~ Homology U(1)x

16[1’2 ag n —2cy —)Z M—P
16, as —c1+ X5 Ps
16y, as —c1+x7 P
104,44y a1 —Yasae MN—2c1—)Y M-P
10(t1+12) asag+asa; —c1+y} P
10(t1+t4) ay—%Yasag MN—2c1—)% M-—P
10(t3+t4) asag+aga; —c1+J P

M=% -(n—3c) 2.87)
P=F-(x—c1) (2.88)
Po=Z-(xn—c1) (2.89)
C= 7 (—c1) (2.90)

2.3.24 Homology of the SO(10) singlets

We have already pointed out that singlet fields can play a decisive role in building the low
energy effective model. If the worldvolume theory on S is seen to have gauge group SO(10),
then the same argument about singlets applies as before. The SO(10) singlets will reside on
curves which extend away from S, forbidding us from computing the homology classes in the
local prescription. If we look at a model where the worldvolume group on S is Eg however, only
the singlets 0, and ;3 do not live on S. The other SO(10) singlets could then be treated by a
polynomial in the usual way, and the resulting homology classes which are computed could be

compared with the homologies of the 27 curves which they originate from in the E¢ formalism.

Adopting this technique and using well known theorems, the singlets are given by the equation

Py = —4b3b3 — 2Tbob + 16b3by + 144bobyb3by — 128bobb3 4 256b3b3 = 0 (2.91)

When the b; are expressed in terms of the a;, the results are
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Matter Charge Equation Homology | U(l)x
014, 041 | £(t1ip—1a) | ara7 —ae(ar —yasas) | N —2c1—xs | M —Ps
034, 043 :|:(l‘3 — 2‘4) asae — aqay —Cc1+X M+ P

Table 2.5: SU(4) cover singlets and homologies.

by = y(asaz)? (2.92)
by =0 (2.93)
by = asaz(ay + Yyasag) — Y(asas + asar)* (2.94)
bs = (a1 — yasas)(asas + asay) (2.95)
by = ajasag (2.96)

Factorisation of P, leads to

Py = [(asag + agar)*y — dajasar] x [a1ay — ag(az — yasag)]?

X [ayas —ag(ay — }/a4a7)]2 X |asag — a4a7]2 (2.97)

As we know the homologies of the a;, we have the homologies of the singlet curves, which are

summarised in Table 2.5.

2.3.3 SU(5), Spectral Cover

The final investigation contained in this thesis concerns the SU(5)syr. Considering again the
maximal symmetry Eg, the spectral cover encoding the relevant information (bundle structure
etc) is associated to the commutant of the GUT group, which is SU(5) | . Hence, in this case the
breaking pattern is

Eg — SU(5) xSU(5) . (2.98)

This case has been extensively studied and the homology of the gauge non-singlets determined.
Here we extend the discussion to include the singlets inside an E¢ GUT group. The associated

adjoint representation decomposition is

248 — (24,1) +(1,24) 4 (10,5) +(5,10) + (5,10) + (5, 10) (2.99)

Although this case has been analysed by many authors in the recent F-theory model building
literature, a detailed examination of the breaking mechanism of the higher intermediate sym-
metries and possible implications is still lacking. In the following we attempt to implement the

constraints obtained from the previous symmetry breaking stages into the SU (5)syr model.
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To start with, we recall that the global model is assumed in the context of elliptically fibered
Calabi-Yau compact complex fourfold over a three-fold base. Using Tate’s algorithm[67, 78],
the SU (5) singularity can be described by the following form of Weierstrass’ equation [6]

y2 = X2 + b2 4 bpxz® + bayz? + bax*z+ bsxy
We determine the corresponding spectral cover by defining homogeneous coordinates
= U, x=>V2 y= V3
so that the spectral cover equation becomes
0 = boU’+bV2U> +b3V U+ b4V*U + bsV?

We can see this equation as a fifth degree polynomial in terms of the affine parameter s = U /V:

5
P = Z bkssik = bs+bys+ b382 + b253 + b]S4 + l?()s5
k=0

where we have divided by V7, so that each term in the last equation becomes a section of ¢ —1.

The roots of the spectral cover equation.

5
0= bs+bus+bss” +bos® +bos” o< [ [(s+1:)
i=1

are identified as the SU(5) weights ;.

In the above, the coefficient b; is taken to be zero since it corresponds to the sum of the roots,
which for SU(N) is always zero, ) #; = 0. Also, it can be seen that the coefficient bs is equal to
the product of the roots, i.e. bs = t1ft3t4¢5 and the Xjg curves where the corresponding matter

multiplets are localized are determined by the five zeros

5
o5 bszntizo—m:o, i=1,2,3,45 (2.100)
i=1
Following [24], we impose the 25 monodromy corresponding to the following splitting of the

spectral cover equation
0 = (a1+axs+ a3s2) (as + ass)(ae + azs)(ag + aos) (2.101)

with s = U/V and a; undetermined coefficients, constituting sections of line bundles each of
them being of specific Chern class to be determined. The first bracket contains the polynomial
factor which corresponds to the 25 monodromy, while the remaining monomials leave three

U(1)s intact. Expanding, we may determine the homology class for each of the coefficients g;
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Matter | Charge Equation Homology Ny My
5H, -2 agasag + agasag + asazag —c1+X N My,
51 —t — 13 a| —casagay — casaegay n—2—% —N M5,
57 — —14 a) — caeagds — caqdedy n-— 2c1 — )Z —-N 1\452
53 —t — 15 a| — caegagas — casagag n—2—% —N Ms,
54 —I3—14 asas + asa; —c1+xs5+x7 | Ns+Ng Ms,
55 —13 — 15 agas + asag —Cc1t+Xs+2x | Ns+No Ms,
56 —14— 15 agay + asay —c1+X1+2 | N7+No Ms,
10ps n aj 7'[726‘1 7)2 —-N *(M51 +M52
+M53)
10, 13 ay —C1+ X5 N5 M,
105 t4 ag —c1+ X7 N7 Mo,
104 f5 as —C1+ X9 No M,
614 t—ts | ae(asazay+as(azag+2agag))c | N —2c1—x+x7 0 M4
“+aiay
65 H—Is 2a5a7a§c +agag (asag +asar)c | N —2c1— %+ Xo 0 Mis
“+aiag

034 13—14 asae — asa; —Cc1+ X5+ 0 My
035 13 — 15 asag — asag —c1+ X5+ X9 0 Ms3s
045 ty—1ts azag — agdy —c1t i+ X 0 Mys

Table 2.6: Table showing curves and flux restrictions with 23 monodromy t; <+ t,. N =
Ns + N7+ Ng. The homologies of the singlet fields 6;; are also shown. Due to monodromy, 6,
and 6,; do not couple to fluxes so they are not included.

by comparison with the b;’s. Thus,

bo
by
by
b3
by
bs

aszasardg

aszasayag + azasagay + azasar;ag + azasaedog

azasaeas + axasasay + axasagde + ajasasar + aszasaras + azasdeds + arasa1ay

asagagde + arasagde + arasagar + ajaragdas + ara4dedy + a1dsded + a1asady

arasagae + ajasagae + ajasagar + ayjasdedy

aijaqdedy

We first solve the constraint b; = 0. We make the Ansatz:

ar = —c(asazag + asagar + asagay), a3 = casazday

Substituting into b,’s we get

by
by
b3
by
bs

c a%a%ag

ajasarag — (a%a%a% + asay (asag + asaz) agag + (a%ag + asasazae + aia%) ag) c

ay (asarag + asasag + asazag) — (asae + asay) (asas +asag) (azas + agag)

ay (asasag + asazag + asasag) — asasag (asazag + asasag + asazag) ¢

aijagaedyg
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Singlet | Oy | Oy Representations
0> 0 0 SO(10) singlet in 78
013 0 0 45 C 78

014 0 | 4 | SO(10) singletin 27, ,
0is -5 1 16[1‘2 C 27”‘2

034 0 4 | SO(10) singlet in 27,
035 -5 -1 16,, C 27,

045 S -3 16,, C 78

Table 2.7: Table showing the E¢ charges and origin of some of the singlets in Table 2.6.

Next, we observe that we have to determine the homology classes of nine unknowns ay,...ay
in terms of the by-classes, which we demand to be 17 — kc;. Three classes are left unspecified

which we choose them to be [a;] = x;,/ =5,7,9. The rest are computed easily, and the results are
[a] =n—=2c1—x. (@] =n—c1—x. [as] = — 1. las] = —c1+ Xs. las] = %s. [as] = —c1+ 27,
laz] = 27, [as] = —c1 + X9, [a9] = Xo.

The X curves are found setting s = 0 in the polynomial
bs =115(0) = ajasasags =0 — a; =0,a4 =0,a5 =0,a6 =0 (2.102)

Thus, after the monodromy action, we obtain four curves (one less) to arrange the appropriate

pieces of the three families.

The X5 curves are treated similarly in [24] so we do not present the details here.

2.3.4 Singlets in the SU(5), Spectral Cover

Akin to the SO(10) case, we will compute the homology classes of the singlets inside Eg by
determining the polynomial []; (¢ —t;) in terms of b,,’s. The results should match the homolo-
gies of the corresponding 27s of Eg which contain the singlets. In analogy with the previous

cases, while using the results of Appendix B we find

Py = 3125b3b]+256b3bg — 3750b,b3b3b4 + 2000b,b3b2b4 + 2250b3bsb2b¢
—1600b3b3bsby — 128b3b3b3 + 144byb3b3b3 — 27b3b3by + 825b5b3b2b}
—900b3b4b2b3 4 108b3bsby + 560b3b3b3bsby — 630b2b3bybsby
+16b3b3bg — 4b3b3b3b5 + 108b3b2b% 4 16b3b3bsb — T12b3b3babsb}

Factorization (via Mathematica) leads to the results which are summarised in the complete
SU(5) table (Table 2.6). Since the factorised form is very lengthy we do not exhibit it here.
Note that due to the large number of parameters 7, c¢1, ¥, X579 there are no constraints be-

tween the singlet My;(1)s for the case that only the hyperchage is unbroken by flux effects.
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The way in which the singlets fit into the E¢ and SO(10) pictures can be found by working out
the U(1), and U(1)y charges using the generators in Eq. (2.21) and matching the charges to the
singlets in the decomposition in Eq. (2.20). Putting this information together with the homology
classes, leads to the results in Tables 2.6 and 2.7.

In the subsequent model building, if the GUT group on S is taken to be Es, we cannot know the
properties of the singlets 0y, and 6,3 using the spectral cover approach for the reasons discussed
previously. If the GUT group is taken to be SO(10) or SU(5), the situation is clearly worse, as
then there are more GUT singlets for which we cannot compute homology classes. As such, we
can never have a complete knowledge of the singlet properties in a local framework. This means
that in model building, we will simply make assumptions about the singlet spectrum (which in

turn would ammount to making assumptions about the global completion of the model).

2.4 Singlet VEVs and D- and F-flatness conditions

The homology constraints just discussed can be used to construct models capable of accommo-
dating the Standard Model - an example of this is given in Chapter 3. To obtain a viable model it
is usually necessary to remove additional Standard Model ‘vectorlike’ states by generating mass
for them through their coupling to Eg singlets which acquire VEVs. Any such VEVs should
be consistent with F and D flatness conditions and we turn now to a discussion of this. Since,
in this chapter, we have assumed all GUT breaking is driven by flux no GUT non-singlet fields
acquire VEVs until the electroweak scale and so these VEVs can be ignored when determining
high scale VEVs.

In general the superpotential for the massless singlet fields is given by
W = Wij6:0x ki (2.103)
The F-flatness conditions are given by

oW

30, = W;ijk0jx6ki =0 (2.104)

The D-flatness condition for Uy (1) is

2 2 TrQA
X OH1(0) [~ (00) ) = ~ oy 2hi 2.105)
l~]
where the right-hand side (rhs) is the anomalous contribution, Q‘;‘ are the singlet charges and the
trace TrQ" is over all singlet and non-singlet states. The D-flatness conditions must be checked
for each of the Uy (1)s.
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2.4.1 Egcase
In this case after the monodromy action there is only a single U (1) and, in the 7/ basis the charge
is given by diag[1, 1,—2]. As both the 27s and the 6;; are charged under the U (1), we must know

the number of each after the monodromy action and the flux breaking mechanism in order to

compute the trace. The contribution of the 27,, to TrQ* is

27(q1n1 +Q3n3) = 27(}11 — 2n3)q1 (2.106)

and the contribution of the 6;; is

1 % [(g1 —q2)ni2+ (q1 — g3)n13] = 3n13q1 (2.107)

The multiplicities are given in terms of the flux restrictions as the flux dotted with the homology

class, and so we have

n1+n3:§~(n—3c1) (2.108)
nipp=ni3 = F - (T] —2C1) (2.109)

Assuming that only the pair 0,3, 63; get VEVs, the flatness condition is

9(11] — 2713) +n3

a3(|(613)> = (631) %) + 3 Q18;M5 =0 (2.110)
64w
and as we have g3 = —2¢q
9(ny —2n3) +ni3
013)> —1(651)])* = 2 M2 2.111
[(613)” — [(631)] 382 g Mg (2.111)

In order to relate the multiplicities to each other, we define for convenience ® = Fy ;) - 1,

p=Zy)-c1and x = Fy( - x. As such, in this notation, we have

n=w-2p—x (2.112)
=n;3—x (2.113)
n=x—p (2.114)
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As chirality requires n; > 0 and n3 < 0, the term 9(n; — 2n3) is always positive. If we take the
case n] =4 and n3 = —1 (i.e. the minimal case of three 27’s accommodating the three families

and a pair 27y +ﬁ,;), we have nj3 =3+ p, and

54+n
2 2 13
[(613)|” — [{631)|" = 2872 gM;

(2.115)

This condition is consistent with (6;3) # 0 and (63;) = 0 for any n;3 > 0, but not with the case
(613) =0, (031) # 0 as this would require n;3 < —54.

2.4.2 SO(10) case

Analogous to the Eg case, the D-flatness condition for the anomalous U(1)s is given by Eq.
(2.105). In this case there are two Uy (1)s with charges that can be taken as Q! = diag[1,1, 1, —3]
and Q% = diag[1, 1, —2,0]. For example, for the case of Q;, using Table 2.4, the trace is given by

TrQj = 16(n{® +n® — 3m,°) +10(2n)3 + 2n{9 — 2n1§ — 2n33) + 4nj, +4n}y (2.116)

243 SU(5) case

In this case there are three Uy (1)s with charges given in Eq. (2.21). In the next chapter we
discuss F- and D-flatness in detail for a realistic model.



Chapter 3

Model Building: A realistic model
based on £

3.1 Introduction

In this chapter, a viable low-energy-model is constructed in which the U (1) symmetries and flux
effects are utilised to answer all the model building challenges described in the Introduction.
Inspired by the elimination of dangerous operators in the MSSM by R-parity, we start with the
identification of R-parity in an Eq GUT. However, after flux breaking the resulting model has
some undesirable features, so these must be rectified by relaxing the E¢ constraints on the spec-
trum. However, even with the slight modifications, the dangerous R—parity violating operators
are still forbidden. In addition the dimension 5 proton decay operators, allowed by R-parity, are

also forbidden due to the U(1) global symmetries of the model.

Due to the flux breaking, the spectrum has additional vector-like states beyond those of the
minimal supersymmetric extension of the Standard Model (MSSM). We show that these exotic
states get large masses, close to the GUT scale, if certain SM (and SU(5)) singlet fields acquire
vacuum expectation values (VEVs). We identify the necessary singlet fields and show that these
VEVs are needed for F- and D-flatness of the scalar potential, the VEVs being driven close to
the GUT scale. Moreover we show that these VEVs do not re-introduce terms that can give rise

to rapid proton decay.

Finally we show that the model may have a realistic structure for the quark and charged lepton
masses in which the light generation masses and mixings are driven by flux and instanton effects.
The neutrinos can get mass from the (type I) ‘Seesaw’ mechanism through the coupling of the

doublet neutrinos to singlet neutrinos that acquire a Majorana mass due to the monodromy.

75



76 Chapter 3 Model Building: A realistic model based on E¢

3.2 Building the model

There are several important ingredients to building a phenomenologically realistic low energy
theory. The first is the need to control the baryon and lepton number violating terms in the La-
grangian that generate rapid proton decay. In addition to the dimension 3 and 4 terms (forbidden
by R-parity in the MSSM)), it is necessary to forbid the dimension 5 nucleon decay terms too.
Although the latter are suppressed by an inverse mass factor, this mass must be some 107 times

the Planck mass, which is unacceptably large in string theory.

A second necessary ingredient is the control of the ‘u term’, which is the Higgs supermultiplet
mass term in the superpotential, uH,H,. Such a term is allowed by the Standard Model Gauge
symmetry but, for a viable theory, its coefficient, i, must be of order the SUSY breaking scale.
In order to explain this fact, the u term can be effectively generated by a VEV for a singlet
field which couples to H,H,. At the same time the Higgs colour triplets which accompany the
Higgs doublets in GUTs must be very heavy - this was described in the Introduction as the
‘doublet-triplet splitting’ problem.

The final ingredient is that the quark and lepton masses and mixings must be consistent. In
particular it is necessary to explain why the quark masses and mixing angles have a hierarchical
structure while the leptons must have large mixing angles and a relatively small mass hierarchy

to explain the observed neutrino oscillation phenomena.

There has been a significant effort to build F-theory based models that use U (1) symmetries to
obtain these ingredients, but prior to the model presented in this chapter (and in [1]), no fully
satisfactory model had been obtained, and it was actually speculated that such a model could
not exist. Here, using the formalism described in the Introduction and Chapter 2, an explicit
example is constructed which demonstrates how the U(1) symmetries alone are sufficient to

build a viable theory.

3.2.1 The E4 inspired model

The first, most important, step in model building is to find a matter and Higgs multiplet assign-
ment that can eliminate rapid nucleon decay. To this end, we find that starting from an underlying
unified group is very helpful and we consider the case of Eg. After imposing a 2% monodromy
there are just two multiplets, 27 . The SU(5) x SU(5) 1 properties of these multiplets are given
in Table 2.1. The only E¢ allowed trilinear term in the superpotential is 27,2727, and as a
result, if we assign the quark and lepton supermultiplets to 27, and the Higgs supermultiplets to

27;,, there will be no dimension 3 or dimension 4 baryon- or lepton-number violating terms.

Requiring that anomalies are cancelled in a given model leads to constraints between the number
of SU(5) 10 and 5 dimensional representations [24, 79]. These conditions are automatically

satisfied for multiplets descending from complete Eg multiplets. In particular for the Eg 27
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dimensional representations we have, in the notation of [24]

MlOM :M51 = _M52 = _M537 (31)
My, = —Ms, = —1\455 = M5HM. (3.2)

Furthermore, in the absence of matter in the 78 dimensional representation we have
Mo, = Myo, = Ms; = Ng = No = 0, (3.3)

which implies:
N,=N. (3.4)

The resulting states arising from complete 27s are shown in Table 3.1 where we have allowed
also for the breaking of SU(5) through hypercharge flux. The SM particle content is also shown
in Table 3.1 in the usual notation where a generation of quarks and leptons is Q,u¢,d¢,L,e°. The
Higgs doublets H,, H; are accompanied by exotic colour triplets and anti-triplets D, D. The 27s

also contain the CP conjugates of the right-handed neutrinos v and extra singlets S.

Eq | SO(10) | SU(S) | Weight vector | Ny | My SM particle content

274 16 53 1 +1s N —Ms, —1\4536116-1-(—]‘/153 +N)L

27,1 16 10y 1 —N | —Ms, | —Ms5,0+ (—Ms, +N)u + (—Ms, — N)e*
274 16 05 t—15 0 —M53 —M53 1%

27,1 10 51 — -8 —N | —Ms, —Ms,D + (*M53 —N)H,

27, 10 5, 1 +14 N | —Ms, —Ms, D+ (—Ms, +N)Hy

274 1 014 1 —1 0 —M53 —M53S

27,& 16 55 13 +15 —N St M5Hudc+(M5Hu 7]~V)L

27, | 16 10, 1 N | Ms,, | Ms, O+ (Ms,, —N)u+(Ms,, +N)e
27t§ 16 035 13— 15 0 M5H,, MSHL, 1%

2713 10 SH, —2h N MSHM M5HND+(M5HH +N)H,

21, 10 54 13+ —N | Ms, Ms, D+ (Ms, —N)Hy

27,§ 1 034 13—14 0 Sk, M5Hu S

Table 3.1: Complete 27s of Eg and their SO(10) and SU(5) decompositions. The indices
of the SU(5) non-trivial states 10,5 refer to the labeling of the corresponding matter curve
(we use the notation of [24]). We impose the extra conditions on the integers Ny and My
from the requirement of having complete 27s of E¢ and no 78 matter. The SU(5) matter states
decompose into SM states as 5 — d, L and 10 — Q, u¢, ¢¢ with right-handed neutrinos 1 — V¢,
while SU (5) Higgs states decompose as 5 — D, H,, and 5 — D, H;, where D, D are exotic colour
triplets and antitriplets. We identify RH neutrinos as v¢ = 05 35 and extra singlets from the 27
as S = 914.34.

The only undetermined parameters in Table 3.1 are the three integers Ms,, Ms, and N. To
maintain the Eg based suppression of the baryon- and lepton-number violating terms we require
that the Higgs should come from 27, and the matter from 27, and that any states transforming

as H, 4 in 27, be heavy.

We first choose Ms, = —3 to get three families of quarks and leptons in 27,/. To get a single pair
of Higgs doublets in 27,; without colour triplet partners we next choose Ms, =0 and N=1.
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According to Table 3.1 this gives the following SM spectrum, grouped according to SO(10)

origin:

[53 = 3d“+4L, 10y — 30 +4u’ +2¢°, 6;5 — 3v°]
(51 = 3D+2H,, 5, — 3D +4H,|
[614 — 3],

[55 =L, 10, — u +¢€°]

167

10°

16~
[SHu —)Hu, 54 — Hy 10°

3.5

Note that the matter content is just that contained in 3 complete 27s of Eg: 3[Q,u¢,d®,L, e, V] 6,
3[H,,D,Hy,Dl10, 3[S]1 plus some extra vector pairs L+ L, e + e, u® + u¢, H; + Hy that may be

expected to get a large mass if some of the singlet states acquire large VEVs.

It may be seen that the U(1) flux breaking has resulted in one of the lepton supermultiplets,
e, being assigned to 27, in conflict with our original strategy of assigning all matter states
to 27,. However this does not lead to the dimension 4 R-parity violating superpotential term
LLe¢ because one of the e¢ comes from the 16 of SO(10) and there is no 16* coupling allowed
by SO(10). In this case it is a combination of the original R-parity and the underlying GUT
symmetry that eliminates dangerous baryon and lepton number violating terms. In fact the
combination is more effective than R-parity alone for it also forbids the dangerous dimension 5

terms.

More troublesome is the fact that H; now comes from 27, so that down quark masses are
forbidden at tree level. However there is an allowed coupling of H;Le¢ for the ¢¢ belonging
to 27,. This discrepancy between down quark and charged lepton masses looks unacceptable
even if the remaining masses are generated in higher order through coupling to singlet fields that

acquire large VEVs. To avoid this we look at a slightly modified structure choosing

My, = —Ms; =4,
Ms, = —Ms,=3
My, = —Ms,=-1,
Ms, = My, =0,
My = 2,
N =1 (3.6)

This leads to the spectrum given in Table 3.2 where now both the down quarks and leptons

originate in 27, avoiding the troublesome difference in their mass matrices just discussed.

The difference in the spectrum compared to the previous case is in the vectorlike sector with
additional pairs of L+ L,Q + Q,u + u¢,d +d° and H; + Hy and no e+ e°. Provided the

vectorlike states are heavy, the absence of the dimension 3 and 4 R-parity violating operators
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Ee | SO(10) | SU(5) | Weight vector | Ny | My(;) | SM particle content | Low energy spectrum
27ti 16 53 1 +1ts 1 4 4d¢+5L 3d“+3L
274 16 10y H -1 4 40+ 5u° + 3¢ 30 +3uf +3e¢
274 16 05 H —15 0 3 3v¢ -
27ti 10 51 —t—13 -1 3 3D+2H, -
27y, 10 §2 t+1y 1 3 3§+ 4H, Hy;
27% 16 S5 t3+15 -1 —1 dc+2L -
27, 16 10, 13 1 —1 O+ 2ut -
27% 16 035 13— 15 0 0 — -
27% 10 51.1“ —21 1 0 H, H,
27% 10 54 13+14 -1 0 Hy -
27% 1 034 13—14 0 1 034 -
- 1 63 13 —1 0 4 631 -
- 1 653 t5—13 0 1 053 -
- 1 014 n—11nu 0 3 014 -
- 1 Oys 14— 15 0 2 Oy45 -

Table 3.2: Complete 27s of Eg and their SO(10) and SU(5) decompositions. We use the
notation of ref [24] for the indices of the SU(5) states and impose the extra conditions on the
integers Ny and My ;) from the requirement of having complete 27s of E¢ and no 78 matter.

The SU(5) matter states decompose into SM states as 5 — d°,L and 10 — Q, u¢, e with right-
handed neutrinos 1 — v¢, while SU(5) Higgs states decompose as 5 — D, H, and 5 — D, Hy,
where D, D are exotic colour triplets and antitriplets. We identify RH neutrinos as v¢ = 6;s.
The extra singlets are needed for giving mass to neutrinos and exotics and to ensure F and D
flatness.

is now guaranteed by the underlying U (1) symmetries!. As we shall see, the underlying GUT

symmetry still also eliminates the dimension 5 terms that would cause proton decay.

3.2.2 Doublet-triplet splitting and vector-like masses.

There remains the doublet-triplet problem of giving large mass to the D and D fields and the
problem of giving large mass to the vectorlike pairs of fields. Since the D and D fields also come
in vectorlike pairs these problems are related and are solved by generating mass for vectorlike
fields through their coupling to SM singlet fields that acquire large VEVs. For the case in which
the vectorlike pairs have components in both the 27, and 27,; multiplets, the extra vector pairs

are removed by introducing 651, an Eg singlet, with couplings:
6312727, = 63100 + 031 (2u°) (2u€) + 631d°d° + 631 (2L) (2L) + 631 HaHy.  (3.7)

If 65, gets a large VEV these vector states get large masses as required. We shall discuss how
the D-terms associated with the anomalous Uy (1)s can require a VEV for this field close to the

Planck scale.

Note that these operators do not involve H; and so the fact that H, originates in 27, does not cause problems.
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To remove the remaining exotics we introduce 834 which has the couplings :
0345152 = 634[3D + 2H,|[3D + 3H,] = 634[3(DD)] + 634[2(H,H,)). (3.8)

If it too acquires a large VEV it generates large mass to the three copies of D + D (solving
the doublet-triplet splitting problem) and two families of Higgs H,, H;, leaving just the MSSM
spectrum as shown in the last column of Table 3.2.

The singlet 014 could also play an important role, as the term 614H,H, is invariant under the
perpendicular U(1) symmetries. As such, the p term could be effectively generated if 6,4
acquires a TeV scale VEV. In [1], it is pointed out that the u term can be generated by non-
perturbative effects also. We expect the local U(1) symmetries to be anomalous and the as-
sociated gauge bosons to become massive due to the Stueckelberg mechanism, leaving three
global U (1) symmetries which act as selection rules in determining the allowed Yukawa cou-
plings [43]. However these global symmetries are only approximate and are explicitly broken by
non-perturbative effects [80] with breaking characterised by the Kéhler moduli, 7;, components
of the complex fields 7;, whose complex components provide the longitudinal components of
the U(1) gauge bosons. These non-perturbative effects will generate an explicit uH,H, term
with the 4 = O(Mse™’ / Ms) where t is the VEV of the appropriate combination of 7; moduli, and
M; represents the string scale. Due to the exponential dependence on ¢ this term can be of the

Electroweak scale as required.

3.2.3 Singlet VEVS

In the model under consideration, in order to determine the large VEVs for the singlets, we
consider the F and D flatness conditions. Taking account of the 25 monodromy, t; <> #; the
D-flatness conditions are of the form given in Eq. (2.105) where there are three Uy (1)s with
charges given in Eq. (2.21). We wish to show that the D-flatness conditions are satisfied by the
massless fields 631, 634, 053 needed to give mass to exotics and, as discussed below, to generate
viable neutrino masses. Using the spectrum given in Table 3.2 we compute 7+Q" for the three

Ua(1)s. In a general basis, Q = diag[ty,t2,3,14,15], Eq. (2.105) can be written
(ts —13)053|* + (13 — 1) | B34 |* + (13 — 11) | 631 |* = =X TrQ* 3.9)
The trace is taken over all states, and is given by
TrQ* =5 nij(ti+1;) +10Y mti + Y mij(t:—1;) (3.10)
For our model, this trace is computed to be
TrQ* = 61t — 2613 + 1414 + 11t5 (3.11)

Applying this to the three Uy (1)s using the generators given in Eq. (2.21) leads to
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51053 = 5X (Qy)
—[0s3]> +4[64* = 7X (Qy)
2|053]> —2]634> = 31657 = —113X (Q.) (3.12)

&M

where X = 1937 -

These equations are solved by

653> = X
634> = 2X
651> = 37X (3.13)

In terms of demonstrating F-flatness, the only allowed superpotential terms that can give a non-
zero F-term involves the fields with VEVs plus at most a single additional light field. The only
problematic terms have the form 4;;0s3 6§16{5 where i = 1,2,3,4 and j = 1,2,3. The F-terms
of 9{5 are potentially non-zero but minimisation of the singlet potential will make A;;(6;) =0
and A(0%,) = 0. This means three independent 6}, fields have zero VEVs but the fourth one
can have a VEV as it decouples from 9{5. It is this combination that enters in Egs. (3.12) and
(3.13).

3.2.4 Baryon and lepton number violating terms

As discussed above, the R-parity violating superpotential couplings ud“d®, Qd°L, Le‘L, xLH,
are not allowed because of the underlying U(1) symmetries which play the role of R-parity.
Dimension 5 terms in the Lagrangian, corresponding to the superpotential terms QQQL and
u‘ude’, which would be allowed by usual R-parity, are forbidden by the U (1) symmetries that

originate in the underlying Ej.

However, we must clearly be careful that spontaneous symmetry breaking terms coming from
SM singlet field VEVs do not allow these dangerous operators to appear. Allowing for arbitrary
singlet fields to acquire VEVs the dangerous the baryon and lepton number violating operators
arise through the terms 6,5LH,,, (60316045 + 6041 035) 101‘/152 and 63104 10%,1573. Thus, provided 035,
641 and 045 do not acquire VEVs, these dangerous terms will not arise. One might worry that the
non-perturbative effects which can generate an explicit y term could also generate an explicit
kLH, term due to the similar structure of the two terms. However, this is not a problem for the

proton decay operators provided that all of the AB # 0 are absent.

However this is not sufficient to ensure the absence of baryon and lepton number violating

terms because, even in the absence of these VEVs, tree level graphs can generate the dangerous
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operators at higher order in the singlet fields. The dangerous graph is shown in Fig. 3.1 and is

driven by colour triplet exchange coming from the couplings

10y 10M5Hu — Q00D+ ...
5Hu5[:1u — MDDhDh+...
9345152 — <934>D,hDh"/+--~ = <934>DD—|—....

As may be seen from Table 3.2 only the states D), and D} appear in the spectrum with mass
generated by the singlet VEV (634) which from Eq. (3.13) is predicted to be somewhat below
the GUT scale. Since the choice of fluxes in Table 3.2 eliminates light colour triplet states Dy,
arising from 5p,, and also D" states arising from 54, we assume that if states with the quantum

numbers of Dy, D} exist, they will have string scale masses, of O(Ms).

In this case the diagram of Figure 3.1 gives the proton decay operator QQQL with coefficient
1/A.rr given by

1 <931>>2 1
=27 (=L 3.14
Acrs < Ms ) (634) G194

In (3.14), A° represents the product of the five Yukawa couplings in the relevant diagram and

according to ref [25] it is expected to be

A% = MoaoshssAds, ~ 1072,

5-5-1

We can further determine the mass ratios by taking into account the solution Eq. (3.13) to the

flatness conditions to estimate the effective scale

2
My <934> 8\/671'

Appr =107 < > Mo~ 22
" 65)) My "FT 37g,

This, multiplied by the appropriate loop-factor due to higgsino/gaugino dressing and other the-

x 103 Mg > 103 My (3.15)

oretical factors [81, 82, 83, 84, 65], should be compared to experimental bounds on nucleon

Figure 3.1: The proton decay diagram generating dim. 5 operator QQQL.
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decay. This bound, relevant to the case that the operator QQQL involves quarks from the two
lighter generations only, requires A:;ffht > (108 — 10°)Ms. Given the large discrepancy between
Agggfht and A it is clearly important to determine whether, in the absence of flux, this light quark

operator is generated by the diagram of Figure 3.1.

In order to answer this question, the nature of the triple overlap integrals involved in the com-
putation of the diagram must be considered [85]. For the case of trilinear couplings involving
light fields only, the calculation involves an integral over the coordinates about the point of
intersection, z;, of the surface on which the matter curves reside. When there are N multiple
fields associated with a matter curve the orthogonal wave functions may be chosen proportional
to powers of the coordinates, (z;)/, j = 1,..,N. On integration only the coupling involving the
fields with j = 0 are non-zero, corresponding to a geometric U (1), invariance, z; — z;e'%, as ex-
plained in Appendix F. For the case the three families live on the same matter curve this means
the mass matrices are rank 1 in the absence of the flux corrections of [29]. Switching on the flux

gives a rank 3 mass matrix and generates the mixing between the generations.

In the case where there are vertices involving both light and heavy fields, because the heavy field
wave function can involve powers of Z; [29], there can be couplings involving light states with
J # 0. As such, as long as the U (1) invariance is intact, higher order operators with only external
light fields are generated only if all the external fields have j = 0. However, as explained in [85],
there are two types of Higgs wavefunction which can be involved in the integral, corresponding
to the cases of ‘non-vanishing flux density’ or ‘vanishing flux density’. These cases correspond
to the existence of massless colour triplets (or anti-triplets) or vector pairs of triplets and anti-

triplets in the spectrum respectively.

The model considered here corresponds to vanishing flux density, and it can be shown that the
Higgs wavefunctions in this case have the form of Eq. F.18. Calculating triple overlap integrals
involving wavefunctions of this form shows that trilinear couplings in the case of vanishing
flux density do not respect the geometric U(1). However, as argued in Appendix F, for the
case of a complete diagram the U(1) invariance should be restored due to the presence of the
conjugate Higgs wavefunctions. Due to the fact that the U(1) is respected for Figure 3.1, the
operator generated by this diagram does not involve the light quarks. As such, its contribution to
nucleon decay vanishes in the absence of the non-perturbative flux effects of [29], and hence is
significantly suppressed. To estimate this suppression we use the fact that the same flux effects
generate the masses and mixings of the light quarks. Using these mixing angles we can convert
the heavy quark operator to one involving light quarks. For the least suppressed case involving
light _

two down quarks and an up quark, this gives A ~ / %%Aeff ~ 10° Mg, consistent with the

experimental bound. A similar result applies to the operator involving right handed quarks.
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o, o,

—_ - X
54‘hlx"l< h/<1<54 Sy 3
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53/\«/ x J ~
2N

\\
<6

Figure 3.2: Tree-level diagram contributing to the bottom mass.

3.2.5 Quark and charged lepton masses

Up to SM singlets the surviving low energy spectrum is that of the MSSM given by:

[53 = 3d°+3L, 10y — 30+ 3u’ + 3¢ ,
BZ — Hd] 10,,
Sh, — HM]10,3 :
(3.16)

The allowed low energy couplings in the superpotential originate from:

27,27,27,, — 16416,10,
— 10310458, +§39155Hu +5510,5,
S (30)(3u)Hy + (3L)(3V°)H. 3.17)

A 3 x 3 up-type and Dirac neutrino mass matrix is allowed at dimension three. In the absence
of flux these matrices are rank one. However, as recently shown by Aparicio, Font, Ibanez and
Marchesano [29], non-perturbative flux effects can generate an acceptable pattern for the light

up quarks.

The down quark and charged leptons acquire mass through the non-renormalisable Yukawa

couplings:

93127f| 27,] 27t1 /M — 931 16l| 16t1 10tI /M
— 9313310M§2/M
= (651(3d°)(3Q) + 051 (3L)(3¢))Ha /M. (3.18)

Note that, from Table 3.2, the relevant graph 3.2 is generated by the exchange of a massive
vectorlike pair that is given a mass by (6s;). We have already seen that 65; must have a large
VEV to give mass to exotics so this term can lead to down quark and charged lepton Yukawa
couplings that are only mildly suppressed relative to the up quark couplings ((631)/M > my/my).
This suppression provides an origin for the relative magnitude of the top quark to the bottom
quark. Although the mass matrices for the down quarks and charged leptons coming from Eq.
(3.18) are rank one, non-perturbative flux effects will generate the remaining terms and can lead

to an acceptable mass structure [29].
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3.2.6 Neutrino masses

Due to the #; <> ©, monodromy, the conjugate states 01, and 6,; are identified, and so we can
write down a term M;;01,6,; in the superpotential which corresponds to a Majorana mass for
the 0y, states [42]. The right handed neutrinos, 0;s, couple to the Majorana states through the
term 7“12{1/1@51 6{2 6{5, where @51 = %. As both 653 and 65; acuire VEVs, ®s; also has a VEV.
We allow for an arbitrary number of 0, fields, as the fact that these fields carry no charge under
the perpendicular U(1)s means that we can have any number of them in the spectrum without

affecting flatness conditions etc.

The method of generating masses for the light neutrinos will be a double seesaw mechanism,
where the 05 fields will get Majorana masses through their coupling to the Majorana states 6,
and then the light neutrinos will get masses via a seesaw mechanism, made possible by their
coupling to the right handed neutrinos ;5. The relevant terms for lepton mass generation are
(after the two Higgs doublets have got their VEVs):

Winass = (Ha) Y@L e+ (H,) A%V, 005 + (@s)) A 055 0% + M2P 0% 05 (3.19)
We can put the notation into a more familiar form by writing
M = (Ha) Y7, i = (Hu) A, Migy = (®s1) Agiy

Also, for clarity, we can relabel the fields as 6,5 = Vg, 812 = Sg. Eq. (3.19) can then be written

Winass = M2, el + mi%evi v+ ME% vase + moP sash (3.20)

In the basis (v, Vg, Sg), the mass matrix is, in block form

0 mjiRr 0
M= mjiRr 0 MRM
0 Mruy My

Applying the double see-saw mechanism, we have (in matrix notation) for the light left-handed

Majorana neutrino masses [86]

myy, :mLRMIQA},MM(MgM)*lm{R (321)

We can estimate the magnitude of the resulting neutrino masses by taking the case of just one
family of each state. Using Eq. (3.13) and assuming that M = My in Os; = 953931 , we find that
(®s51) =3 x 10~ 3M. Assuming that the Majorana mass M), is of order the strlng scale, 05

acquires a Majorana mass Mgg though the coupling to 6y, giving
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(®51)° A2y

Mg ~ —
RR My,

(3.22)
In turn, the light neutrinos acquire masses through the seesaw mechanism, due to their couplings

to 0;5, giving

(Hu)* Ay

M, ~ ———=%
(©51)° A3y

(3.23)

Assuming that the couplings Azg and Agy are &(1), this gives a neutrino mass of &(10~'eV)
through this very approximate treatment, which is acceptable. However, the size of the As
depends on the proximity of the relevant intersections of the matter curves involved in the cou-
plings, and so a precise calculation would require knowledge of the overlap integrals involved

in the coupling computations.

3.2.7 Relation to previous work

In [27] a general analysis was presented of the possible R-symmetries coming from the U(1) |
factors in the local analysis of F-theory. Two possibilities were identified but it was shown
that it was not possible to realise them in the semi-local picture. The model presented above
corresponds to the Matter Parity Case 1 of [27] and we have shown that it is consistent with the
semi-local picture. The explanation of the apparent conflict is straightforward. In [27], seeking
to generate viable fermion mass matrices without flux effects, the analysis considered only the
case that the matter coming from the 10 dimensional representation of SU(5) should come from
two matter curves, 10y and 10,,. As a result, in order to suppress the dimension 5 nucleon
decay operators, a VEV for the field 63; was forbidden and hence, c.f. the discussion above, no
down-type mass terms could be generated and the Matter Parity Case 1 was ruled out. However
in the case of interest here all three generations are assigned to 103;. As a result a VEV for 63
is allowed without generating dimension 5 nucleon decay operators. Hence a down-type mass
matrix proportional to (63;) is possible and, allowing for flux effects, the resulting mass matrix

can be of rank 3.

In [46] a general discussion was presented of the difficulty in obtaining phenomenological viable
F-theory models in the semi-local approach. The difficulty of reconciling the exotic spectrum
necessitated by flux breaking with the u-term, the suppression of nucleon decay operators and
gauge unification was emphasised and studied in detail for the case of models with one or two
U(1),s. The model constructed here has three U(1) s and demonstrates that the problems
can be ameliorated but not eliminated. In particular we have shown that the suppression of
the dangerous nucleon decay operators is maintained while generating a p-term. However the
constraints following from anomaly cancellation [24, 79] are still severe and lead to an extended

exotic spectrum.
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3.3 Conclusions

In this chapter, semi-local F-theory GUTs have been considered which arise from a single Fg
point of local enhancement. The study centered around simple GUT gauge groups based on
Es, SO(10) and SU(5) together with SU(3), SU(4) and SU(5) spectral covers, respectively.
Assuming the minimal % monodromy, we determined the homology classes of the spectrum

for each case, and the implications for the resultant spectrum after flux breaking.

Using this, and aided by a dictionary relating the Eg, SO(10), SU(5) representations, we con-
structed a model that leads to the MSSM at low energies. We showed that D-and F-flatness
constraints require VEVs for singlet fields, which spontaneously break the U(1) symmetries,
and which generate large masses for all the non-MSSM exotic fields. In the absence of flux, the
quark and charged lepton mass matrices are of rank one, but when flux and instanton corrections
are included, light quark and lepton masses and mixings are generated that can be consistent
with their observed values. In the absence of flux, the additional U(1) symmetries descend-
ing from Eg ensure that dangerous baryon and lepton number violating terms are absent up to
and including dimension 5, even taking into account the singlet VEVs which break the U(1)
symmetries. Including the flux effects, dimension 5 terms involving light quarks are generated
but at an acceptable level, and as a result the proton is stable within present limits. The u
term in the theory is also forbidden by the U(1) symmetries but can be generated at the SUSY
breaking scale, either effectively as a result of a TeV scale singlet VEV, or again (as is chosen
in [1]) through non-perturbative effects which explicitly break the U (1) symmetries. Neutrino
masses are generated via the see-saw mechanism, involving singlet neutrinos that acquire large

Majorana masses allowed by the monodromy.

In conclusion, we have provided an example of a fully viable F-theory GUT, assuming flux
breaking of all symmetries, satisfying the semi-local constraints, and employing only the addi-

tional U (1) symmetries descending from the Eg point of local enhancement.






Chapter 4

Further £ Model Building: TeV scale
exotics and gauge coupling unification

4.1 Introduction

Although descending from a high energy E¢ group, most of the models studied previously [6, 7,
8,9, 10, 15, 87, 22, 24, 23, 1, 27] focus on reproducing the minimal supersymmetric standard
model (MSSM) at low energies, making it difficult to obtain an experimental link to F-theory.
In this chapter we explore F-theory models in which the low energy supersymmetric theory
contains the particle content of three 27 dimensional representations of the underlying E¢ gauge
group. The resulting low energy models will resemble either the E6SSM [75, 88, 89, 90, 91]
or a generalised NMSSM+ [92] depending on whether an additional Abelian gauge group does
or does not survive. However there are novel features compared to both these models which, if

observed, would provide circumstantial evidence for F-theory.

The F-theory models considered in this thesis all descend from a parent Eg gauge theory [19].
A crucial question for model construction is whether a gauged U (1) from the Eg gauge theory
can survive down to low energies, where the gauged U(1) may arise from one of the Cartan
generators of the non-Abelian gauge group. A clear example of this is the case of hypercharge
U(1)y, arising from SU(5) after flux breaking in many F-theory models [24]. More generally,
if we begin with the case of an Eg gauge theory, we can break Eg down to an Eg GUT group
with a VEV for an adjoint Higgs, and then break Eg down to the Standard Model gauge group
by turning on flux along three U(1)s. In order to label the different U(1)s, we can look at the
flux breaking from E¢ to the Standard Model as going through the following sequence of rank

preserving breakings:

Es — SO(10) xU(1), (4.1)
SO(10) — SU(5)xU(1), 4.2)
SU5) — SUQ3)xSUQ2)xU(1)y. 4.3)

89
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For example, the U (1)y under which the right handed neutrinos have no charge is given in terms
of these U(1)s by,

) U(l)y. 4.4)

In the F-theory models considered in this chapter, there will either be a surviving gauged U (1)y,
or it will be broken at the GUT scale.

The F-theory models with a surviving Abelian gauge group resemble the E6SSM [75, 88, 89]
which is a supersymmetric standard model in which precisely such an extra U(1)y gauge sym-
metry survives down to the TeV scale. However in the F-theory model, the gauge coupling of the
U(1)y may differ from that in the EGSSM. The matter spectrum is similar to that of the E6SSM,
namely three 27s of Eg which ensures anomaly cancellation. This implies light exotics with
the quantum numbers of Higgs doublets and colour triplets of exotic quarks, arising from three
5+ 5 representations of SU(5), plus three SU (5) singlets which are charged under U(1)y. The
coupling one of these singlets to H,H,; generates an effective i term after singlet acquires a low
scale vacuum expectation value (VEV). Whilst the E6SSM includes an additional pair of dou-
blet states called H' and H’ in order to achieve gauge coupling unification[89], in the F-theory
model the couplings are split at the GUT scale by flux effects. As such, the minimal F-theory
version resembles the Minimal E6SSM (ME6SSM) proposed in [90], although as will be shown
later, the splitting turns out to be too large to be acceptable. However, instead of having to add
in states by hand in order to achieve the desired level of unification, constraints from topology
actually lead to the natural emergence of a set of light bulk exotics which have the same effect.
These exotics will be the topic of Chapter 5, where the problems of unification will be solved.

In this chapter, only the minimal model will be considered.

Proton decay represents another important difference between the E6GSSM and the F-theory ver-
sion. In the F-theory model proton decay is suppressed by the geometric coupling suppression of
a singlet state, which effectively suppresses the coupling of the exotic charge —1/3 colour triplet
state D to quarks and leptons, while in the ME6SSM all proton decay couplings are allowed but
with highly suppressed coefficients. This tends to give long lived D decays in the ME6SSM, but
prompt D decays in the F-theory model, with large couplings to left-handed quarks and leptons,

providing characteristic and striking signatures at the LHC.

If there is no surviving extra Abelian gauge group then the F-theory model resembles the
NMSSM+ which also involves three compete 27 dimensional families [92]. However, whereas
in the NMSSM+ the U(1)y is broken by an additional sector close to the GUT scale, in the
F-theory model it is simply broken by flux breaking. Another important difference is that the
NMSSM-+ is a scale invariant theory, involving only trilinear couplings such as the trilinear sin-
glet couplings, while in the case of F-theory there are in addition singlet mass terms arising from

non-perturbative effects, giving rise to a generalised version of the NMSSM+.

E¢ based F-theory models have been discussed previously, for example, issues concerning the
global resolution of Eg GUTs in [93, 94], and the models of [32]. It should be noted that here

we use Abelian fluxes, whereas [32] uses non-Abelian fluxes.
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4.2 Eg Models from F-theory

We start by looking at the model of Chapter 3 [1] (model 1), which was motivated by the fact
that if we build a model based on complete 27s of E¢ with no matter coming from the adjoint
(78) representation, we automatically take care of anomaly cancellation. ' Table 4.1 shows the
model building freedom we have in choosing the M and N integers specifying the flux breaking,
and how these choices determine the Standard Model particle content of the model. Here we
make the same choices for the Ms and Ns as in [1] and these choices are summarised in Table
4.1. In Table 4.1, arbitrary numbers of singlets are allowed in the spectrum for now, so that we
can calculate the restrictions on these numbers later on. The final column of Table 4.1 shows
the low energy spectrum of the E6SSM that we want to arrive at by eliminating the required
exotics from the previous column, which shows the SM particle content after flux breaking. By
comparing the final two columns of Table 4.1, we can see that the exotics which we wish to
remove are the vector pairs 2(L+L),Q + Q,2(u¢ +u),d" +d¢ and H, + H,. Large masses will
be generated for these fields through their coupling to SM singlet fields which acquire large
VEVs.

From the E¢ point of view, the only Eg allowed trilinear term in the superpotential is 27,27, 27;,.
The vectorlike pairs which we wish to remove from the low energy particle content are those
which have components in both the 27; and 27;, multiplets. As such, they are removed by

introducing 651, an E¢ singlet, with couplings:

6312727, = 63100 + 051 (2u°) (2u€) + 631d°d° + 631 (2L) (2L) + 631 HaHy.  (4.5)

If 651 gets a large VEV, these vector states get large masses as required. The difference between
this case and model 1 [1] is that in model 1, 834 also gets a large VEV. This singlet has the

following couplings

034515, = 634[3D +2H,|[3D + 3H,)| = 634[3(DD)] + 634[2(H,H,)). (4.6)

In the E6SSM, these exotics are light, and so instead of getting a large VEV, this singlet now
must acquire a TeV scale VEV. It needs to be checked that the F and D flatness constraints are

satisfied, and that rapid proton decay is forbidden for the realisation of the spectrum.

4.2.1 U(1)y Charges

The correctly normalised charge generators for U(1)y, and U(1), are

! Appendix C shows that there is an anomaly involving two perpendicular U(1)s which is not cancelled by this
formalism. However, [95] points out that anomaly cancellation constraints can be relaxed in the case of geometrically
massive U(1)s in F-theory, due to GreenSchwarz type cancellation mechanisms.
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E¢ | SO(10) | SU(5) | Weight vector On Ny | My | SM particle content | Low energy spectrum
27, 16 55 1 +1s ﬁ 1 4 4d€ +5L 3d° +3L
27, 16 104 fn %m —1 4 40 + 5u° + 3¢° 30+ 3uf + 3¢
27,1 16 0;5 t —15 0 0 nis K% -

27, 10 5] —t —13 —ﬁ -1 3 3D+ 2H, 3D +2H,
27, 10 5, 414 - Z*W 3 3D +4H, 3D +3H,
27y 1 314 1 —1t4 2%/5 0 ni4 7914 _ 014
27, 16 35 3 +15 ﬁ 1] -1 iwrz_L _
27, 16 10, 13 ﬁ -1 0+ 2u¢ -

27% 16 035 13 —15 0 0 nis - -

27, 10 5,”“ -2 — ZLW 1 0 ﬂ H,
27% 10 54 t3+14 ~ 2710 -1 0 Hy -

27, 1 034 13 —14 2%@ 0 n3y 034 034

- 1 031 3 —1 0 0 n3| 031 -

- 1 053 ts —13 0 0 ns3 053 -

- 1 054 I5—14 2%@ 0 ns4 054 -

- 1 045 ty —1s - ZSW 0 nys 045 -

Table 4.1: Complete 27s of Eg and their SO(10) and SU (5) decompositions. The SU (5) matter
states decompose into SM states as 5 — d¢,L and 10 — Q, u¢,e¢ with right-handed neutrinos
1 — v¢, while SU(5) Higgs states decompose as 5 — D,H, and 5 — D,H;, where D,D are
exotic colour triplets and antitriplets. We identify RH neutrinos as v¢ = 6;5. Arbitrary singlets
are included for giving mass to neutrinos and exotics and to ensure F and D flatness.

1
— —_diag[—1,—1,—1,—1,4 47
1
0y = —~diag[l,1,1,—3,0] (4.8)

2V/6

As such, from Eq. (5.4), the generator for U(1)y is given by

On =

diag(1,1,1,—4,1 4.9
Wit gl ] (4.9)

From this, the U(1)y charges of all the particles in the spectrum can be computed, and the
results are shown in Table 4.1. As required (and described in the introduction), the right handed

neutrinos have zero charge under this U(1).

4.2.2 Singlet VEVs and Bad Operators

As in the previous model [1], 831 should get a string scale VEV, and as mentioned earlier 634
now should get a TeV scale VEV to give mass to the exotics. 053 should get a VEV in order to
generate neutrino masses (as discussed later), and in order to generate the effective u term, 64
gets a TeV scale VEV, also discussed later.
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The R-parity violating superpotential couplings u°d“d®, Qd°L, Le‘L, kLH,, as well as the dimen-
sion 5 terms in the Lagrangian corresponding to the superpotential terms QQQL and u‘u“de®,
are forbidden by the U (1) symmetries that originate in the underlying E¢. In order to check that
spontaneous symmetry breaking terms coming from SM singlet field VEVs do not allow these
dangerous operators to appear, we can identify the following terms which could potentially give
rise to bad operators if certain singlets acquired VEVs: 6,5LH,, (051645 + 641635)10M?32 and
031041 10,3‘,,573. As such, taking into account the singlet VEVs that are required, we can see that

the dangerous operators do not arise provided 65, 6841 and 645 do not acquire VEVs.

However this is not sufficient to ensure the absence of baryon and lepton number violating
terms because, even in the absence of these VEVs, tree level graphs can generate the dangerous
operators at higher order in the singlet fields. These issues relating to proton decay will be
discussed later. Proton decay in the context of F-theory has been previously studied, for example
in [43, 85].

4.2.3 The effective 1 term

In the E6SSM, the u term is effectively generated when a singlet which is charged under U (1)y,
is coupled to H,H; and given a TeV scale VEV. In terms of F-theory model building, the
charge of H,H; under the perpendicular U (1) symmetries can be seen from Table 4.1 to be
—2t; +t; +1t4 = —t; +14. As such, the appropriate singlet which could generate the u term is
014. Alternately, we could try and generate the ¢ term non perturbatively, as in [1], where non
perturbative effects which break the perpendicular U (1) symmetries generate an explicit i term
which can naturally be at the electroweak scale. However, as H,H, is charged under U(1)y,
this method cannot be utilised in the E6SSM, and so we must have a 6,4 singlet in the spectrum

which will acquire an electroweak scale VEV.

4.2.4 D-flatness

In the model under consideration we assume the SUSY breaking soft masses are such that only
the SM singlet fields acquire very large VEVs. To determine them we consider the F' and D
flatness conditions. Taking account of the Z, monodromy, #; <+ t, the D-flatness conditions are
of the form given in Eq. (2.105) where there are three Uy (1)s with charges given in Eq. (4.13).
We wish to show that the D-flatness conditions are satisfied by the massless fields 631, 6Os3
needed to give mass to exotics and, as to generate viable neutrino masses. Even though 634 and
014 get VEVs, these VEVs will be at the TeV scale whereas all the other VEVs are at the string

scale. As such, the VEV for 634 and 84 will be ignored in the following calculations.

The D-flatness condition for Uy (1) is



94 Chapter 4 Further E¢ Model Building: TeV scale exotics and gauge coupling unification

¥ 080 - 1(0) ) = - 2 enr

= —XTrQ* (4.10)

This condition must be checked for all the U (1)s, the charge generators of which are given by

Q, o diag—1,—1,—1,—1,4] .11
Qy o diag[l,1,1,-3,0] 4.12)
Q. o diag[l,1,-2,0,0] (4.13)

In a general basis, Q = diag|t|,%2,13,4,1s), and with just 63; and 6s3 acquiring VEVs, Eq. (4.10)
can be written
(ts —13)|0s3)* + (13 —11)|631|* = X TrQ* (4.14)

The trace on the right hand side of Eq. 4.10 is taken over all states, and is given by

TrQA:SZnij(ti—i—tj)+1Oantk+Zmij(t,~—tj) 4.15)

For our model, this trace is computed to be
TrQA = (60 —n3; +n14+n15)t1 + (n31 +n3g —ns3 —30)13 + (15 — nsg — nypa — nag )ty

+ (15 +ns3 +nss —nys)ts (4.16)

where n;; = 7i;; — i ; to simplify the notation, with 7;; being the absolute number of 6;; singlets.

Evaluating the trace for each of the U(1)s gives

TrQy = 5(3 —ni5+ns3 +ns4) 4.17)
TFQW = —15—}—4(1114 —|—n34)—|—n15—n53—|—3n54 (4.18)
TrQ | = 1204 n14 +ni5 — 3n3; — 2n34 + 2ns3 4.19)

The flatness conditions with just 63 and 053 getting VEVs then become the three simultaneous

equations
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5053 = 5(—3+n15 —nss —ns3)X (4.20)
—[053]* = (15 — n1s — 4(n1a + n3s) +ns3 — 3nsa)X 4.21)
2’953‘2 - 3‘931 ’2 - (—120 + 3”31 —n14 — N5+ 21’134 — 2n53)X (4.22)

Putting Egs. (4.20) and (4.21) together gives the relation

nig+ny+nsg =3 4.23)

In order to cancel anomalies, we must have three complete 27s of Eg and so we must have the

following constraint on the absolute number of singlets

4 +73q =3 4.24)

If we have 71;; # 0, in general we will require that 7i;; = 0, as otherwise we would be able
to write a mass term M6;;0;;. This is acceptable provided relations, which will be discussed
in section 4.2.5, are satisfied. In order to simplify the model, however, we will take the case
fi;j # 0= 7ij; = 0, and we will take this fact to be implicit from this point onwards. As such,
Egs. (4.23) and (4.24) mean that ns4 = 0. The equation for the 653 VEV then becomes

|653]* = (m15 —ns3 —3)X (4.25)

As 0;5 corresponds to the right handed neutrino and 6s3 is required to give neutrino masses, both
n1s and ns3 must be positive. Eq. (4.25) then gives a lower limit on the number of right handed

neutrinos in the model

fis > 3 +1is3 (4.26)

Due to the fact that in this model 65 and 6s3 acquire large VEVs, we require that i3y, fis3 > 1.
Also, we must require i34 > 0 in order to allow the exotics to get a mass via the term 63,DD,
and 7ij4 > 0 in order to generate the u term. We will take 7is3 = 1, meaning that from Eq. (4.26),
we must have 75 > 4. This model will take the minimal case of 5 right handed neutrinos. In
order to satisfy Eq. (4.24) we choose 7114 = 1 and 7i34 = 2, and we leave 7i3; > 0 unspecified for

now.



96 Chapter 4 Further E¢ Model Building: TeV scale exotics and gauge coupling unification

4.2.5 F-flatness

In this model, we have taken the case where no 6;;6;; terms can be written down, so the only

terms in the singlet superpotential which could generate a non zero F-term are

Wo = ;05364 6/ (4.27)

where j corresponds to the number of right handed neutrinos and runs from 1 to 5, and the range
of i represents the number of 0;; fields, and is yet unspecified. Minimising the singlet potential

leads to

W, , ,
j9 :).ij95393l»1 :>)L,'j953 <9311> =0 (4.28)
a915

As such, seven independent 63, singlets must have zero VEVs. We must have at least one 65,
which aquires a non zero VEV in order to satisfy Eq. (4.22), and so we choose i =7i3; = 6. Now

we have a full singlet spectrum, consistent with F and D-flatness, where the choices we have

made are given by
fi3) = 0,753 = 1,754 = 0,714 = 1, i34 =2, 7115 =5

4.2.5.1 Singlet mass terms
If we were to drop the requirement that a non zero #;; means having 7i;; = 0, we could have

0;;0;; terms in the superpotential. If, for example, neutrino masses were generated by giving a

05, field a VEV the singlet superpotential would be of the form

Wo = lijkeijijeki+Mij9f59§1 (4.29)

Considering the F-term for 6;s, the relevant terms in the superpotential are

Wo = 7601565361, + M056%, (4.30)

As such, if a 0s; field was to exist in the spectrum and acquire a VEV, the following relation

would have to be satisfied

gev‘;: =% <93j1> (653) +Mij<95j1> =0 (4.31)
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Figure 4.1: Tree-level diagram contributing to the bottom mass.

Similarly, due to the fact that 014 gets a TeV scale VEV to generate the y term, and 634 acquires
a TeV VEV to give masses to the low scale exotics of the E6SSM, the presence of any 043 fields

in the spectrum would mean that we would have the analogous relation

Wy
06,

:%j<93f'1><914>+Mij<93f'4> —0 (4.32)

As such, if we were to not impose that 6;; # 0 = 8;; = 0, the model would be consistent with
F-flatness provided relations of the type in Eqs. (4.31, 4.32) were satisfied. In our model, we

take the simplest case where we do not have equations of this type.

4.2.6 Calculating the singlet VEVs

Now we have a full spectrum for the model, we can calculate the singlet VEVs, giving us
information about the scale at which the exotics decouple, neutrino masses etc. From the D-

flatness relations, we have

1053|> = (15 — 7is3 — 3)X (4.33)
31031 % = 114+ 3(iy5 — fiz)) — 2fiz4 + i1 (4.34)

Putting the number for the singlet spectrum into these equations gives

053] =X (4.35)
118

651> = =X (4.36)

&M
19272

where X =
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4.2.7 Quark, charged lepton and exotic masses

From Table 4.1, we can see that the up quark mass matrix (and the Dirac neutrino mass matrix)
will originate from the 27, 27, 27,, E¢ coupling. These matrices are rank one in the absence of
flux, but as demonstrated in [29], the rank can be increased by including non perturbative effects
[26]. The down quark and charged lepton mass matrices arise from the non-renormalisable
couplings originating at the E¢ level from 65,27,,27,,27, /M. Figure 4.1 shows the tree-level
diagram for the bottom mass, involving the exchange of a massive vectorlike pair. The origin
of the difference in magnitude of the top and bottom quark masses can be explained by the fact
that the 637 VEV is of the same order as the messenger mass, M, leading to a mild suppression

of the down quark Yukawas relative to the up quark couplings.

The terms in the superpotential which are responsible for generating the pt term and the exotic

masses are

W ~ Ai;014HyiH,j + K; j5034D ;D (4.37)

From Table 4.1, it can be seen that both of these couplings originate from the 27,27, 27,, E¢

coupling.

In the standard E6SSM, an approximate Z, flavour symmetry is assumed, in order to distinguish
the active (third) generations of Higgs doublets from the inert (first and second) generations.
However, in this study we do not try and solve problems with flavour, as we can always note
that in the absense of flux, matrices are always rank one. As such, we can always pick a basis
where the matrix has a one in the position corresponding to the active generation and zeros
elsewhere. Also, it should be noted that from Table 4.1, we can see that all three generations
of H; come from the 27, curve, whereas the active H, comes from a different curve (27;,) than
the inert H,s (27;,). As such, we could generate the up quark masses via the non-renormalisable
coupling 63,27,,27,,27,, /M, with H, coming from the 27, matter curve. In this case, the quark
masses would arise from diagrams similar to Figure 4.1. H,, will now come from the from the 5,
curve, and the diagram will involve the coupling 65315,5;. However, this coupling will turn out
to be forbidden under a discrete Z, symmetry which will be introduced later in order to stabilise
the proton, and so quark masses will not be generated in this manner. In any case, it would not

pose a problem, due to the fact that the 63; VEV is of the same order as the messenger mass, M.

4.2.8 Neutrino Masses

The discussion of neutrino masses is essentially the same as that of the model of Chapter 3,
in Section 3.2.6. The key point is that due to the #; <+ t, monodromy, the conjugate states
012 and 6, are identified, and so we can write down a term My;01,6; in the superpotential

which corresponds to a Majorana mass for the 8, states. As in Chapter 3, we allow for an
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arbitrary number of 61, fields (the fact that these fields carry no charge under the perpendicular
U(1)s means that we can have any number of them in the spectrum without affecting flatness
conditions etc.), but the difference in this model is that now the number of 0;5 fields is 5, not 3.

(For a reference on models with Z right handed neutrinos, see [96]).

In the same notation as Chapter 3, the relevant terms for lepton mass generation are (after the
two Higgs doublets have got their VEVs):

Wonass = (Ha) Yie, el + (H,) A%V, 05 + (@s1) A% 61505 + MLy 6465 (4.38)

where Ay is a (3 x 5) matrix of couplings, Agys is (5 x n) (where n is the number of 6, states)
and M)y is an (n x n) matrix. The discussion of neutrino masses from a double seesaw mecha-
nism is now entirely analogous to that of Section 3.2.6, with the only difference being the size
of the matrices, and the fact that the singlet VEVs are now slightly different, and given by Egs.
(4.35) and (4.36).

4.3 Unification and proton decay

4.3.1 Review of F-theory unification in SU(5)

In the case where a U(1)y flux mechanism is used to break an SU(5) gauge symmetry down to
the Standard Model, there is a splitting of the gauge couplings at the unification scale [40, 97,
98, 99, 41]. The splitting at Mgy is

I _ 1
OC3(MG) oG Y
1 1
= ——y+x 4.39
wMa) @ y (4.39)
1 1 n 3
= — — =X
(04] (MG) oG Y 5

where x = —IReS [ ¢}(%), y = 1ReS [ ¢}(£,) Z, is a non-trivial line bundle and S = e~? +
iCy is the axion-dilaton field as discussed in [40]. Combining the above, the gauge couplings at
Mgyt are found to satisfy the relation

1 5
ay(Mgur) 3 ai(Mgur)  (Mgur)

1 1 21
3 (4.40)

o3(Mcur)

In the E6SSM, however, we have an extra U(1)y symmetry which survives down to low ener-
gies. Accordingly, we must incorporate the U(1)y gauge coupling into the unification analysis.

In order to accomplish this, we can consider how Eq. (4.40) is derived in [100] in terms of
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SU(5) group theory, and then generalise the results to Eg and SO(10), giving us information
about U(1)y and U(1), respectively.

Following [100], we can write the gauge kinetic functions for SU(3), SU(2) and U (1)y embed-
ded inside SU(5) in the form

fs=A+Bcg, 0= (1,...,8) 4.41)
o =A+Bcg, o= (21,22,23) (4.42)
fi =A+Bcq, o =24 (4.43)

where « is an index running from 1 to 24, over all the generators of SU(5), and the missing as
are the generators belonging outside the SU(3) x SU(2) x U(1) subgroup of SU(5). A and B

are arbitrary gauge invariant functions and the ¢, coefficients are given by

doprs = Cabup (4.44)

with the index 24 corresponding to the hypercharge generator and the group theory coefficients

dypy defined as

dapy =2Tr[{Ty, T3} T] (4.45)

As such, in order to calculate the three gauge kinetic functions, we just need d 1 24, d21 21 24 and

dh4 24 24, where the generators 71, 11 and T»4 are given in block matrix notation by
/20
- (M
0O O
0 0
T =
0 o 1 / 2

1 3 3
7diag(171717_77

Toy = _Z
24 15 275

)

where A, refers to the first Gell-Mann matrix, and o7 to the first Pauli matrix. These definitions
can be used trivially to calculate ¢; = d171724 = \/%, ] = d21721724 = —\/% and cyq4 = d24,24724 =
——L_, which can be put together with Eqs. (4.41, 4.42, 4.43) giving (after a redefinition of the

V15’
arbitrary function B)
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fi=A+2B (4.46)
f,=A-3B (4.47)
fi=A-B (4.48)

The gauge couplings at the unification scale are then related by [100]

og = 3(Mg)fs = 0a(Mg) f» = ou(Mg) fi = %aY(MG)fI (4.49)

Combining this equation with Egs. (4.46, 4.47, 4.48) gives the following constraint on the gauge

kinetic functions

3 5
== 4.50
ftsh=5h (4.50)
which, when combined with the relations f; = %, leads to Eq. (4.40). Comparing this

picture with Eq. (4.39), we have the following equations relating x and y to A and B

5B 1-A-2B
- i 4.51
* (XG7 Y (0% ( )

4.3.2 The Eg and SO(10) cases

We can generalise the SU (5) argument to the breaking patterns

Es — SO(10)xU(1)y
SO(10) — SU(5) xU(1),

in order to learn about the U(1)y gauge coupling U(1)y = fU(1), + @U(l)w. For the Eg
case, the generalisation is the set of equations

O = 010f10 = Oy fy (4.52)
flo=A+Bcq, a=(1,..,45) (4.53)
fv= A +Bcy, a =178 4.54)

and for the SO(10) breaking, we have
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0 = s fs = Oy fy (4.55)
fs=A"+B"cq, a=(1,..,24) (4.56)
fy=A"+B"cq, a =45 4.57)

For both Eg and SO(10) (and indeed for any simple Lie algebra with the exception of SU(N),
N > 3) the dypg, and hence the ¢y are zero [101] (this can be checked for the Eg case from
Appendix A). Accordingly, we can take the B',B” in Egs. (4.53, 4.54, 4.56, 4.57) to be zero.
Matching with Eq. (4.51) of the SU (5) case, this clearly leads to x = 0, and Eq. (4.39) shows that
this corresponds to no relative splitting of the gauge couplings at unification. We can, however,
have a shift by the parameter y in all the couplings after each breaking. These parameters will

depend on the flux breaking mechanism, and we will leave them as free parameters of the model:

1 B 1 ,

dip O Y

1 1 ,

— =y

Oy O

1 B 1 "

(04 O

1 1 "

— =——Yy (4.58)
oy O

With ag = o5 in Eq. (4.39), we can then proceed with the analysis as for the SU(5) case.
It should be noted that in Eq. (4.58), the signs of y and y’ are not known, and so the U(1)y
gauge coupling could be either bigger or smaller than o5 at unification. This splitting is a free

parameter of the model.

4.3.3 The Spectrum, and One Loop Renormalisation Group Analysis

In the considered model we have the following vector pairs of exotics, which get large masses
when 63, gets a VEV: (d+d°), (Q+ 0), (Hy+ Hy), 2(L+1L), 2(u +u°). Below some scale
My < Mgyt these exotics decouple. We then have the extra exotics 3(D + D), 2(H,,, H;) which
survive to low energy and decouple at a scale My = 17eV. Below the scale M+, we have the
low energy matter content of the MSSM. The low energy values of the gauge couplings are
given by the evolution equations

1 1 b Mgur bS My b, My

- Za Za ) Ja q X 4.59
a.(Mz) aa(MGUT)+27T ! Mx +27T nMX/+27T an (9
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where b}, is the beta-function above the scale My, b’;/ is the beta-function below My and b, is the
beta-function below My/. Combining the above equations with Eq. 4.40, we find that the GUT

scale is given by
21
Moyt = eboP MEMY, P My ™" (4.60)

where .27 is a function of the experimentally known low energy values of the SM gauge coupling

constants
5 1 1 2 1
a 3 (041 (Mz) OCz(Mz) 3 [04] (Mz)
2 2 1
_ cos(26w) 2 4.61)
Olen 3 o3 (Mz)
We have also introduced the ratios p and y
b, _ b (4.62)

P:EV*E

where 8, By, B, are the beta-function combinations in the regions My < p < My, Myr < L < My
and My < U < Mgyr respectively

2
B.= by — b3~ 50} (4.63)
/ 2
Be=by —b3 — 31 (4.64)
2
B =by —b;— §b3 (4.65)

The beta function coefficients are given by (b; = %by)

3 1 1 4 3
b] = -0+ 2nf + E(Vlh + nL) + g}’ld«: + EI’IQ + gnue -+ g Nec (466)
1 3
b, = —6+2nf+§(nh+nL)+0ndc+EnQ+0nuc 4.67)
1 1
by = —9+2nf+0(nh+nL)+Endc+nQ+§nuc (4.68)

with ny = 3 the number of families and nj,; . counting Higgses and exotic matter. For our

spectrum, the coefficients are given by

by =6.6,b,=1,b3=-3 (4.69)
V=9 b5 =3,b) =0 (4.70)
bl =14.6, b5 =9, b5 =5 4.71)
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Plugging these numbers into Eq. (4.60), we see that Mgyt becomes independent of the My and
My scales and in fact it is identified with the MSSM unification scale

My = Mgyr = b My ~ 2 x 10'6GeV (4.72)

It should be noted that because of the independence of this relation on the two mass scales, it
applies for both the model of this chapter, and that of Chapter 3.

4.3.4 Model Dependence of the Splitting Parameter, x
From Eq. (4.39), the splitting of the standard model gauge couplings is given by

1 1
- . 4.73
* (Mg)  o3(Mg) @7

We can now use the evolution equation (4.59) to relate x to the low energy coupling constants

ap and o3, giving

11 by —b% Mg\ b5 —b% My \ by — b3 My
———] = log [ — 1 log [ —-) (4.74
<oc2 (07 ) My o 2r °8 (MX * 2 °8 My 2n o8 Mz (4.74)

__ (1—sin%6,)

Using Eqgs. (4.69, 4.70, 4.71, 4.72) and the relations &, = 0, 5in0,,, aiy = and o =
%Oﬂy, we arrive at the following expression for x
4 1 11 71 1 M,
X=— — —— — —— — —In
300 30y 903 21 M,
.2 B ,
_ (Ssin"6,—1) 71 1 N M, 475)
30 a3 2m M,

It can be seen that the factors which affect the splitting are the matter content of the spectrum
(which manifests itself in the numbers multiplying the Standard Model parameters), and the
ratio of the two exotic mass scales. At this point, we can compare the E6SSM model with the
E¢ based model of Chapter 3 [1] (model 1), where the E6SSM light exotics are heavy. We can
use the above equation for both models as they have the same spectrum, the difference being in
the scales at which the exotics decouple. In the E6SSM case we have My = 1TeV and from
the calculated singlet VEVs, My = 1.44 x 10'°GeV, whilst in model 1, we have My = 0.306 x
10'°GeV and Mx = 1.31 x 10'°GeV. Taking the values ! (Mz) = 127.916, sin*6,,(Mz) =
0.23116 and o3 = 0.1184, the part of the right hand side of Eq. (4.75) involving these parameters

is evaluated as 0.07. Due to the fact that this number is small, in order for x to be close to zero
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1
«

60

Figure 4.2: The running of ¢, 0 and o from their SM value at Mz up to Mgyt for
the case of the F-theory E6SSM. The large splitting rules this model out in its minimal
form, as described in the text.

(corresponding to the usual case of gauge coupling unification) the masses of both sets of exotics
need to be close together. This is the case in model 1 where we have x=0.3, but not in the case
of the E6SSM model where x=4.9.

The large splitting in this model is actually inconsistent with the formalism, meaning that the
model in its present form is not viable. Considering the relations x = —iReS [ ¢}(.%), .47 =
—2,and S = ¢~ ? +iCy, it can be seen that we must have x < 1, and so the minimal version of
the E6SSM model is ruled out. If we want the couplings to unify such that x < 1 in the F-theory
E6SSM, we would have to add in extra exotics in such a way to modify the renormalisation
group running. However, instead of being arbitrary, there are a particular set of bulk exotics
coming from the adjoint of E¢ which are inevitable in models with flux breaking. It turns out
that due to topological restrictions on the internal manifold, there is the natural emergence of
a low energy set of exotics which when added to the spectrum of this model, forces the gauge
couplings to come very close to perfect unification at the one loop level. The issue of these bulk

exotics will be discussed in detail in the next chapter.

Taking the low energy values of , & and o3 and using the one loop remormalisation group
equations (RGESs) to run the couplings up to the unification scale (taking into account the pres-
ence of the exotic matter) results in Figure 4.2 for the minimal F-theory E6SSM, and Figure 4.3
for model 1. In Figure 4.2, the reciprocals of the gauge couplings are split by approximately
35% (relative to the largest value) at unification, whereas in Figure 4.3 they meet to 1.3% ac-
curacy. The 35% splitting is unacceptably large as discussed above, and the fact that the gauge
couplings meet to 1.3% in model 1 means that our spectrum is special for the case of heavy

exotics.
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2 |

Figure 4.3: The running of ¢, 0 and o from their SM value at Mz up to Mgyt for
the case of model 1, presented in [1].

Another way of looking at Eq. (4.75) is that since x is the dilaton field, e~?, clearly we must
have x > 0 which can give a lower bound in o3 by using ¢ and ¢ as input parameters. In
model 1, we have (63;) = /37X and (634) = v/2X from Eq. (3.13), meaning that

My 2
— = 4.76
My 37 (4.76)
As such, we have
41 11 71 1 2
= - ———— —In{ —= 4.77
*T3m 3oy 90 47:“(37) 4.77)
Requiring that x > 0 leads to the bound
> ! ~ 0.1130 4.78
a3_§55i“29”’_1_i1n(l)~ ) (4.78)
30, 4r \37

4.3.5 Baryon- and lepton-number violating terms

As discussed in section 4.2.2, it is necessary to forbid VEVs for certain singlet fields in order for
the perpendicular U (1) symmetries to prevent dangerous operators. However this is not entirely
sufficient to ensure the absence of baryon and lepton number violating terms because, even in
the absence of these VEVs, tree level graphs can generate the dangerous operators at higher

order in the singlet fields. As such, we must look for graphs of the type shown in Fig. 4.4. In
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Figure 4.4: The general proton decay diagram generating the dimension 5 operator QQQL.

these models, just as in Chapter 3, the dangerous graph is shown in Fig. 4.5 and is driven by

colour triplet exchange coming from the couplings

10y, 10M5Hu — Q00D+ ...
5Hu5[:1u — MDDhDh+...
034515, — <934>D2Dh"/—{—... = <934>DD—|—....

The notation has been simplified here by calling the light exotics Dj, and D, simply D and D.
In Fig. 4.5 the full notation is used, but in Fig. 4.4 and Fig. 4.6 the simplified notation is used,

with D representing a light colour triplet.

As may be seen from Table 4.1 only the states D and D (i.e. D) and D}’ in Fig. 4.5) appear in
the spectrum with mass generated by the singlet VEV (6s4) which is at the TeV scale. Since the
choice of fluxes in Table 4.1 eliminates light colour triplet states Dy, arising from 5y, , and also
D, states arising from 54, we assume that if states with the quantum numbers of Dh,DZ exist,

they will have string scale masses, of O(Ms).

Figure 4.5: The specific proton decay diagram generating the dimension 5 operator QQQL in
this model.
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With this assumption, the diagram of Fig. 4.5 gives the proton decay operator QQQL with coef-
ficient 1/A.sr given by

1 <931>>2 1
=23 i 4,
Acsy < Ms ) (64) 79

In (4.79), A° represents the product of the five Yukawa couplings in the relevant diagram and
according to ref [25] it is expected to be

-3
Ad = 110-10-5110-5-5}”53.51 ~ 1077

This implies

In an analogous way to the analysis in Section 3.2.4, this should be compared to experimental
bounds on nucleon decay. This bound, relevant to the case that the operator QQQL involves
quarks from the two lighter generations only, requires AL£™ > (108 — 10°)Ms. The difference
between this case and the case studied in Chapter 3 is that now (634) ~ TeV < Mg, meaning
that there will be a large discrepancy between Agﬁht and A¢r, even when the suppression factors
for the first and second generations (due to non perturbative flux corrections) are considered (as
in section 3.2.4). As such, it is clearly necessary to forbid the light quark operator generated by
the diagram of Figure 4.5. One way to do this would be to forbid the coupling 9353/51. Note
that all the other vertices in Figure 4.5 are necessary for various phenomenological reasons.
For example, the couplings in Figure 4.1 are necessary to generate the bottom quark Yukawa
coupling, and so these couplings cannot be set to zero. Similarly the top quark Yukawa coupling
originates from the coupling 104/104/5, . The coupling 63455, is necessary to give the exotics
a TeV scale mass term (634)DD . In order for the bounds on proton decay to be satisfied, the
0353/51 coupling must be suppressed by a factor of 10712, This can be seen by looking at
Eq. (4.79) and comparing to the bound Agfg}m > (108 — 10°)Ms, whilst taking into account a
suppression factor for the light quarks (as in section 3.2.4 [1]).

In fact we only need to forbid the colour triplet components of the 9315?1/5 1 coupling. This can
be achieved by imposing a discrete Z, symmetry with the following set of fields chosen to be
odd: (D}, EZ,, DZ , EZ). Either the set (L,e) or (Q,d¢,u°) are also chosen to be odd. All other
fields are chosen to be even under Z,. These assignments forbid the proton decay diagram in

Fig. 4.5 but allow the top quark Yukawa coupling.

Note that with these charge assignments the Z, symmetry is absolutely conserved. Also Z, does
not respect SU (5), as for example D) (54) must be odd, but the H, state coming from the same
curve must be even. This is because it gets a large mass from the coupling 63;H;H,, and the
631 and H; fields must be even otherwise Z, would be broken leading to cosmological domain

walls. The Z, symmetry clearly goes beyond the rules of local F-theory, which corresponds
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to the fact that we are appealing to global F-theory to forbid the colour triplet components of
the 9313?1/51 coupling by a geometric suppression mechanism. However, in the present study
this just corresponds to an assumption related to the uncertain nature of singlet fields and their
couplings in F-theory. Such assumptions about singlets are always required in any case. In
particular, the forbidden coupling involves 83; which does not live in a 27 of Eg, and the Yukawa

couplings of such singlets are particularly poorly understood. 2

4.4 Comparison with known models

44.1 E6SSM

The low energy spectrum in Table 4.1 resembles that of the standard E6SSM [75, 88, 89]. The
F-theory model with a surviving Abelian gauge group is also a supersymmetric standard model
involving the same U(1)y gauge symmetry surviving down to the TeV scale. However, whereas
the E6SSM matter content appears to arise from three 27 representations of Eg, in the F-theory
model there is a rather subtle doublet-triplet splitting involved in achieving this spectrum, due
to the effects of flux, as indicated in Table 4.1. The light exotics with the quantum numbers of
colour triplets D and D arise from three 5; and three 5, representations of SU (5), while the third

Higgs doublet H,, arises from a different representation 5g, .

ZNote that the 64 and 634 are different types of singlet since they are contained in 27s of Eg.

Q 5

Figure 4.6: Coupling DQQ forbidden by the imposed Z, symmetry, where the field D is a TeV
scale exotic.

Figure 4.7: Coupling DQL allowed by the imposed Z, symmetry, where the field D is a TeV
scale exotic.
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The low energy gauge invariant superpotential of the E6SSM can be written

WESSM — wio LW 5, (4.80)
where Wy 1 » are given by
Wo = Wyukawa + AijiSiHy B + x5 SiD Dy, (4.81)
W = ginkDiQLjQLk + g,qjkDiCife Ry (4.82)
W, = g%kNiC Djd}cek + g?}-kﬁiﬁ% jéfek + gﬁkDiQLJ'Z‘Lk' (4.83)

with W » referring to either W; or W,, giving two alternative models in the usual E6SSM. In
the E6SSM the three SU(5) singlets S; which are charged under U(1)y may be labelled as
Sa, ¢ = 1,2 and S3, where the latter couples to exotics, giving them mass and generating the
effective u term after they acquires a non zero VEV. In the F-theory model these are identified
as two copies of 834 which give the light exotics mass, and the 8;4 which generates the pt term
in the F-theory model. The other GUT singlets which get VEVs in the F-theory model are 65,
(which removes unwanted exotics from the low energy spectrum), and 6s3 (which helps generate
neutrino masses). These singlets acquire string scale VEVs, and are uncharged under the U (1)y
as required. The other important singlet is 6y, as this is the Majorana state which we call Sg.
This singlet is uncharged under the perpendicular U(1)s and so can get a Majorana mass and

play a role in the double see-saw mechanism for generating neutrino masses.

Another difference between the models is that in the E6SSM there are the H', H states com-
ing from incomplete 27 and 27 representations, which are necessary to ensure gauge coupling
unification. In F-theory however, we have splitting of the gauge couplings at unification as dis-
cussed, although in the minimal case presented in this chapter (resembling the ME6SSM), the
splitting is too large. It is only when we consider bulk exotics in the next chapter that we will
find a set of exotics which occur naturally due to the flux breaking mechanism, and which ensure
the required level of unification. Due to the splitting of the couplings at unification, we cannot
know about the size of the U(1)y gauge coupling. As the normal limits on the Z’' come from the

assumption of unification, these limits do not apply in the F-theory model.

It should be noted that in the local F-theory version of the E6SSM all the couplings of Eqs.4.82
and 4.83 are forbidden at the level of renormalisable operators due to the perpendicular U (1)s.
At the level of local F-theory, they are all allowed at the effective level after including one in-
sertion of the 63 field. However at the level of global F-theory we have assumed that not all
couplings involving 631 are allowed, and we have described this by imposing a Z, symmetry so
that certain effective diagrams involving the exchange of heavy colour triplet states are forbid-

den, in particular those which would lead to proton decay.

The effective DQQ coupling is forbidden by Z; since D is odd. In detail, the reason why this
operator is forbidden is shown in Fig. 4.6 since D is odd and (Dy,, Dj,) are both even. Note that
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the Z, symmetry that we imposed has a global F-theory interpretation as being due to a geo-
metrically suppressed 631 vertex. Similar arguments would forbid the effective Du‘e coupling
being generated by a diagram analogous to Fig. 4.6. Note that even though a renormalisable

Du‘e® operator would be allowed by Z, it is forbidden by the rules of local F-theory.

On the other hand the DQL coupling is allowed by Z, and can be generated effectively by non-
renormalisable operators as shown in Fig. 4.7. All couplings in this diagram are allowed by
7, since D is odd and in this case also (D7, 5;1/) are odd, as is the combination QL. Thus the
effective coupling DQL is successfully generated, allowing the D to decay as a chiral leptoquark
with couplings to left-handed quarks and leptons. Note that the effective Dd“u¢ coupling is
forbidden by Z, since D is odd while the combination duC is even. The lifetime of the TeV
scale exotic D can be estimated by looking at its decay through the diagram of Figure 4.7, and
computing

2

2
1:‘/1 I

Mg

5]
0.08 x 1.4 x 10'°
~ ( 1017
~ 0.13GeV

= T5 ~ 5 x 107 (4.84)

)2 x 10°GeV

where A2 represents the product of the two couplings in the diagram, which is estimated to be
around 0.08 from [25]. This shows that the decay of the TeV scale exotics in this model is
expected to be very rapid.

By contrast, in the ME6SSM all the couplings involving D and D are all highly suppressed
coefficients. This tends to give long lived D decays in the ME6SSM, but prompt D decays in the
F-theory model, with large couplings to left handed quarks and leptons, providing characteristic
and striking signatures at the LHC.

In summary, proton decay is suppressed by the geometric coupling suppression of a singlet state
631, which we interpret in terms of a Z, symmetry. This symmetry effectively forbids all the
couplings of the exotic charge —1/3 colour triplet state D to quarks and leptons, while allowing
the coupling involving DQL. However the coupling Dd“u¢ is forbidden by Z,. Thus D decays
as a chiral leptoquark with couplings to left-handed quarks and leptons, with D coupling to D
to make a TeV scale Dirac fermion. We emphasise again that the effective coupling Du‘e is

forbidden, while DQL is allowed providing a distinctive signature of chiral leptoquarks.

4.4.2 NMSSM+

The low energy spectrum in Table 4.1 may also apply to a version of the F-theory model in
which there is no additional Abelian gauge group present, in other words where the U(1)y

gauge group is broken by flux at the GUT scale. This was the case for the F-theory model in [1].
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The difference between the present F-theory model and that in [1] is then mainly in the order of
magnitude of the the singlet 0834 VEV as determined by the different flatness conditions in the
two models. In the previous model the singlet 634 acquired a string scale VEV which gave large
masses to the exotic states. In the present model the singlet 634 acquires a TeV scale VEV which
remain light in the current model. It was also assumed in [1] that the pt term is generated when
the U(1) symmetries are explicitly broken by non-perturbative effects. Here we assume that
the singlet 614 acquires an electroweak scale VEV which generates an effective y term. There
will also be non-perturbative corrections which generate trilinear self-couplings and additional

electroweak scale masses for 04, explicitly breaking all global U (1) symmetries.

The resulting F-theory model with the spectrum in Table 4.1 but with no additional Abelian
gauge group present, resembles that of the NMSSM+ [92]. However in the F-theory model the
U(1)y is broken by flux at a high scale, whereas in the NMSSM+ it is broken by an explicit
sector. Recall that the usual NMSSM is based on the scale invariant superpotential [102],

1
Wanmssm = Wyukawa + ASH,Hy + 3 KS?, (4.85)

where Wyykawa represents the MSSM Yukawa couplings. In the F-theory model we identify the
singlet S’ of the NMSSM with 0y4. The trilinear self-coupling and other linear and quadratic
terms are generated by non-perturbative corrections, resulting in a generalised NMSSM (GN-
MSSM) [103, 104] with superpotential,

1 1
Wonmssm = Wukawa + (U +AS)H,Hy + EHSSZ + 3 kS, (4.86)

where the singlet S of the GNMSSM is again identified with 014. The non-perturbative correc-
tions responsible for these terms are similar to those which were used to generate the ( term in

[1].

However the model is more than the usual GNMSSM since it also involves the exotic sector
of the NMSSM+, so it more closely resembles a sort of GNMSSM+ with three compete 27
dimensional families [92]. The superpotential terms involving the other exotic states (apart from
014) are similar to those of the E6GSSM in Eq.4.80 and discussed in the preceding subsection. The
phenomenological comments also discussed in the preceding subsection concerning unification,
proton decay and the D couplings at the LHC all apply to this case as well where the U(1)y is
broken.

4.5 Summary and Discussion

In this chapter we have explored F-theory models in which the low energy supersymmetric
theory contains the particle content of three 27 dimensional representations of the underlying
E¢ gauge group, plus two extra right-handed neutrinos predicted from F and D flatness. Using

the techniques of semi-local model building in F-theory, we have shown that it is possible to
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formulate F-theory models whose TeV scale effective theory resembles either the E6SSM or the
NMSSM+, depending on whether an additional Abelian gauge group does or does not survive.

However there are novel features compared to both these models as follows:

1. If the additional Abelian gauge group is unbroken then it can have a weaker gauge cou-
pling than in the E6SSM.

2. If the additional Abelian gauge group is broken then non-perturbative effects can violate

the scale invariance of the NMSSM+ leading to a generalised model.

3. Unification is achieved in the E6SSM by the addition of doublet states from incomplete
27 representations, whereas in the F-theory case, there is a splitting of the gauge couplings
at the unification scale, although bulk exotics from the adjoint representation are always

present which can lead to precise unification in a natural way.

4. Proton decay is suppressed by the geometric coupling suppression of a singlet state, which
is possible in F-theory, which effectively suppresses the coupling of the exotic charge

—1/3 colour triplet state D to quarks and leptons.

5. The D decays as a chiral leptoquark with couplings to left-handed quarks and leptons,

providing characteristic and striking signatures at the LHC.

Model Features F-MSSM F-E6SSM F-NMSSM+
(653), (631) ~ My ~ My ~ My
(034) ~ My ~ 1TeV ~ 1TeV
(014) 0 ~1TeV ~1TeV
U(1)y breaking Flux ~ My | (634) ~ 1TeV | Flux ~ My
Non perturbative {t term uNPH,H, - -
Effective u term - 014H,H,; 014H,H,
Non perturbative singlet masses - - m0%,, m>0y4

Table 4.2: Similarities and differences between different F-theory based models which go
beyond the MSSM.

The particle spectrum of the F-theory models is summarized in Table 4.1. The models here may
be compared to the F-theory model in [1] in which the singlets 634 acquired a string scale VEV
which gave large masses to the exotic states, yielding a low energy theory as in the MSSM,
which we can call an F-MSSM. The new models here have a singlet spectrum where the new
flatness conditions allow the singlets 034 to have small VEVs resulting in a light exotic mass
spectrum. In addition the singlets 84 are used to generate electroweak scale effective u terms.
Five right handed neutrinos, as well as other restrictions on the numbers of certain singlets in
the spectrum, are required to make the model consistent with F and D-flatness conditions. If the
gauged U(1)y is broken by flux at the GUT scale then we have either the F-MSSM as discussed
previously or the F-NMSSM+ as investigated here, where non-perturbative corrections break all
global U (1) symmetries via 64 mass terms. However if the gauged U (1)y is unbroken then we
are led to an F-E6SSM but with the phenomenological differences discussed above. The three
different F-theory models are compared in Table 4.2.



114 Chapter 4 Further Eg Model Building: TeV scale exotics and gauge coupling unification

In order for proton decay to be controlled, the geometric suppression at the field theory level cor-
responds to the imposition of a discrete Z, symmetry. To understand the origin of this geometric
suppression would require knowledge of the GUT singlet matter curves, which in turn requires
a knowledge of the global geometry. From our limited understanding of the global aspects of

F-theory this just corresponds to an assumption about the global completion of the model.



Chapter 5

Bulk exotics

5.1 Introduction

In Chapter 2, a full classification of how Es, SO(10) and SU(5) GUT groups arise in the semi-
local picture has been presented, where the homology classes of the matter curves were calcu-
lated in each case through the spectral cover formalism. However, as well as matter transforming
in the fundamental representation of the GUT group localised on curves on S, in all these cases
there will also be bulk matter, coming from the adjoint representation of the GUT group. In
the case that the GUT group is broken down to the Standard Model (SM) gauge group by flux,
there are topological formulae which dictate the multiplicities of these adjoint states [7]. It was
demonstrated in [9] that when the GUT group is SU(5), bulk matter with exotic charges under
the SM gauge group can be eliminated from the spectrum provided certain topological proper-
ties of the manifold are satisfied. However, the same study pointed out that when the GUT group
is SO(10) or higher, some bulk exotics must always be present in the low energy spectrum. As
such, in order to give these exotics masses, we can look for the topological requirements for
them to appear in vector-like pairs, and then turn on VEVs for suitable singlets (such as the
’gluing morphism’ of [105]). The presence of these bulk states in the spectrum will clearly af-
fect the running of the gauge couplings and their unification, and in [98] it was shown that states
descending from the adjoint of SU (5) with exotic SM charges must be completely removed from

the spectrum (in the way of [9]) due to RGE arguments.

In this chapter we will consider models where the GUT group is Eg, and is broken by flux

breaking down to the Standard Model gauge group via the sequence of breakings

Es — SO(10) xU(1), (5.1)
SO(10) — SU(5)xU(1), (5.2)
SU5) — SUQ3)xSUQ2)xU(1)y. (5.3)

115
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In addition we shall consider models where U(1)y and U(1), are both broken near the GUT
scale by the vacuum expectation value (VEV) of some scalar field or where a particular linear
combination, under which the right handed neutrinos have no charge, survives down to the TeV

scale, namely [75, 88],

1 V15
U(l)N:ZU(l)x—i-TU(l)V,. 54
As the entire breaking of Eg down to the Standard Model gauge group (perhaps also including
a surviving U (1)y) will be achieved by flux breaking, this will necessarily involve bulk exotics

appearing below the string scale, which will be the principal concern of this chapter.

We first focus on the bulk exotics coming from the adjoint 78 dimensional representation of Eg,
and look at how topological properties of the internal manifold restrict the elimination of these
exotics from the spectrum, and dictate the numbers of exotics which cannot be removed. These
constraints are then translated into topological restrictions, which then determine the multiplici-
ties of vector-like matter. We impose constraints that exotic matter should appear in vector-like
pairs and hence can be eliminated from the low energy spectrum by turning on VEVs for ap-
propriate singlet fields. We show that it is possible that all bulk exotic as well as matter exotics
could have masses close to the GUT scale leading to an MSSM type theory somewhat below
the GUT scale. However, there is the possibility that some bulk exotics from 5s of SU(5) could
get TeV scale masses whereas those from 10s could be near the GUT scale, leading to a char-
acteristic spectrum involving TeV vector-like pairs of d-like and H,-like bulk exotics, with the
distinguishing feature that there will always be one more vector pair of H;-like states than d¢-
like states. Although such bulk exotics would by themselves spoil gauge coupling unification,
when combined with matter exotics, corresponding to having complete 27 dimensional repre-
sentations of Eg at the TeV scale, gauge coupling unification is restored. We emphasise that,
without such bulk exotics, the TeV scale matter exotics would lead to an unacceptable splitting
of the couplings, and it is only the combination of TeV scale matter exotics from the 27s plus
TeV scale bulk exotics from the 78 which (miraculously) restores gauge coupling unification.
The resulting TeV scale matter exotics plus bulk exotics is equivalent to four extra 5+ 5 vector
pairs of SU(5), beyond the minimal supersymmetric standard model (MSSM) spectrum. The
characteristic prediction of F-theory Eq GUTs of the matter content of four extra 5+ 5 vector
pairs can be tested at the LHC. This may be compared to the equivalent of three extra 5+ 5
vector pairs predicted by the E6SSM [75, 88].

The layout of the remainder of the chapter is as follows. In Section 5.2 we review the basic
issues related to bulk exotics, including topological formulae from [9], before applying these
ideas to the E¢ case, and working out the topological constraints. These constraints are then
translated into relations between the multiplicities of bulk exotics which appear in vector-like
pairs. Section 5.3 is concerned with gauge coupling unification, including a renormalisation
group equation (RGE) analysis taking into account the constraints on exotics, and also the de-
pendencies on the exotic masses of the GUT scale and splitting of the gauge couplings are
studied. In Section 5.4 we discuss E¢ models from F-theory, where the bulk exotics are put into

the context of two realistic models given in Chapters 3 and 4 ([1] and [2]). In particular we
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discuss the possibility that some bulk exotics could survive down to the TeV scale, and show
how, together with the matter exotics predicted by these models, they restore gauge coupling

unification.

5.2 Review of issues related to bulk exotics

5.2.1 Formalism and SU (5) example

In F-theory constructions, the appearance of matter is closely related to the topological proper-
ties of the internal space. The multiplicities of states are given by specific topological formulae,
and therefore are subject to constraints which have to be taken into account. Bulk exotic matter
arises from the decomposition of the adjoint of the GUT group Gs. When the gauge group Gs
is broken to a group I's by turning on fluxes in a subgroup Hg, with Gg D I's X Hs, the adjoint
of Gs decomposes into representations (7;,7;) of I's x Hg,

ad(Gs) = &; (5, ®T)) (53)

Assuming that S is a del Pezzo surface, the multiplicity of four-dimensional massless fields

transforming in a representation 7; of I's is given in terms of the Euler characteristic by

=148 =~ (143a(%) (@ (Z) +a () ) 56)

where .Z; is a line bundle transforming in the representation T; of Hy, and the topological quan-
tities ¢1(.Z}), c1(S) are the first Chern classes of .Z; and S. The multiplicity of the conjugate
representation can be found by noting that ¢, (.Zj’l) = —c1(%}), leading to the equation

i= 129 =~ (1430 @) al2) - JalZ)am) 6D

In the case where we are dealing with states which transform in a representation of Hg corre-
sponding to a direct product of line bundles so that & = £ ® %', wehave nj = —x (£ ®.Z",S)

where
X($®$,,S) =1 —I—%{Cl(g)-C](S)@C](f’)-C](S)}
+%{C1($)-Cl($)@01($/)-C1($/)} (5.8)

Taking for example the exotics coming from the adjoint of SU (5) after hypercharge flux breaking

to the Standard Model, we have the decomposition
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24—>(8,1)04—(1,3)04—(3,2)7%+(§,2) (5.9

o[}

5
where the line bundle ;" is associated to the hypercharge. This decomposition gives rise to
the states (3, 2)72 and (3,2) s which are in exotic representations of the SM gauge group. It has
been shown in [98] that the presence of these exotics lower the unification scale to unacceptable

values, so we must require that these states are not present in the spectrum. Using Egs. (5.6) and

(5.7), and labelling the multiplicities of (3,2) s and (3, 2)% states by m and m* respectively, we

have

m—m"=—c1 (%) ci(S) (5.10)
m+m*=*(2+61($y)-cl($y)) (5.11)

If we require there to be only vector-like pairs of bulk exotics in the spectrum, Eq. (5.10) tells

us that the following dot product has to be zero

(L) -e1(S) =0 (5.12)

If we further require the complete elimination of these exotics, then we must demand also that

the sum has to be zero, so from Eq. (5.11), we can see that the line bundle has to satisfy

Cl(gy)-q(gy) =-2 (5.13)

which corresponds to the condition for ¢ (-%y) to correspond to a root of Ey.

5.2.2 Eg Bulk Exotics and their SU (5) picture

It has been shown in [9] that bulk exotics coming from the adjoint of the GUT group on S cannot
be avoided in the case where the gauge group is SO(10) or higher, and the breaking of the GUT
group down to the Standard Model is achieved by flux breaking. If we take the GUT group to

be Eg, the spectrum can be found by decomposing under the Es enhancement

Es D Egx SU(3).

o (5.14)
248 — (78,1)+ (27,3) + (27,3) + (1,8)
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The SM can be achieved by turning on fluxes in the U(1)s contained in the following sequence

of rank preserving breakings:

Es— SO(10) x U(1)y,
—SU(5) x U(1)y xU(1)y (5.15)
—SU3) x SU(2) x U(1)y x U(1), x U(1)y

In order to discuss the bulk exotics, we must decompose the adjoint of Eg appearing in Eq.
(5.14) under the breaking pattern of Eq. (5.15) as follows

78 = (1,1)0,00+ {(1,1)0,00+ (1, 1)0,00 + (8, 1)0,00 + (1,3)000+ (3,2) =500+ (3,2)5,0.0
+(3,2)140+ (3,2) 1,40+ (3, 1)—s40+ (3, 1)a—s0+ (1, 1640+ (1,1) ¢ 40}
+{(1,1)0-5-34+(3,1)23-3+ (1,2)—33-3+ (1, 1)6—1-3+ (3,2)1-1—3+ 3, 1) 413}

+{(1,1)os53+ (3, 1) =233+ (1,2)3-33+ (1,1) 613+ (3,2)—1,13+ (3, a3}
(5.16)

All representations are charged under three U(1)s, and all triplets of U(1) charges can be ex-
pressed as a linear combination of the following line bundles

21 =(5,0,0), £ =(1,4,0), L3 =(1,—-1,-3) (5.17)

In Table 5.1 we write down the multiplicities of the exotic states coming from the adjoint of Eg

(where the correct normalisation for the U(1)y is given by dividing by 6)

Exotic X; Multiplicity n; Exotic X; Multiplicity n;

X =(32); n :_%(gl?s) Xe=(31)1  ne=-x(£r®%,5)
X=(3.2), m=-1(%.5) =02, m=-—2% e LHeHS)
X3=(3,1); n X(»gl*l@fz,s) Xs=(L1)1  ng=—x(L1®2,S)
Xy=(1,1) n4——%(-§f1 ©2,5) || X=021 no=-x(%4.)5)
Xs=(L1)o ns=—x(& ' '®©24,)S) | Xi=0(,1)_2 mo=-2(%"'02,S)

Table 5.1: E¢ bulk exotics and their multiplicities

We can see where the exotics fit into the SU(5) picture as follows (where the un-normalised

U(l)y xU(1)y x U(1)y charges of the SU(5) states are indicated as subscripts),
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533 —(1,2)-33-3+(3,1)23 -3
X7 Xe (5.18)

1040 —(1,1)640+(3,1)—440+(3,2) 140
X4 X3 X5 (5.19)

Xs X0 Xo (5.20)

2400 — (1,1)0,00 + (8,1)0,0,0 + (1,3)0,00+(3,2) =500+ (3,2)5,0.0
1 Xi (5.21)

>

5.2.3 Removing bulk exotics

When breaking the adjoint of a high gauge group there are always representations beyond those
of the SM spectrum. These extraneous matter fields may be classified according to their charges
in two categories: the ones that carry charges like the SM fields and those which have fractional
charges other than those of the SM quarks. It can be seen that the exotics X3 and X have the
same SM quantum numbers as u¢, X, and Xy have the same as Q, and X, and Xg the same as
e, with one set of states coming from Eq. (5.19) and the other coming from Eq. (5.20). X;
has exotic charges under the SM gauge group, and so we wish to remove these states from the
spectrum. Xg and X7 have the same SM quantum numbers as d° and H; respectively, and if
present in the spectrum, we must require that they appear in vector pairs, and get mass via the

couplings

1o0-53-3-5-33 — SX6X + SX7X7

_ _ _ (5.22)
240’0 . 53y,3 . 5,373 — S/X6X6 +S/X7X7

Requiring that X and X7 occur in vector pairs corresponds to imposing the conditions ng — ng =

n7 —n3 = 0. Using Table 5.1, this leads to the following topological constraints

c1(8)-c1(L) = —ci1(S) -1 (L) (5.23)
ci(8)-ci(&) =0 (5.24)
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Presence of the X; states with exotic SM charges in the spectrum has been shown to lower the
unification scale to unacceptable values, so requiring that these states are completely removed

imposes the constraints (from Appendix D)

c1(8)-c1(£1) =0

(5.25)
C1 (.,% )2 =-2

From Eq. (5.17) and Table 5.1 along with the decompositions in the SU(5) picture, it can be
seen that .#] corresponds to the hypercharge bundle. As such, Eq. (5.25) simply corresponds to
the normal SU (5) condition c1 (%)% = —2.

If we were to impose that each type of exotic came in vector pairs individually (i.e n; = n; for

i=1,...,10), from Appendix D we would be lead to the case of
C](S) 'Cl(.iﬂl) = Cl(S) . Cl(‘iﬂz) = C](S) 'Cl(.,%) =0 (526)

After imposing Eq. (5.25), we can see that the only further choices we can make to eliminate

some exotics (without getting negative numbers for any multiplicities) is

c1(L)? =2 (5.27)
c(B)r=-2 (5.28)

This ensures that the exotics X, and Xg are completely removed, in addition to X;. All other

exotics are present in vector pairs in this case, with their multiplicities given by

nr=n;=2, n=n;=1 (i=3,4,56,8,10)

5.2.4 A more general case
As we have seen, we have two different 10 representations of SU(5), with different charges

under U(1)y and U(1),, and so we can either give masses to the exotics contained in these 10s

by couplings of the type

1070 . 10470 . E,470 — SXzYz + SX3Y3 + SX4Y4
2400-1040-10_40 — S'Xo X2+ S X3X3 + 5’ X4 X4 (5.29)

or
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1_5_3-1040-10; 3 — X5(X2X9) + X5(X3X10) + X5(X4X3) (5.30)

where X is a singlet exotic (corresponding to the ‘gluing morphism’ of [105]) coming from the
16 of SO(10), inside the 78 of Eg. As such, we can more generally impose

ny +ng =n; +ng
ng+ng = nj +ng (5.31)

n§ +ny9 =n3 —|—nT0

It can be seen that all three of these constraints are satisfied by imposing Eq. (5.23). As such,
with Egs. (5.24, 5.25) also imposed, the multiplicities can be written in terms of the dot products

A=ci(5) - ci(L)=—c1(S)-c1(A)
B:C](gz)z
C=a(2) (5.32)
n=ny=0 ne = 1_g_%
_ A B _ B C
n2—;1—B§—§ n7_;§E§
n3=7%—-2 ng=s5-—3
”l4:_%—g I’l9:—1—i—%—%

Table 5.2: Multiplicities of the E¢ exotics in terms of the topological numbers A, B,C
(see text).

The multiplicities are then given in Table 5.2 where when dealing with the conjugate represen-
tations, A changes sign, but B and C keep the same sign. We can now think about different
combinations of exotic matter which satisfy these constraints, and consider the effect on gauge

coupling unification. The multiplicities of exotic matter are as follows

ng=ny+ng+ns+ny=—(B+C)—4=y—-4
ne =n3+nyp+ny+njy=—(B+C) =y

Nee =ng+ng+n;+ng=—(B+C) =y
nge =ne+ng=—(B+C)—2 =y-2
ng, =n7+n;=—(B+C) =y (5.33)

where we see that everything can be expressed in terms of the parameter 7, given in terms of

Chern classes by
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y=—c1(£) —c1(A)? (5.34)

It can be seen from Table 5.2 that requiring ns = n3 for the singlet X5 leads us to the case
A = 0. As such, all the exotic matter will satisfy n; = n}, although we will still be able to
get masses from both Egs. (5.29) and (5.30). It is important to note that as everything comes
in conjugate pairs, anomalies are always cancelled. We can now work out the contributions
to the beta functions due to the exotic matter, and discuss gauge coupling unification. Note
that in order to satisfy the requirement that all multiplicities are positive, we must have y > 4,
with the minimal value being taken in the case where the line bundles satisfy the condition
c1()? = c1(L)? = —2, meaning that ¢ (%) and c1 (%) correspond to roots of Eg.

5.3 Gauge Coupling Unification

5.3.1 The effect of bulk exotics at a single mass scale My

It has been shown in [40] that in the context of an SU(5) GUT, the splitting at Mgy due to

hypercharge flux is
b _ 1
wMavr) oG
1 1
=——y+x 5.35
wMavr) oG -3
1 1 . 3
= ——y+—-x
wMeur) @G ° 5

where x = —1ReS [ ¢3(%) and y = ReS [ ¢}(.Z,) associated with a non-trivial line bundle .%,
and S = e~ +iCj the axion-dilaton field. It is argued in Section 4.3.2 that the U (1)y and U (1),
fluxes do not lead to any relative splittings of the gauge couplings at unification, although there
could be a constant shift in all the couplings at each breaking. As such, Eq. (5.35) can be used
in the case of interest here, and combining the three equations shows that the gauge couplings

at Mgyt are found to satisfy the relation

1 5 1 1 2 1
_5 _ 42 (5.36)
oy(Mgur) 3 ai(Mgur) oo(Mcur) 3 o3(Mcur)

If we assume that the bulk exotics all decouple at a single mass scale My, the low energy values

of the gauge couplings are given by the evolution equations

1 1 b* Mgur b, My
= 4+ 2%y RN M. (5.37)
OCa(Mz) aa(MGUT) 2r Mx 2n My
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where b}, are the beta functions above the scale My, and b, are the beta functions below this
scale, i.e. those of the MSSM. Combining Eqs. (5.36) and (5.37) leads to the relation for the
GUT scale

1-p
x5 (M.
Moyr = ebrP <X> My (5.38)
Mz
where .27 is a function of the experimentally known low energy values of the SM gauge coupling
constants
5 1 1 2 1
4 304 (Mz) OCz(Mz) 3 OC3(M2)
cos(26y) 2 1

- _= (5.39)
Olem 3 a3(Mz)
Here use has been made of the relations ay = o, /(1 —sin® 6y ) and o = @, /sin® By. We have

also introduced the ratio p

_b
B.

where 3, B, are the beta-function combinations in the regions Mz < 4 < My and My < p <

o (5.40)

Mgy respectively

2

Be=by —by— b3 (5.41)
2

B=by—by— 303 (5.42)

Recall now the beta-function coefficients ( b; = %by)

3 1 1 4 3
b] = 6+ ﬁ(}’lh + I’lL) + gndc + El’lQ + gn”c + g Nec (543)
1 3
b, = E(nh +7’lL) + 5 no (5.44)
1 1
by = -3+ 5 nge +ng + 5 Nye (5.45)

where n, ;. counts the number of Higgses and exotic matter.

Below Mx we have only the MSSM spectrum, thus ng = 3,n, = 2 and all extra matter contribu-

tions are zero, n; = 0, thus

2
{by,bz,b3} = {11,1,—3} — B :by—b2—§b3 =12

Above My we have the extra matter given in Eq. (5.33) in addition to the two Higgses of the
MSSM, giving for the beta functions
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1
bE =~ (29 + 10y)

3
n=27—5

by =2(y—4)

B =120 (5.46)

As such, we can see that the beta function combination 8, does not depend on the parameter y

and so the choice of this parameter will not affect the unification scale. Putting the numbers into

Eq. (5.38) gives

My
2.09 x 1016 GeV

2
5
Mgyt = ( > 2.09 x 10'® Gev (5.47)

Clearly, if we take My = 2.09 x 10'°GeV, we also get Mgyr = 2.09 x 10'°GeV. We can see
how different values of My change the GUT scale in the graph of Figure 5.1.

Maur

GeV

2.0x10% -
15x10'
1.0x 10

5.0x 10"

Mx

L L L L L L L L L L L L L L L
5.0x 101 1.0x10% 15x 10 2.0x 10%%Gev

Figure 5.1: Graph of how the bulk exotic mass scale My impacts on the GUT scale Mgyr.

5.3.2 The splitting parameter, x

Combining Eqs. (5.35) and (5.37) leads to the following expression for the parameter x

11 b — b M by —b M
(0%) [07] My, 2n Mx 21 My
26sin? Oy — 3 9 11 M
J 208l o3 9 (M (5.48)
200, 1003 107 M,
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It can be seen that the splitting of the gauge couplings at the unification scale does not depend
on the parameter Y. It should also be noted that as x is given by x = —%ReS [ 3 (&) with

S =e"? +iCy, it must take a value between 0 and 1.

X
12}
10}

08f

04f

02f

Mx
| | | |

5.0x 10" 1.0x 10% 1.5% 10 20x10  Gev

Figure 5.2: The dependence of the splitting parameter x on the bulk exotic mass scale
Myx. Only values of x < 1 are acceptable, leading to the approximate lower bound on
the bulk exotic mass scale My > 2 x 103 GeV. Note that this bound assumes that no
matter exotics are present.

5.4 Eg Models from F-theory

5.4.1 Matter exotics only

We start by looking at the class of models proposed in Chapters 3 and 4, which were motivated
by the fact that any model involving complete 27s of Eg, with no matter coming from the ad-
joint 78 representation, automatically satisfies anomaly cancellation involving most of the extra
U (1)s. Here we make the same choices for the M and N integers specifying the flux breaking as
in Chapters 3 and 4, and these choices are summarised in Table 5.3. Although the SM particle
content is equivalent to having three complete 27s, it is clear that the particles are originating
from incomplete multiplets of several different 27s. The U (1)y charges of all the particles in the
spectrum can be computed, and the results are shown in Table 5.3. As required, the right handed
neutrinos have zero charge under U(1)y. The final column of Table 5.3 shows the low energy
spectrum of the models of Chapter 4 (i.e the E6GSSM) obtained by eliminating the required ex-
otics from the previous column, which shows the SM particle content after flux breaking. By
comparing the final two columns of Table 5.3, we can see that the matter exotics which we wish
to remove are the vector pairs 2(L+L),Q + Q,2(u¢ +u),d + d° and Hy + H,;. Large masses
will be generated for these fields through their coupling to SM singlet fields which acquire large
VEVs.

From the E¢ point of view, the only E¢ allowed trilinear term in the superpotential is 27,27, 27;,.

The vectorlike pairs which we wish to remove from the low energy particle content are those
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which have components in both the 27, and 27,, multiplets. As such, they are removed by

introducing 631, an Eg singlet, with couplings:

93127,1@ = 05 Q§+ 03, (2146)(2?) + 931d¢‘ﬁ+ 03, (2L) (2Z) + 931Hdﬁd. (5.49)

If 65, gets a large VEV these vector states get large masses as required. The difference between
this case and model 1 (in Chapter 3 is that in model 1, 634 also gets a large VEV. This singlet
has the following couplings

6345152 = 634[3D +2H,|[3D + 3Hy] = 634(3(DD)] + 634[2(H,Hy)]. (5.50)

In the E6SSM, these matter exotics are light, and so instead of getting a large VEV, this singlet
now must acquire a TeV scale VEV. It was checked that the F and D-flatness constraints are

satisfied, and that rapid proton decay is forbidden for the realisation of the spectrum [1].

E¢ | SO(10 SU (5 Weight vector On Ny | M SM particle content | Low energy spectrum
g u(1) P 8y sp

27, 16 53 1 +15 \/LTO 1 4 4d° +5L 3d° +3L
27, 16 104 f ﬁ —1 4 40 + 5u° + 3¢° 30+ 3uf + 3¢
27,1 16 015 t —15 0 0 nis R -
27, 10 51 —t — 13 —ﬁ -1 3 3D +2H, 3D+2H,
27, 10 5, 1+ — ;W 1 3 3D +4H, 3D +3Hy,
27, 1 9714 t—t4 Z%/W 0 ni4 7914 _ 014
27, 16 35 13415 \/% 1] -1 iwrz% -
27, 16 10, 1 ﬁ 1 —1 Q+2ut -
27,§ 16 635 13 —15 0 0 n3s - -
27, 10 { H, —21 — 2% 1 0 H, H,
27, 10 54 13+1 — ;W -1 0 H, -
27, 1 034 f3—14 2\% 0 n34 034 034

- 1 051 13—t 0 0 n3 631 -

- 1 953 t5—13 0 0 ns3 953 -

- 1 054 Is—14 ﬁgo 0 ns4 054 -

- 1 045 Iy —1s “svw | 9 nys 045 -

Table 5.3: Complete 27s of Eg and their SO(10) and SU (5) decompositions. The SU (5) matter
states decompose into SM states as 5 — d°,L and 10 — Q,u¢, e with right-handed neutrinos
1 — v¢, while SU(5) Higgs states decompose as 5 — D,H, and 5 — D,H;, where D,D are
exotic colour triplets and antitriplets. We identify RH neutrinos as v¢ = 0s.

Clearly the matter exotics (d +d), (Q+0Q), (Hy+Hy), 2(L+L), 2(u¢ +u°) get masses and
decouple at some scale Mp,, < Mgyt due to the couplings in Eq. (5.49). The matter exotics
3(D+ D), 2(H,,H,) get masses and decouple at a scale Mg,, < Mg,, due to the couplings in Eq.
(5.50). In [1, 2] (which we will call models 1 and 2 respectively from now on) two different
classes of model were proposed only distinguished by the mass scales of the matter exotics. The
scales of the two models are summarised below.
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In model 1 (“MSSM”):

M) =131x10'%Gev
M) =0.306 x 10'°GeV

In model 2 (“E6SSM”):

M) = 1.44 x10'°GeV

31

M) =1x10°GeV

The main difference between the two models is clearly that in model 1 the 634 matter exotics
are computed to be almost as heavy as the 03; exotics, whereas in model 2 the 834 matter
exotics are kept light, getting TeV scale masses. We see that model 1 reproduces the MSSM
somewhat below the GUT scale since only the MSSM spectrum survives below Mg,,, whereas
model 2 corresponds to the so called E6SSM above the TeV scale (or NMSSM+ if the U(1)y
gauge group is broken at high energy). However strictly speaking the spectrum of model is
not quite that of the E6SSM since it only contains the matter content of three 27 dimensional
representations of Eg and does not contain the extra vector-like matter usually denoted as H' and
H’ which is required for gauge coupling unification. As we shall see shortly, the role of the extra
H' and H' will be played by bulk exotics.

5.4.2 High scale bulk exotics

The above analysis does not so far include the effect of bulk exotics. However, as we have seen
earlier in this chapter, such bulk exotics are an inevitable consequence of the flux breaking of Es.
As remarked above, such additional bulk exotics at the TeV scale, not included in the spectrum
so far, are able to provide the extra vector-like matter to enable gauge unification to be achieved
for the E6SSM. However the resulting spectrum will differ somewhat from that of the E6SSM,

providing a distinctive experimental signature of the F-theory model at the LHC.

In both the above models, the beta function combination given in Eq. (5.42) is given by § = 12
(the MSSM value) in all of the regions Mz < u < Mp,, and My,, < 1 < Mg, and My, < U <
Mgyr. As such, assuming that the bulk exotics get masses My, somewhere between My, and

Mgy, we will have an equation analogous to Eq. (5.38)

21
Maur = e3P MoMy P My "My (5.51)
where in the same way as for Eq. (5.38),p=n =241 = % As such, the GUT scale only depends
on the mass of the bulk exotics, and is still given by Eq. (5.47). If we take My = Mgyr, the
RGE analysis is obviously unchanged from that of [1, 2], however if we take Mx = My, , the
GUT scale is lowered slightly by Eq. (5.47)
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a

Figure 5.3: Gauge coupling unification in model 1 (MSSM) with high scale bulk ex-
otics.

(S

_—

Figure 5.4: Gauge couplings fail to unify in model 2 (E6SSM) with high scale bulk
exotics.

MY, =173 x10'Gev

ME), = 1.80x10'9Gev

For model 1 (MSSM) the one loop running of the couplings is shown in Figure 5.3. This takes
into account the modification of the beta functions due to the bulk exotics above the scale My =
Mea,,. In this case the couplings are split by 2 percent (compared to 1.3 percent when the bulk
exotics are not taken into account), and it can be seen that the effect of bulk exotics near the GUT

scale on the splitting of the gauge couplings is small (0.5-1 percent depending on the model).

For model 2 (E6SSM) the splitting is 35 percent (compared to 34.5 percent in the case with no
bulk exotics), which would correspond to x ~ 5. This is shown in Figure 5.4. As pointed out
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before, x must take a value between 0 and 1 and so model 2 must be ruled out in the case where

the bulk exotics get masses near the GUT scale.

5.4.3 Low scale bulk exotics

We have seen that as long as the bulk exotics get masses close to the GUT scale, the GUT scale is
not lowered drastically. However, due to the fact that the bulk exotic spectrum ensures anomaly
cancellation, the gauge groups U(1), and U(1)y and the bulk exotics could in principle survive
to the TeV scale. We will now look at this possibility that at least some of the bulk exotics are
light. From Eqgs. (5.43, 5.44, 5.45) we have

B = 12—|—7’luc +nec —2I’lQ
0P = dnye + O6nee —20n¢ (5.52)

where 03 = B, — B is the difference in  as we move a higher energy scale where a number
of exotics (6nye, On.c and Onyp) join with the massless spectrum. In models 1 and 2 there is no
exotic e type matter and the only Q and u“ exotics get the same mass, near the GUT scale. In
both models, there is twice as much u¢-like exotic matter as there is Q-like, and so 68 = 0 when
we do not take into account contributions from the bulk exotics. For the bulk exotics, Eq. (5.33)

gives

OB =nyc+nee —2ng =38 (5.53)

Previously, we looked at the case where My > M’ and we found that the GUT scale is slightly
lowered. If we now consider the case where My < Mp,,, Eq. (5.51) gets modified to

2m — — _
Mayr = e#7° MOMY P My "My (5.54)
with
p = B = —
BGSI 5
T’ fd ﬁx :1
ﬁ931
a=Pou (5.55)

B,
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Again, we end up with Eq. (5.47) for the GUT scale, with the bulk exotic mass (the mass of
those coming from a 10 of SU(5) if we allow the 5s and 10s to get different masses) being the
only exotic mass entering the equation. As such, apart from the possibility that all bulk exotics

get masses near the GUT scale (as previously discussed), we have two other possibilities:

e All bulk exotics at the TeV scale: In this case Eq. (5.54) tells us that Mgyt ~ 1 x 10 GeV.
It may seem at first sight that such a low unification scale would lead to dangerous dimen-
sion 6 operators giving proton decay rates which are much faster than experimentally
observed. However, in [106] a method has been pointed out for suppressing proton-decay
in F-theory SU (5) with hypercharge flux breaking. The idea is that since the dangerous
operators involve the SU(5) gauge bosons X,Y in trilinear couplings such as XQu¢, a
computation would consist of firstly computing the trilinear coupling by using the wave-
function overlap techniques of eg. [85], and then integrating out X,Y. The key is that the
SU (5) gauge bosons need not be localised on a matter curve, but can be spread out over
S. As such, these fields feel the effect of hypercharge flux in a different way to those on
matter curves, and this gives rise to a suppression of the integral. This way, we can in
principle avoid rapid proton decay, even with a seemingly low unification scale. Even
though this is the case, when all the bulk exotics are at the TeV scale the splitting of the
gauge couplings is large, and x > 1. As such, this possibility must be ruled out and we

must look at the next case.

e Bulk exotics from 10s heavy, but those from 5s light: As the singlets S and S" which give
the 5 state mass through Eq. (5.22) can also give the 10s mass through Eq. (5.29), we
reject the possibility of heavy 5s and light 10s. However, since the 10s can get mass from a
different singlet in Eq. (5.30), it would seem that there is a possibility of giving this singlet
a much bigger VEV, and keeping the 10s heavy whilst the 5s could be TeV exotics. If this
was the case, we would once again have Mgy ~ 2 X 10'°GeV due to the fact that the 5s
do not contribute to 6 of Eq. (5.52). If the splitting parameter x is calculated for this
case with the spectrum of model 1, it turns out to be negative so again we must rule this
case out. This means that for model 1, high energy bulk exotics are the only possibility,
but on the contrary we will see that for model 2 these low energy bulk exotics are the
only possibility. As pointed out previously, model 2 which has TeV scale exotics in its
spectrum cannot be compatible with bulk exotics with masses close to the GUT scale, as
x > 1 which is forbidden. However, if we have the bulk exotics which belong to 5s of
SU(5) at the TeV scale as described above, it turns out that the multiplicities of exotic
states forced upon us by topological constraints make the couplings unify. If we take the
mass of the exotics from 10s to be Mgy, we find x ~ 0.01, corresponding to a splitting
of approximately 0.2 percent. This effect is illustrated in Figure 5.5, which shows how
the low energy bulk exotics are precisely what is needed to make the couplings unify. In
addition to the 3(D + D), 2(H,,, H;) exotics which are also at the TeV scale, this leads to
a characteristic spectrum involving TeV vector-like pairs of d° and H,; exotics, with the
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distinguishing feature that there will always be one more vector pair of H, states than d°s.

(In the v = 4 case, we have one pair of d¢ states and two pairs of H; states).

Figure 5.5: Gauge coupling unification in model 2 (E6SSM) with TeV scale bulk ex-
otics.

In the presence of the large VEV for Xs, the F and D flatness equations of [2] must be modified
accordingly. It can be shown (see Appendix E that there is a solution to the flatness relations for
this model where X5 gets a large VEV without giving rise to dangerous operators. In this section
we have taken (X) = Mgy for simplicity and to illustrate its effects, although in a full study it
will be slightly lower, depending on the model building choices.

5.5 Conclusions

We have considered gauge coupling unification in E¢ F theory Grand Unified Theories (GUTs)
where Eg is broken to the Standard Model (SM) gauge group using fluxes. In such modes
there are two types of exotics that can affect gauge coupling unification, namely matter exotics
from the matter curves in the 27 dimensional representation of Eg and the bulk exotics from the
adjoint 78 dimensional representation of Eg. We then explored the conditions required for either

the complete or partial removal of bulk exotics from the low energy spectrum.

We have examined the conditions for the removal from the low energy spectrum of bulk exotic
matter from the adjoint of E¢ in terms of topological properties of the manifold. These conditions
led to the fact that all vector-like pairs come in multiplicities which depend on one topological
parameter, Y. We studied how the bulk exotics affect the one loop RGE anaylsis, and it was
shown that both the GUT scale and the splitting of the gauge couplings depend on the mass of
the exotics, but not on Y, meaning that the results are general for any Eg F-theory model using
fluxes to break the GUT group.

We then considered two realistic models Eg proposed in [1, 2], which we called model 1
(MSSM) and model 2 (E6SSM). Both these model involve matter exotics and only differ by
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the mass scale of the matter exotics. These models were then supplemented by either high or
low scale bulk exotics. It was demonstrated that if the bulk exotics acquire GUT scale masses,
only model 1 (of [1]) is viable, with Mgyt being lowered slightly (<15 percent), and the split-

ting of the gauge couplings being increased by less than 1 percent.

It was then proposed that the bulk exotics from 5s of SU(5) could get TeV scale masses whereas
those from 10s could be near the GUT scale due to a large VEV for a singlet charged under
U(1)y and U(1),. In this case model 1 cannot be realised, but it turns out to be the perfect
solution to unify the gauge couplings of model 2 [2], which without the bulk exotics would
be ruled out due to an unacceptable splitting of the couplings. Here we have a characteristic
spectrum involving TeV vector-like pairs of d° and H; exotics, with the distinguishing feature

that there will always be one more vector pair of H; states than d°s.

In summary, it is possible that all bulk exotic as well as matter exotics could have masses close
to the GUT scale leading to an MSSM type theory somewhat below the GUT scale. However,
there is the possibility that the bulk exotics from 5s of SU(5) could get TeV scale masses whereas
those from 10s could be near the GUT scale. Although such bulk exotics would by themselves
spoil gauge coupling unification, when combined with matter exotics, corresponding to model 2
with complete 27 dimensional representations of Eg at the TeV scale, gauge coupling unification
is restored. We emphasise that, without such bulk exotics, the TeV scale matter exotics of the
E6SSM would lead to an unacceptable splitting of the couplings, and it is only the combination
of TeV scale matter exotics from the 27s plus TeV scale bulk exotics from the 78 which, almost

miraculously, restores gauge coupling unification.

In the case of the E6SSM with TeV scale bulk exotics the resulting TeV scale matter exotics
plus bulk exotics is equivalent to four extra 5+ 5 vector pairs of SU(5), beyond the minimal
supersymmetric standard model (MSSM) spectrum. The characteristic prediction of F-theory
Es GUTs of the matter content of four extra 5+ 5 vector pairs can be tested at the LHC. This
may be compared to the equivalent of three extra 5+ 5 vector pairs predicted by the E6SSM
[75, 88].






Chapter 6

Conclusions

This thesis has been concerned with the study of semi-local F-theory GUTs arising from a
single Eg point of local enhancement, leading to simple GUT groups based on Eg, SO(10)
and SU(5). In Chapter 2 the SU(3), SU(4) and SU(5) spectral covers associated with these
GUT groups were analysed. Assuming the minimal 2 monodromy, the homology classes and
associated spectra after flux breaking were determined for each case. Furthermore, a group
theory dictionary was established between the different GUTSs, providing a very useful tool for

model building.

Using these results, in Chapter 3 an E¢ based model was constructed that demonstrates, for the
first time, that it is possible to construct a phenomenologically viable model which leads to the
MSSM at low energies. In this model, the exotics that result from flux breaking all get a large
mass when singlet fields acquire vacuum expectation values driven by F and D flatness. Due to
the underlying GUT symmetry and the U(1)s descending from Eg, baryon- and lepton-number
violating terms are forbidden up to and including dimension 5, and as a result, nucleon decay is
naturally suppressed below present bounds. The p-term can be generated by non-perturbative
U (1) breaking effects. After including the effect of flux and instanton corrections, acceptable
quark and charged lepton masses and mixing angles can be obtained. Neutrinos get a mass from
the see-saw mechanism through their coupling to singlet neutrinos that acquire large Majorana

mass as a result of the monodromy.

In Chapter 4, F-theory models were explored in which the low energy supersymmetric theory
contains the particle content of three 27 dimensional representations of the underlying E¢ gauge
group, plus two extra right-handed neutrinos predicted from F and D flatness. The resulting
TeV scale effective theory resembles either the E6SSM or the NMSSM+, depending on whether
an additional Abelian gauge group does or does not survive. However there are novel features
compared to both these models as follows:

(1) If the additional Abelian gauge group is unbroken then it can have a weaker gauge coupling
than in the E6SSM;

(ii) If the additional Abelian gauge group is broken then non-perturbative effects can violate the

135
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scale invariance of the NMSSM+ leading to a generalised model;

(iii) Unification is achieved in the E6SSM by the addition of doublet states from incomplete 27
representations, whereas in the F-theory case, there is a splitting of the gauge couplings at the
unification scale, although bulk exotics from the adjoint representation are always present which
can lead to precise unification in a natural way;

(iv) Proton decay is suppressed by the geometric coupling suppression of a singlet state, which
effectively suppresses the coupling of the exotic charge —1/3 colour triplet state D to quarks
and leptons;

(v) The D decays as a chiral leptoquark with couplings to left-handed quarks and leptons, pro-

viding characteristic and striking signatures at the LHC.

In Chapter 5 the issues of bulk exotics were studied, which Chapter 4 hinted at as being essential
for acceptable gauge coupling unification in models with light exotics. The chapter considered
the general setting of gauge coupling unification in Eg F-Theory GUTs where Eg is broken to
the Standard Model gauge group using fluxes. In such models there are two types of exotics
that can affect gauge coupling unification, namely matter exotics from the matter curves in the
27 dimensional representation of Eg, and the bulk exotics from the adjoint 78 dimensional rep-
resentation of Eg. Exploring the conditions required for either the complete or partial removal
of bulk exotics from the low energy spectrum leads to the conclusion that there are always bulk
exotics present. The multiplicities of these exotics are constrained by topological properties of
the internal manifold, and exotic spectra were presented which are compatible with the models
of Chapters 3 and 4. It was shown that (almost miraculously) gauge coupling unification may
be possible even if there are bulk exotics at the TeV scale. Indeed in some cases it is necessary
for bulk exotics to survive to the TeV scale in order to cancel the effects coming from other TeV
scale matter exotics which would by themselves spoil gauge coupling unification. The combi-
nation of matter and bulk exotics in these cases can lead to precise gauge coupling unification
which would not be possible with either type of exotics considered by themselves. The combi-
nation of matter and bulk exotics at the TeV scale represents a unique and striking signature of
Eg F-theory GUTs that can be tested at the LHC.

In conclusion, the local F-theory models studied here provide a good framework for phenomenol-
ogy, and the existence of consistent models with low energy exotics can even give interesting

glimpses into possible LHC signatures.



Appendix A

Group theory of Eg

With the nodes of the dynkin diagram of Eg labelled as in Figure A.1, the simple roots of Eg are
[107]

_( LI S IEEN
T2 2 22
o = (— 1,1,0000)
= (0,—1,1,0,0,0)
a4_( ~1,1,0,0)
:(000 ~1,1,0)
=(1,1,0,0,0,0) (A.1)

The Cartan matrix is given by A;; =

; and o; are simple roots. (Positive roots are
defined by the first non zero entry from the right being positive).

S O O O

The fundamental weights y; are a dual basis to the simple roots, defined by = a’ = %5‘7 . They

are given by
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O—CO—0O—0O—0
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Figure A.1: Dynkin diagram for E¢ with labelled simple roots
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There is an SU (2) algebra associated with each root, and this is encoded in the master formula

- 1
Be (-9 (A3)

a-o 2
where p represents the maximum number of times the root ¢ can be added to the weight i to
get another weight, and g represents how many times it can be subtracted. The highest weight
of the 27 representation of Eg is such that i + ¢ is not a root for any simple root, and as such
the highest weight is w; = ;. Now the master formula can be used to build up a picture of the

weight space of the 27 representation
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Fundamental weight basis

Normal basis
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Table A.1: The weights of the 27 representation of Eg
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Figure A.2: The weights of the 27 representation of Eg
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The homology classes of the Singlets

This Appendix is taken directly from [1]. In order to determine the homology classes for the
singlets of a particular SU (n) , we first need to express the product of the the differences of the

roots #; —t; of the n'h degree polynomial P, = brs"* in terms of its coefficients by.

Consider first the simplest case bos> +bys+by =0. If 1,1 are the roots, we know
(tl —tz)(lz —tl) o« —A = —b% +4boby

Note that the same result is obtained from the determinant

1 b() b] b2
>-| 2b0 161 Ob) —= —b? +4bob, (B.1)
0
0 2by 1b

We can easily repeat this procedure for the cubic roots.

Consider now the generalization for the SU (4) case: According to known theorems (see theorem

2.5 of [108]) the required quantity is given by the Sylvester formula

bp by by by by 0 O
O by by by by by O
0 0 bo by by by by

4by 3by 2by bj 0 0O O (B.2)
0O 4by 3b; 2by b3 0 O
0 0 4by 3by 2b, b3 O
0 0 0 4by 3b; 2by b3

If these are the roots of SU(4), we have b; = Y ;t; = 0 and we get the result (2.91).
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The extension to SU (5) is straightforward. It can be computed form the determinant

by b by by by bs O 0 0
0 by b by by by bs 0 0
0 by by by by by bs O
0 0 by by by by by bs
Shog 4by 3by 2b3 b4 O O 0 O (B.3)
Sby 4by 3by 2b3 bs O O O
0 Shy 4by 3by 2b3 by O O
0 O 5by 4b; 3by 2b3 by O
0 0 0 5by 4by 3by 2b3 bs

o O

oS O O O

Setting b; = 0 we obtain the result quoted in the text.
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Anomaly cancellation in E6 models

It has been noted in [109] that in models with multiple perpendicular U(1) symmetries, there is a
U(l)y —U(1) —U(1) anomaly which is not automatically cancelled through the spectral cover

approach. In order for this anomaly to be cancelled, the following condition is required:

3Y(010)(Q0) Nl + Y (0D (01PN =0 (C.1)

Cio C_£

where the sums are over all the 10 and 5 matter curves, Q denotes the charge under either the
U(1) labelled A or the one labelled B (allowing for mixed anomalies in the case of multiple
U(1)s), and the Ns refer to the chirality induced by hypercharge flux. In the models considered

in this thesis, we have 3 U(1)s, with generators

1

= diag(—1,—-1,—1,—1,4 C.2

Oy > /10 g( ) (C2)
1

= —diag(1,1,1,-3,0 C.3

Oy NG g( ) (C.3)
1

= —diag(1,1,-2,0,0 C4

0. N g( ) (C4

As such, we can tabulate the U(1) charges of all the 5 and 10 curves in the model

We can now check if Eq. (C.1) holds for all the combinations of A,B = x,y, L in U(l)y —
U(1)* —U(1)B. Plugging in the charges and the Ny values from Table C.1 into the left hand
side of Eq. (C.1) gives

143



144 Appendix C Anomaly cancellation in E6 models

Curve | Oy Oy 01 | My
10y | -1 T 1 -1
210 | 2v/6 2\3
10, __L 7 L —_ L 1
210 | 26 V3
54 L _ L1 L 1
“ V10 V6 V3
5 L _ L I -1
V10 V6 | 2\3
5, L L — 1 13
V10 Ve 2v3
53 3 T 1T 1
2V/10 26 23
5, _L L hE 1
V10 V6 V3
55 3 | L L 1
2v/10 2/6 | V3

Table C.1: U(1) charges of the 10 and 5 matter curves

1 1. 1 1 1 9 1 9
A=y B= IR DO S S S
2B=x =3t ho 10 0 w0 ! T
1 1. 1 1 1 1 1 1
A=y.B=y =3 24 ot 676 Tt 2 70
A=x,B=y =3 ! |+ ! + Lo + ! + . | =
ARV 4@4@0 V60 V60 V60 4v60 | v60  4ve0

This shows that the relation is indeed obeyed for the cases U(1)y —U(1)X —U (1), U(1)y

UMY —-uU(1)Yand U(1)y —U(1)* —U(1)Y. (This was to be expected, as U(1), and U(1)y
are both embedded in E6). However, for the 3 anomalies involving U(1), Eq. (C.1) is not
satisfied, meaning that the anomalies involving U (1), are not cancelled. However, it should be

noted that [95] points out that anomaly cancellation constraints can be relaxed in the case of
geometrically massive U(1)s in F-theory.
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Topological relations arising from the

elimination of bulk exotics

The requirement that each type of exotic matter occurs in vector pairs is given by n; —n; = 0.

The extra requirement which would mean that this type of exotic is completely eliminated from

*

the spectrum is n; + nj

0. These requirements are given here for each type of exotic. Note

that not all of these relations can be satisfied at once, and are written here on the assumption that

a subset of them will be satisfied.

n—n;=0=c(S)-c1(Z)=0
n+n=0=c/ (L) =-2

nz—n§:0:>cl(S)-cl(.§f2):0
n2+n§:O:>c1($2)2:—2

I’l3—l’ly3F :0:>C1(S)-C1($1) :Cl(S)'Cl(.iﬂz)
n3—|—l’ly3F :0:>C1(D§€1)2+C1($2)2 =2

n4—I’LZ:0:>C1(S)'C1($1) = —Cl(S)-Cl(gz)
n4—|—nZ:0=>Cl($1)2+01($2)2= -2
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n5—n§ :0:>01(S)-C1(,,%) :Cl(S)'Cl(gg) (D9)
ns+ni=0=c; (L) +ci (B2 =-2 (D.10)
n6—n220=>C1(S)-C1($2)=—01(S)-C1(.,2ﬂ3) (D.]])
ng+ng=0=c| (L) +ci1 (L) =2 (D.12)

ny —n? =0= Cl(S) 'Cl(.ﬁ/ﬂl) = Cl(S) -Cl(gz) +C1(S) -Cl(‘,%) (D.13)
n s =0=ci(A)+c1(A)? e (B =2 (D.14)
ng—ng =0=c1(S)-c1(Z1) = —c1(S) - c1(L) (D.15)
ng+ny=0=ci (L) +ci1 (L) =2 (D.16)
ng—nyg=0=ci(S)-c1(L)=0 (D.17)
ng+ny=0=c;(LH)*=-2 (D.18)
n]O_nTo:Ojcl(S)‘Cl(a%):CI(S)'CI(Q%) (D.19)

no+njo=0=c1(L4)*+c1(LB)? = -2 (D.20)



Appendix E

F and D flatness conditions with bulk

exotics

In the language of Table 4.1, the singlets X5 and X5 correspond to 645 and 0s4 respectively. As
these singlets get GUT scale VEVs in the E6GSSM model, we must check that this is compatible
with the F- and D-flatness conditions. The D-flatness condition for U4 (1) is

YO0 — 0D = — 2 g

19272°¢
= —XTrQ* (E.1)

This condition must be checked for all the U(1)s, the charge generators of which are given in

the form Q = diag[t,,t,13,14,15] by

0, « diag[—1,—1,—1,—1,4] (E.2)
0, < diag[l,1,1,—3,0] (E.3)
QL < diag[l,l,—Z,0,0] (E.4)

We can see immediately that if (645) = (654) = Mgyr, the presence of these VEVs will not
affect the D-flatness relations due to the relative minus sign in Eq. (E.1). As such, it is only
necessary to check the conditions for F-flatness. As in the E6GSSM model 63, and 653 get large
VEVs while 834 gets a TeV scale VEV, the only new problematic terms in the superpotential are

Wo = Aiji0is 02,05, + M, 0556, (E.5)
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As such, the F-flatness equations will be satisfied provided the following conditions are satisfied

IWs N
36 = R (0ls) () =0

Due to the model building freedom we have in the number of singlet fields and the fact that the
number of 8,5 and 0s4 fields in the spectrum can be changed by looking at topological relations
where vy > 4 in Eq. (5.34), these F-flatness relations can always be satisfied in realisations of
the E6SSM-like model.



Appendix F

Overlap integrals

As in [85], the equations for a massless 4-dimensional fermionic field are

Jy=0 (F.1)
with
0 D D, Ds V21
-pD, 0 DI -D} i
Py = co 0 Ply=0,y=[ "
-D, -D} 0 DI v
-D; D} -DI 0 X

The covariant derivatives are given by

1 _
M 1 .
D} = R—H(ai—k 5 4a(M5)"2)) (F3)
D3 = —MR, m%%; (F4)
D} =mR_ (m)"z; (E.5)
where i=1,2
The equations for massive modes are given by
DD =\my|*w (F.6)
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Working out 27 gives

2'9=-Y DIDI+B

1

where B is given by

0 0 0 0
5 |0 [DiD2]+[DiDs] D2, Di] D3, Di]
0 Dy, Dj] [D{D/] + [D}Ds] D3, DY)
0 [D1,D}] D>, D}] [D}D1] + [DiD;)]

(E7)

(E.8)

Given that [D;Dg] = 0, this reduces to Eq.(2.28) of [85]. A basis change can now be made as in

Eq.(2.29), and so the rotated D is given by Eq.(2.30)

1 0 0 0 0 D D, Ds 1 0 0 0
B 0 &, €2 &3 -Dp 0 ) D} —D} 0 &1 &1 &,

0 &1 &2 &3 -D, -D; O D, 0 €2 &2 &2

0 &1 &2 &3 —Ds D; —DI 0 0 €3 &3 &3

As an example, the (2,3) element of D can be calculated as follows

]f))273 =e€l, 1(8272D73L — 8273D;) + 81,2(—82,1DJ3r + 8273DD + €1, 3(8271D; — 8272DD

=D](e12823 — €13623) + D} (€13821 — €1.1€23) + DS (€1.1620 — €12821)

= Y&y
%

(F.9)

where €3 are the normalised eigenvectors of B. Performing similar analysis for the other

elements gives the matrix D as

where ﬁp are given as in Eq.(2.31) of [85], by
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D, =Y &,Dy (F.10)
k

Putting this result for D into Eq.(2.33) gives the result

D](p =0
Dip =0
Dip=0 (F.11)

This defines how we should define the raising and lowering operators. As @ is annihilated by D,
but by the daggered operators Dg and D;, the lowering operators a > 3 are identified in Eq.(2.34)
and the raising operators by the conjugates. This is the reason why in Eq.(2.37) the action of

three raising operators on the ground state involves one dagger, and two non-daggers.

Using Eq.(2.32) (and bearing in mind that A; + A, + A3 = 0), for fields transforming in a partic-

ular representation of the gauge group, the operator DI is given by

D'D = —(D}Dy + DiDr + DiD3) 1+ B (F.12)
= —(DIDy +D2D} + DsDY)1+ ([D2, DY) + [D3, D)1+ B (E.13)
) M M
= (ala) + ayay + afaz)[ + (RTIWQ +23)1— (;H>2diag<0,xz+xa,xl + 23,41+ Aa)
(F.14)
t t t M., .
= (alal +a,as +a3a3)]1+ (R7) dlag(—ll ,0,/12 - ,2,3 — l]) (F.15)

As described in [85], massive wavefunctions involve both chiralities, and so muct have compo-
nents which transform in the conjugate representation. This can be taken care of by changing

the sign of the charges ¢, in the definitions of the covariant derivatives.

F.1 The Set Up

In order to compute this diagram, we need to rotate the wavefunctions for the 5, and the 10y,
curve from the 71, 7, basis, into the u,w basis used in the computation of the 55 wavefunction.
Our model corresponds to the case of vanishing flux density, and so the wavefunctions are

(leaving the normalisation factors out):
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yi o~ (w—u)exp| : ((p1+ M) (WP + (p1 +My) |ul* + (p1 — My)wii+ (py — My )uww)]

2
(F.16)
Vi, ~ (—w— M)mexp[—%((l)z + M) (W] + (p2+ M) |ul® — (p2 — Mo ) Wit — (2 — Mo ) uw)]
(E.17)
vk ~exp| : (— R viu+v_w)? +2im(k(—v_u+v,w)))] (F.18)

Su

/ Viv_
v2++v2, +

As the 55 is on the same curve as the Sy, its wavefunction is given by the complex conjugate:

1 ( R
\VEHvE VY

For the case of non-vanishing flux density, the 55 wavefunction does not include the 2ilm(k(—v_u+ v w))

yE ~exp| viutv w]* —2im(k(—v_u+v,w)))] (F.19)

part inside the exponential. In this case, there is no conserved KK momentum, and the exponen-

tial factor of the wavefunction is invariant under the global U(1):

u— eieu, w—efw (F.20)

Clearly the exponentials in the wavefunctions of our case of vanishing flux density are not
invariant under this geometric U(1). However, we aim to show that by taking the example
of Figure 3.2, for a complete diagram the U(1) is restored (at least approximately). In order to

understand this in more detail, it is instructive to derive the 55 wavefunction.

F.2 Derivation of the Vanishing Flux Density 55 Wavefunction

In the notation of CDP, the covariant derivatives are

M,

M woou

D,=—0,, Dyy=-0,, Dsy=—MR, (— +—

u RH Uy w RH Wy 3 * L(V++V,)
M M w u
D=9, DI =—*9,. Di=MR (— + —
WTRCW T TR AT l(v++v,>

The matrix B is given by (with R = RR )
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0 0 0 O
mM2l0 0 o0 X
B=— v F21
R0 0 0 X 2D
[ R R V+
0 &~ 0
with eigenvalues
=0, A= RN 11 Y M? 11
and corresponding eigenvectors
1 0 0 0
0 Vi V4 —V_
o= ol g1 = . , &= . , &= W (F23)
0 —\/Vi v ViV 0

In the basis where the matrix B is diagonal, the covariant derivatives are

- 1 M, / w u

D] m?[v+aLl+V a +R V+ +V (V+ + Vi)] (F24)
. 1 M, [ woou

D2 m?[v+a +V a +R V+ +V (V+ -+ vi)] (FZS)
_ 1 M =

Di=— "y 9,4+v.0, F.26
37 |é |R [ + ] ( )

with the following equations for the ground state wavefunction

Dig=0, Djp=0, Dip=kuo (F27)
where the appearance of ki in the third equation corresponds to the fact that [f);,fh] =0, and

so there is a conserved quantum number associated with this commutator instead of a quantum

harmonic oscillator. We can solve these equations by taking a general form for ¢

@ = exp[—pi! |w|* — P& |ul* + piwu + pllaw + au+ bw + cii + dw] (F.28)

Plugging this form into the three above equations gives the result we used in the previous section,
but with &z scaled by
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R
ki — ﬁl‘*kkk (F.29)

F.3 Triple Wavefunction Overlaps

As the right hand vertex of the digram coorresponds to an E8 point of enhancement, the wave-
functions for the 5, and 63; curves will have the same form (with some suitable approximation
for the singlet wavefunction as a projection on the del Pezzo surface), but the cooeficients inside
the exponentials will be different. Taking into account the fact that there are multiple states on
the same curves, the 5, and 6s; wavefunctions will have some ’family’ dependence. As such,

we can write these wavefunctions, with general coefficients, as

Illgz ~ (aww~+ ayu)Pexp|—A|w|* — B|u|* + Cwii + Duw)] (E.30)
l//g“ ~ (byw + byu)lexp[—E |w|* — F [u|* + Gwii + Huw))] (F31)

The first thing to note is that we can calculate the triple wavefunction overlaps at each point

/Sl//éMl[/f'(’)Ml//gH ~ /Sd2u/\d2w(w—u)l(—w—u)’"exp[(x|w|2+ﬁ |ul* + ywii + Suw
+2im(k(—v_u+vyw))] (F32)
/Swgzl//gmwé‘fl ~ /Sdzu/\dzw(aww—i—auu)”(bww—l—buu)q[a’|w|2—|—ﬁ’|u|2+7/wﬁ—|— 8'uw

—2iIm(k(—v_u+viw))] (F33)

The problem with the k dependent part of each expression is that it contains factors of u and w,
which carry non zero U(1) charge. If we were to expand each exponential, we would see that
both even and odd terms involving the KK momentum k would cancel provided that o« = o/,
B =P, y=7y and 6 = &'. However, this will generally not be true, due to the fact that the
enhancement groups at each vertex are different, and so the wavefunction coefficients will also

be different. The dangerous terms will always vanish however to first order.

F.4 Calculating the Diagram as a Six Wavefunction Overlap

If the coordinates of the SO(12) point are centered on the origin of S, the coordinates of the

other vertex are centered on the point r = (a,b) as in Figure F.1.
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Figure F.1: Coordinates of the two vertices

As such, we can calculate the effective diagram for the operator 104;5,/5; 631 by writing down
the position space Feynman rules, where the Feynman rule for each vertx is the triple overlap
integral, and the propagator in position space is e M

w)and S’ (W' =u+aand w =w+Db).

. As such, we have integrals over S (1 and

Ir]

GHmpa N/dzu/\dzw/ d*u' Nd*w (w—u) (—w — u)" (ayw + byl )P (byw + by’ )
S '’

e M| (o' —u,w' —w)|

 explorwl? B el + i+ Sust+ 2Im(k(—v-ut v )] X o

|
x [ ‘w"z +pB’ ‘u"z + YW +8'uw — 2ilm(k(—v_u' +v,w))] (F.34)

The Yukawa potential appears as it is the Fourier transform of the propagator

e / it (F35)
~ (4 o
|7 k% + M?
eikr k2
N/d“kMz(l—W—i—...) (F.36)

where on the second line we have expanded for large M. We can now insert this expression into
Eq. (F.34), and as such, we can perform the integrals over the two sets of coordinates as well as
k. As an example, we will take the case where the wavefunction coefficients are @ = a’ = —2,
B=pB =-2,y=7 =1and § = & = 1 (which corresponds to both vertices looking like the
usual picture of one curve along the u and w axes, and one along the line u = w). We can also take
the case of the third family, so we do not have to worry about powers of u and w premultiplying
the exponential, and matching these by introducing covariant derivatives. Looking at the term
in Eq. (F.34) which corresponds to the first term in the expansion of Eq. (F.36), the integral over

k will give a delta function, leading to
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1
G0 = —/dzu/\dzw d*u Nd*w exp|—2|w|* — 2 |ul* + wit + uw
M? Js s
—2‘w’!z—2‘u"z+W’J+L/W—i—2iIm(kkk(—V_(u—u’)+V+(w—w’)))]
x (27)*8(u—u',w—w)

2
v n) (F.37)

~3M2

where the notation ki has now been introduced for the KK momentum, to distinguish it from
the k in the Fourier transform of the propagator. Since the parts of the wavefunctions which
violate the geometric U(1) cancel, the U (1) will be respected by these first order terms, when
we consider families other than the third. We can now get the first order correction to this result
by looking at the expression associated with the second term in the expansion of the propagator

in Eq. (F.36). Now we consider a general family dependence:

1 .
G\ = —W/d“k/dzu/\aﬂw d*u Nd*w' k2™ (w—u) (—w — u)"exp|—2 |w|* — 2 |u|* + wii + uw
s s

2w P 2| P+ Wi 4 W+ 20T (kg (—v- (u— ') vy (W= W)))] (F.38)

In this expression, we need to look at the ¢’” factor more closely. Here, r is given by

r=(a,b) =t —u,w —w) (F.39)

where u,w,... are complex coordinates. As such, we could write » as a four component vector

with real components

r=(Re(u' —u),Im(v’ —u),Re(W — w),Im(w — w)) (F.40)

Of course we can also write k as a real four component vector, k = (ki,k2,k3,k4). As such, we

have

e* — expli(kiRe(u’ —u) +koIm(u' —u) +k3Re(w —w) +kyIm(w' — w))] (E41)
1
= exp[i(u(ikz — ki) +u (ky — ikp) +w(iks — k3 ) +w' (k3 — iks)

—u(ky +iky) + 7 (ky +iko) — W(ks +iks) + W (k3 + iky))] (F42)

Putting this into Eq. (F.38) gives
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1
Gim — _ o / dkydkydksdky /S d*und*w 3 d*u NdPW (I3 + 13 415+ K3 (w— ) (—w —u)™

1
exp[—2|w|* =2 |u* + wia + uw + 5[(1'/(2 — ki —2v_ky )u
+ (ik4 — k3 + 2v+kkk)w + (—ikz — k1 + 2v_k7k)ﬁ — (ik4 + k3 + 2V+k7kk)W]
- — 1
exp[—2 ‘w"z -2 !u/|2 + W +u'w + 3 (ki — iky + 2v_kii )’

+ (k3 —iky — 2v+kkk)w’ + (ikz + ki — 2v_k7k)ﬁ/ + (ik4 + k3 + 2v+k7k)W’] (F43)

Leaving the integrals over k for now, we can see that the result is the product of two integrals of

the form

/dzu/\dZW pa nzwn3wn4efp1|u|27p2|W\2+p3wﬁ+p4uw+a1u+a2w+blﬁ+b2W

n 1 A AN 7[2 a2b2p|+tz]b]pz+alh2p3+a2h1p4
a 1ablzaa; ab;[ P1P2—P3P4 ] (F44)
pip2— P3P4

In order to see if this first order correction is invariant under the geometric U (1), we can evaluate
it for  and m zero, and then non zero. If the U(1) is respected, the only non zero case should
be [ =0, m = 0, as we are not acting on the Higgs wavefunction with any covariant derivatives.

Using Mathematica, we get

4R8 .
G(I)QO:—W— / diydkadksdks (2 + 12 + 12 +13)

xexpl3 (k2 13 + k3 + k3 + ks + koky 4 (ky + iky — k3 — ikg )ik

(ks + ko — Ky — ke — g ) Kge)] (F45)
4p8
1 7 R
G(l)l’oz—W—/dkldkzdkgdlq(kz+k2+k3+k4)(k1+zk2—k3 iky — 4Fec)

1
X exp[g(k% 443 43 + kG + ki ks + koka + (ky + iky — ks — ik ki

+ (ks + iky — ky — iky — 4k ke )] (F.46)

Provided that the terms with / and m non-zero are small compared to Eq. (F.37), the geometric
U(1) will be preserved for a complete diagram. In this thesis we will assume that this is true,

although to prove this would require further work.






References

[1] J. C. Callaghan, S. F. King, G. K. Leontaris, and G. G. Ross, JHEP 1204, 094 (2012),
1109.1399.

[2] J. C. Callaghan and S. F. King, JHEP 1304, 034 (2013), 1210.6913.

[3] J. C. Callaghan, S. F. King, and G. K. Leontaris, (2013), 1307.4593.

[4] R. Barbieri and A. Strumia, (2000), hep-ph/0007265.

[5] J. J. Heckman, Contemporary Physics 51: 4, 331 (2010).

[6] R. Donagi and M. Wijnholt, Adv.Theor.Math.Phys. 15, 1237 (2011), 0802.2969.
[7] C. Beasley, J. J. Heckman, and C. Vata, JHEP 0901, 058 (2009), 0802.3391.

[8] R. Donagi and M. Wijnholt, Adv.Theor.Math.Phys. 15, 1523 (2011), 0808.2223.
[9] C. Beasley, J. J. Heckman, and C. Vafa, JHEP 0901, 059 (2009), 0806.0102.

[10] R. Blumenhagen, T. W. Grimm, B. Jurke, and T. Weigand, Nucl.Phys. B829, 325 (2010),
0908.1784.

[11] H.Hayashi, R. Tatar, Y. Toda, T. Watari, and M. Yamazaki, Nucl.Phys. B806, 224 (2009),
0805.1057.

[12] C. Vafa, Nucl.Phys. B469, 403 (1996), hep-th/9602022.

[13] F. Denef, p. 483 (2008), 0803.1194.

[14] T. Weigand, Class.Quant.Grav. 27, 214004 (2010), 1009.3497.

[15] J.J. Heckman, Ann.Rev.Nucl.Part.Sci. 60, 237 (2010), 1001.0577.

[16] T. W. Grimm, Nucl.Phys. B845, 48 (2011), 1008.4133.

[17] J.J. Heckman and C. Vafa, Nucl.Phys. B837, 137 (2010), 0811.2417.

[18] T. W. Grimm, M. Kerstan, E. Palti, and T. Weigand, JHEP 1112, 004 (2011), 1107.3842.
[19] J.J. Heckman, A. Tavanfar, and C. Vafa, JHEP 1008, 040 (2010), 0906.0581.

159



160

REFERENCES

[20]
[21]

[22]

A. Font and L. Ibanez, JHEP 0902, 016 (2009), 0811.2157.

J. P. Conlon and E. Palti, JHEP 1001, 029 (2010), 0910.2413.

E. Dudas and E. Palti, JHEP 1001, 127 (2010), 0912.0853.

S. King, G. Leontaris, and G. Ross, Nucl.Phys. B838, 119 (2010), 1005.1025.

E. Dudas and E. Palti, JHEP 1009, 013 (2010), 1007.1297.

G. Leontaris and G. Ross, JHEP 1102, 108 (2011), 1009.6000.

S. Cecotti, M. C. Cheng, J. J. Heckman, and C. Vafa, (2009), 0910.0477.

C. Ludeling, H. P. Nilles, and C. C. Stephan, Phys.Rev. D83, 086008 (2011), 1101.3346.

S. Krippendorf, M. J. Dolan, A. Maharana, and F. Quevedo, JHEP 1006, 092 (2010),
1002.1790.

L. Aparicio, A. Font, L. E. Ibanez, and F. Marchesano, JHEP 1108, 152 (2011),
1104.2609.

S. Cecotti, C. Cordova, J. J. Heckman, and C. Vafa, JHEP 1107, 030 (2011), 1010.5780.
F. Marchesano and L. Martucci, Phys.Rev.Lett. 104, 231601 (2010), 0910.5496.

C.-M. Chen and Y.-C. Chung, JHEP 1103, 129 (2011), 1010.5536.

J. Jiang, T. Li, D. V. Nanopoulos, and D. Xie, Nucl.Phys. B830, 195 (2010), 0905.3394.
E. Kuflik and J. Marsano, JHEP 1103, 020 (2011), 1009.2510.

C.-M. Chen and Y.-C. Chung, JHEP 1103, 049 (2011), 1005.5728.

Y.-C. Chung, JHEP 1103, 126 (2011), 1008.2506.

C.-M. Chen and Y.-C. Chung, Nucl.Phys. B824, 273 (2010), 0903.3009.

C.-M. Chen, J. Knapp, M. Kreuzer, and C. Mayrhofer, JHEP 1010, 057 (2010),
1005.5735.

I. Antoniadis and G. Leontaris, JHEP 1208, 001 (2012), 1205.6930.

R. Blumenhagen, Phys.Rev.Lett. 102, 071601 (2009), 0812.0248.

G. Leontaris and N. Vlachos, Phys.Lett. B704, 620 (2011), 1105.1858.

V. Bouchard, J. J. Heckman, J. Seo, and C. Vafa, JHEP 1001, 061 (2010), 0904.1419.
T. W. Grimm and T. Weigand, Phys.Rev. D82, 086009 (2010), 1006.0226.

J. J. Heckman and C. Vafa, Phys.Lett. B694, 482 (2011), 0904.3101.



REFERENCES 161

[45] K.-S. Choi, Nucl.Phys. B842, 1 (2011), 1007.3843.

[46] M. J. Dolan, J. Marsano, N. Saulina, and S. Schafer-Nameki, Phys.Rev. D84, 066008
(2011), 1102.0290.

[47] M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory (Addison-
Wesley Publishing Co., 1995).

[48] R. N. Mohapatra and G. Senjanovic, Phys.Rev.Lett. 44, 912 (1980).

[49] M. Maggiore, A Modern Introduction to Quantum Field Theory (Oxford University Press,
New York, USA, 2005).

[50] A. Bilal, (2008), 0802.0634.

[51] S.R. Coleman and J. Mandula, Phys.Rev. 159, 1251 (1967).

[52] R. Haag, J. T. Lopuszanski, and M. Sohnius, Nucl.Phys. B88, 257 (1975).
[53] S. P. Martin, (1997), hep-ph/9709356.

[54] D. Balin and A. Love, Supersymmetric Gauge Field Theory and String Theory (Institute
of Physics Publishing, 1994).

[55] H. P. Nilles, Phys.Rept. 110, 1 (1984).
[56] M. Drees, (1996), hep-ph/9611409.
[57] H. Georgi and S. Glashow, Phys.Rev.Lett. 32, 438 (1974).

[58] G. G. Ross, Grand Unified Theories (The Benjamin/Cummings Publishing Company
Inc., California, USA, 1985).

[59] H. Georgi and C. Jarlskog, Phys.Lett. B86, 297 (1979).

[60] U. Amaldi, W. de Boer, and H. Furstenau, Phys.Lett. B260, 447 (1991).

[61] S. Dimopoulos, S. Raby, and F. Wilczek, Phys.Lett. B112, 133 (1982).

[62] J. Hisano, H. Murayama, and T. Yanagida, Nucl.Phys. B402, 46 (1993), hep-ph/9207279.
[63] S. Raby, (2006), hep-ph/0608183.

[64] F. Wilczek and A. Zee, Phys.Rev.Lett. 43, 1571 (1979).

[65] H. Murayama and A. Pierce, Phys.Rev. D65, 055009 (2002), hep-ph/0108104.

[66] G. K. Leontaris, PoS CORFU2011, 095 (2011), 1203.6277.

[67] J. Tate, Modular Functions of One Variable IV, Lecture notes in Math. 476, 33 (1975).

[68] S. Katz, D. R. Morrison, S. Schafer-Nameki, and J. Sully, JHEP 1108, 094 (2011),
1106.3854.



162 REFERENCES

[69] L. Randall and D. Simmons-Duffin, (2009), 0904.1584.

[70] R. Donagi and M. Wijnholt, (2009), 0904.1218.

[71] J. Marsano, N. Saulina, and S. Schafer-Nameki, JHEP 0908, 046 (2009), 0906.4672.
[72] B. R. Green, K. H. Kirklin, P. J. Miron, and G. G. Ross, Nucl. Phys. B 278, 667 (1986).
[73] B.R. Green, K. H. Kirklin, P. J. Miron, and G. G. Ross, Nucl. Phys. B 292, 606 (1986).
[74] B.R. Green, K. H. Kirklin, P. J. Miron, and G. G. Ross, Phys. Lett. B 192, 111 (1987).
[75] S. King, S. Moretti, and R. Nevzorov, Phys.Rev. D73, 035009 (2006), hep-ph/0510419.
[76] J. Marsano, N. Saulina, and S. Schafer-Nameki, JHEP 1004, 095 (2010), 0912.0272.
[77] E. Palti, JHEP 1207, 065 (2012), 1203.4490.

[78] M. Bershadsky et al., Nucl.Phys. B481, 215 (1996), hep-th/9605200.

[79] J. Marsano, Phys.Rev.Lett. 106, 081601 (2011), 1011.2212.

[80] L. B. Anderson, J. Gray, A. Lukas, and B. Ovrut, Phys.Lett. B677, 190 (2009),
0903.5088.

[81] H. Murayama and D. Kaplan, Phys.Lett. B336, 221 (1994), hep-ph/9406423.

[82] K. Babu, J. C. Pati, and F. Wilczek, Nucl.Phys. B566, 33 (2000), hep-ph/9812538.
[83] T. Goto and T. Nihei, Phys.Rev. D59, 115009 (1999), hep-ph/9808255.

[84] R. Dermisek, A. Mafi, and S. Raby, Phys.Rev. D63, 035001 (2001), hep-ph/0007213.
[85] P. G. Camara, E. Dudas, and E. Palti, JHEP 1112, 112 (2011), 1110.2206.

[86] S. King, Rept.Prog.Phys. 67, 107 (2004), hep-ph/0310204.

[87] B. Andreas and G. Curio, J.Geom.Phys. 60, 1089 (2010), 0902.4143.

[88] S. King, S. Moretti, and R. Nevzorov, Phys.Lett. B634, 278 (2006), hep-ph/0511256.
[89] S. King, S. Moretti, and R. Nevzorov, Phys.Lett. B650, 57 (2007), hep-ph/0701064.
[90] R. Howl and S. King, JHEP 0801, 030 (2008), 0708.1451.

[91] J. P. Hall and S. F. King, JHEP 0908, 088 (2009), 0905.2696.

[92] J. P. Hall and S. F. King, JHEP 1301, 076 (2013), 1209.4657.

[93] M. Kuntzler and S. Schafer-Nameki, JHEP 1211, 025 (2012), 1205.5688.

[94] M. Cvetic, R. Donagi, J. Halverson, and J. Marsano, JHEP 1211, 004 (2012), 1209.4906.

[95] C. Mayrhofer, E. Palti, and T. Weigand, (2013), 1303.3589.



REFERENCES 163

[96] S. King, Nucl.Phys. B576, 85 (2000), hep-ph/9912492.

[97] J. P. Conlon and E. Palti, Phys.Rev. D80, 106004 (2009), 0907.1362.

[98] G. Leontaris and N. Tracas, Eur.Phys.J. C67, 489 (2010), 0912.1557.

[99] G. Leontaris, N. Tracas, and G. Tsamis, Eur.Phys.J. C71, 1768 (2011), 1102.5244.
[100] J. Ellis, Phys. Lett. B 155, 381 (1985).
[101] H. Georgi, Lie Algebras in Particle Physics (Westview Press, 1999).
[102] U. Ellwanger, C. Hugonie, and A. M. Teixeira, Phys.Rept. 496, 1 (2010), 0910.1785.
[103] S. King and P. White, Phys.Rev. D53, 4049 (1996), hep-ph/9508346.
[104] G. G. Ross, K. Schmidt-Hoberg, and F. Staub, JHEP 1208, 074 (2012), 1205.1509.
[105] R. Donagi and M. Wijnholt, JHEP 1305, 092 (2013), 1112.4854.

[106] L. E. Ibanez, F. Marchesano, D. Regalado, and 1. Valenzuela, JHEP 1207, 195 (2012),
1206.2655.

[107] R. Slansky, Phys.Rept. 79, 1 (1981).

[108] A.V.Z.I. M. Gelfand, M. M. Kapranov, Discriminants, resultants and multidimensional
determinants (Modern Birkhduser Classics, 1994).

[109] E. Palti, (2012), 1209.4421.



