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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF PHYSICAL SCIENCES AND ENGINEERING

School of Physics and Astronomy

Doctor of Philosophy

MODEL BUILDING AND PHENOMENOLOGICAL ASPECTS OF F-THEORY GUTS

by James C. E. Callaghan

In recent years, Grand Unified Theories (GUTs) constructed from F-theory have been exten-

sively studied due to the substantial scope for model building and phenomenology which they

provide. This thesis will motivate and introduce the basic tools required for model building in

the setting of local F-theory. Starting with GUT groups of E6, SO(10) and SU(5), a group the-

oretic dictionary between the three types of theory is formulated, which provides considerable

insight into how to build a realistic model. The spectral cover formalism is then applied to each

case, enabling the possible low energy spectra after flux breaking of the GUT group to be found.

Using these results an E6 based model is constructed that demonstrates, for the first time, that

it is possible to construct a phenomenologically viable model which leads to the MSSM at low

energies. In addition to the MSSM model, the E6 starting point is also used to build F-theory

models in which the low energy supersymmetric theory contains the particle content of three 27

dimensional representations of the underlying E6 gauge group, with the possibility of a gauged

U(1) group surviving down to the TeV scale. The models with TeV scale exotics initially appear

to be inconsistent due to a splitting of the gauge couplings at the unification scale which is too

large, and incompatible with the formalism. However, in E6 models with flux breaking, there are

bulk exotics coming from the 78 dimensional adjoint representation which are always present in

the spectrum, and it turns out that a set of these exotics provide a natural way to achieve gauge

coupling unification at the one-loop level, even for models with TeV exotics. This motivates a

detailed study of bulk exotics, where specific topological formulae determining the multiplici-

ties of bulk states are investigated, and the constraints imposed by these relations applied to the

spectra of the models previously studied. In particular, bulk exotics are relevant to the almost

miraculous restoration of gauge coupling unification in the case of the models with TeV scale

exotics. The consistent local F-theory models with low energy exotics have distinctive charac-

teristics when compared with other, similar models, and so provide potential opportunities to be

tested at the LHC.
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Chapter 1

Introduction

1.1 Motivation and outline

The Standard Model (SM) is one of the great triumphs of modern day physics, successfully

explaining many aspects of Electroweak and Strong interactions, confirmed through decades

of precise experimental data. Following the announcement in July 2012 of the discovery of a

particle whose properties are consistent with those of a Higgs boson, the long awaited missing

link of the SM, it would seem that the expected picture of the SM is complete. However, despite

the incredible achievements of the theory, there are several theoretical reasons why we expect it

not to be the whole story when it comes to a theory describing the physics of our universe. In

fact, we expect the SM to be an ‘effective theory’, valid up to some cutoff scale Λ, where a new

‘beyond the Standard Model’ (BSM) theory is the correct description of nature.

The first shortcoming of the SM is that gravity is not included, and so it cannot possibly be a

Theory of Everything. A second reason for moving beyond the Standard Model is that if the

three SM gauge couplings are run up to a high energy, it appears that they may merge at a

common scale. This hints at the possibility that the SM gauge group is embedded in a bigger

symmetry group, suggesting the existence of a Grand Unified Theory (GUT).

Another issue is the so called ‘hierarchy problem’ which is concerned with the question of why

the weak force is 1032 times stronger than the gravitational force. Phrased in another way, this

is considered a problem because the Higgs mass squared parameter of the SM is UV sensitive,

meaning that the quantum corrections to the Higgs mass squared scale with Λ2. As such, based

on what we know about the Higgs boson, a natural explanation would require Λ ∼ 1TeV , with

the SM being replaced by some other physics at the TeV scale. However, this explanation is

constrained by Electroweak precision data, as if Λ ∼ 1TeV , we would expect to have already

seen evidence of higher dimensional operators constructed from SM fields [4], and as such

we are led to consider a non natural explanation. One explanation would be that there is a

large fine-tuned cancellation between the radiative corrections and the bare mass of the Higgs,

1



2 Chapter 1 Introduction

but this ‘unnatural’ explanation is considered unsatisfactory by physicists. A more satisfactory

explanation would be that Λ is higher than a TeV, but there are cancellations due to a symmetry

in the UV theory. This is the case if supersymmetry (SUSY) is introduced, where there is a

symmetry relating fermions and bosons, with each SM particle having a superpartner whose

spin differs by 1
2 . Due to the fact that fermions and bosons with the same gauge quantum

numbers give opposite sign contributions to the Higgs mass squared, the quadratic divergences

to the Higgs mass exactly cancel.

A BSM framework which incorporates SUSY and GUTs is that of String Theory, where we

have ten space-time dimensions where six are compactified and very small, and instead of fun-

damental point-like particles, we now have one-dimensional strings. A major motivation for

string theory is that it provides a consistent formulation of quantum gravity, the effects of which

are expected to become important at the Planck scale. With this achievement though, comes

the drawback that it is very hard to predict anything about low energy physics, due to the vast

numbers of consistent solutions to the string theory equations of motion. If, however, we follow

the arguments of [5] and impose the conditions of unification and decoupling on the search for

realistic models, the possibilities are severely restricted. Unification refers to the existence of a

GUT structure whereby the strong, weak and electromagnetic forces are described by a single

gauge group and a single coupling constant at some high energy scale. The fact that gravity is

observed to be much weaker than the other forces is linked to the term decoupling, which refers

to the existence of a theoretical limit where MGUT
MPlanck

→ 0. A class of models which satisfy both

the criteria of unification and decoupling are F-theory GUTs.

Recently there has been considerable activity [6, 7, 8, 9, 10, 11] in the reformulation of GUTs

in the context of F-theory (for reviews and related work see e.g. [12, 13, 14, 15, 16]). The

reason for the renewed interest is that F-theory provides new opportunities for addressing some

of the outstanding issues facing GUTs, such as GUT breaking and Higgs doublet-triplet split-

ting by flux [9, 8]. In this setting, there has been great progress in both global and local model

building in the last few years [17, 18], where global models focus on the construction of el-

liptically fibered Calabi-Yau four-folds, and local models deal with the effective field theory

where the GUT symmetry is realised on a 7-brane wrapping a 4-dimensional surface S. The so

called ‘semi-local’ approach imposes constraints from requiring that S is embedded into a local

Calabi-Yau four-fold, which in practice leads to the presence of a local E8 singularity [19]. All

Yukawa couplings originate from this single point of E8 enhancement, and we can learn about

the matter and couplings of the semi-local theory by decomposing the adjoint of E8 in terms

of representations of the GUT group and the perpendicular gauge group. In terms of the local

picture, matter is localised on curves where the GUT brane intersects other 7-branes with extra

U(1) symmetries associated to them, with this matter transforming in bi-fundamental represen-

tations of the GUT group and the U(1). Yukawa couplings are then induced at points where

three matter curves intersect, corresponding to a further enhancement of the gauge group.

With this structure in place, there are many possibilities for model building. A considerable
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amount of this work deals with the reconciliation of F-theory models with the low energy Stan-

dard Model and the related phenomenology. These include papers related to fermion mass

structure and the computation of Yukawa couplings in the context of F-theory and del Pezzo

singularities [17, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29]. In particular, some interesting mech-

anisms were suggested to generate Yukawa hierarchy either with the use of fluxes [17, 26]

and the notion of T-branes [30] or with the implementation of the Froggatt-Nielsen mecha-

nism [22, 23, 24, 25, 27]. More specifically, in [26] it is argued that when three-form fluxes are

turned on in F-theory compactifications, rank-one fermion mass matrices are modified, leading

to masses for lighter generations and CKM mixing. Ibanez et al [29] have recently shown that

flux and instanton effects can generate a realistic hierarchy of fermion masses. In the F-theory

context, such non-perturbative contributions were computed in [31], although the magnitude of

such corrections remains somewhat unclear.

Larger GUT groups than SU(5) have also been considered, such as the F-theory E6 model of ref

[32] where non-Abelian fluxes are introduced to break the symmetry. Flipped SU(5) [17, 33,

23, 34, 35] has also been considered, including an attempt using an SU(4) spectral cover [36].

Some examples of SO(10) F-theory models were also considered in [17, 37, 38, 39].

Many (or all) of these models predict exotic states below the unification scale, and the renor-

malization group (RG) analysis of gauge coupling unification including the effect of such states

and flux effects has been discussed in a series of papers [40]-[41]. Other phenomenological

issues such as neutrinos from KK-modes[42], proton decay [43] and the origin of CP viola-

tion [44] have also been discussed. The possibility of obtaining the Standard Model directly

from F-theory [45] has also been considered.

Following this work some generic challenges have been identified that result from the highly

constrained nature of the constructions, in particular the constraints related to the compatibility

of unification (due to the appearance of exotics), the suppression of proton decay (due to R-

parity violating operators and dimension-5 operators), the suppression of the µ term and the

generation of realistic Yukawa couplings. These occur when flux is used to break the GUT

group and generate doublet-triplet splitting. Prior to the work contained in this thesis, no fully

realistic model had been constructed using just the symmetries descending from the underlying

unified gauge group [22, 27, 46] and this provides additional motivation for the work presented

here.

The layout of the rest of the thesis is as follows. In the remainder of the introduction, the

Standard Model is introduced and the theoretical reasons for wanting to move beyond it are

explained. Two such extensions are then explored, namely the ideas of Supersymetry and Grand

Unification, and issues such as proton decay are discussed in the context of these theories. String

theory is then introduced as a framework which combines SUSY and GUTs, and the issues of

trying to realise the SM from perturbative D branes are discussed. This motivates the case for

moving to F-theory, and the basic tools for model building in the local setting are presented.

In Chapter 2, a group theory dictionary between E6, SO(10) and SU(5) models is established,
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and the spectral cover formalism is introduced and applied to the case of each GUT group in

order to compute the homology classes of matter curves. This information is then utilised in

Chapter 3, where an E6 based model is formulated which demonstrates, for the first time, that

it is possible to construct a phenomenologically viable model which leads to the MSSM at low

energies. Chapter 4 again deals with models based on E6, but instead of realising the MSSM,

the low energy theories contain the particle content of three 27 dimensional representations of

the underlying E6 gauge group, with the possibility of a gauged U(1) group surviving down to

the TeV scale. Chapter 5 is dedicated to the discussion of bulk exotics coming from the adjoint

representation of E6, and these are shown to play an especially crucial role in the context of the

models with TeV scale exotics. Finally, Chapter 6 concludes the thesis.

1.2 The Standard Model

The Standard Model is a formulation in terms of gauge theories of three of the four fundamental

forces of nature- the strong, weak and electromagnetic interactions. The formalism is based

on the gauge group SU(3)C× SU(2)L×U(1)Y , where SU(3)C is the gauge group of Quantum

Chromodynamics (QCD) and SU(2)L×U(1)Y is the group of the Electroweak theory. Particles

are then classified according to their transformations under these symmetry groups, as well as

being grouped into two categories based on their spin- fermions possessing half-odd-integer

spins, and bosons possessing integer spins. The fermions of the SM transform in a spin 1
2

representation of the Lorentz group and interact with each other by exchanging spin 1 vector

bosons, while the only Lorentz scalar of the SM is the Higgs boson which is responsible for

generating mass for the other particles.

The SM is a chiral theory with left-handed fermions transforming as doublets of SU(2)L and

right-handed fermions transforming as singlets of this group. Associated with SU(2)L are three

gauge bosons- W+, W− and Z- which mediate weak interactions and explain the short range

of the force due to their large masses relative to those of nucleons. The Electroweak group

is broken at low energies to U(1)em, the gauge group of Electromagnetism, and this force is

mediated by the massless photon. Applying the principles of gauge theory to QCD leads to the

notion of colour, where quarks can be ‘blue’, ‘green’ or ‘red’ and gauge transformations are

local transformations between quarks of different colours. The gauge bosons of QCD which

mediate the Strong interactions are called gluons, and together with the gauge bosons of the

Electroweak theory complete the ‘force carriers’ of the SM. The fermionic matter content of the

SM can be divided into three generations, with each member of a generation having greater mass

than those of lower generations. Each generation is comprised of 1 left-handed lepton doublet

(νe,e−), 1 right-handed lepton e+R , 3 left-handed quark doublets (u,d)L, 3 right-handed up type

quarks uR and 3 right-handed down type quarks dR (the factors of 3 for quarks coming from the

existence of 3 colours).
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1.2.1 Dirac, Weyl and Majorana spinors

Due to the chiral nature of the SM gauge group, it is convenient to work in a chiral basis of

two-component Weyl spinors. A Dirac spinor ψD satisfies the Dirac equation

(iγµ
∂µ −m)ψD = 0 (1.1)

and we can write a Dirac spinor in terms of two Weyl spinors ξα and χ†α̇ ≡ (χ†)α̇

ψD =

(
ξα

χ†α̇

)
ψD ≡ ψ

†
Dγ0 = (χα ,ξ †

α̇
) (1.2)

where α = 1,2 and α̇ = 1,2. Undotted indices denote the first two components of a Dirac

spinor and dotted indices denote the second two. This notation is adopted due to the fact that the

two types of spinor transform differently under Lorentz transformations, ξα being a left-handed

Weyl spinor, and χ†α̇ being a right-handed Weyl spinor. This can be seen by introducing the

projection operators in the Weyl representation for the gamma matrices:

PL =
1
2
(1− γ5)

PR =
1
2
(1+ γ5)

γ5 =

(
−I 0

0 I

)

Acting with PL and PR on a Dirac spinor projects out the left and right-handed parts respectively

PLψD =

(
ξα

0

)
, PRψD =

(
0

χ†α̇

)

Taking the hermitian conjugate of a left-handed Weyl spinor gives a right-handed Weyl spinor

and vice-versa

(ξα)
† = (ξ †)α̇ ≡ ξ

†
α̇

(χ†α̇)† = χ
α
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Given left handed and right handed Weyl spinors ψL and ψR, charge conjugation is defined by

ψ
c
L = iσ2

ψ
∗
L , ψ

c
R =−iσ2

ψ
∗
R (1.3)

where σ2 is the second Pauli matrix, and given ψL = ξα and ψR = χ†α̇ , we have ψc
L = ξ †α̇ and

ψc
R = χα . As such, it can be seen that the charge conjugate of a right-handed field transforms

as a left-handed field and vice-versa. This means that we can adopt the notation ψ and ψc for

right and left-handed fields respectively. Whenever spinor indices are raised or lowered, it is

achieved by using the antisymmetric tensor εαβ with ε12 = 1. Indices can be omitted provided

the contraction of two left-handed spinors is taken to be ξ χ = ξ α χα , and the contraction of two

right-handed spinors to be ξ †χ† = ξ
†
α̇

χ†α̇ .

A four-component Majorana spinor is defined in terms of the Dirac spinor by imposing χ = ξ ,

leading to

ψM =

(
ξα

ξ †α̇

)
ψM = (ξ α ,ξ †

α̇
) (1.4)

We can now write the Dirac Lagrangian in terms of two-component Weyl spinors for the cases

of the Dirac and Majorana spinors using Eqs. (1.2) and (1.4), giving

LD = ψD(iγ
µ

∂µ −mD)ψD

= iξ †
σ

µ
∂µξ + iχ†

σ
µ

∂µ χ−mD(ξ χ +ξ
†
χ

†) (1.5)

LM = ψM(
i
2

γ
µ

∂µ −
1
2

mM)ψM

= iξ †
σ

µ
∂µξ − 1

2
mM(ξ ξ +ξ

†
ξ

†) (1.6)

where, in the Weyl representation for the gamma matrices

γ
µ =

(
0 σ µ

σ
µ 0

)
σ

µ = (I2,σ)

σ
µ = (I2,−σ) = σµ
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with σ = (σ1,σ2,σ3), σ i being the Pauli matrices. It can be seen from Eqs. (1.5) and (1.6) that

the Dirac mass term couples fields of different chiralities together, whereas the Majorana mass

term couples both left-handed and right-handed fields to themselves.

1.2.2 Abelian gauge transformations and QED

The Dirac Lagrangian density L = ψ(iγµ∂µ −m)ψ is invariant under complex phase transfor-

mations of the fermionic field

ψ → eiω
ψ, ψ → e−iω

ψ

The group of such transformations is U(1), and under infinitesimal transformations of the form

eiω = 1+ iω +O(ω2), the wavefunction transforms as ψ → ψ +δψ with

δψ = iωψ, δψ =−iωψ

The idea behind gauge transformations is to allow an independent symmetry transformation at

each point in space-time. As such, the parameter ω will now depend on xµ and the Lagrangian

will no longer be invariant. Under such local transformations, the Lagrangian will become

L →L +δL with

δL =−ψ(x)γµ(∂µω(x))ψ(x)

However, we can restore the local invariance by introducing the covariant derivative Dµ , and

replacing the partial derivative in the Lagrangian by Dµ , where

Dµ = ∂µ + ieAµ (1.7)

The Lagrangian is now invariant under local transformations of the fermion fields, provided that

we demand that the vector field Aµ simultaneously transforms as

Aµ → A′µ = Aµ −
1
e

∂µω(x) (1.8)

Interpreting this in the case where the U(1) symmetry is that of Electromagnetism tells us that e

corresponds to the electric charge of the fermion field, and the gauge field Aµ corresponds to the

photon field. The importance of the gauge field is now clear, as its existence allows us to write

down an invariant Lagrangian involving derivatives of ψ . Meanwhile, the presence of the gauge

field in the covariant derivative leads to an interaction term in the Lagrangian, and so it can be
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seen that the invariance only exists if the fermions are not free particles. The construction of

a complete locally invariant Lagrangian is not complete though, as we must also write down a

kinetic term for Aµ . We can define a gauge invariant field strength by

Fµν = ∂µAν −∂νAµ (1.9)

and add a Lorentz invariant kinetic term−1
4 FµνFµν to the Lagrangian, with the numerical factor

ensuring that the equations of motion match up with Maxwell’s equations. This is not yet the

whole story though as we have to quantise the Electromagnetic field, and in doing so we need

to find the Feynman rule for the photon propagator. However, if we go about this in the usual

way by looking for the part of the action quadratic in the photon field, we run into trouble

due to gauge invariance. In the language of functional integrals of the type
∫

DAeiS[A], the

integral is badly defined because we are integrating over infinitely many physically equivalent

field configurations. In order to solve this problem, Faddeev and Popov invented the trick of

taking a function G(A) and setting it to zero as a gauge fixing condition, by means of introducing

a delta function δ (G(A)) in the functional integral. In this way, the part of the functional integral

is isolated which only counts each physical configuration once. This is equivalent to breaking

the gauge symmetry in the Lagrangian by adding a term − (∂ µ Aµ )
2

2ξ
in such a way as to preserve

the gauge symmetry in observables. In computations a specific value of ξ can be chosen (for

example ξ = 1 corresponds to Feynman gauge), but the Fadeev-Popov method ensures that the

value of a correlation function of gauge invariant operators will be independent of this value

[47]. Taking into account the gauge fixing term, the Lagrangian for QED in Feynman gauge is

LQED =−1
4

FµνFµν +ψ(iγµDµ −m)ψ− 1
2
(∂µAµ)2 (1.10)

1.2.3 Non-Abelian gauge theories and QCD

The concepts of Abelian gauge symmetries can now be applied to non-Abelian groups. If we

consider n free fermionic fields

ψ =


ψ1

ψ2

·
·

ψn


the Lagrangian density will be given by

L = ψ
i(iγµ

∂µ −m)ψi (1.11)
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This Lagrangian is invariant under SU(N) transformations in field space acting on ψ , where an

arbitrary SU(N) matrix U which mixes up the ψi can be written as

U = eiωaT a

where T a are the generators of SU(N) and the ωa are real parameters. The generators are related

to the antisymmetric structure constants f abc by the commutator

[T a,T b] = i f abcT c

and the normalisation for SU(N) is taken to be

Tr(T aT b) =
1
2

δ
ab

We now proceed as for the Abelian case by defining the covariant derivative

Dµ = ∂µ + igT aAa
µ (1.12)

where g is the coupling constant and we now have the same number of gauge fields as generators

of SU(N), (N2− 1). Non-Abelian gauge invariance will now exist if we have the following

infinitesimal transformation laws for ψ and Aa
µ

ψ → (1+ iωaT a)ψ

Aa
µ → Aa

µ +
1
g

∂µω
a + f abcAb

µω
c

In order to write down a kinetic term for the gauge bosons, we must again use the field strength

Fa
µν = ∂µAa

ν −∂νAa
µ −g f abcAb

µAc
µν (1.13)

meaning that we have the gauge invariant term −1
4 Fa

µνFaµν . Expanding this term out in terms

of the gauge fields shows that in non-Abelian gauge theories there are three and four-point

interaction terms between them, meaning that the gauge bosons interact with each other, unlike

the Abelian case.
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1.2.4 Spontaneous symmetry breaking and the GWS theory

Spontaneous symmetry breaking (SSB) is a crucial aspect of the Standard Model, as it is the

mechanism responsible for breaking the SU(2)L×U(1)Y Glashow-Weinberg-Salam (GSW) the-

ory of weak interactions to the U(1)em group of Electromagnetism at low energies. The idea is

that at some energy scale, a field can take on some non zero global value which can violate a

symmetry of the Lagrangian, hence breaking the symmetry of the field theory. As such, even

though the Lagrangian may be invariant under a certain set of transformations, the ground state

will not be invariant in a spontaneously broken theory. In the context of the SM, the relevant

transformations are gauge transformations, and spontaneous breaking will occur if at least one

generator of the gauge group does not annihilate the vacuum. Goldstone’s theorem states that as-

sociated with every broken generator of the group, there is a massless particle called a Goldstone

boson, who’s quantum numbers mirror those of the corresponding generator.

These concepts can be made more concrete in the context of the SU(2)L×U(1)Y part of the SM

gauge group. If we consider a complex scalar Higgs doublet, Φ (with quantum numbers (2, 1
2)

under SU(2)L×U(1)Y ) and the relevant gauge fields, we can write down the gauge invariant

Lagrangian

L =−1
4

Fa
µνFaµν − 1

4
GµνGµν +

∣∣DµΦ
∣∣2−V (Φ) (1.14)

where Fa
µν and Gµν are the field strengths for the SU(2)L and U(1)Y gauge bosons, W a

µ and Bµ

respectively, and DµΦ is the covariant derivative, given by

DµΦ = ∂µ +
ig′

2
Bµ +

ig
2

σ
aW a

µ

with σa the Pauli matrices, and g, g′ the coupling constants of SU(2)L and U(1)Y . If we take

the scalar potential to be

V (Φ) =−µ
2
Φ

†
i Φ

i +λ (Φ†
i Φ

i)2 (1.15)

we can see that it has a minimum if Φ
†
i Φi = µ2

2λ
. This equation corresponds to an infinite number

of states with the same minimum energy, and the symmetry breaking occurs when a choice is

made and one of the minima is picked out to be the true vacuum. It is said that the field Φ

acquires a non zero vacuum expectation value (VEV), and in this case we can choose the VEV

to be

〈Φ〉= 1√
2

(
0

v

)
, v =

µ√
λ

(1.16)
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From the four generators of SU(2)L×U(1)Y

σ1

2
=

(
0 1

2
1
2 0

)
,

σ2

2
=

(
0 − i

2
i
2 0

)
,

σ3

2
=

(
1
2 0

0 −1
2

)
, Y =

(
1
2 0

0 1
2

)
(1.17)

it can be seen that only one linear combination, (Y + σ3
2 ), annihilates this vacuum, so we have

three broken generators and hence three Goldstone bosons. However, as the generators asso-

ciated with the Goldstone bosons can act on the vacuum to give states inconsistent with the

original gauge choice, the Goldstone bosons must not correspond to physical, massless particles

in the same way as in the case of a spontaneously broken global symmetry. In order to see what

happens to these three degrees of freedom, we can expand Φi around the choice of VEV in Eq.

(1.16), and write

Φ =
1√
2

(
φ1−φ2

v+H + iφ0

)

where the φi and H fields have zero VEV. Putting this into Eq. (1.15) shows that the φi fields

do not acquire mass terms, but the H field does. As such, we identify φ1, φ2 and φ0 with the

Goldstone bosons, and H with the Higgs scalar. In fact, we can make a choice of gauge called

the ‘unitary gauge’, where all of the φi can be set to zero. Writing
∣∣DµΦ

∣∣2 in this gauge shows

that we get a mass term for W±µ =
W 1

µ±iW 2
µ√

2
and the linear combination gW 0

µ −g′Bµ . Introducing

the Weinberg angle θw, we can diagonalise this system by writing

Bµ = cosθwAµ − sinθwZµ

W 0
µ = sinθwAµ + cosθwZµ

We now have three massive vector bosons W±µ and Zµ with masses MW± =
gv
2 = MZ cosθw, and

one massless vector boson, Aµ , which is identified with the photon. The physical interpretation

is that whilst a massless vector boson has two degrees of freedom, a massive one has three,

and so in this context the three Goldstone bosons provide the three degrees of freedom required

to make the W and Z bosons massive. Meanwhile, the charge generator which annihilates the

vacuum can be identified with the electric charge, and so with T3 being the eigenvalue of σ3
2 of

a state and Y being that of the hypercharge generator, we can write

Q = Y +T3 (1.18)
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1.2.5 Yukawa couplings and the origins of fermion masses

It can be seen from Eq. (1.5) that we cannot have an explicit mass term for the quarks and

charged leptons due to the fact that it would mix right and left handed fermions. However, we

can write down gauge invariant couplings involving the Higgs doublet Φ, namely the Yukawa

interactions:

LY = λ
i j
u QLiuR jH1 +λ

i j
d QLidR jH2 +λ

i j
e LLieR jH2 +h.c. (1.19)

where H2 = iσ2H†
1 , i and j are family indices, and λu, λd and λe are the Yukawa couplings. Once

the Higgs acquires a VEV of the form in Eq. (1.16), this part of the Lagrangian can be written

in terms of mass matrices mu = vλu , md = vλd and me = vλe as follows

LM = mi j
u uLiuR j +mi j

d dLidR j +mi j
e eLieR j +h.c. (1.20)

It is clear that the Yukawa terms mix quarks and charged leptons of different generations, but

the physical particles are those which diagonalise the mass matrices. Focusing on the quarks for

now, we can write the three isodoublets of left handed fermions as

(
uL

d̃L

)
,

(
cL

s̃L

)
and

(
tL
b̃L

)
,

where the three ui
L quarks are linked by the charge-changing weak interactions involving W±

bosons to the following unitary rotation of the di
L quarks

d̃L

s̃L

b̃L

=VCKM

d

s

b

 , VCKM =V L
u V L†

d (1.21)

VCKM is the ‘Cabibbo-Kobayashi-Maskawa’ (CKM) matrix, and V L,R
u,d are the unitary matrices

which diagonalise the Yukawa couplings; the basis transformations between weak eigenstates

(uLα , ...) and mass eigenstates (uLi, ...) being given by

uLα =V L
(u)αiuLi, uRα =V R

(u)αiuRi, dLα =V L
(d)αidLi, dRα =V R

(d)αidRi (1.22)

and the diagonal matrices being given by V L
u yuV R†

u and V L
d ydV R†

d . In general, a 3×3 unitary ma-

trix has nine independent parameters, but we can absorb five of these as relative phases between

the six quark fields, and so we are left with four parameters of the CKM matrix, which can be

interpreted as three mixing angles and a complex phase. In the charged lepton sector, without
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right handed neutrinos, weak and mass eigenstates can be chosen to coincide meaning that there

is no mixing in the leptonic charged current. As such, the nature of neutrinos has to be discussed

in order to understand leptonic masses and mixings.

1.2.6 Neutrinos

In the Standard Model, neutrinos are massless, and so unlike the cases of quarks and charged

leptons where both right and left handed fields exist, in the neutrino sector there are only left

handed neutrinos. However, neutrino oscillations are obsevred in nature whereby a source of

neutrinos is produced with a specific flavour, and the probability of finding a neutrino of a dif-

ferent flavour at a suitably large distance from the source is non zero. This implies the existence

of neutrino flavour mixing in the leptonic charged current, in an analogous way to the mixing in

the quark sector. As such, neutrinos must have masses, with experiments suggesting that these

masses are very small- the upper limit being around a factor of 106 smaller than the smallest

mass in the quark and charged lepton sectors.

The crucial difference between neutrinos and charged fermions when it comes to mass genera-

tion is that while we can only write down Dirac mass terms for the charged fermions, we are also

able to write down Majorana masses for neutrinos. Nevertheless, the simplest way to introduce

neutrino masses is to assume that they are Dirac particles, where the Yukawa interaction is given

by

L ν
Y = λ

i j
ν LLiνR jH1 +h.c. (1.23)

In order for this term to be gauge invariant, the right handed neutrino must be a singlet under

SU(3)C and SU(2)L and must also carry zero hypercharge. The mass terms arising from this

equation and the equivalent one for charged leptons are

Lm = mi j
ν νLiνR j +mi j

e eLieR j +h.c. (1.24)

In a similar way to the quark sector, the mass matrices can now be diagonalised, with the mass

eigenstates (with Latin indices) and weak eigenstates (with Greek indices) related by

νLα =V L
(ν)αiνLi, νRα =V R

(ν)αiνRi, eLα =V L
(e)αieLi, eRα =V R

(e)αieRi (1.25)

It then follows that the leptonic charged current written in terms of weak eigenstates Lc.c ∼
νLαγµeLβW+

µ , can be written in terms of mass eigenstates as

Lc.c ∼ νLiγ
µV L†

(ν)iαV L
(e)α jeL jW+

µ (1.26)
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where the matrix describing leptonic mixing, V PMNS
i j = V L†

(ν)iαV L
(e)α j, is the ‘Pontecorvo-Maki-

Nakagawa-Sakata’ (PMNS) matrix.

The problem with Dirac neutrinos is that naturally we would expect the Yukawa coupling to be of

the same order as those for the quarks and charged leptons. However, as we know experimentally

that neutrino masses are much smaller, a mechanism to explain this fact is desired. One such

mechanism is the ‘Seesaw mechanism’ [48] whereby a Majorana mass term is introduced for

the right handed neutrinos, which ends up explaining the light neutrino masses in a natural and

beautiful way. The terms of interest in the Lagrangian are now

L ν
Y = λ

i j
ν LLiνR jH1 +

1
2

Mi j
νc

RiνR j +h.c. (1.27)

The key to the Seesaw mechanism is that the Majorana mass term is not generated by the Higgs

mechanism, and so can be much larger than the masses for quarks and charged leptons. After

spontaneous symmetry breaking, we have both Dirac and Majorana mass terms given by

L ν
M = mi j

νLiνR j +
1
2

Mi j
νc

RiνR j +h.c.

= (νL,νc
R)

(
0 m

mT M

)(
νc

L

νR

)
+h.c. (1.28)

In the approximation that M >> m the matrix in Eq. (1.28) can be diagonalised to give effec-

tive Majorana masses for the light neutrinos, once the heavy right handed neutrinos have been

integrated out

mν =−m M−1mT (1.29)

It is clear from this Seesaw mass relation that if M >> m, we have mν << m, hence giving a

natural explanation for the small size of neutrino masses.

1.2.7 Renormalisation and effective field theory

In a quantum field theory (QFT) such as the Standard Model, in addition to tree level Feynman

diagrams for a certain process, there will also be loop diagrams of higher order in the coupling

constant which can give rise to divergent contributions. The reason for this is that the momenta

in a loop are only constrained by momentum conservation at the vertices, and so the computation

of the diagram will involve integration over all possible loop momenta. Depending on the form

of the integral, this can lead to infinite terms in the calculation of a physical process. Clearly this
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is unacceptable, so we must find a way of dealing with these infinities in order to ‘regularise’

the theory.

The essential objects which describe physical observables in QFT are n-point Green functions,

and in light of the divergences that can arise, instead of integrating momenta to infinity we could

integrate to some cutoff scale, Λ. The Green functions will then depend on Λ, and it follows that

the fields, couplings and masses in the Lagrangian will also depend on Λ. As such, we have the

notion of a bare field φ0(x,Λ), a bare coupling λ0(Λ) and a bare mass m0(Λ), which all depend

on the cutoff scale. As an example, we can consider the Lagrangian for λφ 4 theory

L =
1
2

∂µφ0∂
µ

φ0−
1
2

m2
0φ

2
0 −

λ0

4!
φ

4
0 (1.30)

Firstly, we can express the bare field in terms of a renormalised field and a potentially divergent

coefficient, Z. The bare field, mass and coupling can then be removed from the Lagrangian by

using this redefinition, as well as redefinitions involving the renormalised mass and coupling

φ0 =
√

ZφR, δZ = Z−1, δm = Zm2
0−m2, δλ = Z2

λ0−λ (1.31)

In these definitions, m and λ are the remormalised mass and coupling constant, and correspond

to the physically measured quantities. In order to make this statement precise, remormalisation

conditions are chosen, where m2 is defined to be the location of the pole in the propagator,

and λ is defined as the magnitude of the four point scattering amplitude at zero momentum

(although we could equally well choose a different momentum scale in this definition). Using

these definitions, the Lagrangian can now be written as

L =

{
1
2

∂µφR∂
µ

φR−
1
2

m2
φ

2
R−

λ

4!
φ

4
R

}
+

{
1
2

δZ∂µφR∂
µ

φR−
1
2

δmφ
2
R−

δλ

4!
φ

4
R

}
= LR +LCT (1.32)

where LR is the original Lagrangian written in terms of the renormalised field, mass and cou-

pling constant, and LCT is the counterterm Lagrangian, which has absorbed the infinite shifts

between the bare parameters and the renormalised ones. In this way, the counterterms introduce

a new set of Feynman rules which must be taken into account when computing an amplitude.

Due to loop integrals in diagrams, UV divergences will occur, so we must introduce a regular-

isation procedure in order to deal with the infinities in a consistent way. One gauge invariant

method of regularisation is know as ‘dimensional regularisation’, which involves exploiting the

fact that most symmetries do not depend on the number of dimensions. As such, integrals are

calculated in d dimensions, where the integral is finite, and an analytic continuation is then made
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in d by setting d = 4−ε and then taking the limit of ε→ 0. The divergences will appear as sim-

ple poles at d = 4, and so when the integrals are performed, there will be a pole part proportional

to 1
ε
, plus terms which are finite in the limit ε → 0. Then a scheme such as the ‘MS scheme’

can be used, where just the pole part is associated with the counterterm. Divergences in a given

amplitude can then be cancelled by choosing δZ , δm and δλ in such a way as to maintain the

renormalisation conditions, meaning that infinities are cancelled by a lower order diagram with

a counterterm insertion.

The key to a renormalisable theory is that we should be able to cancel all the divergences in

the theory with a finite number of counterterms. In the λφ 4 example it was outlined how the

divergences in the two and four point functions could be cancelled with the introduction of three

infinite constants. Now we could go to higher order and examine the six point function and

even higher order Green functions. In the Feynman diagrams which contribute to these Green

functions, we could potentially have divergent subgraphs whose infinites are already removed

by the process of remormalising lower order Green functions. However, if it is not possible to

split a diagram into two disconnected pieces by making a cut along a single line, the diagram

is called ‘one-particle irreducible’ (1PI), and can potentially give rise to new divergences. If a

new divergence does occur for an n-point function, a new infinite counterterm proportional to

φ n must be added to the Lagrangian, and this process is repeated until all the divergences can be

cancelled by the counterterms. If this process carries on indefinitely, the theory is called non-

renormalisable. We should note that the issue with non-renormalisable theories is not that they

are mathematically inconsistent, as all the infinities can still be removed. However, in doing so

we have to introduce an infinite number of parameters.

In order to determine whether a specific Feynman diagram contains a UV divergence, naively

we could simply count powers of momentum. Each loop brings an integral
∫

d4k, and so could

potentially lead to an infinity. However, seeing as each propagator brings either one or two pow-

ers of momentum to the denominator, divergences could possibly be avoided. The ‘superficial

degree of divergence’ D, is defined to be the power of momentum in the numerator minus the

power in the denominator. In the naive sense, a diagram will diverge if D≥ 0, and will be finite

if D < 0. This statement is not completely true, due to the fact that a diagram with negative D

could contain a divergent subgraph, or a superficially divergent diagram could include symme-

try cancellations. However, the divergences produced by diagrams with D < 0 are cured by the

renormalisation of lower order Green functions, and so the criterion for a renormalisable theory

is that there should only exist a finite number of Green functions with D ≥ 0. In the context of

λφ n theory this criterion translates into the requirement that n ≤ 4, and due to the fact that the

action is dimensionless, this means that terms in the Lagrangian with coefficients (e.g the cou-

pling constant λ ) whose mass dimension is greater or equal to zero are renormalisable, whereas

terms whose coefficients have negative mass dimension are non-renormalisable. This turns out

to be true in general, and can be understood intuitively by considering a coupling constant with

dimension [M]−i. In this case, each vertex gives a factor of 1
Mi , which for dimensional reasons

means that we expect to find divergences with increasing powers of Λi

Mi . Taking the case where
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i = 2 and assuming that we just have one typical energy scale, E, we can expand an N-point

amplitude up to order λ 2n as in [49]

AN(E) = A0
N(E)

(
1+ c1

E2

M2 + · · ·+ cn
E2n

M2n

)
(1.33)

Once all the amplitudes with smaller N have been renormalised, all the c coefficients apart from

cn are finite and calculable. On the surface, it may seem like we have a lack of predictability

for the non-renormalisable theory because we have to fix cn by comparison with experiment.

This lack of predictability is only an issue though if E is of the same order of magnitude as

M. Otherwise, in the low energy case E << M, the cn term is suppressed by E2n

M2n , and the non-

renormalisable theory is perfectly acceptable for describing low energy physics. This underlines

the fact that non-renormalisable theories have a basic mass scale associated with them, which

tells us about their range of validity.

Although the idea of renormalisability is extremely important, the modern perspective on QFT is

that if we are only interested in physics at a certain energy scale, it is not important what happens

at infinitely high energies, and so the question of whether the theory is renormalisable is not that

physically meaninful. For example, QED is a renormalisable theory, but we know that it is not

the correct description of nature above the Electroweak scale, and the non-renormalisable Fermi

theory, whilst not describing the full Electroweak theory, is still a good approximation when

considering low energy processes. As such, modern theoretical physics concerns itself with the

idea of effective field theory, where we do not necessarily have to have a full, UV complete

theory in order to understand physics at lower energies.

An important consequence of the renormalisation procedure is that coupling constants and

masses become dependent on the energy scale, and are said to ‘run’ with energy. In the brief

discussion of the systematics of renormalisation, we chose a specific renormalisation condition

for the scale µ , but noted that we could have equally well chosen another µ at which to renor-

malise our theory. The renormalised n-point functions ΓR will depend on this renormalisation

scale but have no dependence on the cutoff, whereas conversely the bare n-point functions Γ0

will depend on the cutoff but not on µ . The relation between Γ0 and ΓR is given by (where the

coupling in a general theory is now denoted by g)

Γ0(pi,g0(Λ),Λ) = Z
n
2 (g0(Λ),

Λ

µ
)ΓR(pi,gR,µ) (1.34)

Assuming that the typical energy scales are much bigger than the masses involved, we can

neglect mass terms, and using the fact that Γ0 is independent of the renormalisation scale, we

have

0 = µ
dΓ0

dµ
=

[
µ

∂

∂ µ
+β (gR)

∂

∂gR
+nγ(gR)

]
ΓR(pi,gR,µ) (1.35)



18 Chapter 1 Introduction

where the β and γ functions are defined as

β (gR) = µ
dgR

dµ
, γ(gR) =

1
2

µ
d

dµ
lnZ (1.36)

As such, it is the beta functions which encode the information about the running of coupling

constants, and one-loop beta functions will be used in the context of real models in later chapters,

in order to run the low energy gauge couplings of the SM up to the GUT scale.

1.2.8 Anomalies

In order to prove that a renormalised theory is gauge invariant, it is necessary to use relations

between Green functions which follow from gauge invariance (know as ‘Ward-Takahashi’ iden-

tities in QED). When a classical Lagrangian is invariant under a gauge symmetry, a direct con-

sequence is the existence of a conserved current jµ(x) which satisfies the conservation equation

∂µ jµ(x) = 0. The Ward identity is then concerned with imposing the symmetry on amplitudes

in the quantum theory in such a way that we still have a conserved gauge current at the quantum

level. However, there are a set of diagrams which do not satisfy these identities and so would

ruin the renormalisability of a gauge theory unless they are eliminated. These diagrams cor-

respond to cases where a symmetry of the classical Lagrangian is not a good symmetry of the

quantum theory, and give rise to the phenomenon of anomalies.

The simplest example of an anomaly is in the case of chiral transformations of massless Dirac

fermions [50]. This anomaly can be understood in terms of the non-invariance of the fermion

measure
∫

Dψ Dψ under these transformations. Under local transformations of the fermion

fields ψ(x)→U(x)ψ(x), where U is a matrix acting on the indices of the gauge group represen-

tation, the fermion measure transforms as

Dψ Dψ → (DetU)−1(DetU)−1Dψ Dψ (1.37)

If U is of the form U(x) = eiεα (x)tα , where the tα are generators of the gauge symmetry and

a possible global flavour symmetry, it can be seen that U = U−1 and the fermion measure is

invariant. However, if we take the case of a unitary chiral transformation, U(x) = eiεα (x)tα γ5 , it

can be shown that U =U , and so the fermion measure transforms with the prefactor (DetU)−2.

In a non trivial calculation (outlined in [50]), this quantity can be computed to be

(DetU)−2 = ei
∫

d4xεα aα (x), aα(x) =−
1

16π2 ε
µνρσ TrRtαFµν(x)Fρσ (x) (1.38)

where aα is known as the anomaly function. In this expression, the trace is a matrix trace

over the indices of the gamma, gauge and flavour matrices, and the field strengths are given by
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Figure 1.1: Triangle anomaly diagrams

Fµν = Fβ

µνtβ , where the tα have been defined to include a factor of the gauge coupling constant.

As such, it can be seen that for a gauge theory with a single coupling constant g, the anomaly

is proportional to g3. Combined with the Adler-Bardeen theorem which states that the anomaly

only occurs at one-loop order, it is clear that the anomaly arises from the triangle diagrams of

Figure 1.1, with one of the gauge fields coupling to the axial current, and the other two coupling

to the vector current.

As the Standard Model is a chiral theory, we must know about the significance of the axial

current in the context of a chiral gauge theory. Considering the case of massless chiral fermions

where only the left handed part couples to the gauge field, the matter Lagrangian is given by

L = iψ̄ /∂PRψ + iψ̄ /DPLψ (1.39)

This Lagrangian is manifestly not gauge invariant, as the right handed fields do not couple to the

gauge field, so to start we can just consider the gauge invariant kinetic term for the left handed

fields, L = iψ̄ /DPLψ . We can compute the anomaly by considering the triangle diagrams of

Figure 1.1, and inserting a projection operator PL at every vertex. The result of this calculation

is that the anomaly is proportional to the coefficient

Dabc
R = Tr[Ta{Tb,Tc}] (1.40)

where the trace is taken over the group generator matrices in representation R. It is useful now to

write right handed fields in terms of left handed fields by ψ ′L = σ2ψ∗R. Rewriting the Lagrangian

for the right handed fields and using the fact that generators in the conjugate representation T a
R̄ ,

are related to those in R by T a
R̄ =−(T a

R )
T , shows that the new fields ψ ′L transform in the conjugate

representation to R. This fact means that when R is real (meaning that R is equivalent to R), the

anomaly coefficient is zero and the theory is automatically anomaly free. When a gauge group

has complex representations, it must be checked that anomalies are cancelled in order to have a

consistent theory, and this can indeed be shown to be true for the Standard Model.

As such, the SM is a renormalisable, anomaly free theory, but for reasons explained in the

motivation section for this thesis, there are many questions to which it cannot give satisfactory
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answers. In accord, we now turn our attention to some BSM topics which will provide the

groundwork for building GUT models in an F-theory context.

1.3 Supersymmetry

As hinted at in the motivation for this thesis, the Standard Model with a fundamental Higgs

boson suffers from the issue that m2
H is quadratically sensitive to heavy mass scales, mheavy, to

which the Higgs couples. In fact, even after Λ2 divergences are subtracted by renormalisation,

one still has m2
heavy terms. This is due to the fact that there is no symmetry in the SM which

‘protects’ the Higgs mass in the same way, for example, that the photon is ensured to be massless

at all orders in perturbation theory by the exact U(1) gauge symmetry of QED.

This property of the radiative corrections to the Higgs mass is suggestive of a symmetry in the

UV theory which manifests itself in the systematic cancellation of quadratic divergences. In-

deed, if we have a symmetry relating fermions and bosons, fermions and bosons with the same

gauge quantum numbers give opposite sign contributions to the Higgs mass squared, and the

quadratic divergences to the Higgs mass exactly cancel (provided that we have equal numbers

of bosonic and fermionic degrees of freedom), leaving only logarithmic divergences. The gen-

erators of such a ‘supersymmetry’ (SUSY) will act on a bosonic state to give a fermionic one

and vice versa:

Q |Boson〉= |Fermion〉 , Q |Fermion〉= |Boson〉 (1.41)

In 1967 though, the ‘no-go’ theorem of Coleman and Mandula [51] demonstrated that it is

impossible to combine space-time and internal symmetries in any but a trivial way. The impli-

cations of this theorem would be that internal symmetries would not be able to relate particles

with different masses or spins, clearly seeming to forbid the fundamental starting point of SUSY.

However, the Haag-Lopuszański-Sohnius theorem [52] evades this restriction by considering

extending the Poincaré group to include symmetries whose generators are fermionic, obeying

anticommutation relations. The theorem proved that SUSY is the only possible extension of the

Poincaré algebra, with the algebra written in terms of the additional generator Qα (α = 1,2)

which can be chosen to transform as a left handed Weyl spinor, and its Hermitian conjugate Q
β̇

,

a right handed Weyl spinor:

{
Qα ,Qβ

}
=
{

Qα̇ ,Qβ̇

}
= 0 (1.42)[

Qα ,Pµ

]
= 0 (1.43){

Qα ,Qβ̇

}
= 2σ

µ

αβ̇
Pµ (1.44)
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The particles of a supersymmetric theory fall into supermultiplets containing both bosonic and

fermionic fields, which are known as superpartners of each other. As the mass-squared operator

PµPµ commutes with the operators Q and Q which transform different members of a supermul-

tiplet into each other, it follows that the superpartners must have equal masses. Also, as the

SUSY generators commute with the generators of gauge transformations, particles in the same

supermultiplet transform in the same representation of the SM gauge group.

There are a few important consequences of the anticommutation relation in Eq. (1.44); the first

of which can be seen by considering the operator (−1)2s as in [53], where s is the spin quantum

number. This operator has an eigenvalue of +1 when acting on a bosonic state and −1 when

acting on a fermionic state, and due to the fact that the operator Qα turns bosons into fermions

and vice versa, we have

(−1)2sQα =−Qα(−1)2s

Bearing this anticommutation property in mind, we can consider a finite dimensional represen-

tation of the algebra, and take the following trace over the set of states in the supermultiplet

Tr
[
(−1)2s

{
Qα ,Qβ̇

}]
= Tr

[
−Qα(−1)2sQ

β̇
+(−1)2sQ

β̇
Qα

]
= Tr

[
−Qα(−1)2sQ

β̇
+Qα(−1)2sQ

β̇

]
= 0

where on the second line the cyclic property of the trace has been used. From Eq. (1.44) this

implies that

2σ
µ

αβ̇
Tr
[
(−1)2sPµ

]
= 0

meaning that for a given non-zero Pµ , Tr(−1)2s = 0. As the operator (−1)2s has equal and

opposite value ±1 for bosons and fermions, this implies that in any supermultiplet we must

have equal numbers of bosonic and fermionic degrees of freedom

nB = nF (1.45)

Another important consequence of Eq. (1.44) can be seen by multiplying both sides by (σν)β̇α

and using the relation σ µσ
ν = ηµν +2σ µν [54], leading to

(σν)β̇α

{
Qα ,Qβ̇

}
= 4Pν
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Taking the matrix element of the ν = 0 component gives

〈ψ|P0 |ψ〉= 1
4
〈ψ|Q1Q1̇ +Q1̇Q1 +Q2Q2̇ +Q2̇Q2 |ψ〉

=
1
4
〈ψ|Qα(Qα)

∗+(Qα)
∗Qα |ψ〉 ≥ 0 (1.46)

As such, the energy of any non-vacuum state is positive definite and the vacuum energy is zero.

This has important consequences for the spontaneous breaking of supersymmetry, as for SUSY

to be spontaneously broken, the physical vacuum state |0〉 should not be annihilated by all the

SUSY generators. Therefore, whenever SUSY is broken in the vacuum state it has positive

energy, and all possible supersymmetric vacuua are degenerate with zero energy. Thus, the

effective potential must possess no supersymmetric minimum in order for its global minimum

corresponding to the physical vacuum to be non-supersymmetric.

1.3.1 Supermultiplets

From Eq. (1.45), the simplest example of a supermultiplet satisfying this constraint would be the

case of a single Weyl fermion and a single complex scalar field. This combination is known as

a chiral supermultiplet, and all the fermions of the Standard Model fit into such multiplets. The

names for the spin-0 partners of the quarks and leptons are ‘squarks’ and ‘sleptons’ respectively,

with the right and left handed parts of the fermionic fields having their own complex scalar

partners, as shown in Table 1.1. As the Higgs boson is a spin-0 particle, it clearly must reside

in a chiral superfield, but as seen from Table 1.1 we actually require two Higgs supermultiplets,

Hu and Hd . This is in order to cancel Electroweak gauge anomalies and to give masses to both

up and down type quarks as shall be demonstrated later.

The next simplest example of a supermultiplet is the so called vector supermultiplet, consisting

of a massless spin-1 vector boson and a massless spin- 1
2 Weyl fermion. The gauge bosons of

the Standard Model fit into such multiplets alongside their fermionic partners, the ‘gauginos’,

as summarised in Table 1.2. As the gauge bosons transform in the adjoint representation of

the associated gauge group, the gauginos must as well, meaning that the left and right handed

components of the gaugino fields must have the same transformation properties due to the reality

of adjoint representations. It is for this reason that the fermions of the SM all have to be placed

in chiral supermultiplets rather than vector ones.

1.3.2 Superspace and superfields

The mechanics of supersymmetry can be conveniently described by introducing the notion of

superspace (reviewed in, for example, [55, 56]), where instead of fields just being functions of
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Chiral supermultiplet spin 0 spin 1
2 SU(3)C, SU(2)L, U(1)Y

Q (ũL, d̃L) (uL,dL) (3,2, 1
6)

u ũ∗R u†
R (3,1,−2

3)

d d̃∗R d†
R (3,1, 1

3)

L (ν̃ , ẽL) (ν ,eL) (1,2,−1
2)

e ẽ∗R e†
R (1,1,1)

Hu (H+
u ,H0

u ) (H̃+
u , H̃0

u ) (1,2, 1
2)

Hd (H0
d ,H

−
d ) (H̃0

d , H̃
−
d ) (1,2,−1

2)

Table 1.1: Chiral supermultiplets in the MSSM

Vector supermultiplet spin 1
2 spin 1 SU(3)C, SU(2)L, U(1)Y

Gluino, Gluon g̃ g (8,1,0)
Wino, W boson W̃±, W̃ 0 W±, W 0 (1,3,0)
Bino, B boson B̃0 B0 (1,1,0)

Table 1.2: Vector supermultiplets in the MSSM

the space-time coordinates xµ , a superfield S(x,θ ,θ) is also a function of the anticommuting

two-component Grassmann variables θα and θ α̇ . Due to the anticommuting nature of the extra

coordinates, a general superfield can be expanded as a power series in θ and θ , with no more

than two powers of θ and θ included in the expansion. In this formalism the fields contained in a

particular supermultiplet are united into a single superfield, which is a function of the superspace

coordinates. A finite SUSY transformation can now be written as

G(xµ ,θ ,θ) = exp
[
i(θQ+ θ̄ Q̄−xµPµ)

]
(1.47)

where the indices have been dropped on the spinors θ , Q, and their conjugates. A superfield

S(xµ ,θ ,θ) now transforms under a SUSY transformation as

G(aµ ,ξ ,ξ )S(xµ ,θ ,θ) = S(xµ +aµ − iξ σ
µ

θ + iθσ
µ

ξ ,θ +ξ ,θ +ξ ) (1.48)

In order to find a representation for the SUSY generators, we can consider infinitesimal trans-

formations of this form

S(xµ +aµ − iξ σ
µ

θ + iθσ
µ

ξ ,θ +ξ ,θ +ξ ) = S(xµ ,θ ,θ)+δSS

= S(xµ ,θ ,θ)+(aµ − iξ σ
µ

θ + iθσ
µ

ξ )
∂S
∂xµ

+ξ
α ∂S

∂θ α
+ξ α̇

∂S
∂θ α̇

+ · · · (1.49)

This leads to the following linear representation in terms of differential operators which act on

superfields
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Pµ = i∂µ (1.50)

Qα =
∂

∂θ α
− iσ µ

αβ̇
θ

β̇
∂µ (1.51)

Qα̇ =− ∂

∂θ
α̇
+ iθ β

σ
µ

βα̇
∂µ (1.52)

We can now construct covariant derivatives with respect to θ and θ :

Dα =
∂

∂θ α
+ iσ µ

αβ̇
θ

β̇
∂µ (1.53)

Dα̇ =− ∂

∂θ
α̇
− iθ β

σ
µ

βα̇
∂µ (1.54)

These covariant derivatives anticommute with Q and Q, and also satisfy the algebra

{
Dα ,Dβ

}
=
{

Dα̇ ,Dβ̇

}
= 0 (1.55){

Dα ,Dβ̇

}
= 2iσ µ

αβ̇
∂µ (1.56)

From the anticommutation relations combined with the form of the infinitesimal SUSY transfor-

mation in Eq. (1.49), it can be seen that δS(DαS) = Dα(δSS) and δS(Dα̇S) = Dα̇(δSS). As the

derivatives commute with SUSY transformations, they are said to be supersymmetric covariant

and are useful in defining covariant constraints on superfields.

1.3.3 Chiral superfields

A chiral superfield Φ(x,θ ,θ) is one for which one of the following constraints has been imposed

Dα̇Φ = 0 (1.57)

DαΦ
† = 0 (1.58)

where Eq. (1.57) is said to describe a left chiral superfield, and Eq. (1.58) a right chiral one. If

we introduce the coordinates
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yµ

l = xµ − iθσ
µ

θ (1.59)

yµ
r = xµ + iθσ

µ
θ (1.60)

it can be seen that Eq. (1.57) is solved by any function of θ and yµ

l due to the fact that Dα̇θ =

Dα̇yµ

l = 0. As such, the general solution written as an expansion in powers of θ is given by

Φ(yµ

l ,θ) = φ(yl)+
√

2θψ(yl)+θθF(yl) (1.61)

where the fields φ and F are complex scalars, and ψ is a Weyl fermion. Bearing in mind

that the coordinate θ has mass dimension of −1
2 , φ and ψ can have the usual dimensions of

+1 and +3
2 respectively, whereas the scalar field F has mass dimension +2, and is a non-

propagating ‘auxiliary’ field. The expression for the right chiral superfield Φ† is the same, but

with θ replaced by θ and yµ

l replaced by yµ
r . The SUSY transformations of the component fields

in the superfield expansion of Eq. (1.61) can be found by considering the infinitesimal forms

Φ→Φ+δSΦ (1.62)

δSΦ = i(ξ Q+ξ Q)Φ (1.63)

= δSφ +
√

2θδSψ +θθδSF (1.64)

Comparing Eq. (1.63) with Eq. (1.64) leads to the transformations

δSφ =
√

2ξ ψ (Boson→ Fermion) (1.65)

δSψ =
√

2ξ F−
√

2σ
µ

ξ ∂µφ (Fermion→ Boson) (1.66)

δSF =−i
√

2∂µψσ
µ

ξ (F→ Total derivative) (1.67)

1.3.4 Vector superfields

A vector superfield is one which satisfies the constraint

V (x,θ ,θ) =V †(x,θ ,θ) (1.68)

Starting with a Lorentz invariant superfield and expanding up to quadratic order in both θ and

θ , we can use the fact that we can construct the Lorentz scalars θθ and θθ and the vector

θσ µθ =−θσ µθ , and impose Eq. (1.68) to get
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V (x,θ ,θ) = (1+
1
4

θθθ̄ θ̄∂µ∂
µ)C(x)+(iθ +

1
2

θθσ
µ

θ∂µ)χ(x)+(−iθ +
1
2

θ̄ θ̄σ
µ

θ∂µ)χ(x)

+
i
2

θθ [M(x)+ iN(x)]− i
2

θ̄ θ̄ [M(x)− iN(x)]−θσ
µ

θAµ(x)

+ iθθθ̄ λ̄ (x)− iθ̄ θ̄θλ (x)+
1
2

θθθ̄ θ̄D(x) (1.69)

where C, M, N and D are real scalar fields, χ and λ are Weyl fermions, and Vµ is a real vector

field. We could alternately form a real vector superfield satisfying Eq. (1.68) by looking at the

following combination of the left and right chiral superfields

i(Φ−Φ
†) = i(φ −φ

†)+ i
√

2(θψ− θ̄ ψ̄)+ iθθF− iθ̄ θ̄F†

−θσ
µ

θ∂µ(φ +φ
†)− 1√

2
θθθ̄ σ̄

µ
∂µψ +

1√
2

θ̄ θ̄θσ
µ

∂µψ

− 1
4

iθθθ̄ θ̄∂µ∂
µ(φ −φ

†) (1.70)

By comparing Eqs. (1.69) and (1.70) and noting the similarities in structure, we can consider

the transformation of a vector superfield under a U(1) ‘supergauge’ transformation to be

V →V + i(Φ−Φ
†) (1.71)

where Φ is a chiral superfield gauge transformation parameter, with the form of Eq. (1.61) in

terms of component fields. This transformation ensures the usual gauge transformation for the

vector boson field in Eq. (1.69), Aµ → Aµ + ∂µ(φ +φ ∗), but can also be used to eliminate the

fields C(x), χ(x), M(x) and N(x). Since these fields can be supergauged away, they are not

physical fields, and in the ‘Wess-Zumino gauge’ where they are all chosen to be zero, the vector

superfield appears in a simpler form

VWZ(x,θ ,θ) = θσ
µ

θAµ(x)+ iθθθ̄ λ̄ (x)− iθ̄ θ̄θλ (x)+
1
2

θθθ̄ θ̄D(x) (1.72)

It can be seen that the field D has mass dimension +2, just like the F field in the chiral superfield

of Eq. (1.61). If a SUSY transformation is applied to the case of the vector superfield, it is found

that D transforms as a total derivative, also analogous to the F field:

δSD =−ξ σ
µ

∂µλ +ξ σ
µ

∂µλ (1.73)

The fact that the F and D fields transform in this way will help greatly in constructing supersym-

metric Lagrangians, as an integral over space-time of a total divergence will vanish provided the
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fields fall off fast enough at infinity. As such, these terms will be able to provide an action which

is invariant under SUSY transformations.

1.3.5 Supersymmetric Lagrangians

The Lagrangian density will be a sum of products of the chiral and vector superfields, and we

have seen that in both cases it is the component of the superfield which has the largest number

of θ and θ factors which transforms as a total derivative. As such, we can write an invariant

action as

S =
∫

d4x
(∫

d2
θLF +

∫
d2

θd2
θLD

)
(1.74)

Integration over Grassmann variables is defined by

∫
dθα = 0,

∫
θαdθα = 1 (1.75)

In order to integrate over superspace, we can define

d2
θ =−1

4
dθ

αdθ
β

εαβ , d2
θ =−1

4
dθ̄α̇dθ̄

β̇
ε

α̇β̇ (1.76)

Combining Eqs. (1.75) and (1.76) gives the results

∫
d2

θ(θθ) = 1,
∫

d2
θ̄(θ̄ θ̄) (1.77)

From this we can see that the result of integrating a superfield over d2θ picks out the θθ term;

integrating over d2θ picks out the θ̄ θ̄ term, and integrating over d2θd2θ picks out the θθθ̄ θ̄

term. This is just as required in order to select the highest component field of a chiral or vector

supermultiplet. Now that the mechanics have been developed for building supersymmetric La-

grangians, possible contributions to the Lagrangian can be analysed by looking at products of

superfields.

Firstly, it should be noted that the product of multiple left chiral superfields will always be left

chiral (and similarly for right chiral superfields) as there is no θ dependence. Any product of

left chiral superfields will always terminate at the θθ term in the expansion due to the fact that

θθθ = 0, and so all these types of terms are of the same type as LF in Eq. (1.74). Computing

the product of two or three left chiral superfields Φi,L = φi+
√

2θψi+θθFi and integrating over

superspace coordinates gives the following results
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∫
d2

θΦ1,LΦ2,L = φ1F2 +φ2F1−ψ1ψ2 (1.78)∫
d2

θΦ1,LΦ2,LΦ3,L = φ1φ2F3 +φ1F2φ3 +F1φ2φ3−ψ1φ2ψ3−φ1ψ2ψ3−ψ1ψ2φ3 (1.79)

Note that we cannot have any higher product of superfields of this kind due to the fact that it

would give rise to terms of mass dimension greater than 4 in the Lagrangian, leading to non

renormalisable interactions. In order to find terms of the same type as LD in Eq. (1.74), we

can consider the product of a left and a right chiral superfield, ΦLΦ
†
L. Due to the fact that the

conjugate of a left chiral field is right chiral, this term is clearly a vector superfield, and hence it

is of the same type as LD:

∫
d2

θd2
θΦLΦ

†
L = FF∗−φ∂µ∂

µ
φ
∗− iψσµ∂

µ
ψ (1.80)

It is useful when considering the F-fields to combine Eqs. (1.78) and (1.79) to form the super-

potential

W (Φi) =
1
2

Mi j
ΦiΦ j +

1
6

yi jk
ΦiΦ jΦk (1.81)

As such, the Lagrangian so far can be written

L = ∑
i
(FiF∗i +

∣∣∂µφ
∣∣2− iψ iσµ∂

µ
ψi)+

[
∑

j

∂W (φi)

∂φ j
Fj−

1
2 ∑

j,k

∂ 2W (φi)

∂φ j∂φk
ψ jψk +h.c

]
(1.82)

where the superpotential is now written as a function of the scalar fields φi rather than the

superfields. We can now integrate out the Fi fields using their equations of motion, given by
∂L
∂Fi

= 0, leading to

Fi =−
[

∂W (φ j)

∂φi

]∗
(1.83)

Now our Lagrangian consists of kinetic terms for the scalar and fermion components of a chiral

supermultiplet but no kinetic term for the auxiliary fields Fi, as well as terms describing both

fermion and scalar masses, and Yukawa and scalar interactions. However, the Lagrangian does

not yet describe vector (gauge) superfields, and so in order to achieve this, we must consider

consider the superspace Lagrangian for a gauge theory. For simplicity, we will take the case of

a U(1) theory where the vector superfield transforms as in Eq. (1.71), and we will specialise to

the Wess-Zumino gauge where the vector superfield can be written as Eq. (1.72). In order to

write down a field strength, the following spinor chiral superfields are defined
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Wα =−1
4
(D̄D̄)DαV, W α̇ =−1

4
(DD)Dα̇V (1.84)

It can be shown that Wα and W α̇ are supergauge invariant, and so hence is the quantity W αWα

which is also a left chiral superfield. As such, the F component (i.e. that associated with the θθ

factor) of this term may appear in the superspace Lagrangian

1
32g2WαW α =−1

4
Fa

µνFµν
a +

1
2

DaDa +

(
− i

2
λ

a
σµ∂

µ
λ a +

g
2

λaσµAµ

b λ c +h.c.
)

(1.85)

where Fµν is the ordinary field strength, Fµν = ∂µAν −∂νAµ , and λ is the fermionic partner of

the gauge boson Aµ , called the gaugino. In the U(1) case that has been considered here, due to

the fact that the integral over xµ of the D-term component of the vector superfield is invariant

under both SUSY and supergauge transformations, we can add a Fayet-Iliopoulos term to the

Lagrangian

LFI =−2κ[V ]D =−κD (1.86)

1.3.6 The Minimal Supersymmetric Standard Model (MSSM)

The matter content in the MSSM is given in Tables 1.1 and 1.2 and the superpotential for the

model is given by

WMSSM = uyuQHu−dydQHd− eyeLHd +µHuHd (1.87)

where yu, yd and ye are dimensionless 3× 3 Yukawa matrices and the µ term is the supersym-

metric generalisation of the SM Higgs mass term. It is the only possible candidate term of this

type due to the holomorphicity of the superpotential with the chiral superfields treated as comn-

plex variables- a fact which also explains the necessity for two Higgs doublets. Another reason

for this requirement is that anomalies will not be cancelled with only one Higgs doublet due to

gauge anomalies associated with triangle diagrams involving higgsinos. These anomalies are

cancelled in the case of two Higgs doublets due to the fact that the two higgsino doublets have

opposite hypercharge.

In addition to the terms written in the superpotential of Eq. (1.87) there are additional terms

which satisfy all the requirements to be included, but are not contained in the MSSM because

they either violate baryon or lepton number conservation. These terms which would be included

in the most general superpotential are
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W∆L=1 =
1
2

λLLe+λ
′LQd +µ

′LHu (1.88)

W∆B=1 =
1
2

λ
′′ūd̄d̄ (1.89)

The consequences of the presence of these terms with unsuppressed λ ′ and λ ′′ couplings would

be that if both ∆L = 1 and ∆B = 1 terms are included, proton decay would be induced at rapid

rates, clearly incompatible with current experimental bounds. As such, a new symmetry must

be introduced in the MSSM in order to forbid these terms whilst allowing the terms in Eq.

(1.87). Such a symmetry is called R-parity, which is a discrete symmetry under which all the

SM particles and the Higgs boson have PR = 1 and all the SUSY particles have PR =−1

PR = (−1)3(BL)+2s (1.90)

The consequences of R-parity conservation are that sparticles must be produced in even num-

bers, the lightest supersymmetric particle (LSP) must be stable, and every other SUSY particle

must eventually decay into a final state containing an odd number of LSPs. The existence of

a stable LSP provides a very attractive candidate for dark matter due to the extremely weak

interactions it might have with normal matter.

1.4 Grand Unified Theories (GUTs)

The basic idea behind grand unification is to embed the three gauge groups and associated gauge

couplings of the Standard Model into one larger group G, with one coupling constant g. In this

way, it is possible to address more of the shortcomings of the SM, in particular by reducing the

number of free parameters, putting symmetry restrictions on aspects of SM which are arbitrary,

and providing an explanation for the apparent merging of the SM gauge couplings at a high scale.

Clearly the first requirement that any potential GUT must satisfy is that the unified group must

contain a SU(3)×SU(2)×U(1) subgroup and have a rank of at least 4, in order to accommodate

the four diagonal generators of the SM. Due to the chiral nature of fermions, it is also clear that G

must have complex representations, and because of renormalisability we must have an anomaly

free theory. Based on these restrictions, the only rank 4 candidate for a GUT is SU(5), although

the rank 5 group SO(10) and the rank 6 group E6 will also be considered in this thesis. The first

proposed GUT was the Georgi-Glashow SU(5) model [57], and it is useful in elucidating some

general features of GUTs to look at this model in some detail.
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1.4.1 The Georgi-Glashow SU(5) model

SU(5) is the group of 5×5 complex unitary matrices with determinant one. The group elements

are given by

U = exp

(
−i

24

∑
j=1

β
jLj

)
(1.91)

where the conditions on the group elements of unitarity and unit determinant mean that the 24

generators Lj are Hermitian and traceless. As we have 24 generators, we will also have 24

associated gauge bosons, and in order to describe them it is useful to define a basis for the 5×5

matrices where the SU(3) group acts on the first three rows and columns, and the SU(2) group

acts on the last two. Normalising the generators such that

Tr(LaLb) =
1
2

δ
ab (1.92)

we can embed the SU(3) and SU(2) generators as

La =
1
2


0 0

λ a 0 0

0 0

0 0 0 0 0

0 0 0 0 0

 , L9,10 =
1
2


0 0

0 0 0

0 0

0 0 0
σ1,2

0 0 0

 (1.93)

where λ a with a = 1, ...,8 are the Gell-Mann matrices, and σ1,2 are the non diagonal Pauli ma-

trices. Two more diagonal generators (in addition to L3 and L8) can be chosen to be proportional

to the third component of weak isospin and the hypercharge generator as follows

L11 = diag
1
2
(0,0,0,1,−1), L12 =

1
2
√

15
diag(−2,−2,−2,3,3) (1.94)

Finally we have the non diagonal generators L13,L14, ....,L23,L24 which do not correspond to

any of the SM gauge group generators. They can be chosen as in the following two matrices,

where the other generators are found by following the same pattern.

L13 =
1
2


1 0

0 0 0

0 0

1 0 0
0

0 0 0

 , L14 =
1
2


i 0

0 0 0

0 0

−i 0 0
0

0 0 0

 (1.95)
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It is useful to describe the SU(5) gauge bosons by a linear combination of these generators

1√
2

Aµ =
24

∑
a=1

Aa
µLa (1.96)

where it is convenient to introduce the gauge bosons X and Y as

X1
µ =

A13
µ + iA14

µ√
2

, X2
µ =

A15
µ + iA16

µ√
2

, X3
µ =

A17
µ + iA18

µ√
2

Y 1
µ =

A19
µ + iA20

µ√
2

, Y 2
µ =

A21
µ + iA22

µ√
2

, Y 3
µ =

A23
µ + iA24

µ√
2

(1.97)

With these definitions, we have

Aµ =



G1
1− 2B√

30
G1

2 G1
3 X1 Y 1

G2
1 G2

2− 2B√
30

G2
3 X2 Y 2

G3
1 G3

2 G3
3− 2B√

30
X3 Y 3

X1 X2 X3
W3√

2
+ 3B√

30
W1+iW2√

2

Y1 Y2 Y3
W1−iW2√

2
−W3√

2
+ 3B√

30


(1.98)

In order to place the fermionic content of the Standard Model into SU(5) representations, we

must examine some of the lowest dimensional irreducible representations of SU(5). The funda-

mental 5 dimensional representation is the simplest representation and can be represented by a

5 dimensional column vector. The branching rules for the 5 representation and its conjugate, the

5, when SU(5) is decomposed into SU(3)×SU(2)×U(1) are

5→ (3,1)− 1
3
+(1,2) 1

2

5→ (3,1) 1
3
+(1,2)− 1

2
(1.99)

where it has been noted that the 2 of SU(2) is equivalent to the 2, and the U(1) charges have

been normalised in such a way to facilitate comparisons with the SM hypercharges, related to

the electric charge by Eq. (1.18). Looking at the components of the 5, it can be seen that we can

identify the (3,1) 1
3

state with the anti-down like quarks and the (1,2)− 1
2

with the left-handed

lepton doublet. Utilising the fact that the charge conjugate of a right-handed field transforms as

a left-handed one, we can then express the 5 in terms of left-handed SM states as
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5 =


dc

b

dc
g

dc
r

e

−νe

 (1.100)

In order to build other representations of SU(5), we can take products of the fundamental

representation such as 5× 5 = 10+ 15 [58]. The 10 is the antisymmetric product of two 5s,

xi j = 1√
2
(aia j− a jai), i, j = 1, ...,5, where the ai are the components of the 5 representations.

Under the decomposition to the SM gauge group, we have the following branching rule for the

10

10→ (3,2) 1
6
+(3,1)− 2

3
+(1,1)1 (1.101)

As such, by comparing the components of the decomposition with SM states, we can embed the

anti-up like quarks, left handed quark doublets and the positron into the 10 as follows:

10 =
1√
2


0 uc

r −uc
g −ub −db

−uc
r 0 uc

b −ug −dg

uc
g −uc

b 0 −ur −dr

ub ug ur 0 −ec

db dg dr ec 0

 (1.102)

It can be seen that the hypercharge in these assignments can be written as Y =CL12, where C is a

normalisation constant. In order to make this normalisation consistent with the SM hypercharges

and Eq. (1.18), we can note that the electric charges of the states in the 5 representation are given

by Q = (1
3 ,

1
3 ,

1
3 ,−1,0), meaning that

Tr(Q2) =
4
3
= Tr(L2

11)+C2Tr(L2
12) =

1
2
(1+C2) (1.103)

This implies the ‘GUT normalised’ hypercharge has C =
√

5
3 , with the generator given by

Y =
1
2


−2

3 0 0 0 0

0 −2
3 0 0 0

0 0 −2
3 0 0

0 0 0 1 0

0 0 0 0 1

 (1.104)
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The gauge bosons of Eq. (1.98) can be further understood by decomposing the 24 dimensional

adjoint representation of SU(5) under SU(3)×SU(2)×U(1)Y

24→ (8,1)0 +(1,3)0 +(1,1)0 +(3,2)− 5
6
+(3,2) 5

6
(1.105)

The first three terms simply correspond to the SM gauge bosons, whereas the (3,2) 5
6

contains

the Xµ and Yµ bosons (which are the T3 = 1
2 and T3 = −1

2 components of the SU(2) doublet

respectively), with the (3,2)− 5
6

containing X µ and Y µ . Using Eq. (1.18), it can be seen that

Xµ has electric charge Q = 4
3 and Yµ has Q = 1

3 . As the X and Y bosons possess both colour

and charge, they induce interactions between quarks and leptons, and hence mediate baryon

and lepton number violating processes. For this reason, they are called leptoquarks, and these

interactions as well as diquark interactions will be important in the later discussion of proton

decay.

1.4.2 Anomalies in the SU(5) model

The anomaly in any fermion representation of SU(N) is proportional to

Dabc = Tr
[{

Ta
R,T

b
R
}

Tc
R
]
=

1
2

A(R)dabc (1.106)

where T a
R are the generators, A(R) is independent of these generators and dabc is the third order

antisymmetric invariant of SU(N). As A(R) is independent of the generator choice, we can

choose all the generators in Eq. (1.106) to be the charge generator, leading to

A(5) = TrQ3
5 = 3(

1
3
)3 +(−1)3 =−8

9

A(10) = TrQ3
10 = 3(−2

3
)3 +3(

2
3
)3 +3(−1

3
)3 +1 =

8
9

(1.107)

As such, A(5)+A(10) = 0, and as long as we have complete 5+10 fermion representations we

have freedom from anomalies.

1.4.3 Fermion interactions with X and Y gauge bosons

The couplings between fermions and the X and Y bosons can be found by considering the gauge

invariant kinetic energy terms for the 5 and 10 representations
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LX ,Y = iψa
5γ

µ(Dµψ5)a + iψab
10γ

µ(Dµψ10)ab

= ψ
a
5(iγ

µ
∂µδ

b
a +

g5√
2

γ
µAb

µa)ψ5b +ψ
ab
10(iγ

µ
∂µδ

c
b +

g5√
2

γ
µAc

µb)ψ10ac (1.108)

The couplings between fermions and the X and Y gauge bosons are given in Figure 1.2.

e+

d

e+ (νe)

u (d)
X X Y Y

u

u

u

d

Figure 1.2: X and Y boson couplings in SU(5)

These vertices will lead to Feynman diagrams which violate Baryon and Lepton number. In

unbroken SU(5), all fields are massless, and these processes would lead to proton instability

which is inconsistent with current experimental data. However, when SU(5) is spontaneously

broken, proton decay can be avoided if the breaking occurs at a scale which is high enough

above the Electroweak scale. As such, the details of spontaneous symmetry breaking in SU(5)

are extremely important in the discussion of a realistic theory.

1.4.4 Spontaneous symmetry breaking

Spontaneous symmetry breaking in SU(5) occurs in two steps- firstly the breaking to the SM

gauge group at a scale MGUT where the X and Y bosons become massive, and secondly Elec-

troweak symmetry breaking which gives masses to the W± and Z bosons. The first step is

achieved by giving a VEV to an adjoint Higgs multiplet, which we can write as 24 scalar fields,

Σa, a = 1, ...,24. The couplings of gauge fields to Σa can be found by considering the following

kinetic term and covariant derivative

Lk =
1
2
(Dµ)

†
a(D

µ)a (1.109)

(DµΣ)a = (∂µδab−
ig
2

Ac
µ(F

c)ab)Σb, a,b,c = 1, ...,24 (1.110)
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where Ac
µ are the 24 gauge fields of SU(5) and (Fc)ab are the 24 generators in the adjoint repre-

sentation. The form of the adjoint representation can be seen easily by adopting a tensor product

notation, where the tensor product of n 5s and m 5s is denoted by
∣∣∣i1....imj1... jn

〉
=
∣∣i1〉 ... ∣∣im〉∣∣ j1

〉
...
∣∣ jn
〉
.

We can now express an arbitrary state in terms of components in this tensor product space as
|v〉 =

∣∣∣i1....imj1... jn

〉
v j1.. jn

i1...im . In this way, it can be seen that we can construct the adjoint representation

by taking the product of a 5 (represented by ui) and a 5 (represented by v j) as follows:

uiv j = (uiv j−
1
5

δ
i
ju

kvk)+
1
5

δ
i
ju

kvk (1.111)

5×5 = 24+1 (1.112)

We can see that the first term in Eq. (1.111) corresponds to a 5× 5 matrix which is traceless,

hence giving the 24 degrees of freedom of the adjoint, and the second term transforms as a

singlet due to the invariant nature of the δ tensor under SU(5) transformations. As the Higgs

scalar multiplet Σa is adjoint valued, it can be represented by a 5×5 matrix, Σ, which transforms

in the same way as the adjoint representation. As such, the covariant derivative is given by

DµΣ = ∂Σ− ig√
2

[
Aµ ,Σ

]
(1.113)

where Aµ is as given in Eqs. (1.96) and (1.98). When Σ acquires a VEV, the resulting masses

for the X and Y bosons can be calculated by inserting this expression into Eq. (1.109), leading

to a mass matrix of the following form

1
4

g2Tr
[
Aµ ,〈Σ〉

]2
= m2

abAa
µAµb (1.114)

In order to understand the possible forms for the VEV in this equation, we must construct a

potential for Σ. To this end, we can write down the most general gauge invariant scalar potential

with all couplings of dimension 4 or less so as not to spoil renormalisability. The potential can

also be simplified by imposing invariance under a discrete Z2 symmetry, Σ→−Σ, and with this

choice, the most general form is

V =−µ2

2
TrΣ2 +

λ

4
TrΣ4 +

λ ′

4
(TrΣ2)2 (1.115)

It follows from Eq. (1.114) that 〈Σ〉 must be diagonal in order to keep the SM gauge bosons

massless whilst giving masses to the X and Y bosons. We can always make a gauge transforma-

tion which puts Σ in a diagonal form, and after doing this it can be shown that there is a unique

minimum for the potential which breaks SU(5) down to the SM group:
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〈Σ〉= v
2

diag(2,2,2,−3,−3) (1.116)

It can be seen that this is proportional to the hypercharge generator, and putting this form into Eq.

(1.115) and differentiating, shows that there is a non zero solution where we have an extremum

of the potential

v2 =
4µ2

7λ +30λ ′
(1.117)

which is a minimum provided that µ2 > 0 and 7λ + 30λ ′ > 0. Now that a minimum has been

found where the VEV for Σ breaks SU(5) to SU(3)×SU(2)×U(1), Eq. (1.117) can be inserted

into Eq. (1.114) to obtain the masses of the X and Y bosons after this first stage of SSB

m2
X = m2

Y =
25
8

g2v2 (1.118)

The second stage of symmetry breaking is now concerned with the Electroweak breaking of the

SM by a Higgs field which is a doublet under SU(2)L. Looking at the branching rules for the 5

and 5 representations in Eq. (1.99), it is clear that the simplest possibility is to introduce a Higgs

multiplet which is a 5 of SU(5)

H =


D1

D2

D3

h+

−h0

 , 〈H〉= v0


0

0

0

0

1

 (1.119)

where D is a colour triplet, and the VEV has been chosen to lie in the neutral SU(2)L direction

in order to achieve the required symmetry breaking. In analogy with Eq. (1.15), this VEV could

be driven by a potential of the form

V (H) =−1
2

ν
2 |H|2 + 1

4
λ
′′(|H|2)2 (1.120)

However, this potential cannot be the whole story as it is not able to give masses to the colour

triplet D, and as shall be seen later, this can give rise to dangerously rapid proton decay. Also,

we have not included any terms coupling H and Σ to each other, so we can add to Eq. (1.120)

the following two gauge invariant terms of mass dimension less than 4

V (Σ,H) = α |H|2 Tr(Σ2)+βHΣ
2H (1.121)
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Once Σ has acquired a VEV as in Eq. (1.116), we can write H =

(
D

h

)
and expand Eq. (1.121)

to give

V (Σ,H) = v2(
15
2

α +β )D†D+ v2(
15
2

α +
9
4

β )h†h (1.122)

Since v is of the GUT scale, the first of these terms can give a mass to the colour triplet fields at

the GUT scale as required. However, in order to preserve this fact whilst giving the Electroweak

Higgs the desired mass, we must adjust the parameters α and β such that the second term is

small enough. Making this term equal to zero requires the relation α =− 9
30 β , and this precise

adjustment is an example of a fine tuning of Lagrangian parameters. This feature is known as

doublet-triplet splitting, and in minimal SU(5) a fine tuned cancellation is the only way to solve

the problem, although we will meet an attractive solution later when discussing breaking SU(5)

by hypercharge flux in the context of F-theory.

1.4.5 Yukawa couplings

As in the SM case, masses arise from the gauge invariant couplings of products of fermion fields

and Higgs scalars, after spontaneous symmetry breaking. In the minimal case, we can just take

a single Higgs in the fundamental representation of SU(5), H =

(
D

h

)
, in which case we get the

following renormalisable Yukawa couplings

LY = (5M)iY510i j
M(5∗H) j +

1
4

εi jklm10i j
MY1010kl

M5m
H (1.123)

where Y5 and Y10 are Yukawa matrices in generation space and i,j,k,l,m are SU(5) indices. Pick-

ing out the terms involving the light Higgs field h yields

LY → dcY5Qh∗+LY5ech∗+uc(Y10 +Y T
10)Qh (1.124)

Due to the structure of SU(5), it can be seen that Y5 dictates both the down quark and charged

lepton masses once h has acquired a VEV. As such, we can diagonalise Y5 in flavour space and

get the following relations between masses at the GUT scale

md = me, ms = mµ , mb = mτ (1.125)

As is the case for couplings, radiative corrections cause the masses to run as the scale at which

they are measured changes. As such, taking into account this running of the masses, only the pre-

diction mb = mτ is acceptable, and in order to rectify the situation we must go beyond minimal
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Figure 1.3: Dimension 6 proton decay diagrams

SU(5). One solution is to introduce a Higgs in the 45 representation as well as the fundamental

one (as in [59]), which can result in the acceptable GUT mass relations

me =
1
3

md , mµ = 3ms, mτ = mb (1.126)

1.4.6 SUSY GUTs

Despite the many attractive features of the minimal SU(5) GUT, it has problems which mean

that it cannot be a totally realistic model. Firstly, if the SM gauge couplings are run up to the

GUT scale it is found that they do not meet, and secondly it predicts massless neutrinos which

is in contradiction with experiment. The first of these shortcomings can be addressed if GUTs

are combined with SUSY, as if we take the case of the MSSM with all superpartners at the

TeV scale, we have the beautiful result that the three couplings unify at a single point around

µ ≈ 1016GeV [60]. Discussion of possible ways of giving mass to neutrinos in the setting of

SUSY GUTs will be postponed until we start looking at semi realistic models resulting from

F-theory GUTs. In the meantime, we can note that the Yukawa sector of Eq. (1.123) is modified

due to the fact that we now have two Higgs doubles, Hu coming from a 5 and Hd from a 5. As

such, we can obtain the Yukawa couplings from the following superpotential

WY = 5MY510M5Hd + ε510MY1010M5Hu (1.127)

1.4.7 Proton decay

As pointed out previously, the couplings of the X and Y bosons to fermions given in Figure

1.2 can lead to proton decay. The dimension 6 operators resulting from the exchange of these

bosons with GUT scale masses are shown in Figure 1.3, and illustrate the dominant decay mode

by gauge exchange, p→ e+ π0.

Based on these diagrams, a crude estimate for the lifetime of the proton can be obtained as

τp ≈ m4
X

g4m5
p
, and as such, the GUT scale can be calculated from the measurement of this lifetime.
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In SUSY GUTs the GUT scale is around 3×1016GeV, whereas in the non supersymmetric case

it is of order 1015GeV [61, 62, 63]. This leads to a suppression of the dimension 6 operators in

SUSY GUTs, and a lifetime of around 1034−38 years, which is to be compared with results from

the Super-Kamiokande experiment, which give τ(p→ e+ π0) > 5.0× 1033yrs. Even though

the lifetime in the supersymmetric case is above this bound, this experimental result rules out

minimal SU(5) models where the GUT scale is lower.

In addition to these dimension 6 operators, in SUSY GUTs there are dimension 4 and 5 operators

which could potentially be dangerous with regards to nucleon decay [61]. The dimension 4 terms

can be forbidden as discussed previously by imposing R parity, however there are dimension 5

operators resulting from colour triplet Higgsino exchange which require attention [64]. Starting

from the superpotential terms contained in Eq. (1.127), we have the following couplings for the

Hu, Hd and associated colour triplet fields D and D

W ⊃ Hd(QYddc +LYeec)+D(QYqlL+ucYuddc)

+HuQYuuc +D(QYqqQ+ucYueec) (1.128)

where the first line corresponds to the first term in Eq. (1.127), the second line corresponds to

the second term, and the Y matrices in flavour space have been left general in order to describe

any model. Integrating out the colour triplets leads to the following dimension 5 operators

W5 =
1

MD
(Y i j

qqY mn
ql QiQ jQmLn +Y i j

ueY
mn
ud uc

i ec
ju

c
mdc

n) (1.129)

These operators lead to proton decay via the diagrams shown in Figures 1.4 and 1.5, where the

sparticles are converted to particles by gaugino or Higgsino ‘dressing’, and the dominant decay

mode is p→ K+ ν . The reason for the presence of a kaon in this decay is due to a symmetry

argument based on the fact that we are dealing with operators built from four bosonic superfields.

We must have all the colour and SU(2)L indices correctly antisymmetrised for invariance under

the SM gauge group, but because of the bosonic nature of the superfields the operators must be

totally symmetric under the interchange of all indices. Due to the fact that in both dimension

5 operators we have the appearance of at least two of the same superfields, the family indices

cannot be the same on the identical fields, meaning that we must have the presence of a second

or third family particle in the final state.

The Super-Kamiokande bounds on the proton lifetime put severe constraints on these dimension

5 operators, and in fact minimal SUSY SU(5) is ruled out [65]. One motivation of moving to

F-theory GUTs is that there is the potential for the natural inclusion of additional symmetries

which can forbid dimension 5 operators, and also the existence of intricate flux mechanisms

which can eliminate Higgs colour triplet states from the particle spectrum of a particular model.
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1.4.8 Higher rank GUT groups

The embedding of the Standard Model gauge group into SU(5) is just part of the following

larger chain of embeddings of exceptional groups

E3×U(1)⊃ E4 ⊃ E5 ⊃ E6 ⊃ E7 ⊃ E8 (1.130)

This chain is shown nicely in Figure 1.6, where it can be seen that by starting from the excep-

tional group E8, the non-abelian part of the SM can be obtained in steps by deleting one node

from each diagram. In F-theory GUTs this chain is extremely important, as it is assumed that all

the interactions of the theory come from a single point in the internal geometry where the gauge

symmetry is enhanced to E8. In this thesis, in addition to SU(5), GUT groups of SO(10) and

E6 will be studied, where all the SM matter plus the right handed neutrino are embedded into

one 16 dimensional representation of SO(10), and this 16 representation is embedded into the

fundamental 27 representation of E6. It turns out that there is a rich phenomenology associated

with the embedding of these GUT groups inside the parent E8 group, and this provides much

motivation for model building.
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Figure 1.6: Chain of dynkin diagrams from E8 to the Standard Model
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1.5 Introducing Strings and Branes

A BSM framework which incorporates SUSY and GUTs is that of String Theory, where we have

ten space-time dimensions where six are compactified and very small, and instead of fundamen-

tal point-like particles, we now have one-dimensional strings. Just as a point particle sweeps out

a worldline in Minkowski space, a string sweeps out a ‘worldsheet’, which we can parameterise

by one timelike coordinate τ , and one spacelike coordinate σ , as depicted in Figure 1.7. The

string then sweeps out a surface in spacetime, defining a map from the worldsheet to Minkowski

space, X µ(σ ,τ).

x0

x

τ
τ

σ

τ

σ

Figure 1.7: The worldline of a particle, and the worldsheets of closed and open strings.

These strings can come in two types- ‘open strings’ and ‘closed strings’- depending on whether

we take σ to be periodic, and the strength of interactions between strings is set by the string

coupling constant, gs. Type IIB superstring theory is a variant which includes both open and

closed strings, and we will start by considering the case of gs << 1 in this theory. In this pertur-

bative regime, the particles of the Standard Model are described by excitations of open strings,

whereas the graviton and gravitino are related to closed strings. Motivated by the weakness of

gravity, one could try and formulate the Standard Model by just using open strings.

When dealing with open strings, we must consider the boundary conditions associated with the

end points. It turns out that there are two types of boundary conditions we can impose, which

are consistent with the string action:

• Neumann boundary conditions where the end points the string are allowed to move freely.

• Dirichlet boundary conditions where the end points are fixed at some position X µ = cµ .

If we consider some coordinates to have Neumann boundary conditions for µ = 0, ...., p and

Dirichlet boundary consitions for µ = p+1, ......,D−1, the ends of the string are fixed to lie in

a (p+1) dimensional hypersurface in spacetime, which is called a Dp brane. The relevant branes

for F-Theory are D7 branes. Particles in our four dimensional spacetime now correspond to

strings stretched between D branes, and the mass of these particles are related to the tension T ,

and the distance in the internal dimensions between the branes, D.
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M = T × D (1.131)

As all the SM particles are effectively massless, this corresponds to D = 0, so we are interested

in the case where the ends of open strings can coincide in the internal dimensions. If we take

N D7 branes filling the same dimensions (a stack of branes), a U(N) gauge theory is realised,

with the gauge bosons corresponding to strings which begin and end on any of the D7 branes in

the same stack. If, for example, we have a stack of three D7 branes and another stack of two,

there can be an intersection of the branes in two of the internal dimensions. In this case, we

have a U(3)×U(2) gauge group, and we can have massless open strings which begin on the

U(3) stack and end on the U(2) stack, corresponding to states charged under both gauge groups.

These ‘bifundamental’ states are the matter fields of the theory, and in our simple example can

be combined with the U(3) and U(2) gauge bosons into a 5×5 matrix of U(5), with the gauge

fields in 3×3 and 2×2 diagonal blocks, and the matter fields in the off diagonal positions. As

such, at the intersection of the stack of branes, we can embed all the states into a U(5) group,

meaning that we can interpret this set up as a U(5) gauge group at the intersection, broken down

to U(3)×U(2) away from the intersection. If we have a triple intersection of D7 branes, we

again have a further enhancement of the gauge group. Using these ideas, we can try and build

the SM using perturbative, intersecting D-branes, in an SU(5) GUT setting.

In order to realise the 5 and 10 of SU(5), we can consider the intersection of the SU(5) GUT

brane with U(1) branes, so that the symmetry group is enhanced to SU(6) and SO(10) respec-

tively. We can see that these are the enhanced symmetry groups required to realise the 5 and

10 by (purely as a group theory exercise) decomposing the adjoint of the enhanced group into

representations of SU(5)×U(1).

For the 5:

SU(6)→ SU(5)×U(1) (1.132)

35→ (24,0)+(1,0)+(5,6)+(5,−6) (1.133)

and for the 10:

SO(10)→ SU(5)×U(1) (1.134)

45→ (24,0)+(1,0)+(10,−4)+(10,4) (1.135)

We can now go one step further and try and realise the Yukawa interactions responsible for the

masses of the bottom and top quarks. For the bottom quark, the relevant interaction term is
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5H × 5M× 10M, and this corresponds to an enhancement to SO(12) at a point in the geometry.

To see this, we look at the decomposition

SO(12)→ SU(5)×U(1)1×U(1)2 (1.136)

66→ (24,0,0)+(1,0,0)+(10,−4,0)+(10,4,0)

+(5,2,2)+(5,2,−2)+(5,−2,2)+(5,−2,−2) (1.137)

We can now make the identification

5H ×5M×10M ∼ (5,−2,2)× (5,−2,−2)× (10,4,0) (1.138)

and can see that this operator is invariant under U(1)1×U(1)2. The relevant operator for the top

quark is 5H×10M×10M, and unfortunately, this term cannot be realised in the same way. This is

because we are actually realising a U(5) = SU(5)×U(1)x gauge theory, and the 5H×5M×10M

term is invariant under this, but the 5H×10M×10M is not. As such, in order to give mass to the

top quark, we must go to the case where gs is of order 1, and F-Theory. In this case, exceptional

gauge groups can be realised, which provides us with the correct structure to accomodate the

5H×5M×10M term. The enhancement for this coupling turns out to be E6, and we can see this

in the usual way, from the decomposition

E6→ SU(5)×U(1)1×U(1)2 (1.139)

78→ (24,0,0)+(1,0,0)+(1,0,0)+(10,−4,0)+(10,4,0)

+(10,1,3)+(10,−1,−3)+(5,−3,3)+(5,3,−3)+(1,−5,−3)+(1,5,3) (1.140)

In fact, in F-Theory GUTs, all the interactions come from a point of E8 enhancement in the

geometry.

1.6 Moving to F-Theory

F-theory is a 12 dimensional, strongly coupled formulation of type IIB superstring theory. For-

mally, F-theory can be defined on a background R3,1×X where R3,1 is 4 dimensional space time,

and X is a Calabi-Yau (CY) complex fourfold. It is assumed that X is elliptically fibered with a

section over a complex three-fold base, B3 [7, 9]. The meaning of this can be understood more

clearly by considering the example of a fibre bundle, which is a collection of topological spaces

E, B, F, and a continuous surjective (onto) map π:
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Figure 1.8: The point of E8 enhancement (figure from [5])

Figure 1.9: The Mobius strip as an example of a fibre bundle

• E is the Total Space

• B is the Base Space

• F is the Fibre

• π : E→ B is a map from the total space to the base space

The key is that E must be locally trivial. This means that the total space must locally look like

the trivial bundle, E = B×F , but globally, there can be a twist. This can be understood better

by looking at the example of the Mobius strip, shown in Figure 1.9. Here the base space is the

circle, and the fibres are line segments. Locally, the Mobius strip looks like a cylinder, which is

the trivial bundle.

Going back to our case of a CY fourfold, elliptically fibered over a three-fold base, there fibres

are no longer line segments, but are two-tori. What this means is that each point of the base
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Figure 1.10: CY four-fold, involving an elliptic fibration over a three-fold base, B3
(figure from [66])

B3 is represented by a two-torus. The dimensions occupied by the base are the 6 compactified

dimensions of type IIB string theory, and the complex modulus of the torus fibre encodes the

axion and dilaton (two scalars contained in the bosonic spectrum) at each point on the base:

τ =C0 + ie−φ =C0 +
i

gs
(1.141)

It is a fact that the presence of D7-branes (filling 7 spatial dimensions and 1 time dimension)

affects the profile of the axio-dilaton, τ . As such, the reason that F-theory can be viewed as a

12 dimensional theory is that two dimensions are geometric dimensions which allow us to keep

track of the variation of τ over the other ten dimensions. The form of the elliptic fibration can

be described in what is known as Weierstrass form as

y2 = x3 + f (z)x+g(z) (1.142)

where x,y,z are complex coordinates on C3. x and y are coordinates on a two complex di-

mensional surface S, and z is the coordinate perpendicular to this surface inside the base. The

discriminant of the cubic in x is given by

∆ = 4 f 3 +27g2 (1.143)

and when this discriminant vanishes, it indicates the presence of D7-branes, and the elliptic

curve becomes singular along a two complex dimensional subspace in B3. The equation ∆ = 0

can factorise into irreducible polynomials in coordinates of the base, ∆ = ∆1...∆n = 0, with each
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Group a1 a2 a3 a4 a6 ∆

SU(2n) 0 1 n n 2n 2n
SU(2n+1) 0 1 n n+1 2n+1 2n+1
SO(10) 1 1 2 3 5 7
E6 1 2 2 3 5 8
E7 1 2 3 3 5 9
E8 1 2 3 4 5 10

Table 1.3: Classification of Singularities

equation ∆i = 0 describing the location of a D7-brane. In terms of the torus fibre, the torus

degenerates (pinches off) at these points.

1.6.1 D7-branes, Gauge Groups and Singularities

In F-theory, the GUT group is realised on a 7-brane which wraps some 2 complex dimensional

surface S. One feature of the analysis of the fibration is that not only does the vanishing dis-

criminant give us the locations of 7-branes, it also gives us information about what gauge group

is supported by the 7-brane, depending on the order to which the discriminant vanishes. Much

mathematical work has been done on this subject, and a classification of which singularities

correspond to which gauge group has been done by Kodaira. In order to describe these singular-

ities, a procedure called Tate’s algorithm can be followed [67, 68]. Taking a coordinate on the

base, z, such that S is defined by z = 0, the coefficients f and g of Eq. (1.143) can be expanded

in powers of z.

f (z) = ∑
n

fnzn, g(z) = ∑
m

gmzm (1.144)

These expansions can then be inserted into Eq. (1.142) and the form of the Weierstrass equation

can be studied, depending on to which order in z the discriminant vanishes.

The general Tate form of the Weierstrass equation can be written

y2 +a1xy+a3y = x3 +a2x2 +a4x+a6 (1.145)

Now we can look at a particular singularity by examining the Kodaira classification of singular-

ities, and seeing how the ai must vary with z in order to produce the required singularity. Some

examples of the order to which the coefficients ai ∼ zni and the discriminant ∆ must vanish in

order to give certain gauge groups are shown in Table 1.3.

For example, an SU(5) singularity would be given by the choice

a1 =−b5,a2 = b4z,a3 =−b3z2,a4 = b2z3,a6 = b0z5 (1.146)



Chapter 1 Introduction 49

leading to the equation

y2 = x3 +b0z5 +b2xz3 +b3yz2 +b4x2z+b5xy (1.147)

where the bi are fibration coefficients which do not depend on z.

So far, everything that has been stated applies to global F-theory, and in a global model, the

structure of the GUT theory is described by the dependence of the bi on the base coordinates.

We can, however, learn a lot by studying so called ’semi-local’ models, where the complications

of global F-theory are avoided by just looking at regions close to the GUT surface S.

1.6.2 Semi-local F-theory and the Role of E8

The ideas of local F-theory focus on the submanifold S, where the GUT symmetry is localised.

We can consider intersections of the GUT brane (which wraps S) with other 7-branes wrapping

surfaces Si and supporting gauge groups Gi. Along these intersections matter will reside, and

so they are known as matter curves, Σi = S∩ Si. Along the matter curves , the local symmetry

group is enhanced to GΣi ⊃ GS×Gi. We can go one step further than this and then study the

intersections of matter curves at points in S. When we have an intersection of matter curves,

we induce a Yukawa coupling and there is a further enhancement of the local symmetry to

GY ⊃ GΣi ×GΣ j ×GΣk . In order to study Yukawa couplings in the local setup, we can gain

information by just considering the local area around the point of intersection on the surface S.

The semi-local approach to F-theory assumes that we have a parent E8 gauge theory which is

broken by a position dependent VEV for an adjoint Higgs field. All the interactions in the theory

are assumed to come from a single E8 point of enhancement. At this point, all the matter curves

of the theory meet, and the local symmetry group is enhanced all the way to E8.

1.6.3 An SU(5) Example and Introducing Monodromy

As an example, we can take the GUT group on S to be SU(5). The breaking of E8 to the GUT

group occurs as

E8→ SU(5)GUT ×SU(5)⊥→ SU(5)GUT ×U(1)4 (1.148)

where the commutant of the GUT group inside E8 is called the perpendicular group, and in this

case is SU(5)⊥. The nature of the matter curves of the theory is found by decomposing the

adjoint representation of E8 as follows

248→ (24,1)+(1,24)+(10,5)+(5,10)+(5,10)+(5,10) (1.149)
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Figure 1.11: Branes intersecting at matter curves, which intersect inducing a yukawa
coupling (figure from [69])

This equation shows us that we have twenty four singlet curves (θi j), five 10 curves, and ten

5 curves. The equations of these curves can be written in terms of the weights ti (i = 1, ..,5,

∑ ti = 0), of the 5 representation of SU(5)⊥ as follows

Σ10 : ti = 0

Σ5 :−ti− t j = 0, i 6= j

Σ1 :±(ti− t j) = 0, i 6= j (1.150)

The fibration coefficients bi of Eq. (1.147) are given by the elementary, symmetric polynomials

of degree i in the weights. These are non-linear relations, and generally there will be relations

identifying some of the ti. The way in which the ti can be identified is determined by the

’monodromy group’. As we are working in the semi-local picture, the full Calabi-Yau geometry

has been decoupled, and so we must choose the monodromy group by hand. By requiring a

tree level top quark Yukawa coupling, we need at least a Z2 monodromy identifying two of

the weights. This is because we need the 5H × 10M × 10M coupling to be invarient under the

perpendicular U(1) symmetries. As the top and anti-top come from the same 10 representation,

they both have charge ti, and the up type Higgs has charge −t j− tk, meaning that to cancel the

charges we must have 2ti− t j− tk = 0. This can only be the case for j = k = i, and so we must

have an identification of at least two of the weights. From now on this minimal Z2 case will be

assumed at all times, and we will take t1↔ t2.
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1.6.4 Flux Breaking

So far, we have only seen the case where the gauge symmetry on S is SU(5). However, of course

there are other possibilities for the GUT group, and inspired by the Dynkin diagram chain of

Figure 1.6, the work in this thesis will focus on the groups E6 and SO(10) in addition to SU(5).

The decomposition of E8 into the GUT group and perpendicular group in each case is given by

E8 ⊃ E6×SU(3)⊥

→ SO(10)×U(1)ψ ×SU(3)⊥

→ SU(5)×U(1)χ ×U(1)ψ ×SU(3)⊥

E8 ⊃ SO(10)×SU(4)⊥

→ SU(5)×U(1)χ ×SU(4)⊥

E8 ⊃ SU(5)×SU(5)⊥

As we can see from the above breaking chains, even if we start with E6 or SO(10) as the GUT

group, we can always end up with an SU(5)×U(1)4 structure before we can break down to

the Standard Model, by breaking SU(N)⊥ to U(1)N−1
⊥ . Although we could generally turn on

non-Abelian fluxes in the perpendicular groups, in this thesis we will always choose to work

with fluxes in U(1)s. In this case, the only difference between the three pictures is which U(1)s

originate from the GUT group and which originate from the perpendicular group, and in the next

chapter mappings between the different pictures will be established. Throughout this thesis, we

will assume that the GUT group is broken down to SU(3)×SU(2)×U(1)Y via flux breaking.

There are two types of flux that can be turned on: there are fluxes in the U(1)s from the per-

pendicular group which preserve the chirality of complete GUT representations, and there are

fluxes that can be turned on in the worldvolume of the 7-brane which break the GUT structure.

Whenever we utilise flux breaking we end up with splitting equations which tell us the net num-

ber of states in a particular representation, for example, breaking SU(5) down to the Standard

Model by turning on a flux in the hypercharge direction gives the following equations for the 10

and 5 representations of SU(5)

10 =


Rep. #

n1
3,2−n1

3̄,2 : M10

n1
3̄,1−n1

3,1 : M10−N

n1
1̄,1−n1

1,1 : M10 +N

5 =


Rep. #

n1
3,1−n1

3̄,1 : M5

n1
1,2−n1

1,2̄ : M5 +N
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We can see from these equations that the flux associated with the integer M respects the GUT

structure, and so is a flux in the perpendicular U(1)s. The flux associated with the integer N

is the hypercharge flux and leads to incomplete SU(5) multiplets. As this breaking is due to

the hypercharge flux, the integer N is given by the flux dotted with the homology class of the

matter curve in question. As such, we can obtain relations between these N integers (and similar

integers for different fluxes) by calculating the homology classes of the matter curves. In order

to do this, we will use the spectral cover formalism.



Chapter 2

The Spectral Cover Formalism

2.1 Semi-Local F-theory and Spectral Covers

As described in the Introduction, a global description of an F-theory GUT is given by the geom-

etry of a CY fourfold, elliptically fibred over a threefold base, B3. A local description, however,

focuses on the effective field theory where the GUT symmetry is realised on a 7-brane wrapping

a 4-dimensional surface, S. Matter fields are then localised on curves within S, and information

about interactions can be found by looking at the points where matter curves intersect.

Another way of looking at F-theory GUTs is the semi-local approach, which involves imposing

constraints from the requirement that S is embedded into a local CY fourfold. These constraints

mean that the local geometry around 7-branes can be viewed as a deformed E8 singularity, which

is unfolded to a GGUT singularity by the fibration coefficients, bi, of Eq. (1.147). This unfolding

can be viewed as arising from an E8 gauge theory on R3,1×S, where the bis provide information

about the adjoint scalar, φ , that breaks E8→ GGUT (more precisely, the bis give the eigenvalues

of φ at different points of S). Generally, the fibration coefficients, bi, depend on the embedding

of S into B3, but in a semi-local model, this information is not specified.

In order to break the E8 gauge theory, the Higgs φ gets a position dependent VEV in the adjoint

of the commutant group of GGUT within E8. In this thesis, we will study GGUT = E6, SO(10)

and SU(5), and look at the breaking

E8→ GGUT ×SU(N)⊥ (2.1)

where N = 3,4,5 for E6, SO(10) and SU(5) respectively. The eigenvalues of φ can be diago-

nalised in a local coordinate patch as

φ ∼ diag(t1, ..., tN), ∑
i

ti = 0 (2.2)

53
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where the ti are the weights of the fundamental representation of SU(N)⊥. These weights can

be interchanged by the action of monodromies as described in the Introduction.

The spectral cover equation for SU(N)⊥ is an Nth degree polynomial whose coefficients are the

bi and whose roots are the roots correspond to the local eigenvalues, ti.

C N = b0sN + ...+bksN−k + ...+bN = 0 (2.3)

As such, whilst the full mathematical language of the E8 breaking is described by the langauge

of Higgs bundles [70], the spectral cover approach simply focuses on the eigenvalues of φ at

each point on S.

Before a detailed study of the SU(3)⊥, SU(4)⊥ and SU(5)⊥ spectral covers is presented, it

is useful to look at some features of spectral cover models by briefly examining the simplest

example, SU(3)⊥. In this case, the spectral cover equation is given by

C 3 = b0s3 +b1s2 +b2s+b3 = 0 (2.4)

As the roots are given by the SU(3)⊥ weights, ti, we also have

C 3 = b0(s+ t1)(s+ t2)(s+ t3) = 0 (2.5)

Comparing the equations gives

b1 = b0(t1 + t2 + t3)

b2 = b0(t1t2 + t1t3 + t2t3)

b3 = b0t1t2t3 (2.6)

As such, we can see that the fibration coefficients, bi are given by the elementary, symmetric

polynomials in the ti. Also, it should be noted that due to the tracelessness constraint on the

weights, b1 will always be zero in these models.

The reason why the spectral cover approach is so useful is that equations for the matter curves

of a given GUT theory can be computed in terms of the bis. As such, if the homology classes

of the fibration coefficients are known, we can work out the homology classes of the matter

curves. However, we want to know the equations and homologies of the matter curves in the

presence of a monodromy, so the monodromy action must be somehow imposed upon the spec-

tral cover polynomial. In this thesis, the minimal Z2 monodromy identifying the weights t1 and

t2 is always assumed, which in the language of an SU(N)⊥ spectral cover corresponds to the

polynomial splitting into a quadratic factor and N− 2 linear factors. As an example, imposing
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the Z2 monodromy on the SU(3)⊥ spectral cover equation leads to the following splitting of the

polynomial

C 3 = (a1 +a2s+a3s2)(a4 +a5s) (2.7)

The bi coefficients can now be related to the ais by comparing powers of s, and so the homol-

ogy classes of the ai and the equations of matter curves in terms of the ai can be computed.

Putting this information together gives the homology classes of matter curves in the presence of

a monodromy, which is the key information required to determine the chiral matter content on a

curve after flux breaking, as shall be seen later in this chapter. This is the general spectral cover

procedure which will be applied in detail to each of the three GUT groups studied in this thesis,

but before this detailed analysis, it will prove incredibly useful for model building to develop a

group theory dictionary between the three GUT theories.

2.2 Group Theory Dictionary Between E6 and SU(5)

In this chapter we are concerned with the sequence of rank preserving symmetry breakings

induced by flux breaking. Starting from the E8 point of enhancement in the internal geometry,

there exists a variety of breaking patterns to obtain the Standard Model gauge symmetry. A

complete classification of these possibilities from the F-theory perspective has been given in the

appendix of ref [9]. Here, we shall be interested in the general embeddings discussed in the

Introduction, where the adjoint of E8 decomposes in each case as

E8 ⊃ E6×SU(3)⊥ (2.8)

248 → (78,1)+(27,3)+(27,3)+(1,8) (2.9)

E8 ⊃ SO(10)×SU(4)⊥ (2.10)

248 → (1,15)+(45,1)+(10,6)+(16,4)+(16,4) (2.11)

E8 ⊃ SU(5)×SU(5)⊥ (2.12)

248 → (24,1)+(1,24)+(10,5)+(5,10)+(5,10)+(5,10). (2.13)

In particular, the last case has been extensively studied by many authors including [9, 70, 71, 22,

23]. In this case, as described in the Introduction, the matter content of SU(5)GUT transforms

non-trivially under the Cartan subalgebra of SU(5)⊥ with weight vectors t1,...,5 satisfying

t1 + t2 + t3 + t4 + t5 = 0. (2.14)

In principle, the superpotential can be maximally constrained by four U(1)s according to the

breaking pattern

E8 ⊃ SU(5)×SU(5)⊥→ SU(5)×U(1)4
⊥ (2.15)



56 Chapter 2 The Spectral Cover Formalism

The 5 representation of SU(5)⊥ may be expressed in the conventional basis of the five weight

vectors ti in which the 4 Cartan generators corresponding to U(1)4
⊥ are expressed as:

H1 =
1
2

diag(1,−1,0,0,0), H2 =
1

2
√

3
diag(1,1,−2,0,0),

H3 =
1

2
√

6
diag(1,1,1,−3,0), H4 =

1
2
√

10
diag(1,1,1,1,−4). (2.16)

In general, however, there is an action on tis of a non-trivial monodromy group which is a

subgroup of the Weyl group W (SU(5)⊥)= S5. Such subgroups are the alternating groups An, the

dihedral groups Dn and cyclic groups Zn, n≤ 5 and the Klein four-group Z2×Z2. Throughout

this thesis we shall assume the minimal Z2 monodromy, t1↔ t2.

It is of interest to consider the possibility of a sequence of flux breaking, which may be associ-

ated with different scales. Here we consider the sequence

E8 → E6×U(1)2
⊥ (2.17)

→ SO(10)×U(1)ψ ×U(1)2
⊥ (2.18)

→ SU(5)×U(1)χ ×U(1)ψ ×U(1)2
⊥. (2.19)

which for the E6 representations gives

78 → [24(0,0)+10(4,0)+10(−4,0)+1(0,0)]45

+ [10(−1,−3)+5(3,−3)+1(−5,−3)]16

+ [10(1,3)+5(−3,3)+1(5,3)]16

+ [1(0,0)]1

27 → [10(−1,1)+5(3,1)+1(−5,1)]16

+ [5(2,−2)+5(−2,−2)]10

+ [1(0,4)]1 (2.20)

where the subscripts refer to the U(1)χ ,U(1)ψ charges and SO(10) representation respectively.

It is convenient to choose a basis for the weight vectors such that the charge generators have the

form

Qχ ∝ diag[−1,−1,−1,−1,4]

Qψ ∝ diag[1,1,1,−3,0]

Q⊥ ∝ diag[1,1,−2,0,0] (2.21)

where Q⊥ is the charge of the U(1)⊥ in the breaking pattern of Eq. (2.17) that remains after

imposing the t1 ↔ t2 monodromy. This is in fact the same as the conventional basis for the
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E6 SO(10) SU(5) Weight vector
27t ′1

16 53 t1 + t5
27t ′1

16 10M t1
27t ′1

16 θ15 t1− t5
27t ′1

10 51 −t1− t3
27t ′1

10 52 t1 + t4
27t ′1

1 θ14 t1− t4
27t ′3

16 55 t3 + t5
27t ′3

16 102 t3
27t ′3

16 θ35 t3− t5
27t ′3

10 5Hu −2t1
27t ′3

10 54 t3 + t4
27t ′3

1 θ34 t3− t4

Table 2.1: Complete 27s of E6 and their SO(10) and SU(5) decompositions. For the SU(5)
states we use the notation of ref [22] where indices in 5i,10 j representations are associated to
the corresponding matter curves Σ5i ,Σ10 j .

SU(5)⊥ generators in Eq. (2.16), and the normalisation of the generators is given by identifying,

H1 = H ′1, H2 = Q⊥, H3 = Qψ , H4 =−Qχ . (2.22)

This almost trivial equivalence shows that the SU(5)GUT states in Eq. (2.13) have well defined

E6 charges Qχ and Qψ . For example SU(5) singlets will in general carry Qχ and Qψ charges

which originate from E6 and which may be unbroken. The equivalence will provide insights

into both anomaly cancellation and the origin of R-parity for example, in terms of the underly-

ing E6 structure, in the explicit models discussed later. Throughout this thesis we shall assume

the minimal Z2 monodromy, t1↔ t2 [24] which trivially corresponds to the minimal Z2 mon-

odromy, t ′1↔ t ′2 (where the primes indicate weights of SU(3)⊥). It is clear from Eq. (2.16) that

this corresponds to H1 = H ′1 being broken leaving only three independent Cartan symmetries

{H2,H3,H4} or equivalently {Q⊥,Qψ ,Qχ}.

In this basis the weight vectors t ′1, t
′
2, t
′
3 (t ′1 + t ′2 + t ′3 = 0) of SU(3)⊥ are related to the SU(5)⊥

weight vectors by t ′i = ti +(t4 + t5)/3, i = 1,2,3. As an example of the use of this dictionary

that will play an important role when building a realistic theory we can now connect the two

independent representations 27t ′1
and 27t ′3

that appear in the E6 breaking pattern of Eq. (2.17) to

the SU(5) representations of Eq. (2.19). These are shown in Table 2.1 with SU(5) states given

in the notation of [22].

2.3 Flux breaking and matter content in F-theory GUTs

In this section we determine the light matter content that results if the underlying E8 is broken to

some subgroup by a Higgs bundle on the del-Pezzo surface S [70]. We are interested in the cases
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that the unbroken gauge group is E6, SO(10) or SU(5). The reason for studying these models

is because they can lead to promising phenomenology based on a high degree of unification,

even though they are subsequently further broken by flux to just the Standard Model. A viable

model will be presented in the next chapter, which will provide the groundwork for building

other related models.

We proceed by studying the spectral cover of the transverse groups for the three cases of interest

E6 × SU(3)⊥, SO(10)× SU(4)⊥ and SU(5)× SU(5)⊥. This will allow us to determine the

homology of the matter fields and hence the effect of flux breaking. In dealing with singlets,

we note that for a given surface S with associated singularity GS, there are singlet fields residing

on curves that extend away from S and can be affected by U(1)⊥ fluxes not supported by S.

There are also singlet fields emerging from the decomposition of GUT representations after the

breaking of the covering group GS by the flux mechanism. The latter singlets localise on curves

on the surface S, and as a consequence they are affected by the fluxes breaking GS. In this case

the homologies of the corresponding matter curves can be determined and, as shown in this

chapter, certain properties including chirality and multiplicities can be expressed in terms of a

few integers parameterising the associated U(1) fluxes.

2.3.1 SU(3)⊥ Spectral Cover

E6 models are quite attractive and have been extensively studied in compactifications on Calabi-

Yau manifolds, in the context of the heterotic superstring with underlying E8×E8 symmetry

(see [72, 73, 74] and references therein). Furthermore, recent phenomenological investigations

based on string motivated versions with E6 gauge symmetry have inspired the exceptional super-

symmetric standard model [75]. This is distinguished from the minimal one by the appearance

of an additional Z′ boson and extra matter content at the TeV scale. Interestingly, although these

new ingredients are also potentially present in the F-theory E6-analogue, they are subject to

constraints from flux restrictions on matter curves and the topological properties of the compact

manifold. We will study two types of model in later chapters, distinguished by whether the Z′

boson and extra matter have GUT scale masses or TeV scale masses.

In the context of F-theory in which the GUT group on the brane is E6, we need to look at the

breaking

E8→ E6×SU(3)⊥ (2.23)

We can determine what matter curves arise by decomposing the adjoint of E8 as follows

248→ (78,1)+(27,3)+(27,3)+(1,8) (2.24)
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The E6 content consists of three 27s (and 27s) plus eight singlet matter curves. In terms of the

weight vectors ti, i=1,2,3, of SU(3)⊥ the equations of these curves are

Σ27 : ti = 0 (2.25)

Σ1 :±(ti− t j) = 0 i 6= j (2.26)

The SU(3)⊥ spectral cover polynomial is given by

C 3 = b0s3 +b2s+b3 = 0 (2.27)

Letting c1 be the 1st Chern class of the tangent bundle to SGUT and c1(NS) = −t that of the

normal bundle, we define for convenience η = 6c1− t and, we demand that the coefficients bk

are sections of

bk : [bk] = η− k c1 (2.28)

where k spans the integers k = 1,2,3,4,5. The roots of the spectral cover equation

0 = b3 +b2s+b0s3
∝

3

∏
i=1

(s+ t ′i)

are identified as the SU(3)⊥ weight vectors t ′i . In the above the coefficient b1 is taken to be zero

since it corresponds to the sum of the roots which, for SU(n), is always zero, ∑i t ′i = 0.

2.3.1.1 27 and 27 fields

The coefficient b3 is equal to the product of the roots, i.e. b3 = t ′1t ′2t ′3 and the Σ27 curves where

the corresponding matter multiplets are localized are determined by its three zeros

Σ27i , b3 =
3

∏
i=1

t ′i = 0→ t ′i = 0, i = 1,2,3 (2.29)

To obtain different curves for 27’s we need to split the spectral cover. (If the polynomial is not

factorized, there is only one matter curve). There are two possible ways to split a third degree

polynomial: either to a binomial-monomial (2−1) or to three monomials (1−1−1). Since we

need to impose a monodromy action, we choose this to be Z2 and therefore we get a (2− 1)

split. The Z2 monodromy corresponds to the following split of the spectral cover equation

0 = Π3(s) = (a1 +a2s+a3s2)(a4 +a5s)

= a1a4 +(a2a4 +a1a5)s+(a2a5 +a3a4)s2 +a3a5s3 (2.30)

with s = U/V and ai coefficients, constituting sections of line bundles each of them being of

specific Chern class to be determined.
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Matter Section Homology
27t1,2 a1 η−2c1−χ

27t3 a4 χ− c1

Table 2.2: The three columns show the quantum numbers of matter curves under E6×U(1)ti ,
the section and the homology class.

The first bracket contains the polynomial factor that corresponds to the Z2 monodromy t ′1↔ t ′2,

so that the corresponding two Σ27 curves lift to a common one in the spectral cover. The Σ27

curves are found setting s = 0 in the polynomial

b3 ≡Π3(0) = a1a4 = 0 → a1 = 0, a4 = 0

Thus, after the monodromy action, we obtain two matter curves. When building a realistic

theory it is necessary to assign the three families of quarks and leptons and the Higgs to these

curves. As there are more than one way to do this, the optimal choice will be dictated by

phenomenology.

To determine the distribution of families and Higgs on the two matter curves we need to know

how the flux restricts on the available curves. To do this we first determine their homology

classes [ak] corresponding to the sections ak, k = 1,4. This can be done comparing the coeffi-

cients of Eqs. (2.27,2.30). We get

b0 = a3a5

b1 = a2a5 +a3a4 = 0

b2 = a2a4 +a1a5

b3 = a1a4

The homology classes [bk] of the sections bk are given in Eq. (2.28), while those of ai can

be determined by the system of linear equations in one to one correspondence with the above

relations. This linear system consists of four equations with five unknowns [ai], therefore we can

solve the system in terms of one arbitrary parameter. Let a5 be of some unspecified homology

class [a5] = χ . For the remaining ai, we find that they are sections of

[a1] = η−2c1−χ, [a2] = η−χ− c1, [a3] = η−χ, [a4] = χ− c1, [a5] = χ (2.31)

For the two curves we obtain the results of Table 2.2. For the homology classes of the two curves

C 3 = Ct1,2Ct3 from Eq. (2.30) we get

Ct1,2 = a1 +a2s+a2s2 (2.32)

Ct3 = a4 +a5s (2.33)
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so that their homology classes are given by

[Ct1,2 ] = η−χ−2c1, [Ct3 ] = χ− c1

Using the data of Table 2.2, we can turn on a FU(1) flux on the external U(1) and find the

restriction on the curves of 27’s:

nt1 = FU(1) · (η−χ−2c1) ; nt3 = FU(1) · (χ− c1) (2.34)

These determine the chiral content of states arising from the decomposition of 27’s along the

matter curves. We have also seen that χ is some unspecified homology class (associated to a5)

and it can be chosen at will. For acceptable choices it can be seen from Table 2.2 that the two

curves cannot be of the same homology class. Since the two curves belong to different homology

classes, in general flux restricts differently on them. The two conditions can be combined as

follows

nt3 +nt1 = FU(1) · (η−3c1) = FU(1) · (3c1− t) (2.35)

From Eq. (2.35) we deduce that if FU(1) ·(3c1− t) = 0, then nt3 =−nt1 i.e., we get opposite flux

restrictions on 27t1 and 27t3 . Notice that the choice FU(1) ·c1 6= 0 implies that the corresponding

gauge boson becomes massive through the Green-Schwarz mechanism. This is not a problem

however, for the extra U(1)s that do not participate in the hypercharge definition 1.

2.3.1.2 E6 singlets

Singlet fields are important for the construction of the low energy effective field theory model.

Some of them may develop VEVs that can be used to create mass terms for the fermion gener-

ations and make massive other potentially dangerous fields mediating proton decay. In certain

models, those carrying charges under the weights t ′i undergoing a monodromy action can play

the role of the right handed neutrino [42]. The E6 singlets θi j lie in the t ′i − t ′j directions of the

corresponding Cartan subalgebra, and because of their central role in phenomenology, it would

be useful to determine their homology classes. If the worldvolume theory on S has gauge group

E6, these singlets θ12, θ13 and θ23 are localised on curves which do not lie within the surface S,

and as such, spectral cover analysis can no longer sctrictly be used to determine their properties.

However, for singlets which carry nontrivial U(1) charges, an index which counts the net num-

ber of zero modes can be computed by considering the projection of the singlet curve in B3 to a

curve in S (by setting z= 0) [76]. This can be achieved without knowing the precise nature of the

zero mode wavefunctions, for which a global description would be necessary. However, in [77],

overlap integrals involving singlet fields are computed by using the projections of the curves to

the surface S, although it is noted that in order to correctly normalise the singlet wavefunctions,

1 For a recent work on the U(1) symmetries in F-theory see [18].
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a global construction is needed. Nevertheless, there are some calculations in [77] which do not

require the correct normalisation of the singlet curves, such as the relation between proton decay

and exotic masses.

It should also be noted that the discrete group Z2 which identifies t1 ↔ t2 leads also to the

identification of the singlet fields θ12 ↔ θ21. This will also lead to geometric identification of

the corresponding matter curves in the covering theory. Therefore these singlets carry no U(1)-

charges and are treated as moduli of the spectral cover and differently from the θ13 singlet fields,

in accordance with previous studies [70, 19].

2.3.2 SU(4)⊥ Spectral Cover

The SO(10) GUT is one of the most promising Unified Theories, and the smallest one incorpo-

rating the right-handed neutrino into the same multiplet with the remaining fundamental parti-

cles (quarks and leptons). For the case that the GUT group on the brane is SO(10) we need to

consider the breaking

E8→ SO(10)×SU(4)⊥ (2.36)

We can determine which matter curves arise from the decomposition of the adjoint of E8:

248→ (1,15)+(45,1)+(10,6)+(16,4)+(16,4) (2.37)

Thus there are four 16 (and 16) matter curves, six 10 matter curves, and fifteen singlets. The

equations for these curves in terms of the weight vectors ti, i=1,2,3,4, of SU(4)⊥ are

Σ16 : ti = 0 (2.38)

Σ10 : (−ti− t j) = 0, i 6= j (2.39)

Σ1 :±(ti− t j) = 0 i 6= j (2.40)

where ∑i ti = 0. In order to determine how fluxes restrict on these matter curves, taking into

account the effects of monodromy, the spectral cover approach is again used. In analogy to the

SU(3) spectral cover in the case of an E6 singularity, the SU(4)⊥ spectral cover polynomial is

given by

C 4 = b0s4 +b1s3 +b2s2 +b3s+b4 = 0 (2.41)

= b0(s+ t1)(s+ t2)(s+ t3)(s+ t4) = 0 (2.42)
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where the second line reflects the fact that the ti are the roots of the polynomial. This polynomial

describes the 16 matter curves, which are given by setting s to zero in the above equations,

leading to b4 = 0. Equations for the b’s in terms of the t’s can be found by comparing powers of

s in Eqs. (2.41) and (2.42). This leads to the following equations, once t4 has been eliminated

by using the fact that the sum of the ti is zero:

b1 =−b0(t1 + t2 + t3 + t4) = 0 (2.43)

b2 = b0(t2
1 + t2

2 + t2
3 + t1t2 + t2t3 + t1t3) (2.44)

b3 = b0(t1 + t2)(t2 + t3)(t1 + t3) (2.45)

b4 =−b0t1t2t3(t1 + t2 + t3) (2.46)

It can be seen that the equation b4 = 0 does indeed reproduce Eq. (2.38) for the 16 matter curves

in terms of the ti.

2.3.2.1 Z2 Monodromy

Imposing a Z2 monodromy implies the splitting of Eq. (2.41) as follows

C 4 = (a1 +a2s+a3s2)(a4 +a5s)(a6 +a7s) (2.47)

The first bracket is quadratic in s reflecting the fact that we have chosen a Z2 monodromy,

which in the weight language corresponds to an identification of two weights t1↔ t2. We can

now match powers of s in Eqs. (2.41) and (2.47) to get equations for the bi in terms of the ai.

b0 = a3a5a7 (2.48)

b1 = a2a5a7 +a3a5a6 +a3a4a7 (2.49)

b2 = a1a5a7 +a2a4a7 +a2a5a6 +a3a4a6 (2.50)

b3 = a1a4a7 +a1a5a6 +a2a4a6 (2.51)

b4 = a1a4a6 (2.52)

Solving for b1 = 0 gives 2

a2 =−γ(a5a6 +a4a7) (2.53)

a3 = γa5a7 (2.54)

2 It is understood that some solutions of the b1 = 0 constraint might lead to additional degeneracies. However,
for each case in this thesis, we pick up the solution which leads to acceptable factorization, avoiding non-Kodaira
singularities. We are also aware that subtleties could in principle appear on split spectral covers. However, we mainly
concentrate on general phenomenological issues of F-GUT model building, and it is not our intention to address all
these issues in this study.
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where γ is unspecified. Now we can demand that the homology classes of the bn are

[bn] = η−nc1 (2.55)

where, as before, η = 6c1− t, c1 is the first Chern class of the tangent bundle to SGUT and −t is

the first Chern class of the normal bundle. We can now determine the homology classes of the

ai coefficients by using Eqs. (2.48)-(2.52), setting the homology class of a given bn equal to the

homology class of each product of ais on the left hand side of the appropriate equation. This

leads to

η = [a3]+ [a5]+ [a7] (2.56)

η− c1 = [a2]+ [a5]+ [a7] (2.57)

η−2c1 = [a1]+ [a5]+ [a7] (2.58)

η−3c1 = [a1]+ [a4]+ [a7] (2.59)

η−4c1 = [a1]+ [a4]+ [a6] (2.60)

As such, we have 5 equations in 7 unknowns, and so we can solve the equations in terms of two

free parameters, which we can set as

[a5] = χ5 (2.61)

[a7] = χ7 (2.62)

χ̃ = χ5 +χ7 (2.63)

Solving the system of equations gives the homology classes of the remaining ai

[a1] = η−2c1− χ̃ (2.64)

[a2] = η− c1− χ̃ (2.65)

[a3] = η− χ̃ (2.66)

[a4] =−c1 +χ5 (2.67)

[a6] =−c1 +χ7 (2.68)

We now have determined the homology classes of all the ai coefficients (which are summarised

in Table 2.3), and can use them in order to find the homology classes of the matter curves.
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Coefficient Homology
a1 η−2c1− χ̃

a2 η− c1− χ̃

a3 η− χ̃

a4 −c1 +χ5
a5 χ5
a6 −c1 +χ7
a7 χ7

Table 2.3: Homology classes of the ai coefficients.

2.3.2.2 Homology of the 16 Matter Curves

As discussed after Eq. (2.42), the 16 matter curves are given by b4 = 0. From Eq. (2.52), this

means that the equations of the 16s are

a1 = 0, a4 = 0, a6 = 0 (2.69)

and so the homology classes are

[161] = η−2c1− χ̃ (2.70)

[162] =−c1 +χ5 (2.71)

[163] =−c1 +χ7 (2.72)

2.3.2.3 Homology of the 10 Matter Curves

Just as the correct polynomial to describe the 16 matter curves was the spectral cover polyno-

mial, the polynomial for the 10s is given by

P10 = b2
0 ∏

i< j
(s+ ti + t j)

= b2
0(s− t1− t2)(s+ t1 + t2)(s− t1− t3)(s+ t1 + t3)(s− t2− t3)(s+ t2 + t3) (2.73)

= s6 + c1s5 + c2s4 + c3s3 + c4s2 + c5s+ c6 (2.74)
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where in Eq. (2.73), t4 has been eliminated by using ∑i ti = 0. Comparing coefficients of s

between Eqs. (2.73) and (2.74) the following equations for the ci in terms of the ti are obtained

c1 = 0 (2.75)

c2 =−2(t2
1 + t2

2 + t2
3 + t1t2 + t1t3 + t2t3)b2

0 (2.76)

c3 = 0 (2.77)

c4 = [t4
1 +2t3

1(t2 + t3)+(t2
2 + t2t3 + t2

3)
2 + t2

1(3t2
2 +8t2t3 +3t2

3)

+2t1(t3
2 +4t2

2 t3 +4t2t2
3 + t3

3)]b
2
0 (2.78)

c5 = 0 (2.79)

c6 =−(t1 + t2)2(t1 + t3)2(t2 + t3)2b2
0 (2.80)

We can now use Eqs. (2.43)-(2.46) to write the ci coefficients in terms of the bi. The results are

c2 =−2b0b2 (2.81)

c4 = b2
2−4b4b0 (2.82)

c6 =−b2
3 (2.83)

Substituting into Eq. (2.74) gives

P10 = s6−2b0b2s4 +(b2
2−4b4b0)s2−b2

3 (2.84)

As in the case of the 16 polynomial, the 10 matter curves are found by setting s to zero in

this equation, giving b2
3 = 0. In order to know the equations and homology classes for the 10

matter curves when the monodromy is imposed, we must express this equation in terms of the

ai coefficients. From Eq. (2.51), we know b3 in terms of the ai. Substituting Eq. (2.53) in for a2

leads to

b3 = (a5a6 +a4a7)(a1− γa4a6) (2.85)

As such, the 10 matter curves are defined by the equation

(a5a6 +a4a7)(a1− γa4a6)(a5a6 +a4a7)(a1− γa4a6) = 0 (2.86)

We therefore have four 10 matter curves, two of which have homology class [a1] = η − 2c1−
χ̃ , and two of which have homology class [a5a6] = [a5] + [a6] = −c1 + χ̃ . The information

about the homology classes of all the 16 and 10 matter curves is summarised in Table 2.4. For

convenience, the following notation is introduced
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Matter Equation Homology U(1)X

16t1,2 a1 η−2c1− χ̃ M−P
16t3 a4 −c1 +χ5 P5
16t4 a6 −c1 +χ7 P7
10(t1+t3) a1− γa4a6 η−2c1− χ̃ M−P
10(t1+t2) a5a6 +a4a7 −c1 + χ̃ P
10(t1+t4) a1− γa4a6 η−2c1− χ̃ M−P
10(t3+t4) a5a6 +a4a7 −c1 + χ̃ P

Table 2.4: 16 and 10 matter curves and their equations and homology classes.

M = F1 · (η−3c1) (2.87)

P = F1 · (χ− c1) (2.88)

Pn = F1 · (χn− c1) (2.89)

C = F1 · (−c1) (2.90)

2.3.2.4 Homology of the SO(10) singlets

We have already pointed out that singlet fields can play a decisive role in building the low

energy effective model. If the worldvolume theory on S is seen to have gauge group SO(10),

then the same argument about singlets applies as before. The SO(10) singlets will reside on

curves which extend away from S, forbidding us from computing the homology classes in the

local prescription. If we look at a model where the worldvolume group on S is E6 however, only

the singlets θ12 and θ13 do not live on S. The other SO(10) singlets could then be treated by a

polynomial in the usual way, and the resulting homology classes which are computed could be

compared with the homologies of the 27 curves which they originate from in the E6 formalism.

Adopting this technique and using well known theorems, the singlets are given by the equation

P0 =−4b3
2b2

3−27b0b4
3 +16b4

2b4 +144b0b2b2
3b4−128b0b2

2b2
4 +256b2

0b3
4 = 0 (2.91)

When the bi are expressed in terms of the ai, the results are
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Matter Charge Equation Homology U(1)X

θ14, θ41 ±(t1,2− t4) a1a7−a6(a2− γa5a6) η−2c1−χ5 M−P5

θ34, θ43 ±(t3− t4) a5a6−a4a7 −c1 +χ M+P

Table 2.5: SU(4) cover singlets and homologies.

b0 = γ(a5a7)
2 (2.92)

b1 = 0 (2.93)

b2 = a5a7(a1 + γa4a6)− γ(a5a6 +a4a7)
2 (2.94)

b3 = (a1− γa4a6)(a5a6 +a4a7) (2.95)

b4 = a1a4a6 (2.96)

Factorisation of P0 leads to

P0 = [(a5a6 +a4a7)
2
γ−4a1a5a7]× [a1a7−a6(a2− γa5a6)]

2

× [a1a5−a4(a2− γa4a7)]
2× [a5a6−a4a7]

2 (2.97)

As we know the homologies of the ai, we have the homologies of the singlet curves, which are

summarised in Table 2.5.

2.3.3 SU(5)⊥ Spectral Cover

The final investigation contained in this thesis concerns the SU(5)GUT . Considering again the

maximal symmetry E8, the spectral cover encoding the relevant information (bundle structure

etc) is associated to the commutant of the GUT group, which is SU(5)⊥. Hence, in this case the

breaking pattern is

E8→ SU(5)×SU(5)⊥ (2.98)

This case has been extensively studied and the homology of the gauge non-singlets determined.

Here we extend the discussion to include the singlets inside an E6 GUT group. The associated

adjoint representation decomposition is

248→ (24,1)+(1,24)+(10,5)+(5,10)+(5,10)+(5,10) (2.99)

Although this case has been analysed by many authors in the recent F-theory model building

literature, a detailed examination of the breaking mechanism of the higher intermediate sym-

metries and possible implications is still lacking. In the following we attempt to implement the

constraints obtained from the previous symmetry breaking stages into the SU(5)GUT model.
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To start with, we recall that the global model is assumed in the context of elliptically fibered

Calabi-Yau compact complex fourfold over a three-fold base. Using Tate’s algorithm[67, 78],

the SU(5) singularity can be described by the following form of Weierstrass’ equation [6]

y2 = x3 +b0z5 +b2xz3 +b3yz2 +b4x2z+b5xy

We determine the corresponding spectral cover by defining homogeneous coordinates

z→U, x→V 2, y→V 3

so that the spectral cover equation becomes

0 = b0U5 +b2V 2U3 +b3V 3U2 +b4V 4U +b5V 5

We can see this equation as a fifth degree polynomial in terms of the affine parameter s =U/V :

P5 =
5

∑
k=0

bks5−k = b5 +b4s+b3s2 +b2s3 +b1s4 +b0s5

where we have divided by V 5, so that each term in the last equation becomes a section of c1− t.

The roots of the spectral cover equation.

0 = b5 +b4s+b3s2 +b2s3 +b0s5
∝

5

∏
i=1

(s+ ti)

are identified as the SU(5) weights ti.

In the above, the coefficient b1 is taken to be zero since it corresponds to the sum of the roots,

which for SU(N) is always zero, ∑ ti = 0. Also, it can be seen that the coefficient b5 is equal to

the product of the roots, i.e. b5 = t1t2t3t4t5 and the Σ10 curves where the corresponding matter

multiplets are localized are determined by the five zeros

Σ10i , b5 =
5

∏
i=1

ti = 0→ ti = 0, i = 1,2,3,4,5 (2.100)

Following [24], we impose the Z2 monodromy corresponding to the following splitting of the

spectral cover equation

0 = (a1 +a2s+a3s2)(a4 +a5s)(a6 +a7s)(a8 +a9s) (2.101)

with s = U/V and ai undetermined coefficients, constituting sections of line bundles each of

them being of specific Chern class to be determined. The first bracket contains the polynomial

factor which corresponds to the Z2 monodromy, while the remaining monomials leave three

U(1)s intact. Expanding, we may determine the homology class for each of the coefficients ai
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Matter Charge Equation Homology NY MU(1)
5Hu −2t1 a8a5a7 +a6a5a9 +a4a7a9 −c1 + χ̃ Ñ MHu

51 −t1− t3 a1− ca4a8a7− ca4a6a9 η−2c1− χ̃ −Ñ M51

52 −t1− t4 a1− ca6a8a5− ca4a6a9 η−2c1− χ̃ −Ñ M52

53 −t1− t5 a1− ca6a8a5− ca4a8a7 η−2c1− χ̃ −Ñ M53

54 −t3− t4 a6a5 +a4a7 −c1 +χ5 +χ7 N5 +N7 M54

55 −t3− t5 a8a5 +a4a9 −c1 +χ5 +χ9 N5 +N9 M55

56 −t4− t5 a8a7 +a6a9 −c1 +χ7 +χ9 N7 +N9 M56

10M t1 a1 η−2c1− χ̃ −Ñ −(M51 +M52
+M53)

102 t3 a4 −c1 +χ5 N5 M102

103 t4 a6 −c1 +χ7 N7 M103

104 t5 a8 −c1 +χ9 N9 M104

θ14 t1− t4 a6 (a4a7a9 +a5 (a7a8 +2a6a9))c η−2c1− χ̃ +χ7 0 M14
+a1a7

θ15 t1− t5 2a5a7a2
8c+a9a8 (a5a6 +a4a7)c η−2c1− χ̃ +χ9 0 M15

+a1a9
θ34 t3− t4 a5a6−a4a7 −c1 +χ5 +χ7 0 M34
θ35 t3− t5 a5a8−a4a9 −c1 +χ5 +χ9 0 M35
θ45 t4− t5 a7a8−a6a9 −c1 +χ7 +χ9 0 M45

Table 2.6: Table showing curves and flux restrictions with Z2 monodromy t1 ↔ t2. Ñ =
N5 +N7 +N9. The homologies of the singlet fields θi j are also shown. Due to monodromy, θ12
and θ21 do not couple to fluxes so they are not included.

by comparison with the bk’s. Thus,

b0 = a3a5a7a9

b1 = a3a5a7a8 +a3a4a9a7 +a2a5a7a9 +a3a5a6a9

b2 = a3a5a6a8 +a2a5a8a7 +a2a5a9a6 +a1a5a9a7 +a3a4a7a8 +a3a4a6a9 +a2a4a7a9

b3 = a3a4a8a6 +a2a5a8a6 +a2a4a8a7 +a1a7a8a5 +a2a4a6a9 +a1a5a6a9 +a1a4a7a9

b4 = a2a4a8a6 +a1a5a8a6 +a1a4a8a7 +a1a4a6a9

b5 = a1a4a6a8

We first solve the constraint b1 = 0. We make the Ansatz:

a2 =−c(a5a7a8 +a4a9a7 +a5a6a9), a3 = ca5a7a9

Substituting into bn’s we get

b0 = ca2
5a2

7a2
9

b2 = a1a5a7a9−
(
a2

5a2
7a2

8 +a5a7 (a5a6 +a4a7)a9a8 +
(
a2

5a2
6 +a4a5a7a6 +a2

4a2
7
)

a2
9
)

c

b3 = a1 (a5a7a8 +a5a6a9 +a4a7a9)− (a5a6 +a4a7)(a5a8 +a4a9)(a7a8 +a6a9)c

b4 = a1 (a5a6a8 +a4a7a8 +a4a6a9)−a4a6a8 (a5a7a8 +a5a6a9 +a4a7a9)c

b5 = a1a4a6a8
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Singlet Qχ Qψ Representations
θ12 0 0 SO(10) singlet in 78
θ13 0 0 45⊂ 78
θ14 0 4 SO(10) singlet in 27t1,2
θ15 -5 1 16t1,2 ⊂ 27t1,2
θ34 0 4 SO(10) singlet in 27t3
θ35 -5 -1 16t3 ⊂ 27t3
θ45 -5 -3 16t4 ⊂ 78

Table 2.7: Table showing the E6 charges and origin of some of the singlets in Table 2.6.

Next, we observe that we have to determine the homology classes of nine unknowns a1, . . .a9

in terms of the bk-classes, which we demand to be η − kc1. Three classes are left unspecified

which we choose them to be [al] = χl, l = 5,7,9. The rest are computed easily, and the results are

[a1] = η−2c1−χ , [a2] = η−c1−χ , [a3] = η−χ , [a4] =−c1+χ5, [a5] = χ5, [a6] =−c1+χ7,

[a7] = χ7, [a8] =−c1 +χ9, [a9] = χ9.

The Σ10 curves are found setting s = 0 in the polynomial

b5 ≡Π5(0) = a1a4a5a6 = 0 → a1 = 0,a4 = 0,a5 = 0,a6 = 0 (2.102)

Thus, after the monodromy action, we obtain four curves (one less) to arrange the appropriate

pieces of the three families.

The Σ5 curves are treated similarly in [24] so we do not present the details here.

2.3.4 Singlets in the SU(5)⊥ Spectral Cover

Akin to the SO(10) case, we will compute the homology classes of the singlets inside E6 by

determining the polynomial ∏i6= j(ti− t j) in terms of bn’s. The results should match the homolo-

gies of the corresponding 27s of E6 which contain the singlets. In analogy with the previous

cases, while using the results of Appendix B we find

P0 = 3125b4
5b5

0 +256b5
4b4

0−3750b2b3b3
5b4

0 +2000b2b2
4b2

5b4
0 +2250b2

3b4b2
5b4

0

−1600b3b3
4b5b4

0−128b2
2b4

4b3
0 +144b2b2

3b3
4b3

0−27b4
3b2

4b3
0 +825b2

2b2
3b2

5b3
0

−900b3
2b4b2

5b3
0 +108b5

3b5b3
0 +560b2

2b3b2
4b5b3

0−630b2b3
3b4b5b3

0

+16b4
2b3

4b2
0−4b3

2b2
3b2

4b2
0 +108b5

2b2
5b2

0 +16b3
2b3

3b5b2
0−72b4

2b3b4b5b2
0

Factorization (via Mathematica) leads to the results which are summarised in the complete

SU(5) table (Table 2.6). Since the factorised form is very lengthy we do not exhibit it here.

Note that due to the large number of parameters η , c1, χ̃, χ̃5,7,9 there are no constraints be-

tween the singlet MU(1)s for the case that only the hyperchage is unbroken by flux effects.
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The way in which the singlets fit into the E6 and SO(10) pictures can be found by working out

the U(1)χ and U(1)ψ charges using the generators in Eq. (2.21) and matching the charges to the

singlets in the decomposition in Eq. (2.20). Putting this information together with the homology

classes, leads to the results in Tables 2.6 and 2.7.

In the subsequent model building, if the GUT group on S is taken to be E6, we cannot know the

properties of the singlets θ12 and θ13 using the spectral cover approach for the reasons discussed

previously. If the GUT group is taken to be SO(10) or SU(5), the situation is clearly worse, as

then there are more GUT singlets for which we cannot compute homology classes. As such, we

can never have a complete knowledge of the singlet properties in a local framework. This means

that in model building, we will simply make assumptions about the singlet spectrum (which in

turn would ammount to making assumptions about the global completion of the model).

2.4 Singlet VEVs and D- and F-flatness conditions

The homology constraints just discussed can be used to construct models capable of accommo-

dating the Standard Model - an example of this is given in Chapter 3. To obtain a viable model it

is usually necessary to remove additional Standard Model ‘vectorlike’ states by generating mass

for them through their coupling to E6 singlets which acquire VEVs. Any such VEVs should

be consistent with F and D flatness conditions and we turn now to a discussion of this. Since,

in this chapter, we have assumed all GUT breaking is driven by flux no GUT non-singlet fields

acquire VEVs until the electroweak scale and so these VEVs can be ignored when determining

high scale VEVs.

In general the superpotential for the massless singlet fields is given by

W = µi jkθi jθ jkθki (2.103)

The F-flatness conditions are given by

∂W
∂θi j

= µi jkθ jkθki = 0 (2.104)

The D-flatness condition for UA(1) is

∑
i, j

QA
i j(
∣∣〈θi j

〉∣∣2− ∣∣〈θ ji
〉∣∣2) =− TrQA

192π2 g2
s M2

S (2.105)

where the right-hand side (rhs) is the anomalous contribution, QA
j are the singlet charges and the

trace TrQA is over all singlet and non-singlet states. The D-flatness conditions must be checked

for each of the UA(1)s.
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2.4.1 E6 case

In this case after the monodromy action there is only a single U(1) and, in the t ′i basis the charge

is given by diag[1,1,−2]. As both the 27s and the θi j are charged under the U(1), we must know

the number of each after the monodromy action and the flux breaking mechanism in order to

compute the trace. The contribution of the 27ti to TrQA is

27(q1n1 +q3n3) = 27(n1−2n3)q1 (2.106)

and the contribution of the θi j is

1× [(q1−q2)n12 +(q1−q3)n13] = 3n13q1 (2.107)

The multiplicities are given in terms of the flux restrictions as the flux dotted with the homology

class, and so we have

n1 +n3 = F · (η−3c1) (2.108)

n12 = n13 = F · (η−2c1) (2.109)

Assuming that only the pair θ13, θ31 get VEVs, the flatness condition is

q3(|〈θ13〉|2−|〈θ31〉|2)+
9(n1−2n3)+n13

64π2 q1g2
s M2

S = 0 (2.110)

and as we have q3 =−2q1

|〈θ13〉|2−|〈θ31〉|2 =
9(n1−2n3)+n13

128π2 g2
s M2

S (2.111)

In order to relate the multiplicities to each other, we define for convenience ω = FU(1) · η ,

p = FU(1) · c1 and x = FU(1) ·χ . As such, in this notation, we have

n1 = ω−2p− x (2.112)

= n13− x (2.113)

n3 = x− p (2.114)
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As chirality requires n1 > 0 and n3 < 0, the term 9(n1−2n3) is always positive. If we take the

case n1 = 4 and n3 =−1 (i.e. the minimal case of three 27’s accommodating the three families

and a pair 27H +27H̄), we have n13 = 3+ p, and

|〈θ13〉|2−|〈θ31〉|2 =
54+n13

128π2 g2
s M2

S (2.115)

This condition is consistent with 〈θ13〉 6= 0 and 〈θ31〉= 0 for any n13 > 0, but not with the case
〈θ13〉= 0, 〈θ31〉 6= 0 as this would require n13 <−54.

2.4.2 SO(10) case

Analogous to the E6 case, the D-flatness condition for the anomalous U(1)s is given by Eq.

(2.105). In this case there are two UA(1)s with charges that can be taken as Q1 = diag[1,1,1,−3]

and Q2 = diag[1,1,−2,0]. For example, for the case of Q1, using Table 2.4, the trace is given by

TrQ1
j = 16(n16

1 +n16
3 −3n16

4 )+10(2n10
13 +2n10

12−2n10
14−2n10

34)+4n1
14 +4n1

34 (2.116)

2.4.3 SU(5) case

In this case there are three UA(1)s with charges given in Eq. (2.21). In the next chapter we

discuss F- and D-flatness in detail for a realistic model.



Chapter 3

Model Building: A realistic model
based on E6

3.1 Introduction

In this chapter, a viable low-energy-model is constructed in which the U(1) symmetries and flux

effects are utilised to answer all the model building challenges described in the Introduction.

Inspired by the elimination of dangerous operators in the MSSM by R-parity, we start with the

identification of R-parity in an E6 GUT. However, after flux breaking the resulting model has

some undesirable features, so these must be rectified by relaxing the E6 constraints on the spec-

trum. However, even with the slight modifications, the dangerous R−parity violating operators

are still forbidden. In addition the dimension 5 proton decay operators, allowed by R-parity, are

also forbidden due to the U(1) global symmetries of the model.

Due to the flux breaking, the spectrum has additional vector-like states beyond those of the

minimal supersymmetric extension of the Standard Model (MSSM). We show that these exotic

states get large masses, close to the GUT scale, if certain SM (and SU(5)) singlet fields acquire

vacuum expectation values (VEVs). We identify the necessary singlet fields and show that these

VEVs are needed for F- and D-flatness of the scalar potential, the VEVs being driven close to

the GUT scale. Moreover we show that these VEVs do not re-introduce terms that can give rise

to rapid proton decay.

Finally we show that the model may have a realistic structure for the quark and charged lepton

masses in which the light generation masses and mixings are driven by flux and instanton effects.

The neutrinos can get mass from the (type I) ‘Seesaw’ mechanism through the coupling of the

doublet neutrinos to singlet neutrinos that acquire a Majorana mass due to the monodromy.
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3.2 Building the model

There are several important ingredients to building a phenomenologically realistic low energy

theory. The first is the need to control the baryon and lepton number violating terms in the La-

grangian that generate rapid proton decay. In addition to the dimension 3 and 4 terms (forbidden

by R-parity in the MSSM), it is necessary to forbid the dimension 5 nucleon decay terms too.

Although the latter are suppressed by an inverse mass factor, this mass must be some 107 times

the Planck mass, which is unacceptably large in string theory.

A second necessary ingredient is the control of the ‘µ term’, which is the Higgs supermultiplet

mass term in the superpotential, µHuHd . Such a term is allowed by the Standard Model Gauge

symmetry but, for a viable theory, its coefficient, µ , must be of order the SUSY breaking scale.

In order to explain this fact, the µ term can be effectively generated by a VEV for a singlet

field which couples to HuHd . At the same time the Higgs colour triplets which accompany the

Higgs doublets in GUTs must be very heavy - this was described in the Introduction as the

‘doublet-triplet splitting’ problem.

The final ingredient is that the quark and lepton masses and mixings must be consistent. In

particular it is necessary to explain why the quark masses and mixing angles have a hierarchical

structure while the leptons must have large mixing angles and a relatively small mass hierarchy

to explain the observed neutrino oscillation phenomena.

There has been a significant effort to build F-theory based models that use U(1) symmetries to

obtain these ingredients, but prior to the model presented in this chapter (and in [1]), no fully

satisfactory model had been obtained, and it was actually speculated that such a model could

not exist. Here, using the formalism described in the Introduction and Chapter 2, an explicit

example is constructed which demonstrates how the U(1) symmetries alone are sufficient to

build a viable theory.

3.2.1 The E6 inspired model

The first, most important, step in model building is to find a matter and Higgs multiplet assign-

ment that can eliminate rapid nucleon decay. To this end, we find that starting from an underlying

unified group is very helpful and we consider the case of E6. After imposing a Z2 monodromy

there are just two multiplets, 27t ′1,3
. The SU(5)×SU(5)⊥ properties of these multiplets are given

in Table 2.1. The only E6 allowed trilinear term in the superpotential is 27t ′1
27t ′1

27t ′3
, and as a

result, if we assign the quark and lepton supermultiplets to 27t1 and the Higgs supermultiplets to

27t3 , there will be no dimension 3 or dimension 4 baryon- or lepton-number violating terms.

Requiring that anomalies are cancelled in a given model leads to constraints between the number

of SU(5) 10 and 5 dimensional representations [24, 79]. These conditions are automatically

satisfied for multiplets descending from complete E6 multiplets. In particular for the E6 27
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dimensional representations we have, in the notation of [24]

M10M = M51 =−M52 =−M53 , (3.1)

M102 =−M54 =−M55 = M5Hu
. (3.2)

Furthermore, in the absence of matter in the 78 dimensional representation we have

M103 = M104 = M56 = N8 = N9 = 0, (3.3)

which implies:

N7 = Ñ. (3.4)

The resulting states arising from complete 27s are shown in Table 3.1 where we have allowed

also for the breaking of SU(5) through hypercharge flux. The SM particle content is also shown

in Table 3.1 in the usual notation where a generation of quarks and leptons is Q,uc,dc,L,ec. The

Higgs doublets Hu,Hd are accompanied by exotic colour triplets and anti-triplets D,D. The 27s

also contain the CP conjugates of the right-handed neutrinos νc and extra singlets S.

E6 SO(10) SU(5) Weight vector NY MU(1) SM particle content
27t ′1

16 53 t1 + t5 Ñ −M53 −M53dc +(−M53 + Ñ)L
27t ′1

16 10M t1 −Ñ −M53 −M53Q+(−M53 + Ñ)uc +(−M53 − Ñ)ec

27t ′1
16 θ15 t1− t5 0 −M53 −M53νc

27t ′1
10 51 −t1− t3 −Ñ −M53 −M53D+(−M53 − Ñ)Hu

27t ′1
10 52 t1 + t4 Ñ −M53 −M53D+(−M53 + Ñ)Hd

27t ′1
1 θ14 t1− t4 0 −M53 −M53S

27t ′3
16 55 t3 + t5 −Ñ M5Hu

M5Hu
dc +(M5Hu

− Ñ)L
27t ′3

16 102 t3 Ñ M5Hu
M5Hu

Q+(M5Hu
− Ñ)uc +(M5Hu

+ Ñ)ec

27t ′3
16 θ35 t3− t5 0 M5Hu

M5Hu
νc

27t ′3
10 5Hu −2t1 Ñ M5Hu

M5Hu
D+(M5Hu

+ Ñ)Hu

27t ′3
10 54 t3 + t4 −Ñ M5Hu

M5Hu
D+(M5Hu

− Ñ)Hd

27t ′3
1 θ34 t3− t4 0 M5Hu

M5Hu
S

Table 3.1: Complete 27s of E6 and their SO(10) and SU(5) decompositions. The indices
of the SU(5) non-trivial states 10,5 refer to the labeling of the corresponding matter curve
(we use the notation of [24]). We impose the extra conditions on the integers NY and MU(1)
from the requirement of having complete 27s of E6 and no 78 matter. The SU(5) matter states
decompose into SM states as 5→ dc,L and 10→Q,uc,ec with right-handed neutrinos 1→ νc,
while SU(5) Higgs states decompose as 5→D,Hu and 5→D,Hd , where D,D are exotic colour
triplets and antitriplets. We identify RH neutrinos as νc = θ15,35 and extra singlets from the 27
as S = θ14,34.

The only undetermined parameters in Table 3.1 are the three integers M53 , M5Hu
and Ñ. To

maintain the E6 based suppression of the baryon- and lepton-number violating terms we require

that the Higgs should come from 27t ′3
and the matter from 27t ′1

and that any states transforming

as Hu,d in 27t ′1
be heavy.

We first choose M53 =−3 to get three families of quarks and leptons in 27t ′1
. To get a single pair

of Higgs doublets in 27t ′3
without colour triplet partners we next choose M5Hu

= 0 and Ñ = 1.
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According to Table 3.1 this gives the following SM spectrum, grouped according to SO(10)

origin:

[
53→ 3dc +4L, 10M → 3Q+4uc +2ec, θ15→ 3ν

c]
16 ,[

51→ 3D+2Hu, 52→ 3D+4Hd
]

10 ,

[θ14→ 3S]1 ,[
55→ L, 102→ uc + ec]

16 ,[
5Hu → Hu, 54→ Hd

]
10 .

(3.5)

Note that the matter content is just that contained in 3 complete 27s of E6: 3[Q,uc,dc,L,ec,νc]16,

3[Hu,D,Hd ,D]10, 3[S]1 plus some extra vector pairs L+L,ec + ec,uc +uc,Hd +Hd that may be

expected to get a large mass if some of the singlet states acquire large VEVs.

It may be seen that the U(1) flux breaking has resulted in one of the lepton supermultiplets,

ec, being assigned to 27t ′3
in conflict with our original strategy of assigning all matter states

to 27t ′1
. However this does not lead to the dimension 4 R-parity violating superpotential term

LLec because one of the ec comes from the 16 of SO(10) and there is no 163 coupling allowed

by SO(10). In this case it is a combination of the original R-parity and the underlying GUT

symmetry that eliminates dangerous baryon and lepton number violating terms. In fact the

combination is more effective than R-parity alone for it also forbids the dangerous dimension 5

terms.

More troublesome is the fact that Hd now comes from 27t ′1
so that down quark masses are

forbidden at tree level. However there is an allowed coupling of HdLec for the ec belonging

to 27t ′3
. This discrepancy between down quark and charged lepton masses looks unacceptable

even if the remaining masses are generated in higher order through coupling to singlet fields that

acquire large VEVs. To avoid this we look at a slightly modified structure choosing

M10M = −M53 = 4,

M51 = −M52 = 3

M102 = −M55 =−1,

M54 = MHu = 0,

Mθ15 = 2,

Ñ = 1 (3.6)

This leads to the spectrum given in Table 3.2 where now both the down quarks and leptons

originate in 27t ′1
, avoiding the troublesome difference in their mass matrices just discussed.

The difference in the spectrum compared to the previous case is in the vectorlike sector with

additional pairs of L + L,Q + Q,uc + uc,dc + dc and Hd + Hd and no ec + ec. Provided the

vectorlike states are heavy, the absence of the dimension 3 and 4 R-parity violating operators
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E6 SO(10) SU(5) Weight vector NY MU(1) SM particle content Low energy spectrum
27t ′1 16 53 t1 + t5 1 4 4dc +5L 3dc +3L
27t ′1 16 10M t1 −1 4 4Q+5uc +3ec 3Q+3uc +3ec

27t ′1 16 θ15 t1− t5 0 3 3νc -
27t ′1 10 51 −t1− t3 −1 3 3D+2Hu -
27t ′1 10 52 t1 + t4 1 3 3D+4Hd Hd

27t ′3 16 55 t3 + t5 −1 −1 dc +2L -
27t ′3 16 102 t3 1 −1 Q+2ūc -
27t ′3 16 θ35 t3− t5 0 0 − -
27t ′3 10 5Hu −2t1 1 0 Hu Hu

27t ′3 10 54 t3 + t4 −1 0 Hd -
27t ′3 1 θ34 t3− t4 0 1 θ34 -

- 1 θ31 t3− t1 0 4 θ31 -
- 1 θ53 t5− t3 0 1 θ53 -
- 1 θ14 t1− t4 0 3 θ14 -
- 1 θ45 t4− t5 0 2 θ45 -

Table 3.2: Complete 27s of E6 and their SO(10) and SU(5) decompositions. We use the
notation of ref [24] for the indices of the SU(5) states and impose the extra conditions on the
integers NY and MU(1) from the requirement of having complete 27s of E6 and no 78 matter.
The SU(5) matter states decompose into SM states as 5→ dc,L and 10→ Q,uc,ec with right-
handed neutrinos 1→ νc, while SU(5) Higgs states decompose as 5→ D,Hu and 5→ D,Hd ,
where D,D are exotic colour triplets and antitriplets. We identify RH neutrinos as νc = θ15.
The extra singlets are needed for giving mass to neutrinos and exotics and to ensure F and D
flatness.

is now guaranteed by the underlying U(1) symmetries1. As we shall see, the underlying GUT

symmetry still also eliminates the dimension 5 terms that would cause proton decay.

3.2.2 Doublet-triplet splitting and vector-like masses.

There remains the doublet-triplet problem of giving large mass to the D and D fields and the

problem of giving large mass to the vectorlike pairs of fields. Since the D and D fields also come

in vectorlike pairs these problems are related and are solved by generating mass for vectorlike

fields through their coupling to SM singlet fields that acquire large VEVs. For the case in which

the vectorlike pairs have components in both the 27t ′1
and 27t ′3

multiplets, the extra vector pairs

are removed by introducing θ31, an E6 singlet, with couplings:

θ3127t ′1
27t ′3

= θ31QQ+θ31(2uc)(2uc)+θ31dcdc +θ31(2L)(2L)+θ31HdHd . (3.7)

If θ31 gets a large VEV these vector states get large masses as required. We shall discuss how

the D-terms associated with the anomalous UA(1)s can require a VEV for this field close to the

Planck scale.
1Note that these operators do not involve Hd and so the fact that Hd originates in 27t ′1 does not cause problems.
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To remove the remaining exotics we introduce θ34 which has the couplings :

θ345152 = θ34[3D+2Hu][3D+3Hd ] = θ34[3(DD)]+θ34[2(HuHd)]. (3.8)

If it too acquires a large VEV it generates large mass to the three copies of D+D (solving

the doublet-triplet splitting problem) and two families of Higgs Hu,Hd , leaving just the MSSM

spectrum as shown in the last column of Table 3.2.

The singlet θ14 could also play an important role, as the term θ14HuHd is invariant under the

perpendicular U(1) symmetries. As such, the µ term could be effectively generated if θ14

acquires a TeV scale VEV. In [1], it is pointed out that the µ term can be generated by non-

perturbative effects also. We expect the local U(1) symmetries to be anomalous and the as-

sociated gauge bosons to become massive due to the Stueckelberg mechanism, leaving three

global U(1) symmetries which act as selection rules in determining the allowed Yukawa cou-

plings [43]. However these global symmetries are only approximate and are explicitly broken by

non-perturbative effects [80] with breaking characterised by the Kähler moduli, τi, components

of the complex fields Ti, whose complex components provide the longitudinal components of

the U(1) gauge bosons. These non-perturbative effects will generate an explicit µHuHd term

with the µ = O(Mse−t/Ms) where t is the VEV of the appropriate combination of τi moduli, and

Ms represents the string scale. Due to the exponential dependence on t this term can be of the

Electroweak scale as required.

3.2.3 Singlet VEVS

In the model under consideration, in order to determine the large VEVs for the singlets, we

consider the F and D flatness conditions. Taking account of the Z2 monodromy, t1 ↔ t2 the

D-flatness conditions are of the form given in Eq. (2.105) where there are three UA(1)s with

charges given in Eq. (2.21). We wish to show that the D-flatness conditions are satisfied by the

massless fields θ31, θ34, θ53 needed to give mass to exotics and, as discussed below, to generate

viable neutrino masses. Using the spectrum given in Table 3.2 we compute TrQA for the three

UA(1)s. In a general basis, Q = diag[t1, t2, t3, t4, t5], Eq. (2.105) can be written

(t5− t3)|θ53|2 +(t3− t4)|θ34|2 +(t3− t1)|θ31|2 =−XTrQA (3.9)

The trace is taken over all states, and is given by

TrQA = 5∑ni j(ti + t j)+10∑nktk +∑mi j(ti− t j) (3.10)

For our model, this trace is computed to be

TrQA = 61t1−26t3 +14t4 +11t5 (3.11)

Applying this to the three UA(1)s using the generators given in Eq. (2.21) leads to
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5|θ53|2 = 5X (Qχ)

−|θ53|2 +4|θ34|2 = 7X (Qψ)

2|θ53|2−2|θ34|2−3|θ31|2 = −113X (Q⊥) (3.12)

where X =
g2

s M2
S

192π2 . These equations are solved by

|θ53|2 = X

|θ34|2 = 2X

|θ31|2 = 37X (3.13)

In terms of demonstrating F-flatness, the only allowed superpotential terms that can give a non-

zero F-term involves the fields with VEVs plus at most a single additional light field. The only

problematic terms have the form λi jθ53θ i
31θ

j
15 where i = 1,2,3,4 and j = 1,2,3. The F-terms

of θ
j

15 are potentially non-zero but minimisation of the singlet potential will make λi1〈θ i
31〉= 0

and λi2〈θ i
31〉 = 0. This means three independent θ i

31 fields have zero VEVs but the fourth one

can have a VEV as it decouples from θ
j

15. It is this combination that enters in Eqs. (3.12) and

(3.13).

3.2.4 Baryon and lepton number violating terms

As discussed above, the R-parity violating superpotential couplings ucdcdc, QdcL, LecL, κLHu

are not allowed because of the underlying U(1) symmetries which play the role of R-parity.

Dimension 5 terms in the Lagrangian, corresponding to the superpotential terms QQQL and

ucucdcec, which would be allowed by usual R-parity, are forbidden by the U(1) symmetries that

originate in the underlying E6.

However, we must clearly be careful that spontaneous symmetry breaking terms coming from

SM singlet field VEVs do not allow these dangerous operators to appear. Allowing for arbitrary

singlet fields to acquire VEVs the dangerous the baryon and lepton number violating operators

arise through the terms θ15LHu, (θ31θ45+θ41θ35)10M53
2 and θ31θ41103

M53. Thus, provided θ15,

θ41 and θ45 do not acquire VEVs, these dangerous terms will not arise. One might worry that the

non-perturbative effects which can generate an explicit µ term could also generate an explicit

κLHu term due to the similar structure of the two terms. However, this is not a problem for the

proton decay operators provided that all of the ∆B 6= 0 are absent.

However this is not sufficient to ensure the absence of baryon and lepton number violating

terms because, even in the absence of these VEVs, tree level graphs can generate the dangerous
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operators at higher order in the singlet fields. The dangerous graph is shown in Fig. 3.1 and is

driven by colour triplet exchange coming from the couplings

10M 10M 5Hu → QQDh + . . .

5Hu 5̄H̄u
→ MDDhD̄h + . . .

θ34515̄2 → 〈θ34〉D′hD̄h
′′′+ . . .= 〈θ34〉DD̄+ . . . .

As may be seen from Table 3.2 only the states D′h and D̄′′′h appear in the spectrum with mass

generated by the singlet VEV 〈θ34〉 which from Eq. (3.13) is predicted to be somewhat below

the GUT scale. Since the choice of fluxes in Table 3.2 eliminates light colour triplet states Dh

arising from 5Hu , and also Dh
′′ states arising from 54, we assume that if states with the quantum

numbers of Dh,D′′h exist, they will have string scale masses, of O(MS).

In this case the diagram of Figure 3.1 gives the proton decay operator QQQL with coefficient

1/Λe f f given by

1
Λe f f

= λ
5
(〈θ31〉

MS

)2 1
〈θ34〉

(3.14)

In (3.14), λ 5 represents the product of the five Yukawa couplings in the relevant diagram and

according to ref [25] it is expected to be

λ
5 = λ10·10·5λ10·5̄·5̄λ

3
5·5̄·1 ≈ 10−3.

We can further determine the mass ratios by taking into account the solution Eq. (3.13) to the

flatness conditions to estimate the effective scale

Λe f f ≈ 103
(

MS

〈θ31〉

)2 〈θ34〉
MS

MS ≈
8
√

6π

37gs
×103 MS & 103 MS (3.15)

This, multiplied by the appropriate loop-factor due to higgsino/gaugino dressing and other the-

oretical factors [81, 82, 83, 84, 65], should be compared to experimental bounds on nucleon

Figure 3.1: The proton decay diagram generating dim. 5 operator QQQL.
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decay. This bound, relevant to the case that the operator QQQL involves quarks from the two

lighter generations only, requires Λ
light
eff > (108−109)MS. Given the large discrepancy between

Λ
light
eff and Λeff it is clearly important to determine whether, in the absence of flux, this light quark

operator is generated by the diagram of Figure 3.1.

In order to answer this question, the nature of the triple overlap integrals involved in the com-

putation of the diagram must be considered [85]. For the case of trilinear couplings involving

light fields only, the calculation involves an integral over the coordinates about the point of

intersection, zi, of the surface on which the matter curves reside. When there are N multiple

fields associated with a matter curve the orthogonal wave functions may be chosen proportional

to powers of the coordinates, (zi)
j, j = 1, ..,N. On integration only the coupling involving the

fields with j = 0 are non-zero, corresponding to a geometric U(1)i invariance, zi→ zieiαi , as ex-

plained in Appendix F. For the case the three families live on the same matter curve this means

the mass matrices are rank 1 in the absence of the flux corrections of [29]. Switching on the flux

gives a rank 3 mass matrix and generates the mixing between the generations.

In the case where there are vertices involving both light and heavy fields, because the heavy field

wave function can involve powers of z̄i [29], there can be couplings involving light states with

j 6= 0. As such, as long as the U(1) invariance is intact, higher order operators with only external

light fields are generated only if all the external fields have j = 0. However, as explained in [85],

there are two types of Higgs wavefunction which can be involved in the integral, corresponding

to the cases of ‘non-vanishing flux density’ or ‘vanishing flux density’. These cases correspond

to the existence of massless colour triplets (or anti-triplets) or vector pairs of triplets and anti-

triplets in the spectrum respectively.

The model considered here corresponds to vanishing flux density, and it can be shown that the

Higgs wavefunctions in this case have the form of Eq. F.18. Calculating triple overlap integrals

involving wavefunctions of this form shows that trilinear couplings in the case of vanishing

flux density do not respect the geometric U(1). However, as argued in Appendix F, for the

case of a complete diagram the U(1) invariance should be restored due to the presence of the

conjugate Higgs wavefunctions. Due to the fact that the U(1) is respected for Figure 3.1, the

operator generated by this diagram does not involve the light quarks. As such, its contribution to

nucleon decay vanishes in the absence of the non-perturbative flux effects of [29], and hence is

significantly suppressed. To estimate this suppression we use the fact that the same flux effects

generate the masses and mixings of the light quarks. Using these mixing angles we can convert

the heavy quark operator to one involving light quarks. For the least suppressed case involving

two down quarks and an up quark, this gives Λ
light
eff ≈

√
mt
mu

mb
md

Λeff ≈ 109MS, consistent with the

experimental bound. A similar result applies to the operator involving right handed quarks.
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Figure 3.2: Tree-level diagram contributing to the bottom mass.

3.2.5 Quark and charged lepton masses

Up to SM singlets the surviving low energy spectrum is that of the MSSM given by:

[
53→ 3dc +3L, 10M → 3Q+3uc +3ec] ,[
52→ Hd

]
10t1

,

[5Hu → Hu]10t3
.

(3.16)

The allowed low energy couplings in the superpotential originate from:

27t127t127t3 → 16t116t110t3

→ 10M10M5Hu +53θ155Hu +5310252

→ (3Q)(3uc)Hu +(3L)(3ν
c)Hu. (3.17)

A 3× 3 up-type and Dirac neutrino mass matrix is allowed at dimension three. In the absence

of flux these matrices are rank one. However, as recently shown by Aparicio, Font, Ibanez and

Marchesano [29], non-perturbative flux effects can generate an acceptable pattern for the light

up quarks.

The down quark and charged leptons acquire mass through the non-renormalisable Yukawa

couplings:

θ3127t127t127t1/M → θ3116t116t110t1/M

→ θ315310M52/M

→ (θ31(3dc)(3Q)+θ31(3L)(3ec))Hd/M. (3.18)

Note that, from Table 3.2, the relevant graph 3.2 is generated by the exchange of a massive

vectorlike pair that is given a mass by 〈θ31〉. We have already seen that θ31 must have a large

VEV to give mass to exotics so this term can lead to down quark and charged lepton Yukawa

couplings that are only mildly suppressed relative to the up quark couplings (〈θ31〉/M ≥ mb/mt).

This suppression provides an origin for the relative magnitude of the top quark to the bottom

quark. Although the mass matrices for the down quarks and charged leptons coming from Eq.

(3.18) are rank one, non-perturbative flux effects will generate the remaining terms and can lead

to an acceptable mass structure [29].
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3.2.6 Neutrino masses

Due to the t1 ↔ t2 monodromy, the conjugate states θ12 and θ21 are identified, and so we can

write down a term MMθ12θ21 in the superpotential which corresponds to a Majorana mass for

the θ12 states [42]. The right handed neutrinos, θ15, couple to the Majorana states through the

term λ
i j
RMΘ51θ i

12θ
j

15, where Θ51 =
θ53θ31

M . As both θ53 and θ31 acuire VEVs, Θ51 also has a VEV.

We allow for an arbitrary number of θ12 fields, as the fact that these fields carry no charge under

the perpendicular U(1)s means that we can have any number of them in the spectrum without

affecting flatness conditions etc.

The method of generating masses for the light neutrinos will be a double seesaw mechanism,

where the θ15 fields will get Majorana masses through their coupling to the Majorana states θ12,

and then the light neutrinos will get masses via a seesaw mechanism, made possible by their

coupling to the right handed neutrinos θ15. The relevant terms for lepton mass generation are

(after the two Higgs doublets have got their VEVs):

Wmass = 〈Hd〉Y i j
e ei

Le j
R + 〈Hu〉λ ia

LRν
i
Lθ

a
15 + 〈Θ51〉λ aα

RMθ
a
15θ

α
12 +Mαβ

M θ
α
12θ

β

21 (3.19)

We can put the notation into a more familiar form by writing

Mi j
e ≡ 〈Hd〉Y i j

e , mia
LR ≡ 〈Hu〉λ ia

LR, Maα
RM ≡ 〈Θ51〉λ aα

RM

Also, for clarity, we can relabel the fields as θ15 ≡ νR, θ12 ≡ SR. Eq. (3.19) can then be written

Wmass = Mi j
e ei

Le j
R +mia

LRν
i
Lν

a
R +Maα

RMν
a
RSα

R +Mαβ

M Sα
R Sβ

R (3.20)

In the basis (νL, νR, SR), the mass matrix is, in block form

M =

 0 mLR 0

mLR 0 MRM

0 MRM MM


Applying the double see-saw mechanism, we have (in matrix notation) for the light left-handed

Majorana neutrino masses [86]

mLL = mLRM−1
RMMM(MT

RM)−1mT
LR (3.21)

We can estimate the magnitude of the resulting neutrino masses by taking the case of just one

family of each state. Using Eq. (3.13) and assuming that M = MS in Θ51 =
θ53θ31

M , we find that
〈Θ51〉 ≈ 3× 10−3MS. Assuming that the Majorana mass MM is of order the string scale, θ15

acquires a Majorana mass MRR though the coupling to θ12, giving
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MRR ≈−
〈Θ51〉2 λ 2

RM

MM
(3.22)

In turn, the light neutrinos acquire masses through the seesaw mechanism, due to their couplings

to θ15, giving

Mν ≈
〈Hu〉2 λ 2

LR

〈Θ51〉2 λ 2
RM

MM (3.23)

Assuming that the couplings λLR and λRM are O(1), this gives a neutrino mass of O(10−1eV)

through this very approximate treatment, which is acceptable. However, the size of the λ s

depends on the proximity of the relevant intersections of the matter curves involved in the cou-

plings, and so a precise calculation would require knowledge of the overlap integrals involved

in the coupling computations.

3.2.7 Relation to previous work

In [27] a general analysis was presented of the possible R-symmetries coming from the U(1)⊥
factors in the local analysis of F-theory. Two possibilities were identified but it was shown

that it was not possible to realise them in the semi-local picture. The model presented above

corresponds to the Matter Parity Case 1 of [27] and we have shown that it is consistent with the

semi-local picture. The explanation of the apparent conflict is straightforward. In [27], seeking

to generate viable fermion mass matrices without flux effects, the analysis considered only the

case that the matter coming from the 10 dimensional representation of SU(5) should come from

two matter curves, 10M and 10t4 . As a result, in order to suppress the dimension 5 nucleon

decay operators, a VEV for the field θ31 was forbidden and hence, c.f. the discussion above, no

down-type mass terms could be generated and the Matter Parity Case 1 was ruled out. However

in the case of interest here all three generations are assigned to 10M. As a result a VEV for θ31

is allowed without generating dimension 5 nucleon decay operators. Hence a down-type mass

matrix proportional to 〈θ31〉 is possible and, allowing for flux effects, the resulting mass matrix

can be of rank 3.

In [46] a general discussion was presented of the difficulty in obtaining phenomenological viable

F-theory models in the semi-local approach. The difficulty of reconciling the exotic spectrum

necessitated by flux breaking with the µ-term, the suppression of nucleon decay operators and

gauge unification was emphasised and studied in detail for the case of models with one or two

U(1)⊥s. The model constructed here has three U(1)⊥s and demonstrates that the problems

can be ameliorated but not eliminated. In particular we have shown that the suppression of

the dangerous nucleon decay operators is maintained while generating a µ-term. However the

constraints following from anomaly cancellation [24, 79] are still severe and lead to an extended

exotic spectrum.
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3.3 Conclusions

In this chapter, semi-local F-theory GUTs have been considered which arise from a single E8

point of local enhancement. The study centered around simple GUT gauge groups based on

E6, SO(10) and SU(5) together with SU(3), SU(4) and SU(5) spectral covers, respectively.

Assuming the minimal Z2 monodromy, we determined the homology classes of the spectrum

for each case, and the implications for the resultant spectrum after flux breaking.

Using this, and aided by a dictionary relating the E6, SO(10), SU(5) representations, we con-

structed a model that leads to the MSSM at low energies. We showed that D-and F-flatness

constraints require VEVs for singlet fields, which spontaneously break the U(1) symmetries,

and which generate large masses for all the non-MSSM exotic fields. In the absence of flux, the

quark and charged lepton mass matrices are of rank one, but when flux and instanton corrections

are included, light quark and lepton masses and mixings are generated that can be consistent

with their observed values. In the absence of flux, the additional U(1) symmetries descend-

ing from E8 ensure that dangerous baryon and lepton number violating terms are absent up to

and including dimension 5, even taking into account the singlet VEVs which break the U(1)

symmetries. Including the flux effects, dimension 5 terms involving light quarks are generated

but at an acceptable level, and as a result the proton is stable within present limits. The µ

term in the theory is also forbidden by the U(1) symmetries but can be generated at the SUSY

breaking scale, either effectively as a result of a TeV scale singlet VEV, or again (as is chosen

in [1]) through non-perturbative effects which explicitly break the U(1) symmetries. Neutrino

masses are generated via the see-saw mechanism, involving singlet neutrinos that acquire large

Majorana masses allowed by the monodromy.

In conclusion, we have provided an example of a fully viable F-theory GUT, assuming flux

breaking of all symmetries, satisfying the semi-local constraints, and employing only the addi-

tional U(1) symmetries descending from the E8 point of local enhancement.





Chapter 4

Further E6 Model Building: TeV scale
exotics and gauge coupling unification

4.1 Introduction

Although descending from a high energy E6 group, most of the models studied previously [6, 7,

8, 9, 10, 15, 87, 22, 24, 23, 1, 27] focus on reproducing the minimal supersymmetric standard

model (MSSM) at low energies, making it difficult to obtain an experimental link to F-theory.

In this chapter we explore F-theory models in which the low energy supersymmetric theory

contains the particle content of three 27 dimensional representations of the underlying E6 gauge

group. The resulting low energy models will resemble either the E6SSM [75, 88, 89, 90, 91]

or a generalised NMSSM+ [92] depending on whether an additional Abelian gauge group does

or does not survive. However there are novel features compared to both these models which, if

observed, would provide circumstantial evidence for F-theory.

The F-theory models considered in this thesis all descend from a parent E8 gauge theory [19].

A crucial question for model construction is whether a gauged U(1) from the E8 gauge theory

can survive down to low energies, where the gauged U(1) may arise from one of the Cartan

generators of the non-Abelian gauge group. A clear example of this is the case of hypercharge

U(1)Y , arising from SU(5) after flux breaking in many F-theory models [24]. More generally,

if we begin with the case of an E8 gauge theory, we can break E8 down to an E6 GUT group

with a VEV for an adjoint Higgs, and then break E6 down to the Standard Model gauge group

by turning on flux along three U(1)s. In order to label the different U(1)s, we can look at the

flux breaking from E6 to the Standard Model as going through the following sequence of rank

preserving breakings:

E6 → SO(10)×U(1)ψ (4.1)

SO(10) → SU(5)×U(1)χ (4.2)

SU(5) → SU(3)×SU(2)×U(1)Y . (4.3)

89
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For example, the U(1)N under which the right handed neutrinos have no charge is given in terms

of these U(1)s by,

U(1)N =
1
4

U(1)χ +

√
15
4

U(1)ψ . (4.4)

In the F-theory models considered in this chapter, there will either be a surviving gauged U(1)N ,

or it will be broken at the GUT scale.

The F-theory models with a surviving Abelian gauge group resemble the E6SSM [75, 88, 89]

which is a supersymmetric standard model in which precisely such an extra U(1)N gauge sym-

metry survives down to the TeV scale. However in the F-theory model, the gauge coupling of the

U(1)N may differ from that in the E6SSM. The matter spectrum is similar to that of the E6SSM,

namely three 27s of E6 which ensures anomaly cancellation. This implies light exotics with

the quantum numbers of Higgs doublets and colour triplets of exotic quarks, arising from three

5+5 representations of SU(5), plus three SU(5) singlets which are charged under U(1)N . The

coupling one of these singlets to HuHd generates an effective µ term after singlet acquires a low

scale vacuum expectation value (VEV). Whilst the E6SSM includes an additional pair of dou-

blet states called H ′ and H ′ in order to achieve gauge coupling unification[89], in the F-theory

model the couplings are split at the GUT scale by flux effects. As such, the minimal F-theory

version resembles the Minimal E6SSM (ME6SSM) proposed in [90], although as will be shown

later, the splitting turns out to be too large to be acceptable. However, instead of having to add

in states by hand in order to achieve the desired level of unification, constraints from topology

actually lead to the natural emergence of a set of light bulk exotics which have the same effect.

These exotics will be the topic of Chapter 5, where the problems of unification will be solved.

In this chapter, only the minimal model will be considered.

Proton decay represents another important difference between the E6SSM and the F-theory ver-

sion. In the F-theory model proton decay is suppressed by the geometric coupling suppression of

a singlet state, which effectively suppresses the coupling of the exotic charge−1/3 colour triplet

state D to quarks and leptons, while in the ME6SSM all proton decay couplings are allowed but

with highly suppressed coefficients. This tends to give long lived D decays in the ME6SSM, but

prompt D decays in the F-theory model, with large couplings to left-handed quarks and leptons,

providing characteristic and striking signatures at the LHC.

If there is no surviving extra Abelian gauge group then the F-theory model resembles the

NMSSM+ which also involves three compete 27 dimensional families [92]. However, whereas

in the NMSSM+ the U(1)N is broken by an additional sector close to the GUT scale, in the

F-theory model it is simply broken by flux breaking. Another important difference is that the

NMSSM+ is a scale invariant theory, involving only trilinear couplings such as the trilinear sin-

glet couplings, while in the case of F-theory there are in addition singlet mass terms arising from

non-perturbative effects, giving rise to a generalised version of the NMSSM+.

E6 based F-theory models have been discussed previously, for example, issues concerning the

global resolution of E6 GUTs in [93, 94], and the models of [32]. It should be noted that here

we use Abelian fluxes, whereas [32] uses non-Abelian fluxes.
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4.2 E6 Models from F-theory

We start by looking at the model of Chapter 3 [1] (model 1), which was motivated by the fact

that if we build a model based on complete 27s of E6 with no matter coming from the adjoint

(78) representation, we automatically take care of anomaly cancellation. 1 Table 4.1 shows the

model building freedom we have in choosing the M and N integers specifying the flux breaking,

and how these choices determine the Standard Model particle content of the model. Here we

make the same choices for the Ms and Ns as in [1] and these choices are summarised in Table

4.1. In Table 4.1, arbitrary numbers of singlets are allowed in the spectrum for now, so that we

can calculate the restrictions on these numbers later on. The final column of Table 4.1 shows

the low energy spectrum of the E6SSM that we want to arrive at by eliminating the required

exotics from the previous column, which shows the SM particle content after flux breaking. By

comparing the final two columns of Table 4.1, we can see that the exotics which we wish to

remove are the vector pairs 2(L+L),Q+Q,2(uc +uc),dc +dc and Hd +Hd . Large masses will

be generated for these fields through their coupling to SM singlet fields which acquire large

VEVs.

From the E6 point of view, the only E6 allowed trilinear term in the superpotential is 27t127t127t3 .

The vectorlike pairs which we wish to remove from the low energy particle content are those

which have components in both the 27t1 and 27t3 multiplets. As such, they are removed by

introducing θ31, an E6 singlet, with couplings:

θ3127t ′1
27t ′3

= θ31QQ+θ31(2uc)(2uc)+θ31dcdc +θ31(2L)(2L)+θ31HdHd . (4.5)

If θ31 gets a large VEV, these vector states get large masses as required. The difference between

this case and model 1 [1] is that in model 1, θ34 also gets a large VEV. This singlet has the

following couplings

θ345152 = θ34[3D+2Hu][3D+3Hd ] = θ34[3(DD)]+θ34[2(HuHd)]. (4.6)

In the E6SSM, these exotics are light, and so instead of getting a large VEV, this singlet now

must acquire a TeV scale VEV. It needs to be checked that the F and D flatness constraints are

satisfied, and that rapid proton decay is forbidden for the realisation of the spectrum.

4.2.1 U(1)N Charges

The correctly normalised charge generators for U(1)ψ and U(1)χ are

1Appendix C shows that there is an anomaly involving two perpendicular U(1)s which is not cancelled by this
formalism. However, [95] points out that anomaly cancellation constraints can be relaxed in the case of geometrically
massive U(1)s in F-theory, due to GreenSchwarz type cancellation mechanisms.
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E6 SO(10) SU(5) Weight vector QN NY MU(1) SM particle content Low energy spectrum
27t ′1 16 53 t1 + t5 1√

10
1 4 4dc +5L 3dc +3L

27t ′1 16 10M t1 1
2
√

10
−1 4 4Q+5uc +3ec 3Q+3uc +3ec

27t ′1 16 θ15 t1− t5 0 0 n15 3νc -
27t ′1 10 51 −t1− t3 − 1√

10
−1 3 3D+2Hu 3D+2Hu

27t ′1 10 52 t1 + t4 − 3
2
√

10
1 3 3D+4Hd 3D+3Hd

27t ′1 1 θ14 t1− t4 5
2
√

10
0 n14 θ14 θ14

27t ′3 16 55 t3 + t5 1√
10

−1 −1 dc +2L -

27t ′3 16 102 t3 1
2
√

10
1 −1 Q+2ūc -

27t ′3 16 θ35 t3− t5 0 0 n35 − -
27t ′3 10 5Hu −2t1 − 1

2
√

10
1 0 Hu Hu

27t ′3 10 54 t3 + t4 − 3
2
√

10
−1 0 Hd -

27t ′3 1 θ34 t3− t4 5
2
√

10
0 n34 θ34 θ34

- 1 θ31 t3− t1 0 0 n31 θ31 -
- 1 θ53 t5− t3 0 0 n53 θ53 -
- 1 θ54 t5− t4 5

2
√

10
0 n54 θ54 -

- 1 θ45 t4− t5 − 5
2
√

10
0 n45 θ45 -

Table 4.1: Complete 27s of E6 and their SO(10) and SU(5) decompositions. The SU(5) matter
states decompose into SM states as 5→ dc,L and 10→ Q,uc,ec with right-handed neutrinos
1→ νc, while SU(5) Higgs states decompose as 5→ D,Hu and 5→ D,Hd , where D,D are
exotic colour triplets and antitriplets. We identify RH neutrinos as νc = θ15. Arbitrary singlets
are included for giving mass to neutrinos and exotics and to ensure F and D flatness.

Qχ =
1

2
√

10
diag[−1,−1,−1,−1,4] (4.7)

Qψ =
1

2
√

6
diag[1,1,1,−3,0] (4.8)

As such, from Eq. (5.4), the generator for U(1)N is given by

QN =
1

2
√

10
diag[1,1,1,−4,1] (4.9)

From this, the U(1)N charges of all the particles in the spectrum can be computed, and the

results are shown in Table 4.1. As required (and described in the introduction), the right handed

neutrinos have zero charge under this U(1).

4.2.2 Singlet VEVs and Bad Operators

As in the previous model [1], θ31 should get a string scale VEV, and as mentioned earlier θ34

now should get a TeV scale VEV to give mass to the exotics. θ53 should get a VEV in order to

generate neutrino masses (as discussed later), and in order to generate the effective µ term, θ14

gets a TeV scale VEV, also discussed later.
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The R-parity violating superpotential couplings ucdcdc, QdcL, LecL, κLHu as well as the dimen-

sion 5 terms in the Lagrangian corresponding to the superpotential terms QQQL and ucucdcec,

are forbidden by the U(1) symmetries that originate in the underlying E6. In order to check that

spontaneous symmetry breaking terms coming from SM singlet field VEVs do not allow these

dangerous operators to appear, we can identify the following terms which could potentially give

rise to bad operators if certain singlets acquired VEVs: θ15LHu, (θ31θ45 + θ41θ35)10M53
2 and

θ31θ41103
M53. As such, taking into account the singlet VEVs that are required, we can see that

the dangerous operators do not arise provided θ15, θ41 and θ45 do not acquire VEVs.

However this is not sufficient to ensure the absence of baryon and lepton number violating

terms because, even in the absence of these VEVs, tree level graphs can generate the dangerous

operators at higher order in the singlet fields. These issues relating to proton decay will be

discussed later. Proton decay in the context of F-theory has been previously studied, for example

in [43, 85].

4.2.3 The effective µ term

In the E6SSM, the µ term is effectively generated when a singlet which is charged under U(1)N ,

is coupled to HuHd and given a TeV scale VEV. In terms of F-theory model building, the

charge of HuHd under the perpendicular U(1) symmetries can be seen from Table 4.1 to be

−2t1 + t1 + t4 = −t1 + t4. As such, the appropriate singlet which could generate the µ term is

θ14. Alternately, we could try and generate the µ term non perturbatively, as in [1], where non

perturbative effects which break the perpendicular U(1) symmetries generate an explicit µ term

which can naturally be at the electroweak scale. However, as HuHd is charged under U(1)N ,

this method cannot be utilised in the E6SSM, and so we must have a θ14 singlet in the spectrum

which will acquire an electroweak scale VEV.

4.2.4 D-flatness

In the model under consideration we assume the SUSY breaking soft masses are such that only

the SM singlet fields acquire very large VEVs. To determine them we consider the F and D

flatness conditions. Taking account of the Z2 monodromy, t1↔ t2 the D-flatness conditions are

of the form given in Eq. (2.105) where there are three UA(1)s with charges given in Eq. (4.13).

We wish to show that the D-flatness conditions are satisfied by the massless fields θ31, θ53

needed to give mass to exotics and, as to generate viable neutrino masses. Even though θ34 and

θ14 get VEVs, these VEVs will be at the TeV scale whereas all the other VEVs are at the string

scale. As such, the VEV for θ34 and θ14 will be ignored in the following calculations.

The D-flatness condition for UA(1) is
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∑
j

QA
i j(
∣∣〈θi j

〉∣∣2− ∣∣〈θ ji
〉∣∣2) =− TrQA

192π2 g2
s M2

S

=−XTrQA (4.10)

This condition must be checked for all the U(1)s, the charge generators of which are given by

Qχ ∝ diag[−1,−1,−1,−1,4] (4.11)

Qψ ∝ diag[1,1,1,−3,0] (4.12)

Q⊥ ∝ diag[1,1,−2,0,0] (4.13)

In a general basis, Q = diag[t1, t2, t3, t4, t5], and with just θ31 and θ53 acquiring VEVs, Eq. (4.10)

can be written

(t5− t3)|θ53|2 +(t3− t1)|θ31|2 =−XTrQA (4.14)

The trace on the right hand side of Eq. 4.10 is taken over all states, and is given by

TrQA = 5∑ni j(ti + t j)+10∑nktk +∑mi j(ti− t j) (4.15)

For our model, this trace is computed to be

TrQA = (60−n31 +n14 +n15)t1 +(n31 +n34−n53−30)t3 +(15−n54−n14−n34)t4

+(15+n53 +n54−n15)t5 (4.16)

where ni j ≡ ñi j− ñ ji to simplify the notation, with ñi j being the absolute number of θi j singlets.

Evaluating the trace for each of the U(1)s gives

TrQχ = 5(3−n15 +n53 +n54) (4.17)

TrQψ =−15+4(n14 +n34)+n15−n53 +3n54 (4.18)

TrQ⊥ = 120+n14 +n15−3n31−2n34 +2n53 (4.19)

The flatness conditions with just θ31 and θ53 getting VEVs then become the three simultaneous

equations
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5|θ53|2 = 5(−3+n15−n54−n53)X (4.20)

−|θ53|2 = (15−n15−4(n14 +n34)+n53−3n54)X (4.21)

2|θ53|2−3|θ31|2 = (−120+3n31−n14−n15 +2n34−2n53)X (4.22)

Putting Eqs. (4.20) and (4.21) together gives the relation

n14 +n34 +n54 = 3 (4.23)

In order to cancel anomalies, we must have three complete 27s of E6 and so we must have the

following constraint on the absolute number of singlets

ñ14 + ñ34 = 3 (4.24)

If we have ñi j 6= 0, in general we will require that ñ ji = 0, as otherwise we would be able

to write a mass term Mθi jθ ji. This is acceptable provided relations, which will be discussed

in section 4.2.5, are satisfied. In order to simplify the model, however, we will take the case

ñi j 6= 0⇒ ñ ji = 0, and we will take this fact to be implicit from this point onwards. As such,

Eqs. (4.23) and (4.24) mean that n54 = 0. The equation for the θ53 VEV then becomes

|θ53|2 = (n15−n53−3)X (4.25)

As θ15 corresponds to the right handed neutrino and θ53 is required to give neutrino masses, both

n15 and n53 must be positive. Eq. (4.25) then gives a lower limit on the number of right handed

neutrinos in the model

ñ15 > 3+ ñ53 (4.26)

Due to the fact that in this model θ31 and θ53 acquire large VEVs, we require that ñ31, ñ53 ≥ 1.

Also, we must require ñ34 > 0 in order to allow the exotics to get a mass via the term θ34DD,

and ñ14 > 0 in order to generate the µ term. We will take ñ53 = 1, meaning that from Eq. (4.26),

we must have ñ15 > 4. This model will take the minimal case of 5 right handed neutrinos. In

order to satisfy Eq. (4.24) we choose ñ14 = 1 and ñ34 = 2, and we leave ñ31 > 0 unspecified for

now.
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4.2.5 F-flatness

In this model, we have taken the case where no θi jθ ji terms can be written down, so the only

terms in the singlet superpotential which could generate a non zero F-term are

Wθ = λi jθ53θ
i
31θ

j
15 (4.27)

where j corresponds to the number of right handed neutrinos and runs from 1 to 5, and the range

of i represents the number of θ31 fields, and is yet unspecified. Minimising the singlet potential

leads to

∂Wθ

∂θ
j

15

= λi jθ53θ
i
31⇒ λi jθ53

〈
θ

i
31
〉
= 0 (4.28)

As such, seven independent θ31 singlets must have zero VEVs. We must have at least one θ31

which aquires a non zero VEV in order to satisfy Eq. (4.22), and so we choose i = ñ31 = 6. Now

we have a full singlet spectrum, consistent with F and D-flatness, where the choices we have

made are given by

ñ31 = 6, ñ53 = 1, ñ54 = 0, ñ14 = 1, ñ34 = 2, ñ15 = 5

4.2.5.1 Singlet mass terms

If we were to drop the requirement that a non zero ñi j means having ñ ji = 0, we could have

θi jθ ji terms in the superpotential. If, for example, neutrino masses were generated by giving a

θ51 field a VEV the singlet superpotential would be of the form

Wθ = λi jkθi jθ jkθki +Mi j
θ

i
15θ

j
51 (4.29)

Considering the F-term for θ15, the relevant terms in the superpotential are

Wθ = γi jθ
i
15θ53θ

j
31 +Mikθ

i
15θ

k
51 (4.30)

As such, if a θ51 field was to exist in the spectrum and acquire a VEV, the following relation

would have to be satisfied

∂Wθ

∂θ i
15

= γi j

〈
θ

j
31

〉
〈θ53〉+Mi j

〈
θ

j
51

〉
= 0 (4.31)
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Figure 4.1: Tree-level diagram contributing to the bottom mass.

Similarly, due to the fact that θ14 gets a TeV scale VEV to generate the µ term, and θ34 acquires

a TeV VEV to give masses to the low scale exotics of the E6SSM, the presence of any θ43 fields

in the spectrum would mean that we would have the analogous relation

∂Wθ

∂θ i
43

= γi j

〈
θ

j
31

〉
〈θ14〉+Mi j

〈
θ

j
34

〉
= 0 (4.32)

As such, if we were to not impose that θi j 6= 0⇒ θ ji = 0, the model would be consistent with

F-flatness provided relations of the type in Eqs. (4.31, 4.32) were satisfied. In our model, we

take the simplest case where we do not have equations of this type.

4.2.6 Calculating the singlet VEVs

Now we have a full spectrum for the model, we can calculate the singlet VEVs, giving us

information about the scale at which the exotics decouple, neutrino masses etc. From the D-

flatness relations, we have

|θ53|2 = (ñ15− ñ53−3)X (4.33)

3|θ31|2 = 114+3(ñ15− ñ31)−2ñ34 + ñ14 (4.34)

Putting the number for the singlet spectrum into these equations gives

|θ53|2 = X (4.35)

|θ31|2 =
118

3
X (4.36)

where X =
g2

s M2
S

192π2
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4.2.7 Quark, charged lepton and exotic masses

From Table 4.1, we can see that the up quark mass matrix (and the Dirac neutrino mass matrix)

will originate from the 27t127t127t3 E6 coupling. These matrices are rank one in the absence of

flux, but as demonstrated in [29], the rank can be increased by including non perturbative effects

[26]. The down quark and charged lepton mass matrices arise from the non-renormalisable

couplings originating at the E6 level from θ3127t127t127t1/M. Figure 4.1 shows the tree-level

diagram for the bottom mass, involving the exchange of a massive vectorlike pair. The origin

of the difference in magnitude of the top and bottom quark masses can be explained by the fact

that the θ31 VEV is of the same order as the messenger mass, M, leading to a mild suppression

of the down quark Yukawas relative to the up quark couplings.

The terms in the superpotential which are responsible for generating the µ term and the exotic

masses are

W ∼ λi jθ14HdiHu j +κi jkθ
i
34D jDk (4.37)

From Table 4.1, it can be seen that both of these couplings originate from the 27t127t127t3 E6

coupling.

In the standard E6SSM, an approximate Z2 flavour symmetry is assumed, in order to distinguish

the active (third) generations of Higgs doublets from the inert (first and second) generations.

However, in this study we do not try and solve problems with flavour, as we can always note

that in the absense of flux, matrices are always rank one. As such, we can always pick a basis

where the matrix has a one in the position corresponding to the active generation and zeros

elsewhere. Also, it should be noted that from Table 4.1, we can see that all three generations

of Hd come from the 27t1 curve, whereas the active Hu comes from a different curve (27t3) than

the inert Hus (27t1). As such, we could generate the up quark masses via the non-renormalisable

coupling θ3127t127t127t1/M, with Hu coming from the 27t1 matter curve. In this case, the quark

masses would arise from diagrams similar to Figure 4.1. Hu will now come from the from the 51

curve, and the diagram will involve the coupling θ315Hu51. However, this coupling will turn out

to be forbidden under a discrete Z2 symmetry which will be introduced later in order to stabilise

the proton, and so quark masses will not be generated in this manner. In any case, it would not

pose a problem, due to the fact that the θ31 VEV is of the same order as the messenger mass, M.

4.2.8 Neutrino Masses

The discussion of neutrino masses is essentially the same as that of the model of Chapter 3,

in Section 3.2.6. The key point is that due to the t1 ↔ t2 monodromy, the conjugate states

θ12 and θ21 are identified, and so we can write down a term MMθ12θ21 in the superpotential

which corresponds to a Majorana mass for the θ12 states. As in Chapter 3, we allow for an
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arbitrary number of θ12 fields (the fact that these fields carry no charge under the perpendicular

U(1)s means that we can have any number of them in the spectrum without affecting flatness

conditions etc.), but the difference in this model is that now the number of θ15 fields is 5, not 3.

(For a reference on models with Z right handed neutrinos, see [96]).

In the same notation as Chapter 3, the relevant terms for lepton mass generation are (after the

two Higgs doublets have got their VEVs):

Wmass = 〈Hd〉Y i j
e ei

Le j
R + 〈Hu〉λ ia

LRν
i
Lθ

a
15 + 〈Θ51〉λ aα

RMθ
a
15θ

α
12 +Mαβ

M θ
α
12θ

β

21 (4.38)

where λLR is a (3×5) matrix of couplings, λRM is (5×n) (where n is the number of θ12 states)

and MM is an (n×n) matrix. The discussion of neutrino masses from a double seesaw mecha-

nism is now entirely analogous to that of Section 3.2.6, with the only difference being the size

of the matrices, and the fact that the singlet VEVs are now slightly different, and given by Eqs.

(4.35) and (4.36).

4.3 Unification and proton decay

4.3.1 Review of F-theory unification in SU(5)

In the case where a U(1)Y flux mechanism is used to break an SU(5) gauge symmetry down to

the Standard Model, there is a splitting of the gauge couplings at the unification scale [40, 97,

98, 99, 41]. The splitting at MGUT is

1
α3(MG)

=
1

αG
− y

1
α2(MG)

=
1

αG
− y+ x

1
α1(MG)

=
1

αG
− y+

3
5

x

(4.39)

where x = −1
2 ReS

∫
c2

1(LY ), y = 1
2 ReS

∫
c2

1(La) La is a non-trivial line bundle and S = e−φ +

iC0 is the axion-dilaton field as discussed in [40]. Combining the above, the gauge couplings at

MGUT are found to satisfy the relation

1
αY (MGUT )

=
5
3

1
α1(MGUT )

=
1

α2(MGUT )
+

2
3

1
α3(MGUT )

(4.40)

In the E6SSM, however, we have an extra U(1)N symmetry which survives down to low ener-

gies. Accordingly, we must incorporate the U(1)N gauge coupling into the unification analysis.

In order to accomplish this, we can consider how Eq. (4.40) is derived in [100] in terms of
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SU(5) group theory, and then generalise the results to E6 and SO(10), giving us information

about U(1)ψ and U(1)χ respectively.

Following [100], we can write the gauge kinetic functions for SU(3), SU(2) and U(1)Y embed-

ded inside SU(5) in the form

f3 = A+Bcα , α = (1, ...,8) (4.41)

f2 = A+Bcα , α = (21,22,23) (4.42)

f1 = A+Bcα , α = 24 (4.43)

where α is an index running from 1 to 24, over all the generators of SU(5), and the missing αs

are the generators belonging outside the SU(3)× SU(2)×U(1) subgroup of SU(5). A and B

are arbitrary gauge invariant functions and the cα coefficients are given by

dαβ24 = cαδαβ (4.44)

with the index 24 corresponding to the hypercharge generator and the group theory coefficients

dαβγ defined as

dαβγ = 2Tr[
{

Tα ,Tβ

}
Tγ ] (4.45)

As such, in order to calculate the three gauge kinetic functions, we just need d1,1,24, d21,21,24 and

d24,24,24, where the generators T1, T21 and T24 are given in block matrix notation by

T1 =

(
λ1/2 0

0 0

)

T1 =

(
0 0

0 σ1/2

)

T24 =
1√
15

diag(1,1,1,−3
2
,−3

2
)

where λ1 refers to the first Gell-Mann matrix, and σ1 to the first Pauli matrix. These definitions

can be used trivially to calculate c1 = d1,1,24 =
2√
15

, c21 = d21,21,24 =− 3√
15

and c24 = d24,24,24 =

− 1√
15

, which can be put together with Eqs. (4.41, 4.42, 4.43) giving (after a redefinition of the

arbitrary function B)
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f3 = A+2B (4.46)

f2 = A−3B (4.47)

f1 = A−B (4.48)

The gauge couplings at the unification scale are then related by [100]

αG = α3(MG) f3 = α2(MG) f2 = α1(MG) f1 =
5
3

αY (MG) f1 (4.49)

Combining this equation with Eqs. (4.46, 4.47, 4.48) gives the following constraint on the gauge

kinetic functions

f3 +
3
2

f2 =
5
2

f1 (4.50)

which, when combined with the relations fi =
αG

αi(MG)
, leads to Eq. (4.40). Comparing this

picture with Eq. (4.39), we have the following equations relating x and y to A and B

x =− 5B
αG

, y =
1−A−2B

αG
(4.51)

4.3.2 The E6 and SO(10) cases

We can generalise the SU(5) argument to the breaking patterns

E6 → SO(10)×U(1)ψ

SO(10) → SU(5)×U(1)χ

in order to learn about the U(1)N gauge coupling U(1)N = 1
4U(1)χ +

√
15
4 U(1)ψ . For the E6

case, the generalisation is the set of equations

α6 = α10 f10 = αψ fψ (4.52)

f10 = A′+B′cα , α = (1, ...,45) (4.53)

fψ = A′+B′cα , α = 78 (4.54)

and for the SO(10) breaking, we have
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α10 = α5 f5 = αχ fχ (4.55)

f5 = A′′+B′′cα , α = (1, ...,24) (4.56)

fψ = A′′+B′′cα , α = 45 (4.57)

For both E6 and SO(10) (and indeed for any simple Lie algebra with the exception of SU(N),

N ≥ 3) the dαβγ and hence the cα are zero [101] (this can be checked for the E6 case from

Appendix A). Accordingly, we can take the B′,B′′ in Eqs. (4.53, 4.54, 4.56, 4.57) to be zero.

Matching with Eq. (4.51) of the SU(5) case, this clearly leads to x= 0, and Eq. (4.39) shows that

this corresponds to no relative splitting of the gauge couplings at unification. We can, however,

have a shift by the parameter y in all the couplings after each breaking. These parameters will

depend on the flux breaking mechanism, and we will leave them as free parameters of the model:

1
α10

=
1

α6
− y′

1
αψ

=
1

α6
− y′

1
α5

=
1

α6
− y′′

1
αχ

=
1

α6
− y′′ (4.58)

With αG = α5 in Eq. (4.39), we can then proceed with the analysis as for the SU(5) case.

It should be noted that in Eq. (4.58), the signs of y and y′ are not known, and so the U(1)N

gauge coupling could be either bigger or smaller than α5 at unification. This splitting is a free

parameter of the model.

4.3.3 The Spectrum, and One Loop Renormalisation Group Analysis

In the considered model we have the following vector pairs of exotics, which get large masses

when θ31 gets a VEV: (d + d
c
), (Q+Q), (Hd +Hd), 2(L+ L), 2(uc + uc). Below some scale

MX < MGUT these exotics decouple. We then have the extra exotics 3(D+D), 2(Hu,Hd) which

survive to low energy and decouple at a scale MX ′ = 1TeV . Below the scale MX ′ , we have the

low energy matter content of the MSSM. The low energy values of the gauge couplings are

given by the evolution equations

1
αa(MZ)

=
1

αa(MGUT )
+

bx
a

2π
ln

MGUT

MX
+

bx′
a

2π
ln

MX

MX ′
+

ba

2π
ln

MX ′

MZ
(4.59)
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where bx
a is the beta-function above the scale MX , bx′

a is the beta-function below MX and ba is the

beta-function below MX ′ . Combining the above equations with Eq. 4.40, we find that the GUT

scale is given by

MGUT = e
2π

βA ρ Mρ

Z Mγ−ρ

X ′ M1−γ

X (4.60)

where A is a function of the experimentally known low energy values of the SM gauge coupling

constants

1
A

=
5
3

1
α1(MZ)

− 1
α2(MZ)

− 2
3

1
α3(MZ)

=
cos(2θW )

αem
− 2

3
1

α3(MZ)
(4.61)

We have also introduced the ratios ρ and γ

ρ =
β

βx
γ =

βx′

βx
(4.62)

where β ,βx′ ,βx are the beta-function combinations in the regions MZ < µ <MX ′ , MX ′ < µ <MX

and MX < µ < MGUT respectively

βx = bx
Y −bx

2−
2
3

bx
3 (4.63)

βx′ = bx′
Y −bx′

2 −
2
3

bx′
3 (4.64)

β = bY −b2−
2
3

b3 (4.65)

The beta function coefficients are given by (b1 =
3
5 bY )

b1 = −0+2n f +
3

10
(nh +nL)+

1
5

ndc +
1

10
nQ +

4
5

nuc +
3
5

nec (4.66)

b2 = −6+2n f +
1
2
(nh +nL)+0ndc +

3
2

nQ +0nuc (4.67)

b3 = −9+2n f +0(nh +nL)+
1
2

ndc +nQ +
1
2

nuc (4.68)

with n f = 3 the number of families and nh,L,... counting Higgses and exotic matter. For our

spectrum, the coefficients are given by

b1 = 6.6, b2 = 1, b3 =−3 (4.69)

bx′
1 = 9, bx′

2 = 3, bx′
3 = 0 (4.70)

bx
1 = 14.6, bx

2 = 9, bx
3 = 5 (4.71)
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Plugging these numbers into Eq. (4.60), we see that MGUT becomes independent of the MX and

MX ′ scales and in fact it is identified with the MSSM unification scale

MU = MGUT ≡ e
2π

βA MZ ≈ 2×1016GeV (4.72)

It should be noted that because of the independence of this relation on the two mass scales, it

applies for both the model of this chapter, and that of Chapter 3.

4.3.4 Model Dependence of the Splitting Parameter, x

From Eq. (4.39), the splitting of the standard model gauge couplings is given by

x =
1

α2(MG)
− 1

α3(MG)
(4.73)

We can now use the evolution equation (4.59) to relate x to the low energy coupling constants

α2 and α3, giving

(
1

α2
− 1

α3

)
MZ

= x+
bx

2−bx
3

2π
log
(

MG

MX

)
+

bx′
2 −bx′

3
2π

log
(

MX

MX ′

)
b2−b3

2π
log
(

MX ′

MZ

)
(4.74)

Using Eqs. (4.69, 4.70, 4.71, 4.72) and the relations αem = α2sin2θw, 1
αY

= (1−sin2θw)
αem

and α1 =
5
3 αY , we arrive at the following expression for x

x =
4
3

1
α2
− 1

3
1

αY
− 7

9
1

α3
− 1

2π
ln
(

Mx′

Mx

)
=

(5sin2θw−1)
3αem

− 7
9

1
α3
− 1

2π
ln
(

Mx′

Mx

)
(4.75)

It can be seen that the factors which affect the splitting are the matter content of the spectrum

(which manifests itself in the numbers multiplying the Standard Model parameters), and the

ratio of the two exotic mass scales. At this point, we can compare the E6SSM model with the

E6 based model of Chapter 3 [1] (model 1), where the E6SSM light exotics are heavy. We can

use the above equation for both models as they have the same spectrum, the difference being in

the scales at which the exotics decouple. In the E6SSM case we have MX ′ = 1TeV and from

the calculated singlet VEVs, MX = 1.44×1016GeV , whilst in model 1, we have MX ′ = 0.306×
1016GeV and MX = 1.31× 1016GeV . Taking the values α−1

em (MZ) = 127.916, sin2θw(MZ) =

0.23116 and α3 = 0.1184, the part of the right hand side of Eq. (4.75) involving these parameters

is evaluated as 0.07. Due to the fact that this number is small, in order for x to be close to zero
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Figure 4.2: The running of α1, α2 and α3 from their SM value at MZ up to MGUT for
the case of the F-theory E6SSM. The large splitting rules this model out in its minimal
form, as described in the text.

(corresponding to the usual case of gauge coupling unification) the masses of both sets of exotics

need to be close together. This is the case in model 1 where we have x=0.3, but not in the case

of the E6SSM model where x=4.9.

The large splitting in this model is actually inconsistent with the formalism, meaning that the

model in its present form is not viable. Considering the relations x = −1
2 ReS

∫
c2

1(LY ), L 2
Y =

−2, and S = e−φ + iC0, it can be seen that we must have x < 1, and so the minimal version of

the E6SSM model is ruled out. If we want the couplings to unify such that x < 1 in the F-theory

E6SSM, we would have to add in extra exotics in such a way to modify the renormalisation

group running. However, instead of being arbitrary, there are a particular set of bulk exotics

coming from the adjoint of E6 which are inevitable in models with flux breaking. It turns out

that due to topological restrictions on the internal manifold, there is the natural emergence of

a low energy set of exotics which when added to the spectrum of this model, forces the gauge

couplings to come very close to perfect unification at the one loop level. The issue of these bulk

exotics will be discussed in detail in the next chapter.

Taking the low energy values of α1, α2 and α3 and using the one loop remormalisation group

equations (RGEs) to run the couplings up to the unification scale (taking into account the pres-

ence of the exotic matter) results in Figure 4.2 for the minimal F-theory E6SSM, and Figure 4.3

for model 1. In Figure 4.2, the reciprocals of the gauge couplings are split by approximately

35% (relative to the largest value) at unification, whereas in Figure 4.3 they meet to 1.3% ac-

curacy. The 35% splitting is unacceptably large as discussed above, and the fact that the gauge

couplings meet to 1.3% in model 1 means that our spectrum is special for the case of heavy

exotics.
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Figure 4.3: The running of α1, α2 and α3 from their SM value at MZ up to MGUT for
the case of model 1, presented in [1].

Another way of looking at Eq. (4.75) is that since x is the dilaton field, e−φ , clearly we must

have x > 0 which can give a lower bound in α3 by using α1 and α2 as input parameters. In

model 1, we have 〈θ31〉=
√

37X and 〈θ34〉=
√

2X from Eq. (3.13), meaning that

MX ′

MX
=

√
2

37
(4.76)

As such, we have

x =
4
3

1
α2
− 1

3
1

αY
− 7

9
1

α3
− 1

4π
ln
(

2
37

)
(4.77)

Requiring that x > 0 leads to the bound

α3 ≥
7
9

1
5sin2

θW−1
3αe

− 1
4π

ln
( 2

37

) ≈ 0.1130 (4.78)

4.3.5 Baryon- and lepton-number violating terms

As discussed in section 4.2.2, it is necessary to forbid VEVs for certain singlet fields in order for

the perpendicular U(1) symmetries to prevent dangerous operators. However this is not entirely

sufficient to ensure the absence of baryon and lepton number violating terms because, even in

the absence of these VEVs, tree level graphs can generate the dangerous operators at higher

order in the singlet fields. As such, we must look for graphs of the type shown in Fig. 4.4. In
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Q

Q

D D
Q

L

Figure 4.4: The general proton decay diagram generating the dimension 5 operator QQQL.

these models, just as in Chapter 3, the dangerous graph is shown in Fig. 4.5 and is driven by

colour triplet exchange coming from the couplings

10M 10M 5Hu → QQDh + . . .

5Hu 5̄H̄u
→ MDDhD̄h + . . .

θ34515̄2 → 〈θ34〉D′hD̄h
′′′+ . . .= 〈θ34〉DD̄+ . . . .

The notation has been simplified here by calling the light exotics D′h and D̄h
′′′ simply D and D̄.

In Fig. 4.5 the full notation is used, but in Fig. 4.4 and Fig. 4.6 the simplified notation is used,

with D representing a light colour triplet.

As may be seen from Table 4.1 only the states D and D̄ (i.e. D′h and D̄′′′h in Fig. 4.5) appear in

the spectrum with mass generated by the singlet VEV 〈θ34〉 which is at the TeV scale. Since the

choice of fluxes in Table 4.1 eliminates light colour triplet states Dh arising from 5Hu , and also

Dh
′′ states arising from 54, we assume that if states with the quantum numbers of Dh,D′′h exist,

they will have string scale masses, of O(MS).

Figure 4.5: The specific proton decay diagram generating the dimension 5 operator QQQL in
this model.
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With this assumption, the diagram of Fig. 4.5 gives the proton decay operator QQQL with coef-

ficient 1/Λe f f given by

1
Λe f f

= λ
5
(〈θ31〉

MS

)2 1
〈θ34〉

(4.79)

In (4.79), λ 5 represents the product of the five Yukawa couplings in the relevant diagram and

according to ref [25] it is expected to be

λ
5 = λ10·10·5λ10·5̄·5̄λ

3
5·5̄·1 ≈ 10−3.

This implies

Λe f f ≈ 103
(

MS

〈θ31〉

)2

〈θ34〉 .

In an analogous way to the analysis in Section 3.2.4, this should be compared to experimental

bounds on nucleon decay. This bound, relevant to the case that the operator QQQL involves

quarks from the two lighter generations only, requires Λ
light
eff > (108− 109)MS. The difference

between this case and the case studied in Chapter 3 is that now 〈θ34〉 ∼ TeV � MS, meaning

that there will be a large discrepancy between Λ
light
eff and Λeff, even when the suppression factors

for the first and second generations (due to non perturbative flux corrections) are considered (as

in section 3.2.4). As such, it is clearly necessary to forbid the light quark operator generated by

the diagram of Figure 4.5. One way to do this would be to forbid the coupling θ315HU
51. Note

that all the other vertices in Figure 4.5 are necessary for various phenomenological reasons.

For example, the couplings in Figure 4.1 are necessary to generate the bottom quark Yukawa

coupling, and so these couplings cannot be set to zero. Similarly the top quark Yukawa coupling

originates from the coupling 10M10M5HU . The coupling θ345152 is necessary to give the exotics

a TeV scale mass term 〈θ34〉DD . In order for the bounds on proton decay to be satisfied, the

θ315HU
51 coupling must be suppressed by a factor of 10−12. This can be seen by looking at

Eq. (4.79) and comparing to the bound Λ
light
eff > (108− 109)MS, whilst taking into account a

suppression factor for the light quarks (as in section 3.2.4 [1]).

In fact we only need to forbid the colour triplet components of the θ315HU
51 coupling. This can

be achieved by imposing a discrete Z2 symmetry with the following set of fields chosen to be

odd: (D′h, D′′′h , D′′h , D′′h). Either the set (L,ec) or (Q,dc,uc) are also chosen to be odd. All other

fields are chosen to be even under Z2. These assignments forbid the proton decay diagram in

Fig. 4.5 but allow the top quark Yukawa coupling.

Note that with these charge assignments the Z2 symmetry is absolutely conserved. Also Z2 does

not respect SU(5), as for example D′′h(54) must be odd, but the Hd state coming from the same

curve must be even. This is because it gets a large mass from the coupling θ31HdHd , and the

θ31 and Hd fields must be even otherwise Z2 would be broken leading to cosmological domain

walls. The Z2 symmetry clearly goes beyond the rules of local F-theory, which corresponds
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to the fact that we are appealing to global F-theory to forbid the colour triplet components of

the θ315HU
51 coupling by a geometric suppression mechanism. However, in the present study

this just corresponds to an assumption related to the uncertain nature of singlet fields and their

couplings in F-theory. Such assumptions about singlets are always required in any case. In

particular, the forbidden coupling involves θ31 which does not live in a 27 of E6, and the Yukawa

couplings of such singlets are particularly poorly understood. 2

4.4 Comparison with known models

4.4.1 E6SSM

The low energy spectrum in Table 4.1 resembles that of the standard E6SSM [75, 88, 89]. The

F-theory model with a surviving Abelian gauge group is also a supersymmetric standard model

involving the same U(1)N gauge symmetry surviving down to the TeV scale. However, whereas

the E6SSM matter content appears to arise from three 27 representations of E6, in the F-theory

model there is a rather subtle doublet-triplet splitting involved in achieving this spectrum, due

to the effects of flux, as indicated in Table 4.1. The light exotics with the quantum numbers of

colour triplets D and D arise from three 51 and three 52 representations of SU(5), while the third

Higgs doublet Hu arises from a different representation 5Hu .

2Note that the θ14 and θ34 are different types of singlet since they are contained in 27s of E6.

Q

Q

D
Q

Q

Dh Dh

〈θ31〉

D5Hu
5Hu

5110M

10M

Figure 4.6: Coupling DQQ forbidden by the imposed Z2 symmetry, where the field D is a TeV
scale exotic.

Q

L

D
Q

L

D
′′

h D
′′
h

〈θ31〉

D54 54

5253

10M

Figure 4.7: Coupling DQL allowed by the imposed Z2 symmetry, where the field D is a TeV
scale exotic.
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The low energy gauge invariant superpotential of the E6SSM can be written

W E6SSM =W0 +W1,2, (4.80)

where W0,1,2 are given by

W0 = WYukawa +λi jkŜiĤd jĤuk +κi jkŜi
ˆ̄D jD̂k, (4.81)

W1 = gQ
i jkD̂iQ̂L jQ̂Lk +gq

i jk
ˆ̄Did̂c

R jû
c
Rk, (4.82)

W2 = gN
i jkN̂c

i D̂ jd̂c
Rk +gE

i jkD̂iûc
R jê

c
Rk +gD

i jk
ˆ̄DiQ̂L jL̂Lk. (4.83)

with W1,2 referring to either W1 or W2, giving two alternative models in the usual E6SSM. In

the E6SSM the three SU(5) singlets Si which are charged under U(1)N may be labelled as

Sα , α = 1,2 and S3, where the latter couples to exotics, giving them mass and generating the

effective µ term after they acquires a non zero VEV. In the F-theory model these are identified

as two copies of θ34 which give the light exotics mass, and the θ14 which generates the µ term

in the F-theory model. The other GUT singlets which get VEVs in the F-theory model are θ31

(which removes unwanted exotics from the low energy spectrum), and θ53 (which helps generate

neutrino masses). These singlets acquire string scale VEVs, and are uncharged under the U(1)N

as required. The other important singlet is θ12, as this is the Majorana state which we call SR.

This singlet is uncharged under the perpendicular U(1)s and so can get a Majorana mass and

play a role in the double see-saw mechanism for generating neutrino masses.

Another difference between the models is that in the E6SSM there are the H ′, H ′ states com-

ing from incomplete 27 and 27 representations, which are necessary to ensure gauge coupling

unification. In F-theory however, we have splitting of the gauge couplings at unification as dis-

cussed, although in the minimal case presented in this chapter (resembling the ME6SSM), the

splitting is too large. It is only when we consider bulk exotics in the next chapter that we will

find a set of exotics which occur naturally due to the flux breaking mechanism, and which ensure

the required level of unification. Due to the splitting of the couplings at unification, we cannot

know about the size of the U(1)N gauge coupling. As the normal limits on the Z′ come from the

assumption of unification, these limits do not apply in the F-theory model.

It should be noted that in the local F-theory version of the E6SSM all the couplings of Eqs.4.82

and 4.83 are forbidden at the level of renormalisable operators due to the perpendicular U(1)s.

At the level of local F-theory, they are all allowed at the effective level after including one in-

sertion of the θ31 field. However at the level of global F-theory we have assumed that not all

couplings involving θ31 are allowed, and we have described this by imposing a Z2 symmetry so

that certain effective diagrams involving the exchange of heavy colour triplet states are forbid-

den, in particular those which would lead to proton decay.

The effective DQQ coupling is forbidden by Z2 since D is odd. In detail, the reason why this

operator is forbidden is shown in Fig. 4.6 since D is odd and (Dh, Dh) are both even. Note that
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the Z2 symmetry that we imposed has a global F-theory interpretation as being due to a geo-

metrically suppressed θ31 vertex. Similar arguments would forbid the effective Ducec coupling

being generated by a diagram analogous to Fig. 4.6. Note that even though a renormalisable

Ducec operator would be allowed by Z2, it is forbidden by the rules of local F-theory.

On the other hand the DQL coupling is allowed by Z2 and can be generated effectively by non-

renormalisable operators as shown in Fig. 4.7. All couplings in this diagram are allowed by

Z2 since D is odd and in this case also (D′′h , D′′h) are odd, as is the combination QL. Thus the

effective coupling DQL is successfully generated, allowing the D to decay as a chiral leptoquark

with couplings to left-handed quarks and leptons. Note that the effective Ddcuc coupling is

forbidden by Z2 since D is odd while the combination dcuc is even. The lifetime of the TeV

scale exotic D can be estimated by looking at its decay through the diagram of Figure 4.7, and

computing

1
τD

=

∣∣∣∣λ 2 〈θ31〉
MS

∣∣∣∣2×MD

∼ (
0.08×1.4×1016

1017 )2×103GeV

∼ 0.13GeV

⇒ τD ∼ 5×10−24s (4.84)

where λ 2 represents the product of the two couplings in the diagram, which is estimated to be

around 0.08 from [25]. This shows that the decay of the TeV scale exotics in this model is

expected to be very rapid.

By contrast, in the ME6SSM all the couplings involving D and D are all highly suppressed

coefficients. This tends to give long lived D decays in the ME6SSM, but prompt D decays in the

F-theory model, with large couplings to left handed quarks and leptons, providing characteristic

and striking signatures at the LHC.

In summary, proton decay is suppressed by the geometric coupling suppression of a singlet state

θ31, which we interpret in terms of a Z2 symmetry. This symmetry effectively forbids all the

couplings of the exotic charge −1/3 colour triplet state D to quarks and leptons, while allowing

the coupling involving DQL. However the coupling Ddcuc is forbidden by Z2. Thus D decays

as a chiral leptoquark with couplings to left-handed quarks and leptons, with D coupling to D

to make a TeV scale Dirac fermion. We emphasise again that the effective coupling Ducec is

forbidden, while DQL is allowed providing a distinctive signature of chiral leptoquarks.

4.4.2 NMSSM+

The low energy spectrum in Table 4.1 may also apply to a version of the F-theory model in

which there is no additional Abelian gauge group present, in other words where the U(1)N

gauge group is broken by flux at the GUT scale. This was the case for the F-theory model in [1].
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The difference between the present F-theory model and that in [1] is then mainly in the order of

magnitude of the the singlet θ34 VEV as determined by the different flatness conditions in the

two models. In the previous model the singlet θ34 acquired a string scale VEV which gave large

masses to the exotic states. In the present model the singlet θ34 acquires a TeV scale VEV which

remain light in the current model. It was also assumed in [1] that the µ term is generated when

the U(1) symmetries are explicitly broken by non-perturbative effects. Here we assume that

the singlet θ14 acquires an electroweak scale VEV which generates an effective µ term. There

will also be non-perturbative corrections which generate trilinear self-couplings and additional

electroweak scale masses for θ14, explicitly breaking all global U(1) symmetries.

The resulting F-theory model with the spectrum in Table 4.1 but with no additional Abelian

gauge group present, resembles that of the NMSSM+ [92]. However in the F-theory model the

U(1)N is broken by flux at a high scale, whereas in the NMSSM+ it is broken by an explicit

sector. Recall that the usual NMSSM is based on the scale invariant superpotential [102],

WNMSSM =WYukawa +λSHuHd +
1
3

κS3, (4.85)

where WYukawa represents the MSSM Yukawa couplings. In the F-theory model we identify the

singlet S of the NMSSM with θ14. The trilinear self-coupling and other linear and quadratic

terms are generated by non-perturbative corrections, resulting in a generalised NMSSM (GN-

MSSM) [103, 104] with superpotential,

WGNMSSM =WYukawa +(µ +λS)HuHd +
1
2

µsS2 +
1
3

κS3, (4.86)

where the singlet S of the GNMSSM is again identified with θ14. The non-perturbative correc-

tions responsible for these terms are similar to those which were used to generate the µ term in

[1].

However the model is more than the usual GNMSSM since it also involves the exotic sector

of the NMSSM+, so it more closely resembles a sort of GNMSSM+ with three compete 27

dimensional families [92]. The superpotential terms involving the other exotic states (apart from

θ14) are similar to those of the E6SSM in Eq.4.80 and discussed in the preceding subsection. The

phenomenological comments also discussed in the preceding subsection concerning unification,

proton decay and the D couplings at the LHC all apply to this case as well where the U(1)N is

broken.

4.5 Summary and Discussion

In this chapter we have explored F-theory models in which the low energy supersymmetric

theory contains the particle content of three 27 dimensional representations of the underlying

E6 gauge group, plus two extra right-handed neutrinos predicted from F and D flatness. Using

the techniques of semi-local model building in F-theory, we have shown that it is possible to
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formulate F-theory models whose TeV scale effective theory resembles either the E6SSM or the

NMSSM+, depending on whether an additional Abelian gauge group does or does not survive.

However there are novel features compared to both these models as follows:

1. If the additional Abelian gauge group is unbroken then it can have a weaker gauge cou-

pling than in the E6SSM.

2. If the additional Abelian gauge group is broken then non-perturbative effects can violate

the scale invariance of the NMSSM+ leading to a generalised model.

3. Unification is achieved in the E6SSM by the addition of doublet states from incomplete

27 representations, whereas in the F-theory case, there is a splitting of the gauge couplings

at the unification scale, although bulk exotics from the adjoint representation are always

present which can lead to precise unification in a natural way.

4. Proton decay is suppressed by the geometric coupling suppression of a singlet state, which

is possible in F-theory, which effectively suppresses the coupling of the exotic charge

−1/3 colour triplet state D to quarks and leptons.

5. The D decays as a chiral leptoquark with couplings to left-handed quarks and leptons,

providing characteristic and striking signatures at the LHC.

Model Features F-MSSM F-E6SSM F-NMSSM+
〈θ53〉, 〈θ31〉 ∼MX ∼MX ∼MX
〈θ34〉 ∼MX ∼ 1 TeV ∼ 1 TeV
〈θ14〉 0 ∼ 1 TeV ∼ 1 TeV

U(1)N breaking Flux ∼MX 〈θ34〉 ∼ 1TeV Flux ∼MX
Non perturbative µ term µN.PHuHd - -

Effective µ term - θ14HuHd θ14HuHd
Non perturbative singlet masses - - msθ

2
14, m2

s θ14

Table 4.2: Similarities and differences between different F-theory based models which go
beyond the MSSM.

The particle spectrum of the F-theory models is summarized in Table 4.1. The models here may

be compared to the F-theory model in [1] in which the singlets θ34 acquired a string scale VEV

which gave large masses to the exotic states, yielding a low energy theory as in the MSSM,

which we can call an F-MSSM. The new models here have a singlet spectrum where the new

flatness conditions allow the singlets θ34 to have small VEVs resulting in a light exotic mass

spectrum. In addition the singlets θ14 are used to generate electroweak scale effective µ terms.

Five right handed neutrinos, as well as other restrictions on the numbers of certain singlets in

the spectrum, are required to make the model consistent with F and D-flatness conditions. If the

gauged U(1)N is broken by flux at the GUT scale then we have either the F-MSSM as discussed

previously or the F-NMSSM+ as investigated here, where non-perturbative corrections break all

global U(1) symmetries via θ14 mass terms. However if the gauged U(1)N is unbroken then we

are led to an F-E6SSM but with the phenomenological differences discussed above. The three

different F-theory models are compared in Table 4.2.
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In order for proton decay to be controlled, the geometric suppression at the field theory level cor-

responds to the imposition of a discrete Z2 symmetry. To understand the origin of this geometric

suppression would require knowledge of the GUT singlet matter curves, which in turn requires

a knowledge of the global geometry. From our limited understanding of the global aspects of

F-theory this just corresponds to an assumption about the global completion of the model.



Chapter 5

Bulk exotics

5.1 Introduction

In Chapter 2, a full classification of how E6, SO(10) and SU(5) GUT groups arise in the semi-

local picture has been presented, where the homology classes of the matter curves were calcu-

lated in each case through the spectral cover formalism. However, as well as matter transforming

in the fundamental representation of the GUT group localised on curves on S, in all these cases

there will also be bulk matter, coming from the adjoint representation of the GUT group. In

the case that the GUT group is broken down to the Standard Model (SM) gauge group by flux,

there are topological formulae which dictate the multiplicities of these adjoint states [7]. It was

demonstrated in [9] that when the GUT group is SU(5), bulk matter with exotic charges under

the SM gauge group can be eliminated from the spectrum provided certain topological proper-

ties of the manifold are satisfied. However, the same study pointed out that when the GUT group

is SO(10) or higher, some bulk exotics must always be present in the low energy spectrum. As

such, in order to give these exotics masses, we can look for the topological requirements for

them to appear in vector-like pairs, and then turn on VEVs for suitable singlets (such as the

’gluing morphism’ of [105]). The presence of these bulk states in the spectrum will clearly af-

fect the running of the gauge couplings and their unification, and in [98] it was shown that states

descending from the adjoint of SU(5) with exotic SM charges must be completely removed from

the spectrum (in the way of [9]) due to RGE arguments.

In this chapter we will consider models where the GUT group is E6, and is broken by flux

breaking down to the Standard Model gauge group via the sequence of breakings

E6 → SO(10)×U(1)ψ (5.1)

SO(10) → SU(5)×U(1)χ (5.2)

SU(5) → SU(3)×SU(2)×U(1)Y . (5.3)

115
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In addition we shall consider models where U(1)ψ and U(1)χ are both broken near the GUT

scale by the vacuum expectation value (VEV) of some scalar field or where a particular linear

combination, under which the right handed neutrinos have no charge, survives down to the TeV

scale, namely [75, 88],

U(1)N =
1
4

U(1)χ +

√
15
4

U(1)ψ . (5.4)

As the entire breaking of E6 down to the Standard Model gauge group (perhaps also including

a surviving U(1)N) will be achieved by flux breaking, this will necessarily involve bulk exotics

appearing below the string scale, which will be the principal concern of this chapter.

We first focus on the bulk exotics coming from the adjoint 78 dimensional representation of E6,

and look at how topological properties of the internal manifold restrict the elimination of these

exotics from the spectrum, and dictate the numbers of exotics which cannot be removed. These

constraints are then translated into topological restrictions, which then determine the multiplici-

ties of vector-like matter. We impose constraints that exotic matter should appear in vector-like

pairs and hence can be eliminated from the low energy spectrum by turning on VEVs for ap-

propriate singlet fields. We show that it is possible that all bulk exotic as well as matter exotics

could have masses close to the GUT scale leading to an MSSM type theory somewhat below

the GUT scale. However, there is the possibility that some bulk exotics from 5s of SU(5) could

get TeV scale masses whereas those from 10s could be near the GUT scale, leading to a char-

acteristic spectrum involving TeV vector-like pairs of dc-like and Hd-like bulk exotics, with the

distinguishing feature that there will always be one more vector pair of Hd-like states than dc-

like states. Although such bulk exotics would by themselves spoil gauge coupling unification,

when combined with matter exotics, corresponding to having complete 27 dimensional repre-

sentations of E6 at the TeV scale, gauge coupling unification is restored. We emphasise that,

without such bulk exotics, the TeV scale matter exotics would lead to an unacceptable splitting

of the couplings, and it is only the combination of TeV scale matter exotics from the 27s plus

TeV scale bulk exotics from the 78 which (miraculously) restores gauge coupling unification.

The resulting TeV scale matter exotics plus bulk exotics is equivalent to four extra 5+5 vector

pairs of SU(5), beyond the minimal supersymmetric standard model (MSSM) spectrum. The

characteristic prediction of F-theory E6 GUTs of the matter content of four extra 5+ 5 vector

pairs can be tested at the LHC. This may be compared to the equivalent of three extra 5+ 5

vector pairs predicted by the E6SSM [75, 88].

The layout of the remainder of the chapter is as follows. In Section 5.2 we review the basic

issues related to bulk exotics, including topological formulae from [9], before applying these

ideas to the E6 case, and working out the topological constraints. These constraints are then

translated into relations between the multiplicities of bulk exotics which appear in vector-like

pairs. Section 5.3 is concerned with gauge coupling unification, including a renormalisation

group equation (RGE) analysis taking into account the constraints on exotics, and also the de-

pendencies on the exotic masses of the GUT scale and splitting of the gauge couplings are

studied. In Section 5.4 we discuss E6 models from F-theory, where the bulk exotics are put into

the context of two realistic models given in Chapters 3 and 4 ([1] and [2]). In particular we
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discuss the possibility that some bulk exotics could survive down to the TeV scale, and show

how, together with the matter exotics predicted by these models, they restore gauge coupling

unification.

5.2 Review of issues related to bulk exotics

5.2.1 Formalism and SU(5) example

In F-theory constructions, the appearance of matter is closely related to the topological proper-

ties of the internal space. The multiplicities of states are given by specific topological formulae,

and therefore are subject to constraints which have to be taken into account. Bulk exotic matter

arises from the decomposition of the adjoint of the GUT group GS. When the gauge group GS

is broken to a group ΓS by turning on fluxes in a subgroup HS, with GS ⊃ ΓS×HS, the adjoint

of GS decomposes into representations (τ j,Tj) of ΓS×HS,

ad(GS)∼=⊕j
(
τj⊗Tj

)
(5.5)

Assuming that S is a del Pezzo surface, the multiplicity of four-dimensional massless fields

transforming in a representation τ j of ΓS is given in terms of the Euler characteristic by

n j =−χ(L j,S) =−
(

1+
1
2

c1(L j) · (c1(L j)+ c1(S))
)

(5.6)

where L j is a line bundle transforming in the representation Tj of HS, and the topological quan-

tities c1(L j), c1(S) are the first Chern classes of L j and S. The multiplicity of the conjugate

representation can be found by noting that c1(L
−1
j ) =−c1(L j), leading to the equation

n∗j =−χ(L −1
j ,S) =−

(
1+

1
2

c1(L j) · c1(L j)−
1
2

c1(L j) · c1(S)
)

(5.7)

In the case where we are dealing with states which transform in a representation of HS corre-

sponding to a direct product of line bundles so that L j =L ⊗L ′, we have n j =−χ(L ⊗L ′,S)

where

χ(L ⊗L ′,S) = 1+
1
2
{

c1(L ) · c1(S)⊕ c1(L
′) · c1(S)

}
+

1
2
{

c1(L ) · c1(L )⊕ c1(L
′) · c1(L

′)
}

(5.8)

Taking for example the exotics coming from the adjoint of SU(5) after hypercharge flux breaking

to the Standard Model, we have the decomposition
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24→ (8,1)0 +(1,3)0 +(3,2)− 5
6
+(3,2) 5

6
(5.9)

where the line bundle L
5
6

Y is associated to the hypercharge. This decomposition gives rise to

the states (3,2)− 5
6

and (3,2) 5
6

which are in exotic representations of the SM gauge group. It has

been shown in [98] that the presence of these exotics lower the unification scale to unacceptable

values, so we must require that these states are not present in the spectrum. Using Eqs. (5.6) and

(5.7), and labelling the multiplicities of (3,2)− 5
6

and (3,2) 5
6

states by m and m∗ respectively, we

have

m−m∗ =−c1(LY ) · c1(S) (5.10)

m+m∗ =−(2+ c1(LY ) · c1(LY )) (5.11)

If we require there to be only vector-like pairs of bulk exotics in the spectrum, Eq. (5.10) tells

us that the following dot product has to be zero

c1(LY ) · c1(S) = 0 (5.12)

If we further require the complete elimination of these exotics, then we must demand also that

the sum has to be zero, so from Eq. (5.11), we can see that the line bundle has to satisfy

c1(LY ) · c1(LY ) =−2 (5.13)

which corresponds to the condition for c1(LY ) to correspond to a root of EN .

5.2.2 E6 Bulk Exotics and their SU(5) picture

It has been shown in [9] that bulk exotics coming from the adjoint of the GUT group on S cannot

be avoided in the case where the gauge group is SO(10) or higher, and the breaking of the GUT

group down to the Standard Model is achieved by flux breaking. If we take the GUT group to

be E6, the spectrum can be found by decomposing under the E8 enhancement

E8 ⊃ E6×SU(3)⊥

248→ (78,1)+(27,3)+(27,3)+(1,8)
(5.14)



Chapter 5 Bulk exotics 119

The SM can be achieved by turning on fluxes in the U(1)s contained in the following sequence

of rank preserving breakings:

E6→ SO(10)×U(1)ψ

→ SU(5)×U(1)χ ×U(1)ψ

→ SU(3)×SU(2)×U(1)Y ×U(1)χ ×U(1)ψ

(5.15)

In order to discuss the bulk exotics, we must decompose the adjoint of E6 appearing in Eq.

(5.14) under the breaking pattern of Eq. (5.15) as follows

78→ (1,1)0,0,0 +
{
(1,1)0,0,0 +(1,1)0,0,0 +(8,1)0,0,0 +(1,3)0,0,0 +(3,2)−5,0,0 +(3,2)5,0,0

+(3,2)1,4,0 +(3,2)−1,−4,0 +(3,1)−4,4,0 +(3,1)4,−4,0 +(1,1)6,4,0 +(1,1)−6,−4,0
}

+
{
(1,1)0,−5,−3 +(3,1)2,3,−3 +(1,2)−3,3,−3 +(1,1)6,−1,−3 +(3,2)1,−1,−3 +(3,1)−4,−1,−3

}
+
{
(1,1)0,5,3 +(3,1)−2,−3,3 +(1,2)3,−3,3 +(1,1)−6,1,3 +(3,2)−1,1,3 +(3,1)4,1,3

}
(5.16)

All representations are charged under three U(1)s, and all triplets of U(1) charges can be ex-

pressed as a linear combination of the following line bundles

L1 = (5,0,0), L2 = (1,4,0), L3 = (1,−1,−3) (5.17)

In Table 5.1 we write down the multiplicities of the exotic states coming from the adjoint of E6

(where the correct normalisation for the U(1)Y is given by dividing by 6)

Exotic Xi Multiplicity ni Exotic Xi Multiplicity ni

X1 = (3,2) 5
6

n1 =−χ(L1,S) X6 = (3,1) 1
3

n6 =−χ(L2⊗L3,S)
X2 = (3,2) 1

6
n2 =−χ(L2,S) X7 = (1,2)− 1

2
n7 =−χ(L −1

1 ⊗L2⊗L3,S)
X3 = (3,1) 2

3
n3 =−χ(L −1

1 ⊗L2,S) X8 = (1,1)1 n8 =−χ(L1⊗L3,S)
X4 = (1,1)1 n4 =−χ(L1⊗L2,S) X9 = (3,2) 1

6
n9 =−χ(L3,S)

X5 = (1,1)0 n5 =−χ(L −1
2 ⊗L3,S) X10 = (3,1)− 2

3
n10 =−χ(L −1

1 ⊗L3,S)

Table 5.1: E6 bulk exotics and their multiplicities

We can see where the exotics fit into the SU(5) picture as follows (where the un-normalised

U(1)Y ×U(1)χ ×U(1)ψ charges of the SU(5) states are indicated as subscripts),
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53,−3→(1,2)−3,3,−3+(3,1)2,3,−3

X7 X6 (5.18)

104,0→(1,1)6,4,0+(3,1)−4,4,0+(3,2)1,4,0

X4 X3 X2 (5.19)

10−1,−3→(1,1)6,−1,−3+(3,1)−4,−1,−3+(3,2)1,−1,−3

X8 X10 X9 (5.20)

240,0→ (1,1)0,0,0 +(8,1)0,0,0 +(1,3)0,0,0+(3,2)−5,0,0+(3,2)5,0,0

X1 X1 (5.21)

5.2.3 Removing bulk exotics

When breaking the adjoint of a high gauge group there are always representations beyond those

of the SM spectrum. These extraneous matter fields may be classified according to their charges

in two categories: the ones that carry charges like the SM fields and those which have fractional

charges other than those of the SM quarks. It can be seen that the exotics X3 and X10 have the

same SM quantum numbers as uc, X2 and X9 have the same as Q, and X4 and X8 the same as

ec, with one set of states coming from Eq. (5.19) and the other coming from Eq. (5.20). X1

has exotic charges under the SM gauge group, and so we wish to remove these states from the

spectrum. X6 and X7 have the same SM quantum numbers as dc and Hd respectively, and if

present in the spectrum, we must require that they appear in vector pairs, and get mass via the

couplings

10,0 ·53,−3 ·5−3,3→ SX6X6 +SX7X7

240,0 ·53,−3 ·5−3,3→ S′X6X6 +S′X7X7
(5.22)

Requiring that X6 and X7 occur in vector pairs corresponds to imposing the conditions n6−n∗6 =

n7−n∗7 = 0. Using Table 5.1, this leads to the following topological constraints

c1(S) · c1(L2) =−c1(S) · c1(L3) (5.23)

c1(S) · c1(L1) = 0 (5.24)
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Presence of the X1 states with exotic SM charges in the spectrum has been shown to lower the

unification scale to unacceptable values, so requiring that these states are completely removed

imposes the constraints (from Appendix D)

c1(S) · c1(L1) = 0

c1(L1)
2 =−2

(5.25)

From Eq. (5.17) and Table 5.1 along with the decompositions in the SU(5) picture, it can be

seen that L1 corresponds to the hypercharge bundle. As such, Eq. (5.25) simply corresponds to

the normal SU(5) condition c1(LY )
2 =−2.

If we were to impose that each type of exotic came in vector pairs individually (i.e ni = n∗i for

i=1,...,10), from Appendix D we would be lead to the case of

c1(S) · c1(L1) = c1(S) · c1(L2) = c1(S) · c1(L3) = 0 (5.26)

After imposing Eq. (5.25), we can see that the only further choices we can make to eliminate

some exotics (without getting negative numbers for any multiplicities) is

c1(L2)
2 =−2 (5.27)

c1(L3)
2 =−2 (5.28)

This ensures that the exotics X2 and X9 are completely removed, in addition to X1. All other

exotics are present in vector pairs in this case, with their multiplicities given by

n7 = n∗7 = 2, ni = n∗i = 1 (i = 3,4,5,6,8,10)

5.2.4 A more general case

As we have seen, we have two different 10 representations of SU(5), with different charges

under U(1)ψ and U(1)χ , and so we can either give masses to the exotics contained in these 10s

by couplings of the type

10,0 ·104,0 ·10−4,0→ SX2X2 +SX3X3 +SX4X4

240,0 ·104,0 ·10−4,0→ S′X2X2 +S′X3X3 +S′X4X4 (5.29)

or
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1−5,−3 ·104,0 ·101,3→ X5(X2X9)+X5(X3X10)+X5(X4X8) (5.30)

where X5 is a singlet exotic (corresponding to the ‘gluing morphism’ of [105]) coming from the

16 of SO(10), inside the 78 of E6. As such, we can more generally impose

n2 +n9 = n∗2 +n∗9

n4 +n8 = n∗4 +n∗8

n∗3 +n10 = n3 +n∗10

(5.31)

It can be seen that all three of these constraints are satisfied by imposing Eq. (5.23). As such,

with Eqs. (5.24, 5.25) also imposed, the multiplicities can be written in terms of the dot products

A = c1(S) · c1(L2) =−c1(S) · c1(L3)

B = c1(L2)
2

C = c1(L3)
2 (5.32)

n1 = n∗1 = 0 n6 =−1− B
2 − C

2
n2 =−1− A

2 − B
2 n7 =−B

2 − C
2

n3 =
A
2 − B

2 n8 =
A
2 − C

2
n4 =−A

2 − B
2 n9 =−1+ A

2 − C
2

n5 =−1+A− B
2 − C

2 n10 =
A
2 − C

2

Table 5.2: Multiplicities of the E6 exotics in terms of the topological numbers A,B,C
(see text).

The multiplicities are then given in Table 5.2 where when dealing with the conjugate represen-

tations, A changes sign, but B and C keep the same sign. We can now think about different

combinations of exotic matter which satisfy these constraints, and consider the effect on gauge

coupling unification. The multiplicities of exotic matter are as follows

nQ = n2 +n9 +n∗2 +n∗9 =−(B+C)−4 = γ−4

nuc = n3 +n10 +n∗3 +n∗10 =−(B+C) = γ

nec = n4 +n8 +n∗4 +n∗8 =−(B+C) = γ

ndc = n6 +n∗6 =−(B+C)−2 = γ−2

nHd = n7 +n∗7 =−(B+C) = γ (5.33)

where we see that everything can be expressed in terms of the parameter γ , given in terms of

Chern classes by



Chapter 5 Bulk exotics 123

γ =−c1(L2)
2− c1(L3)

2 (5.34)

It can be seen from Table 5.2 that requiring n5 = n∗5 for the singlet X5 leads us to the case

A = 0. As such, all the exotic matter will satisfy ni = n∗i , although we will still be able to

get masses from both Eqs. (5.29) and (5.30). It is important to note that as everything comes

in conjugate pairs, anomalies are always cancelled. We can now work out the contributions

to the beta functions due to the exotic matter, and discuss gauge coupling unification. Note

that in order to satisfy the requirement that all multiplicities are positive, we must have γ ≥ 4,

with the minimal value being taken in the case where the line bundles satisfy the condition

c1(L2)
2 = c1(L3)

2 =−2, meaning that c1(L2) and c1(L3) correspond to roots of E8.

5.3 Gauge Coupling Unification

5.3.1 The effect of bulk exotics at a single mass scale MX

It has been shown in [40] that in the context of an SU(5) GUT, the splitting at MGUT due to

hypercharge flux is

1
α3(MGUT )

=
1

αG
− y

1
α2(MGUT )

=
1

αG
− y+ x

1
α1(MGUT )

=
1

αG
− y+

3
5

x

(5.35)

where x =−1
2 ReS

∫
c2

1(LY ) and y = 1
2 ReS

∫
c2

1(La) associated with a non-trivial line bundle La

and S = e−φ + iC0 the axion-dilaton field. It is argued in Section 4.3.2 that the U(1)ψ and U(1)χ

fluxes do not lead to any relative splittings of the gauge couplings at unification, although there

could be a constant shift in all the couplings at each breaking. As such, Eq. (5.35) can be used

in the case of interest here, and combining the three equations shows that the gauge couplings

at MGUT are found to satisfy the relation

1
αY (MGUT )

=
5
3

1
α1(MGUT )

=
1

α2(MGUT )
+

2
3

1
α3(MGUT )

(5.36)

If we assume that the bulk exotics all decouple at a single mass scale MX , the low energy values

of the gauge couplings are given by the evolution equations

1
αa(MZ)

=
1

αa(MGUT )
+

bx
a

2π
ln

MGUT

MX
+

ba

2π
ln

MX

MZ
(5.37)
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where bx
a are the beta functions above the scale MX , and ba are the beta functions below this

scale, i.e. those of the MSSM. Combining Eqs. (5.36) and (5.37) leads to the relation for the

GUT scale

MGUT = e
2π

βA ρ

(
MX

MZ

)1−ρ

MZ (5.38)

where A is a function of the experimentally known low energy values of the SM gauge coupling

constants

1
A

=
5
3

1
α1(MZ)

− 1
α2(MZ)

− 2
3

1
α3(MZ)

=
cos(2θW )

αem
− 2

3
1

α3(MZ)
(5.39)

Here use has been made of the relations αY = αe/(1− sin2
θW ) and α2 = αe/sin2

θW . We have

also introduced the ratio ρ

ρ =
β

βx
(5.40)

where β ,βx are the beta-function combinations in the regions MZ < µ < MX and MX < µ <

MGUT respectively

βx = bx
Y −bx

2−
2
3

bx
3 (5.41)

β = bY −b2−
2
3

b3 (5.42)

Recall now the beta-function coefficients ( b1 =
3
5 bY )

b1 = 6+
3
10

(nh +nL)+
1
5

ndc +
1
10

nQ +
4
5

nuc +
3
5

nec (5.43)

b2 =
1
2
(nh +nL)+

3
2

nQ (5.44)

b3 = −3+
1
2

ndc +nQ +
1
2

nuc (5.45)

where nh,L,... counts the number of Higgses and exotic matter.

Below MX we have only the MSSM spectrum, thus nG = 3,nh = 2 and all extra matter contribu-

tions are zero, ni = 0, thus

{bY ,b2,b3}= {11,1,−3} → β = bY −b2−
2
3

b3 = 12

Above MX we have the extra matter given in Eq. (5.33) in addition to the two Higgses of the

MSSM, giving for the beta functions
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bx
Y =

1
3
(29+10γ)

bx
2 = 2γ−5

bx
3 = 2(γ−4)

βx = 20 (5.46)

As such, we can see that the beta function combination βx does not depend on the parameter γ

and so the choice of this parameter will not affect the unification scale. Putting the numbers into

Eq. (5.38) gives

MGUT =

(
MX

2.09×1016 GeV

) 2
5

2.09×1016 GeV (5.47)

Clearly, if we take MX = 2.09× 1016GeV, we also get MGUT = 2.09× 1016GeV. We can see

how different values of MX change the GUT scale in the graph of Figure 5.1.

5.0 ´ 1015 1.0 ´ 1016 1.5 ´ 1016 2.0 ´ 1016

MX

GeV

5.0 ´ 1015

1.0 ´ 1016

1.5 ´ 1016

2.0 ´ 1016

MGUT

GeV

Figure 5.1: Graph of how the bulk exotic mass scale MX impacts on the GUT scale MGUT .

5.3.2 The splitting parameter, x

Combining Eqs. (5.35) and (5.37) leads to the following expression for the parameter x

x =
(

1
α2
− 1

α3

)
MGUT

=

(
1

α2
− 1

α3

)
MZ

+
bx

3−bx
2

2π
log
(

MGUT

MX

)
+

b3−b2

2π
log
(

MX

MZ

)
=

26sin2
θW −3

20αem
− 9

10α3
− 11

10π
log
(

MX

MZ

)
(5.48)
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It can be seen that the splitting of the gauge couplings at the unification scale does not depend

on the parameter γ . It should also be noted that as x is given by x = −1
2 ReS

∫
c2

1(LY ) with

S = e−φ + iC0, it must take a value between 0 and 1.

5.0 ´ 1015 1.0 ´ 1016 1.5 ´ 1016 2.0 ´ 1016

MX

GeV

0.2

0.4

0.6

0.8

1.0

1.2

x

Figure 5.2: The dependence of the splitting parameter x on the bulk exotic mass scale
MX . Only values of x ≤ 1 are acceptable, leading to the approximate lower bound on
the bulk exotic mass scale MX ≥ 2×1015 GeV. Note that this bound assumes that no
matter exotics are present.

5.4 E6 Models from F-theory

5.4.1 Matter exotics only

We start by looking at the class of models proposed in Chapters 3 and 4, which were motivated

by the fact that any model involving complete 27s of E6, with no matter coming from the ad-

joint 78 representation, automatically satisfies anomaly cancellation involving most of the extra

U(1)s. Here we make the same choices for the M and N integers specifying the flux breaking as

in Chapters 3 and 4, and these choices are summarised in Table 5.3. Although the SM particle

content is equivalent to having three complete 27s, it is clear that the particles are originating

from incomplete multiplets of several different 27s. The U(1)N charges of all the particles in the

spectrum can be computed, and the results are shown in Table 5.3. As required, the right handed

neutrinos have zero charge under U(1)N . The final column of Table 5.3 shows the low energy

spectrum of the models of Chapter 4 (i.e the E6SSM) obtained by eliminating the required ex-

otics from the previous column, which shows the SM particle content after flux breaking. By

comparing the final two columns of Table 5.3, we can see that the matter exotics which we wish

to remove are the vector pairs 2(L+L),Q+Q,2(uc + uc),dc + dc and Hd +Hd . Large masses

will be generated for these fields through their coupling to SM singlet fields which acquire large

VEVs.

From the E6 point of view, the only E6 allowed trilinear term in the superpotential is 27t127t127t3 .

The vectorlike pairs which we wish to remove from the low energy particle content are those
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which have components in both the 27t1 and 27t3 multiplets. As such, they are removed by

introducing θ31, an E6 singlet, with couplings:

θ3127t ′1
27t ′3

= θ31QQ+θ31(2uc)(2uc)+θ31dcdc +θ31(2L)(2L)+θ31HdHd . (5.49)

If θ31 gets a large VEV these vector states get large masses as required. The difference between

this case and model 1 (in Chapter 3 is that in model 1, θ34 also gets a large VEV. This singlet

has the following couplings

θ345152 = θ34[3D+2Hu][3D+3Hd ] = θ34[3(DD)]+θ34[2(HuHd)]. (5.50)

In the E6SSM, these matter exotics are light, and so instead of getting a large VEV, this singlet

now must acquire a TeV scale VEV. It was checked that the F and D-flatness constraints are

satisfied, and that rapid proton decay is forbidden for the realisation of the spectrum [1].

E6 SO(10) SU(5) Weight vector QN NY MU(1) SM particle content Low energy spectrum
27t ′1 16 53 t1 + t5 1√

10
1 4 4dc +5L 3dc +3L

27t ′1 16 10M t1 1
2
√

10
−1 4 4Q+5uc +3ec 3Q+3uc +3ec

27t ′1 16 θ15 t1− t5 0 0 n15 3νc -
27t ′1 10 51 −t1− t3 − 1√

10
−1 3 3D+2Hu 3D+2Hu

27t ′1 10 52 t1 + t4 − 3
2
√

10
1 3 3D+4Hd 3D+3Hd

27t ′1 1 θ14 t1− t4 5
2
√

10
0 n14 θ14 θ14

27t ′3 16 55 t3 + t5 1√
10

−1 −1 dc +2L -

27t ′3 16 102 t3 1
2
√

10
1 −1 Q+2ūc -

27t ′3 16 θ35 t3− t5 0 0 n35 − -
27t ′3 10 5Hu −2t1 − 1

2
√

10
1 0 Hu Hu

27t ′3 10 54 t3 + t4 − 3
2
√

10
−1 0 Hd -

27t ′3 1 θ34 t3− t4 5
2
√

10
0 n34 θ34 θ34

- 1 θ31 t3− t1 0 0 n31 θ31 -
- 1 θ53 t5− t3 0 0 n53 θ53 -
- 1 θ54 t5− t4 5

2
√

10
0 n54 θ54 -

- 1 θ45 t4− t5 − 5
2
√

10
0 n45 θ45 -

Table 5.3: Complete 27s of E6 and their SO(10) and SU(5) decompositions. The SU(5) matter
states decompose into SM states as 5→ dc,L and 10→ Q,uc,ec with right-handed neutrinos
1→ νc, while SU(5) Higgs states decompose as 5→ D,Hu and 5→ D,Hd , where D,D are
exotic colour triplets and antitriplets. We identify RH neutrinos as νc = θ15.

Clearly the matter exotics (d + d
c
), (Q+Q), (Hd +Hd), 2(L+ L), 2(uc + uc) get masses and

decouple at some scale Mθ31 < MGUT due to the couplings in Eq. (5.49). The matter exotics

3(D+D), 2(Hu,Hd) get masses and decouple at a scale Mθ34 < Mθ31 due to the couplings in Eq.

(5.50). In [1, 2] (which we will call models 1 and 2 respectively from now on) two different

classes of model were proposed only distinguished by the mass scales of the matter exotics. The

scales of the two models are summarised below.
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In model 1 (“MSSM”):

M(1)
θ31

= 1.31×1016GeV

M(1)
θ34

= 0.306×1016GeV

In model 2 (“E6SSM”):

M(2)
θ31

= 1.44×1016GeV

M(2)
θ34

= 1×103GeV

The main difference between the two models is clearly that in model 1 the θ34 matter exotics

are computed to be almost as heavy as the θ31 exotics, whereas in model 2 the θ34 matter

exotics are kept light, getting TeV scale masses. We see that model 1 reproduces the MSSM

somewhat below the GUT scale since only the MSSM spectrum survives below Mθ34 , whereas

model 2 corresponds to the so called E6SSM above the TeV scale (or NMSSM+ if the U(1)N

gauge group is broken at high energy). However strictly speaking the spectrum of model is

not quite that of the E6SSM since it only contains the matter content of three 27 dimensional

representations of E6 and does not contain the extra vector-like matter usually denoted as H ′ and

H ′ which is required for gauge coupling unification. As we shall see shortly, the role of the extra

H ′ and H ′ will be played by bulk exotics.

5.4.2 High scale bulk exotics

The above analysis does not so far include the effect of bulk exotics. However, as we have seen

earlier in this chapter, such bulk exotics are an inevitable consequence of the flux breaking of E6.

As remarked above, such additional bulk exotics at the TeV scale, not included in the spectrum

so far, are able to provide the extra vector-like matter to enable gauge unification to be achieved

for the E6SSM. However the resulting spectrum will differ somewhat from that of the E6SSM,

providing a distinctive experimental signature of the F-theory model at the LHC.

In both the above models, the beta function combination given in Eq. (5.42) is given by β = 12

(the MSSM value) in all of the regions MZ < µ < Mθ34 and Mθ34 < µ < Mθ31 and Mθ31 < µ <

MGUT . As such, assuming that the bulk exotics get masses MX , somewhere between Mθ31 and

MGUT , we will have an equation analogous to Eq. (5.38)

MGUT = e
2π

βA ρ Mρ

Z Mη−ρ

θ34
Mλ−η

θ31
M1−λ

X (5.51)

where in the same way as for Eq. (5.38), ρ = η = λ = 3
5 . As such, the GUT scale only depends

on the mass of the bulk exotics, and is still given by Eq. (5.47). If we take MX = MGUT , the

RGE analysis is obviously unchanged from that of [1, 2], however if we take MX = Mθ31 , the

GUT scale is lowered slightly by Eq. (5.47)
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Figure 5.3: Gauge coupling unification in model 1 (MSSM) with high scale bulk ex-
otics.
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Figure 5.4: Gauge couplings fail to unify in model 2 (E6SSM) with high scale bulk
exotics.

M(1)
GUT = 1.73×1016GeV

M(2)
GUT = 1.80×1016GeV

For model 1 (MSSM) the one loop running of the couplings is shown in Figure 5.3. This takes

into account the modification of the beta functions due to the bulk exotics above the scale MX =

Mθ31 . In this case the couplings are split by 2 percent (compared to 1.3 percent when the bulk

exotics are not taken into account), and it can be seen that the effect of bulk exotics near the GUT

scale on the splitting of the gauge couplings is small (0.5-1 percent depending on the model).

For model 2 (E6SSM) the splitting is 35 percent (compared to 34.5 percent in the case with no

bulk exotics), which would correspond to x ∼ 5. This is shown in Figure 5.4. As pointed out
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before, x must take a value between 0 and 1 and so model 2 must be ruled out in the case where

the bulk exotics get masses near the GUT scale.

5.4.3 Low scale bulk exotics

We have seen that as long as the bulk exotics get masses close to the GUT scale, the GUT scale is

not lowered drastically. However, due to the fact that the bulk exotic spectrum ensures anomaly

cancellation, the gauge groups U(1)χ and U(1)ψ and the bulk exotics could in principle survive

to the TeV scale. We will now look at this possibility that at least some of the bulk exotics are

light. From Eqs. (5.43, 5.44, 5.45) we have

β = 12+nuc +nec−2nQ

δβ = δnuc +δnec−2δnQ (5.52)

where δβ = βx− β is the difference in β as we move a higher energy scale where a number

of exotics (δnuc , δnec and δnQ) join with the massless spectrum. In models 1 and 2 there is no

exotic ec type matter and the only Q and uc exotics get the same mass, near the GUT scale. In

both models, there is twice as much uc-like exotic matter as there is Q-like, and so δβ = 0 when

we do not take into account contributions from the bulk exotics. For the bulk exotics, Eq. (5.33)

gives

δβ = nuc +nec−2nQ = 8 (5.53)

Previously, we looked at the case where MX ≥M′ and we found that the GUT scale is slightly

lowered. If we now consider the case where MX ≤Mθ34 , Eq. (5.51) gets modified to

MGUT = e
2π

βA ρ Mρ

Z Mη−ρ

X Mλ−η

θ34
M1−λ

θ31
(5.54)

with

ρ =
β

βθ31

=
3
5

η =
βx

βθ31

= 1

λ =
βθ34

βθ31

= 1 (5.55)
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Again, we end up with Eq. (5.47) for the GUT scale, with the bulk exotic mass (the mass of

those coming from a 10 of SU(5) if we allow the 5s and 10s to get different masses) being the

only exotic mass entering the equation. As such, apart from the possibility that all bulk exotics

get masses near the GUT scale (as previously discussed), we have two other possibilities:

• All bulk exotics at the TeV scale: In this case Eq. (5.54) tells us that MGUT ∼ 1×1011GeV.

It may seem at first sight that such a low unification scale would lead to dangerous dimen-

sion 6 operators giving proton decay rates which are much faster than experimentally

observed. However, in [106] a method has been pointed out for suppressing proton-decay

in F-theory SU(5) with hypercharge flux breaking. The idea is that since the dangerous

operators involve the SU(5) gauge bosons X,Y in trilinear couplings such as XQuc, a

computation would consist of firstly computing the trilinear coupling by using the wave-

function overlap techniques of eg. [85], and then integrating out X,Y. The key is that the

SU(5) gauge bosons need not be localised on a matter curve, but can be spread out over

S. As such, these fields feel the effect of hypercharge flux in a different way to those on

matter curves, and this gives rise to a suppression of the integral. This way, we can in

principle avoid rapid proton decay, even with a seemingly low unification scale. Even

though this is the case, when all the bulk exotics are at the TeV scale the splitting of the

gauge couplings is large, and x > 1. As such, this possibility must be ruled out and we

must look at the next case.

• Bulk exotics from 10s heavy, but those from 5s light: As the singlets S and S′ which give

the 5 state mass through Eq. (5.22) can also give the 10s mass through Eq. (5.29), we

reject the possibility of heavy 5s and light 10s. However, since the 10s can get mass from a

different singlet in Eq. (5.30), it would seem that there is a possibility of giving this singlet

a much bigger VEV, and keeping the 10s heavy whilst the 5s could be TeV exotics. If this

was the case, we would once again have MGUT ∼ 2×1016GeV due to the fact that the 5s

do not contribute to δβ of Eq. (5.52). If the splitting parameter x is calculated for this

case with the spectrum of model 1, it turns out to be negative so again we must rule this

case out. This means that for model 1, high energy bulk exotics are the only possibility,

but on the contrary we will see that for model 2 these low energy bulk exotics are the

only possibility. As pointed out previously, model 2 which has TeV scale exotics in its

spectrum cannot be compatible with bulk exotics with masses close to the GUT scale, as

x > 1 which is forbidden. However, if we have the bulk exotics which belong to 5s of

SU(5) at the TeV scale as described above, it turns out that the multiplicities of exotic

states forced upon us by topological constraints make the couplings unify. If we take the

mass of the exotics from 10s to be MGUT , we find x ∼ 0.01, corresponding to a splitting

of approximately 0.2 percent. This effect is illustrated in Figure 5.5, which shows how

the low energy bulk exotics are precisely what is needed to make the couplings unify. In

addition to the 3(D+D), 2(Hu,Hd) exotics which are also at the TeV scale, this leads to

a characteristic spectrum involving TeV vector-like pairs of dc and Hd exotics, with the
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distinguishing feature that there will always be one more vector pair of Hd states than dcs.

(In the γ = 4 case, we have one pair of dc states and two pairs of Hd states).
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Figure 5.5: Gauge coupling unification in model 2 (E6SSM) with TeV scale bulk ex-
otics.

In the presence of the large VEV for X5, the F and D flatness equations of [2] must be modified

accordingly. It can be shown (see Appendix E that there is a solution to the flatness relations for

this model where X5 gets a large VEV without giving rise to dangerous operators. In this section

we have taken 〈X〉= MGUT for simplicity and to illustrate its effects, although in a full study it

will be slightly lower, depending on the model building choices.

5.5 Conclusions

We have considered gauge coupling unification in E6 F theory Grand Unified Theories (GUTs)

where E6 is broken to the Standard Model (SM) gauge group using fluxes. In such modes

there are two types of exotics that can affect gauge coupling unification, namely matter exotics

from the matter curves in the 27 dimensional representation of E6 and the bulk exotics from the

adjoint 78 dimensional representation of E6. We then explored the conditions required for either

the complete or partial removal of bulk exotics from the low energy spectrum.

We have examined the conditions for the removal from the low energy spectrum of bulk exotic

matter from the adjoint of E6 in terms of topological properties of the manifold. These conditions

led to the fact that all vector-like pairs come in multiplicities which depend on one topological

parameter, γ . We studied how the bulk exotics affect the one loop RGE anaylsis, and it was

shown that both the GUT scale and the splitting of the gauge couplings depend on the mass of

the exotics, but not on γ , meaning that the results are general for any E6 F-theory model using

fluxes to break the GUT group.

We then considered two realistic models E6 proposed in [1, 2], which we called model 1

(MSSM) and model 2 (E6SSM). Both these model involve matter exotics and only differ by
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the mass scale of the matter exotics. These models were then supplemented by either high or

low scale bulk exotics. It was demonstrated that if the bulk exotics acquire GUT scale masses,

only model 1 (of [1]) is viable, with MGUT being lowered slightly (<15 percent), and the split-

ting of the gauge couplings being increased by less than 1 percent.

It was then proposed that the bulk exotics from 5s of SU(5) could get TeV scale masses whereas

those from 10s could be near the GUT scale due to a large VEV for a singlet charged under

U(1)ψ and U(1)χ . In this case model 1 cannot be realised, but it turns out to be the perfect

solution to unify the gauge couplings of model 2 [2], which without the bulk exotics would

be ruled out due to an unacceptable splitting of the couplings. Here we have a characteristic

spectrum involving TeV vector-like pairs of dc and Hd exotics, with the distinguishing feature

that there will always be one more vector pair of Hd states than dcs.

In summary, it is possible that all bulk exotic as well as matter exotics could have masses close

to the GUT scale leading to an MSSM type theory somewhat below the GUT scale. However,

there is the possibility that the bulk exotics from 5s of SU(5) could get TeV scale masses whereas

those from 10s could be near the GUT scale. Although such bulk exotics would by themselves

spoil gauge coupling unification, when combined with matter exotics, corresponding to model 2

with complete 27 dimensional representations of E6 at the TeV scale, gauge coupling unification

is restored. We emphasise that, without such bulk exotics, the TeV scale matter exotics of the

E6SSM would lead to an unacceptable splitting of the couplings, and it is only the combination

of TeV scale matter exotics from the 27s plus TeV scale bulk exotics from the 78 which, almost

miraculously, restores gauge coupling unification.

In the case of the E6SSM with TeV scale bulk exotics the resulting TeV scale matter exotics

plus bulk exotics is equivalent to four extra 5+ 5 vector pairs of SU(5), beyond the minimal

supersymmetric standard model (MSSM) spectrum. The characteristic prediction of F-theory

E6 GUTs of the matter content of four extra 5+ 5 vector pairs can be tested at the LHC. This

may be compared to the equivalent of three extra 5+ 5 vector pairs predicted by the E6SSM

[75, 88].





Chapter 6

Conclusions

This thesis has been concerned with the study of semi-local F-theory GUTs arising from a

single E8 point of local enhancement, leading to simple GUT groups based on E6, SO(10)

and SU(5). In Chapter 2 the SU(3), SU(4) and SU(5) spectral covers associated with these

GUT groups were analysed. Assuming the minimal Z2 monodromy, the homology classes and

associated spectra after flux breaking were determined for each case. Furthermore, a group

theory dictionary was established between the different GUTs, providing a very useful tool for

model building.

Using these results, in Chapter 3 an E6 based model was constructed that demonstrates, for the

first time, that it is possible to construct a phenomenologically viable model which leads to the

MSSM at low energies. In this model, the exotics that result from flux breaking all get a large

mass when singlet fields acquire vacuum expectation values driven by F and D flatness. Due to

the underlying GUT symmetry and the U(1)s descending from E8, baryon- and lepton-number

violating terms are forbidden up to and including dimension 5, and as a result, nucleon decay is

naturally suppressed below present bounds. The µ-term can be generated by non-perturbative

U(1) breaking effects. After including the effect of flux and instanton corrections, acceptable

quark and charged lepton masses and mixing angles can be obtained. Neutrinos get a mass from

the see-saw mechanism through their coupling to singlet neutrinos that acquire large Majorana

mass as a result of the monodromy.

In Chapter 4, F-theory models were explored in which the low energy supersymmetric theory

contains the particle content of three 27 dimensional representations of the underlying E6 gauge

group, plus two extra right-handed neutrinos predicted from F and D flatness. The resulting

TeV scale effective theory resembles either the E6SSM or the NMSSM+, depending on whether

an additional Abelian gauge group does or does not survive. However there are novel features

compared to both these models as follows:

(i) If the additional Abelian gauge group is unbroken then it can have a weaker gauge coupling

than in the E6SSM;

(ii) If the additional Abelian gauge group is broken then non-perturbative effects can violate the
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scale invariance of the NMSSM+ leading to a generalised model;

(iii) Unification is achieved in the E6SSM by the addition of doublet states from incomplete 27

representations, whereas in the F-theory case, there is a splitting of the gauge couplings at the

unification scale, although bulk exotics from the adjoint representation are always present which

can lead to precise unification in a natural way;

(iv) Proton decay is suppressed by the geometric coupling suppression of a singlet state, which

effectively suppresses the coupling of the exotic charge −1/3 colour triplet state D to quarks

and leptons;

(v) The D decays as a chiral leptoquark with couplings to left-handed quarks and leptons, pro-

viding characteristic and striking signatures at the LHC.

In Chapter 5 the issues of bulk exotics were studied, which Chapter 4 hinted at as being essential

for acceptable gauge coupling unification in models with light exotics. The chapter considered

the general setting of gauge coupling unification in E6 F-Theory GUTs where E6 is broken to

the Standard Model gauge group using fluxes. In such models there are two types of exotics

that can affect gauge coupling unification, namely matter exotics from the matter curves in the

27 dimensional representation of E6, and the bulk exotics from the adjoint 78 dimensional rep-

resentation of E6. Exploring the conditions required for either the complete or partial removal

of bulk exotics from the low energy spectrum leads to the conclusion that there are always bulk

exotics present. The multiplicities of these exotics are constrained by topological properties of

the internal manifold, and exotic spectra were presented which are compatible with the models

of Chapters 3 and 4. It was shown that (almost miraculously) gauge coupling unification may

be possible even if there are bulk exotics at the TeV scale. Indeed in some cases it is necessary

for bulk exotics to survive to the TeV scale in order to cancel the effects coming from other TeV

scale matter exotics which would by themselves spoil gauge coupling unification. The combi-

nation of matter and bulk exotics in these cases can lead to precise gauge coupling unification

which would not be possible with either type of exotics considered by themselves. The combi-

nation of matter and bulk exotics at the TeV scale represents a unique and striking signature of

E6 F-theory GUTs that can be tested at the LHC.

In conclusion, the local F-theory models studied here provide a good framework for phenomenol-

ogy, and the existence of consistent models with low energy exotics can even give interesting

glimpses into possible LHC signatures.



Appendix A

Group theory of E6

With the nodes of the dynkin diagram of E6 labelled as in Figure A.1, the simple roots of E6 are

[107]

α1 = (
1
2
,−1

2
,−1

2
,−1

2
,−1

2
,

√
3

2
)

α2 = (−1,1,0,0,0,0)

α3 = (0,−1,1,0,0,0)

α4 = (0,0,−1,1,0,0)

α5 = (0,0,0,−1,1,0)

α6 = (1,1,0,0,0,0) (A.1)

The Cartan matrix is given by Ai j = 2 αi·α j
α j·α j

where αi and α j are simple roots. (Positive roots are

defined by the first non zero entry from the right being positive).

A =



2 −1 0 0 0 0

−1 2 −1 0 0 0

0 −1 2 −1 0 −1

0 0 −1 2 −1 0

0 0 0 −1 2 0

0 0 −1 0 0 2


The fundamental weights µi are a dual basis to the simple roots, defined by µi·α j

α j·α j
= 1

2 δ i j. They

are given by
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1 2 3 4 5

6

Figure A.1: Dynkin diagram for E6 with labelled simple roots
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µ5 = (0,0,0,0,1,
1√
3
)

µ6 = (
1
2
,
1
2
,
1
2
,
1
2
,
1
2
,

√
3

2
) (A.2)

There is an SU(2) algebra associated with each root, and this is encoded in the master formula

µ ·α
α ·α =−1

2
(p−q) (A.3)

where p represents the maximum number of times the root α can be added to the weight µ to

get another weight, and q represents how many times it can be subtracted. The highest weight

of the 27 representation of E6 is such that µ +αi is not a root for any simple root, and as such

the highest weight is w1 = µ1. Now the master formula can be used to build up a picture of the

weight space of the 27 representation
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Fundamental weight basis Normal basis
w1 µ1 (1,0,0,0,0,0) (0,0,0,0,0, 2√

3
)
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Table A.1: The weights of the 27 representation of E6
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Figure A.2: The weights of the 27 representation of E6



Appendix B

The homology classes of the Singlets

This Appendix is taken directly from [1]. In order to determine the homology classes for the

singlets of a particular SU(n) , we first need to express the product of the the differences of the

roots ti− t j of the nth degree polynomial Pn = bksn−k in terms of its coefficients bk.

Consider first the simplest case b0s2 +b1s+b2 = 0. If t1, t2 are the roots, we know

(t1− t2)(t2− t1) ∝−∆ =−b2
1 +4b0b2

Note that the same result is obtained from the determinant

1
b0

∣∣∣∣∣∣∣
b0 b1 b2

2b0 1b1 0b2

0 2b0 1b1

∣∣∣∣∣∣∣=−b2
1 +4b0b2 (B.1)

We can easily repeat this procedure for the cubic roots.

Consider now the generalization for the SU(4) case: According to known theorems (see theorem

2.5 of [108]) the required quantity is given by the Sylvester formula∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b0 b1 b2 b3 b4 0 0

0 b0 b1 b2 b3 b4 0

0 0 b0 b1 b2 b3 b4

4b0 3b1 2b2 b3 0 0 0

0 4b0 3b1 2b2 b3 0 0

0 0 4b0 3b1 2b2 b3 0

0 0 0 4b0 3b1 2b2 b3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(B.2)

If these are the roots of SU(4), we have b1 = ∑i ti = 0 and we get the result (2.91).
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The extension to SU(5) is straightforward. It can be computed form the determinant∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b0 b1 b2 b3 b4 b5 0 0 0

0 b0 b1 b2 b3 b4 b5 0 0

0 0 b0 b1 b2 b3 b4 b5 0

0 0 0 b0 b1 b2 b3 b4 b5

5b0 4b1 3b2 2b3 b4 0 0 0 0

0 5b0 4b1 3b2 2b3 b4 0 0 0

0 0 5b0 4b1 3b2 2b3 b4 0 0

0 0 0 5b0 4b1 3b2 2b3 b4 0

0 0 0 0 5b0 4b1 3b2 2b3 b4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(B.3)

Setting b1 = 0 we obtain the result quoted in the text.



Appendix C

Anomaly cancellation in E6 models

It has been noted in [109] that in models with multiple perpendicular U(1) symmetries, there is a

U(1)Y −U(1)−U(1) anomaly which is not automatically cancelled through the spectral cover

approach. In order for this anomaly to be cancelled, the following condition is required:

3∑
Ci

10

(Qi
10)

A(Qi
10)

BNi
10 +∑

C j
5

(Q j
5)

A(Q j
5)

BN j
5 = 0 (C.1)

where the sums are over all the 10 and 5 matter curves, Q denotes the charge under either the

U(1) labelled A or the one labelled B (allowing for mixed anomalies in the case of multiple

U(1)s), and the Ns refer to the chirality induced by hypercharge flux. In the models considered

in this thesis, we have 3 U(1)s, with generators

Qχ =
1

2
√

10
diag(−1,−1,−1,−1,4) (C.2)

Qψ =
1

2
√

6
diag(1,1,1,−3,0) (C.3)

Q⊥ =
1

2
√

3
diag(1,1,−2,0,0) (C.4)

As such, we can tabulate the U(1) charges of all the 5 and 10 curves in the model

We can now check if Eq. (C.1) holds for all the combinations of A,B = χ,ψ,⊥ in U(1)Y −
U(1)A−U(1)B. Plugging in the charges and the NY values from Table C.1 into the left hand

side of Eq. (C.1) gives
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Curve Qχ Qψ Q⊥ NY
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Table C.1: U(1) charges of the 10 and 5 matter curves

A = χ,B = χ → 3[− 1
40

+
1
40

]+ [
1
10
− 1

10
− 1

10
− 9

40
+

1
10

+
9
40

] = 0

A = ψ,B = ψ → 3[− 1
24

+
1

24
]+ [

1
6
− 1

6
− 1

6
− 1

24
+

1
6
+

1
24

] = 0

A = χ,B = ψ → 3[
1

4
√

60
− 1

4
√

60
]+ [− 1√

60
+

1√
60
− 1√

60
− 3

4
√

60
+

1√
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+
3

4
√
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] = 0

This shows that the relation is indeed obeyed for the cases U(1)Y −U(1)χ −U(1)χ , U(1)Y −
U(1)ψ −U(1)ψ and U(1)Y −U(1)χ −U(1)ψ . (This was to be expected, as U(1)χ and U(1)ψ

are both embedded in E6). However, for the 3 anomalies involving U(1)⊥, Eq. (C.1) is not

satisfied, meaning that the anomalies involving U(1)⊥ are not cancelled. However, it should be

noted that [95] points out that anomaly cancellation constraints can be relaxed in the case of

geometrically massive U(1)s in F-theory.
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Topological relations arising from the
elimination of bulk exotics

The requirement that each type of exotic matter occurs in vector pairs is given by n j− n∗j = 0.

The extra requirement which would mean that this type of exotic is completely eliminated from

the spectrum is n j + n∗j = 0. These requirements are given here for each type of exotic. Note

that not all of these relations can be satisfied at once, and are written here on the assumption that

a subset of them will be satisfied.

n1−n∗1 = 0⇒ c1(S) · c1(L1) = 0 (D.1)

n1 +n∗1 = 0⇒ c1(L1)
2 =−2 (D.2)

n2−n∗2 = 0⇒ c1(S) · c1(L2) = 0 (D.3)

n2 +n∗2 = 0⇒ c1(L2)
2 =−2 (D.4)

n3−n∗3 = 0⇒ c1(S) · c1(L1) = c1(S) · c1(L2) (D.5)

n3 +n∗3 = 0⇒ c1(L1)
2 + c1(L2)

2 =−2 (D.6)

n4−n∗4 = 0⇒ c1(S) · c1(L1) =−c1(S) · c1(L2) (D.7)

n4 +n∗4 = 0⇒ c1(L1)
2 + c1(L2)

2 =−2 (D.8)
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n5−n∗5 = 0⇒ c1(S) · c1(L3) = c1(S) · c1(L2) (D.9)

n5 +n∗5 = 0⇒ c1(L2)
2 + c1(L3)

2 =−2 (D.10)

n6−n∗6 = 0⇒ c1(S) · c1(L2) =−c1(S) · c1(L3) (D.11)

n6 +n∗6 = 0⇒ c1(L2)
2 + c1(L3)

2 =−2 (D.12)

n7−n∗7 = 0⇒ c1(S) · c1(L1) = c1(S) · c1(L2)+ c1(S) · c1(L3) (D.13)

n7 +n∗7 = 0⇒ c1(L1)
2 + c1(L2)

2 + c1(L3)
2 =−2 (D.14)

n8−n∗8 = 0⇒ c1(S) · c1(L1) =−c1(S) · c1(L3) (D.15)

n8 +n∗8 = 0⇒ c1(L1)
2 + c1(L3)

2 =−2 (D.16)

n9−n∗9 = 0⇒ c1(S) · c1(L3) = 0 (D.17)

n9 +n∗9 = 0⇒ c1(L3)
2 =−2 (D.18)

n10−n∗10 = 0⇒ c1(S) · c1(L1) = c1(S) · c1(L3) (D.19)

n10 +n∗10 = 0⇒ c1(L1)
2 + c1(L3)

2 =−2 (D.20)



Appendix E

F and D flatness conditions with bulk
exotics

In the language of Table 4.1, the singlets X5 and X5 correspond to θ45 and θ54 respectively. As

these singlets get GUT scale VEVs in the E6SSM model, we must check that this is compatible

with the F- and D-flatness conditions. The D-flatness condition for UA(1) is

∑QA
i j(
∣∣〈θi j

〉∣∣2− ∣∣〈θ ji
〉∣∣2) =− TrQA

192π2 g2
s M2

S

=−XTrQA (E.1)

This condition must be checked for all the U(1)s, the charge generators of which are given in

the form Q = diag[t1, t2, t3, t4, t5] by

Qχ ∝ diag[−1,−1,−1,−1,4] (E.2)

Qψ ∝ diag[1,1,1,−3,0] (E.3)

Q⊥ ∝ diag[1,1,−2,0,0] (E.4)

We can see immediately that if 〈θ45〉 = 〈θ54〉 = MGUT , the presence of these VEVs will not

affect the D-flatness relations due to the relative minus sign in Eq. (E.1). As such, it is only

necessary to check the conditions for F-flatness. As in the E6SSM model θ31 and θ53 get large

VEVs while θ34 gets a TeV scale VEV, the only new problematic terms in the superpotential are

Wθ = λi jkθ
i
45θ

j
53θ

k
34 +Mabθ

a
45θ

b
54 (E.5)
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As such, the F-flatness equations will be satisfied provided the following conditions are satisfied

∂Wθ

∂θ k
34

= λi jk
〈
θ

i
45
〉〈

θ
j

53

〉
= 0

∂Wθ

∂θ
j

53

= λi jk
〈
θ

i
45
〉〈

θ
k
34

〉
= 0

∂Wθ

∂θ i
45

= λi jk

〈
θ

j
53

〉〈
θ

k
34

〉
+Mib

〈
θ

b
54

〉
= 0

Due to the model building freedom we have in the number of singlet fields and the fact that the

number of θ45 and θ54 fields in the spectrum can be changed by looking at topological relations

where γ > 4 in Eq. (5.34), these F-flatness relations can always be satisfied in realisations of

the E6SSM-like model.
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Overlap integrals

As in [85], the equations for a massless 4-dimensional fermionic field are

Dψ = 0 (F.1)

with

Dψ =


0 D1 D2 D3

−D1 0 D†
3 −D†

2

−D2 −D†
3 0 D†

1

−D3 D†
2 −D†

1 0

ψ = 0 ,ψ =


√

2η

ψ1

ψ1

χ


The covariant derivatives are given by

Di =
M
R‖

(∂i−
1
2

qaMa
i jz j) (F.2)

D†
i =

M
R‖

(∂i +
1
2

qa(Ma
i j)
∗z j) (F.3)

D3 =−MR⊥ma
i zi (F.4)

D†
3 = mR⊥(ma

i )
∗zi (F.5)

where i=1,2

The equations for massive modes are given by

D†D = |mλ |2 ψ (F.6)
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Working out D†D gives

D†D =−∑
i

D†
i DiI+B (F.7)

where B is given by

B=


0 0 0 0

0 [D†
2D2]+ [D†

3D3] [D2,D
†
1] [D3,D

†
1]

0 [D1,D
†
2] [D†

1D1]+ [D†
3D3] [D3,D

†
2]

0 [D1,D
†
3] [D2,D

†
3] [D†

1D1]+ [D†
2D2]

 (F.8)

Given that [D†
3D3] = 0, this reduces to Eq.(2.28) of [85]. A basis change can now be made as in

Eq.(2.29), and so the rotated D is given by Eq.(2.30)

D̃=


1 0 0 0

0 ε1,1 ε1,2 ε1,3

0 ε2,1 ε2,2 ε2,3

0 ε3,1 ε3,2 ε3,3




0 D1 D2 D3

−D1 0 D†
3 −D†

2

−D2 −D†
3 0 D†

1

−D3 D†
2 −D†

1 0




1 0 0 0

0 ε1,1 ε2,1 ε3,1

0 ε1,2 ε2,2 ε3,2

0 ε1,3 ε2,3 ε3,3



As an example, the (2,3) element of D̃ can be calculated as follows

D̃2,3 = ε1,1(ε2,2D†
3− ε2,3D†

2)+ ε1,2(−ε2,1D†
3 + ε2,3D†

1)+ ε1,3(ε2,1D†
2− ε2,2D†

1)

= D†
1(ε1,2ε2,3− ε1,3ε2,3)+D†

2(ε1,3ε2,1− ε1,1ε2,3)+D†
3(ε1,1ε2,2− ε1,2ε2,1)

= ∑
k

ε3,kD†
k (F.9)

where ε1,2,3 are the normalised eigenvectors of B. Performing similar analysis for the other

elements gives the matrix D̃ as

D̃=


0 D̃1 D̃2 D̃3

−D̃1 0 D̃†
3 −D̃†

2

−D̃2 −D̃†
3 0 D̃†

1

−D̃3 D̃†
2 −D̃†

1 0



where D̃p are given as in Eq.(2.31) of [85], by
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D̃p = ∑
k

εp,kDk (F.10)

Putting this result for D̃ into Eq.(2.33) gives the result

D̃1ϕ = 0

D̃†
2ϕ = 0

D̃†
3ϕ = 0 (F.11)

This defines how we should define the raising and lowering operators. As ϕ is annihilated by D̃1,

but by the daggered operators D̃†
2 and D̃†

3, the lowering operators a1,2,3 are identified in Eq.(2.34)

and the raising operators by the conjugates. This is the reason why in Eq.(2.37) the action of

three raising operators on the ground state involves one dagger, and two non-daggers.

Using Eq.(2.32) (and bearing in mind that λ1 +λ2 +λ3 = 0), for fields transforming in a partic-

ular representation of the gauge group, the operator D̃†D̃ is given by

D̃†D̃=−(D̃†
1D̃1 + D̃†

2D̃2 + D̃†
3D̃3)I+ B̃ (F.12)

=−(D̃†
1D̃1 + D̃2D̃†

2 + D̃3D̃†
3)I+([D̃2, D̃

†
2]+ [D̃3, D̃

†
3])I+ B̃ (F.13)

= (a†
1a1 +a†

2a2 +a†
3a3)I+(

M
R‖

)2(λ2 +λ3)I− (
M
R‖

)2diag(0,λ2 +λ3,λ1 +λ3,λ1 +λ2)

(F.14)

= (a†
1a1 +a†

2a2 +a†
3a3)I+(

M
R‖

)2diag(−λ1,0,λ2−λ1,λ3−λ1) (F.15)

As described in [85], massive wavefunctions involve both chiralities, and so muct have compo-

nents which transform in the conjugate representation. This can be taken care of by changing

the sign of the charges qa in the definitions of the covariant derivatives.

F.1 The Set Up

In order to compute this diagram, we need to rotate the wavefunctions for the 5M and the 10M

curve from the z1, z2 basis, into the u,w basis used in the computation of the 5H wavefunction.

Our model corresponds to the case of vanishing flux density, and so the wavefunctions are

(leaving the normalisation factors out):
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ψ
l
5M
∼ (w−u)lexp[−1

2
((ρ1 + M̃1) |w|2 +(ρ1 + M̃1) |u|2 +(ρ1− M̃1)wu+(ρ1− M̃1)uw)]

(F.16)

ψ
m
10M
∼ (−w−u)mexp[−1

2
((ρ2 + M̃2) |w|2 +(ρ2 + M̃2) |u|2− (ρ2− M̃2)wu− (ρ2− M̃2)uw)]

(F.17)

ψ
k
5H
∼ exp[

1√
v2
++ v2

−
(− R

v+v−
|v+u+ v−w|2 +2iIm(k(−v−u+v+w)))] (F.18)

As the 5H is on the same curve as the 5H , its wavefunction is given by the complex conjugate:

ψ
k
5H
∼ exp[

1√
v2
++ v2

−
(− R

v+v−
|v+u+ v−w|2−2iIm(k(−v−u+v+w)))] (F.19)

For the case of non-vanishing flux density, the 5H wavefunction does not include the 2iIm(k(−v−u+v+w))

part inside the exponential. In this case, there is no conserved KK momentum, and the exponen-

tial factor of the wavefunction is invariant under the global U(1):

u→ eiθ u, w→ eiθ w (F.20)

Clearly the exponentials in the wavefunctions of our case of vanishing flux density are not

invariant under this geometric U(1). However, we aim to show that by taking the example

of Figure 3.2, for a complete diagram the U(1) is restored (at least approximately). In order to

understand this in more detail, it is instructive to derive the 5H wavefunction.

F.2 Derivation of the Vanishing Flux Density 5H Wavefunction

In the notation of CDP, the covariant derivatives are

Du =
M?

R‖
∂u, Dw =

M?

R‖
∂w, D3 =−M?R⊥(

w
v+

+
u

v−
)

D†
u =

M?

R‖
∂u, D†

w =
M?

R‖
∂w, D†

3 = M?R⊥(
w
v+

+
u

v−
)

The matrix B is given by (with R = R‖R⊥)
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B=
M2

?

R2
‖


0 0 0 0

0 0 0 R
v−

0 0 0 R
v+

0 R
v−

R
v+

0

 (F.21)

with eigenvalues

λ0 = λ3 = 0, λ1 =−
M2

?

R2
‖

R

√
1

v2
+

+
1

v2
−
, λ2 =

M2
?

R2
‖

R

√
1

v2
+

+
1

v2
−

(F.22)

and corresponding eigenvectors

ξ0 =


1

0

0

0

 , ξ1 =


0

v+
v−

−
√

v2
++ v2

−

 , ξ2 =


0

v+
v−√

v2
++ v2

−

 , ξ3 =


0

−v−
v+
0

 (F.23)

In the basis where the matrix B is diagonal, the covariant derivatives are

D̃1 =
1
|ξ1|

M?

R‖
[v+∂u + v−∂w +R

√
v2
++ v2

−(
w
v+

+
u

v−
)] (F.24)

D̃†
2 =

1
|ξ2|

M?

R‖
[v+∂ u + v−∂ w +R

√
v2
++ v2

−(
w
v+

+
u

v−
)] (F.25)

D̃†
3 =

1
|ξ3|

M?

R‖
[−v−∂ u + v+∂ w] (F.26)

with the following equations for the ground state wavefunction

D̃1ϕ = 0, D̃†
2ϕ = 0, D̃†

3ϕ = kkkϕ (F.27)

where the appearance of kkk in the third equation corresponds to the fact that [D̃†
3, D̃3] = 0, and

so there is a conserved quantum number associated with this commutator instead of a quantum

harmonic oscillator. We can solve these equations by taking a general form for ϕ

ϕ = exp[−pH
1 |w|2− pH

2 |u|2 + pH
3 wu+ pH

4 uw+au+bw+ cu+dw] (F.28)

Plugging this form into the three above equations gives the result we used in the previous section,

but with kkk scaled by
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kkk→
R‖
M?

kkk (F.29)

F.3 Triple Wavefunction Overlaps

As the right hand vertex of the digram coorresponds to an E8 point of enhancement, the wave-

functions for the 52 and θ31 curves will have the same form (with some suitable approximation

for the singlet wavefunction as a projection on the del Pezzo surface), but the cooeficients inside

the exponentials will be different. Taking into account the fact that there are multiple states on

the same curves, the 52 and θ31 wavefunctions will have some ’family’ dependence. As such,

we can write these wavefunctions, with general coefficients, as

ψ
p
52
∼ (aww+auu)pexp[−A |w|2−B |u|2 +Cwu+Duw)] (F.30)

ψ
q
θ31
∼ (bww+buu)qexp[−E |w|2−F |u|2 +Gwu+Huw)] (F.31)

The first thing to note is that we can calculate the triple wavefunction overlaps at each point

∫
S

ψ
l
5M

ψ
m
10M

ψ
k
5H
∼
∫

S
d2u∧d2w(w−u)l(−w−u)mexp[α |w|2 +β |u|2 + γwu+δuw

+2iIm(k(−v−u+v+w))] (F.32)∫
S

ψ
p
52

ψ
q
θ31

ψ
k
5H
∼
∫

S
d2u∧d2w(aww+auu)p(bww+buu)q[α ′ |w|2 +β

′ |u|2 + γ
′wu+δ

′uw

−2iIm(k(−v−u+v+w))] (F.33)

The problem with the k dependent part of each expression is that it contains factors of u and w,

which carry non zero U(1) charge. If we were to expand each exponential, we would see that

both even and odd terms involving the KK momentum k would cancel provided that α = α ′,

β = β ′, γ = γ ′ and δ = δ ′. However, this will generally not be true, due to the fact that the

enhancement groups at each vertex are different, and so the wavefunction coefficients will also

be different. The dangerous terms will always vanish however to first order.

F.4 Calculating the Diagram as a Six Wavefunction Overlap

If the coordinates of the SO(12) point are centered on the origin of S, the coordinates of the

other vertex are centered on the point r = (a,b) as in Figure F.1.
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u′

w′

a

b

u

w

Figure F.1: Coordinates of the two vertices

As such, we can calculate the effective diagram for the operator 10M5M5Hθ31 by writing down

the position space Feynman rules, where the Feynman rule for each vertx is the triple overlap

integral, and the propagator in position space is e−M|r|
|r| . As such, we have integrals over S (u and

w) and S′ (u′ = u+a and w′ = w+b).

Gl,m,p,q ∼
∫

S
d2u∧d2w

∫
S′

d2u′∧d2w′(w−u)l(−w−u)m(aww′+buu′)p(bww′+buu′)q

× exp[α |w|2 +β |u|2 + γwu+δuw+2iIm(k(−v−u+v+w))]× e−M|(u′−u,w′−w)|

|(u′−u,w′−w)|
× [α ′

∣∣w′∣∣2 +β
′ ∣∣u′∣∣2 + γ

′w′u′+δ
′u′w′−2iIm(k(−v−u′+v+w′))] (F.34)

The Yukawa potential appears as it is the Fourier transform of the propagator

e−M|r|

|r| ∼
∫

d4k
1

k2 +M2 eikr (F.35)

∼
∫

d4k
eikr

M2 (1−
k2

M2 + ...) (F.36)

where on the second line we have expanded for large M. We can now insert this expression into

Eq. (F.34), and as such, we can perform the integrals over the two sets of coordinates as well as

k. As an example, we will take the case where the wavefunction coefficients are α = α ′ =−2,

β = β ′ = −2, γ = γ ′ = 1 and δ = δ ′ = 1 (which corresponds to both vertices looking like the

usual picture of one curve along the u and w axes, and one along the line u=w). We can also take

the case of the third family, so we do not have to worry about powers of u and w premultiplying

the exponential, and matching these by introducing covariant derivatives. Looking at the term

in Eq. (F.34) which corresponds to the first term in the expansion of Eq. (F.36), the integral over

k will give a delta function, leading to



156 Appendix F Overlap integrals

G(0) =
1

M2

∫
S

d2u∧d2w
∫

S′
d2u′∧d2w′exp[−2 |w|2−2 |u|2 +wu+uw

−2
∣∣w′∣∣2−2

∣∣u′∣∣2 +w′u′+u′w′+2iIm(kkk(−v−(u−u′)+v+(w−w′)))]

× (2π)4
δ (u−u′,w−w′)

=
π2

3M2 × (2π)4 (F.37)

where the notation kkk has now been introduced for the KK momentum, to distinguish it from

the k in the Fourier transform of the propagator. Since the parts of the wavefunctions which

violate the geometric U(1) cancel, the U(1) will be respected by these first order terms, when

we consider families other than the third. We can now get the first order correction to this result

by looking at the expression associated with the second term in the expansion of the propagator

in Eq. (F.36). Now we consider a general family dependence:

G(1) =− 1
M4

∫
d4k

∫
S

d2u∧d2w
∫

S′
d2u′∧d2w′ k2eikr(w−u)l(−w−u)mexp[−2 |w|2−2 |u|2 +wu+uw

−2
∣∣w′∣∣2−2

∣∣u′∣∣2 +w′u′+u′w′+2iIm(kkk(−v−(u−u′)+v+(w−w′)))] (F.38)

In this expression, we need to look at the eikr factor more closely. Here, r is given by

r = (a,b) = (u′−u,w′−w) (F.39)

where u,w,... are complex coordinates. As such, we could write r as a four component vector

with real components

r = (Re(u′−u), Im(u′−u),Re(w′−w), Im(w′−w)) (F.40)

Of course we can also write k as a real four component vector, k = (k1,k2,k3,k4). As such, we

have

eikr→ exp[i(k1Re(u′−u)+k2Im(u′−u)+k3Re(w′−w)+k4Im(w′−w))] (F.41)

= exp[
1
2
(u(ik2− k1)+u′(k1− ik2)+w(ik4− k3)+w′(k3− ik4)

−u(k1 + ik2)+u′(k1 + ik2)−w(k3 + ik4)+w′(k3 + ik4))] (F.42)

Putting this into Eq. (F.38) gives
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G(1)l,m =− 1
M4

∫
dk1dk2dk3dk4

∫
S

d2u∧d2w
∫

S′
d2u′∧d2w′ (k2

1 + k2
2 + k2

3 + k2
4)(w−u)l(−w−u)m

exp[−2 |w|2−2 |u|2 +wu+uw+
1
2
[(ik2− k1−2v−kkk)u

+(ik4− k3 +2v+kkk)w+(−ik2− k1 +2v−kkk)u− (ik4 + k3 +2v+kkk)w]

exp[−2
∣∣w′∣∣2−2

∣∣u′∣∣2 +w′u′+u′w′+
1
2
[(k1− ik2 +2v−kkk)u′

+(k3− ik4−2v+kkk)w′+(ik2 + k1−2v−kkk)u′+(ik4 + k3 +2v+kkk)w′] (F.43)

Leaving the integrals over k for now, we can see that the result is the product of two integrals of

the form

∫
S

d2u∧d2w un1un2wn3wn4e−p1|u|2−p2|w|2+p3wu+p4uw+a1u+a2w+b1u+b2w

= R4
‖∂

n1
a1

∂
n2
b1

∂
n3
a2

∂
n4
b2
[

π2

p1 p2− p3 p4
e

a2b2 p1+a1b1 p2+a1b2 p3+a2b1 p4
p1 p2−p3 p4 ] (F.44)

In order to see if this first order correction is invariant under the geometric U(1), we can evaluate

it for l and m zero, and then non zero. If the U(1) is respected, the only non zero case should

be l = 0, m = 0, as we are not acting on the Higgs wavefunction with any covariant derivatives.

Using Mathematica, we get

G(1)0,0 =− 1
M4

π4R8
‖

9

∫
dk1dk2dk3dk4(k2

1 + k2
2 + k2

3 + k2
4)

× exp[
1
3
(k2

1 + k2
2 + k2

3 + k2
4 + k1k3 + k2k4 +(k1 + ik2− k3− ik4)kkk

+(k3 + ik2− k1− ik4−4kkk)kkk)] (F.45)

G(1)1,0 =− 1
M4

π4R8
‖

54

∫
dk1dk2dk3dk4(k2

1 + k2
2 + k2

3 + k2
4)(k1 + ik2− k3− ik4−4kkk)

× exp[
1
3
(k2

1 + k2
2 + k2

3 + k2
4 + k1k3 + k2k4 +(k1 + ik2− k3− ik4)kkk

+(k3 + ik2− k1− ik4−4kkk)kkk)] (F.46)

Provided that the terms with l and m non-zero are small compared to Eq. (F.37), the geometric

U(1) will be preserved for a complete diagram. In this thesis we will assume that this is true,

although to prove this would require further work.
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