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Anthropogenic nutrient enrichment is often associated with coral

reef decline. Consequently, there is a large consent that

increased nutrient influxes in reef waters have negative longterm

consequences for corals. However, the mechanisms by which

dissolved inorganic nutrients can disturb corals and their

symbiotic algae are subject to controversial debate. Herein, we

discuss recent studies that demonstrate how nutrient

enrichment affects the heat and light stress tolerance of corals

and their bleaching susceptibility. We integrate direct and

indirect effects of nutrient enrichment on corals in a model that

explains why healthy coral reefs can exist over a rather broad

range of natural nutrient environments at the lower end of the

concentration scale and that anthropogenic nutrient enrichment

can disturb the finely balanced processes via multiple pathways.

We conceptualise that corals can suffer from secondary negative

nutrient effects due to the alteration of their natural nutrient

environment by increased phytoplankton loads. In this context,

we suggest that phytoplankton represents a likely vector that can

translate nutrients effects, induced for instance by coastal run-

off, into nutrient stress on coral reefs in considerable distance to

the site of primary nutrient enrichment. The presented synthesis

of the literature suggests that the effects of nutrient enrichment

and eutrophication beyond certain thresholds are negative for

the physiological performance of the coral individual and for

ecosystem functioning. Hence, the immediate implementation of

knowledge-based nutrient management strategies is crucial for

coral reef survival.

Addresses
1 Ocean and Earth Science, University of Southampton, National

Oceanography Centre, Southampton SO14 3ZH, UK
2 Institute for Life Sciences, University of Southampton, Southampton

SO17 1BJ, UK

Corresponding author: Wiedenmann, Jörg

(J.Wiedenmann@soton.ac.uk)

Current Opinion in Environmental Sustainability 2014, 7:82–93

This review comes from a themed issue on Environmental change

issues

Edited by Georgios Tsounis and Bernhard Riegl

Received 12 July 2013; Accepted 28 November 2013

S1877-3435/$ – see front matter, # 2014 The Authors. Published by

Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.cosust.2013.11.029
§ This is an open-access article distributed under the terms of the

Creative Commons Attribution-NonCommercial-No Derivative Works

License, which permits non-commercial use, distribution, and reproduc-

tion in any medium, provided the original author and source are credited.

Current Opinion in Environmental Sustainability 2014, 7:82–93 
Introduction
The presence of humans in the proximity of coral reefs

usually results in an elevated input of nutrients into reef

waters. Nutrients associated with human activities, impor-

tantly nitrogen and phosphorus compounds, are introduced

in various forms: they reach the marine environment as

organic and inorganic compounds, they can be dissolved in

the water or contained in sediments or in particulate

organic matter and can enter reef ecosystems via riverine

influx, via diffuse discharge or as aeolian dust [1,2�,3�,4,5].

Consequently, the decline of coral reefs close to urbanised

areas or to agriculturally or industrially exploited regions

has been considered to be promoted by anthropogenic

nutrient enrichment of reef waters [3�,6�,7�,8].

However, it has proven unexpectedly difficult to provide

experimental evidence for the negative effects of nutrient

enrichment, particularly of dissolved inorganic nutrients,

on coral physiology. Hence, the mechanisms by which

nutrification might promote coral reef decline became

subject to intense and controversial debate [9�,10�]. The

lack of scientific consensus was considered responsible for

wrong management decisions that resulted in regional

coral reef degradation [10�,11]. In some areas, for instance

in the Great Barrier Reef, nutrient management has been

improved, but even there, water quality still remains a

largely unresolved issue [1,2�]. Elsewhere, major pro-

blems persist and the increasing human population will

further aggravate the situation by continued coastal de-

velopment, land and fertiliser usage. For instance, mod-

elling suggests that human deforestation might outweigh

future climate change impacts of sedimentation on major

coral reef ecosystems in Madagascar [12]. Unfortunately,

the most desirable nutrient management, namely the

reduction of the nutrient input to natural levels will often

be technically impossible or cost prohibitive. Therefore,

knowledge-based optimisation of nutrient management

becomes crucial for coral reef conservation [2�,13]. As we

will discuss in this paper, recent scientific results show

that increased nutrient levels can reduce the heat stress

tolerance of corals, which assigns critical importance to

local management of water quality in order to mitigate the

pressure of global warming and climate change. We will

revisit some longstanding problems of coral nutrient

biology and discuss them in the light of these recent

findings, focussing mostly on issues associated with dis-

solved inorganic nutrients (Dissolved Inorganic Nitrogen

[DIN: NH4
+, NO2

�, NO3
�] and phosphate [PO4

3�]).

Although the discussion of various other forms of nutri-

ents, especially in particulate form or dissolved as organic
www.sciencedirect.com
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nitrogen or phosphorus compounds is not within the

scope of this review, we point out that they deserve

further attention since some are readily taken up by corals

and can contribute significantly to coral reef nutrient

budgets [14–17]. Also, nutrient issues are often closely

related to sedimentation, a topic that is reviewed by Risk

in the present volume.

Here, we introduce conceptual models with the intention

to promote a constructive progress in understanding the

immensely complex nutrient biology of coral reefs. Con-

sidering a broad diversity of potential nutrient effects that

might vary dramatically over space and time will certainly

be key to the development of successful nutrient man-

agement strategies.

Direct and indirect effects of dissolved
inorganic nutrients
Hermatypic scleractinian corals, the habitat forming

species of shallow, warm water coral reefs, depend vitally

on the symbiotic relationship with dinoflagellate algae

(zooxanthellae) contained in the host tissue [18,19]. The

demand of zooxanthellae for the typical plant nutrients,

importantly nitrogen and phosphorus compounds, makes

the coral holobiont responsive to the nutrient environment

[20�]. Corals and other cnidarians seem able to restrict the

access of nutrients such as phosphate to their zooxanthellae

[21,22], but this capacity appears to be limited since

zooxanthellae have been often shown to react to nutrient

enrichment of the water [3�,23�]. While there is a general

consent that certain nutrient levels are required for coral

growth [20�], the effects of elevated concentrations of

dissolved inorganic nutrients on coral reefs, however, are

subject to intense debate. One reason for the controversy is

the fact that coral reefs can exist over a range of nutrient

concentrations and are not necessarily restricted to extre-

mely oligotrophic waters [9�,24]. Here we show that con-

flicts arising from apparently contradictory findings can

often be avoided by strictly separating the discussion of

direct effects of nutrient enrichment on coral physiology

and the indirect effects provoked by nutrient-driven pro-

cesses outside of the coral.

Direct effects of nutrient enrichment

Experimental exposure to elevated nutrient concen-

trations can induce a number of negative responses

of corals such as reduced reproductive success, calcification

rates, skeletal density or linear extension [3�,23�,25,

26�,27]. However, several studies did not reveal direct

negative effects of increased nutrient levels on coral physi-

ology or found them only at unnaturally high concen-

trations [3�,9�]. We have recently shown that increased

nutrient levels might not negatively affect the physiologi-

cal performance of zooxanthellae as long as all essential

nutrients are available at sufficient concentrations to

ensure their chemically balanced growth [28�]. These

results could explain why some reefs and the nutritional
www.sciencedirect.com 
status and metabolism of their inhabitants do not always

show negative responses to eutrophication [29�,30�], at

least in the absence of temperature and light stress.

In yet some other cases, corals responded positively to the

addition of nutrients, for instance by increased growth

[25,31,32�] or by a reduced susceptibility to the end-of-

summer bleaching, the seasonal loss of corals’ zooxanthel-

lae [33]. Refuges from heat stress-mediated bleaching

were found in regions with small-scale upwelling [34].

The water from greater depths might not only provide

cooling effects [34], but may also supply dissolved inor-

ganic nutrients [35].

A number of studies found that elevated nitrogen levels

in the water promoted zooxanthellae growth and resulted

in higher zooxanthellae densities without obvious nega-

tive effects on the corals (see review by Fabricius [3�]).
Most recently, however, we could demonstrate that

corals exposed to elevated nitrogen levels were more

susceptible to bleaching when exposed to heat and light

stress [28�]. Interestingly, the detrimental effects

observed in these experiments could be attributed to

the relative undersupply of phosphorus that resulted

from the enhanced demand of the proliferating zoox-

anthellae population rather than to the elevated nitrogen

levels themselves (Figures 1 and 2). While we estab-

lished this nutrient starvation syndrome for high nitro-

gen/ambient phosphorus conditions, we postulate that

negative effects might also arise from other forms of

chemically imbalanced zooxanthellae growth during

which vital compounds become undersupplied, in-

cluding trace elements or micronutrients such as iron.

This view is supported by a previous study that showed

that experimental iron depletion reduced the photosyn-

thetic efficiency of zooxanthellae from Stylophora pistil-
lata, in particular under heat stress [36]. Another study

showed that high zooxanthellae densities that might

result from nutrient enrichment render corals more

susceptible to bleaching [37�]. Mechanistically, bleach-

ing of corals harbouring nutrient-starved zooxanthellae

or high algal stocks is thought to be mediated by reactive

oxygen species (ROS). An increased ROS production

may be associated with a nutrient-driven alteration of

the lipid compositions of zooxanthellae membranes (e.g.

by higher sulfolipid [sulphoquinovosyldiacylglycerol,

SQDG] to phospholipid [phosphatidylglycerol, PG]

ratios) (Figure 1) [28�] or result from a larger number

of ROS producing units (algal cells) [37�]. Higher algal

densities might also facilitate bleaching by increasing the

light absorption and consequently, the temperature of

the coral colony [38,39]. Furthermore, enhanced zoox-

anthellae growth rates promoted by elevated nutrient

levels were suggested to promote coral bleaching by

inducing a CO2-limitation of the symbiotic algae [40].

Elevated nitrogen levels can stimulate zooxanthellae

growth with the potential downstream effects discussed
Current Opinion in Environmental Sustainability 2014, 7:82–93
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Figure 1
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Negative direct effects of high nitrogen availability on zooxanthellae growth and heat and light stress resistance of corals according to Wiedenmann

et al. [28�]. (a) Under nutrient limitation in a steady-state population where the growth rate is determined by the rate of nutrient supply, zooxanthellae

are fully acclimated and show no signs of photosynthetical stress (Fv/Fm > 0.5). (b) Under nutrient-replete conditions, growth rates are increased.

Since all essential nutrients including iron/trace elements (*) and phosphorus (P) are supplied in sufficient amounts, the cellular biochemical

composition remains stable and under experimental conditions, the photosynthetic capacity and stress resistance are normal. (**) Possible negative

side-effects of high zooxanthellae densities are discussed in the text. (c) Undersupply of growing zooxanthellae populations with P or other essential

nutrients including iron/trace elements (*) can result in nutrient starvation of the algae. P starvation, can be induced by the transition of zooxanthellae

from a nutrient-limited to a nutrient starved state due to an increased cellular P demand caused by growth rates being accelerated by elevated nitrogen

supply. Under this condition, zooxanthellae replace phospholipids [phosphatidylglycerol, PG] by sulfolipids [sulphoquinovosyldiacylglycerol, SQDG]. P

starvation reduces the photosynthetic capacity (Fv/Fm < 0.5) and renders the corals susceptible to heat/light stress. Alternatively, P starvation might

result when zooxanthellae growing under nutrient replete conditions are deprived of P while nitrogen levels remain high.

Current Opinion in Environmental Sustainability 2014, 7:82–93 www.sciencedirect.com
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Figure 2
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Potential anthropogenic and natural drivers of transitions between water conditions that might cause nutrient limitation (a), nutrient replete growth (b)

or nutrient starvation (c) of zooxanthellae. References are given in the text. Nutrients include phosphorus (P), iron and trace elements (*). Photographs

show the appearance of Montipora foliosa cultured under the respective nutrient conditions. The coral colour is dominated by variation in the

zooxanthellae density [28�]. Colour scales are provided under the coral images to facilitate the comparison of their colours.
here. On the other hand, increased phosphate concen-

trations can accelerate, for instance, coral growth, but also

reduce skeletal density, rendering the corals more brittle

and susceptible to mechanical damage [25]. Hence, it is

important to consider that direct effects of nitrogen or

phosphorus enrichment may be substantially different

(see also [3�] for review). Several natural and anthropo-

genic drivers have the potential to alter the nutrient

environment (see [41] and references therein) and

induce shifts between nutrient limited, nutrient replete

and nutrient starved conditions (Figure 2). Relevant

processes include changes in upwelling and water mixing

regime [35,42,43], alterations in the mobilisation from

sediments (e.g. by trawling, dredging, storm mixing)

[44,45], production (nitrogen fixation) or removal (deni-

trification, assimilation) by organisms such as bacteria

and phytoplankton [46,47] and various forms of anthro-

pogenic disturbances [3�]. Summarising the direct effect
www.sciencedirect.com 
of nutrients on corals, the results of different studies

clearly suggest that very low nutrient levels are not

necessarily optimal for all aspects of their physiological

performance. However, levels beyond certain thresholds

can have fatal direct effects on the physiology of the coral

holobiont, especially under heat and light stress.

Indirect effects of nutrient enrichment

On the positive side, the increased productivity of nutri-

ent enriched waters might benefit corals for instance by

an increased availability of particulate food [3�,14,48,49].

Moreover, the sun screening provided by phytoplankton

in the water column might potentially help corals in

situations during which their functioning is negatively

affected by light stress [50]. However, several studies

from recent years have demonstrated that a range of

indirect negative effects of elevated nutrient levels can

contribute to coral reef decline. For example, nutrient
Current Opinion in Environmental Sustainability 2014, 7:82–93



86 Aquatic and marine systems

Figure 3
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Conceptual model of reef coral resilience and survival under the

combined impact of direct and indirect effects of elevated nutrient

levels. (a) The performance of corals can be sub-optimal at very low

nutrient levels and benefits from a slight enrichment. However, higher

concentrations of nutrients in the water can have direct negative effects

on the corals, for example, by increasing their susceptibility to heat

stress. (b) Coral bleaching in waters influenced by urban pollution and

coastal development, Saadiyat Reef, UAE, September 2012. (c) With

higher nutrient levels, the coral reef ecosystem becomes more

dependent on the top down control of indirect negative nutrient effects

and accordingly vulnerable to disturbances. (d) Increased nutrient input

stimulates plankton loads that promote filter feeders and bioeroders.

These can represent space competitors for corals or endanger their

structural integrity. Here, Porites sp. is deformed by a high load of filter

feeding parasitic barnacles, Gulf of Oman, September 2012. (e) Direct

and indirect effects act together to define coral reef resilience and

survival. The individual contribution of these components will probably

vary depending, for instance, on the regional nutrient environment, the

species assemblage and seasonal changes. Importantly, both direct and

indirect effects become negative at higher nutrient levels and put reef

survival at risk. (f) In healthy coral reefs, top down control processes can

restrict the potential negative impacts of elevated nutrient levels. The

image shows a coral (A. palmata) — herbivoric fish assemblage in

Curaçao, May 2013.
enrichment can increase the productivity of coral reef

macroalgae [51], and has been consequently associated

with increases in macroalgal densities on coral reefs

[52,53�,54,55]. While the replacement of corals by macro-

alga may often indicate previous coral mortality due to

external drivers rather than competitive overgrowth, once

established, the algal cover can lead to competitive inhi-

bition of coral recruitment [56]. Furthermore, macroalga

can negatively affect corals by shading/overtopping, redu-

cing water exchange, and causing mechanical abrasion or

chemical disturbance [56,57]. Unusually strong upwelling

of nutrient-rich waters in the Gulf of Eilat induced algal

blooms and resulted in thick mats of filamentous algae

covering of the reef and in extensive coral death [57]. A

nutrification-mediated increase in phytoplankton abun-

dance can supply more food for larvae of the crown-of-

thorns starfish (Acanthaster planci), thereby promoting

devastating invasions by the corallivorous adults

[58�,59]. At the same time, the increased plankton load

stimulates the proliferation of filter feeders and bioero-

ders that can represent space competitors for corals or

endanger their structural integrity [53�,60–61] but see

[62]. This can be of particular concern when the corals’

growth rates are reduced due to elevated nutrient levels

[23�], weakening those parts of their innate immune

response that rely on active overgrowth of epizoic and

endolithic competitors [63]. High phytoplankton

densities may impose light limitation to zooxanthellae

and result in reduced calcification rates (see [27] and

references therein). Finally, the increase of nutrient

levels in reef waters can be considered to contribute to

the spread of coral diseases [64–66]. All indirect negative

effects can potentially be subject to top-down control, but

as the reef health becomes more and more dependent on

such control mechanisms it also becomes more suscept-

ible to disturbances. Insufficient top-down control may

have catastrophic consequences for reef ecosystems as

exemplified by the removal of grazers by overfishing or

die-outs [67].

Synthesis of direct and indirect effects of nutrient

enrichment

We have integrated both, the direct and indirect effects of

nutrification in a conceptual model of reef resilience and

survival (Figure 3). This model considers that in very

oligotrophic waters, corals’ physiological performance

may not be at their highest levels in all aspects, for

example, coral growth rates may not be at their maximum

[25] (Figure 3a). However, under these conditions, the

reef benefits from the absence of many negative indirect

nutrient effects and the associated higher independence

from top-down control processes. The abundance of

corallivorous Acanthaster, for instance, would also be

restricted by the lack of phytoplankton as food for its

larvae [58�] and not only by its predators (Figure 3b).

Moreover, low nutrient levels could limit the growth of

macroalgae, in addition to top-down control by herbivores
Current Opinion in Environmental Sustainability 2014, 7:82–93 www.sciencedirect.com
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[52]. Slightly increased nutrient levels may result in a

better physiological performance of corals, for instance, in

increased growth [25]. At the same time the stronger

impact of indirect negative effects and the increasing

dependence on top-down control might neutralise the

positive direct nutrient effects on coral physiology in the

context of the overall reef performance [68]. Importantly,

at higher nutrient concentrations, direct nutrient effects

may also provoke negative responses such as an increase

in bleaching susceptibility [28�]. Together with the indir-

ect negative effects that prevail at higher nutrient con-

centrations, the direct high-nutrient driven negative

effects act together to promote coral reef decline

(Figure 3c). This model can help to explain why healthy

coral reefs can exist over a relatively broad range of

natural nutrient environments at the lower end of the

concentration scale and that anthropogenic nutrient

enrichment can disturb the finely balanced processes

via multiple pathways.

Primary and secondary effects of nutrient
enrichment on the nutrient environment of
reef corals
The fast assimilation of nutrients by phytoplankton limits

the geographical range of direct effects of newly intro-

duced nutrients on coral reefs [69�]. Accordingly, it has

been difficult to correlate negative effects of increased

dissolved inorganic nutrients on coral communities

beyond local scales [3�]. Hence, the impression might

be generated that nutrient enrichment may not affect

coral communities further away from the nutrient source.

Here, we discuss why this is not always the case and why

we consider phytoplankton to be an important key to the

understanding of long-range nutrient effects on coral

reefs.

Primary effects of newly introduced dissolved inorganic

nutrients

Newly introduced dissolved inorganic nutrients are often

taken up rapidly and turned over by plankton commu-

nities [69�]. Consequently, the phytoplankton density,

usually measured as chlorophyll concentration in the

water column, represents a robust indicator of increased

nutrification [69�,70]. The fast removal of nutrients may

suggest that the direct effects of nutrient enrichment on

coral physiology are only relevant within a short range

from the source. However, recent findings from the Great

Barrier Reef demonstrate that nutrients in flood plumes

can be transported over distances >50 km, exposing even

distant reefs to temporally elevated nutrient spikes. This

long-range transport is facilitated when high sediment

loads of the plume impose light limitation to the nutrient-

enriched water body and prevent the assimilation of

nutrients by phytoplankton [2�]. Corals take up nitrogen

compounds effectively within hours [71,72] and their

phosphate uptake rates (half-saturation constants

�0.38–1.08 mM) [73,74] fall in the same range, for
www.sciencedirect.com 
instance, as those of the bloom-forming cyanobacterium

Trichodesmium spp. (0.1–0.6 mM; [75]). Hence, if coral

reefs are located in an area in which the primary intro-

duction of nutrients promotes phytoplankton growth, it is

likely that these conditions will also, at least to a certain

extent, stimulate the proliferation of zooxanthellae. This

assumption is supported by the finding that corals from

habitats with lower water quality hosted higher numbers

of algal symbionts [60,105]. As discussed above, the

accelerated zooxanthellae proliferation can result in a

higher susceptibility to heat and light stress-mediated

bleaching [28�,37�] and other direct negative effects on

coral physiology. In fact, the studies by Wagner et al. and

Wooldridge [6�,7�] correlate elevated nitrogen levels and

increased phytoplankton densities with higher coral

bleaching prevalence at the regional scale.

Secondary nutrient effects mediated by phytoplankton:

a key to the understanding of nutrient enrichment

Increased nutrient loads and altered nitrogen to phos-

phorus ratios due to human activities in river catchment

areas frequently result in algal blooms and altered phy-

toplankton communities in coastal waters [47,76,77]. As

shown for the Great Barrier Reef and the so-called

‘‘blackwater events’’ in Florida bight, phytoplankton

blooms induced by coastal run-off can drift over large

distances before they reach coral reefs [2�,78�,79�]. In the

Florida bight, coral communities were impacted by phy-

toplankton blooms and their decay products [78�,79�]. In

2002, the region was affected for more than two months,

resulting in increased coral mortality [78�].

As a consequence of coastal algal blooms, primary pro-

duction can become limited by single or multiple nutri-

ents or can be affected by nutrient ratios shifting over

time and space. For example, a depletion of dissolved

inorganic phosphorus in coastal waters can be observed in

the aftermath of phytoplankton blooms that were induced

by enhanced concentrations of DIN [47,76,77]. Hence,

the pelagic algae might temporarily reduce DIN, phos-

phate or iron concentrations below normal levels, result-

ing in a reduced availability of these essential nutrients

for the benthic corals. Both the absolute and the relative

depletion of iron and phosphate were recently shown to

increase the stress susceptibility of zooxanthellae and to

promote coral bleaching [28�,36]. Moreover, a recent

experimental study yielded the counterintuitive finding

that nitrate enrichment in the presence of phytoplankton

resulted in lower measurable nitrate concentrations in the

water and increased coral mortality as compared to un-

enriched controls [80].

In the Great Barrier Reef, some phytoplankton blooms,

promoted by increased iron and phosphate influx in

coastal waters, are formed by nitrogen-fixing Trichodes-
mium spp. that might release newly formed bioavailable

nitrogen [46,70], especially towards the end of a bloom.
Current Opinion in Environmental Sustainability 2014, 7:82–93
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Figure 4
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Time courses of monthly averages of chlorophyll a concentration (CHL) and sea surface temperature (SST) deviations from the long-term average of

the warmest month in waters surrounding the coral reefs of Kenya. The local bleaching threshold [103] is indicated by a dashed line. Documented

bleaching events [85] are highlighted by arrows (fat arrows symbolise severe bleaching). Monthly composites of sea surface temperature (SST) and the

average chlorophyll a concentrations for each site were calculated from products of the Advanced Very High Resolution Radiometer Sensor (AVHRRS)

and the Sea-Viewing Wide Field-of-View Sensor (SeaWIFS).
Studies around Fiji and Tonga correlated Trichodesmium
blooms with a mesoscale decrease of surface phosphate

[81]. We analysed remote sensing data of the Kenyan

coast to further assess whether phytoplankton blooms can

be associate with coral bleaching. Trichodesmium blooms

have been recorded from East African waters [82,83�,84]

and corals in this region were severely affected by mass

bleaching in 1998 and over the following years [85,86].

We aligned changes in the chlorophyll a concentration

with the local sea surface temperature and the reported

bleaching events (Figure 4). The data suggest that

bleaching occurred when high temperatures followed a

steep decline of previously elevated chlorophyll a levels

indicative of a breakdown of phytoplankton blooms.

These blooms reached their maximum in January–Feb-

ruary, around the time when Trichodesmium spp. is most

abundant in East-African coastal waters [82,83�,84]. Inter-

estingly, the remote sensing data of the sea surface

temperature suggest that bleaching in 2003 occurred after

temperatures had risen, but not above the local bleaching

threshold temperature. The Trichodesmium blooms

reported for the East African coast were correlated with

elevated nitrate levels in the water, which persisted

unusually long in the mass bleaching year 1998

[82,83�]. In contrast, phosphate levels showed less pro-

nounced seasonal variations, but tended to be reduced

when nitrate levels were elevated [83�]. As described

above, water conditions featuring elevated nitrogen levels

together with low phosphorus (or iron) concentrations,

were experimentally shown to induce nutrient starvation

of zooxanthellae and increase bleaching susceptibility

[28�]. Hence, these data are consistent with our hypoth-

esis that the alteration of the nutrient environment associ-

ated with phytoplankton blooms may increase

susceptibility of corals to heat stress and consequent
Current Opinion in Environmental Sustainability 2014, 7:82–93 
bleaching. We conceptualise that corals can suffer from

secondary negative nutrient effects due to the alteration

of their natural nutrient environment by increased phy-

toplankton loads that result from an initial introduction of

dissolved inorganic nutrients (Figure 5). However, we

note that high phytoplankon densities can disturb corals

also by other mechanisms such as smothering with mucus

derived from algal cells, the release of algal toxins, oxygen

depletion and high amounts of decomposing organic

material [87] that may increase the risk of bacterial and

fungal infections [88]. The above discussed extensive

coral mortality in the Gulf of Eilat caused by an upwelling

event that increased the nutrient levels in the surface

waters was also accompanied by large phytoplankton

blooms. The negative effects for the reefs, though, were

dominated by the covering of the corals with benthic algal

mats [57].

Future challenges of coral reefs nutrient
biology
Defining nutrient concentrations or nutrient ratios that

represent thresholds for the different direct and indirect

nutrient effects on coral reefs and to introduce optimised

target values that promote reef resilience are important

tasks for nutrient biology research. When assessing the

impact of nutrient enrichment on coral physiology in the

field, it should be considered that some effects could be

subtle and might become detectable only after longterm

exposure or under distinct circumstances, for example,

during periods of stress. Importantly, many effects may

vary locally depending on the regional reef water biogeo-

chemistry. In the Great Barrier Reef, for instance, many

processes are nitrogen-limited [69�], whereas phosphorus

availability seems to be limiting in other sites such

as Discovery Bay, Jamaica [52]. The data reported by
www.sciencedirect.com
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Conceptual model of primary and secondary nutrient effects on coral reef ecosystems. The potential disturbances of the natural nutrient environment

of coral reefs resulting from phytoplankton blooms triggered by coastal run-off are superimposed to a NASA satellite image that reveals that even the

outer areas of the Great Barrier Reef can be exposed to land-based pollution carried offshore by river plumes [104]. Depending on environmental

factors such as the sediment load of the bloom, the nutrients in the plume will be sooner or later taken up by phytoplankton [2�]. At a later stage, the

nutrient environment of the receiving water will be affected by the dynamics and successions of the phytoplankton bloom and its decay products.

NASA image courtesy of the MODIS Rapid Response Team, Goddard Space Flight Center.
Lugomela et al. [83�] suggest that in yet another case, the

East African waters, nutrient limitation might switch

seasonally between nitrogen and phosphorus. Accord-

ingly, the effects of nutrients on different coral reef

ecosystems may vary significantly and need to be assessed

individually.

Further experimental studies are required to refine the

mechanistic understanding of nutrient effects on the

physiology of the coral holobiont and to characterise

secondary nutrient stress caused by elevated phytoplank-

ton densities. In particular, the understanding of the

combined effects of the disturbance of nutrient levels

induced by phytoplankton blooms and other post-bloom

changes including increases of decomposing organic mat-

ter and bacterial load and altered oxygen levels needs to

be furthered. Such studies, including remote sensing

approaches, should consider reefs from different geo-

graphical locations to evaluate the influence of the above

mentioned regional conditions. It will be crucial to main-

tain long-term monitoring programs of nutrient levels in

order to establish baselines and to assess the efficiency of

management activities. The data sets are mandatory to

correlate the physiological status of corals (especially

during disturbance events such as bleaching) with the

underlying water chemistry. The results of nutrient
www.sciencedirect.com 
monitoring will also be required to ground truth the

output of remote sensing products that record chlorophyll

concentrations as measure of nutrient fluctuations.

Future assessment of nutrient effects on coral reefs will

strongly involve the optimal utilization of bioindicators.

Recently, a substantial array of water quality indicators

was evaluated and yielded promising candidates

[53�,60,89]. Among others, changes in macroalgal cover

and the colouration/symbiont density of Porites colonies

showed good correlations with water quality [53�,60,89].

The photosynthetic pigment content of zooxanthellae is

often modulated by light intensity whereas zooxanthellae

growth rates and densities can be nutrient dependent

[20�]. Since the latter can be mechanistically related to

coral stress susceptibility, the determination of zoox-

anthellae numbers of suitable model corals, their mitotic

indices and photosynthetic pigment levels can serve as

‘‘high-content’’ bioindicators. Enzymatic markers such as

phosphatase activity along with the photosynthetic

capacity of zooxanthellae (Fv/Fm) promise to be helpful

in characterising the nutrient status of individual corals

[22,28�,90]. As exemplified by the mass spectrometric

analysis of the zooxanthellae lipidome from nutrient

stressed corals [28�], advanced molecular analyses can

provide biomarkers for distinct nutrient conditions.
Current Opinion in Environmental Sustainability 2014, 7:82–93
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Finally, the green-fluorescent protein-like pigments of

the coral host represent excellent markers of environ-

mental conditions [63,91] and might be potentially useful

to characterise the nutrient status of corals by non-inva-

sive monitoring.

Implications for coral reef management and
the future of coral reefs
We have discussed recent findings that demonstrate that

elevated levels of dissolved inorganic nutrients can have

severe negative effects on the physiology of corals, in

particular when the balance between different types of

nutrients is shifted [28�]. Imbalanced nutrient levels can

result, for instance, from nitrogen loaded run-off in areas

of pronounced fertiliser usage or by enhanced nitrogen

fixation due to elevated phosphate influxes and have

severe direct effects on the thermal bleaching threshold

of corals. Here, we have presented a model that integrates

direct nutrient effects on the coral performance and

indirect negative impacts that result from nutrification

of the reef waters. Importantly, high nutrient levels

negatively affect corals concerning both, direct and indir-

ect effects. Hence, management strategies should aim for

sustaining top-down control processes as well as reducing

the nutrient influx in seawater, closely considering that

the balance between different nutrients has a strong

influence on coral physiology. Top-down control pro-

cesses that can reduce the impact of negative indirect

effects of elevated nutrient levels involve distinct fish

assemblages [92,93]. Consequently, the implementation

of sustainable fishing practices, the specific protection of

fish species fulfilling ecological key roles along with the

establishment of no-take-zones to promote species diver-

sity are important management actions to support reef

health [92,94–96]. Also, other groups of reef animals

including sea urchins, holothurians, crustaceans, and mol-

luscs can positively contribute to reef health as grazers of

benthic algae, detrivores, or predators of corallivorous

species such as Acanthaster planci and should be con-

sidered for specific protection [67,97,98]. Phytoplankton

blooms induced by the anthropogenic introduction of

nutrients can be suspected to alter the nutrient environ-

ment of coral reefs in a negative way and may not simply

‘‘neutralise’’ the impact of nutrients by taking them up

from the water column. Depending on the involved algal

species, phytoplankton blooms might, for instance, con-

vert elevated phosphate levels into higher nitrogen levels

or deplete essential nutrients including iron that are

required by the corals for normal functioning. Hence,

future management strategies should consider the differ-

ences between primary nutrient effects and secondary

direct nutrient effects induced by the resulting increase in

phytoplankton biomass. Regionally, the reduction of

either DIN or phosphate pollution might have different

effects [99�] and hence, management strategies should

evaluate whether the reduction of one or the other or of

both types of nutrients is most effective in promoting
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coral reef resilience. In some cases, corals might already

benefit from controlling the nutrient load before and

during seasons with high levels of heat stress. Manage-

ment action should cover all dominant sources of anthro-

pogenic nutrient enrichment, considering that there

might be large distances between the source (e.g. a river

catchment area) and the impacted reefs [2�,78�,79�].
Measures to reduce the nutrient influx in reef waters

can include the reduction of urban pollution by tertiary

waste water treatment, changes in agricultural practice

such as reduction of fertiliser usage, the control of

deforestation and land use for grazing and finally,

the restoration of wetlands and riparian buffers

[1,2�,12,13,99�,100]. Moreover, aquaculture practices

in the proximity of coral reefs need to be evaluated

for their impact on the nutrient environmental [26�]. A

close collaboration between multidisciplinary teams of

researchers, engineers, coral reef management and policy

makers is required to refine and develop a range of

efficient nutrient management strategies that will be of

upmost importance for coral reef survival. Since coral

reefs are declining at a fast rate [101,102], it is important

that action is taken immediately. Otherwise, there might

be no reefs left that could benefit from the efforts.
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