
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other 
copyright owners. A copy can be downloaded for personal non-commercial 
research or study, without prior permission or charge. This thesis cannot be 
reproduced or quoted extensively from without first obtaining permission in writing 
from the copyright holder/s. The content must not be changed in any way or sold 
commercially in any format or medium without the formal permission of the 
copyright holders.
  

 When referring to this work, full bibliographic details including the author, title, 
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name 
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/


UNIVERSITY OF SOUTHAMPTON 

CMOS COMPATIBLE VERTICAL 
SURROUND GATE MOSFETS WITH 

REDUCED PARASITICS 

by 

Veit Dominik Kunz 

A thesis submitted for the degree of 

Doctor of Philosophy 

FACULTY OF ENGINEERING AND APPLIED SCIENCES 

DEPARTMENT OF ELECTRONICS AND COMPUTER SCIENCE 

April 2003 



This thesis is dedicated to my father, 

Veit Martin Kunz 



UNIVERSITY OF SOUTHAMPTON 
ABSTRACT 

FACULTY OF ENGINEERING AND APPLIED SCIENCES 
DEPARTMENT OF ELECTRONICS AND COMPUTER SCIENCE 

Doctor of Philosophy 
CMOS COMPATIBLE VERTICAL SURROUND GATE MOSFETS WITH 

REDUCED PARASITICS 
by Veit Dominik Kunz 

The international technology roadmap for semiconductors predicts that downscaling 
of the dimensions of electronic devices will continue according to Moore's law for the 
next 10 to 15 years. However, device scaling is getting more and more complicated 
due to physical limitations. Novel device architectures are needed to overcome these 
problems. Vertical transistors could be one potential solution since the channel length 
is independent from the device layout. 

In this thesis, novel concepts to reduce parasitic behaviour in vertical single and 
surround gate MOSFETs are presented. This includes a novel fillet local oxidation 
(FILOX) process, optimisations of the pillar, a pillar top insulator and the incorpo-
ration of polySiGe into the source of a vertical MOS transistor. 

Calculations based on industry layout rules at the lOOnm technology node for ver-
tical and lateral devices are presented. For the optimised minimum geometry single 
gate vertical MOSFET incorporating FILOX with optimised pillar structure, the 
gate/drain capacitance is 40% and the gate/source overlap capacitance 60% of that 
of a minimum dimension lateral MOS device. For optimised surround gate transis-
tors the overlap capacitance is 20% and 5% of that of a lateral transistor. These 
calculations demonstrate the potential of optimised vertical MOS transistors. 

Pillar capacitors incorporating the FILOX process have been fabricated and a reduc-
tion in the measured capacitance is obtained by a factor of 1.4 and 5.6 for structures 
with nitride top and nitride top and FILOX, respectively. Device simulations confirm 
the measured reduction in capacitance. The extracted oxide thickness on the pillar 
sidewall is 9.3nm for the fabricated structures, which agrees within a factor of 1.18 
with the simulated oxide thickness on the sidewall. Kinks in CV measurements have 
been investigated and explained by the formation of an inversion layer underneath 
the field oxide. 

A low overlap capacitance, surround gate, vertical MOSFET technology is presented, 
which uses FILOX to reduce the overlap capacitance between the gate and the drain 
on the bottom of the pillar. Fabricated n-channel devices show subthreshold slopes 
of 111 and 123mV/decade for 3nm gate oxide thickness and a channel length of 
about 105nm for single and surround gate devices, respectively. The devices show 
good symmetry between the source on top and source on bottom configuration. 

To reduce parasitic transistor action in vertical MOS transistors a theory for the 
base current of a polySiGe emitter (source) is developed, which combines the ef-
fects of the polySiGe grains, the grain boundaries and the interfacial layer at the 
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polySiGe/Si interface into an expression for the effective surface recombination ve-
locity of a polySiGe emitter (source). Silicon bipolar transistors have been fabricated 
with 0, 10 and 19% Ge in the polySiGe emitter and the variation of base current 
with Ge content is characterised. The measured base current for a polySiGe emitter 
increases by a factor of 3.2 for 10% Ge and 4.0 for 19% Ge compared with a con-
trol transistor containing no germanium. These values are in good agreement with 
the theoretical predictions. The competing mechanisms of base current increase by 
Ge incorporation into the polysilicon and base current decrease due to an interfacial 
oxide layer are investigated. 
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Chapter 1 

Introduction 

According to the semiconductor roadmap the gate length of MOS transistors will 

be decreased to 40nm in production by 2011 [1]. To achieve device scaling down 

to 40nm and below double gate devices are currently considered the most promising 

option because the double gate gives better control of the channel and hence better 

short-channel effects [2], In general, three possible architectures can be classified by 

the orientation of the channel: 

• planar SOI 

• SOI fin (horizontal current flow) 

• vertical (vertical current flow) 

Planar SOI double gate transistors are an extension of the conventional SOI-MOSFET. 

A back gate for better control of the channel is added by etching a cavity into the 

buried oxide layer underneath the active silicon region [3]. The fabrication process of 

planar double gate devices is complicated and can involve several critical steps like 

epitaxy and chemical mechanical polishing (CMP) [4]. The authors in [5] suggest a 

bonding techniques to achieve the oxide/gate/oxide structure. 

An early approach to SOI fins, called the DELTA transistor, was presented in [6,7]. 

These devices were fabricated by oxidising the silicon underneath the active channel 

area to obtain a SOI structure. However, very good control of the oxidation is needed 

to accurately control the thickness of the silicon fin which is protected by nitride fil-

lets at the sidewalls. A similar device called the FinFET [8-23] has recently gained 

attention by the industry and channel lengths of less than 20nm have been reported 

in [10,17], To increase the current drive, the width of the device is increased by 

the parallel connection of several fins. However, Chang et al. [17] reported increased 

source and drain resistances for very thin fins. 



Chapter 1. Introduction 

All of the above concepts require stepper lithography to define the channel region. 

Lithography tools for sub lOOnm channel lengths are extremely expensive and CMOS 

mask sets cost over $1 million per set. Recently there has therefore been consider-

able interest in vertical MOS transistors to overcome these lithography limitations. 

By arranging the channel vertically the channel length becomes independent of the 

lithography capability. Several approaches have been investigated for the design and 

fabrication of vertical MOSFETs. These approaches can be partitioned into four 

broad categories, namely epitaxy, replacement gate, ion implantation and vertical 

devices incorporating SiGe. 

The epitaxy approach is illustrated in figure 1.1 [24-34]. A MOS transistor is created 

by growing epitaxial layers for the n+ drain, p-channel and n+ source. The channel 

length can be very small because of the good control of layer thickness that can be 

achieved using molecular beam epitaxy (MBE) or low pressure chemical vapor de-

position (LPCVD). Following epitaxy, a pillar is etched, a gate oxide is grown and 

a polysilicon gate deposited to create the vertical MOS transistor. Transistors with 

channel lengths in the range 100-30nm have been produced in this way [32]. There are 

three main disadvantages of this approach. The first is overlap capacitance where the 

polysilicon gate passes over the drain at the bottom of the pillar and over the source 

at the top of the pillar. The second is the very high parasitic bipolar transistor gain 

that is obtained because both the source and drain extend across the full width of the 

pillar. The third is the integration of epitaxial layers into a standard CMOS process. 

floating body source 

n* drain 

, gate electrode 

, gate oxide 

Figure 1.1: Vertical MOSFET based on epitaxy 

A variant of the epitaxy approach has been developed, which uses selective epi-

taxy [35-39], as illustrated in figure 1.2. In this approach, an oxide/polysilicon/oxide 

stack is created before the epitaxy. A gate oxide layer is then formed on the side 

of the polysilicon gate and the n+ drain, p-channel and n+ source are grown using 

selective epitaxy. This approach has the advantage that the overlap capacitance is 

eliminated, but the high parasitic bipolar gain remains as a problem. Furthermore, 

additional problems are introduced, in particular the growth of a high quality gate 

oxide on polysihcon and the problem of controUing facets during selective epitaxy. 
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p+ source 

p+ dram 

Figure 1.2: Vertical MOSFET based on selective epitaxy with reduced overlap capac-
itance 

In a final variant of the epitaxy approach [32-34], a surround gate or double gate 

structure is created by extending the polysilicon gate over the entire width of the 

pillar. If the pillar width is dramatically reduced, a fully depleted device can be 

produced analogous to those produced using SOI technology. A double gate, fully 

depleted vertical MOS transistor would be very attractive for deep sub 0. l/um CMOS 

because of improved short channel effects. However, such a device would potentially 

have the same disadvantages as the transistor in figure 1.1, namely high overlap ca-

pacitance and high parasitic bipolar gain. 

The second category of vertical MOS transistor [40-42] uses layer deposition to create 

a channel length that is defined by the layer thicknesses, as illustrated in figure 1.3. 

The source and drain regions are created by diffusion from PSG. This means that 

the channel length is defined by the thickness of the gate layer and by the amount of 

out-diffusion from the PSG layers. The p-channel region is grown by selective epitaxy, 

and the faceting problem is avoided by growing the layer thicker than needed and 

polishing back. A gate replacement technique is used to create the gate which means 

that the gate oxide can be grown on single crystal silicon rather than on polysilicon 

as in the device in figure 1.2. 

polygate 

polySi 

phosphosilicate 
glass 

Figure 1.3; Vertical replacement-gate MOSFET 

source 

n+ dram 

Contact to the drain is made through a buried n+ layer and to the source through 

a n+ polysilicon source pad. In this device, overlap capacitances are lower than in 

the device in figure 1.1 because it is determined by the thickness of the insulators 

between the PSG layers and the gate layer. However, parasitic bipolar transistor 
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action is still a problem because the source and drain extend across the entire width 

of the pillar. The authors in [42] propose a partial solution to this problem by using 

a shallow polysilicon source pad to create a leaky body contact. 

The third category of vertical MOS transistor uses ion implantation [43-53] to create 

the source and drain regions, as illustrated in figure 1.4. In this device, the chan-

nel length is defined by the pillar height and the implant energy. The drain region 

behaves like an elevated source/drain. Ion implanted devices with threshold voltage 

adjustment using phosphorous silicate glass (PSG) as a dopant source have been pro-

posed by Mori et al. [52,53]. The parasitic bipolar gain is lower than that in the 

device shown in figure 1.1, because the drain does not penetrate across the width of 

the pillar. However, overlap capacitances are still a problem. 

gate electrode 

gate oxide 

source 

m±idrain__̂ _ % . V n̂ dzMiLl 
P I 

Figure 1.4: Vertical MOSFET based on ion implantation 

The fourth category of vertical MOS transistor is appropriate for p-channel tran-

sistors and uses SiGe in the source. The insertion of SiGe into the source has the 

advantage of introducing a potential energy barrier that decreases drain induced 

barrier lowering and hence improves short channel effects [54-59]. Devices down to 

a channel length of 25nm have been fabricated [59]. Unfortunately, this technique 

can only be used in p-channel transistors because a potential energy barrier is not 

obtained in n-type SiGe. This device again has the disadvantage of a high overlap ca-

pacitance, though the SiGe layer has the benefit of reducing the parasitic bipolar gain. 

Strained SiGe has also been used in the channels of vertical MOSFETs as reported 

in [55,60-63]. The SiGe gives a higher surface mobility and as a result increased 

current drives of up to 100% and 50% over silicon control devices for PMOS and 

NMOS devices, respectively. To overcome the problem of oxidising SiGe the authors 

in [58, 64] deposited a silicon epitaxial layer (Si-cap) which is oxidised during gate 

oxidation. 

The above literature review demonstrates that overlap capacitance and parasitic 

bipolar gain are two fundamental problems with vertical MOS transistors. This 

work addresses the reduction of overlap capacitance by using a fillet local oxidation 
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(FILOX) scheme to reduce the overlap capacitance between the polysilicon gate track 

and the source and drain. It is shown that the FILOX process is capable of reducing 

the overlap capacitance by a factor of 3.9 in vertical capacitors. Electrical character-

isation of 105nm channel length NMOS transistors incorporating the FILOX process 

are presented and show a subthreshold slope of l l lmV/decade. Parasitic bipolar 

gain is investigated through the use of a poly crystalline SiGe layer in the source. It is 

shown that the polySiGe source reduces the parasitic bipolar gain by up to a factor 

of 4.0. A dielectric pocket in combination with a retrograde channel is proposed to 

confine the source regions to the corners of the pillar and reduce short-channel effects. 



Chapter 2 

Theory of MOSFETs 

In this chapter the fundamental theory of MOS devices will be discussed. The follow-

ing considerations are made for a uniformly doped p-type semiconductor substrate. 

2.1 Two-terminal M O S structure 

A two-terminal metal oxide semiconductor (MOS) structure, also known as a MOS 

capacitor, consists of three layers namely a semiconductor layer, an embedded insu-

lator layer and a conducting layer. Figure 2.1 illustrates the energy band diagram of 

an ideal two-terminal MOS structure. 

vacuum level 

& t 
metal ' p- type substrate 

Figure 2.1: Band diagram of an idealised two-terminal MOS structure in flat band 
condition 

In an idealised MOS structure the flat band voltage VFB deflned as the energy band 

difference between the metal work function dm and the silicon work function <6, is 
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zero so that 

QVfb — Q4^ms — Q 'Pm Q ~ Q 0m Xe H ^ H Q 0/^ ~ 0 (2-1) 

where cpms is the work function difference, q is the elementary charge, Xe is the elec-

tron affinity. Eg the band gap between the conduction and valence band, E^ the 

energy level of the valence band, Ec the energy level of the conduction band, (/'/is 

named the Fermi potential and is the difference between the Fermi level E/ and the 

intrinsic energy level E^ divided by the electron charge q . 

The Fermi potential of a p-type substrate can be calculated using the substrate 

doping concentration and the intrinsic carrier concentration Uj as 

where k is the Boltzmann constant and T the temperature in Kelvin. 

Applying a voltage to the semiconductor changes the charge in the substrate. Three 

modes of operation can be differentiated between namely accumulation, depletion 

and inversion, as shown in figure 2.2. In the case of a p-type substrate and a volt-

age Vg < OV applied to the gate contact, whilst the substrate is connected to ground, 

free charge carriers (holes) are accumulated under the insulation layer (oxide). Since 

free holes are moving towards the silicon surface layer, the surface charge is of the 

same type as in the substrate, but of higher concentration. This layer is called accu-

mulation layer (figure 2.2a). The applied voltage causes a voltage drop over the oxide 

as well as bending the energy bands in the substrate. At the oxide/semiconductor 

interface the surface potential tps can be found. 

If Vg > OV, free positive charge carriers are pushed away from the surface layer 

and thereby a depletion region of the width Xj is formed. This process is termed 

depletion (figure 2.2b). 

In figure 2.2c a large voltage is applied to the gate. The surface layer inverts from 

p-type to n-type as nearly all free holes are pushed away from the surface layer and 

at the same time free electrons accumulate underneath the oxide. As soon as the 

intrinsic level Ej increases beyond the Fermi level E/ to obtain a negative charged 

surface layer, the surface is in weak inversion mode {ips > 0/) . At the onset of strong 

inversion the surface potential barrier tps is defined by V's = 2 |0/ | as shown in fig-

ure 2.3. 
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Figure 2.2: One-dimensional MOS structure a) accumulation (i/'g < 0) b) depletion 
{0 < ips < 4>f) c) onset of weak inversion = 0/) 

Figure 2.3: Energy band diagram showing the onset of strong inversion {xps = 20/) 

The gate voltage to bring the surface layer into strong inversion is termed the thresh-

old voltage YT- In order to calculate the threshold voltage, first the depletion width Xj 

of a doped semiconductor needs to be calculated. This can be achieved by solving the 

one-dimensional Poisson's equation which relates the electric field E(x) to the charge 

density p{x) as follows 

dE(2) p(%) 
dx 

/or 0 < z < % (2.3) 

where eg is the dielectric constant in vacuum and esi is the dielectric constant of 

silicon [65]. 

The charge density equals the number of acceptors in the substrate p(x) = —qN^ 

for an abrupt junction. The maximum field can now be calculated by integrating 
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over the depletion region 

B ™ . = r ^ (2.4) 
Jo ^Si^O EgiCo 

Further, the differential relation between the surface electric field E at x = 0 and the 

voltage p̂s applied to the silicon over a small width at strong inversion is 

The surface potential across the region is 

= - r E d x = ~ (2.6) 

Jo Jo ^Si^o 

The depletion layer width for a p-type semiconductor can hence be calculated as 

(2.7) 

The substrate depletion charge Qg density at the onset of strong inversion (ipg — 2|0/ |) 

can be written as 

QB = = -QNA J ( 2 . 8 ) 

The applied gate-substrate voltage drops over the oxide as well as over the depletion 

region. The threshold voltage V t is therefore 

VT = V„ + \i,,\ = - ^ + 2\4,,\ 
^OX 

= + (2.9) 
^OX 

where Yox is the oxide voltage. 

Equation 2.9 shows that varying the substrate doping concentration changes the 

threshold voltage. This knowledge can be used to explicitly influence the threshold 

voltage in order to change the on/off voltage of the transistor. The desired threshold 

voltage is typically ±0.3V for n- and p-channel MOSFETs, respectively. 
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2.1.1 Work Function Difference 

In practice, the work function in the silicon is different than the work function in the 

gate. This is certainly true for polysilicon, which is commonly used as a gate material 

in CMOS, as shown in figure 2.4. In this case the Fermi potential (f)poiy, assuming 

non-degeneration, of the n-type poly silicon can be written as 

Q 

Hi 

N, D, 
(2.10) 

where is the doping concentration of the poly silicon gate. 

However, if the doping concentration of the polysilicon gate is higher than 10^®-10^^cm ^ 

the Fermi level is equal to the energy level of the conduction band, so that Ej- ~ E'c [66]. 

vacuum level / 
v a c u u m leve l 

t__ p- type substrate n-type gate 

Figure 2.4; Energy band diagram of a MOS structure with degenerated polysilicon 
a) flat band condition b) zero bias 

Figure 2.4a illustrates the semiconductor/oxide semiconductor stack in flat band. 

The work function difference in this case is 

<l4>ms — — {Q^'poly + 90/) (2.11) 

If the gate and the substrate are under zero bias condition the semiconductor is de-

pleted as shown in figure 2.4b. Here, the Fermi energy levels E/ of the gate and the 

substrate are ahgned and the MOS structure is in weak inversion. 
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The threshold voltage can now be written as 

^JAqNAesi^o\^f\ 
VT — 

Cn 
+ 2|<^y|+yf FB (2.12) 

2.1.2 Oxide Interface Traps 

The oxide charge is the inherent charge embedded between the gate and semi-

conductor and is strongly affected by the gate oxidation conditions as well as the 

crystal orientation. In the previous section the voltage to achieve flat band YFB was 

only dependent on the work function difference 4>ms so that Yps = 0ms-

The flat band voltage needs to be modified to take care of charges in the silicon/gate 

oxide interface. These charges are namely interface-trapped charges, fixed-oxide 

charges, oxide-trapped charges and mobile ionic charge carriers as shown in figure 2.5. 

mobi le 
ox ide 
charge 

oxidb 
trapped 
charge Q, 

ao. 

meta l 

fixed 

>m ffl 
charge Qr 

interface 
trapped 
charge Qk 

Figure 2.5: Oxide traps in the gate oxide 

Interface-trapped charges Qu, with energy states in the silicon forbidden band gap 

are located at the Si-SiOg interface. The interface trap density is orientation depen-

dent. A variation in the order of one magnitude can be found in <100> orientation 

compared with silicon in <111> orientation. Sze [67] reports values of Qu in the 

region of 

Fixed-oxide charges Q/ are also depending on the oxidation and annealing condi-

tions. Typical densities for a <100> surface are and for a <111> surface 

5 X 

Oxide-trapped charges Qot are caused by defects in the Si02 layer due to X-ray 

radiation or high energy electrons. 
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Contamination during the oxidation process can leave alkali ions as mobile carri-

ers in the sihcon oxide causing mobile ionic charges Q^. Assuming that all charges 

are very close to the oxide/silicon interface, the flat band voltage including the above 

discussed oxide charges can be written as 

Vp-B = + Q " + Q " (2.13) 
^OX 

2.1.3 Small-signal capacitance 

So far the two terminal MOS structure has been evaluated under static conditions. 

In this section the ac signal behaviour will be investigated. The capacitance Cox 

between two plates of a parallel plate capacitor is given by 

C „ = f (2.14) 
^OX 

where tox is the thickness of the oxide and Kqx the area. 

Equation 2.14 is valid to calculate the capacitance in accumulation as shown in 

figure 2.6. If the two-terminal MOS structure is in depletion condition, the oxide 

capacitance and the capacitance of the depletion region are in series. The overall 

capacitance under this condition is 

5 = ^ + ^ = % ^ ( " 5 ) 

where C j is the depletion capacitance. 

At high measurement frequencies, as the gate voltage is increased the capacitance 

drops to its minimum value so that the capacitance is given by equation 2.15. This 

is because the inversion layer charge (minority charge carriers) cannot keep up with 

the fast changing voltage applied to the device and only the depletion charge can 

respond to the applied ac-signal. The inversion layer charge can only be changed by 

the mechanism of thermal generation and recombination which is a relatively slow 

processes. 

At low measurement frequencies a different behaviour is observed because the in-

version layer charge can follow the variation of the applied signal. In this case the 

depletion charge is constant. All of the apphed voltage drops across the oxide so that 

C=Cox as in accumulation. Thus, if the capacitance is plotted as a function of Vg, a 

graph similar to figure 2.6 is obtained. 
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accumulation depletion strong inversion 

low frequency 
behaviour 

I Vs = 2 (|)f 
high frequency 
behaviour 

V, V. 

Figure 2.6: Capacitance of a two-terminal MOS structure as function of gate voltage, 
dotted line: deviation found at low frequencies 

2.2 Four-terminal MOS structure 

The four-terminal MOS structure or MOSFET is similar to a two-terminal MOS 

structure with the addition of source and drain regions. Two types of MOS transis-

tors can be distinguished, namely enhancement mode and depletion mode devices. 

In this section the enhancement mode MOSFET will be discussed. For the following 

description of the device, it is assumed that the source is tied to ground. 

Figure 2.7a shows a zero biased gate, source, drain and substrate. Around the n"*" — p 

junctions, there is a small depletion region. The resistance between source and drain 

is very high, as the two pn-junctions are of opposite polarity. 

Applying a gate voltage Vg of VpB <VG <VT depletes the p-type semiconductor 

underneath the gate oxide. The space charge region around source and drain now 

extends under the gate. Increasing the gate voltage so that Vg > adds to the 

already existing depletion region an inversion layer connecting the source and drain 

regions. However, since there is no voltage difference between the source and drain, 

no current can flow and I^) = 0. 

2.2.1 Linear operat ion 

A positive gate voltage YQ of YFB < VQ < VT as well as a positive voltage connected 

to the drain (VDS > 0) forms a depletion layer underneath the gate oxide. Since the 



Chapter 2. Theory of MOSFETs 14 

source 

0 acceptor 
+ hole 
- electron 

drain 
-II~] gate pZL-

a) 

P e. 
sub strate 

depletion 
region 

b) 

Vos « (VG-V^) 

n-channel 

Vr Vos > (VG-V^) 

3.6® e 

c) 

P e. 
-L substrate 

pinch-off 
point 

Figure 2.7; Four terminal MOSFET structure a) with zero biased gate b) in cutoff 
mode c) in saturation 

gate voltage is not sufficient to create an inversion layer, no channel exists to connect 

the source and drain regions. Without taking leakage currents into account it can 

be said that I/)=0. This mode of operation is called the cutoff mode. For the condi-

tion of Vg > VT and NDS < (YG — VT), a channel is formed, connecting source and 

drain as shown in figure 2.7b. The MOSFET is said to be nonsaturated. Due to the 

inversion layer, free electrons lower the drain/source resistance, which is now much 

less than in depletion mode and, furthermore, can be controlled by the positive gate 

voltage. This mode of operation is caUed linear mode. The maximum channel volt-

age {YC,MAX{Y = L) — VDS) Can be found at the drain and drops to Vc,min(y=0)=0V 

at the source. 

It is assumed that the channel is of constant length L, and of constant width W 

and its thickness changes between source and drain. In the following, the drain cur-

rent for the linear region will be derived. The differential voltage drop in the inversion 

channel, parallel to the surface is defined as 

dVc = In dR = I D 
P 

^c(2/) 
dy = ID 

P 
(2.16) 
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where Ac(y) is the cross-section area of the channel, Xc(?/) is the channel thickness 

and p the channel charge density. 

Since the channel resistivity can be expressed as p = l / (g n), the differential volt-

age is 

where is the channel mobility and n the number of negative charge carriers. 

The inversion layer charge in the channel is defined by Qj(y) = —qn Xc{y). Therefore 

the equation of the differential voltage can be solved for the drain current, to 

ID dy =-Qi{y) iinW dVc (2.18) 

The inversion layer charge is dependent on the effective voltage across the MOS 

capacitor so that 

(3;(%) = --C'ocCtt; -- -- ;{:(%/)) (2 :19) 

The drain current becomes 

Id dy = CoxiVc — Vr — Vc{y)) Hn W dVc (2.20) 

Integrating the left term of the equation over the given channel length L, whilst 

integrating the right term of equation 2.20 over the voltage drop across the channel 

gives 

fL rVos 
-fa / oh/ == (Tar /At -- T/r -- T4:(%)) on/; 

Jo Jo 

ID L = COX T^N W ^(VG — VT) VDS — ^ (2.21) 

With 
W 

P = Cox (2.22) 

the process transconductance parameter, equation 2.21 becomes the equation for the 

drain current in linear mode. 

ID = P ^ ( ^ — VT)yDS — 2 (2.23) 

2.2.2 Saturation operation 

The drain current cannot be continuously increased. At some point (V^s = VQ — VT) 

the channel pinches off as illustrated in figure 2.7c. The MOSFET is now in saturation 
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mode. The onset of saturation can be approximated by finding the maximum current 

using 
dl, D 

dVos 

At this point the drain voltage is 

0 — P{Vc — VT — Vds) 

VDS,sat — VQ — VT 

(2.24) 

(2.25) 

The current previously calculated for the linear region in equation (2.23) now changes, 

after substituting the drain voltage by its saturation value to 

(2.26) 

Equation 2.26 is valid for long channel devices and does not take velocity saturation 

found in short channel devices into account. 

Figure 2.8 illustrates the output characteristic of a MOSFET based on equation 2.23 

and 2.26. Furthermore, figure 2.8 shows the locus oiVDS,sat where the current reaches 

its maximum value. 

saturation 
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5.0x10-4 

cutoff region V„=1.5V 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 

Vds[V] 

Figure 2.8: Idealised output characteristic of a lOOnm channel length (W=l / im) 
MOSFET 

2.2.3 B o d y bias effect 

Biasing the substrate, changes the voltage across the depletion layer and therefore 

its thickness and hence the threshold voltage. The depletion layer charge (see equa-
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tion 2.8) changes to 

QB = — Y 4 gAOiesieo (10/1 + VB) (2.27) 

where Vg is the substrate bias voltage. 

The change in threshold voltage can now be determined as 

^ \ / 4 {\(l)f\ + V ^ _ \ / 4 qNACsieo |0/ | 

CnT. Cn ^ox 

2.2.4 Detai led M O S F E T analysis 

For the previous analysis it was assumed that the threshold voltage Vr was constant 

along the channel. However, in reality the channel voltage Vc(y) changes the substrate 

depletion charge density Qg. Assuming (Vg = Vb = 0) the threshold voltage can be 

written as 

VT{Vc) = qesieoNA{2\(f)f \ + Vc) + 2|0/ | + VFB (2.29) 
^OX 

The nonsaturated drain current can be written as 

fVos 
ID = P {(%3 — VpB — 2|0y|) — 

Jo 

~-p:;— -J'^Q^Si^o^A (2|0/| + Vc) } dVc (2.30) 
^OX 

Integrating the above equation leads to the following equation 

ID = l3({Va-VFB-N<t'F\)VDS-\vls 

3C„ 
"\/2ge5jeo-^A{(2|0/| + ) (2.31) 

At the peak value of the nonsaturation current {dlo/dVDs = 0) the saturation voltage 

is 

VDS,sat = VG ~ VpB ^ 2 | 0 / | 

_ i | (2.32) 
^ox \\] 

Substituting equation 2.32 into equation 2.31 allows a more accurate calculation of 

the drain current in the nonsaturated region. In comparison with equation 2.23, the 

values of I^ in the detailed analysis tend to be lower than in the simple equations. 
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2.2.5 Subthreshold region 

When (j)f < ips < '̂ '4'f the semiconductor surface is in weak inversion. At this point 

the minority carrier concentration is still lower than the substrate doping concentra-

tion N^. The corresponding drain current is termed subthreshold current. The 

subthreshold current is of particular importance for low-power applications as it de-

termines the off-current [67]. 

In weak inversion the subthreshold current is dominated by diffusion instead of drift. 

Due to the arrangement of the MOSFET, losub can be approximated in the same way 

as the collector current of an npn-bipolar transistor with homogeneous base doping 

to 
dn . ^ n(0) — n(L) 

^Dsub — Q-^subDn~^ = Q-'^sub^n p (2.33) 

where Asub is the cross-section of current flow, D„ = jinkT/q the electron diffusion 

coefficient and n(0) and n(L) the electron densities in the channel at the source and 

the drain. 

The area Asub of current flow is given by the width W of the device and the ef-

fective channel thickness Xce//. The effective channel thickness can be calculated 

as 
kT 

Xceff = Eg (2.34) 

where Eg is the electric field at the silicon surface in weak-inversion. 

Eg is given by 

J5, = == (2.35) 
Ŝî O V Egifo 

where (pss is the surface potential at the source. 

The electron densities are given by 

/i(0) = M^exp 

n(L) = exp ^ ( 2 . 3 6 ) 

Substituting equation 2.36 into equation 2.33 gives 
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The subthreshold swing is defined as 

S = 
(rf(logio Ip] 

I 

- 1 

(2.38) 

Figure 2.9 shows the idealised subthreshold characteristic based on equation 2.37. 

For the simulation it was assumed that the surface potential at the source is equal 

to the surface potential given by YQ — VFB- The extracted subthreshold slope S was 

60mV/dec. 
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Figure 2.9: Idealised subthreshold characteristic of a 100 and 500nm channel length 
MOSFET 

Equation 2.37 shows the linear relation between the channel length L and the drain 

current Ipsuh which is illustrated in figure 2.9. In the subthreshold region a higher 

drain current can be observed in short channel devices compared to long channel 

MOSFETs. 

2.2.6 Short channel and narrow-width effects 

The equations discussed in the previous section are fairly accurate for describing large 

devices, they cannot be applied to small-geometry MOSFET devices. 

Chcirge sharing effects 

A significant fraction of total substrate depletion charge underneath the gate orig-

inates from the pn-junctions. This charge must be subtracted from the threshold 
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voltage expression since it is independent from the applied gate voltage. For low YDS 

the depletion region thickness can be considered constant throughout the channel. 

The depletion charge controlled by the gate can be modelled as a trapezoidal volume. 

For this case the ratio -Qg/Cox changes due to the geometry dependence to 

QsLeff 
Cnr.L 

(2.39) 

where Lg// is the effective channel length. 

The bottom of the trapezoid has the same length L as the channel, whilst the top of 

the trapezoid has a length of Li, such that 

L — L\ 4- 2 (2.40) 

where AL is the lateral extent of the depletion width at the source and drain as 

shown in figure 2.10a. 

source A L A L 

a) 

drain 

n + 

b) 

Figure 2.10: Schematic diagram of a charge sharing model showing the depletion 
regions of a short channel device. 

The effective channel length can be written as 

= —4^ = L-AL (2.41) 

Substituting equation 2.41 into equation 2.39 gives 

QB f L — IS.L\ QB / AL 
1 — 

Cox \ L y Cox V L 
(2.42) 

Assuming that the pn-junctions are shaped like quarter-circular arcs and extend 

a distance x^ into the p-substrate the depletion depth for the source and drain, 

respectively, can be expressed as 

Xd 
4egteo 

(2.43) 
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In order to calculate AL of the triangle shown in figure 2.10b, we can say 

{xj + AZ/)^ + 2̂ ^ = (xj + Xd)̂  (2.44) 

where Xj is the junction depth of the n+ implant. 

The solution of this quadratic is 

AL = —Xj + y x j + 2 XjXd (2.45) 

The short-channel threshold voltage YTSCE can now be calculated as 

VrscE = 21 ,̂1 

^4qNAesieo\(/)f\ / . _ ^ 

+2|(^/| (2.46) 

The threshold voltage reduction induced by the short-channel effect /WTSCE can be 

computed by using the above assumptions as 

^VTSCE -

\ /4 qNAesieo\4)f \ ^ 
(2.47) 

Channel Length Modulat ion 

Increasing the drain voltage beyond the onset of saturation IYDS > YDS,SAT) moves 

the pinch-off point away from the drain towards the source. This movement of the 

pinch-off point is called channel length modulation. It should be noted, that the ter-

mination of the channel at the pinch-off point does not shut off the current. It rather 

injects carriers travelling from the source towards the drain into the drain depletion 

region. Since the voltage drop from the pinch-off point to the source is still YDS,sat, 

the portion of the apphed drain voltage beyond YDS — VDS,sat is dropped across the 

depletion layer at the drain. Compared to the onset of pinch-off, the same voltage 

is now dropped across a smaller channel length L' so that L '<L as illustrated in fig-

ure 2.11. 

The resulting drain current will increase slightly. This effect can be analytically 

modelled by approximating the inversion layer charge Q/(L') = 0, which implies that 
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L 

L ' 

e+ » " " 

pinch-o f f point 

Figure 2.11: Channel under pinch-off condition 

the channel voltage at L' is YDS,sat- The pinch-off length Lp can be calculated using 

the approximation of a depletion region, whereby the voltage drop across this region 

is Yds — VDS,sat, to 

'2esieo ^ ^ (2.48) Lr (VdS — yDS,sat) 

The relation of the saturation current and the channel length modulation can now 

be approximated as 

Figure 2.12 illustrates the effect of channel length modulation. Simulating the effect 

of channel length modulation using equation 2.49 shows that the drain current does 

not saturate. Increasing the drain/source voltage YDS above YDS,sat increases the 

drain current I # i n the saturation region. 

4x10" 

3x10 -3 
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saturation linear 
region 
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Ve=1.5V 
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0 
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Figure 2.12: Output characteristic of a lOOnm channel length (W=l / jm) MOSFET 
with channel length modulation 
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Drain induced barrier lowering 

As YDS increases the channel length L is reduced because the drain depletion re-

gion moves closer to the source depletion region. This results in a significant field 

penetration from the drain to the source which lowers the potential barrier at the 

source. An increased injection of electrons by the source can now conduct more cur-

rent than one would expect. This effect is termed drain-induced barrier lowering 

(DIBL) [68]. Furthermore, the depletion charge density Qg of short channel devices, 

where the geometry of the depletion region is approximated as a trapezoid as shown 

in figure 2.10, is lower than for long channel devices, where a rectangular depletion 

region was assumed. This lowers the threshold voltage VTSCE for increasing drain 

voltages YDS-

Punch- through effect 

Punch through occurs when, due to the drain applied voltage YDS, both depletion 

regions merge and YG < Vr- In this case, where L—2AL, the gate loses control over 

the drain current Id [69]. To overcome the effect of punch-through, higher doping of 

the substrate is required to minimise the depletion region. 

Narrow-width effects 

The definition of the active area and the resulting depletion region beneath the sil-

icon /oxide/polysilicon layer interface leads to a higher threshold voltage caused by 

an increase of the substrate charge per unit area Qg. Two different approximations 

are shown in figure 2.13. 

junction gate oxide polySi 

a) 

LOCOS 

b) 

Figure 2.13: Narrow width effect of lateral MOSFETs a) circle approximation b) tri-
angular approximation 

The narrow-width threshold voltage YTNWE can be calculated as 

VrNWE 
a w (2.50) 
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where K is the form factor depending on the chosen model shown in figure 2.13 for 

both sides of the nonuniformly shaped depletion regions. 

Table 2.1 shows different values for the form factor K. 

circle triangular 

shape 

formfactor K 7r/4 Xd/2 

Table 2.1: Form factors for modelling the narrow width effect 

The term of the threshold voltage Vy can be modified by adding the narrow-width 

effect voltage AVTNWE 

Ay, TNWE c„ 2g6MEoWA(2|(^/|) 
' K Xd 

W 
(2.51) 

2.2.7 Parasitic bipolar effects 

Reducing the channel length L whilst keeping the drain/source voltage VDS constant 

increases the maximum electric field experienced by the charge carriers (electrons) 

near the drain region. Energetic charge carriers can create new electron-hole pairs 

by impact ionisation as illustrated in figure 2.14. 

V, G S V D S 

8 

Ve 

P forward © 

injection 

Figure 2.14: Parasitic bipolar transistor action 

Holes injected into the substrate will flow to the substrate contact where they will 

give rise to a substrate current. This substrate current flow will give rise to voltage 

drops in the substrate that can cause the forward biasing of the substrate/source 

junction. In this case, electrons are injected into the substrate which will be collected 
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by the drain. This effect is known as parasitic bipolar transistor action. 

Parasitic bipolar transistor action can have significant effects when the substrate 

contact is remote from the drain or when the substrate is floating. In the latter case, 

floating body effects occur that seriously influence the behaviour of the device. 

The severity of the parasitic transistor action is determined by the gain of the bipo-

lar transistor. The gain of a bipolar transistor is given by the ratio of the collector 

current Ic and the base current Ig as follows 

(2.!52) 

The base current Ig of the bipolar npn-transistor shown in figure 2.14 is given by [70] 

= (2.53) 
WE NOEFF \ KT ^ 

where Dpe is the hole diffusion coefficient in the emitter (source), Wg is the emitter 

depth, N^e// is the effective donor concentration in the emitter and V ê the base 

emitter voltage which is caused by the potential shift in the substrate. 

The collector current Ic is given by 

where is the electron diffusion coefficient in the base, Wg the width of the base 

and N^6e// the effective acceptor concentration in the base. 

Substituting equation 2.53 and 2.54 into equation 2.52 gives the gain of the para-

sitic npn-bipolar transistor as follows 

o _ DnbWENpeff 



Chapter 3 

Parasitic capacitances in vertical 

MOSFETs 

3.1 Introduction 

This chapter considers parasitic capacitances in vertical MOS transistors. In general 

two types of parasitic capacitances can be found in MOSFET devices, namely overlap 

and junction capacitance [66]. A critical theoretical comparison between the parasitic 

capacitances of idealised lateral devices, single gate and surround gate vertical devices 

is presented. A novel process called FILOX is introduced in section 3.3.4, which 

reduces overlap capacitance in vertical devices. The discussed vertical device concepts 

are based on a device in which the gate is defined after the source/drain implant (gate 

after implant (GAI) approach). A comparison with vertical devices in which the gate 

is defined before the source/drain implant (gate before implant (GBI) approach) is 

presented in section 3.4.2. Finally, a new device concept, namely the dielectric pocket 

vertical MOSFET, is discussed in section 3.6. 

3.2 Assumptions 

In this section assumptions are made for the comparisons of parasitic capacitances 

presented. These are partitioned in technological and in layout considerations. 

3.2.1 Technological considerations 

A number of different types of devices are considered namely lateral MOSFETs, 

vertical single gate and vertical surround gate devices. The following technological 

considerations were taken into account when calculating the parasitic capacitances. 
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T1 All devices are isolated with an oxide thickness t^ of 300nm by shallow trench 

isolation (STI). 

T2 All poly silicon gates are degenerately doped and have a thickness of 40nm. 

T3 The SiOg gate oxide thickness iox is 2nm. 

T4 The source/drain junction depth Xj and the lateral diffusion of the source/drain 

junctions are 20nm. This value is typical of a lightly-doped drain (LDD) implant 

for a lOOnm transistor. 

T5 The polysilicon interconnect track up to the edge of the active area is not consid-

ered in the calculations as it is assumed that the resulting overlap capacitances 

are the same for both, lateral and vertical devices. 

T6 The doping concentrations are uniform in the source, drain and substrate. 

T7 The source, drain and substrate doping concentrations are 5.0xl0^^cm~^, 5.Ox 

1 0 ^ ° a n d l.OxlO^^cm"^, respectively. 

T8 The as-drawn channel length L is lOOnm. When the 20nm source/drain lateral 

diffusion is considered, this gives an electrical channel length Lg// of 60nm. 

As will be discussed later, for the vertical transistor some additional technology steps 

are performed, in particular a LOCOS process referred to as FILOX process. The 

assumptions associated with this process and other technology issues associated with 

the pillar formation are as follows 

T9 The FILOX oxide thickness is 40nm {ivLox)-

TIO The insulator on top of the pillar is assumed to be 40nm thick {tpjnox)-

T i l The FILOX lateral bird's beaks at the bottom of the pillar is assumed to 

be 40nm long (Ljoz). 

T12 The FILOX vertical bird's beak at the top of the pillar is assumed to be 20nm 

long (Lgo). 

T13 The FILOX vertical bird's beak at the top of the pillar is assumed to be 40nm 

thick {ihLox)-
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3.2.2 Layout considerations 

Industry-based layout rules [71] at the lOOnm technology node were used for the 

parasitic capacitance calculation. These layout rules where consistently applied to 

both lateral and vertical devices. The layout rules are as follows 

LI Minimum contact size 160xl60nm. 

L2 Minimum contact to active area spacing 20nm. 

L3 Minimum contact to contact spacing 200nm. 

L4 Minimum metal over contact overlap lOnm. 

L5 Minimum metal to metal spacing ISOnm 

L6 Minimum polySi gate to contact spacing 80nm. 

L7 Minimum gate track width W 220nm. 

L8 Minimum gate over STI overlap Wg 200nm. 

L9 Minimum gate over pillar overlap Wg 200nm. 

LIO Minimum polySi gate to pillar edge spacing on pillar top 40nm. 

L l l Pillar to active area spacing (single gate) lOOnm. 

L12 Pillar to active area spacing L ô (surround gate) 140nm. 

LIS Minimum polySi track width for polySi fillet contact W lOOnm. 

The above list shows the applied layout rules for the lateral MOS transistor. For the 

vertical transistor there are currently no production layout rules available. Several 

design rules (L9-L13) were therefore assumed, and were chosen to be consistent with 

the layout rules for the lateral transistor. For example the overlap of the poly silicon 

gate over the pillar (L9) was chosen to be the same as the overlap of the gate over 

the STI (L8). 

Figure 3.1 and 3.2 illustrate the schematic layout of two lateral device with 220nm 

and 1.32/im gate width using the design rules given. It can be seen that the device 

size is determined by the polysilicon gate width. Metal contacts are assumed on each 

side of the polysilicon gate to connect the source and drain. Furthermore, metal 

contacts contact the p+ substrate, isolated by the STI. The width of the device is 

scalable down to a minimum gate width of W=220nm (L7) as shown in figure 3.1. 
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active area 

substrate 
contact 

. - ' 

Figure 3.1: Schematic lateral MOSFET layout (W=220nm) - grid size; lOOnm 

Figure 3.2: Schematic lateral MOSFET layout (W=1.32yum) - grid size: lOOnm 

Figure 3.3 illustrates a schematic layout of a minimum geometry single gate ver-

tical device. A minimum gate width of 220nm has been used. The source contact is 

on top of the pillar, whilst the drain contact is adjacent to the pillar at the bottom 

of the layout. 

A layout for the vertical surround gate device is presented in figure 3.4. The gate 

width is determined by the perimeter of the pillar which is 1.32/um. This layout can 

therefore be directly compared with that of the lateral transistor in figure 3.2. It 

can be seen that the vertical transistor occupies less area than the lateral transistor. 

For example, the active area of the surround gate vertical transistor is QA&iirm? com-

pared with 0.82jum^ for the lateral transistor with the same gate width. This is an 
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active area 

^ gate 

metal 

Figure 3.3: Schematic vertical single gate MOSFET layout (W=220nm) - grid 
size: lOOnm 

important benefit of surround gate vertical transistors. 

Figure 3.4: Schematic vertical surround gate MOSFET layout (W=1.32^m) - grid 
size: lOOnm 
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3.3 Overlap capacitances of lateral and single gate 

vertical MOSFETs 

The gate causes several unwanted overlap capacitances, which limit the device perfor-

mance. Figure 3.5 illustrates the overlap capacitances of a lateral device, where Casub 

is the overlap capacitance caused by the gate overlapping the shallow trench isola-

tion (STI) field oxide, CQD is the gate/drain overlap capacitance and GAS is the 

gate/source overlap capacitance. Both, CGD and CGS are caused by the lateral dif-

fusion of the source/drain implant underneath the gate by the amount of xj. The 

lateral diffusion underneath the gate decreases the gate length L to the effective gate 

length Leff. 

gate oxide 

n* dram n sourcc 

a) 

•̂GS 
substrate < 

b) 

Figure 3.5; Parasitic capacitances of a lateral MOSFET a) cross-section showing over-
lap capacitances b) gate dimensions 

To a first order approximation the parasitic capacitances of the lateral MOS tran-

sistor can be calculated as shown in table 3.1. In order to simplify the calculations, 

all introduced capacitances are modelled as parallel plate capacitors with no stray 

capacitance. 

The gate/substrate capacitance Ccsub is caused by the gate overlapping the STI 

by the amount of Wg, where t^ is the STI thickness. The overlapping area of Cgd 

and Cgs is caused by lateral diffusion. The diffusion length under the gate is equal 

to the junction depth Xj. W is the active gate width. 
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capacitance type equation 

GoSub gate/substrate ^0esi02^s L 
t. 

CGD gate/drain 

CGS gate/source ^O^SiOy W 
tnT. 

Table 3.1: Parasitic overlap capacitances of a lateral device 

Figure 3.6 illustrates the cross-section of an idealised single gate vertical MOS tran-

sistor based on a pillar structure. The channel width W is defined by the width of the 

poly silicon gate. The gate overlaps the bottom of the trench and causes the parasitic 

gate/drain overlap capacitance CGD- The drain has diffused to the edge of the pillar, 

so there is no component of gate/drain capacitance on the side of the pillar. On the 

side of the pillar the gate overlaps the sidewall by the amount of Lg// + Xj. Fur-

thermore, the gate overlaps the top of the pillar and causes the parasitic gate/source 

overlap capacitance Cos-

a) 

SOUR 

dram 

CoD substrate 

b) 

Figure 3.6: Parasitic capacitances of a basic single gate vertical MOSFET a) cross-
section showing overlap capacitances b) gate dimensions 

The approximate equations for the parasitic capacitances of the vertical MOSFET 

illustrated in figure 3.6 are listed in table 3.2, where, L^o is the amount by which the 

gate overlaps the drain at the bottom of the pillar and Wg is the amount by which 

the gate overlaps the source on top of the pillar (L9). 

At the bottom of the trench the gate overlaps the drain over its full length Ldo, 

and the capacitance is inversely proportional to the gate oxide thickness tox- The 



Chapter 3. Parasitic capacitances in vertical MOSFETs 33 

capacitance type equation 

CGD gate/drain eoesi02^ Ldo 

CGS gate/source 

Table 3.2: Parasitic overlap capacitances of a basic vertical device 

gate/source overlap capacitance Cos consists of two capacitances. The gate overlaps 

the side of the pillar by the amount of the junction depth Xj, and the top of the 

pillar by the amount of Wg. Both overlap capacitances depend on the gate oxide 

thickness tox-

3.3.1 Calculation of overlap capacitances for lateral- and ba-

sic single gate vertical devices 

In this section typical capacitances for lateral and single gate vertical devices de-

scribed in the previous section are calculated and compared. The transistor is as-

sumed to have a gate oxide layer covering the drain, source and pillar side. By 

applying the assumptions made in section 3.2 to the equations of table 3.1 and ta-

ble 3.2 the overlap capacitances of both lateral and basic single gate vertical devices 

can be determined as shown in table 3.3. 

Table 3.3 shows that a lateral MOSFET has a much lower parasitic capacitance 

than the vertical MOSFET. Casub is only present in lateral devices due to the gate 

overlapping the STL The gate/drain capacitance CGD, which is small on the lateral 

device due to the self aligned definition of the source- and drain regions, is 5 times 

greater in the vertical device. This is caused by the overlap of the gate over the drain 

region at the bottom of the trench. CQS-, caused by the gate/source overlap, is 11 

times larger in the vertical device compared to its lateral counterpart mainly because 

of the overlap of the gate over the top of the pillar. Novel methods have therefore to 

be found to reduce these parasitic overlap capacitances. 

capacitance lateral basic vertical ^Vertical/ CLateral 

Cg5m6[F] 2.3x10-^8 - -

CcDp] 7.6x10-^^ : i 8 x i o - ^ 5 

C c g p ] 7.6x10-^7 I&4xl0-^ 11 

Table 3.3: Calculated overlap capacitances for a lateral and a basic single gate vertical 
device (W=220nm) 
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3.3.2 Optimisat ion of pillar fabrication 

Two alternative methods can be considered for fabricating the pillar. The first uses 

a trench etch after LOCOS or shallow trench isolation, as illustrated in figure 3.7a-c. 

After the standard LOCOS process (figure 3.7b), the pillar is defined using photo 

lithography and an anisotropic silicon etch. The final structure illustrated in fig-

ure 3.7c shows the pillar isolated in the trench. The disadvantage of this approach 

is that the exposed vertical surface adjacent to the LOCOS of depth Lg// + Xj, gives 

additional gate/substrate overlap capacitance. 

pad oxide 

a) 

b) 

substrate 

nitride 
d) 

e) 

substrate 

rn 

Leir+Xj 

Figure 3.7: Process sequences of two ways to define the pillar structure of a vertical 
MOSFET 

The second approach uses a pillar etch prior to isolation fabrication. Figures 3.7d-f 

shows this approach for LOCOS isolation. The first process step is etching the pillar 

structure into the silicon wafer and growing a pad oxide as shown in figure 3.7d. Now 

a silicon nitride layer is deposited and the active area is defined (figure 3.7e). The next 

process step is to perform the LOCOS. After removal of the nitride and pad oxide the 

pillar structure shown in figure 3.7f is obtained. The gate overlap length is shorter by 

the amount of the trench height Lg// + Xj as illustrated in figure 3.7c. Applying this 

process sequence therefore eliminates the gate/sidewall substrate capacitance Ccsub 

that is present for the process sequence shown in figure 3.7a-c. 

3.3.3 Optimisat ion of Cgg: pillar top insulator 

In figure 3.6 the gate oxide on top of the pillar separates the gate from the source, 

which gives a large value of gate/source overlap capacitance. The gate/source overlap 

capacitance Cos can be greatly reduced by covering the pillar top with an insulator 

prior to the pillar etch as shown in figure 3.8. 
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pillar insulator 

^plnox-
1 

substrate 

Figure 3.8: Inclusion of an insulator on top of the pillar to reduce gate/source overlap 
capacitance 

The capacitance reduction depends on the dielectric constant of the insulator and 

its film thickness tpinox (TIO). Using silicon nitride as an insulator has the additional 

advantage of suppressing oxidation of the pillar top. Its disadvantage is the higher 

dielectric constant esî N^ of 7.0 compared to of 3.9. 

3 .3 .4 O p t i m i s a t i o n of CGD- F I L O X 

In this section, a novel process namely fillet local oxidation (FILOX), will be intro-

duced to reduce the parasitic capacitance between the gate track and the drain [72]. 

Figure 3.9 illustrates two approaches with and without deposition of an insulation 

layer prior the pillar etch. 

For the first approach, after the anisotropic pillar etch, a pad oxide is grown and 

a silicon nitride layer is deposited (figure 3.9a). Etching the silicon nitride layer with 

an anisotropic etch leaves nitride fillets on all sidewalls as shown in figure 3.9b. The 

FILOX process is then completed by growing a layer of Si02. The thickness of the 

grown oxide determines the parasitic gate/drain capacitance. Figure 3.9c illustrates 

the pillar structure after the FILOX process, with the nitride spacers on the sidewalls 

of the pillar still in place. An oxide layer of thickness t̂ Lox (T9) is grown on all lateral 

(unprotected) exposed areas. Since the FILOX oxide is also on top of the pillar, this 

process has the additional advantage of reducing the gate/source overlap Gas at the 

same time. 

Figures 3.9d-f show a different approach. The insulator illustrated in figure 3.9d 

is deposited prior to the pillar etch as discussed in section 3.3.3. After the pillar etch 

a thin pad oxide is grown and nitride is deposited over the pillar structure. Again, 

after the anisotropic nitride etch, nitride fillets are left on all sidewalls (figure 3.9e). 

An oxidation is then performed to grow an oxide on the bottom of the pillar whilst 

the top of the pillar is protected. After the oxide growth, the nitride fillets are etched 

off. The insulator layer on top of the pillar still covers the pillar top and the FILOX 
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a) 

silicon nitride layer 

substrate d) 

insulator 

substrate 

, silicon nitride fillets 

b) substrate e) substrate 

^silicon nitride fillets 

c) 

FILOX oxide 

substrate substrate 

FILOX oxide 

Figure 3.9: FILOX process flow 

oxide is present at the bottom of the pillar. 

The FILOX process causes bird's beaks at the top and bottom of the pillar as il-

lustrated in figure 3.10. At the bottom of the pillar a bird's beak will be caused by 

the lifting of the nitride spacer during oxidation. In the calculations below, the length 

of the bird's beak is defined as Ldo2 ( T i l ) . Furthermore, a bird's beak in the vertical 

direction will be formed on the top of the pillar bending the nitride fillet during the 

FILOX oxidation. The thickness of the bird's beak is defined as t̂ Lox (T13) whilst its 

length is defined as L^o (T12). From the point of view of overlap capacitance these 

bird's beak's are advantageous. The bird's beak at the top of the pillar will reduce 

the gate/source overlap capacitance compared with the basic vertical device and that 

at the bottom will reduce gate/drain overlap capacitance. 

ĥLox 

source 

substrate 

Figure 3.10: Bird's beak dimensions caused by FILOX process without pillar top 
insulator 
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3.3.5 Calculation of overlap capacitances for optimised single 

gate vertical devices 

In the above sections, several methods were introduced to reduce overlap capaci-

tances. Table 3.4 shows the equations used to calculate the overlap capacitances of 

an optimised single gate vertical device and the calculated values of capacitance. 

name location equation capacitance [F] 

CGD bottom area 
(no bird's beak) 

^a^sio^yv Ldoi 1 1.1x10"" CGD bottom area 
(no bird's beak) 

1 .1x10"" 

bird's beak ^do2 
^vLox /2 

1.5x10-17 

= : 2.7x10-:^^ 

Cgs side of pillar ^hLox/^ 
7.6x10-18 

top of pillar EOGgjOgTV Ws 
ivlnox 

3.8x10-17 

= 4.6x10-17 

Table 3.4: Parasitic overlap capacitances of an optimised single gate vertical device 

The gate/drain overlap capacitance CQD of vertical devices is partitioned into two 

terms. The first term describes the area covered by the gate track without the bird's 

beak, the second the area covered by the bird's beak. This latter term assumes that 

the bird's beak extends all the way to the edge of the pillar, as shown in figure 3.10. 

This assumption is the 'best case' for gate/drain overlap capacitance reduction. 

The gate/source capacitance CQS also consists of two terms. The first term ex-

presses the capacitance caused by the gate track overlapping the source on the pillar 

sidewall and depends on the bird's beak on top of the pillar. This bird's beak extends 

to the full depth of the source junction, so L ô = Xj. This assumption is the 'best 

case' for gate/source overlap capacitance reduction. The second term describes the 

overlap capacitance on the pillar top which heavily depends on the thickness ipinox 

of the insulation layer. CQS can be reduced by decreasing the junction depth Xj or 

by increasing the insulating film thickness ipinox which certainly decreases the source 

overlap capacitance at the sidewall. 

Table 3.5 summarises the total overlap capacitances of a lateral and an optimised 

single gate vertical transistor. 

For vertical devices the gate/substrate capacitance Casub is non-existent, which is 
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capacitance lateral single gate 

vertical 

^Vertical/ CLateral 

CG5u6[F] 2.3x10-^8 - -

CGD[F1 7.6x10-1^ 2.7x10-" 0.4 

CGSPI 7 . 6 x 1 0 - " 4.6x10- " 0.6 

Table 3.5: Calculated overlap capacitances for a lateral and an optimised single gate 
vertical device (W=220nm) 

considerably better than that of the lateral device. The gate/drain overlap capaci-

tance of the vertical transistor is significantly lower than that of the lateral device. 

This result can be explained because the FILOX oxide t̂ Lox can in theory be made as 

thick as needed to eliminate the bottom area capacitance. If this is done, the bird's 

beak then determines the value of the gate/drain overlap capacitance as shown in 

table 3.4. This component of overlap capacitance should always be smaller than that 

in the lateral transistor, where no bird's beak is present. 

The gate/source capacitance in the vertical device is also much smaller than that 

found in the lateral device. Care should be taken to ensure that the vertical bird's 

beak caused by the FILOX process does not extend into the active vertical channel 

as it would thicken the gate oxide, and degrade the the transistor performance. This 

practical point is addressed in chapter 4. 

3.4 Overlap capacitances of optimised surround 

gate vertical M O S F E T s 

In this section a surround gate structure is described and it will be shown that this 

device has even lower gate/source and gate/drain overlap capacitances per unit gate 

width than the single gate vertical MOSFET. This is done by introducing a polysili-

con fillet that surrounds the pillar on four sides. This is achieved with only a slight 

increase in device area of a factor of 1.07. The gate width per unit silicon area is 

therefore dramatically increased. Figure 3.11 depicts a cross-section of a surround 

gate device with polySi fillets. 

It is assumed that the pillar is of rectangular shape as illustrated in figure 3.12 

and the polysilicon fillet thickness is the same as the bird's beak length of the FILOX 

oxide Ldo2 as discussed in section 3.2. The width W of the gate interconnect can 

be reduced to the minimum gate length of a lateral device (L=100nm) as given by 
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source! X-
A J 

Figure 3.11: Cross-section showing polysihcon fillets covering channel- and source 
region 

layout rule L13. 

At the sidewalls of the pillar, adjacent to the source, a vertical bird's beak sepa-

rates the gate fillet from the source junction, as seen previously in the single gate 

transistor in figure 3.10. A similar bird's beak is present at the bottom of the 

pillar adjacent to the drain. The surround gate width is according to figure 3.12 

WaM = 2(a + b) = 1.32//m, where a is the length of the pillar and b its width. 

\1/ 
w source 

: 

T 

Figure 3.12: Top-view of a vertical MOSFET; in light grey: the area covered by the 
poly silicon fillets 

For vertical surround gate devices the overall gate/drain capacitance becomes OcDaii = 

Cgd -\- CcDfiii, where CoDfui is the additional drain overlap capacitance caused by 

the fillets overlapping the drain region at the bottom of the pillar. Similarly for the 

overall gate/source overlap capacitance one can say that Gcsaii = CQS + Casfui- To 

calculate the overall gate/drain capacitance, the following term has therefore to be 

added to CQD 
^ (2 {a + b) — W) Ldo2 
CGD fill = 7 ( 3 . 1 ) 

This equation assumes that the perimeter of the pillar is much greater than the 

thickness of the fillet (2(a-|-b))> Ldo)- In other words, the overlap capacitances in the 
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corners of the pillar in figure 3.12 are ignored. 

Making the same assumptions for the gate/source overlap capacitance, we have 

(2 (<^ + &) — W) Xj 
a GSfill 

^hLox/'^ 
(3.2) 

The additional overlap capacitances calculated, using equations 3.1 and 3.2, for the 

vertical surround gate MOSFET are shown in table 3.6. 

capacitance value 

CoDfiii [ F ] 8.4x10-^^ 

Cos fill [ F ] 4.2x10-^7 

Table 3.6: Calculated overlap capacitances caused by fillets (W=1.32/im) 

Table 3.7 compares the parasitic capacitances of a lateral device with a gate width 

of 1.32/im and an optimised vertical surround gate device with the same gate width. 

capacitance lateral vertical ^Vertical/ C'Lateral 

CgSu6[F] 2.3x10-^8 - -

CcDaHp] 4.6x10-^^ l.OxlO-^G 0.2 

4.6xlO-:^G 6.3x10-^7 0.1 

Table 3.7: Calculated overlap capacitances for a lateral device and an optimised sur-
round gate vertical device (W=1.32/jm) 

For the lateral device the increase in channel width by a factor of 6 compared with 

the results in table 3.3 causes the gate/source and gate/drain overlap capacitance to 

rise by the same amount. 

The gate/source and gate/drain capacitances of the vertical device are much lower 

compared to the lateral control. This results from the vertical bird's beaks caused 

by the FILOX oxidation at the side and bottom of the pillar. For surround gate 

devices with high channel width Waii 3> W the capacitance of the fillets dominates 

the gate/source and gate/drain overlap capacitance (see table 3.6). The key result 

in table 3.7 is that the overlap capacitances of the surround gate vertical MOSFET 

are dramatically lower than those of the lateral MOSFET. Furthermore, a thicker 
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FILOX film would certainly reduce the parasitic capacitance even further. 

Comparing tables 3.5 and 3.7, the following conclusion can be drawn. The over-

lap capacitance per unit gate width of the surround gate transistor is lower than that 

of the single gate transistor because the gate fillet adds proportionally little extra 

gate/drain overlap capacitance. This occurs partly because of the self-aligned struc-

ture of the surround gate and partly because the overlap capacitance is determined 

by the FILOX oxide. 

3.4.1 Over etching the surround gate 

Although the gate/source overlap capacitance is nearly half of that found in a lateral 

device, a further reduction of the gate/source overlap capacitance could be achieved 

by overetching the poly silicon fillets as illustrated in figure 3.13. Here, the fillets do 

not cover the source area on the pillar sidewalls and therefore no further overlap ca-

pacitances caused by the fillets need be added to the overall gate capacitance Gcsaii, 

since Gasfui = 0. 

source I X 
A J 

Figure 3.13: Cross-section showing overetched polysilicon fillets (W=1.32^m) 

Table 3.8 displays the results for vertical devices with overetched polysihcon fil-

lets. Whilst the gate/drain overlap capacitance has not changed (see table 3.7), 

the gate/source overlap capacitance is even lower. 

Process control would be a major problem in the structure shown in figure 3.13. 

However, with partial over etch of the fillets it should be possible to obtain a reduc-

tion of the gate/source overlap capacitance with good process control. In this case, 

the value of the gate/source overlap capacitance would be part way in between those 

in table 3.7 and those in table 3.8. 

Figure 3.14 shows the overlap capacitances as a function of gate oxide thickness 
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capacitance lateral vertical ^Vertical/ CLateral 

2.3x10-18 - -

CcDaZZp] 4.6x10-16 1.0x10-16 0.2 

i 6 x l O - ^ 2.0x10-1^ 0.05 

Table 3.8: Calculated overlap capacitances for a lateral device and an optimised sur-
round gate vertical device with overetched fillets (W=1.32//m) 

for lateral devices and optimised vertical surround gate devices. Both, gate/drain 

and gate/source overlap capacitances of the vertical devices are independent of the 

gate oxide thickness since they are determined by the oxide thickness and the FILOX 

bird's beak. This is not the case for the lateral device where the overlap capaci-

tances increase with decreasing gate oxide thickness. For gate oxide thicknesses less 

than ~9nm both types of vertical surround gate devices have lower overlap capaci-

tances than lateral devices. 

O 

10 

10 

1 0 

-14 , 

•15 . 

•16 . 

1 0 -17 

Cao & C33 (lateral) 
(vertical surround-gate) 

(vertical surround-gate) 

(vertical overetched surround-gate) 

I I I I I • I I I 

0 1 2 3 4 5 6 7 8 9 10 

Figure 3.14: Gate/source and gate/drain overlap capacitances for a lateral and an 
optimised vertical surround gate devices as a function of gate oxide thickness tox 
(W-1.32//m) 

3.4.2 Alternative gate process sequence 

A further reduction in both, gate/source and gate/drain overlap capacitance can be 

obtained by fabricating the gate before the source/drain implant (GBI) rather than 
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after the source/drain implant (GAI). In the GBI process the source/drain implant 

only penetrates underneath the polysilicon gate track at the edge of the gate as illus-

trated in figure 3.15. This gives rise to a decrease in gate/drain overlap capacitance 

compared with the GAI process. Since the gate overlaps the substrate on the bottom 

of the pillar, a new component Ccsub is introduced. In the GAI process, the gate 

overlaps the drain area over the full width W of the gate. 

LOCOS 

W 

a) 

b) 

drain 

diffused regions 

d̂o2 

I gate . 

L, dol 

source 

W, 

diffused regions 

drain 
J If 

4 L W 

d̂ol 

JL 
source X-

"'do2 

Figure 3.15: GBI MOSFET a) top-view showing the underneath the gate diffused 
source- and drain regions b) cross-section 

It should be noted that the GBI process can only be used for transistors contain-

ing fillets because in this approach only the fillet act as the gate of the transistor. 

The polysilicon track merely provides a contact to the fillet. However, GBI devices 

are, in comparison with GAI devices highly CMOS compatible since the gate track 

and the fillets are implanted at the same time as the source/drain junctions. 

The channel width Waii for a GBI device with surround gate can be calculated as 

Wall — 2(a -j- b) — W + 2xj (3.3) 



Chapter 3. Parasitic capacitances in vertical MOSFETs 44 

where a is the length of the pillar, b the width of the pillar and W is the width of the 

poly silicon track which contacts the gate. For GBI devices the parasitic capacitances 

can be calculated as shown in table 3.9. 

name location equation 

Casub bottom area (no bird's beak) 

bird's beak 

side of pillar (channel area) 

side of pillar (source area) 

top of pillar 

eoesi07,(W-2xj) Ldoi 1 

^vLox/^ 
^O^SiOy W Leff 

^OX 
eoesi02(^-'^^j) ^3 1 

^hLox/'^ 
eoesi02(̂ —2XJ)(VKS—Xj) 

Casub bottom area (no bird's beak) 

bird's beak 

side of pillar (channel area) 

side of pillar (source area) 

top of pillar 
^vlnox 

GGD bottom area (no bird's beak) 

bird's beak 

^0^SiOy2xjLaoi 1 

^OiSiO'^2xjLdo2 

CG5 side of pillar 

top of pillar 

^hLox/^ 
eo£Si02^j{'^{'^s-Xj)+W) 

CG5 side of pillar 

top of pillar 
^vJnox 

Table 3.9: Parasitic overlap capacitances of an optimised single gate vertical device 
based on the GBI process sequence 

In general the gate/substrate capacitance consists of five terms. The gate track 

covers the bottom of the pillar where the gate track is separated from the substrate 

due to the FILOX oxide. At the side of the pillar, the gate track overlaps the sidewall 

by the amount of Lg//. Here, the gate track is isolated by the gate oxide. Because 

of the vertical bird's beak caused by the FILOX process at the top of the pillar, the 

overlap capacitance is reduced. On top of the pillar the insulating layer, again caused 

by the FILOX separates the gate from the substrate. 

For the gate/drain capacitance only the, by the amount of 2xj, under the gate track 

diffused area needs to be considered. Again, the FILOX process reduces the overlap 

capacitance. 

The gate/source overlap capacitance consist of two terms. Likewise for the gate/drain 

capacitance, for the gate/source overlap capacitance only the underneath the gate in 

lateral direction diffused area needs to be taken into consideration (see figure 3.15). 

Table 3.10 compares values of overlap capacitance for surround gate GBI and GAI 

transistors. The GBI process gives slightly lower values of gate/source and gate/drain 

overlap capacitance, but at the cost of increased gate/substrate capacitance. 
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capacitance lateral GBI GAI 

CG5u6[F] &3xlO-^ L6xlO-^ -

GcDall [F] 4.6xlO-^G 9.0xl0-:^7 l.OxlO-^G 

CggaMp] 4.6x10-^^ 5.1x10-^7 6.3x10-:^^ 

Table 3.10: Calculated overlap capacitances for a lateral device and optimised vertical 
surround gate GBI and GAI devices (W=1.32;um) 

3.5 Junction capacitance in lateral and vertical 

MOSFETs 

Junction capacitances occur between the source and drain diffusion regions and the 

substrate. Figure 3.16 illustrates the junction capacitances of a lateral device. The 

depletion regions of each junction consists of two components, the planar depletion 

region across the implanted length Lj and the peripheral depletion region under the 

gate. For this calculation the junctions are assumed to be rectangular in shape and 

abrupt. Figure 3.16 also shows that the source Gjs and drain CJD capacitances are 

equal due to the symmetry of the device. 

depletion region 

n source 

substrate 

Figure 3.16; Lateral MOSFET with junction and depletion regions 

From equation 2.7 for the depletion layer width, the junction capacitance per unit 

area is given by 

Cj _ egjEo _ / ^Si^oQNA 
A Xi V 2 iiiu + Vj) 

(3.4) 
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where A is the area, Vj the reverse bias voltage across the junction and iphi is the 

built-in voltage of the pn-j unction given by 

Ybi — ^th I 2 (3.5) 

A high value of Yj causes a wide depletion region and therefore decreased junction 

capacitance. Equation 3.4 also shows that a low doped substrate can minimise the 

junction capacitance since is high. 

For a lateral MOSFET the junction capacitances at the source Cjg and drain CJD 

are equal and can be calculated in the same way 

(3.6) 

Table 3.11 shows the equations used to calculate the junction capacitance for the 

vertical GAI device shown in figure 3.17. 

capacitance type equation 

drain junction 

capacitance 

\/niu+VD"! ('̂ AAbAA ab + 2xj (o + 6)) 

source junction 

capacitance 

Table 3.11: Parasitic junction capacitances for a single gate device and a surround 
gate vertical device (GAI). 

The depletion area of the drain region was calculated by considering the overall 

n"̂  implanted area {GAA ^AA) between the pillar and the active area as illustrated 

in figure 3.3 and 3.4. Furthermore, the peripheral depletion regions underneath the 

pillar need to be added. The depletion region at the source of the vertical MOSFET 

is determined by the area of the pillar (a b). 

Table 3.12 illustrates the zero bias junction capacitance values for a lateral and a 

single gate vertical device width of W=220nm. 

Vertical single gate devices show 5.1 times more drain junction capacitance com-

pared to their lateral counterpart. This is mainly caused by the extended drain area 

surrounding the pillar as shown in figure 3.3. The source junction capacitance is 

similar for both device types. 
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FILOX 
source 

Figure 3.17: Optimised vertical single gate MOSFET with junction and depletion 
regions 

capacitance lateral vertical ^Vertical/ ^Lateral 

Cyr-IFJ 1.8xlO-^G 9.3xlO-^G 5.1 

CjsPI 1.8xlO-^G 3.4xlO-:^G 1.9 

Table 3.12: Calculated zero bias junction capacitances for a lateral device and a ver-
tical single gate device (GAI) with W=220nm 

The junction capacitances CjSaii and CjDaii for a lateral and a vertical surround 

gate device with a 1.32/zm gate width are shown in table 3.13. 

capacitance lateral vertical ertical / CLateral 

CfDpl 1.1x10"^® L l x l Q - ^ 1.0 

Cjs[F] L l x l Q - ^ 2.5xlO-^G 0.2 

Table 3.13: Calculated zero bias junction capacitances for a lateral device and a ver-
tical surround gate device (GAI) with W=1.32//m 

At this large gate width the benefits of the vertical surround gate transistor are 

clearly apparent. The source junction capacitance of the surround gate vertical tran-

sistor is a factor of 5 lower than that of the lateral device. This is because the pillar 

defines the source area and this is much smaller than that of the lateral device, as 

can be seen by comparing figures 3.4 and 3.2. The drain junction capacitance of the 

surround gate vertical transistor and the lateral transistor are comparable as can be 

seen by comparing figures 3.4 and 3.2. 
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3.6 Dielectric pocket vertical M O S F E T 

The dielectric pocket concept was originally proposed by Jurczak et al. [73, 74] to 

suppress punch-through in the bulk of a lateral MOS transistor. However, this con-

cept can also be applied to vertical MOS transistors, as illustrated in figure 3.18 [75]. 

The dielectric pocket comprises a silicon dioxide layer of thickness Xjp on top of the 

pillar. The source junctions are formed by diffusion from the poly silicon layer of 

thickness Xpoiy on top of the oxide. Very shallow junctions can be obtained in this 

way. A thin epitaxial layer is deposited over the pillar to ensure a good connection 

between the polysilicon layer and the substrate. This epitaxial layer can also act as 

a retrograde channel. Figure 3.18 shows that the dielectric pocket has dramatically 

reduced the active source area of the device. 

^ X dielectric pocket 

source j ^ ^ 

substrate 

Figure 3.18: The dielectric pocket vertical MOSFET and the associated junction ca-
pacitances 

3.6.1 Overlap capacitance of dielectric pocket vertical MOS-

F E T 

For a dielectric pocket thickness of Xjp = AOnm and a polySi thickness of Xpo/y=40nm 

the gate/drain overlap capacitance CoDaii of the dielectric pocket device hsted in ta-

ble 3.14 is the same as that in table 3.8. Assuming that the FILOX bird's beak on top 

of the pillar covers the polySi and junction so that Lso = p̂oiy + the gate/source 

overlap capacitance is only slightly higher because of the longer source region on top 

of the pillar compared with that shown in table 3.8. It can therefore be concluded 

that the overlap capacitances of a dielectric pocket device are very similar to those 

of the optimised vertical transistor. 
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capacitance lateral vertical C Vertical / GLateral 

2.3x10-^^ - -

CcDaZZp] 4.6xlO-^G l.OxlO-^G 0.2 

CcSaiiP] 4.6xlO-:^G 2.8x10-:^^ 0.06 

Table 3.14: Calculated overlap capacitances for a lateral device and a dielectric pocket 
surround gate devices with overetched surround gate fillets (W=1.32jum) 

3.6.2 Junct ion capacitance of dielectric pocket vertical MOS-

F E T 

The drain junction capacitance is not altered by the dielectric pocket, since the shape 

and size of the drain junction is unchanged. The junction capacitance at the source 

is considerably reduced, because the active source area is only located at the perime-

ter of the pillar as shown in figure 3.18. However, the dielectric pocket causes the 

source/substrate capacitance Cssub which is in parallel with the source junction ca-

pacitance Cjs-

Table 3.15 lists the calculated junction capacitance values for an optimised dielectric 

pocket device with surround gate. The source junction capacitance of the dielectric 

pocket transistor is 33 times lower than that of a lateral device. 

capacitance lateral vertical ^Vertical / CLateral 

CjD[F] 1.1x10-^^ L l x l O - ^ 1.0 

L l x l O - ^ 3.5x10-^^ 0.03 

Cssrf,[F] - 6.8x10-^^ -

Table 3.15: Calculated junction capacitances for a lateral device and an optimised 
vertical dielectric pocket surround gate device based on the GAI process sequence 
(W=1.32yum) 

3.7 Summary 

In this chapter calculations of parasitic overlap and junction capacitances have been 

made based on advanced lOOnm industry design rules. Table 3.16 illustrates the 

gate/drain and gate/source overlap capacitances for different types of vertical MOS 

transistors and for comparison a standard lateral devices. 
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type device CGZ)[F] ^GDVert/ 

CcDLat 

CGS[F] CcSVert/ 

CoSLat 

single 

gate 

standard lateral 7.6x10-^^ - 7.6x10-^^ -single 

gate basic vertical 3.8xlO-^G 5.0 8.4xlO-^G 11.0 

single 

gate 

optimised vertical 2.7x10-:^'^ 0.4 4.6x10-^^ 0.6 

surround 

gate 

standard lateral 4.6xlO-:^G - 4.6x10-16 -surround 

gate optimised vertical l.OxlQ-^G 0.2 6.3x10-17 0.1 

surround 

gate 

optimised vertical 

overetched surround 

1.0x10-^^ 0.2 2.0x10-17 &05 

Table 3.16: Summery of parasitic overlap capacitances for GAI based vertical devices 

The basic single gate vertical MOS device shows high parasitic overlap capacitances 

compared with the standard lateral device. This device is therefore not suitable for 

high performance applications. 

A fillet local oxidation (FILOX) process has been developed to reduce both, gate/drain 

and gate/source overlap capacitances. For the minimum geometry single gate vertical 

MOSFET in table 3.16, the gate/drain capacitance is lower by a factor of 2.9 and the 

gate/source overlap capacitance is lower by a factor of 1.7. From the point of view 

of overlap capacitances, this device would give higher switching performance than 

the standard lateral transistor. This conclusion is even more valid for surround gate 

transistors, where the reduction in overlap capacitance is even larger. 

Table 3.17 lists the junction capacitances of lateral and different types of vertical 

devices. Here, minimal geometry single gate vertical devices show higher drain and 

source junction capacitance than the standard lateral transistor. However, the ver-

tical surround gate device shows much lower source junction capacitance than the 

standard lateral devices with the same gate width, but a comparable drain junction 

capacitance. 

A dielectric pocket concept has been introduced for vertical MOSFETs which gives a 

dramatic reduction of the source junction capacitance due to the confinement of the 

source junction to the pillar perimeter. 

In conclusion surround gate vertical transistors incorporating FILOX and a dielectric 

pocket are ideally suited for high performance applications. 
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type device ^jDVert/ 

^jDLat 

C;s[F] CjSVert/ 

GjSLat 

single 

gate 

standard lateral 1.8xlO-^G - 1.8xlO-^G -single 

gate vertical LOxlQ-^ 5.5 2.5xlO-^G 1.4 

surround 

gate 

standard lateral L l x l Q - ^ - L l x l O - ^ -surround 

gate vertical 1.1x10-^^ 1.0 2.5x10-^^ 0.2 

surround 

gate 

dielectric pocket 1.1x10-^^ 1.0 3.5x10-^^ 0.03 

Table 3.17: Summery of parasitic junction capacitances for GAI based vertical devices 



Chapter 4 

Simulation of the fillet local 

oxidation (FILOX) process 

4.1 Introduction 

In this chapter the FILOX process previously introduced in section 3.3.4 is simulated 

using Silvaco's Athena process simulation tool. A test-batch has been fabricated and 

cross-sectioned to calibrate the nitride viscosity of the simulator. After calibration the 

new viscosity values are applied to investigate the encroachment on top and bottom 

of the pillar for various pad oxide thicknesses as well as different nitride thicknesses. 

Furthermore, FILOX with a nitride top insulator is introduced and simulated in order 

to reduce the encroachment on top of the pillar and its sidewalls. 

4.2 Fabrication of the calibration structure 

A test batch was fabricated to calibrate the simulator. Figure 4.1 illustrates the 

fabricated structure. Two areas shown in figure 4.1 are of particular interest namely 

the pillar top and the pillar bottom. The FILOX oxidation causes the nitride fillet 

to bend at the top of the pillar. Furthermore, the FILOX bends the nitride fillet at 

the bottom of the pillar as will be shown in the next section. Both encroachments 

are of particular importance for the successful implementation into the fabrication 

process of vertical MOSFETs as will be shown in chapter 6. The calibration structure 

was used to calibrate the viscosity of the silicon dioxide to ensure good agreement 

between measured and simulated encroachments at both the top and bottom of the 

pillar. 

Table 4.1 lists the process steps to fabricate the structure shown in figure 4.1. The 
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encroachment on pillar top 

nitride silicon 
pillar 

encroachment 
on pillar bottom 

Figure 4.1: Nitride encroachment due to FILOX oxidation on pillar top and pillar 
bottom 

initial wafer was p-type <100> with a resistivity in the range of 10 to SSficm. The 

fabrication process started with an implant and anneal to give a substrate doping of 

2xl0^^cm~^. The implant was at an energy of 50keV and a dose of S.OxlO^^cm"^ 

and was followed by a drive-in at 110G°C to activate and anneal the dopants. In 

the following process step the thin oxide built during the previous anneal stage was 

removed. A 1.1/jm lightfield photoresist layer (SPRT 510) was spun onto the wafer 

to protect future pillar areas. After hardbaking the wafer for two hours at 140°C 

the pillar was anisotropically etched using a HBr etch. The photoresist was removed 

using a plasma asher. 

stage description 

1 boron substrate implant (5.0 x 1 0 ^ ^ a t 50keV) 

2 boron drive-in (1100°C 10' O2, 30' N2) 

3 dip etch in HF to remove oxide 

4 pillar hthography 

5 anisotropic pillar etch (250nm) 

6 resist strip 

7 dry oxidation (5nm at 800°C) 

8 deposit 40/70/130nm SigA^ at 740°C 

9 dry etch to leave fillets on sidewalls 

10 dry etch Si02 to remove pad oxide layer 

11 FILOX 40/80/120/160nm at 1000°C (O2, HCL) 

Table 4.1: Process list for FILOX test structures 

After an RCA cleaning stage a 5nm pad oxide was grown using a dry oxidation 

O2 ambient at 800°C. This oxide acts as a stress relief oxide for the following nitride 

deposition process. Three different nitride thicknesses were deposited as shown in 

table 4.1. The formation of the nitride fillets was performed using an anisotropic 
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CHFg+Ar etch. Figure 4.2a shows the FILOX test structure after the anisotropic 

nitride etch. After the fillet formation, the Si02 pad oxide layer was anisotropic 

etch using a CHFa+Ar etch. The remaining structure is depicted in figure 4.2b. 

The FILOX local oxidation was performed at a temperature of 1000°C in a hydro-

gen/oxygen ambient. Figure 4.2c illustrates the structure after the FILOX oxidation. 

Four different FILOX thicknesses were grown as shown in table 4.1 which required 

oxidation times of 1, 5.5, 11.5 and 16 minutes. A detailed process listing is in ap-

pendix C.l. 

a) 

pad oxide 

n S 
nitride fillet 

b) 

FILOX 

c) 

Figure 4.2: Process flow of the FILOX test structures a) after anisotropic nitride etch 
b) after anisotropic oxide etch c) after FILOX oxidation. 

4.3 Simulation models 

In this section the different models used for simulating the FILOX process are ex-

plained. For the silicon pillar etch as well as for the nitride fillet etch, the reactive 

ion etch model (rie) was used. The isotropy parameter of the etchant is defined as 

the contribution of thermal atoms, radicals and molecules coming out of the plasma 

and may lead to an underetching of the mask. For the silicon pillar etch the isotropy 

parameter of the etch as well as the direction of the ions was modified to achieve a 

steep pillar sidewall of 7°. The parameters chemical and divergence define the etch 

rate normal to the ion beam and the divergence of the beam respectively. The pa-

rameter values used are shown in the input file in appendix A.l. 

Athena's dry oxidation model (dryo2) was used for pad oxidation at standard pres-
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sure (1 atmosphere) and a temperature of 900°C. The parameter hcl.pc was modified 

to adjust the HCL content in the oxygen gas. 

Athena's viscous flow model based on the work of Chin et al. [76] was used to grow 

the FILOX oxide. This model simulates elastic, stress-dependent and viscous oxide 

flow for temperatures above 960°C [77]. Above this temperature two mechanisms 

are involved in the oxidation process, namely flow of oxidant through the SiOg and 

oxide flow due to the volume expansion and associated stress [78,79]. Athena allows 

the stress-dependent viscosity parameter to be modified. Table 4.2 shows the two 

parameters controlling the viscosity of a material namely the pre-exponential coeffi-

cient and the viscosity activation energy. 

parameter type SiOs 

(wet oxidation) 

viscosity activation default 2.8 0.99411 

energy (visc.E[eV]) calibrated 2.8 2.5625 [80] 

pre-exponential default 1.55x10* 3.75x10^1 

coefficient calibrated 2.8 2.3 xlO^ 

(visc.O[gcm^^s~^]) 

Table 4.2: Default and calibrated parameters for stress dependent viscous oxidation 
simulations. 

The viscosity 77 of a material can be calculated using the following equation [80]: 

(4.1) 
. „ f visc.E^ 

77 = vtsc.O exp I 

Table 4.2 summarises the default viscosity parameters, from which a default nitride 

viscosity of 3.8xl0^®^cm~^s~^ can be calculated. 

4.4 Calibration of the simulator 

Figure 4.3 shows a TEM cross-section of the fabricated structure described in the 

previous section. The initial nitride thickness was 70nm. On top and bottom of the 

pillar a 40nm thick oxide layer was grown during the FILOX process. The nitride fillet 

was overetched during the anisotropic fillet etch which decreased the initial thickness 

of 70nm to 36nm in the middle of the fillet. The encroachment on top and bottom of 

the pillar were measured as shown in figure 4.3 and were found to be 27.2 and 7.0nm, 
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respectively. 

50nin ^ 

nitride 

top encroachmcnt 

HLOX 

silicon pillar 

1. 
FILOX 

bolloin eiKToaciimciit / 

L t 
Figure 4.3: TEM cross-section of a FILOX test-structure directly after the oxida-
tion at 1000°C for Imin. The initial pad oxide thickness was 5nm and the nitride 
thickness 70nm. The thickness of the FILOX oxide is 40nm. 

Figure 4.4 shows a FILOX simulation using Athena's default parameter values for 

both, oxide and nitride viscosity. The FILOX oxide thickness at x=1.15^m is 38.8nm. 

The encroachment on top of the pillar at y=0.05^m is 12.2nm which is much less 

than the encroachment in the experimental test structure. The encroachment at the 

bottom of the default test structure at x=0.96//m is 7.8nm which is slightly higher 

than the encroachment of the experimental test structure. 

Figure 4.5 plots the encroachment on the pillar top (at y=0.05^m) and bottom (at 

x=0.96^m) as a function of nitride viscosity. Simulating the given structure with 

a low nitride viscosity of 2xl0^^5'cm~^s"^ causes large encroachments at the pillar 

top and bottom. Increasing the nitride viscosity up to gcm~^s~^ leads to a 

high encroachment at the pillar top, but a lower encroachment at the pillar bottom. 

At this value good agreement between simulation and experimental data is achieved 

as can be seen from figure 4.3 and 4.6. A further increase of the nitride viscosity 

decreases the encroachment at the pillar top dramatically and gives poor agreement. 

Table 4.2 lists the calibrated viscosity parameter values which give a nitride viscosity 

of 1.64xl0^®^cm~^s~^. 
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Figure 4.4: FILOX simulation using the default parameter set for oxide grown at 
1000°C. The initial pad oxide thickness was 5.3nm and the nitride thickness 70nm. 
The thickness of the FILOX oxide is 38.Sum at x=1.15^m. Arrows showing the 
encroachment on top and bottom of the pillar which were considered for calibration. 
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Figure 4.5: Encroachment on the pillar top and pillar bottom as a function of nitride 
viscosity for 38.8nm oxide thickness grown at 1000°C. The initial pad oxide thickness 
was 5.3nm and the nitride thickness TOnm. 
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Figure 4.6: Calibrated FILOX simulation for oxide grown at 1000°C. The initial pad 
oxide thickness was 5.3nm and the nitride thickness 70nm. The thickness of the 
FILOX oxide is 39.1nm at x=1.15//m. 
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4.5 FILOX simulation results 

In this section the influence of the nitride thickness and the initial pad oxide thickness 

on the encroachments on top and bottom of the pillar are investigated for different 

FILOX oxidation times. Figure 4.7a illustrates the encroachment down the side of 

the pillar for a structure with initially 5.3nm pad oxide and a nitride fillet thickness 

of 70nm. For oxidation times up to 5 minutes the encroachment at y=80nm at the 

pillar top is below 33nm. For this case the fillet is bending at the top, but has not 

moved significantly from its original position at the bottom. Increasing the oxidation 

time causes the fillet to both, bend at the top and move from its original position at 

the bottom of the pillar. The initial pad oxide thickness was 5.3nm on the horizontal 

surfaces but figure 4.7a shows that it is 7.3nm at the pillar sidewalk The thicker 

oxide on the sidewall is caused by the dependence of the oxidation rate on the crystal 

orientation [79]. 

Figure 4.7b shows the encroachment at the bottom of the pillar. For oxidation times 

up to 5 minutes the encroachment underneath the nitride fillet is small. For an 

oxidation time of 5 minutes a FILOX oxide thickness of 12nm can be extracted at 

x=960nm. However, longer oxidation times cause the fillet to dramatically bend 

upwards. These results show that for a nitride thickness of 70nm and a pad oxide 

thickness of 5.3nm the oxidation time should be no more than 5 minutes. This cor-

responds to a FILOX thickness of 58nm. 

Figure 4.8 illustrates the encroachments for a 130nm thick nitride fillet with an initial 

pad oxide thickness of 5.3nm. For an oxidation time of 5 minutes the encroachment 

at the top of the pillar can be extracted to be 35nm which is very similar to the 

encroachment shown in figure 4.7a. However, the encroachment at the pillar bottom 

is slightly reduced. An oxide thickness of 7nm can be found at x=960nm compared 

with 12nm for the structure with a 70nm nitride spacer. 

Figure 4.9a depicts the encroachment on top of the pillar for a 130nm thick nitride 

fillet with an initial pad oxide thickness of 20.4nm. Comparing figures 4.8a and 4.9a 

shows that a thicker oxide layer gives slightly higher encroachment on top of the 

pillar. The encroachment towards the bottom of the pillar sidewall at y=200nm is 

increased for the structures with a 20.4nm oxide layer. Figure 4.9b shows a slight in-

crease in encroachment at x—960nm compared with figure 4.8b. It can be concluded 

that a thinner pad oxide for a given nitride thickness decreases the encroachment on 

the pillar sidewall as well as at the bottom of the pillar. 

Figure 4.10 shows the distribution of stress for a structure with 5.3nm initial pad 
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Figure 4.7: FILOX thickness as a function of distance for a 5.3nm pad oxide grown 
at 1000°C and TOnm nitride thickness a) pillar top b) pillar bottom. The distance 
scale is obtained from the distance scale in figure 4.6. 

oxide, a nitride fillet thickness of TOnm and an oxidation time of 3 minutes. The 

FILOX oxide thickness was 38.8nm at x=1.15/im. The highest amount of normal 

stress in the y-direction can be found in the nitride at the bottom of the pillar, as 

shown by the arrow in figure 4.10. Furthermore, figure 4.10 indicates a large amount 

of stress in the nitride fillet at the top of the pillar. It can be seen that a high amount 

of stress is also found in the oxide. Table 4.3 summarises the values of maximal 

normal stress found in the structure. 
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Figure 4.8: FILOX thickness as a function of distance for a 5.3nrn pad oxide grown 
at 1000°C and 130nm nitride thickness a) pillar top b) pillar bottom. The distance 
scale is obtained from the distance scale in figure 4.6. 

Figure 4.11 shows a TEM cross-section of a fabricated test structure with a pad 

oxide thickness of 5nm, a nitride fillet of 40nm, a pillar height of 320nm and a 

FILOX oxide thickness of 160nm. It can be seen that at the bottom of the pillar a 

dislocation is propagating into the silicon substrate from the bottom corner of the 

pillar. The presence of this dislocation provides experimental evidence of the high 

stress at the corner of the pillar in the FILOX process when a thick oxide is grown 

(160nm). A comparison with the results in figure 4.7 shows that the 160nm FILOX 

oxide thickness in this sample would be expected to give considerable encroachment 
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Figure 4.9: FILOX thickness as a function of distance for a 20.4nm pad oxide grown 
at 1000°C and 130nm nitride thickness a) pillar top b) pillar bottom. The distance 
scale is obtained from the distance scale in figure 4.6. 

at both, the bottom and top of the pillar. It can therefore be concluded that the 

FILOX oxide thickness should be much less than 160nm if problems with stress are 

to be avoided. 
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Figure 4.10: Regions of normal stress Uyy in nitride for a 5.3nm initial pad oxide grown 
for 3 minutes at 1000°C and 70nm nitride thickness. The thickness of the FILOX 
oxide is 38.8nm at x=1.15/im. Arrow indicating the highest amount of normal stress 
(Xyy in the nitride fillet. 

material / location Cria:maa;[dyne/cm] (^yymax [dyilG/cm 

oxide 6.50x10^0 4.73x1010 

X 0.931 0.940 

y (1248 0.237 

nitride 1.05x10^1 LOlxlO^ 

X 0.940 0.942 

y 0.229 0.224 

Table 4.3: Extracted amounts of stress and their location in the nitride fillet and 
oxide for the structure shown in figure 4.10. 
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dislocation 

Figure 4.11: TEM cross-section of the FILOX process directly after the oxidation for 
11.5 minutes at 1000°C showing dislocations at the bottom corner of the pillar. The 
initial pad oxide thickness was 5nm and the nitride thickness 40nm. The thickness 
of the FILOX oxide is 160nm. 
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4.6 FILOX with nitride top insulator 

The encroachment at the top of the pillar can be dramatically reduced by introduc-

ing a nitride layer on top of the pillar. Figure 4.12 illustrates the process flow. A 

oxide/nitride/oxide stack is first deposited on a plane wafer as shown in figure 4.12a. 

In the following process step the nitride stack and the silicon is anisotropically etched 

in order to form the pillar structure. After growing the pad oxide a structure similar 

to that shown in figure 4.12b is obtained. The following steps include deposition and 

anisotropic etch of the nitride to leave fillets and anisotropic oxide etch. Figure 4.12c 

depicts the structure before the FILOX oxidation and it can be seen that the nitride 

layer completely covers the pillar. 

a) silicon 

<r 

50nm oxide 
130nm nitride 
20nm pad oxide 

Silicon 
20nm pad oxide 

C)[ silicon 

nitride fillet 

Figure 4.12; Process flow of a structure with nitride as a top insulator a) ox-
ide /nitride/oxide stack b) after pillar etch and pad oxide growth c) after fillet and 
pad oxide etch 

Figure 4.13 shows a simulated cross-section of the structure under consideration. 

The nitride layer forms a cap protecting the whole pillar structure and hence there 

is negligible encroachment at the top of the pillar during the FILOX oxidation. This 

result is confirmed in figure 4.14 which shows a graph of FILOX thickness for different 

oxidation times. 

It can be seen that the nitride cap has completely eliminated the encroachment down 

the side of the pillar for oxidation times as long as 7 minutes. 

Figure 4.15 shows the distribution of stress for a nitride cap structure with 5.3nm 
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Figure 4.13: Simulated structure with a 20.4nm initial pad oxide grown at 1000°C 
and 70nm nitride fillet showing the nitride cap protecting pillar top and side walls. 
The thickness of the FILOX oxide is 39.0nm at x=0.85^m. 

initial pad oxide, a nitride fillet thickness of 70nm and an oxidation time of 3 minutes. 

The FILOX oxide thickness was 38.8nm. The highest amount of normal stress in the 

y-direction can be found in the oxide at the bottom of the nitride fillet at the bird's 

beak where the oxide thickness increases. Furthermore, figure 4.15 indicates a large 

amount of stress in the nitride fillet at the bottom of the fillet. 

Table 4.4 summarises the values of normal stress found in the structure shown in 

figure 4.15 in both x- and y-directions. It can be seen that a high amount of stress is 

found, particularly in the oxide. However, comparing table 4.4 with table 4.3 shows 

that the stress in both the nitride and oxide in both, x- and y-direction are lower for 

the structures with a nitride cap than for the structure with oxide on top of the pillar. 

The lower stress in the structures with nitride cap could be due to the distribution 

of stress over a greater area of the nitride cap. 
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Figure 4.14: FILOX thickness as a function of distance for a 20.4nm pad oxide grown 
at 1000°C and TOnm nitride thickness a) pillar top b) pillar bottom. The distance 
scale is obtained from the distance scale in figure 4.6. 
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Figure 4.15: Regions of normal stress ayy in nitride for a 20.4nm initial pad oxide 
grown for 3 minutes at 1000°C and 70nm nitride thickness. The thickness of the 
FILOX oxide is 38.8nm. Arrow indicating the highest amount of normal stress ayy 
in the oxide. 

material / location cTxxmax [dyne/cm] ^yymcLx [dyne/cm 

oxide 5.91x101° 5.36x1010 

X 0.922 0.930 

y 0.269 &244 

nitride 2.58x10^° 3.77x1010 

X 0.977 0.930 

y 0.232 0.218 

Table 4.4; Extracted amounts of stress and their location in the nitride fillet and 
oxide for the structure shown in figure 4.15. 
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4.7 Summary 

In this chapter the FILOX process was simulated using calibrated values of nitride 

viscosity. The encroachment on the pillar side and bottom was investigated. It was 

found that a thick nitride fillet reduces the encroachment on the bottom of the pillar 

but has little influence on the encroachment on the pillar sidewalk Furthermore, 

it was shown that decreasing the pad oxide thickness for a given nitride thickness 

reduces the encroachment on the side of the pillar. It can therefore be concluded 

that the combination of a thin pad oxide with the thick nitride fillet results in small 

encroachments on the top and side of the pillar. 

Covering the pillar top with a nitride insulation layer completely suppresses the oxi-

dation on the sidewall and therefore eliminates the encroachment on the side of the 

pillar. The encroachment at the bottom of the pillar is similar to that in the pillars 

without nitride on top. Simulations showed that stress in pillars with a nitride cap 

is lower than that in pillars with an oxide cap. 



Chapter 5 

CV-characteristics of FILOX 

vertical capacitors 

5.1 Introduction 

To experimentally investigate the capacitive reduction obtained with the FILOX 

process a batch of capacitors was fabricated. Three different types of capacitor were 

fabricated namely capacitors incorporating a nitride top insulator, capacitors incor-

porating the FILOX process and control capacitors with neither a nitride insulator 

level nor the FILOX oxide. The measured results of these capacitors are compared 

with simulated results using Silvaco's Athena/Atlas software tool. 

5.2 Experimental procedure 

Figure 5.1 illustrates schematic cross-sections of the three fabricated structures. The 

control structure shown in figure 5.1a consists of the substrate, a thermally grown 

gate oxide, a polysilicon gate layer and a metal layer. Figure 5.1b shows a structure 

with a nitride top insulator. This insulator stack is of the same type as shown in 

figure 4.12a. Capacitors incorporating the FILOX process are depicted in figure 5.1c. 

The structure is similar to that shown in figure 5.1b with the difference that a FILOX 

oxide was grown at the bottom of the pillar to further reduce the capacitance. 

Table 5.1 lists the process flow for the structures under consideration. The initial 

wafer was p-type <100> with a resistivity in the range of 0.5 to l.OOcm. The fab-

rication process starts with a standard LOCOS process with a 20nm pad oxide and 

a LSOnm thick nitride layer to define the active area. To build the nitride top in-

sulator stack for the structure with nitride top insulator, a 50nm low temperature 
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c) FILOX 
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b) nitride top 
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Figure 5.1: Cross-sections of fabricated capacitors a) control b) with nitride top in-
sulator c) with FILOX and nitride top insulator. 

oxide (LTO) layer was deposited on top of the nitride layer used in the LOCOS 

processing. All structures underwent a 300nm pillar etch. After the pillar etch a 

pad oxide was grown using a dry oxidation process. Nitride fillets were produced by 

depositing a nitride layer and anisotropic etching as shown in stages 8 and 9. Using 

an anisotropic oxide etch, the pad oxide was etched so that it left exposed silicon 

as shown in figure 4.12c. After a lOOnm FILOX oxidation the nitride spacers were 

stripped and the 20nm pad oxide that protected the sidewalls was wet etched using 

a diluted 20:1 HF solution. Due to the isotropy of the oxide etch, the FILOX oxide 

thickness reduces to about SOnm during this step. Three different oxide thicknesses 

were grown in stage 14 for the three capacitor types at 800°C. A 200nm in-situ doped 

phosphorous polysilicon layer with a concentration of IxlO^^cm"^ was used for the 

gate before the metal layer was deposited. The metal was masked to define the metal 

area and etched using a wet etch process. The polysilicon underneath the oxide was 

etched afterwards so that the polySi layer was self aligned to the photoresist covering 

the metal layer. The process finished with the deposition of the aluminium back 

contact. A detailed process listing can be found in the appendix C.2. 
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stage description control nitride 

top 

insulator 

FILOX mask 

1 standard LOCOS (600nm) 

(20nm pad oxide, 140nm nitride) 

X X X AA 

2 strip nitride & pad oxide X - -

3 deposit Si02 (50nm) - X X 

4 pillar lithography X X X PL 

5 anisotropic SiOg & 

SisA^ & SiOg etch 

- X X 

6 anisotropic pillar etch 

(400nm into Si) 

X X X 

7 dry oxidation (20nm at 800°C) X X X 

8 deposit 70nm Si3A 4̂ at 740° C - - X 

9 dry etch SigTV̂  to leave fillets - - X 

10 dry etch 20nm pad oxide - - X 

11 lOOnm FILOX at lOOO^C - - X 

12 strip nitride spacers - - X 

13 wet etch 20nm pad oxide X X X 

14 4/8/12nm gate oxidation 

a t 8 0 0 ° C 

X X X 

15 200nm in-situ P doped polySi 

(lxlO^®cm~^) 

X X X 

16 metal deposition X X X 

17 metal/polySi lithography X X X Ml 

18 metal etch X X X 

19 polySi etch X X X 

20 back contact X X X 

Table 5.1: Process list and batch sphts for vertical capacitors 
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Table 5.2 shows the measured material thicknesses of all three fabricated struc-

tures. It can be seen that there is some variability in the pillar height because of 

difficulty in controlling the etch as it has no end point and is very short (~1.5min). 

Electrical measurements showed that the substrate resistivity was O.TSllcm which 

corresponds to a doping concentration of 2xl0^®cm~^. For the deposited polysili-

con a thickness of 220nm was measured. The measured polysilicon resistivity was 

O.OllHcm which implies a doping concentration of IxlO^^cm"^. 

material control [nm] nitride top 
insulator [nm] 

FILOX [nm] 

nitride 138 150 146 

LTO - 63 64 

pillar height 400 320 460 

FILOX thickness - - 97 

LOCOS thickness 

after HF dip etch 

511 500 510 

Table 5.2: Measured material thicknesses for control, nitride top and FILOX capaci-
tors 

5.2,1 Mask layout 

For each of the three types of capacitors, three different devices were fabricated to in-

vestigate the capacitive behaviour of all horizontal and vertical surfaces. Figure 5.2a 

shows a trench capacitor. The dimensions of the capacitor are given by and 

(see appendix B.l). The gate is contacted via a metal layer on top of the polySi 

layer and by the backside contact of the silicon wafer. This capacitor can be used 

to characterise the FILOX process. Figure 5.2b shows a top capacitor similar to the 

one in figure 5.2a but with the capacitance on top of the pillar. This capacitor can 

be used to characterise the insulator on top of the pillar. Figure 5.2c depicts a pil-

lar capacitor in which the polySi/metal stack is deposited over the entire pillar and 

trench structure. Again, this capacitor consists of a polySi gate which is self aligned 

to the photoresist layer on top of the metal layer. The structure has no corners since 

the metal/polySi area is smaller than the length of the pillars. Various pillar/trench 

ratios have been reahsed. The capacitor shown in figure 5.2c has a trench width 

of 3^m and a pillar width of 1.5/im. 
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c) pillar capacitor 

Figure 5.2: Fabricated capacitors a) cross-section of a trench capacitor b) cross-section 
of a top capacitor c) cross-section of a pillar capacitor. 
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5.2.2 Electrical characterisation 

To characterise the fabricated capacitors, high frequency (HF) capacitance/voltage 

(CV) characteristics were measured using an HP4280A capacitance meter. The fre-

quency for all measurements was IMHz and the ac signal amplitude 30mV. For all 

measurements ground was connected to the back of the wafer whilst the signal was 

connected to the probe pad. The wafer was illuminated for 10 seconds to allow an 

inversion layer to built before ramping the applied voltage from inversion to accumu-

lation. 

5.2.3 Calibration of the simulator 

To optimise the accuracy of the simulations Athena and Atlas were calibrated by 

comparing simulated and measured results. Figure 5.3 illustrates the measured and 

simulated CV curves of a pillar top capacitor. In accumulation the measured capac-

itance is 7.0xl0~^Fm~^ at -4V for a measured gate oxide thickness of 3.9nm. Using 

the default parameters, Athena/Atlas predicts a capacitance of 8.6xlO~^Fm~^ for 

the same oxide thickness at -4V. This value is clearly to high. Simulating the same 

structure with an oxide thickness of 4.8nm decreases the capacitance to the measured 

value. Furthermore, a fixed oxide charge Q/ of 7xl0^°cm~^ was included in the sim-

ulation to shift the plot by about 100mV to more negative voltages compared with 

no oxide charge. These calibrated values of oxide thickness and fixed oxide charge 

are used in the following simulation results. 

5.3 Measured CV characteris t ics 

Figure 5.4 depicts typical CV plots of the three types of pillar capacitor namely con-

trol, nitride top insulator and FILOX. The metal probe pad capacitance of the three 

structures (1.19, 1.30 and 1.24pF) was subtracted prior to plotting. The nitride top 

capacitor shows a lower capacitance at Vg—-4V by a factor of 1.43 compared with 

the control. The FILOX capacitor shows a lower capacitance by a factor of 5.64 

compared with the control. 

In inversion a small increase in capacitance can be seen for the control structure 

at about -O.IV. This effect will be discussed in detail in section 5.5.2. Beyond 0.7V 

the capacitance decreases gradually with increasing gate voltage, probably due to 

oxide leakage. Similar behaviour can also be seen for the capacitors with nitride top 

and FILOX. 
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Figure 5.3; Comparison of simulated default, calibrated and measured capacitances 
per unit area for a top capacitor. For the simulation and measurements the frequency 
was IMHz. The ac amplitude was SOmV for the measured structure and lOOmV for 
the simulation. 

5.4 Simulated C V character is t ics 

Figure 5.5 shows a comparison of simulated and measured CV results of all three 

capacitors. For the simulations calibrated values of oxide thickness and fixed oxide 

charge were assumed. For the control structure the agreement between measured 

and simulated data is reasonably good. The simulated capacitance in accumulation 

at -4V is slightly higher than the measured value by a factor of 1.05 compared with 

the measured result. For the structures with a nitride top insulator the simulated 

value at -4V is higher by a factor of 1.10. In contrast for the FILOX capacitor the 

simulated capacitance at -4V is slightly lower than the measured value by a factor 

of 1.04. The simulation gives a FILOX thickness of 92nm compared with the mea-

sured value of 97nm for the fabricated structure. 

Figure 5.6 compares simulated and measured values of capacitance on a total of 4 

capacitors from one part of the wafer. Means and standard deviation are presented at 

VG=-4V. The standard deviations a for the control, nitride top and FILOX capac-

itors are 0.21, 0.14, O.OSx 10~^F/m^, respectively. The mean values of capacitance 

follow the same trend as seen in figure 5.5. 
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Figure 5.4: Comparison of measured CV graphs of a control, nitride top insulator 
and FILOX capacitor. The frequency was IMHz and the ac amplitude 30mV. 
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Figure 5.5: Comparison of cahbrated simulated and measured CV graphs of control, 
nitride top and FILOX capacitors. For the simulation and measurements the fre-
quency was IMHz. The ac amplitude was 30mV for the measured structures and 
lOOmV for the simulations. 
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Figure 5.6: Comparison of calibrated simulated and measured capacitances at 
Vg=-4.0V of control, nitride top and FILOX capacitors. Also shown is the stan-
dard deviation of 4 measured structures for each capacitor type. 
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5.5 Discussion 

In this section the oxide thickness on the sidewall of the pillar will be extracted. 

Furthermore, an explanation for the increased capacitance in inversion is presented. 

5.5.1 Extract ion of oxide thickness on the pillar sidewall 

To perform the extraction of oxide thickness on the pillar sidewall, measured capaci-

tance values at -4V have been used. Top and trench capacitors were measured to get 

accurate capacitance values of the top and trench areas covered by the polySi for the 

extraction of the sidewall capacitance. Figure 5.7 depicts the dimensions of a control 

capacitor cell used in the following for the extraction of the oxide thickness on the 

pillar sidewall. 

gate 

4. Sum I* ' silicon 

3|j,m 1.5|Lim 

Figure 5.7: Cross-section of a control capacitor cell showing the dimensions. 

Table 5.3 shows the extracted capacitance values for all three capacitor types as 

well as capacitance values for top and trench capacitors (see figure 5.2) per cell. To 

extract the oxide thickness on the sidewall, the pillar height shown in table 5.2 was 

used. For both, control and nitride top capacitors the extracted sidewall capacitance 

is up to 15 times smaller than the top or trench capacitance which can result in signif-

icant errors in the extracted sidewall capacitance. This is not the case for the FILOX 

capacitor, where the extracted sidewall capacitance is about three times higher than 

the top capacitance and about two times higher than the trench capacitance. 

Table 5.4 shows the extracted and simulated oxide thicknesses on the pillar side-

walls for three types of pillar capacitors based on the extracted capacitance values of 

table 5.3. For the control capacitor the extracted oxide thickness is higher by a factor 

of 2.5 compared with the simulated oxide thickness on the sidewall. The extracted 

sidewall oxide thickness of the nitride top capacitor is a factor of 1.9 higher than the 
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t y p e t o t a l C t o p C t r e n c h C e x t r a c t e d 

s idewal l C 

control 

[xlO~^^F//[im per cell] 

3 2 5 10.4 20.7 1.37 

nitride top 

[xlO~^^F//im per cell] 

2 L 9 L 3 3 19.2 1.44 

F I L O X 

[xlO-^^F/z^m per cell] 

6.20 L 0 8 1.70 3.41 

Table 5.3: Extracted capacitance values for control, nitride top and FILOX capacitors 
per cell (see figure 5.7). Also shown are the associated top and trench capacitances. 
All capacitances were measured at -4V. 

simulated value. These discrepancies can be explained by the errors in subtracting 

the top and trench capacitances from the total capacitance, as seen in table 5.3. 

t y p e e x t r a c t e d 

s idewal l ox ide 

th ickness [nm] 

s i m u l a t e d 

s idewa l l ox ide 

th ickness [nm] 

s imu la ted 

p lanar ox ide 

thickness [nm] 

control 20.1 8.1 4.8 

nitride top 1&3 8.2 4.8 

FILOX 9.3 7.9 4.8 

Table 5.4: Extracted and simulated oxide thickness on the pillar sidewalls for control, 
nitride top insulator and FILOX capacitors 

5.5.2 Behaviour in inversion 

In this section the increase in capacitance for the control capacitors and the FILOX 

capacitors will be investigated in more detail. A model will be introduced to show 

the increase of capacitance in inversion for control capacitors. This model will be 

used to interpret the results on the FILOX capacitors. 

The measured result in figure 5.4 showed that there was an increase in capacitance 

in inversion. For the control capacitor an increase in capacitance in inversion can be 

seen from the expanded plot in figure 5.8 at about -O.IV whilst the onset of increased 

inversion capacitance for nitride top capacitors is at about 0.2V. FILOX capacitors 

show an increase in capacitance at about 0.7V. 
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Figure 5.8: Measured CV graphs of a control, nitride top insulator and FILOX ca-
pacitor in inversion. The frequency was IMHz and the ac amplitude 30mV. 

C o n t r o l capac i tors 

To explain this behaviour the structure depicted in figure 5.9 is considered which 

comprises two adjacent capacitors Ci and C2. Both capacitors share the same sub-

strate but have different oxide thicknesses. This mimics the situation in practice for 

a control capacitor, where the two oxides are a gate oxide of 4.8nm thickness and a 

LOCOS field oxide of 510nm thickness. 

polySi 
510nm 

4.8nm 
y 

A * 

' 
V 

1 n m 
V 

1 \ i m 
? 

l ^ m 

Figure 5.9: Simulated structure with two different oxide thicknesses 

To investigate the voltage at which the increase in capacitance in inversion occurs, 

capacitors were simulated with different values of fixed charge in capacitor Cg as 

shown in figure 5.10. The oxide thickness of Ci was 4.8 and 510nm for C2- For the 

case of no interface charge no increase in capacitance in inversion is observed since 

the threshold voltage of Cg is very high. However, increasing the interface charge 
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at the semiconductor/insulator boundary to values between 3.0 and 4.0xl0^^cm ^ 

dramatically decreases the voltage at which an inversion layer forms in capacitor C2. 

^ 4x10-15 

3x10-15 

2x10-15 

Qf = 0 

Qf = 3.0x10"'"'cm -2 

Qf = 3.5x10^ 1 cm -2 

Qf = 4.0x10^ ^ cm -2 

Figure 5.10: Simulated CV graphs for the structure shown in figure 5.9 for various 
interface charges Q/ at the interface of Cg. The oxide thickness was 4.8 and 510nm 
for Ci and C2, respectively. 

Figure 5.11 shows the simulated electron concentration n^ in the substrate of C2 

for two different gate voltages. At a distance of 300nm from the surface the electron 

concentration is in equilibrium (upo tiI/Na) for all applied voltages. A value for Upo 

of 1X lO^cm"^ can be extracted from the graph. At a gate voltage of OV, C2 is in weak 

inversion since the electron concentration at the surface (8.5x lO^^cm"^) is between 

the intrinsic carrier concentration n̂  and the substrate doping concentration of 

2xl0^®cm"^. This case is depicted in figure 5.12a where the depth of the two deple-

tion regions of both capacitors are different. However, further increase in the gate 

voltage to 5V causes strong inversion for both capacitors Ci and C2. The electron 

concentration of Cg is at the surface in this case greater than the substrate doping 

concentration, with a value of 2xl0^^cm"^. A continuous inversion layer connects 

both capacitors as shown in figure 5.12b. 

Figure 5.13 depicts the equivalent circuits for three regions of operation. In accumu-

lation, at VG=-4V the structure behaves as two oxide capacitances Coxi and Cox2 in 

parallel. The model for this region of the characteristic is presented in figure 5.13a. 

For more positive voltages both capacitors deplete until Ci the capacitor with the 

thinner oxide reaches inversion (at a gate voltage of about OV). At this voltage Cg 

is still in depletion/weak inversion and hence there is no continuous inversion layer 
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Figure 5.11: Simulated electron concentration in the substrate for 2 different gate 
voltages for Cg of the structure shown in figure 5.9. The oxide thickness was 510nm 
and the interface charge Q/ was 3.5xl0^^cm^^. 
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Figure 5.12: Cross-section of a capacitor with two different oxide thicknesses a) Ci in 
inversion whilst C2 is in depletion/weak inversion b) Ci and C2 in strong inversion. 

for C2. The simulations show that the depletion region widths differ as illustrated in 

figure 5.12a. Here, the depletion region of Ci has reached its maximum value whilst 

the depletion region of C2 is smaller. The model for this case is shown in figure 5.13b 

where the structure behave as two independent capacitors connected in parallel. A 

further increase in gate voltage causes a continuous inversion layer to build for both 

capacitors. Electrons can now move between the two adjacent capacitors. The model 



Chapter 5. CV-characteristics of FILOX vertical capacitors 84 

for this situation is shown in figure 5.13c. 

0̂X1 
a) 

ôx2 

b̂xl 

-/dl 

0x2 ôxl c, 0x2 

d2 

b) c) 
Cdl+Cd2 

Figure 5.13: Equivalent circuits of the structure shown in figure 5.9 for three modes 
of operation a) Ci and Cg in accumulation b) Ci in inversion, C2 in depletion/weak 
inversion c) Ci and C2 in strong inversion with a continues inversion layer. 

To test the model shown in figure 5.13 a comparison between capacitances calcu-

lated using the model in figure 5.13 and the simulated CV characteristics was made. 

Table 5.5 compares calculated and simulated capacitance values for three regions of 

operation. For the calculations an abrupt junction was assumed. The maximum 

depletion region width Xj was calculated to be 217nm. Very good agreement for all 

three regions is achieved. 

capac i tance a c c u m u l a t i o n 

a t V g = - 4 V 

C i i n s t r o n g 

invers ion , 

C2 i n d e p l e t i o n 

a t V p = O . O V 

C i a n d C2 

i n s t rong 

invers ion 

a t V g = 5 V 

calculated [F] 7.33x10-:^^ 5.65xlO-^G 1.20x10-^5 

simulated [F] 7.59x10-^^ 6.9xlO-^G 1.15x10-^5 

Table 5.5; Calculated and simulated capacitances of the plot shown in figure 5.10 
for three modes of operation as depict in figure 5.13. The oxide thickness of Ci was 
4.8nm and 510nm for Cg. The width of Ci was l//m and 2/im for C2 and the interface 
charge 4.0xl0^^cm~^. 

Figure 5.14 compares the CV characteristics of a measured and simulated control 

capacitor. For the simulation the interface charge was 4.5xlO^^cm"^. The ratio of 

field oxide to gate oxide area was for both cases 1.0. The simulated and measured re-

sults show very similar behaviour in inversion. The onset of the capacitance increase 

in inversion of the simulated plot is at -0.2V, which is in very good agreement of the 

increase in inversion compared with the measured results. The high value of field 

oxide charge of 4.5x lO^^cm"^ used in the simulations implies that the quality of the 

LOCOS field oxide is poor in these capacitors. The 600nm LOCOS field oxide was 

grown at a temperature of 100G°C in a hydrogen/oxygen ambient for 128 minutes. 

Performing a high-pressure dry oxidation would probably reduce the interfacial oxide 
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charge. Another way would be to perform a hydrogen anneal to reduce the amount 

of dangling bonds at the oxide silicon interface. 
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Figure 5.14: Simulated and measured results of a control device including the probe 
pad. The simulated structure was similar to that shown in figure 5.9 with the excep-
tion that the width of Cg was l//m and the interface charge 4.5xl0^^cm~^. 

F I L O X capaci tors 

To investigate the influence of the increase in capacitance in inversion for FILOX 

capacitors, a structure was simulated as shown in figure 5.15. The structure consists 

of three oxide thicknesses of 510, 92 and 4.8 nm to mime the LOCOS field oxide, the 

FILOX oxide and the gate oxide. The width of the LOCOS region was 6.3/im, the 

width of the FILOX region 3.0//m and of the gate region 0.6/im. 

Figure 5.16 shows the simulated CV characteristics of the structure shown in fig-

ure 5.15. The interface charge Q/ at the LOCOS field oxide/sihcon and FILOX 

oxide/silicon interface were 3.0 and 3.5xl0^^cm~^ and for the gate oxide/silicon in-

terface 7.0xl0^°cm~^. For an interface charge of 3.0xl0^^cm~^ a kink is visible at 

a gate voltage of 0.6V caused by the formation of an inversion layer underneath the 

FILOX oxide. A second kink at a gate voltage of 3.2V is caused by an inversion layer 

building up underneath the LOCOS field oxide. Increasing the interface charge at 

the LOCOS field oxide/silicon and FILOX oxide/silicon interface to 3.5x lO^^cm"^ 

shifts both, the kink caused by the FILOX oxide and the kink caused by the LOCOS 

field oxide. A shift of 1.7V can be found for the LOCOS field oxide whilst for the 

FILOX oxide a shift of 0.2V can be found. A comparison of the simulation results in 
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Figure 5.15: Simulated structure with three different oxide thicknesses (510, 92, 
4.8nm). 

figure 5.16 with the measured results in figure 5.8 shows that there is no evidence of 

a double kink in the FILOX capacitors. This suggests that the fixed oxide charge in 

the FILOX oxide is much lower than the values used in the simulations. The lOOnm 

FILOX oxide was grown at a temperature of 1000°C in a hydrogen/oxygen ambient 

for 8 minutes. This method is the same as that used for the LOCOS field oxide 

and hence we could expect similar values of fixed oxide charge for the two oxides. 

However, the LOCOS field oxidation might cause segregation of boron into the oxide. 

This could causes a drop in surface concentration and therefore an inversion layer 

underneath the oxide. The kink caused by the FILOX oxidation can not be seen. 

5.6 S u m m a r y 

In this chapter the FILOX process was applied to fabricate pillar capacitors. A com-

parison between pillar control structures, pillar structures with nitride top and pillar 

structures with FILOX showed great reduction of capacitance for structures with ni-

tride top (xl .4) and FILOX (x5.6). The fabricated structures were compared with 

simulated capacitors, and agreement within a range of 10% was obtained in accumu-

lation. 

The sidewall oxide thickness was extracted and compared with the simulated side-

wall oxide thickness. The extracted sidewall oxide thickness for FILOX capacitors 

was 9.3nm, compared with the simulated value of 7.9nm. Kinks in the CV character-
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Figure 5.16; Simulated CV graphs for the structure shown in figure 5.15 for two 
interface charges Q/ at the interface of the two thick oxides and an gate oxide charge 
of Q/=7.0xl0i-°cm"^. 

istics in inversion have been explained by the formation of an inversion layer beneath 

the LOCOS field oxide. 



C h a p t e r 6 

D C - c h a r a c t e r i s t i c s of F I L O X 

ve r t i ca l M O S F E T s 

6.1 In t roduc t ion 

In this chapter results of fabricated vertical single and surround gate n-channel MOS 

devices based on the gate after implant (GAI) and gate before implant (GBI) process 

sequences incorporating the FILOX process are presented. Process and device sim-

ulations are shown for comparison with the measured results. Furthermore, vertical 

logic gates are presented. 

6.2 Concept 

Figure 6.1 illustrates a cross-section of a vertical surround gate MOSFET incorpo-

rating the FILOX process. The drain area at the pillar bottom surrounds the pillar 

and the p+ region functions as a substrate contact. The FILOX oxide covers the 

bottom of the trench as well as the top of the pillar and reduces the gate/drain and 

gate/source overlap capacitances. A further reduction of these overlap capacitances 

is obtained from the FILOX bird's beaks at the top and bottom of the pillar. 

Figure 6.2a shows a top-view of a surround gate transistor. A polySi removal mask is 

introduced, which allows the fabrication of single, multi or surround gate transistors 

on the same wafer. Figure 6.2 illustrates the process sequence for using the polySi 

removal mask (PR). The mask only covers the top area where the polySi should re-

main (figure 6.2b). After an isotropic polySi etch which etches off parts of the polySi 

sidewall spacer, a single gate structure as shown in hgure 6.2c is obtained. 
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Figure 6.1: Cross-section of a surround gate vertical MOSFET with FILOX. 
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Figure 6.2: Top-view of a vertical MOSFET structure a) after polySi deposition and 
etch b) with polySi removal mask c) after second polySi etch. The polySi removal 
mask reduced the surround gate to a single gate. 

6.3 Exper imenta l p rocedure 

A batch was fabricated to demonstrate the feasibility of the FILOX process in CMOS 

compatible vertical MOS devices. Table 6.1 lists the process steps used to fabricate 

the vertical n-channel MOSFETs. 

The initial wafers were p-type <100> with a resistivity of lO-SSficm. The fabri-

cation process started with a 5xl0^^cm~^ boron substrate implant at 50keV which 

was annealed at 1000°C in a dry and wet ambient for 10 and 30 minutes, respectively. 

A 1.1/Lim lightfield photoresist layer (SPRT 510) was spun onto the wafer to protect 

future pillar areas. After the lithography stage (PL) the wafers were hardbaked for 

two hours at 140°C. The pillars were anisotropically etched using a HBr etch. The 

photoresist was removed using a plasma asher. Table 6.1 illustrates the batch sphts 

used to achieve different pillar heights (stage 2). In the following process steps a 20nm 

pad oxide layer was grown at 900°C and a 130nm thick nitride layer deposited. The 

active area (AA) was defined using a lithography process. The 600nm thick LOCOS 

oxide was grown at a temperature of 1000°C in a hydrogen/oxygen ambient. 

In order to leave nitride fillets on all pillar sidewalls as shown in figure 4.2a, the 

nitride and the pad oxide was anisotropically etched to leave a structure as illus-
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trated in figure 4.2b. The FILOX local oxidation was performed at a temperature of 

1000°C in a hydrogen/oxygen ambient allowing the oxide to become viscous [79, 81]. 

Figure 4.2c illustrates the structure after the 60nm FILOX oxidation. 

To contact the substrate a lithography dark field process step was performed (PP). 

Two p+ boron implants were performed with a dose of IxlO^^cm"^ each, at 47keV 

and 25keV for devices with and without FILOX, respectively. 

The source/drain implants for devices based on the GAI process sequence were per-

formed in the following process step (stage 8). Since the minimum implantation angle 

of the ion implanter is 7°, two implants were used (in east and west direction) for 

both, control and FILOX devices. Figure 6.3 illustrates the implantation process 

sequence for FILOX devices. The first implant (west) leaves a non implanted area at 

the bottom of the pillar. This is because of the shadowing caused by the pillar due to 

the angled implant as depicted in figure 6.3a. The second implant (east) allows the 

previously non implanted area to be implanted as illustrated in figure 6.3b so that 

both sides of the pillar are symmetrical. 

source\drain implant (west) source\drain implant (east) 

non implanted 
area 

a) 

Figure 6.3: Source/drain implant steps, a) First implant (direction west) leaves a 
non implanted area at the bottom left hand side of the pillar, b) The second implant 
(direction east) implants the previously not implanted area. 

In the following stage (9) the nitride fillets are removed in orthophosphoric acid 

at 160°C. The 20nm thick pad oxide was removed to expose the sihcon sidewalls of 

the pillar using a 20:1 HF dip etch solution for 40 seconds. After a RCA clean the 

pillar sidewalls were dry oxidised at 800°C to create a gate oxide. Three difi'erent 

gate oxide thicknesses as shown in table 6.1 were used. 

A 200nm thick in-situ phosphorous doped polySi layer with a concentration of 5 x lO^^cm"^ 

was chosen to form a uniformly doped gate. After an anisotropic polySi etch, polySi 

fillets surrounding all vertical surfaces are left as illustrated in figure 6.2a. A further 

source/drain lithography step for devices based on the GBI process was performed. 

The arsenic implant concentration, again in both directions (east and west), was 
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stage description control F I L O X mask 

1 boron substrate implant 

and drive in at 1000°C 

X X -

2 pillar lithography and etch 

(250/300/350nm into Si) 

X X PL 

3 standard LOCOS (600nm) 

(20nm pad oxide, 130nm nitride) 

X X AA 

4 dry etch SisAQ to leave fillets X X -

5 dry etch 20nm pad oxide X X -

6 60nm FILOX at 1000°C - X -

7 p+ substrate contact lithography 

and boron implant 

X X PP 

8 source/drain GAI lithography 

and n+ As implant 

X X GAI 

9 strip nitride spacers X X -

10 wet etch 20nm pad oxide X X -

11 3/6/9nm gate oxidation at 800°C X X -

12 200nm in-situ P doped poly Si X X -

13 polySi lithography and etch X X PI 

14 source/drain GBI lithography 

and n+ As implant 

X X GBI 

15 polySi lithography and 

fillet removal etch 

X X PR 

16 SILOX and BPSG deposition X X -

17 RTA for lOsec at 1100°C X X -

18 contact window lithography 

and etch 

X X C W 

19 metal deposition X X -

20 metal lithography and etch X X Ml 

Table 6.1: Process list and batch splits for vertical MOSFETs with and without in-
corporated FILOX. Also shown are the mask indices. 

2x 3xl0^®cm~^. The implant energy for the control devices was 50keV and for the 

FILOX devices 90keV. Figure 6.2a illustrates the device after stage 14 and shows 

the pillar surrounded by a polySi fillet. In order to fabricate single and double gate 

devices on the same wafer, a polysilicon removal mask (PR) was used to mask parts 
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of the polySi as shown in figure 6.2b. Following the polySi removal mask lithogra-

phy and isotropic silicon etch using SFg, the polySi fillets are partially removed as 

depicted in figure 6.2c. 

The backend process include the deposition of lOOnm undoped silicon dioxide (SILOX) 

followed by a boron phosphorous sihcate glass (BPSG) deposition. After the depo-

sition, a rapid thermal anneal (RTA) for 10 seconds at 1100°C was performed to 

activate the dopants. To contact the devices, contact windows were etched into the 

BPSG/SILOX layer (CW). A 2.2//m thick photoresist layer was used to protect the 

glass layer. In the following process step a l ^m thick Ti-Al/Si layer was deposited. 

A metal mask lithography step (Ml) was used to define the probe pads and the metal 

tracks. A detailed process listing can be found in appendix C.3. 

6.4 Mask layout 

The vertical MOS transistor batch was designed using 9 masks as shown in table 6.1. 

The minimum feature size of the stepper used is 1.5/im and the alignment toler-

ance ±1.0/[xm. Three different sizes were designed with minimum line widths of 1.5, 2 

and 4/Lim. Figure 6.4 illustrates a layout of a vertical surround gate MOSFET based 

on 2^m design rules. The minimum gate track width is 2//m and the alignment tol-

erance is also 2//m. 

Figure 6.5 depicts the alignment sequence of the vertical MOSFET batch. Apart 

from the backend process, all masks are aligned to the pillar mask PL to assure mini-

mum misalignment. The metal mask Ml is aligned to the contact window mask CW. 

In addition to the layout shown in figure 6.4, devices with single and double gates as 

well as devices with different channel widths were designed. Furthermore, the mask 

contains several NAND and NOR gates as well as inverter and ring oscillators and 

devices for RF measurements. Several test structures, for example van der Pauw 

structures to extract the sheet resistance were included as well as diodes, capacitors 

and polySi fillet based resistors. Since cross-sectioning of a MOS device is difficult, 

transmission electron microscope (TEM) bars were designed which are also very use-

ful for scanning electron microscopy cross-sections (SEM). To extract the doping 

profiles secondary ion mass spectrometry (SIMS) structures were added. A detailed 

description of the mask layout can be found in appendix B.2. 
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Figure 6.4: Vertical surround gate MOSFET layout based on 2^m design rules. 

PL 
AA, PP, GAI,P1,GBI, PR 

CW Ml 

Figure 6.5: Mask alignment sequence 
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6.5 Results on GAI devices 

In this section measurements of fabricated n-MOSFETs and logic gates fabricated 

using the GAI process are presented. Figure 6.6 shows a photograph of a fabricated 

MOSFET based on 2/im design rules. The gate overlaps the top of the pillar to 

ensure a connection to the polysilicon surround gate. The source contact is on top of 

the pillar, whilst the drain and substrate contacts are located at the bottom of the 

pillar. The pillar top and trench areas are covered by FILOX oxide. 

gate , , 

tact \ 

pillar 

drain, 

. source 

H 2 p m 

sub-
strate 

Figure 6.6: Top-view of a fabricated MOSFET with surround gate based on 2/xm 
design rules. 

Table 6.2 presents extracted sheet resistance values obtained from van der Pauw 

measurements [82] and the calculated average doping concentrations [66]. The mea-

sured values of resistance and the extracted acceptor doping concentration of the 

substrate on top off the pillar and at the bottom indicate that the channel doping 

is graded. This was expected as the wafer was boron implanted as the first process 

step to increase the initial doping concentration of the wafer (see table 6.1 stage 1). 

The source/drain sheet resistances on top and bottom of the pillar are identical. The 

dopant concentration in the polySi gate layer for the GAI device is due to the in-situ 

doping since the polySi layer was deposited after the source/drain implant. 

6.5.1 SEM cross-sections 

Figure 6.7 depicts a FESEM cross-section of a fabricated single gate GAI structure 

with a measured gate oxide thickness of S.Onm on a planar surface. In order to in-
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area R [ f i / n ] D [ c m N [ c m 

p subs t ra te o n pillatr t o p 128.91 5.39 xlO^'^ & 3 9 x l O ^ 

p subs t ra te o n p i l l a r b o t t o m 168.30 3.55x10^4 3.55x10^8 

n+ s o u r c e / d r a i n o n p i l l a r t o p 4&96 2.84x10^5 1.42x10^° 

n+ s o u r c e / d r a i n o n p i l l a r b o t t o m 48.57 2.86x10^^ 1.43x10^° 

n+ ga te p o l y S i 58.29 - 5.23x10^^ 

Table 6.2: Sheet resistances R, implant dose D and doping concentrations N of the fab-
ricated vertical GAI MOSFETs. The doping concentration was extracted assuming 
a junction depth of l ^ m for the substrate and 115nm for the source/drain junctions. 

crease visibility of the junction, the junctions were etched back using a 20:1 HF etch 

for 40 seconds followed by an 1:400 H F / H N O 3 etch for 15 seconds [69]. The junction 

depth was extracted to be 115nm for both, source and drain and the polySi fillet 

thickness to be 230nm. The polySi fillet was overetched by about 45nm at the top 

of the pillar. Figure 6.7 also shows that the drain junction reaches underneath the 

polySi fillet so that the channel is formed on the vertical surface of the pillar. The 

extracted channel length was 105nm. 

20.0kV XI 00 ,000 100nm W D 10.2mm 

Figure 6.7; FESEM cross-section of a GAI vertical n-MOSFET single gate structure 
with 3nm oxide thickness showing the source and drain junctions. 

Figure 6.8 depicts the encroachment caused by the FILOX oxidation at the top and 

bottom of the pillar. Bird's beaks can be seen at the top and bottom of the pillar that 

have the advantage of reducing the gate/drain and gate/source overlap capacitance. 

The encroachment of the bird's beak on the top of the pillar is 26nm at a distance of 
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about 45nm from the pillar top. At the pillar bottom the encroachment is 30nm at 

a distance of 200nm from the pillar edge. 

' * 

k JO; idS: 

Figure 6.8: FESEM cross-section of a GAI vertical n-MOSFET single gate structure 
with 6nm oxide thickness showing the source and drain junctions. 

Figure 6.9 illustrates measured and simulated data of the encroachments on top and 

bottom of the pillar and the measured values extracted from figure 6.8. To obtain the 

simulated encroachment the simulation results in figure 4.9 were used together with 

a nitride strip and a 20nm wet etch to remove 20nm pad oxide (see appendix A.7). 

Figure 6.9a shows that the simulated encroachment on top of the pillar is a little 

larger than the measured value. However, figure 6.9b shows that the simulated en-

croachment at the bottom of the pillar is very similar to the measured value. There 

are three contributions to the encroachment seen in figure 6.9. The first arises from 

the fact that the nitride spacer used in the FILOX process is thinner than the poly sil-

icon gate. This causes the FILOX layer to extend underneath the polysilicon gate at 

the bottom of the pillar. The second arises from the overetch of the nitride spacer 

used in the FILOX process. This causes the FILOX oxide to extend down the side of 

the pillar at the top of the pillar. The third arises from the bird's beak that is gen-

erated during local oxidation. It should be noted that these effects are beneficial to 

the transistor performance because they reduce gate/source and gate/drain overlap 

capacitance. 

Figure 6.10 shows a FESEM cross-section of two GAI vertical MOS structures with 

a 6nm gate oxide. Bird's beaks due to the FILOX oxidation can be seen at the top 
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Figure 6.9: Measured and simulated FILOX thickness as a function of distance for 
a simulated 20.4nm pad oxide grown at 1000°C and 130nm nitride thickness a) at 
the pillar top and b) at the pillar bottom. The distance scale is obtained from the 
distance scale in figure 4.6. 

and bottom of the pillar. The bird's beaks do not reach into the vertical channel area 

of the MOSFET so the transistor operation is not degraded. 

Table 6.3 presents the extracted encroachments at the top and bottom of the pil-

lar for the structures shown in figure 6.10. The values of encroachment at the top 

and bottom of the pillar indicate that the measured bird's beak is shorter. 
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top bird's beak -
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Figure 6.10: FESEM cross-section of two GAI vertical n-MOSFET structures with 
6nm oxide thickness. 

l oca t ion lef t s t r u c t u r e r i g h t s t r u c t u r e s imu la ted 

t o p [nm] 26 22 35 

b o t t o m [nm] 30 37 40 

Table 6.3: Top and bottom encroachment of the two MOS structures shown in fig-
ure 6.10 versus the simulated results based on figure 6.8b and 6.8c. 
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6.5.2 Single gate transistors 

In this section electrical parameters of a typical single gate transistor will be pre-

sented. Figure 6.11a illustrates the subthreshold characteristics for single gate verti-

cal MOSFETs with source on top (SOT) and drain on top (DOT) for two different 

source/drain voltages. The subthreshold slopes show excellent behaviour down to 

a drain current of 10~^°A. For a source/drain voltage of 0.025V both, SOT and 

DOT plots are identical. The threshold voltage was extracted by extrapolating lin-

early plotted Id(Vg) to zero as described in [83] and is in both directions of oper-

ation (SOT, DOT) 1.25V. The subthreshold slope was extracted at a drain current 

of 10~^°A to be l l lmV/dec . This is similar to the results reported by Schulz et 

al. [46] of 102mV/dec for an ion implanted vertical surround gate device with a chan-

nel length of lOOnm and a gate oxide thickness of 3nm in SOT configuration as shown 

in table 6.4. The results presented in figure 6.11a show values of DIBL of 55mV and 

75mV in DOT and SOT, respectively. These values compare with a value of 70mV for 

the device reported in [46]. The on-current (V£)5=1.0V) is a factor of 1.13 higher for 

the SOT transistor than the DOT transistor. The extracted transconductance in the 

SOT configuration is also higher compared with the DOT configuration. Table 6.4 

presents the extracted parameters for a single gate device. 

p a r a m e t e r S O T D O T Schulz et al. [46] 

V T ( V D 5 = 0 . 0 2 5 V ) [ V ] L25 1.25 0.6 

S ( l D = 1 0 - i " A ) [ m V / d e c ] 111 111 102 

D I B L ( I c = 10 -®A) [mV] 75 55 70 

g m ( V z ) a = l V ) [ S / m ] 261 219 -

Table 6.4: Measured and extracted electrical parameter for a GAI single gate vertical 
MOSFET. Source on top (SOT) and drain on top (DOT) configurations are presented. 

Figure 6.11b illustrates output characteristics of a typical single gate device for three 

different gate voltages. Higher drain currents can be seen for measurements with 

the SOT configuration compared with the DOT configuration. At a source/drain 

and gate voltage of 3.0V a factor of 1.16 can be extracted. This result may be due 

to a difference in channel length in the DOT and SOT configurations because of the 

graded substrate doping. This would give a wider depletion region in the SOT config-

uration and hence a shorter channel length. Both, the increased Ion and the increased 

output conductance for the SOT configuration tend to point to this explanation. The 

higher DIBL for the SOT configuration could also be explained in this way. Detailed 

device simulations are needed to confirm this hypotheses. 
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Figure 6.11: Typical electrical characteristics of a single gate GAI vertical n-MOSFET 
based on l.bfim design rules with source on top (SOT) and drain on top (DOT), 
a) Subthreshold characteristics for V£)5=0.025 and l.OV. b) Output characteristics. 
The channel length was 105nm and the channel width 4.5/im. 

6.5.3 Surround gate transistors 

Figure 6.12 illustrates the measured subthreshold and output characteristics of a 

surround gate transistor. For a source/drain voltage of 0.025V both, SOT and DOT 

subthreshold plots are identical. However, for a source/drain voltage of l.OV the SOT 

configuration gives a higher DIBL of 95mV compared with 55mV for DOT. Compared 

with the single gate device the surround gate device shows a slightly higher threshold 

voltage of 1.35V for both, SOT and DOT configurations. The subthreshold slope of 
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the surround gate MOSFET is slightly higher than that of the single gate MOSFET. 

The extracted on-current at Vds=1-0V is a factor of 1.12 higher for the SOT transis-

tor than the DOT transistor. The transconductance in the SOT configuration is also 

higher compared with the DOT configuration but less compared with the single gate 

device. Table 6.5 presents the extracted parameters for a surround gate transistor. 

p a r a m e t e r S O T D O T Schulz et al . [46] 

V T ( V D 5 = 0 . 0 2 5 V ) [ V ] L 3 5 L 3 5 0.6 

S ( l D = 1 0 - i ° A ) [ m V / d e c ] 123 123 102 

D I B L ( I z ) = 1 0 - 9 A ) [ m V ] 95 55 70 

G M ( V z , 5 = l V ) [ S / m ] 127 109 -

Table 6.5: Measured and extracted electrical parameter for a GAI surround gate 
vertical MOSFET. Source on top (SOT) and drain on top (DOT) configurations are 
presented. 

Figure 6.12b shows output characteristics of the surround gate device. Compar-

ing the output characteristic of a surround gate device shown in figure 6.12b with 

that of a single gate transistor shown in figure 6.11b shows that a higher current drive 

per unit gate width is obtained for the single gate transistor. This could be caused 

by the lower threshold voltage of the single gate device. A possible explanation for 

the higher in the surround gate transistor could be a thickening of the gate oxide. 

This would also explain the higher subthreshold slope and DIBL in the surround gate 

transistor. 

6.5.4 Reproducibil i ty of single and surround gate MOS tran-

sistors 

Figure 6.13 shows subthreshold characteristics of six single and surround gate devices 

taken at V^g^O.lV. The measurements were taken from three adjacent chips and 

show the spread of the subthreshold characteristics. The threshold voltage for single 

gate transistors varies from 1.25 to 1.4V and for surround gate transistors from 1.075 

to 1.3V. Whilst the threshold voltage for single gate devices varies by about 0.15V, 

for surround gate devices the variation is 0.225V and therefore significantly bigger. 

6.5.5 Process /dev ice simulations of a single gate transistors 

In this section a comparison between a simulated and a measured single gate MOS-

FET is presented. All data presented is for the drain on top (DOT) configuration. 
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Figure 6.12: Typical electrical characteristics of a surround gate GAI vertical 
n-MOSFET based on 1.5^m design rules with source on top (SOT) and drain on top 
(DOT), a) Subthreshold characteristics for 0.025 and l.OV. b) Output charac-
teristics. The channel length was 105nm and the channel width 24/im. 

C a l i b r a t i o n o f t h e s i m u l a t o r 

To optimise the accuracy of the simulations two process parameters were modified. 

Initial simulations showed that the diffusion of the source junction in the x-direction 

was less than that shown in figure 6.7 so that the junction did not reach the edge of the 

pillar. However, a reduction of the nitride spacer thickness from 130 to TOnm allowed 

the source at the bottom of the pillar to reach the edge of the pillar as illustrated 

in figure 6.14. Furthermore, the gate oxide thickness was reduced from 3.3 to 2.9nm 
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Figure 6.13: Variation of subthreshold characteristics of single and surround gate GAI 
vertical n-MOSFETs based on 1.5/im design rules for V£)5=0.1V and a channel length 
of 105nm. The channel width of the single gate transistor was 4.5/im and that of the 
surround gate transistor 24//m. All devices were measured with drain on top (DOT). 

at the side of the pillar to give the correct threshold voltage. The simulation file is 

listed in appendix A.8. 
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Figure 6.14: Simulated structure of a single gate GAI vertical n-MOSFET with drain 
on top (DOT). The channel length was 105nm and the extracted junction depth 
169nm and 164nm at the pillar top and bottom, respectively. 
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Results 

Figure 6.15a compares measured and simulated results for a vertical single gate tran-

sistor. A slightly lower threshold voltage for the simulated plot at a drain/source 

voltage of 0.025V can be observed. For a drain/source voltage of O.IV the simulated 

plot shows less DIBL than the measured plot. Table 6.6 presents the extracted values 

for both simulated and measured devices. 

parameter simulated measured 

Vt(VDS=0.025V)[V] 1.18 L25 

S(1D = 10-i°A)[mV/dec] 117 111 

D IBL ( Io = 10-9 A) [mV] 26 55 

Table 6.6: Simulated and measured electrical parameters for a GAI single gate vertical 
MOSFET in drain on top (DOT) configuration. 

Figure 6.15b compares simulated and measured output characteristics. For a gate 

voltage of 2.0V the measured plot shows increased current drive at Vd5=3.0V of a 

factor of 1.5 compared with the measured. Similar behaviour can be observed for a 

gate voltage of 2.5V where the measured current is higher by a factor of 1.4. However, 

at VG=3V both plots are nearly identical. The discrepancy between simulated and 

measured output characteristics could be caused by a higher channel doping in the 

simulation which decreases the mobility and therefore the current drive. 

6.6 Results on GBI devices 

Table 6.7 presents sheet resistance values and estimated average doping concentra-

tions for the source and drain regions of GBI devices. The source/drain sheet resis-

tance on top and bottom of the pillar are nearly identical. All other extracted sheet 

resistances for this device type are the same as those for the GAI devices and are 

shown in table 6.2. The sheet resistances of the two devices are different because 

the two implant steps for GBI and GAI where performed at difi^erent stages of the 

fabrication process as shown in table 6.1. 

Figure 6.16 depicts a FESEM cross-section of the fabricated GBI structure with a 

gate oxide thickness of 3nm. The junction depth was extracted to be 140nm for both, 

source and drain. The channel length was extracted to be 24Gnm. Figure 6.16 shows 

that the drain junction reaches underneath the polySi fillet but does not reach to the 

edge of the pillar. This can be explained as follows. For GAI devices the implant is 
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Figure 6.15: Simulated and measured electrical characteristics of a single gate GAI 
vertical n-MOSFET based on 1.5//m design rules with drain on top (DOT), a) Sub-
threshold characteristics for VDS=0.025 and l.OV. b) Output characteristics. The 
channel length was 105nm. 

area R[n/n] D[cm N[cm 

source/drain on pil lar top 4L73 2.72x1015 1.36x10^0 

n+ source/drain on pi l lar bot tom 41.59 2.72x10^ 1.36x10^° 

Table 6.7: Sheet resistances R, implant dose D and doping concentrations N of the 
fabricated vertical GBI MOSFETs. The doping concentration was extracted assum-
ing a junction depth of 140nm for the source/drain junctions. 
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performed after the pillar sidewall is protected by the nitride fillets with a thickness 

of 130nm (see table 6.1 stage 8). For GBI devices the implant is performed after the 

polySi deposition with the polySi fillets in place with a thickness of 200nm (stage 14). 

The lateral penetration of the source/drain implant would therefore be expected to 

be 70nm less in the GBI devices. The channel length is formed partly on the pillar 

sidewall and partly at the bottom of the pillar. This is clearly undesirable as the gate 

oxides on vertical and horizontal surfaces will be different. Figure 6.16 shows that 

the gate oxide at the edge of the drain is ~17nm thick, due to the encroachment of 

the bird's beak into the channel. 

; ftV'.n.Vr. 

Figure 6.16: FESEM cross-section of a GBI vertical n-MOSFET structure with 3nm 
oxide thickness showing the source and drain junctions and the bird's beak on top 
and bottom of the pillar caused by the FILOX oxidation. 

Figure 6.17 depicts the subthreshold characteristic of a surround gate GBI device. For 

a drain/source voltage of 0.025V identical plots are observed for both SOT and DOT 

configurations. The subthreshold characteristics show a dramatic shift in threshold 

voltage from 1.35 to 2.7V compared with the GAI devices. A possible explanation for 

this result could be a thicker oxide on the horizontal surface adjacent to the drain. A 

first order calculation, assuming a substrate doping concentration of 4.5xl0^®cm~^ 

gives a threshold voltage of 2.7V for a gate oxide thickness of 7.8nm compared with 

a threshold voltage of 1.3V for an oxide thickness of 3.9nm. While the calculated 

value of VT does not exactly agree with the measured value, the trend is in the right 

direction. It can therefore be concluded that for the GBI device the YT shift is due to 

the bird's beak encroachment into the channel. Table 6.8 summarises the measured 

parameter values. 
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Figure 6.17: Subthreshold characteristics of a surround gate GBI vertical n-MOSFET 
based on 1.5/im design rules for Vf)g=0.025 and l.OV with a channel length of 175nm 
and a width of 24//m. Source on top (SOT) and drain on top (DOT) configurations 
are presented. 

petrameter SOT D O T Schulz et al. [46] 

Vr(yz?s=0.025V)[V] 2.7 2.7 0.6 

S{1D = 10-^°A)[mV/dec] 171 170 102 

D IBL( I c = 10-9 A) [mV] 210 120 70 

Table 6.8: Measured electrical parameters for a GBI surround gate vertical MOSFET. 
Source on top (SOT) and drain on top (DOT) configurations are presented. 

6.7 Logic gates 

In this section novel logic gates based on GAI vertical MOSFETs are introduced. A 

vertical NOR gate as well as a two pillar vertical NAND gate are presented. 

6.7.1 Concept of a vertical N O R gate 

Figure 6.18 illustrates a cross-section of a proposed vertical NOR gate. The basic 

concept behind the device shown is that it consists of two independent single gate 

transistors on two sides of the pillar. In order to divide the initial surround gate, parts 

of the left and right side of pillar need to be masked using the polysilicon removal 

mask (PR) as discussed in section 6.2. 
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Figure 6.18: Cross-section of a vertical NOR gate. 

6.7.2 Results 

Figure 6.19 shows a photograph of the device under consideration. The device is 

fully symmetrical with a gate on each side of the pillar. The source is located on the 

bottom and the drain on the top of the pillar. It is also possible to swap source and 

drain. The following measurements were taken in the DOT configuration. 
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gate2 
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Figure 6.19: Top-view of a fabricated vertical NOR gate based on 2.0^m design rules 
and a channel width of 4.5/jm per gate. 

Figure 6.20a depicts the subthreshold characteristics for three configurations of the 

device: Vgaki=input & Vg„te2=0V, Ygatei^OV & Vgate2=input and Vgatel=Vgate2=inpUt. 

The threshold voltage of the transistor at the left side (gatel) of the pillar was ex-

tracted to be 1.24V, while the threshold voltage of the transistor on the right side was 

extracted to 1.38V. Connecting both gates together resulted in a threshold voltage 

of 1.3V. This difference suggests different gate oxide thicknesses on the two sides of 

the pillar. First order calculation suggest a variation in oxide thickness of 0.4nm. 
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Figure 6.20b depicts the output characteristics of the device shown in figure 6.19. 

Three configurations of operation are shown: Vgi=3V & V<32=0V, V(5i=0V & V(j2=3V 

and VGI=VG2=3V. The output characteristics of the two transistors show differences 

in current drive by a factor of 1.26 at Vcg=3V. This is caused by the difference in 

threshold voltage. However, applying 3V on both gates results in a current consisting 

of the sum of both individual output currents. This demonstrates that the NOR gate 

is working correctly. 
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Figure 6.20: Typical electrical characteristics of a vertical NOR gate based on 1.5^m 
design rules with drain on top (DOT). The channel length was 105nm and the channel 
width was 4.5/im for each gate, a) Subthreshold characteristics for Vag=0.025V 
b) Output characteristics. 
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Figure 6.21 depicts the transfer characteristics of the NOR gate. To obtain the 

transfer characteristics of the device, a 55kl resistor was connected in series with the 

drain. Up to a gate voltage of l.OV the measured output voltage of the NOR gate 

is about 2.85V. The voltage drop of 0.15V is partially caused by the transistor and 

by the input resistance of the measurement setup and was extracted to IMll. For 

voltages greater about 1.7V the output voltage is pulled down to ground. The input 

voltage at which this occurs varies for the three different configurations due to the 

difference in threshold voltage. The logic low voltages are 0.027, 0.003 and 0.017 for 

Vgi=3V & V(32=0V, Vgi=OV & Vg'2=3V and V(;i=Vg2=3V, respectively. 
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Figure 6.21: Transfer characteristics of a typical vertical NOR gate based on 1.5;/m 
design rules (see figure 6.19). The channel width was 4.5;um for each gate. A 55kl 
resistor was connected to V+ in series with the drain. 

6.7.3 Concept of a N A N D gate based on two pillars 

Figure 6.22a illustrates a cross-section of a two pillar vertical NAND gate. The device 

shown consists of two vertical surround gate transistors (Tl, T2), one on each pillar. 

The transistors are joined together by the implanted area at the bottom of the pillar. 

This area functions as the drain for transistor 1 and the source of transistor 2. The 

two surround gates are contacted by gate tracks to the left and right of the pillar. 

Figure 6.22b illustrates a circuit diagram of the NAND gate. 
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Figure 6.22; a) Cross-section of a vertical NAND gate based on two pillars b) circuit 
diagram. 

6.7.4 Results 

Figure 6.23 shows a photograph of the above described device. The source and drain 

of the device are located on top of the pillar. The two inputs are contacted to the left 

and right of the pillars. The contact labelled GND represents the substrate contact. 

Figure 6.23: Top-view of a fabricated vertical NAND gate based on 2.0//m design 
rules and a channel width of 32^m. This logic gate consists of two pillars. 

Figure 6.24a shows the subthreshold characteristics for VGI=VG2- The extracted 

threshold voltage was 1.17V and the subthreshold slope lOSmV at = 1 x 10~^°A. 

Figure 6.24b depicts the output characteristic of a vertical NAND gate based on two 

pillars with a channel length of 2xl05nm. Compared with the single gate transistor 

the current drive at YQ = VDS=3Y is smaller by a factor of 0.3. 

I 
„ LiBMSV I 
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Figure 6.24: Typical electrical characteristics of a vertical NAND-gate for V^g=0.025 
and l.OV. b) Output characteristics. The channel length was 105nm and the channel 
width 24/ini. 

6.8 Summary 

In this chapter experimental results on single and surround gate transistors incorpo-

rating the FILOX process have been presented. Devices based on the GAI process 

flow showed excellent electrical behaviour and compared favorably with reported ver-

tical devices in the literature. However, a slight discrepancy in threshold voltage 

between single and surround gate devices was observed which is most likely due to 

the variation in oxide thickness. A comparison of measured and simulated results for 
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the single gate GAI transistor showed good agreement. The fabricated GBI device 

shows increased threshold voltage which is caused by the FILOX oxide reaching into 

the channel area. Vertical NOR and NAND gates have been proposed and shown to 

work correctly. 



C h a p t e r 7 

R e d u c i n g p a r a s i t i c b i p o l a r 

t r a n s i s t o r a c t i o n in v e r t i c a l 

M O S F E T s 

7.1 Introduction 

As previously discussed in section 2.2.7 parasitic bipolar transistor action can be a 

problem in short channel MOS transistors because carriers are injected into the chan-

nel if the source junction becomes forward biased. This mechanism also gives rise to 

floating body effects in SOI transistors [84] and latchup in bulk CMOS [79,85,86]. 

In a lateral MOSFET the gain of the parasitic bipolar transistor is very small (<10), 

because carriers are only collected from the sidewall of the source, as shown in fig-

ure 7.1. 

source L drain 

/ 
collected carriers 

Figure 7.1: Schematic illustration of carrier collection in a lateral MOSFET 

In an epitaxial vertical MOSFET the drain is located directly below the source as 

illustrated in figure 7.2. Almost all carriers injected from the source are collected by 

the drain. Therefore, the gain of the parasitic bipolar transistor created by the source 

(emitter), substrate (base) and drain (collector) is likely to be very high (>100). 

In this chapter a method is described for reducing the gain by using polySiGe in 

the source. A theory is developed based on a surface recombination velocity model 
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Figure 7.2: Parasitic transistor action in vertical n-MOSFET 

and model predictions are compared with measured results on bipolar transistors in-

corporating polySiGe emitters. An increase in base current and therefore a reduction 

in bipolar gain will be shown. 

7.2 Theory 

Figure 7.3 shows a schematic illustration of a polySiGe emitter. Four regions of the 

emitter can be identified, namely polySiGe grains, grain boundaries, the interfacial 

oxide layer and the single crystal silicon emitter. Hole transport in these regions is 

modelled using an effective recombination velocity approach, as originally proposed 

by Yu et al. [87] for polySi emitters. 
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Figure 7.3: Schematic illustration of a polySiGe emitter showing the effective recom-
bination velocities in the different regions of the emitter and the components of hole 
current 
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An effective recombination velocity is defined at each interface in figure 7.3. For 

example, the current density at the metal contact can be written as 

JI ~ QSMPISIGB (7.1) 

where SM is the recombination velocity at the metal contact, Ji is the hole current 

density and pisiCe is the hole concentration at the left side of the first polySiGe grain. 

The hole current at either side of the first polySiGe grain can be derived by solving 

the continuity equation for holes 

JL ~ Q {P2SIGEBG PLSIGE^^G) (7-2) 

J2 — Q ijp2SiGe^g PxSiGe^g) (7-3) 

The parameters a , and bg depend on the physical properties of the grains and are 

given by 

(7.4) 

(7.5) 

where dg is the grain width, and H^SIGE and T>PSIGE are the hole diffusion length and 

hole diffusivity in the polySiGe grain. 

Equating equations 7.1 and 7.2 gives an equation for pisiCe which can then be sub-

stituted into equation 7.3 to give the current J2 

J2 — Q (Cig ' Q ^ P2SiGe ( 7 - 6 ) 

V Gg + OM/ 

A comparison with equation 7.1 shows that the effective recombination velocity at 

the right side of the first SiGe grain is 

SAI = a , - (7.7) 
Gg + OM 

The grain boundary is modelled by assuming that the grain boundary has a finite 

thickness dgj, and a mobility that is different than the mobility in the grain. 

Recombination in the grain boundary is modelled at the interfaces between the grain 

boundary and the adjacent grains. The current density across the grain boundary is 

then ^ 

JGBI = {PZSiGe - P2SiGe) (7-8) 
dgb 

DpSiGe 
coth j 

^ dg 

LpSiGe 
coth j 

V LpSiGe 

DpSiGe 
csch 1 

( dg 

LpSiGe 
csch 1 

\ LpSiGe 
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where Dgb is the hole diffusivity in the grain boundary. 

Recombination at the grain boundary interfaces is modelled by the following equation 

SGB = —^CPVTH (7.9) 

where Ngt is the trap density, Cp the trap capture cross-section and Vth the thermal 

velocity. 

Using equations 7.6 to 7.9, an equation can be derived for the current at the right 

side of the grain boundary J3 

J3 = qSoBlPsSiGe (7.10) 

where 

SgBI = 0.gb — (7.11) 
Ogb + OGL 

^ + (7.12) 
(Igb 

bgb = ^ (7.13) 
dgl, 

The procedure used to derive the current at the right side of the first polySiGe grain 

can now be repeated to give the current at the right side of the second polySiGe 

grain J4 

J4 = <lSG2P4SiGe (7-14) 

where 

Sg2 = % - S — (7,15) 
<̂g + ^GBl 

In general, there may be more than two grains in the polySiGe emitter, in which case, 

for n>2, the effective recombination at the nth grain is 

San = a, 5 _ _ (7.16) 

The effect of the polySiGe layer can be explicitly highlighted by relating the hole 

concentration for a polySiGe grain psiOe to that for an equivalent polySi grain psi 
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where NcgiCe, are the effective densities of states in the conduction and va-

lence band of SiGe, Nygi are the equivalent in Si and A Eg the band gap 

difference between Si and SiGe. The effect of the polySiGe layer is illustrated in fig-

ure 7.4 which shows a graph of SonPsiGe/Psi as a function of the number of grains for 

various values of germanium content. In calculating this graph, the parameter values 

in [87] were used. For 0% Ge, the curve is identical to that obtained by Yu et al. [87], 

as indicated by the circular symbols. For a given number of grains, the effect of the 

germanium is to increase the value of ScnPsiGe/Psi- This trend can be understood 

from equation 7.17, which shows that psiGe increases strongly with Ge content. Fig-

ure 7.4 also shows that the number of grains has little effect once there are two or 

more grains in the polysilicon layer. 
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Figure 7.4; Illustration of the effect of the polySiGe emitter by plotting ScnPSiGe/psi 
as a function of the number of polySiGe grains for different Ge concentrations. The 
parameter values in [87] were used in the calculations. 

Figure 7.5 illustrates the band diagram of the polySiGe/oxide/silicon interface. The 

bandgap in the polySiGe at the left side of the interfacial oxide is smaller than that 

in the single crystal Si at the right side, and this difference is represented by AEQ. 

The hole current tunnelling density can be written as 

JT = <LT,NY,, ( e x p - exp (7.18) 
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polySiGe 

Ĥ bE 
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Figure 7.5: Band diagram of a polySiGe emitter showing the polySiGe/oxide/Si in-
terface 

where T/ is the tunneUing coefficient E^ps is the quasi Fermi level energy for holes 

on the right side of the oxide interface and the equivalent on the left side of the 

interface. Taking the valence band edge in the single crystal silicon as the zero energy 

reference and noting that the energy of holes increases downwards, we can write 

EPP^ — —Q(T>P5 

EPPA = — — AE'G — QVO 

(7.19) 

(7.20) 

where VQ is the voltage drop across the interfacial oxide, which is neglected in the 

analysis below. The hole concentration can then be related to Epp^ and Epp^ using 

the following equations 

P4SiGe — NvSiGe G X p I I (7.21) 

(7.22) 

Combining equations 7.18 to 7.22 gives 

JT — QTJ {P5SI — FPISIGE) (7.23) 

where 

= J ^ e x p 
iVl VSiGe 

AEc 

' kT 
(7.24) 
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The current density J5 at the edge of the polySiGe emitter is now given by 

= JT + QSIP^SI = QSEFFPSSI (7.25) 

where S/ models recombination at the poly silicon/silicon interface, and is given by 

an equation analogous to equation 7.9 and SEFF is the overall effective surface re-

combination velocity for the polySiGe emitter, which is given by 

SEFF — SJ + + 
F 

TJ SI + SCN. 
(7.26) 

It is worth noting that holes tunnelling through the oxide become hot when they 

appear in the polySiGe grain, as they pick up kinetic energy of ~ AEQ. The holes 

will quickly thermalise to the valence band edge and continue to diffuse towards the 

emitter contact. This effect is presented by a break in the hole quasi Fermi level in 

the SiGe grain, close to the oxide layer. 

Figure 7.6 illustrates the variation of SEFF with interfacial layer thickness for 

germanium contents of 0 to 35% in 5% steps. 
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Figure 7.6: Calculated values of the effective surface recombination velocity SEFF 
of the complete polySiGe emitter as a function of interfacial layer thickness iox for 
different Ge concentrations. The parameter values in table 7.1 were used in the 
calculations. 

In calculating the curves in figure 7.6, the parameters in table 7.1 were used. It 

has been assumed that the density of states in the conduction band, hole diffusion 

coefficient and hole diffusion length are the same in SiGe as in Si [88]. Three regions 
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of the characteristic can be identified. For large values of interfacial layer thickness, 

T/ is small, and hence can be neglected with respect to S/. The value of SEFF 

therefore approaches the value of S/ at large values of interfacial layer thickness. In 

this situation, transport in the polySiGe emitter is dominated by recombination at 

the polysilicon/silicon interface. For intermediate values of interfacial layer thickness, 

T/ cannot be neglected, and since T/ varies exponentially with interfacial layer thick-

ness [87]. SEFF also varies strongly with interfacial layer thickness. In this situation, 

transport in the poly Si Ge emitter is dominated by tunnelling through the interfacial 

layer. For small values of interfacial layer thickness, TJ is large, and hence the value 

of SEFF approaches the value of SCN- In this situation, the Ge content in the polySiGe 

emitter has a strong influence on SEFF-

Peirameter N a m e Value Uni t 

^PSIGE diffusity of holes in polySiGe grains 3.34X10-4 TC?/S 

LpSiGe hole diffusion length in polySiGe grains 2.94X10-7 m 

4 width of a poly grain 125X10-7 m 

SM recombination velocity at the metal contact 1x10* m/s 

SGB recombination velocity 

of grain boundary 75 m/s 

SI oxide/silicon interface 

recombination velocity 15 m/s 

DGB grain boundary width 2X10-9 m 

Dgb grain boundary hole diflFusity 5.2X10-G m^/s 

potential barrier 1.5 eV 

HI intrinsic carrier concentration in silicon L45xlO^ m~^ 

A emitter area 100X10-^ m^ 

Table 7.1; Parameter values used to calculate the theoretical values of effective re-
combination velocity SEFF of the complete polySiGe emitter and base current Ig 

Figure 7.6 also shows that the effect of the Ge on the value of SEFF saturates above 

a Ge concentration of about 20%. This trend is shown more clearly in figure 7.7, 

where the value of SEFF is plotted as a function of Ge content for different values 

of interfacial layer thickness IOX- This figure shows that the value oi SEFF increases 

only slightly at high Ge contents. There is therefore little to be gained by using Ge 

contents in the polySiGe layer higher than 20%. 

For simplicity, an equation for the base current can be derived [70] by assuming that 

the single crystal emitter is uniformly doped and transparent to minority carriers 
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Figure 7.7: Calculated values of the effective surface recombination velocity SBFF 
of the complete polySiGe emitter as a function of Ge concentration for different 
interfacial oxide thicknesses tox 

(negligible recombination) 

/ g = 
GAN'^ 

NpeeffWE Npeeff 
DPE SEFF 

exp ( 
\ kT ^ 

(7.27) 

where l^oeeff is the effective doping in the single crystal silicon emitter, Wg is the 

junction depth and D^g is the hole diffusivity in silicon. This equation will be used 

to interpret the experimental results on transistors with polySiGe emitters. 

7.3 Experimental Procedure 

Silicon bipolar transistors were fabricated to experimentally determine the effect of 

germanium incorporation into the poly silicon emitter. Figure 7.8 shows a schematic 

cross-section of the manufactured bipolar transistors. The base was fabricated by 

implanting 2xl0^^cm"^ boron at 40keV through an 80nm thermal oxide layer. After 

annealing for 30 minutes at 950°C prior to emitter fabrication, the wafers were given 

an RCA clean, followed by a dip etch in buffered HF to remove any chemical oxide 

grown during the RCA clean. Immediately following this etch, a 250-290nm layer of 

in-situ phosphorus doped polycrystalline Si or SiGe was deposited in a low pressure 

chemical vapour deposition (LPCVD) system at a temperature of 540°C. The SiGe 

layers were deposited with Ge contents of 10 and 19%. The emitter was completed 

by annealing for 30s at 900°C to diffuse the phosphorus from the polycrystalline Si 
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SiO, polySiGe or polySi 
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Figure 7.8; Cross-section of the manufactured bipolar transistor 

or SiGe into the underlying single crystal Si. All measurements of the transistor 

characteristics were performed at a temperature of 25°C. 

7.4 Results 

Figure 7.9 shows secondary ion mass spectrometry (SIMS) plots through the emitter 

of the polySiGe transistor with 10% Ge annealed for 30s at 900°C. It can be seen 

that the germanium profile is approximately uniform throughout the 250nm polySiGe 

layer. The phosphorus profile in the polySiGe is similarly reasonably uniform with a 

concentration of 1.7xl0^°cm~^. 
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Figure 7.9: Measured germanium, phosphorus and oxygen SIMS profiles for bipolar 
transistors with polySio.gCeo.i emitter given an anneal of 30s at 900°C 

The oxygen profile in figure 7.9 shows a dose of 8.8xl0^^cm ^ at the interface be-

tween the polySiGe and the single crystal sihcon. Similar results were obtained for 
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the polySiGe transistor with 19% Ge and the polySi control transistor, as summarised 

in table 7.2. 

Ge content [%] 0 10 19 

Poly layer thickness [nm] 250 250 290 

Poly emitter doping [cm ^ 1.5x10^9 17x10^ 6.0x10^9 

Oxygen interface dose [cm 1.5x10^'^ 8.8x10^^ 7.0x10^3 

Interfacial layer thickness nm] 0.031 0.018 0.015 

WE [nm] 30 50 40 

Table 7.2: Summary of experimental data obtained from the SIMS measurements 

The oxygen doses in the three samples lie in the range 0.7 to 1.5xlO^^cm"^, and 

there is no discernable trend in the oxygen dose with Ge content. The poly Si and 

polySiGe layer deposition was performed one wafer at a time, and hence the variation 

in oxygen dose between the wafers is probably due to small differences in the timings 

of the wafer transfer into the deposition system. Table 7.2 also shows values of inter-

facial layer thickness, calculated assuming a uniform, stoichiometric silicon dioxide 

layer and a silicon atom concentration of 4.8x10^^atoms/cm^ and the thickness of 

the single crystal portion of the emitter WE extracted from the SIMS profiles. 

Gross-Sectional Transmission Electron microscopy (TEM) was used to characterise 

the structure of the grains in the polySiGe and poly Si layers. Figure 7.10 shows TEM 

cross-sections of a polySiGe emitter. No discernable difference was found in the struc-

ture of the grains in polySiGe and polySi layers. The grains in both materials were 

columnar in shape, with an average grain size of 125nm. 

Figure 7.11 shows TEM cross-sections of a polySi emitter. The grain structure is 

similar in both cases, with large columnar grains in the top part of the layers and 

smaller grains adjacent to the interface. 

Figure 7.12 shows Gummel plots for transistors annealed for 30s at 900°C with 10% 

and 19% polySiGe emitters and for a control transistor with a polySi emitter. The 

collector characteristics are ideal, with an ideality factor of 1.06 for all three devices. 

The base characteristics are near ideal, with ideality factors of 1.19, 1.13 and 1.13 

at Vgg=0.6V for Ge contents of 0, 10 and 19%, respectively. The transistors with 

10 and 19% Ge show increased base current at VBB=0.6V compared with a transistor 

without Ge by a factor of 3.2 for 10% Ge and 4.0 for 19% Ge. 
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t 

1 
Figure 7.10; TEM cross-section of a poIySio.goCeo.io emitter annealed for 30s at 900°C 
showing the polySiGe grains 

Figure 7.11: TEM cross-section of a polySi emitter annealed for 30s at 900°C showing 
polySi over the emitter region 

7.5 Discussion 

The experimental results in figure 7.12 show that there is a large increase in base cur-

rent when the germanium content of the polySiGe layer is increased from 0% to 10%, 

but a much smaller increase when the germanium content is increased from 10% to 19%. 

This result is in qualitative agreement with the theoretical curves in figure 7.7, which 

shows that the effect of the germanium on the base current saturates for germanium 
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Figure 7.12; Measured Gummel plots for transistors with 0, 10 and 19% Ge in the 
polySiGe emitter, annealed at 900°C. The collector currents are identical and only 
one is shown. 

concentrations above about 20%. 

In order to quantitatively compare the experimental values of base current with cal-

culated values, the small non-ideality in the base characteristics of figure 7.12 needs 

to be taken into account. To address this problem, the method of Hamel [89] has 

been used to correct for this non-ideality. This method uses an analysis to extract 

the underlying ideal component of the base current. The corrected base characteris-

tics are shown in figure 7.13 and the corrected values base current at VB£;=0.6V are 

summarised in table 7.3. It can be seen that the corrected values of base current are 

a factor of 2-3 smaller than the measured values at Vgg=0.6V. 

Equation 7.27 was used to calculate the base currents using the measured values 

of interfacial oxide thickness tox and emitter doping Wg in table 7.2. The average 

doping in the single crystal Si emitter was calculated from the SIMS profiles and 

the band gap narrowing model of del Alamo [90] used to calculate the effective dop-

ing Noeeff- Calculated base characteristics are shown in figure 7.14. 

Calculated values of base current at YBE = 0.6V are compared with the measured 

(corrected) values in table 7.3, where it can be seen that the agreement is within 

a factor of 1.1 for 0% Ge, 1.8 for 10% Ge and 1.1 for 19% Ge. This agreement is 

excellent considering the uncertainties of the parameter values in table 7.1. 

Table 7.3 also summarises the calculated and measured (corrected) ratios of nor-
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Figure 7.13: Base current Ig, corrected using the method of Hamel [89], as a function 
of base/emitter voltage VBE for 0%, 10% and 19% Ge. 

Ge content [%] 0 10 19 

Measured Ig at VBB=0.6V [A] 1.0x10"^ 3.0x10-"^ 4.3x10-'^ 

Corrected [89] Ig at Vgg=0.6V [A] 4.2x10-^ 1.3x10-'^ l-SxlO-"^ 

Calculated Ig at Vgg=0.6V [A] 3.8x10-^ 7.2x10-= 1.6x10-^ 

Corrected normalised Ig(Ge)/fg(0) 1 3.2 4.0 

Calculated normalised Ig(Ge)/7g(0) 1 1.9 4.2 

Table 7.3: Comparison of measured and calculated values of base current 

malised base current, obtained by taking the ratio of the base current in the appro-

priate polySiGe transistor to that in the polySi transistor. The measured (corrected) 

ratios of 3.2 and 4.0 for 10 and 19% Ge, respectively, are in reasonable agreement 

with the calculated values of 1.9 and 4.2. 

In poly silicon emitters, the interfacial layer has a strong effect on the current gain [91]. 

It is therefore important to understand how the interfacial oxide thickness influences 

the base current increase obtained when germanium is introduced into the polysihcon 

emitter. The opposite trends with germanium content and interfacial layer thickness 

are shown in figure 7.6 and this indicates that an interfacial layer thickness of less 

than about 0.3nm is needed if the germanium is to have a significant effect on the 

effective recombination velocity SEFF and the base current. In practice, this could 

be achieved using an ex-situ HF etch in combination with polySiGe deposition in 

a cluster tool [92]. Even bigger effects could probably be achieved by breaking up 
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the interfacial layer using an interface anneal prior to polySiGe deposition [91] or by 

epitaxially regrowing the polySiGe during the emitter anneal 

- *— calculated base, 0% Ge 
—— calculated base, 10% Ge 

• calculated base, 19% Ge 

0.60 

VBE[V] 

0.70 

Figure 7.14: Calculated base currents Is as a function of base/emitter voltage YBE 
for 0, 10 and 19% Ge concentrations 

7.6 Vertical M O S F E T with polySiGe source 

Figure 7.15 shows a schematic cross-section of the proposed polycrystalline SiGe 

source. The reduced band gap of the polySiGe layer will give a dramatic reduction 

in the gain of the parasitic bipolar transistor. The polySiGe source would have the 

additional advantage that a very shallow, well-controlled source junction could be 

created by diffusion from the polySiGe layer. This would give good control over the 

channel length. 

silicon. polySiGe 

g p 0 
n+ drain n+ drain 

P substrate 

Figure 7.15: Polycrystalline SiGe source 
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7.7 PolySiGe emitter for gain control in SiGe H B T s 

Over the last few years, the high frequency performance of SiGe HBTs has improved 

to such an extent that several research groups have reported values of f r and/or imax 

around lOOGHz [93-97], and the state of the art is 300GHz [93]. To achieve this 

performance, it is necessary to minimise parasitic resistance and capacitance and op-

timise the vertical doping profile so that delay times in all the regions of the transistor 

are minimised, particularly the base and collector delay. The base delay is minimised 

by using a narrow basewidth and large Ge gradient across the base to create a built-

in electric field [98] that accelerates electrons across the base. The collector/base 

depletion region delay is minimised by increasing the collector doping to decrease the 

collector/base depletion width and hence decrease the electron transit time. Unfor-

tunately high collector doping concentrations have the disadvantage of degrading the 

common emitter breakdown voltage BVCEO of the transistor. 

The common emitter breakdown voltage BVCEO of a bipolar transistor is strongly 

influenced by the common emitter current gain, as can be seen from the following 

equation [70] 

BVOEO = (7.28) 

where BVcso is the common base breakdown voltage (i.e. the breakdown voltage 

of the collector/base junction), (3 is the common emitter gain and n is an empirical 

parameter that takes a value between 3 and 6. A gain of around 100 is needed for 

good circuit operation, but there is little advantage to be obtained from higher gains 

because of the degradation in BVCBO- In SiGe HBTs, very high values of gain can be 

obtained, particularly when a high Ge concentration is used to give a large built-in 

electric field across the base. For example, Washio et al. [95] reported a gain of 1900 

in a SiGe HBT with an fmax of 107GHz and an fj- of 90GHz. Huizing et al. [99] 

proposed that an epitaxial SiGe layer could be incorporated into the emitter to allow 

the base current to be tuned. 

The work reported in this chapter shows that the gain of a bipolar transistor could 

be controlled by introducing Ge into the polysilicon emitter. This method has the 

advantage of allowing the gain to be controlled independently of the base profile and 

thereby allows the breakdown voltage BVCEO to be optimised for a given f^. 
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7.8 Summary 

Parasitic transistor action can degrade vertical MOSFET performance. In order 

to address this problem a new vertical transistor design has been proposed with a 

polySiGe cap as the source. A theoretical expression has been derived for the effec-

tive surface recombination velocity of this polycrystalline SiGe source, and predicted 

values of parasitic base current compared with measured values on bipolar transistors 

with polycrystalline SiGe emitters. The measured results show an increase in base 

current by a factor of 3.2 for 10% Ge in the polySiGe emitter and by 4.0 for 19% 

Ge. The theory predicts that, for a given interfacial layer thickness, the base cur-

rent initially increases with Ge content and then saturates for germanium contents 

of about 20%, a trend which agrees well with the experimental results. The size of 

the base current increase with Ge content depends on the thickness of the interfacial 

layer, with larger increases being obtained for thinner interfacial layers. The intro-

duction of germanium into a poly silicon emitter therefore allows the base current, and 

hence the gain, to be controlled by means of the Ge content in the polySiGe emitter. 

This property is likely to be very useful in partially depleted vertical MOSFETs to 

suppress parasitic bipolar transistor action. Furthermore, this concept also provides 

a way of controlling the gain of a SiGe HBT and therefore of increasing the common 

emitter breakdown voltage BVCBO-
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C o n c l u s i o n s 

In this thesis several methods have been investigated to reduce parasitica in vertical 

MOS devices. These methods include a fillet local oxidation (FILOX) process to 

reduce overlap capacitance between the polysilicon gate track and the source, drain 

and substrate, optimisation of the pillar processing sequence, inclusion of a pillar top 

insulator and the incorporation of Ge into a polysilicon source. 

First order calculations have been performed to compare the overlap capacitances of 

lateral and vertical transistors using lOOnm industry design rules under the assump-

tion of equivalent junction depths. For single gate vertical transistors incorporating 

the FILOX process, the gate/source overlap capacitance is 60% of that of a com-

parable lateral device and the gate/drain overlap capacitance is 40%. For surround 

gate transistors incorporating the FILOX the gate/source overlap capacitance is 5% 

of that of a comparable lateral device and the gate/drain overlap capacitance 20%. 

The FILOX process has been simulated using calibrated values of nitride viscos-

ity. It was found that a thick nitride fillet reduces the encroachment on the bottom 

of the pillar but has little influence on the encroachment on the pillar sidewall at the 

top of the pillar. Decreasing the pad oxide thickness for a given nitride thickness 

reduced the encroachment on the side of the pillar. Covering the pillar top with a 

nitride insulation layer completely suppresses the encroachment on the sidewall at 

the top of the pillar. Simulations showed that the stress in pillars with a nitride cap 

is lower than that in pillars with an oxide cap. 

The FILOX process was used to fabricate pillar capacitors and a comparison made 

between capacitors with and without a nitride layer on the pillar top and with and 

without the FILOX oxide. Pillar structures with a nitride top showed a reduction of 

capacitance of 1.4 and structures incorporating the FILOX oxide a reduction of 4.0. 
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The fabricated structures were compared with simulated capacitors, and the oxide 

thickness on the pillar sidewall extracted. The simulated gate oxide on the pillar 

sidewall is 3.1nm thicker than that on horizontal surfaces because of the different 

orientations of the silicon. Measured and simulated values of sidewall gate oxide 

thicknesses agree within a factor of 1.18 for the FILOX capacitors. Kinks in the CV 

characteristics in inversion have been observed and explained by the formation of an 

inversion layer beneath the LOCOS field oxide. 

Experimental results on fabricated single and surround gate transistors have been 

presented. The devices showed a subthreshold slope of 111 and 123mV/decade for 

single and surround gate transistors with a 3nm gate oxide thickness. These results 

compared favorably with reported vertical devices in the literature. A comparison of 

measured and simulated results for the single gate transistor showed good agreement. 

Vertical NOR and NAND gates have been proposed and shown to function correctly. 

A dielectric pocket concept has been proposed for vertical MOSFETs which has the 

potential to reduce short channel effects. 

The use of a polySiGe source has been proposed to reduce parasitic bipolar tran-

sistor action in vertical MOSFETs. A theoretical model has been derived for the 

base current of the parasitic bipolar transistor in terms of an effective surface re-

combination velocity for the polycrystalline SiGe layer. The polySiGe source allows 

the parasitic base current, and hence the parasitic gain, to be controlled by means 

of the Ge content in the polySiGe layer. This property is likely to be very useful 

in fully depleted vertical MOSFETs to suppress parasitic bipolar transistor action. 

Furthermore, this concept also provides a way of controlling the gain of a SiGe HBT 

and therefore of increasing the common emitter breakdown voltage BVCEO- Bipolar 

transistors have been fabricated with a polySiGe emitter (source) and values of base 

current measured for different Ge contents. It has been found that 19% Ge increases 

the base current (suppresses the gain) by a factor of 4.0. Measured and calculated 

values of ideal base current agree within a factor of 1.13 for a Ge content of 19%. 



C h a p t e r 9 

Sugges t i ons for f u t u r e w o r k 

There are a number of areas from the work presented in this thesis where work might 

be carried out in the near future. These are summarised below. 

• The fabricated capacitor batch includes several devices incorporating corners. 

Measurements of these structures should show the effects of corners. 

• Further measurements on the vertical MOSFETs would allow the influence of 

channel length on on-current and threshold voltage to be determined. The 

leakage currents could be measured and their influence on the device perfor-

mance investigated. The configuration of SOT and DOT could be investigated 

and a comparison made with examples in the literature. Further measurements 

on the fabricated logic gates could be carried out and their potential for high 

speed applications could be investigated. The functional 51 stage ring oscilla-

tors could be measured and compared with simulated results. RF measurements 

to show the maximum oscillation frequency and the cutoff could be extracted 

since special probe pads were included in the layout. 

• Measurements of the common base breakdown voltage {BYCBO) of both, control 

and SiGe HBTs could be carried out to show the increase of the common emitter 

breakdown voltage (BVcgo) caused by the incorporation of SiGe in the poly 

emitter. Based on the polySiGe source idea a batch is currently being fabricated 

incorporating polySiGe sources into vertical transistors. This batch needs to be 

further processed and measured to show the reduction of parasitic capacitance 

caused by the incorporation of SiGe. 

In the longer term work along the following lines would advance the state of the art: 

• Realisation of transistors with dielectric pockets. 
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• Reahsation of transistors with thin, fully depleted pillars to assess the improve-

ments in short-channel effects that can be obtained from double and surround 

gates. 



Appendix A 

Simulation script files 

T h e following Silvaco's Athena /At las simulation script files were used for t he simulation presented. A detailed 

description of the syntax and models used can be found in [80,100]. 

A . l FILOX device simulat ions 

See section 4.3 for details. 

# file: thesis/filox/oxide/filox.in 

# some variables... 

# 50 -> 20mn 

# 6 -> 5nm 

# 2 -> 3nm 

set padOxide = 6 

# deposited nitride thickness... 

set nitrideTh = 0.130 

# nitride etch rate... 

# ISOmn -> 13 

# 70nm -> 7 

# 40nm -> 3.5 

set nitrideEtch = 13 

# pillar height... 

# 230nm -> 21 

# SOnm -> 9.01 

set pillarHeight = 21 

go athena 

# define mash... 

line X location=0.8 spacing=0.02 

line X location=0.9 spacing=0.01 

line X location=l.l spacing=0.01 

line X location=1.2 spacing=0.02 

line y location=0.0 spacing=0.01 

line y location=0.3S spacing=0.01 

# initialise the wafer... 

init silicon boron resistivity=0.75 orientation=100 

# oxide grid (initial and subsequent)... 

method gridinit.ox=0.005 grid.oxide=0.01 oxide.rel=0.02 
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# etch 230 nm pillar... 

# first the photoresist... 

deposit photores thick=0.1 div=5 

etch photores left pl.x=1.000 

# pillar etch... 

rate.etch machine=pillar2 silicon n.m rie isotropic=0.5 dir=10.00 chem=l div=0.1 

etch machine =pill2ir2 time=$"pillarHeight" minutes 

# strip resist... 

etch photores all 

# etch off top peak (top 20nm only)... 

etch silicon above pl.y=0.020 

#tonyplot 

# stress relieve oxide... 

diffuse time=$"padOxide" temp=900 dryo2 pressure=l hcl.pc=3 

extract name="pad_sio2" thickness material="SiO~2" mat.occno=l x.val=1.15 

# deposit nitride and etch nitride fillet... 

deposit nitride thickness=$"nitrideTh" div=14 

rate.etch machine=fillet2 nitride n.m rie isotropic®! dir=10 chem=l div=0.1 

etch machine=fillet2 time=$"nitrideEtch" minutes 

tonyplot 

# etch pad oxide... 

etch oxide dry thick=$"pad_sio2"/10000 

tonyplot 

# model parameter... 

material oxide vise.0=5.1 vise.£==3.48 weto2 

material nitride visc.0=2e3 vise.E=2.5625 

#FILOX... 

oxide stress.dep=t 

method viscous 

# stepl.... 

diffuse time=0.5 temp=1000 weto2 

# FILOX thickness... 

extract name="FILOX thicknessl" thickness material="SiO~2" mat.occno=l x.val=1.15 

# vertical birds beak... 

extract name= "pad_sio2X0910" thickness material= 'SiO' 2" mat occno =1 X .val =0 850 

extract name= "pad_sio2X0920" thickness material= 'SiO' "2" mat occno =1 X val =0 860 

extract name= "pad_sio2X0930" thickness material^ SiO-2" mat occno =1 X val =0 870 

extract name= "pad_sio2X0940" thickness material= 'SiO' 2" mat occno =1 X val =0 880 

extract name= "pad_sio2X0950" thickness material= 'SiO' 2" mat occno =1 X veil =0 890 

extract name= "pad_sio2X0900" thickness material= 'SiO' 2" mat occno =1 X val =0 900 

extract name= "pad_sio2X0910" thickness material= 'SiO' 2" mat occno =1 X val =0 910 

extract name= "pad_sio2X0920" thickness material= 'SiO' •2" mat occno =1 X val =0 920 

extract name= "pad_sio2X0930" thickness material= SiO' 2" mat occno =1 X val: =0 930 

extract name= "pad_sio2X0940" thickness material= SiO' 2" mat occno =1 X val= =0 940 

extract name= "pad_sio2X0950" thickness material= SiO' 2" mat occno =1 X val= =0 950 

extract nanie= "pad_sio2X0960" thickness material= 'SiO' 2" mat occno =1 X val= =0 960 

extract name= "pad_sio2X0970" thickness material= 'SiO' 2" mat occno =1 X val= =0 970 

extract name= "pad_sio2X0980" thickness material= 'SiO' 2" mat occno =1 X val= =0 980 

extract name= "pad_sio2X0990" thickness material= SiO" 2" mat occno =1 X val= =0 990 

extract name= "pad_sio2X1000" thickness material= SiO" 2" mat occno =1 X val= =1 000 

# horizontal bird's beak... 

extract name= "pad_sio2Y0000" thickness material= SiO' 2" mat occno =1 y val= =0 000 
extract naine= "pad_sio2Y0025" thickness material= SiO' 2" mat occno =1 y val= =0 025 
extract name= "pad_sio2Y0050" thickness material^ SiO' 2" mat occno =1 y val= =0 050 
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extract name="pad_sio2Y0075" thickness material="SiO' 2" mat, , occno= •i. y.val=0.075 

extract name="pad_sio2Y0100" thickness material="SiO' "2" mat. .occno= :1 y-val=0. ,100 
extract name="pad_s i o2Y0125" thickness material="SiO' "2" mat, .occno= :1 y.val=0. ,125 

extract name="pad_sio2Y0160" thickness !naterial="SiO' 2" mat, . occno= :1 7' .val=0. .150 

extract name="pad_sio2Y0175" thickness material="SiO' 2" mat, .occno= :1 y-,val=0. ,175 
extract name="pad_sio2Y0200" thickness material="SiO' "2" mat, .occno= :1 y. ,val=0. .200 
extract name="pad_sio2Y0225" thickness material="SiO' "2" mat. . occno= = 1 y-.vea=0, ,225 

extract name="pad_sio2Y0250" thickness material="SiQ' "2" mat, .occno= :1 y .val=0, .250 
struct outf=filoxl. str 

#tonyplot -St filoxl.str 

# step2.... 

diffuse time=0.5 temp=1000 weto2 

# FILQX thickness... 

extract name="FILQX thickness2" thickness material="SiO"2" mat.occno=l x.val=1.15 

# vertical birds beak... 

extract name= pad_sio2X0910" thickness material= SiO" 2" mat occno= X vaLl= =0 850 
extract name= pad_sio2X0920" thickness material= SiO" 2" mat occno= X val= =0 860 

extract name= pad_sio2X0930" thickness material^ SiO" 2" mat occno= X val= =0 870 

extract name= pad_sio2X0940" thickness raaterial= SiO" 2" mat occno= X val= =0 880 

extract name= pad_sio2X0950" thickness material= SiO-2" mat occno= X val= =0 890 

extract name= pad_sio2X0900" thickness material^ SiO" 2" mat occno= X val= =0 900 

extract name= pad_sio2X0910" thickness material= SiO" 2" mat occno= X val= =0 910 

extract name= pad_sio2X0920" thickness material= SiO-2" mat occno= X val= =0 920 

extract name= pad_sio2X0930" thickness material^ SiO' 2" mat occno=: X val= =0 930 

extract name= pad_sio2X0940" thickness material^ SiQ-2" mat occno= X Vell= =0 940 
extract name= pad_sio2X0950" thickness material= SiO-'2" mat occno= X val= =0 950 

extract name= pad_sio2X0960" thickness material= SiO" 2" mat occno= X val= =0 960 

extract name= pad_sio2X0970" thickness material= SiO" 2" mat occno= X val= =0 970 

extract name= pad_sio2X0980" thickness material^ SiO-2" mat occno= X VcLl= =0 980 

extract name= pad_sio2X0990" thickness material= SiQ-2" mat occno= X val= =0 990 

extract name= pad_sio2X1000" thickness material= SiO-2" mat occno=: X Vcll= =1 000 

# horizontal bird's beak... 

extract name= pad_sio2Y0000" thickness material= SiO-2" mat occno= y val= =0 000 
extract name= pad_sio2Y0025" thickness material^ SiQ-2" mat occno= y val= =0 025 
extract name= pad_sio2Y0050" thickness material= SiQ-2" mat occno= y val= =0 050 
extract name= pad_sio2Y0075" thickness material= SiQ-"2" mat occno= y val= =0 075 
extract name= pad_sio2Y0100" thickness material= SiO" "2" mat occno= y val= =0 100 
extract name= pad_sio2Y0125" thickness material= SiO' -2" mat occno= y val= =0 125 
extract name= pad_sio2Y0150" thickness material= SiQ-2" mat occno= y val= =0 150 
extract name= pad_sio2Y0175" thickness material= SiO" 2" mat occno= y vca= =0 175 
extract name= pad_sio2Y0200" thickness material^ SiO-2" mat occno= y val= =0 200 
extract name= pad_sio2Y0225" thickness material= SiO" 2" mat occno= y val= =0 225 
extract name= pad_sio2Y0250" thickness material^ SiO-'2" mat occno= y val= =0 250 
struct outf=filox2.str 

#tonyplot -St filox2.str 

# Steps.... 

diffuse time=l temp=1000 weto2 

# FILOX thickness... 

extract najne="FILOX thicknessS" thickness material="SiO 

# vertical birds beak... 

extract name="pad_sio2X0910" thickness material="SiO~2" 

extract name="pad_sio2X0920" thickness material="SiO"2" 

extract naine="pad_sio2X0930" thickness material="SiO"2" 

extract naine="pad_sio2X0940" thickness material="SiO"2" 

extract name="pad_sio2X0950" thickness material="SiO"2" 

extract naine="pad_sio2X0900" thickness material="SiO~2" 

extract name="pad_sio2X0910" thickness material="SiO"2" 

extract naine="pad_sio2X0920" thickness material="SiO"2" 

extract name="pad_sio2X0930" thickness material="SiO"2" 

2" mat.occno=l z.val=1.16 

mat 

mat 

mat 

mat 

mat. 

mat. 

mat. 

mat. 

mat, 

occno-

occno-

occno-

occno-

occno: 

occno: 

occno: 

occno: 

occno: 

=1 x.val=0.850 

:i x.val=0.860 

:1 x.val=0.870 

:1 x.val=0.880 

•1 x.val=0.890 

:1 x.val=0.900 

:1 x.val=0.910 

=1 x.val=0.920 

=1 x.val=0.930 
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extract name= "pad_sio2X0940" thickness material= SiO' "2" mat occno= 1 X val= =0 940 

extract name= "pad_sio2X0950" thickness material= SiO' 2" mat occno= 1 X Vctl= =0 950 

extract naine= "pad_sio2X0960" thickness material^ SiO" 2" mat occno= 1 X Vell= =0 960 

extract name= "pad_sio2X0970" thickness material^ SiO- 2" mat occno= 1 X val= =0 970 

extract name= "pad_sio2X0980" thickness material= SiO' "2" mat occno= 1 X val= =0 980 

extract name= "pad_sio2X0990" thickness material= SiO "2" mat occno= 1 X val= =0 990 

extract name= "pad_sio2X1000" thickness material^ SiO' -2" mat occno= 1 X val= =1 000 

# horizontal bird's beak... 

extract name= "pad_sio2Y0000" thickness material^ SiO' 2" mat occno= 1 y val= =0 000 
extract name= "pad_sio2Y0025" thickness material^ SiO' -2" mat occno= 1 y val= =0 025 
extract name= "pad_sio2Y0050" thickness material= SiO' "2" mat occno= 1 y val= =0 050 
extract name= "pad_sio2Y0075" thickness material= SiO' "2" mat occno= 1 y val= =0 075 
extract name= "pad_sio2Y0100" thickness material= SiO "2" mat occno= 1 y val= =0 100 
extract name= "pad_sio2Y0125" thickness material= SiO -2" mat occno= 1 y val= =0 125 
extract name= "pad_sio2Y0150" thickness material= SiO' -2" mat occno= 1 y val= =0 150 
extract naine= "pad_sio2Y0175" thickness material^ SiO' '2" mat occno= 1 y val= =0 175 
extract name= "pad_sio2Y0200" thickness material= SiO' 2" mat occno= 1 y val= =0 200 
extract name= "pad_sio2Y0225" thickness material= SiO' 2" mat occno= 1 y val= =0 225 
extract name= "pad_sio2Y0250" thickness material= SiO' 2" mat occno= 1 y val= =0 250 
struct outf=filox3.str 

#tonyplot -St filox3.str 

# step4.... 

diffuse time=l temp=1000 weto2 

# FILOX thickness... 

extract name= 

# vertical birds beak... 

FILOX thickness4" thickness material="SiO"2" mat.occno=l x.val=1.15 

extract name= pad_sio2X0910" thickness material= SiO' 2' mat occno= X .val=0 .850 

extract name= pad_sio2X0920" thickness material= SiO' 2' mat occno= X .val=0 .860 

extract name= pad_sio2X0930" thickness material= SiO' "2' mat occno= X val=0 .870 

extract name= pad_sio2X0940" thickness material= SiO' 2' mat occno= X val=0 880 

extract name= pad_sio2X0950" thickness material= SiO' 2' mat occno= X val=0 890 

extract name= pad_sio2X0900" thickness material= SiO' 2' mat occno= X val=0 900 

extract name= pad_sio2X0910" thickness material= SiO' '2' mat occno= X val=0 910 

extract name= pad_sio2X0920" thickness material= SiO' '2' mat occno= X val=0 920 

extract name= pad_sio2X0930" thickness material= SiO' 2' mat occno= X val=0 930 

extract name= pad_sio2X0940" thickness material^ SiO' '2' mat occno= X val=0 940 

extract name= pad_sio2X0950" thickness material^ SiO' '2' mat occno= X val=0 950 

extract name= pad_sio2X0960" thickness material= SiO" 2' mat occno= X val=0 960 

extract name= pad_sio2X0970" thickness material= SiO' 2' mat occno= X val=0 970 

extract name= pad_sio2X0980" thickness material= SiO' 2' mat occno= X val=0 980 

extract name= pad_sio2X0990" thickness material= SiO' '2' mat occno= X val=0 990 

extract name= pad_sio2X1000" thickness material= SiO' '2' mat occno= X val=l 000 

# horizontal bird's beak... 

extract name= pad_sio2Y0000" thickness material^ SiO' '2' mat occno= y val=0 000 
extract name= pad_sio2Y0025" thickness material^ SiO' '2' mat occno= y val=0 025 
extract name= pad_sio2Y0050" thickness material= SiQ-2' mat occno= y val=0 050 
extract name= pad_sio2Y0075" thickness material= SiO' 2' mat occno= y val=0 075 
extract name= pad_sio2Y0100" thickness material^ SiO' 2' mat occno= y val=0 100 
extract name= pad_sio2Y0125" thickness material= SiO' 2' mat occno= y val=0 125 
extract name= pad_sio2Y0150" thickness material^ SiO' 2' mat occno= y val=0 150 
extract name= pad_sio2Y0175" thickness material^ SiO' 2' mat occno= y val=0 175 
extract name= pad_sio2Y0200" thickness material= SiO' 2' mat occno= y val=0 200 
extract name= pad_sio2Y0225" thickness material^ SiO' 2' mat occno= y val=0 225 
extract name= pad_sio2Y0250" thickness material= SiO-2' mat occno= y-val=0 250 
struct outf=filox4.str 

#tonyplot -St filox4.str 

# step5... . 

diffuse time=l teinp=1000 weto2 

# FILOX thickness... 
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extract naine="FILQX thickness5" thickness material="SiO"2" mat.occno=l x.val=1.15 

# vertical birds beak... 

extract name= 'pad_sio2X0910" thickness material= SiO' 2" mat occno= x.val=0 850 

extract name= 'pad_sio2X0920" thickness material= SiO" 2" mat occno= X val=0 860 

extract name= 'pad_sio2X0930" thickness material= SiO' '2" mat occno= X val=0 870 

extract name= 'pad_sio2X0940" thickness material= SiO' 2" mat occno= X val=0 880 

extract name= 'pad_sio2X0950" thickness material= SiO' 2" mat occno= X val=0 890 

extract name= 'pad_sio2X0900" thickness material= SiO' 2" mat occno= X val=0 900 

extract name= 'pad_sio2X0910" thickness material= SiO' 2" mat occno= X val=0 910 

extract name= 'pad_sio2X0920" thickness material= SiO' 2" mat occno= X val=0 920 

extract name= 'pad_sio2X0930" thickness material= SiO' '2" mat occno= X val=0 930 

extract name= 'pad_sio2X0940" thickness material= SiO' '2" mat occno= X val=0 940 

extract name= 'pad_sio2X0950" thickness material= SiO' "2" mat occno= X val=0 950 

extract name= 'pad_sio2X0960" thickness material^ SiO' 2" mat occno= X val=0 960 

extract name= 'pad_sio2X0970" thickness material^ SiO' 2" mat occno= X val=0 970 

extract name= 'pad_sio2X0980" thickness material= SiO' 2" mat occno= X val=0 980 

extract name= 'pad_sio2X0990" thickness material^ SiO' '2" mat occno= X.val=0 990 

extract name= 'pad_sio2X1000" thickness material^ SiO' '2" mat occno= X val=l 000 

# horizontal bird's beak... 

extract name= 'pad_sio2Y0000" thickness material^ SiO' -2" mat occno= y val=0 000 
extract name= 'pad_sio2Y0025" thickness material= SiO' 2" mat occno= y val=0 025 
extract name= 'pad_sio2Y0050" thickness material= SiO' 2" mat occno= y val=0 050 
extract name= 'pad_sio2Y0075" thickness material= SiO' -2" mat occno= y val=0 075 
extract name= 'pad_sio2Y0100" thickness material= SiO' '2" mat occno= y val=0 100 
extract name= 'pad_sio2Y0125" thickness material= SiO' '2" mat occno= y val=0 125 
extract name= 'pad_sio2Y0150" thickness material= SiO' 2" mat occno= y val=0 150 
extract name= 'pad_sio2Y0175" thickness material= SiO' 2" mat occno= y val=0 175 
extract name= 'pad_sio2Y0200" thickness material^ SiO' "2" mat occno= y val=0 200 
extract name= 'pad_sio2Y0225" thickness material^ SiO' '2" mat occno= y val=0 225 
extract name= 'pad_sio2Y0250" thickness material^ SiO' '2" mat occno= y val=0 250 
struct outf=filox5.str 

#tonyplot -St filox5.str 

# step6.... 

diffuse time=l temp=1000 weto2 

# FILOX thickness... 

extract name="FILOX thickness6" thickness material="SiO"2" mat.occno=l x.val=1.15 

# vertical birds beak... 

extract name= pad_sio2X0910" thickness material= "SiO -2" mat occno= =1 X .val=0 .850 

extract name= pad_sio2X0920" thickness material= "SiO' -2" mat occno= =1 X.val=0 .860 

extract name= pad_sio2X0930" thickness material= "SiO -2" mat occno= =1 X val=0 870 

extract name= pad_sio2X0940" thickness material= "SiO "2" mat occno= =1 X .val=0 880 

extract name= pad_sio2X0950" thickness material= "SiO "2" mat occno= =1 X val=0 890 

extract name= pad_sio2X0900" thickness material= "SiO "2" mat occno= =1 X .val=0 900 

extract name= pad_sio2X0910" thickness material= "SiO -2" mat occno= =1 X val=0 910 

extract name= pad_sio2X0920" thickness material= "SiO' 2" mat occno= 1 X val=0 920 

extract name= pad_sio2X0930" thickness material= "SiO "2" mat occno= 1 X val=0 930 

extract name= pad_sio2X0940" thickness material= "SiO' "2" mat occno= 1 X val=0 940 

extract name= pad_sio2X0950" thickness material= "SiO "2" mat occno= 1 X val=0 950 

extract name= pad_sio2X0960" thickness material= "SiO "2" mat occno= 1 X val=0 960 

extract name= pad_sio2X0970" thickness material= "SiO "2" mat occno= 1 X val=0 970 

extract name= pad_sio2X0980" thickness material= "SiO' "2" mat occno= 1 X val=0 980 

extract name= pad_sio2X0990" thickness material= "SiO' 2" mat occno= 1 X val=0 990 

extract name= pad_sio2X1000" thickness material= "SiO' "2" mat occno= 1 X val=l 000 

# horizontal bird's beak... 

extract name= pad_sio2Y0000" thickness material= "SiO' "2" mat occno= 1 y val=0 000 
extract name= pad_sio2Y0025" thickness material= "SiO' "2" mat occno= 1 y val=0 025 
extract name= pad_sio2Y0050" thickness material= "SiO" 2" mat occno= 1 y val=0 050 
extract name= pad_sio2Y0075" thickness material= "SiO' 2" mat occno= 1 y val=0 075 
extract naine= pad_sio2Y0100" thickness material= "SiC 2" mat occno= 1 y val=0 100 
extract name= pad_sio2Y0125" thickness material= "SiO' 2" mat occno= 1 y val=0 125 
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extract name="pad_sio2Y0150" thickness material="SiO"2" mat.occno=l y.val=0.150 

extract name="pad_sio2Y0175" thickness material="SiO"2" mat.occno=l y.val=0.i75 

extract name="pad_sio2Y0200" thickness mat@rial="SiO"2" mat.occno=l y.val=0.200 

extract name="pad_sio2Y0225" thickness material="SiO~2" mat.occno=l y.val=0.225 

extract name="pad_sio2Y0250" thickness material="SiO"2" mat.occno=l y.val=0.250 

struct outf=filox6.str 

#tonyplot -St filox6.str 

# step?.... 

diffuse time=2 temp=1000 weto2 

# FILOX thickness... 

extract name= 

# vertical birds beak.. 

FILOX thickness?" thickness material="SiO"2" mat.occno=l x.val=i.i5 

extract name= pad_sio2X0910' thickness material^ SiO' 2" mat occno=: X val=0 850 

extract name= pad_sio2X0920' thickness material^ SiO" "2" mat occno= X val=0 860 

extract name= pad_sio2X0930' thickness material^ SiO' "2" mat occno= X val=0 870 

extract name= pad_sio2X0940' thickness material= SiO' '2" mat occno= X val=0 880 

extract name= pad_sio2X0950' thickness material= SiO' "2" mat occno= X val=0 890 

extract name= pad_sio2X0900' thickness material= SiO' '2" mat occno= X val=0 900 

extract name= pad_sio2X0910' thickness material^ SiO' '2" mat occno= X val=0 910 

extract name= pad_sio2X0920' thickness material^ SiO' "2" mat occno= X val=0 920 

extract name= pad_sio2X0930' thickness material= SiO' -2" mat occno= X val=0 930 

extract name= pad_sio2X0940' thickness material^ SiO "2" mat occno= X val=0 940 

extract name= pad_sio2X0950' thickness material^ SiO' "2" mat occno= X val=0 950 

extract name= pad_sio2X0960' thickness material= SiO' "2" mat occno= X Tal=0 960 

extract name= pad_sio2X09?0' thickness material= SiO' 2" mat occno=: X val=0 970 

extract name= pad_sio2X0980' thickness material= SiO -2" mat occno= X val=0 980 

extract name= pad_sio2X0990' thickness material^ SiO "2" mat occno= X val=0 990 

extract name= pad_sio2X1000' thickness material^ SiO' "2" mat occno= X val=l 000 

# horizontal bird's beak... 

extract name= pad_sio2Y0000' thickness material= SiO "2" mat occno= y val=0 000 
extract naine= pad_sio2Y0025' thickness material= SiO "2" mat occno= y val=0 025 
extract name= pad_sio2Y0050' thickness material= SiO "2" mat occno= y val=0 050 
extract name= pad_sio2Y0075' thickness material= SiO' 2" mat occno= y.val=0 075 

extract name= pad_sio2Y0100' thickness material= SiO "2" mat occno= y val=0 100 
extract name= pad_sio2Y0125' thickness material= SiO "2" mat occno= y val=0 125 
extract name= pad_sio2Y0150' thickness material= SiO "2" mat occno= y val=0 150 
extract name= pad_sio2Y01?5' thickness material= SiO 2" mat occno= y val=0 175 
extract name= pad_sio2Y0200' thickness material^ SiO "2" mat occno= y val=0 200 
extract name= pad_sio2Y0225' thickness material= SiO -2" mat occno= y val=0 225 
extract name= pad_sio2Y0250' thickness material= SiO "2" mat occno= y val=0 250 
struct outf=filox?.str 

#tonyplot -St filox?.str 

#step8.... 

diffuse time=3 temp=iOOO «eto2 

# FILOX thickness... 

extract name="FILOX thicknessS" thickness material="SiO 

# vertical birds beak... 

extract naine="pad_sio2X0910" thickness material="SiO"2" 

extract name="pad_sio2X0920" thickness material="SiO"2" 

extract name="pad_sio2X0930" thickness material="SiO"2" 

extract name="pad_sio2X0940" thickness material="SiQ~2" 

extract naine="pad_sio2X0950" thickness material="SiD"'2" 

extract najne="pad_sio2X0900" thickness material="SiO"2" 

extract name="pad_sio2X0910" thickness material="SiD"2" 

extract name="pad_sio2X0920" thickness inaterial="SiO"2" 

extract name="pad_sio2X0930" thickness inaterial="SiO"2" 

extract name="pad_sio2X0940" thickness material="SiD"2" 

extract name="pad_sio2X0950" thickness material="SiO"2" 

extract name="pad_sio2X0960" thickness material="SiO~2" 

"2" mat.occno=l x.val=1.15 

mat 

mat 

mat 

mat. 

mat. 

mat. 

mat. 

mat. 

mat, 

mat. 

mat. 

mat. 

occno 

occno 

occno 

occno: 

occno: 

occno 

occno: 

occno: 

occno: 

occno: 

occno: 

occno: 

=1 X.V2L1-

=1 x.val-

=1 x.val-

=1 x.val: 

=1 x.val= 

=1 x.val= 

=1 x.val: 

=1 x.val= 

=1 x.val= 

=1 x.val= 

=1 x.val: 

=1 x.val: 

=0.850 

=0.860 

=0.8?0 
:0.880 

=0.890 

=0.900 

:0.910 

=0.920 

=0.930 

=0.940 

=0.950 

=0.960 
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extract name="pad_sio2X0970" 

extract name="pad_sio2X0980" 

extract name="pad_sio2X0990" 

extract naiiie="pad_slo2X1000" 

# horizontal bird's beak... 

extract name="pad_sio2Y0000" 

extract name="pad_sio2Y0025" 

extract name="pad_sio2Y0050" 

extract name="pad_sio2Y0075" 

extract name="pad_sio2Y0100" 

extract name="pad_sio2Y0i25" 

extract name="pad_sio2Y0i50" 

extract name="pad_sio2Y0175" 

extract name="pad_sio2Y0200" 

extract name="pad_sio2Y0225" 

extract name="pad_sio2Y0250" 

struct outf=filox8.str 

#tonyplot -St filoxS.str 

thickness material= "SiQ-"2" mat. .occno= 1 X. val=0. ,970 

thickness material= "SiO" 2" mat. ,occno= 1 X. val=0. .980 

thickness material= "SiQ-2" mat. .occno= :1 X. ,val=0. .990 

thickness material= "SiO-"2" mat. ,occno= X. val=l. .000 

thickness material= "SiQ' 2" mat. .occno= •1 y-,val=0, .000 
thickness material= "SiO' -2" mat. .occno= 4 y-.val=0, .025 
thickness material= "SiO" "2" mat. .occno= y .val=0 .050 

thickness material= "SiO' "2" mat. .occno= •1 y.val=0.075 
thickness material= "SiO' -2" mat. .occno= •1 Y' .val=0 .100 
thickness material^ "SiO' "2" mat. .occno= •1 Y' .val=0 .125 

thickness material= "SiO' "2" mat. .occno= Y' .val=0 .150 

thickness material= "SiO' 2" mat, .occno= :1 Y' .val=0 .175 

thickness material= "SiO' 2" mat, . occiio= Y .val=0 .200 

thickness material= "SiO' "2" mat, .occno= •1 Y .val=0 .225 
thickness material= "SiO' -2" mat. , occno= 1 y.val=0.250 

#step9.... 

diffuse time=4 temp=1000 weto2 

# FILOX thickness... 

extract name= 

# vertical birds beak... 

FILOX thicknessS" thickness material="SiD"2" mat.occno=l x.val=1.15 

extract name= pad_sio2X0910" thickness material= 'SiO' 2" mat occno= X.val=0 .850 

extract name= pad_sio2X0920" thickness material= 'SiO' "2" mat occno= X val=0 .860 

extract name= pad_sio2X0930" thickness material= 'SiO "2" mat occno= X .val=0 .870 

extract name= pad_sio2X0940" thickness material= SiO' -2" mat occno= X val=0 880 

extract name= pad_sio2X0950" thickness material= SiO' '2" mat occno= X.val=0 890 

extract name= pad_sio2X0900" thickness material= 'SiO' 2" mat occno= X val=0 900 

extract name= pad_sio2X0910" thickness material^ 'SiO' "2" mat occno= X val=0 910 

extract name= pad_sio2X0920" thickness material^ 'SiO -2" mat occno= X.val=0 .920 

extract name= pad_sio2X0930" thickness material= 'SiO "2" mat occno= X val=0 930 

extract name= pad_sio2X0940" thickness material= SiO' 2" mat occno= X val=0 940 

extract name= pad_sio2X0950" thickness material= SiO' "2" mat occno= X val=0 950 

extract name= pad_sio2X0960" thickness material^ 'SiO' "2" mat occno= X val=0 960 

extract name= pad_sio2X0970" thickness material^ 'SiO "2" mat occno= X val=0 970 

extract name= pad_sio2X0980" thickness material= 'SiO 2" mat occno= X val=0 980 

extract name= pad_sio2X0990" thickness material= 'SiO "2" mat occno= X val=0 990 

extract name= pad_sio2X1000" thickness material^ 'SiO' 2" mat occno= X val=l 000 

# horizontal bird's beak... 

extract name= pad_sio2Y0000" thickness material= 'SiO' "2" mat occno= Y val=0 000 

extract name= pad_sio2Y0025" thickness material= 'SiO "2" mat occno= Y val=0 025 

extract name- pad_sio2Y0050" thickness material= 'SiO "2" mat occno=: Y val=0 050 

extract name= pad_sio2Y0075" thickness material= 'SiO "2" mat occno= Y val=0 075 

extract name= pad_sio2Y0100" thickness material^ 'SiO' 2" mat occno= Y val=0 100 

extract name= pad_sio2Y0125" thickness material^ 'SiO' "2" mat occno= Y val=0 125 

extract name= pad_sio2Y0150" thickness material= 'SiO' "2" mat occno= Y val=0 150 

extract name= pad_sio2Y017S" thickness material^ 'SiO "2" mat occno= Y val=0 175 

extract name= pad_sio2Y0200" thickness material= 'SiO' "2" mat occno= Y val=0 200 

extract name= pad_sio2Y0225" thickness material= 'SiO "2" mat occno= Y val=0 225 

extract name= pad_sio2Y0250" thickness material= SiO' '2" mat occno= Y val=0 250 

Struct outf=filox9.str 

tonyplot -St filox9.str 

A. 1.1 Extract ion of stress 

This script file was used to extract the maximum amounts of normal stress presented in table 4.3 and 4.4. 
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# V d kunz 

# 05/12/2002 

# directory: 

#. .studeiits/vdk99r/thesis/filox/stress.in 
############################################################################## 

# simulation: 

# - load in file 

# - extract maximum stress 

# - done 

############################################################################## 

# let's start... 

go athena 

# extract directly... 

extract init infile="filox4_5_70.str" 

# extract stress... 

# nitride... 

extract name="max_stress_xSi3N4" 2d.max.conc impurity="Stress X" material="Si"3N"4" datafile="stress.txt" 

extract name="XstressX" x.pos datafile="stress.txt" 

extract name="XstressY" y.pos dataflle="stress.txt" 

extract name="max_stress_ySi3N4" 2d.max.conc impurity="Stress Y" material="Si"3N"4" datafile="stress.txt" 

extract name="YstressX" x.pos datafile="stress.txt" 

extract name="YstressY" y.pos datafile="stress.txt" 

# oxide... 

extract name="max_stress_xSi02" 2d.max.conc impurity="Stress X" material="SiO"2" datafile="stress.txt" 

extract name="XstressX" x.pos datafile="stress.txt" 

extract name="XstressY" y.pos datafile="stress.txt" 

extract name="raax_stress_ySi02" 2d.ma3c.conc impurity="Stress Y" material="SiO"2" datafile="stress.txt" 

extract name="YstressX" x.pos datafile="stress.txt" 

extract name="YstressY" y.pos datafile="stress.txt" 

# silicon... 

extract name="max_stress_xSi02" 2d.max.conc impurity="Stress X" material="silicon" datafile="stress.txt" 

extract name="XstressX" x.pos datafile="stress.txt" 

extract name="XstressY" y.pos datafile="stress.txt" 

extract name="max_stress_ySi02" 2d.max.conc impurity="Stress Y" material="silicon" datafile="stress.txt" 

extract name="YstressX" x.pos datafile="stress.txt" 

extract name="YstressY" y.pos datafile="stress.txt" 

# end 

A.2 FILOX device simulations wi th top insulator 

See section 4.6 for details. 

# file: thesis/filox/nitride/rampnitride.in 

# some variables... 

# 5 0 - > 20 i i in 

# 6 -> 5ma 
# 2 -> 3nm 

set padOxide = 50 

# deposited nitride thickness... 
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set nitrideTh =0.07 

# nitride etch rate... 

# 130nm -> 13 

# 70rmi -> 7 

# 40nm -> 4 

set nitrideEtch = 7 

# pillar height... 

# 230nm -> 21 

# 80nm -> 9.01 

set pillarHeight = 21 

go athena 

# define mash... 

line X location=0.8 spacing=0.02 

line X location=0.9 spacing=0.01 

line X location=l.l spaclng=0.01 

line X location=1.2 spacing=0.02 

line y location=0.0 spacing=0.01 

line y location=0.35 spacing=0.01 

# initialise the wafer... 

init silicon boron resistivity=0.75 orientation=100 

# oxide grid (initial and subsequent)... 

method gridinit.ox=0.005 grid.oxide=0.01 oxide.rel=0.02 

# grow pad oxide... 

diffuse time=50 temp=900 dryo2 pressure=l hcl.pc=3 

extract name="pad_sio2" thickness material="SiD~2" mat.occno=l x.val=0.5 

# deposit nitride... 

deposit nitride thickness=0.130 

# deposit Si02... 

deposit oxide thickness =0.05 

# etch oxide/nitride/oxide... 

etch oxide left pl.x=1.0 

etch nitride left pl.x=1.0 

etch oxide left pl.x=1.0 

tonyplot 

# etch 230 nm pillar... 

rate.etch machine=pillar2 silicon n.m rie isotropic=0.5 dir=10.00 chem=l div=0.1 

etch machine=pillar2 time=$"pillarHeight" minutes 

# strip resist... 

etch photores all 

tonyplot 

# stress reliefe oxide... 

diffuse time=$"padOxide" temp=900 dryo2 pressure=l hcl.pc=3 

extract name="pad_sio2" thickness material="SiO"2" mat.occno=l x.val=0.85 

tonyplot 

# deposit nitride and etch nitride fillet... 

deposit nitride thickness=$"nitrideTh" div=14 

rate.etch machine=fillet2 nitride n.m rie isotropic=l dir=10 chem=l div=0.1 

etch machine=fillet2 time=$"nitrideEtch" minutes 

tonyplot 
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# etch pad oxide... 

etch oxide dry thick=$"pad_sio2"/10000 

tonyplot 

# model parameter... 

material oxide vise.0=5.1 visc.E=3.48 weto2 

material nitride visc.0=2e3 vise.E=2.5625 

#FILOX... 

oxide stress.dep=t 

method viscous 

# stepl.... 

diffuse time=0.5 temp=1000 Heto2 

# FILOX thickness... 

extract name= 

# vertical birds beak 

FILOX thicknessl" thickness material="SiO"'2" mat.occno=l x.val=1.15 

extract name= pad_sio2X0910" thickness material= "SiO" "2" mat occno=: X val=0 850 

extract name= pad_sio2X0920" thickness material= "SiO -2" mat occno= X val=0 860 

extract name= pad_sio2X0930" thickness material= "SiO' "2" mat occno= X val=0 870 

extract name= pad_sio2X0940" thickness material= "SiO "2" mat occno= X val=0 880 

extract name= pad_sio2X0950" thickness material= "SiO "2" mat occno= X val=0 890 

extract name= pad_sio2X0900" thickness material= "SiO "2" mat occno= X val=0 900 

extract name= pad_sio2X0910" thickness material= "SiO -2" mat occno= X val=0 910 

extract name= pad_sio2X0920" thickness material= "SiO -2" mat occno= X val=0 920 

extract name= pad_sio2X0930" thickness material= "SiO "2" mat occno= X val=0 930 

extract name= pad_sio2X0940" thickness material= "SiO' -2" mat occno= X val=0 940 

extract name= pad_sio2X0950" thickness material= "SiO' "2" mat occno= X val=0 950 

extract name= pad_sio2X0960" thickness material= "SiO' "2" mat occno= X val=0 960 

extract name= pad_sio2X0970" thickness material= "SiO' "2" mat occno= X val=0 970 

extract name= pad_sio2X0980" thickness material= "SiO' "2" mat occno= X val=0 980 

extract name= pad_sio2X0990" thickness material= "SiO "2" mat occno= X val=0 990 

extract najne= pad_sio2X1000" thickness material= "SiO •2" mat occno= X val=l 000 

# horizontal bird's beak... 

extract name= pad_sio2Y0000" thickness material= "SiO 2" mat occno= y val=0 000 
extract name= pad_sio2Y0025" thickness material= "SiO' 2" mat occno= y val=0 025 
extract naine= pad_sio2Y0050" thickness material= "SiO' 2" mat occno= y val=0 050 
extract name= pad_sio2Y0075" thickness material= "SiO' 2" mat occno= y.val=0.075 

extract name= pad_sio2Y0100" thickness material= "SiO' 2" mat occno=: y val=0 100 
extract name= pad_sio2Y0125" thickness material= "SiO' "2" mat occno= y val=0 125 
extract name= pad_sio2Y0150" thickness material= "SiO "2" mat occno= y val=0 150 
extract name= pad_sio2Y0175" thickness material= "SiO "2" mat occno=: y val=0 175 
extract name= pad_sio2Y0200" thickness material= "SiO' -2" mat occno= y val=0 200 
extract name= pad_sio2Y0225" thickness material= "SiO "2" mat occno= y val=0 225 
extract name= pad_sio2Y0250" thickness material= "SiO' '2" mat occno= y val=0 250 
struct outf=filoxl.str 

#tonyplot -St filoxl.str 

# step2.... 

diffuse tirae=0.5 temp=1000 weto2 

# FILOX thickness... 

extract name="FILOX thickness2" thickness material="SiO"2" mat.occno=l x.val=1.15 

# vertical birds beak... 

extract name="pad_sio2X0910" thickness material="SiO"2" mat.occno=l x.val=0.850 

extract name="pad_sio2X0920" thickness material="SiO"2" mat.occno=l x.val=0.860 

extract name="pad_sio2X0930" thickness material="SiO"2" mat.occno=l x.val=0.870 

extract name="pad_sio2X0940" thickness material="SiO"2" mat.occno=l x.val=0.880 

extract name="pad_sio2X0950" thickness material="SiD"2" inat.occno=l x.val=0.890 

extract name="pad_sio2X0900" thickness material="SiO"2" mat.occno=l x.val=0.900 

extract name="pad_sio2X0910" thickness material="SiO"2" mat.occno=l x.val=0.910 

extract name="pad_sio2X0920" thickness material="SiO"2" mat.occno=l x.val=0.920 
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extract name= "pad_sio2X0930" thickness material= SiO' "2" mat occno= X val=0 930 

extract name= "pad_sio2X0940" thickness material= 'SiO' '2" mat occno= X val=0 940 

extract name= "pad_sio2X0950" thickness material= 'SiO' "2" mat occno= X val=0 950 

extract name= "pad_sio2X0960" thickness material= 'SiO' "2" mat occno= X val=0 960 

extract name= "pad_sio2X0970" thickness material= 'SiO' "2" mat occno= X val=0 970 

extract name= "pad_sio2X0980" thickness material= 'SiO 2" mat occno= X val=0 980 

extract name= "pad_sio2X0990" thickness material= SiO' "2" mat occno= X val=0 990 

extract naine= "pad_sio2X1000" thickness material= SiO' -2" mat occno= X.val=l 000 

# horizontal bird's beak... 

extract name= "pad_sio2Y0000" thickness material= 'SiO' 2" mat occno= y val=0 000 
extract name= "pad_sio2Y0025" thickness material= 'SiO' "2" mat occno= y val=0 025 
extract name= "pad_sio2Y0050" thickness material= 'SiO' -2" mat occno= y val=0 050 
extract name= "pad_sio2Y0075" thickness material= 'SiO -2" mat occno= y val=0 075 
extract name= "pad_sio2Y0100" thickness material= 'SiO •2" mat occno= y val=0 100 
extract name= "pad_sio2Y0125" thickness material= SiO' "2" mat occno= y val=0 125 
extract name= "pad_sio2Y0150" thickness material= SiO' "2" mat occno= y val=0 150 
extract name= "pad_sio2Y0175" thickness material= SiO' 2" mat occno= y.val=0 175 

extract name= "pad_sio2Y0200" thickness material= 'SiO' 2" mat occno= y.val=0.200 

extract name= "pad_sio2Y0225" thickness material= 'SiO' 2" mat occno= y val=0 225 
extract name= "pad_sio2Y0250" thickness material= 'SiO' "2" mat occno= y val=0 250 
struct outf=filox2.str 

ttonyplot -St filox2.str 

# step3.... 

diffuse time=l temp=1000 weto2 

# FILOX thickness... 

extract name= 

# vertical birds beak 

FILOX thicknessS" thickness material="SiO"2" mat.occno=l x.val=i.l5 

extract name= pad_sio2X0910' thickness material= 'SiO' 2" mat occno= X .val=0 .850 

extract name= pad_sio2X0920' thickness material= 'SiO' 2" mat occno= X .val=0 .860 

extract name= pad_sio2X0930' thickness material= SiO" 2" mat occno= X val=0 870 

extract name= pad_sio2X0940' thickness material^ SiO" 2" mat occno=: X val=0 880 

extract name= pad_sio2X0950' thickness material= SiO" 2" mat occno= X val=0 890 

extract name= pad_sio2X0900' thickness material= 'SiO' 2" mat occno= X val=0 900 

extract name= pad_sio2X0910' thickness material= 'SiO' 2" mat occno= X val=0 910 

extract name= pad_sio2X0920' thickness material^ 'SiO-2" mat occno= X val=0 920 

extract name= pad_sio2X0930' thickness material= 'SiO' 2" mat occno= X val=0 930 

extract name= pad_sio2X0940' thickness material^ 'SiO' 2" mat occno= X Tal=0 940 

extract name= pad_sio2X0950' thickness material^ SiO" 2" mat occno= X val=0 950 

extract name= pad_sio2X0960' thickness material^ SiO" 2" mat occno= X val=0 960 

extract name= pad_sio2X0970' thickness material= •SiO" 2" mat occno= X val=0 970 

extract name= pad_sio2X0980' thickness material= 'SiO' 2" mat occno= X val=0 980 

extract name= pad_sio2X0990' thickness material= 'SiO' 2" mat occno= X val=0 990 

extract name= pad_sio2X1000' thickness material^ 'SiO' 2" mat occno= X val=l 000 

# horizontal bird's beak... 

extract name= pad_sio2Y0000' thickness material= 'SiO' 2" mat occno= y val=0 000 
extract name= pad_sio2Y0025' thickness material^ SiO" 2" mat occno= y val=0 025 
extract name= pad_sio2Y0050' thickness material= SiO" 2" mat occno= y val=0 050 
extract name= pad_sio2Y0075' thickness material= SiO- 2" mat occno= y val=0 075 
extract name= pad_sio2Y0100' thickness material= SiO' 2" mat occno= y val=0 100 
extract name= pad_sio2Y0125' thickness material= SiO" 2" mat occno= y val=0 125 
extract name= pad_sio2Y0150' thickness material= 'SiO-2" mat occno= y val=0 150 
extract name= pad_sio2Y0175' thickness material^ 'SiO' 2" mat occno= y val=0 175 
extract name= pad_sio2Y0200' thickness material^ 'SiO-2" mat occno= y val=0 200 
extract name= pad_sio2Y0225' thickness material^ SiO" 2" mat occno=: y-val=0 225 
extract name= pad_sio2Y0250' thickness material= SiO" 2" mat occno= y-val=0 250 
struct outf=filox3.str 

#tonyplot -st filoxS.str 

# step4.... 

diffuse time=l temp=1000 weto2 
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# FILDX thickness... 

extract iiame="FILOX thiclmess4" thickness material="Si0'2" mat.occno=l x.val=1.15 

# vertical birds beak... 

extract name= "pad_sio2X0910" thickness material= SiO 2" mat occno= X val=0 850 

extract name= "pad_sio2X0920" thickness material^ SiO' -2" mat occno= X val=0 860 

extract nam8= "pad_sio2X0930" thickness material= SiO' -2" mat occno= X val=0 870 

extract name= "pad_sio2X0940" thickness material= SiO' "2" mat occno= X val=0 880 

extract name= "pad_sio2X0950" thickness material^ SiO' '2" mat occno= X val=0 890 

extract name= "pad_sio2X0900" thickness material^ SiO 2" mat occno= X val=0 900 

extract name= "pad_sio2X0910" thickness material= SiO' 2" mat occno= X vai=0 910 

extract name= "pad_sio2X0920" thickness material= SiO' 2" mat occno= X val=0 920 

extract name= "pad_sio2X0930" thickness material^ SiO' -2" mat occno= X val=0 930 

extract name= "pad_sio2X0940" thickness material^ SiO' -2" mat occno= X.val=0 940 

extract name= "pad_sio2X0950" thickness material= SiO' 2" mat occno= X val=0 950 

extract name= "pad_sio2X0960" thickness material= SiO' "2" mat occno= X val=0 960 

extract naine= "pad_sio2X0970" thickness material= SiO' -2" mat occno= X val=0 970 

extract name= "pad_sio2X0980" thickness material= SiO' '2" mat occno= X val=0 980 

extract name= "pad_sio2X0990" thickness material= SiO' '2" mat occno=: X val=0 990 

extract name= "pad_sio2X1000" thickness material= SiO' 2" mat occno= X val=l 000 

# horizontal bird's beak... 

extract name= "pad_sio2Y0000" thickness material^ SiO' "2" mat occno= y val=0 000 
extract najne= "pad_sio2Y0025" thickness material= SiO' 2" mat occno= y val=0 025 
extract name= "pad_sio2Y0050" thickness material= SiO' '2" mat occno= y val=0 050 
extract name= "pad_sio2Y0075" thickness material^ SiO' -2" mat occno= y val=0 075 
extract name= "pad_sio2Y0100" thickness material= SiO' 2" mat occno= y val=0 100 
extract name= "pad_sio2Y0125" thickness material= SiO' 2" mat occno= y val=0 125 
extract name= "pad_sio2Y0150" thickness material= SiO' 2" mat occno= y val=0 150 
extract name= "pad_sio2Y0175" thickness material= SiO' '2" mat occno= y.val=0 175 

extract name= "pad_sio2Y0200" thickness material^ SiO' '2" mat occno= y val=0 200 
extract name= "pad_sio2Y0225" thickness material^ SiO' '2" mat occno= y val=0 225 
extract name= "pad_sio2Y0250" thickness material= SiO' 2" mat occno= y val=0 250 
struct outf=filox4.str 

#tonyplot -St filox4.str 

# step5.... 

diffuse time=l temp=1000 weto2 

# FILOX thickness... 

extract naine="FILOX thicknessS" thickness material="SiO' 

# vertical birds beak... 

extract name="pad_sio2X0910" thickness material="SiO"2" 

extract name="pad_sio2X0920" thickness material="S10"2" 

extract name="pad_sio2X0930" thickness material="SiO"2" 

extract naine="pad_sio2X0940" thickness material="SiO"2" 

extract name="pad_sio2X0950" thickness material="SiQ"2" 

extract name="pad_sio2X0900" thickness material="SiO"2" 

extract najiie="pad_sio2X0910" thickness material="Si0'2" 

extract naine="pad_sio2X0920" thickness material="SiO"2" 

extract name="pad_sio2X0930" thickness material="SiO"2" 

extract name="pad_sio2X0940" thickness material="SiO"2" 

extract name="pad_sio2X0950" thickness inaterial="SiO"2" 

extract name="pad_sio2X0960" thickness material="SiO"2" 

extract name="pad_sio2X0970" thickness material="SiO"2" 

extract name="pad_sio2X0980" thickness material="SiO"2" 

extract naine="pad_sio2X0990" thickness material="SiO"2" 

extract name="pad_sio2X1000" thickness material="SiO"2" 

# horizontal bird's beak... 

extract naiiie="pad_sio2Y0000" thickness material="SiD"2" 

extract na3ne="pad_sio2Y0025" thickness material="SiO"2" 

extract najne="pad_sio2Y0050" thickness inaterial="SiO~2" 

extract name="pad_sio2Y0075" thickness material="SiO"2" 

extract name="pad_sio2Y0100" thickness material="SiO"2" 
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mat 
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.occno 
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.occno: 
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. occno: 

. occno: 
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=1 x.val: 
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mat.occno=l y.val=0.000 

mat.occno=l y.val=0.025 

mat.occno=l y.val=0.050 

mat.occno=l y.val=0.075 

mat.occno=l y.val=0.100 
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extract name="pad_sio2Y0125" thickness material="SiO"2" mat.occno=l y.val=0.125 

extract name="pad_sio2Y0150" thickness material="SiO"2" mat.occuo=l y.val=0.150 

extract name="pad_sio2Y0175" thickness material="SiO"2" mat.occno=l y.val=0.175 

extract name="pad_sio2Y0200" thickness material="SiQ"2" mat.occno=l y.val=0.200 

extract naine="pad_sio2Y0225" thickness material="SiO"2" iuat.occno=l y.val=0.225 

extract uame="pad_sio2Y0250" thickness material="SiO"2" mat.occno=i y.val=0.250 

struct outf=filox5.str 

#tonyplot -St filoxB.str 

# step6.... 

diffuse time=l temp=1000 weto2 

# FILOX thickness... 

extract name="FILOX thickness6" thickness material="SiO"2" mat.occno=l x.val=1.15 

# vertical birds beak... 

extract name= pad_sio2X0910" thickness material= SiCr 2" mat occno= x val=0 850 

extract name= pad_sio2X0920" thickness material= SiO" 2" mat occno= X val=0 860 

extract name= pad_sio2X0930" thickness material^ SiO" 2" mat occno= X.val=0 870 

extract name= pad_sio2X0940" thickness material= SiO" 2" mat occno= X val=0 880 

extract name= pad_sio2X0950" thickness material^ SiO" 2" mat occno= X val=0 890 

extract name= pad_sio2X0900" thickness material= SiQ- 2" mat occno= X val=0 900 

extract name= pad_sio2X0910" thickness material= SiO" 2" mat occno= X val=0 910 

extract name= pad_sio2X0920" thickness material= SiO" 2" mat occno= X val=0 920 

extract name= pad_sio2X0930" thickness material= SiO" 2" mat occno= X val=0 930 

extract name= pad_sio2X0940" thickness material= SiQ- 2" mat occno= X.val=0 940 

extract name= pad_sio2X0950" thickness material^ SiO" 2" mat occno= X val=0 950 

extract name= pad_sio2X0960" thickness material= SiO" 2" mat occno= X val=0 960 

extract name= pad_sio2X0970" thickness material^ SiQ- 2" mat occno= X val=0 970 

extract name= pad_sio2X0980" thickness material= SiO" 2" mat occno= X val=0 980 

extract name= pad_sio2X0990" thickness material= SiO" 2" mat occno= X val=0 990 

extract name= pad_sio2X1000" thickness material= SiQ- 2" mat occno= X val=l 000 

# horizontal bird's beak... 

extract name= pad_sio2Y0000" thickness material= SiO" 2" mat occno= y val=0 000 

extract name= pad_sio2Y0025" thickness material= SiQ- 2" mat occno= y val=0 025 

extract name= pad_sio2Y0050" thickness material= SiQ- 2" mat occno= y val=0 050 

extract name= pad_sio2Y0075" thickness material= SiQ- 2" mat occno= y val=0 075 

extract name= pad_sio2Y0100" thickness material^ SiO' 2" mat occno=: y val=0 100 

extract name= pad_sio2Y0125" thickness material= SiQ- 2" mat occno= y val=0 125 

extract name= pad_sio2Y0150" thickness material= SiQ- 2" mat occno= y val=0 150 

extract name= pad_sio2Y0175" thickness material= SiQ- 2" mat occno= y val=0 175 

extract name= pad_sio2Y0200" thickness material= SiQ- 2" mat occno= y val=0 200 

extract name= pad_sio2Y0225" thickness material^ SiQ- 2" mat occno= y val=0 225 

extract name= pad_sio2Y0250" thickness material= SiQ- 2" mat occno= y val=0 250 

struct outf=filox6.str 

#tonyplot -St filox6.str 

# step7.... 

diffuse time=2 temp=1000 weto2 

# FILOX thickness... 

extract name="FILOX thickness?" thickness material="SiO' 

# vertical birds beak... 

extract name="pad_sio2X09i0" thickness material="Si0'2" 

extract name="pad_sio2X0920" thickness materlal="SiO"'2" 

extract name="pad_sio2X0930" thickness material="SiO"2" 

extract name="pad_sio2X0940" thickness material="SiO~2" 

extract naine="pad_sio2X0950" thickness material="SiO"2" 

extract name="pad_sio2X0900" thickness material="SiO"2" 

extract name="pad_sio2X0910" thickness material="SiO"2" 

extract name="pad_sio2X0920" thickness material="SiO"2" 

extract naine="pad_sio2X0930" thickness material="SiO"2" 

extract name="pad_sio2X0940" thickness material="SiO"2" 

extract name="pad_sio2X0950" thickness material="SiO"2" 
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extract name= "pad_sio2X0960" thickness material= SiO" "2" mat occno= 1 X val=0 960 

extract name= "pad_sio2X0970" thickness material= SiO' "2" mat occno= 1 X val=0 970 

extract name= "pad_sio2X0980" thickness material= SiO' 2" mat occno= 1 X val=0 980 

extract name= "pad_sio2X0990" thickness material^ SiO" "2" mat occno= 1 X val=0 990 

extract name= "pad_sio2X1000" thickness material= SiO' '2" mat occno= 1 X val=l 000 

# horizontal bird's beak... 

extract name= "pad_sio2Y0000" thickness material= SiO' "2" mat occno= 1 y val=0 000 
extract name= "pad_sio2Y0025" thickness material= SiO' -2" mat occno= 1 y.val=0.025 

extract name= "pad_sio2Y0050" thickness material= SiO' "2" mat occno= 1 y.val=0.050 

extract najne= "pad_sio2Y0075" thickness material= SiO' "2" mat occno= 1 y val=0 075 
extract name= "pad_sio2Y0100" thickness material= SiO' 2" mat occno= 1 y val=0 100 
extract name= "pad_sio2Y0125" thickness material= SiO' 2" mat occno= 1 y val=0 125 
extract name= "pad_sio2Y0150" thickness material= SiO' '2" mat occno= 1 y val=0 150 
extract name= "pad_sio2Y0175" thickness material= SiO' '2" mat occno= 1 y val=0 175 
extract name= "pad_sio2Y0200" thickness material= SiO' "2" mat occno= 1 y val=0 200 
extract name= "pad_sio2Y0225" thickness material= SiO' '2" mat occno= 1 y val=0 225 
extract name= "pad_sio2Y0250" thickness material= SiO' '2" mat occno= 1 y val=0 250 
struct outf=filox7.str 

#tonyplot -St filox7.str 

#step8.... 

diffuse time=3 temp=1000 weto2 

# FILOX thickness... 

extract name="FILOX thicknessS" thickness material="SiO"2" mat.occno=l x.val=1.15 

# vertical birds beak... 

extract name="pad_sio2X0910 

extract name="pad_sio2X0920 

extract naine="pad_sio2X0930 

extract name="pad_sio2X0940 

extract name="pad_sio2X0950 

extract name="pad_sio2X0900 

extract naine="pad_sio2X0910 

extract name="pad_sio2X0920 

extract name="pad_sio2X0930 

extract najne="pad_sio2X0940 

extract naine="pad_sio2X0950 

extract name="pad_sio2X0960 

extract name="pad_sio2X0970 

extract na]ne="pad_sio2X0980 

extract name="pad_sio2X0990 

extract name="pad_sio2X1000 

# horizontal bird's beak... 

extract name="pad_sio2Y0000 

extract name="pad_sio2Y0025 

extract name="pad_sio2Y0050 

extract name="pad_sio2Y0075 

extract naine="pad_sio2Y0100 

extract naine="pad_sio2Y0125 

extract name="pad_sio2Y0150 

extract naine="pad_sio2Y0175 

extract name="pad_sio2Y0200 

extract name="pad_sio2Y0225 

extract name="pad_sio2Y0250 

struct outf=filox8.str 

#tonyplot -St filoxB.str 

thickness material= 

thickness material= 

thickness material^ 
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thickness material= 
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y.val= 

y. val= 

y. val= 

y. val= 

y.val= 

y.val= 

y.val= 

y.val= 

y. val= 
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0 . 2 0 0 
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0.250 

#step9.... 

diffuse time=4 temp=1000 »eto2 

# FILOX thickness... 

extract name="FILOX thickness9" thickness material="SiO"2" mat.occno=l x.val=1.15 

# vertical birds beak... 
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extract name= pad_sio2X0910" thickness material= SiO •2 mat occno= X val=0 850 

extract name= pad_sio2X0920" thickness material= SiO "2 mat occno= X val=0 860 

extract name= pad_sio2X0930" thickness material= SiO -2 mat occno=: X val=0 870 

extract name= pad_sio2X0940" thickness material= SiO -2 mat occno= X val=0 880 

extract name= pad_sio2X0950" thickness material= SiO •2 mat occno= X val=0 890 

extract name= pad_sio2X0900" thickness material= SiO •2 mat occno= X val=0 900 

extract name= pad_sio2X0910" thickness material= SiO "2 mat occno= X val=0 910 

extract name= pad_sio2X0920" thickness material= SiO •2 mat occno= X val=0 920 

extract name= pad_sio2X0930" thickness material= SiO "2 mat occno= X val=0 930 

extract name= pad_sio2X0940" thickness material= SiO 2 mat occno= X val=0 940 

extract name= pad_sio2X0950" thickness material= SiO 2 mat occno= X val=0 950 

extract name= pad_sio2X0960" thickness material= SiO -2 mat occno= X val=0 960 

extract name= pad_sio2X0970" thickness material= SiO "2 mat occno= X val=0 970 

extract name= pad_sio2X0980" thickness material= SiO •2 mat occno=: X val=0 980 

extract name= pad_sio2X0990" thickness material= SiO '2 mat occno= X val=0 990 

extract name= pad_sio2X1000" thickness material= SiO •2 mat occno= X val=l 000 

# horizontal bird's beak... 

extract name= pad_sio2Y0000" thickness material= SiO •2 mat occno= y val=0 000 
extract name= pad_sio2Y0025" thickness material= SiO' 2 mat occno= y val=0 025 
extract name= pad_sio2Y0050" thickness material= SiO 2 mat occno= y val=0 050 
extract name= pad_sio2Y0075" thickness material= SiO "2 mat occno= y val=0 075 
extract name= pad_sio2Y0100" thickness material= SiO "2 mat occno= y val=0 100 
extract name= pad_sio2Y0i25" thickness material= SiO 2 mat occno=: y val=0 125 
extract name= pad_sio2Y0150" thickness material^ SiO' 2 mat occno= y val=0 150 
extract name= pad_sio2Y0175" thickness material= SiO' 2 mat occno= y val=0 175 
extract name= pad_sio2Y0200" thickness material= SiO '2 mat occno= y val=0 200 
extract name= pad_sio2Y0225" thickness material= SiO "2 mat occno= y val=0 225 
extract name= pad_si O2Y0250" thickness material^ SiO 2 mat occno= y val=0 250 
struct outf=filox9.str 

tonyplot -St filox9.str 

A.3 C V device/process s imulat ions - calibration 

See section 5.2.3 for details. 

# V d kunz 

# 06/01 

# directory: 

#. .students/vdk99r/thesis/caps/adjust/topcap4iiJn.in 

# comment: 

# - this is the planar control device for edjustement of the cv's.... 

# - silicon/oxide/polysilicon/metal 
############################################################################## 

# variables.. . 

# for gate oxide deposition... 

#set oxThick=0.0048 

# oxidation time for gate oxide... 

# 4.8nm -> 50 

# 3.9nm -> 33 

set oxThick=33 

# fixed charge (shifts the threshold voltage to more negative values) max at 5el2. 

# good agreement with 7el0 

set fixedCharge=0 

# frequency... 

# IMHz -> le6 

set frequency=le6 
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# let's start... 

go athena 

# mesh def... 

# for half of the structure only... 

# define the mesh... 

line X location=0.0 spacing=0.25 

line X location=1.0 spacing=0.25 

line y location=0.0 spacing=0.01 

line y location=2.0 spacing=0.1 

# define the wafer... 

initialize silicon boron resistivity=0.75 orientation=100 two.d 

# gate oxidation... 

#deposit oxide thickness=$"oxThick" 

diffuse time=$"oxThick" temp=800 dryo2 pressure=l 

extract name="gate_sio2" thickness material="SiO~2" mat.occno=l x.val=0.5 

extract name = "top_sio2" thickness material="SiO"2" mat.occno=l x.val=0.5 

# deposit some polysi... 
deposit polysilicon thick=0.2 phosphorus conc=5.0el8 divisions=l 

# metal deposition... 

deposit aluminum thickness=0.2 

# define the electrical contact ... 

electrode name=gate x=0.5 y=-0.3 

electrode name=substrate backside 

# threshold voltage... 

extract name="thresholdVt" Idvt ntype x.val=0.5 datafile="thresh.dat" 

struct outfile=cap.str 

tonyplot -St cap.str 

########################################################################### 

go atlas 

mesh infile=cap.str 

interface qf=$"fixedCharge" 

# models and methods... 

#models mos print 

models cvt consrh fermi 

method newton carriers=2 

# hf. . . 

solve init 

solve prev 

#ramp up the gate voltage first... 

solve vgate=0.0 vstep=0.25 vfinal=4.0 name=gate 

log outf=cap_hf.log master 

solve vstep=-0.1 vfinal=-4.0 name=gate ac freq=$"frequency" anajne=gate 

log outfile=tmp 

tonyplot -St cap_hf.log -set hf.set 
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# If... 

#solve init 

#solve prev 

#ramp up the gate voltage first... 

#solve vgate=0.0 vstep=0.25 vfinal=4.0 name=gate 

#log outf=cap_lf.log master 

#solve vstep=-0.1 vfinal=-4.0 name=gate ac freq=le-4 aiiame=gate 

#log outfile=tmp 

# cv... 

#tonyplot -overlay cap_hf.log cap_lf.log -set hf.set 

# conductivity 

#tonyplot cap_hf.log -set conduct.set 

quit 

A.4 CV device/process s imulat ions - control 

See section 5.4 for details. 

# v d kunz 

# 06/01 

# directory: 

#..students/vdk99r/thesis/caps/control/pillcap4nm.in 

# comment: 

# - this is the pillar device.... 

# - silicon/oxide/polysilicon/metal 
############################################################################## 

# variables. . . 

set padOxide = 50 

# etch time for pillar etch... 

# 305nm -> 27 

# 400nm -> 37 

set pillarHeight = 37 

# fixed charge (shifts the threshold voltage to more negative values) max at 5el2. 

# good agreement with 7el0 

set fixedCharge=7el0 

# let's start. . . 

go athena 

# mesh def... 

# for half of the structure only... 

# define the mesh... 

line X location=0.0 spacing=0.2 

line X location=1.4 spacing=0.02 

line X location=1.5 spacing=0.02 

line X location=1.6 spacing=0.02 

line X location=2.25 spacing=0.2 

# draw linear scale until... 

line y location=0.0 spacing=0.02 

line y location=0.45 spacing=0.02 

line y location=2.5 spacing=0.2 

# define the wafer... 

# initialize mesh(p-type substrate)... 

initialize silicon boron resistivity=0.75 orientation=100 two.d 
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# first the photoresist... 

deposit photores thick=0.i div=5 

etch photores left pl.x=1.500 

# pillar etch... 

rate.etch machine=pillar2 silicon n.m rie isotropic=0.5 dir=10.00 chem=l div=0.1 

etch machine=pillar2 time=$"pillarHeight" minutes 

# strip resist... 

etch photores all 

# etch off top peak (top 20mn only)... 

etch silicon above pl.y=0.020 

# stress relieve oxide... 

diffuse time=$"padOxide" temp=900 dryo2 pressure=l hcl.pc=3 

extract name="pad_sio2" thickness material="SiO~2" mat.occno=l x.val=1.15 

etch oxide all 

# gate oxidation... 

diffuse time=50 temp=800 dryo2 pressure=l 

extract name="gate_sio2_lat" thickness material="SiO"2" mat.occno=l x.val=0.1 

extract name="gate_sio2_vert" thickness material="SiO"2" mat.occno=l y.val=0.2 

# deposit some polysi... 

deposit polysilicon thick=0.2 phosphorus conc=5.0el8 divisions=2 

# deposit alu... 

deposit aluminum thickness=0.3 division=5 

# mirror... 

#structure mirror right 

# define the electrical contact ... 

electrode name=gate x=0.5 y=-0.1 

electrode name=substrate backside 

# threshold voltage... 

extract name="thresholdVt" Idvt ntype x.val=2.0 datafile="thresh.dat" 

struct outfile=cap.str 

tonyplot -St cap.str 

go atlas 

########################################################################### 

mesh infile=cap.str 

interface qf=$"fixedCharge" 

# models and methods... 

models mos srh print 

method newton carriers=2 

# hf... 

solve init 

solve prev 

#ramp up the gate voltage first... 

solve vgate=0.0 vstep=0.25 vfinal=4.0 name=gate 

log outf=cap_hf.log master 

solve vstep=-0.1 vfinal=-4.0 name=gate ac freq=le6 aname=gate 

log outfile=tmp 

tonyplot cap_hf•log -set hf.set 
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# If... 

#solve init 

#solve prev 

#ramp up the gate voltage first... 

#solve vgate=0.0 vstep=0.25 vfinal=4.0 name=gate 

#log outf=cap_lf.log master 

#solve vstep=-0.1 vfinal=-4.0 naine=gate ac freq=le-4 aname=gate 

#log outfile=tmp 

# cv... 

#tonyplot -overlay cap_hf.log cap_lf.log -set hf.set 

# conductivity 

#tonyplot cap_hf.log -set conduct.set 

A.5 CV device/process s imulat ions - ni t r ide top 

See section 5.4 for details. 

# v d kunz 

# 06/01 

# directory: 

#..students/vdk99r/thesis/caps/nitridetop/pillinscap4nm.in 
############################################################################## 

# comment: 

# - this is the control device.... 

# - silicon/oxide/polysilicon 

# variables... 

set padOxide = 50 

set nitrideXhick = 0.150 

set pad0xide2 = 0.063 

# etch time for pillar etch... 

# 305nm -> 27 

# 320mn -> 28 

set pillarHeight = 28 

# fixed charge (shifts the threshold voltage to more negative values) max at 5el2... 

# good agreement with 7el0 

set fixedCharge=7el0 

# let's start... 

go athena 

# mesh def... 

# for half of the structure only... 

# define the mesh... 

line X location=0.0 spacing=0.2 

line X location=1.2 spacing=0.02 

line X location=1.5 spacing=0.02 

line X location=1.6 spacing=0.2 

line X location=2.2 spacing=0.2 

# draw linear scale until. 

line y location=0.0 spacing=0.02 

line y location=0.38 spacing=0.02 

line y location=2.5 spacing=0.1 
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# define the wafer... 

# initialize mesh(p-type substrate)... 

initialize silicon boron resistivity=0.75 orientation=100 two.d 

# grow pad oxide... 

diffuse tijne=50 temp=900 dryo2 pressure=l hcl.pc=3 

extract name="pad_8io2" thickness material="SiO"2" mat.occno=l x.val=0.5 

# deposit nitride... 

deposit nitride thickness=$"nitrideThick" 

# deposit Si02... 

deposit oxide thickness = $"padDxide2" 

# etch oxide/nitride/oxide... 

etch oxide left pl.x=1.5 

etch nitride left pl.x=1.5 

etch oxide left pl.x=1.5 

# pillar etch... 

rate.etch machine=pillar2 silicon n.m rie isotropic=0.5 dir=10.00 chem=l div=0.1 

etch machine=pillar2 time=$"pillarHeight" minutes 

tonyplot 

# stress reliefe oxide... 

diffuse time=$"padOxide" temp-900 dryo2 pressure=l hcl.pc=3 

extract naine="pad_sio2" thickness material="SiD"2" mat.occno=l x.val=1.15 

etch oxide left pl.x=1.52 

etch nitride left pl.x=1.52 

tonyplot 

# gate oxidation... 

diffuse time=50 temp=800 dryo2 pressure=l 

extract naine="gate_sio2_lat" thickness material="SiO"2" mat.occno=l x.val=0.1 

extract name="gate_sio2_vert" thickness material="SiO"2" mat.occno=l y.val=0.2 

# deposit some polysi... 

deposit polysilicon thick=0.2 phosphorus conc=5.0el8 divisions=2 

# deposi t aluminum... 

deposit aluminum thickness=0.3 division=5 

# mirror... 

#structure mirror right 

# define the electrical contact ... 

electrode name=gate x=0.5 y=-0.1 

electrode najne=substrate backside 

# threshold voltage... 

extract name="thresholdVt" Idvt ntype x.val=2.0 datafile="thresh.dat" 

struct outfile=cap.str 

tonyplot -St cap.str 

########################################################################### 

go atlas 

########################################################################### 

mesh infile=cap.str 

interface qf=$"fixedCharge" 
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# models and methods... 

models mos srh print 

method neuton carriers=2 

# hf... 
solve init 

solve prev 

#ramp up the gate voltage first... 

solve vgate=0.0 vstep=0.25 vfinal=4.0 name=gate 

log outf=cap_hf.log master 

solve vstep=-0.1 vfinal=-4.0 name=gate ac freq=le6 aname=gate 

log outfile=tmp 

tonyplot -St cap_hf.log -set hf.set 

# If... 

#solve init 

#solve prev 

#ramp up the gate voltage first... 

#solve vgate=0.0 vstep=0.25 vfinal=4.0 name=gate 

#log outf=cap_lf.log master 

#solve vstep=-0.1 vfinal=-4.0 name=gate ac freq=le-4 aname=gate 

#log outfil8=tmp 

# cv.. . 

#tonyplot -overlay cap_hf.log cap_lf.log -set hf.set 

# conductivity 

#tonyplot cap_hf.log -set conduct.set 

quit 

A.6 CV device/process simulat ions - FILOX 

See section 5.4 for details. 

# v d kunz 

# 06/01 

# directory: 

#..students/vdk99r/thesis/caps/filox/pillinscap4nm.in 
############################################################################## 

# comment: 

# - this is the control device.... 

# - silicon/oxide/top insulator/filox/polysilicon/al 
############################################################################## 

# variables.. . 

set padOxide = 50 

set nitrideThick = 0.146 

set pad0xide2 = 0.064 

# etch time for pillar etch... 

# 305nm -> 27 

# 320nm -> 28 

# 460nm -> 40 

set pillarHeight = 40 

# fixed charge (shifts the threshold voltage to more negative values) max at 5el2... 

# good agreement with 7el0 

set fixedCharge=7elO 
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# let's start... 

go athena 

# mesh def,.. 

# for half of the structure only... 

# define the mesh... 

line X location=0.0 spacing=0.2 

line X location=1.2 spacing=0.02 

line X location=1.5 spacing=0.02 

line X location=1.6 spacing=0.02 

line X location=2.25 spacing=0.2 

# draw linear scale until... 

line y location=0.0 spacing=0.02 

line y location=0.5 spacing=0.02 

line y location=2.0 spacing=0.1 

# define the wafer... 

# initialise mesh (p-type substrate)... 

initialize silicon boron resistivity=0.75 orientation=100 two.d 

# grow pad oxide... 

diffuse time=50 temp=900 dryo2 pressure=l hcl.pc=3 

extract name="pad_sio2" thickness material="SiO"2" mat.occno=l x.val=0.5 

# deposit nitride... 

deposit nitride thickness = $"nitrideThick" 

# deposit Si02... 

deposit oxide thickness = $"padOxide2" 

# etch oxide/nitride/oxide... 

etch oxide left pl.x=1.5 

etch nitride left pl.x=1.5 

etch oxide left pl.x=1.5 

# pillar etch... 

rate.etch machine=pillar2 silicon n.m rie isotropic=0.5 dir=10.00 chem=l div=0.1 

etch machine=pillar2 time=$"pillarHeight" minutes 

# stress reliefe oxide... 

diffuse time=$"padOxide" temp=900 dryo2 pressure=l hcl.pc=3 

extract name="pad_sio2" thickness material="SiO"2" mat.occno=l x.val=1.15 

# deposit nitride and etch nitride fillet... 

deposit nitride thickness=0.07 div=14 

rate.etch machine=fillet2 nitride n.m rie isotropic=l dir=10 chem=l div=0.1 

etch machine=fillet2 time=7 minutes 

# etch off pad oxide... 

etch dry oxide thick = $"pad_sio2"/10000 

# model parameter... 

material oxide vise.0=5.1 vise.E=3.48 weto2 

material nitride vise.0=2e3 vise.E=2.5625 

#FILOX... 

oxide stress.dep=t 

method viscous 

diffuse time=10.5 temp=1000 weto2 

# FILOX thickness... 

extract najiie="FILOX thickness" thickness material="SiO"2" mat.occno=l x.val=0.1 

extract name="FILOX thickness" thickness material="SiO"2" mat.occno=l y.val=0.15 
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etch nitride left pl.x=1.5 

rate.etch machine=wetEtcher wet.etch oxide n.m isotropic=1.0 

etch machine=wetEtcher time=20 min 

extract name="FILOX thickness after wet etch" thickness material="SiO"2" mat.occno=l x.val=0.1 

extract name="FILOX thickness after wet etch" thickness material="SiO"2" mat.occno=l y.val=0.15 

tonyplot 

# gate oxidation... 

diffuse time=50 temp=800 dryo2 pressure=l 

extract name="gate_sio2" thickness material="SiO"2" mat.occno=l x.val 

extract name = "Filox thickness after gate oxidation" thickness inaterial="SiO"2" mat.occno=l x.val=0.1 

extract name = "Filox thickness after gate oxidation" thickness material="Si0'2" mat.occno=l y.val=0.15 

# deposit some polysi... 

deposit polysilicon thick=0.2 phosphorus conc=5.0el8 dlvisions=5 

# deposit aluminum... 

deposit aluminum thickness=0.3 division=5 

# mirror... 

#structure mirror right 

# define the electrical contact ... 

electrode name=gate x=0.5 y=-0.1 

electrode name=substrate backside 

# threshold voltage... 

extract name="thresholdVt" Idvt ntype x.val=2.0 datafile="thresh.dat" 

struct outfile=cap.str 

tonyplot -St cap.str 

########################################################################### 

go atlas 

########################################################################### 

mesh infile=cap.str 

interface qf=$"fixedCharge" 

# models and methods... 

models mos srh print 

method newton carriers=2 

# hf... 

solve init 

solve prev 

#ramp up the gate voltage first... 

solve vgate=0.0 vstep=0.25 vfinal=4.0 name=gate 

log outf=cap_hf.log master 

solve vstep=-0.1 vfinal=-4.0 name=gate ac freq=le6 aname=gate 

log outfile=tmp 

tonyplot cap_hf.log -set hf.set 

# If... 

#solve init 

#solve prev 
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tramp up the gate voltage first... 

#solve vgate=0.0 vstep=0.25 vfinal=4.0 name=gate 

#log outf=cap_lf.log master 

#solve vstep=-0.1 vfinal=-4.0 name=gate ac freq=le-4 aiiame=gate 

#log outfile=tmp 

# cv... 
#tonyplot -overlay cap_hf.log cap_lf.log -set hf.set 

# conductivity 

#tonyplot cap_hf.log -set conduct.set 

quit 

A.7 Ni t r ide and pad oxide etch for b i rd ' s beak ex-

t rac t ion 

See section 6.5.1 for details. 

# V d kiinz 
# 08/04/2003 

# directory: 

#..students/vdk99r/thesis/filox/padetch.in 

# simulation: 

# - load in file 

# - remove pad oxide 

# - list oxide thickness 

# - done 

# let's start... 

go athena 

# init... 

initialize infile="filox6_20_130.str" 

tonyplot filox6_20_130.str 

# remove nitride fillet... 

strip nitride 

extract name="FILOX thickness before wet etch" thickness material="Si0'2" mat.occno=l x.val=1.199 

# remove 20nm pad oxide.,. 

rate.etch machine=»etEtcher wet.etch oxide n.m isotropic=l.0 

etch machine=wetEtcher time=20 min 

extract name="FILOX thickness after wet etch" thickness material="SiD~2" mat.occno=l x.val=1.199 

tonyplot 

# vertical birds beak... 

extract name="pad_sio2X0910" thickness material= "SiO" "2" mat .occno= •1 X . val= =0 .850 

extract name="pad_sio2X0920" thickness material= "SiO" "2" mat .occno= ••1 X . val= =0 .860 

extract name="pad_sio2X0930" thickness material= "SiO' •2" mat .occno= X . val= =0 .870 

extract name="pad_sio2X0940" thickness material= "SiO' "2" mat .occno= •1 X . val= =0 .880 

extract name="pad_sic2X0950" thickness material= "SiO' "2" mat .occno= '1 X . val= =0 .890 

extract name="pad_sio2X0900" thickness material= "SiO" "2" mat. .occno= ••1 X . . val= =0. .900 

extract name="pad_sio2X0910" thickness material= "SiO" -2" mat. ,occno= ••1 X , . val= =0. .910 

extract name="pad_sio2X0920" thickness material^ "SiO" -2" mat. .occno= ••1 X . . val= =0, .920 

extract name="pad_sio2X0930" thickness material= "SiO' -2" mat. ,occno= 4 X , , val= =0, .930 
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extract name 

extract name 

extract name 

extract name 

extract name 

extract name 

extract name 

# horizontal 

extract name 

extract name 

extract name 

extract name; 

extract name; 

extract name 

extract name 

extract name 

extract name; 

extract name' 

extract name 

="pad_sio2X0940" 

="pad_sio2X0950" 

="pad_sio2X0960" 

="pad_sio2X0970" 

="pad_sio2X0980" 

="pad_sio2X0990" 

="pad_sio2X1000" 

bird's beak... 

="pad_sio2Y0000" 

="pad_sio2Y0025" 

="pad_sio2Y0050" 

="pad_sio2Y0075" 

="pad_sio2Y0100" 

="pad_sio2Y0125" 

="pad_sio2Y0150" 

="pad_sio2Y0175" 

="pad_sio2Y0200" 

="pad_sio2Y0225" 

="pad_sio2Y0250" 

thickness material= "SiQ-2" mat occno= X val=0 940 

thickness material= "SiO" "2" mat occno= X val=0 950 

thickness material^ "SiO' -2" mat occno= X val=0 960 

thickness material= "SiO' -2" mat occno= X val=0 970 

thickness material= "SiO' 2" mat occno= X val=0 980 

thickness material= "SiO' 2" mat occno= X val=0 990 

thickness material= "SiO' "2" mat occno= X val=l 000 

thickness material= "SiO' '2" mat occno= y val=0 000 
thickness material= "SiO' '2" mat occno= y val=0 025 
thickness material^ "SiO' '2" mat occno= y val=0 050 
thickness material^ "SiO' •2" mat occno= y val=0 075 
thickness material= "SiO' 2" mat occno= y val=0 100 
thickness material= "SiO' 2" mat occno= y.val=0 125 

thickness material= "SiO' '2" mat occno= y val=0 150 
thickness material^ "SiO' "2" mat occno= y val=0 175 
thickness material= "SiO' 2" mat occno= y val=0 200 
thickness material^ "SiO" 2" mat occno= y val=0 225 
thickness material= "SiO' 2" mat occno= y val=0 250 

# end 

A.8 Vertical M O S F E T device /process simulations 

See section 6.5.5 for details. 

# file; vmos.in 

############################################################################# 

############# let's do some process sims using ATHENA... #################### 
############################################################################# 

# GAI structure 

# adjastable gate oxide thickness, 

# drain voltage 

# no FILOX 

# some variables... 

# pillar height... 

set pillHeight = 0.310 

set nitrideXhick = 0.070 

# 2.98nm gate oxide -> 8 min oxidation time 

set gateOx =5.25 

# set meix ramp votage for output characteristics... 

set maxVDrain =3.0 

go athena 

# define mesh... 

line X loc=0.0 spac=0.100 

line X loc=0.9 spac=0.010 

line X loc=l.l spac=0.010 

line X loc=2.0 spac=0.100 

line y loc=0.0 spac=0.005 

line y loc=0.36 spac=0.005 

line y loc=1.0 spac=0.100 

# start off material.. 
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# p-type wafer... 

# start of with a boron doped wafer (17-330hm*cm). 

initialize silicon orientation=100 boron resistivity=25 space.mul=2 

# measure resistivity.... 

extract name="sheetRsubstrate" sheet.res inaterial="silicon" mat.occno=l \ 

x.val=0.500 region.occno=l datafile="data.dat" 

# p-well implant... 

implant boron dose=5.0el4 energy=50 pears 

# drive in... 

diffuse time=10 temp=1100 dryo2 press=1.00 

diffus time=30 temp=1100 nitro press=1.00 

extract name="sheetRsubstrate after B implant" sheet.res material="silicon" mat.occno=l \ 

x.val=0.500 region.occno=l datafile="data.dat" 

# strip all oxide... 

strip oxide 

# etch the pillar... 

# left side... 

etch silicon start x=0.0 y=0.0 

etch continue x=1.0 y=0.0 

etch continue x=1.0 y=$"pillHeight" 

etch done x=0.0 y=$"pillHeight" 

# measure resistivity.... 

extract name="sheetRbottom" sheet.res material="silicon" mat.occno=l \ 

x.val=0.500 region.occno=l datafile="data.dat" 

extract name="sheetRtop" sheet.res material="silicon" mat.occno=i \ 

x.val=1.500 region.occno=l datafile="data.dat" 

#tonyplot 

# pad oxide... 

diffuse time=50 temp=900 dryo2 press=1.00 hcl.pc=3 

extract name="pad_sio2" thickness material="sio"2" mat.occno=l x.val=0.1 junc.occno=l datafile="data.dat" 

#tonyplot -set dopec.set 

# nitride spacers... 

depo nitride thick=$"nitrideThick" divisions=8 

etch nitride dry thick=$"nitrideThick" 

# etch oxide (watch out Angstroem -> urn cconversion)... 

etch oxide dry thick=$"pad_sio2"/10000 

#tonyplot -set dopec.set 

# n-type implant... 

implant arsenic dose=3.0el5 energy=50 tilt= 7 pearson 

implant arsenic dose=3.0el5 energy=50 tilt= 0 pearson 

#tonyplot -set dopec.set 

# get rid of the nitride fillets... 

strip nitride 

strip oxide 

# gate oxide... 

#method gridinit.ox=0.002 grid.oxide=0.002 

diffuse time=$"gateOx" temp=800 dryo2 press=1.00 

#deposit oxide thickness=0.003 

extract name="gateoxY" thickness oxide mat.occno=l y.val=0.2 

extract name="gateoxX" thickness oxide mat.occno=l x.val=0.1 

#tonyplot 
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# polysilicon gate fillets... 

depo polysi arsenic thick=0.200 conc=5.0e+19 division= 

etch polysi dry thick=0.200 

# Rapid Thermal Aneal.,. 

method fermi compress 

diffuse time=80/60 temp==1050 nitro press=1.0 

# pattern s/d contact metal... 

# bottom oxide removal... 

etch oxide left x=0.5 

# top oxide removal... 

etch oxide right x=1.5 

# contact... 

deposit alumin thick=0.03 division=2 

etch alumin start x=0.5 y--0.4 

etch continue x=1.5 y=-0.4 

etch continue x=1.5 y=0.5 

etch done x=0.5 y=0.5 

# Extract design parameters... 

############################################################################# 

# gate oxide thickness... 

extract name="gateox" thickness oxide mat.occno=l x.val=0.6 datafile="data.dat" 

# extract final S/D Xj... 

extract name="junction depth at pillar top" xj silicon mat.occno=l x.val=0.100 junc.occno=l datafile="data.dat" 

extract name="junction depth at pillar bottom" xj silicon mat.occno=l x.val=1.500 junc.occno=l datafile="data.dc 

# extract the N++ regions sheet resistance... 

extract name-"n++ sheet resistance" sheet.res material="silicon" mat.occno=l \ 

x.val=0.100 region.occno=l datafile="data.dat" 

# extract the sheet res under the spacer, of the implant region... 

extract name="implant sheet resistance" sheet.res material="silicon" mat.occno=l \ 

x.val=0.935 region.occno=l datafile="data.dat" 

# extract the surface concentration in the channel... 

extract name="channel surface concentration" surf.conc impurity"Net Doping" \ 

material="Silicon" mat.occno=l y.val=0.1 datafile="data.dat" 

# extract a curve of resistance versus bias.... 

extract start material="polysilicon" mat.occno=l bias=0.0 bias.step=0.2 bias.stop=$"maxVDrain" y.val=0.2 

extract done name="sheet resistance versus bias at y=0.1" curve(bias,Idn.sheet.res \ 

material="silicon" mat.occno=l region.occno=l) outfile="extract.dat" 

# ... and plot... 

#tonyplot extract.dat 

# extract the long chan Vt... 

extract name="l dimensional threshold voltage (Vsubstrate=O.OV)" Idvt ntype vb=0.0 \ 

qss=lelO y.val=0.1 datafile="data,dat" 

############################################################################# 

# hmmm, a few electrodes could make things easier... 

# drain on top... 

electrode name=gate x=0.900 y=0.20 

electrode name=source x=0.1 

electrode name=drain x=2.0 y=0.01 
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# source on top... 

#electrode name=gate x=0.900 y=0.20 

#electrode name=source x=2.0 y=0.01 

#electrode name=drain x=0.1 

# for both... 

electrode name=substrate backside 

structure outfile=mos.str 

# plot the structure... 

tonyplot mos.str -set mos.set 

############# let's do some device sims using ATLAS... ###################### 
############################################################################# 

go atlas 

# set workfunction of gate... 

contact name=gate n.poly 

# select models 

# the following models are used... 

# models conmob srh auger bgn fldmob print 

# conmob -> concentration dependent mobility model 

# srh -> shockley-reed hall recombination using fixed lifetimes 

# bgn -> band gap narrowing 

# fldmob -> lateral field dependent model 

models yamaguchi srh fermi 

# solving method... 

method newton trap 

log outf=tmp 

# set all voltages to zero... 

solve initial 

# ramp gate voltage... 

solve Vdrain=0.025 

log outf=logO.log master 

solve V1=0.0 electrode=l Vstep=0.05 Vfinal=0.5 

solve Vl=0.5 electrode=l Vstep=0.1 Vfinal=1.0 

solve Vl=1.0 electrode=l Vstep=0.1 Vfinal=$"maxVDrain" 

log outf=tmp 

#tonyplot -set elec_conc.set 

# set all voltages to zero... 

solve initial 

# ramp gate voltage... 

solve Vdrain=0.01 electrode=3 Vstep=0.2 Vfinal=1.0 

log outf=logl.log master 

solve V1=0.0 electrode=l Vstep=0.05 Vfinal=0.5 

solve Vl=0.5 6lectrode=l Vstep=0.1 Vfinal=1.0 

solve Vl=1.0 electrode=l Vstep=0.1 Vfinal=$"maxVDrain" 

log outf=tmp 

# plot resultant linear ID over linear VG threshold voltage curve 

tonyplot -overlay logO.log logl.log -set vt.set 

tonyplot -overlay logO.log logl.log -set St.set 

############################################################################### 

# the next view lines plot ID versus VDS for three different VGS voltages... 
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# set all voltages to zero... 

solve initial 

# ramp drain voltage... 

set tempVdrain = 2.0 

solve V1=0.0 electrode=l Vstep=0.2 Vfinal=$"tempVdrain" 

log outf=ivdrain_logO.log master 

solve Vdrain=0.0 electrode=3 Vstep=0.05 Vfinal=0.5 

solve Vdrain=0.5 electrode=3 Vstep=0.1 Vfinal=1.0 

solve Vdrain=1.0 electrode=3 Vstep=0.2 Vfinal=$"maxVDrain" 

log outf=tmp 

# set all voltages to zero... 

solve initial 

# ramp drain voltage... 

set tempVdrain =2.5 

solve V1=0.0 electrode=l Vstep=0.2 Vfinal=$"tempVdrain" 

log outf=ivdrain_logl.log master 

solve Vdrain=0.0 electrode=3 Vstep=0.05 Vfinal=0.5 

solve Vdrain=0.5 electrode=3 Vstep=0.1 Vfinal=1.0 

solve Vdrain=1.0 electrode=3 Vstep=0.2 Vfinal=$"maxVDrain" 

log outf=tmp 

# set all voltages to zero... 

solve initial 

# ramp drain voltage... 

set tempVdrain =3.0 

solve V1=0.0 electrode=l Vstep=0.2 Vfinal=$"tempVdrain" 

log outf=ivdrain_log2.log master 

solve Vdrain=0.0 electrode=3 Vstep=0.05 Vfinal=0.5 

solve Vdrain=0.5 electrode=3 Vstep=0.1 Vfinal=1.0 

solve Vdrain=i.0 electrode=3 Vstep=0.2 Vfinal=$"maxVDrain" 

log outf=tmp 

tonyplot -overlay ivdrain_log0.log ivdrain_logl.log ivdrain_log2.log -set iv.set 

# that's it... 

quit 
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Mask description 

B . l Vertical capacitors 

o block 1 

block 2: 

block 3: 
3 

STCPALl 

block 4: 

block 5: 

o 

Figure B.l: Layout of one cell of the fabricated vertical capacitors. The device di-
mensions are listed in table B.l. 
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block 1 type dimensions [^m] metal area[;um] description 
top/bottom XA X a;;, 

la bottom - 20x53.8 capacitor on trench bottom 
lb top - 30xl0&66 capacitor on pillar top 
Ic all 1.5/1.5 65.9x65.9 convex capacitor 
2a bottom - 20x102.3 capacitor on trench bottom 
2b top - 30x85.3 capacitor on pillar top 
2c all 1.5/3.0 67.8x67.8 convex capacitor 
3a bottom - 10x66.8 capacitor on trench bottom 
3b top - 40x13^7 capacitor on pillar top 
3c all 3.0/1.5 77.6x77.6 convex capacitor 
4a bottom - 20x7Z4 capacitor on trench bottom 
4b top - 40x108.7 capacitor on pillar top 
4c all 3.0/3.0 76.1x76.1 convex capacitor 
5a bottom - 40x66^ capacitor on trench bottom 
5b top - 40X&15 capacitor on pillar top 
5c all 3.0/6.0 77.6x77.6 convex capacitor 

block 2 type dimensions [̂ um] metal area[^m] description 
top/bottom XO X ZB 

la bottom - 30xl0&6 capacitor on trench bottom 
lb top - 20x54^ capacitor on pillar top 
Ic all 1.5/1.5 65.9x65.9 concave capacitor 
2a bottom - 30xl7&3 capacitor on trench bottom 
2b top - 20x33.45 capacitor on pillar top 
2c all 1.5/3.0 77.6x77.6 concave capacitor 
3a bottom - 20x127.5 capacitor on trench bottom 
3b top - 20x1025 capacitor on pillar top 
3c all 3.0/1.5 67.8x67.8 concave capacitor 
4a bottom - 30x1416 capacitor on trench bottom 
4b top - 20x725 capacitor on pillar top 
4c all 3.0/3.0 76.1x76.1 concave capacitor 
5a bottom - 40x158 capacitor on trench bottom 
5b top - 20x3&5 capacitor on pillar top 
5c all 3.0/6.0 84.3x84.3 concave capacitor 
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block 3 type dimensions [^m] metal area[//m] description 
top/bottom Xo X 

la bottom - 20xl0&5 capacitor on trench bottom 
lb top - 20x108.65 capacitor on pillar top 
Ic all 1.5/1.5 120x36.2 pillar capacitor 
2a bottom - 40x87 capacitor on trench bottom 
2b top - 20x8&9 capacitor on pillar top 
2c all 1.5/3.0 180x29 pillar capacitor 
3a bottom - 20x87 capacitor on trench bottom 
3b top - 40x8&9 capacitor on pillar top 
3c all 3.0/1.5 180x29 pillar capacitor 
4a bottom - 40x722 capacitor on trench bottom 
4b top - 40x722 capacitor on pillar top 
4c all 3.0/3.0 240x24.1 pillar capacitor 
5a bottom - 40X10&7 capacitor on trench bottom 
5b top - 40x54^ capacitor on pillar top 
5c all 3.0/6.0 360x18.1 pillar capacitor 

block 4 type dimensions [fim] 
top/bottom 

metal area[/im] 
Xg X Zb 

description 

la bottom - 10x34.7 capacitor on trench bottom 
2a bottom - 10x34.7 capacitor on trench bottom 
3a bottom - 10x34.7 capacitor on trench bottom 
4a bottom - 10x34.7 capacitor on trench bottom 
5a bottom - 10x34.7 capacitor on trench bottom 

block 4 type dimensions [/^m] 
top/bottom 

nr. of pillars pillar length [;um] description 

Ic all 1.5/1.5 50 fillet capacitor 
2c all 1.5/3.0 50 94^ fillet capacitor 
3c all 3.0/1.5 50 96 fillet capacitor 
4c all 3.0/3.0 50 96 fillet capacitor 
5c all 3.0/6.0 50 96 fillet capacitor 

block 5 type metal area[/im] 
Xo X 2b 

description 

la top 416x416 capacitor on pillar top 
lb bottom 4L6x4L6 capacitor on trench bottom 
2a top 120x120 pad contact to pillar top 
2b bottom 120x120 pad contact to trench bottom 
3a, test - test structure for metal step coverage 
3b test - test structure for metal separation 

Table B.l: Layout description of fabricated vertical capacitors 
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B.2 Vertical MOSFETs 

Eg B B 13 Q Q Q Q Ea 

i f f ick 
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GB8B 
Q B Q Q 

ĝ E 

Q B Q E3 Q E QEBQBB3BBE3BQE^mQEI 
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El Q Q E3 a Q 
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ffl m till! I!" ai U1 

• 
gyuOQ rmKt aQQ 

Figure B.2: Layout of two cells of the fabricated vertical MOS devices. The device 
dimensions are listed in table B.2. 
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block 1 fea ture size[/im W[/i,m t y p e descr ipt ion 
1 1.5 27 GAI surround gate with Ijim. fin 
2 1.5 27 GAI surround gate with 1.5//m fin 
3 2.0 36 GAI surround gate with 2/um fin 
4 2.0 60 GAI surround gate with 1.5^m fin 
5 1.5 27 GBI surround gate with Ifixa fin 
6 1.5 27 GBI surround gate with 1.5/im fin 
7 2.0 36 GBI surround gate with 2//m fin 
8 2.0 60 GBI surround gate with 1.5^m fin 
9 1.5 24 GBI surround gate with l^m fin 
10 1.5 24 GBI surround gate with 1.5/Lim fin 
11 2.0 32 GBI surround gate with 2/xm fin 
12 2.0 56 GBI surround gate with 1.5/im fin 

block 2 fea tu re size[/im] W[/xm] t y p e descr ipt ion 
1 1.5 13.5 GAI one pillar NAND 
2 2.0 18 GAI one pillar NAND 
3 4.0 30 GAI one pillar NAND 
4 1.5 60 GBI one pillar NAND 
5 2.0 18 GBI one pillar NAND 
6 4.0 30 GBI one pillar NAND 

block 3 fea tu re size[/xm] W[//m] t y p e descript ion 
1 1.5 24 GAI surround gate for RF 
2 1.5 24 GBI surround gate for RF 
3 1.5 225 GBI surround gate for RF 

block 4 f ea tu re size[//m] W[^m] t y p e descr ipt ion 
1 1.5 24 GAI minimum dimension surround gate 
2 2.0 32 GAI minimum dimension surround gate 
3 4.0 52 GAI minimum dimension surround gate 
4 1.5 24 GBI minimum dimension surround gate 
5 2.0 32 GBI minimum dimension surround gate 
6 4.0 52 GBI minimum dimension surround gate 
7 1.5 225 GBI minimum dimension surround gate 
8 2.0 30 GBI minimum dimension surround gate 
9 4.0 48 GBI minimum dimension surround gate 
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block 5 f ea tu r e size[^m] W[/Ltm] t y p e desc r ip t ion 
1 1.5 9 GAI double gate 
2 2.0 12 GAI double gate 
3 4.0 20 GAI double gate 
4 1.5 9 GBI double gate 
5 2.0 12 GBI double gate 
6 4.0 20 GBI double gate 
7 1.5 3 GBI double gate 
8 2.0 8 GBI double gate 
9 4.0 12 GBI double gate 

block 6 f e a t u r e s ize [ / im] t y p e descr ip t ion 
1 1.5 4.5 GAI single gate 
2 2.0 6 G A I single gate 
3 4.0 10 GAI single gate 
4 1.5 4.5 GAI single gate 
5 2.0 6 GAI single gate 
6 4.0 10 GBI single gate 
7 1.5 3 GBI single gate 
8 2.0 6 G A I single gate 
9 4.0 6 GBI single gate 

block 7 f ea tu r e size[^m] W[^m] t y p e descr ip t ion 
1 1.5 2 x 4 ^ GAI NOR gate 
2 2.0 2x6 GAI NOR gate 
3 4.0 2x10 GAI NOR gate 
4 1.5 2 x 4 ^ GBI NOR gate 
5 2.0 2x6 GBI NOR gate 
6 4.0 2x10 GBI NOR gate 

block 8 f e a t u r e s ize [ / im] W[;um] t y p e descr ip t ion 
1 1.5 20 G A I single gate 
2 2.0 20 GAI single gate 
3 4.0 20 GAI single gate 
4 1.5 20 GBI single gate 
5 2.0 20 GBI single gate 
6 4.0 20 GBI single gate 
7 1.5 18.5 GBI single gate 
8 2.0 18 GBI single gate 
9 4.0 16 GBI single gate 
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block 9 f e a t u r e s ize [ / im] W[//m] t y p e descr ip t ion 
1 1.5 24 GAI 2 pillar NAND gate 
2 2.0 32 GAI 2 pillar NAND gate 
3 4.0 52 GAI 2 pillar NAND gate 
4 1.5 24 GBI 2 pillar NAND gate 
5 2.0 32 GBI 2 pillar NAND gate 
6 4.0 52 GBI 2 pillar NAND gate 
7 1.5 24 GAI 2 pillar NAND gate 
8 2.0 32 GAI 2 pillar NAND gate 
9 4.0 52 GAI 2 pillar NAND gate 
10 1.5 24 GBI 2 pillar NAND gate 
11 2.0 32 GBI 2 pillar NAND gate 
12 4.0 52 GBI 2 pillar NAND gate 

block A f e a t u r e size[^m] W[yum] t y p e descr ip t ion 
1 2.0 42 GAI surround gate 
2 2.0 52 GAI surround gate 
3 2.0 62 GAI surround gate 
4 2.0 42 GBI surround gate 
5 2.0 52 GBI surround gate 
6 2.0 62 GBI surround gate 

tes t descr ip t ion 
s t r u c t u r e s 

1 poly series resistance 
2 metal step coverage 
3 metal separation 
4 v.d.P: poly on LOCOS 
5 v.d.P: GAI on pillar top 
6 v.d.P: GBI on pillar top 
7 v.d.P: substrate on pillar top 
8 v.d.P: substrate on pillar bottom 
9 v.d.P: GAI on pillar bottom 
10 v.d.P: GBI on pillar bottom 

Table B.2: Layout description of fabricated vertical MOSFETs 
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Batch hstings 

C . l Batch listing for FILOX test batch 

See section 4.2. 
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Editing k22l7dt on 04*13-2003 

Deter iption 
MR/DK • vLOCOS tests 

si 
Title Page; 3 wafers, p-type, <100>, 10-33ohm.cm 
Retlcie Writing 
Lithography Notes: optic Ittho, 1u 

wafers 1.^ were taken out of batch ic2101^ 
they were previously used for etch tests 
batefi splits... 
wafer 1: 5nm pad oxide, 40nm nitride, vary oxide thicimess 
wafer 2:5nm pad oxide, TOnm nltilde. vary oxide thicimess 
wafer 3:5nm pad oxide, 130nm nitride, vary oxide thickness 

sometest^ 
• RCA clean (WAFER 1..3) 
'Furnace 12; Load In N2; 5nm oxide at BOOdegC 

DeposH SiN4 40nm, 9 740degC DCS:NH41:4,2.3nmftn (WAFER 1) 
Dry etch 40nm Si3N4 + pad oxide 0i=T80+CHF3+Ar to leave sldewaii spacers 
please keep overetch to a minllll (WAFER 1) 
Deposit SiN4 TOnm, 9 740degC DCS:NH4 1 ; 4 , 2 ^ m / m (WAFER 2) 
Dry etch TOnm SI3N4 + pad oxide OPT80+CHF3+Ar to leave sldewaii spacers 
p l e w keep overetrfi to a minllll (WAFER 2) 
• DeposH S}3N4 130nnvt-20nm @ 740degC DCS;NH4 1:4, 2 ^ t n / m . (WAFER 3) 
Dry etch 130nm SI3N4 * pad oxide 0PT80+CHF3+Af to leave sidewail spacers 
please keep overetch to a mlniiit (WAFER 2) 

* Special Instructions: deave all three wafers In 4 parts for nitride 
• Fuming Nitric acid clean, 2nd pot only (wafer 1„3) 

asOdegC, 40nm+-5nm, 02 » HCI (3 parts of wafer 1..3) 

&50degC, 80nm->-5nm, 0 2 + HCi (3 parts of wafer 1.^) 

950degC, 120nm+«5nm, 02-fHCt (3 parts of wafer I . J ) 

SSOdegC, 1G0nm+-5nm, 0 2 + HC< (3 parts of wafer 1..3) 

Figure C.l: Listing for FILOX test structures 
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C.2 Batch listing for vertical capacitors 

See section 5.2 

Editing k2001s on 04-13-2003 

tB lR lG No 1|2 3 4 5 6 ID Deser t ion Sow 

K g k2001s DK- some cool caps {last changes 07.07.00) 
r1 Front 
g i HEADER 
0-812 Title Page: 9 wafers, p on p + ^ l , <100>, 03-1.0ohm.cm + 1 check of the same 9 
P-EM E-BEAM Mask/RetJcle Writing 2 
Q-1P Lithography Notes: optic litho, 1u5 9 
G-1 batch spMts_ 

wafer 1..3: wafer - oxide - polysHicon - metal (reference wafers) 
wafer 4..G: wafer - oxide - nitride tops - polysUlcon - metal 
wafer 7..9: wafer - oxide - nitride tops/Hllets - polysnicon - metal 
wafer 10: testwafer for oxWe 

9 

l o i f f l 1 
com1a ACTIVE AREA (WAFER 1..9) 
W-C1 r RCA clean (WAFER1..9) 9 
F5-9002P * Pad oxidation: 900degC. 20nm+- Snm, 0 2 + HCI (WAFER 1-9) 9 
LM-130 • Deposit Si3N4 130nm+-20nm # TAOdegC DCS-J4H4 1 : 4 , ( W A F E R 1..9) 9 
P-Gl • Photollth mas It, K973 AA Light Field: nom. 1.1 um resist (WAFER 1..9) 9 
P.RHBD • Hardbake for dry etch (WAFER 1 .#) 9 
D-N01E Etch Si3N4+PadSI02. Anisot. L/FEBMF/0PT1CAL resist OPT80+CHF3+Ar (WAFER 1-9) 9 

X-1 Measure specified areas on 12 wafers; fizA, mkldle, curve. 9 
P-RS • Resist strip (WAFER 1.9) 9 
W-C1 • RCA clean (WAFER 1..9) 9 
FS-W0060 ' Hydrox oxidation: lOOOdegC, 600nm+-20nm, H2 + 02 (WAFER 1_9) 9 

0 
WH-2D2 Dip etch, 20:1 BHF 25degC. 30 seconds to remove any oxide on nithde 

(WAFER 1..3) 
3 

WN-1 
WH-2D1 

+ Strip/Wet ^ c h S13N4. Orthophosphoric acid IGOdegC (WAFER 1..3) 
Dip etch, 20:1 BHF 25degC. Until Just hydrophobic to remove 0}nm pad oxMe 
(WAFER 1-3) 

3 
3 

LO-0 LTD deposltton: SOnm at 400degC SIH4 and 02 (WAFER 4..9) 
BEST EFFORT lU 

G 

5 a i J C 
I s 

B i n com2a pillar definition and etch... 

P^G^ • Photollth mask: K973 PL, Light Field: nom. I . l um resist STANDARD (Wafer 1..9) 9 
0-2 • See Engineer: INSPECT 9 
P-RHBD • Hardbake for dry etch (WAFER 1..9) 9 
Q-2 'See Engineer for Instructions about dry etch (WAFER 1..9) 9 

G 
D-0 Dry etch: etch SOnm LTO + 130nm SI3N4 + %)nm SI02 

use SI3N4 etoh conditions for whole layers WAFER4..9 
6 

• H 3 -M 0 
D-SP2S Etch Poiy/AmSI. AnisoL on oxkjes>15nm SYS90 HBr2step. (For LP patterns) ETCH 

300nm d w p (WAFER 1..9) 
this Is a <si> etch not a poly etch 

S 

P-RS ' Resist strip (WAFER 1_9) 9 
W-C2 ' Fuming Nitric acid clean, 2nd pot only (WAFER 1 ..9) 9 
G-g * See Engineer for Instructions (WAFER 1 ..9) 9 

com3a remove etch damage... (WAFER 1-9) 
W-C1 • RCA Clean (WAFER 1..9) + CHECK WAFER 10 10 

-
F12-00 SOOdeg: 20nm SI02 on Si, 02 (no HCL) (WAFER 1-9) + CHECK WAFER 10 10 

- Q-2 * See Engineer for Instructions (WAFER 1..9) 9 

combe nitride spacers... (WAFER 7..9) 

- -
0 - - W-CI •RCA clean (WAFER 7..9) 3 

LN-0 • Deposit SIN4 70nm ©740degC DCS:NH4 1:4,2.3nm/m (WAFER 7-9) 
BEST EFFORT 111 

3 

-

DO Dry Etch SI3N4 + pad oxide OPT80+CHF3+Ar TO LEAVE SI DEW ALL SPACERS (WAFER 7-9) 
5-10% overetch 

3 

- D-D60 •Descum: 3mln. SRS barrel 02 (WAFER 7_9) 4 -

•RCA clean (WAFER 7..9) 3 

-

F5-0 • Furnace 5:950degC. lOOnm 4- Snm, 02 + HCL (WAFER 7-9) a 

-

WH-2D1 Dip etch, 20:1 BHF 25degC. Until just hydrophobk: to remove oxide on nltrkle 
(WAFER 7..9) 
NOTE: MINIMISE previous STAGE OXIDE LOSS!!! 

3 
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Editing kZOOIs on 04-13-2003 

No l | 2 3 4 5 ID Description 30U 
38 

TI 
WN-1 + Strip/Wet etch Si3N4, Otlhophosphorlc acid 160degC (WAFER 7..9) 

this stage Is to remove the sidewall spacers only!!! 
3 

0 

3# 

T\ 
WH-2D1 Dip etch, 20:1 BHF 25degC. UntH just hydrophobic to remove etch damage removal oxide 

[WAFER 1_#; + CHECK WAFER 10 
checic if WAFER 10 is hydrophobic!!! 

4 

com4aa we need some gate oxide over the pillars... (WAFER 1^9) 

40 

1 
G-3 Special Instructions: 

DO 3 WAFERS at a time. 
furnace and poly deposition in one goll l 
store wafers In nitroigen to stop contemiinatlonll l 

C 

j . C 

41 a W-C1 • RCA clean (WAFER 1,4,7) 0 

42 
3 

F14-0 Furnace 14 - KOYO VERTICAL FURNACE (OXIDATION): 4nm S102 on SI, 02 
(WAFER 1,4,7) at SOOdegC BEST EFFORT II! 

3 

43 

T 

LE-0 Low Pressure Epitaxy-> in-sItu phosporus doped poly 1e19 at B50„670degC (WAFERS 1,4,7) 
ZOOnm thick 

~ 0 

0 
L 0 

44 W-C1 ' RCA clean (WAFER 2 * 8 ) 0 

45 

46 1 
F14-0 Furnace 14 • KOYO VERTICAL FURNACE (OXIDATION): 8nm SI02 on SI, 02 

(WAFER 2 * 8 ) at SOOdegC BEST EFFORT II! 
9 45 

46 1 LE-0 Low Pressure Epitaxy -> In-situ phosporus doped poly 1e19 at 650..670degC (WAFERS 2 * 8 ) 
ZOOnm thick 

~6 

-
6 

- 0 
47 

48 f 
U -C1 * RCA dean (WAFER 3,6,9) 0 47 

48 f F14-0 Furnace 14 - KOYO VERTICAL FURNACE (OXIDATION): 12nm Sf02 on SI, 02 
(WAFER 3,6,9) at SOOdegC BEST EFFORT It! 

0 

49 s LE-0 Low Pressure Epitaxy -> In-situ phosporus doped poly 1e19 at 650..670degC (WAFERS 3,6,9) 
200nm thick 

0 

G 

1 
com4aaa • Wafer 1-9: polysllteon deposltton-.. 

50 RA-2 RTA Implant activation 20&ecs1050degC 9 

— — metaldepo • Wafer 1-9: metal deposition... 

51 
a 

US-0 Sputter TDOnm AVS11 % in TRIKON SIQM A 
RESIST PROHIBITED (WAFER 1..9) 

9 

52 a P-G2 • Photdl th mask K973,(M1), Light Field: nom. Z2um resist 9 

53 0 X-0 General inspection stage (WAFER 9 
54 P.RHBW ' Hardbake for wet etch (WAFER 1..9) 9 

! 
metaletch - Wafer 1.9: metal etching 

55 

s 

WM-A2 + Wet etch Al, Orthophosphoric acid, 37degC, till clear. 
NO DEFRECKLE ETCH (WAFER 1_9) 

9 

56 1x4) General Inspection stage CHECK DENSITY OF SI QRAINYNESS (WAFER 1..9) 9 

57 P-RHBD • Hardbake for dry etch (WAFER 1 ..9) 9 

58 
f 

-
com4ab • Wafer 1 ..9: polysBicon e t c h -

58 
f 

- D-SPZV Etch Poly/AmSI. Anisot on THIN gate ox, <15nm SYS90 HBr 3 step. (For LF patterns) 
note: gate oxWe thickness 2nm and 4nmUI •> short overetch 

9 

59 P-RS ' Resist strip (WAFER 1..9) g 

T - — "• T - — "• com5 Back contact (WAFER l.,9) 

60 
61 — f l 

P-RF • Frontspin resist (WAFER 1-9) 9 60 
61 — f l P-RHBD • Hardbake for dry etch (WAFER 1 ..9) 9 

62 
63 

55 

67 

$ r n D-S0N1 BACK Strip: SI02 .PolySI OPT80+ CF4+02 (WAFER 1 ..9) 9 62 
63 

55 

67 

WH-2D1 Dip etch, 20:1 BHF 25degC. Until just hydrophobic (WAFER 1..9) 9 
62 
63 

55 

67 

— 

ME-AL10B Evaporate pure Al lOOOnm onto BACKS. WAFERS COULD BE Au CONTAMINATED 
(WAFER 1..9) 

62 
63 

55 

67 |: - — 
P-RS ' Resist strip (WAFER 1-9) 

62 
63 

55 

67 |: - — X4) General Inspection stage (WAFER 1.3) 9 

62 
63 

55 

67 |: - — 

W-C3 * Fuming Nitric Acid clean, metallised wafers 0 

i . . . 
-

F W M 2 •Al loy/Anneal: 30mina H2/N2 420d©gC 5'N2,30'H2/N2,5'N2. 9 i . . . 
-

i . . . 
-

1 ; i 1 

Figure C.2: Listing for vertical capacitors 
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C.3 Batch listing for vertical M O S F E T s 

See section 6.3 

Editing k2101dt on 04-13-2003 

IBI R G No 12 3 T 5 6 ID Description 3ou 

1(2101 dt OK - some ultracool vmos' 

r1 Front 

WMA gi HEADER 

— 
S-S12 Title Page: 12 wafers, p-type, <100>, 10-33ohm.cni + 4 check wafers of the same 16 

— P-EM Reticle Writing 0 Q-1P Lithography Notes: optic lltho, 1u 12 
Q-1 batch splits... 

wafer 1..3; SOnm channel length; tox = 3/6/9nm (VLOCOS) 
wafer 4..6: IDOnm channel length; tox = 3/S/9nm (VLOCOS) 
wafer 7 .9: ISOnm channel length; tox = 3/G/9nm (VLOCOS) 
wafer 10 .12: ISOnm channel length; lox = 3/6/9nm (no VLOCOS) 

12 

G-1 wafer 13: test wafer to test pad oxide thickness for nItrWe spacers 
wafer 14..16: test wafer for silicon pillar etch 

12 

comOO P-Well - all over the wafer... 

W-C1 ' RCA clean (WAFER 1-12) + test wafers #14-16 IS 
JB-5045 * Implant Boron: 5E14 B+ 50 KeV (BIPOLAR Base Implant) (WAFER 1.12,14-16) 15 
W-C1 ^ RCA clean (WAFER 1.12,14-16) 15 

F4-N10DI " General Boron Drive-In l lOOd^C 10'dry02,30'N2 (WAFER 1 ..12,14-16) 15 
WH-2D1 Dip etch, 20:1 BHF 25degC. Until Just hydrophobic 

remove all oxWe from the boron diffusion stage (WAFER 1-12,14-16) 
15 

B i i j y COfTll jplilar definition and etch 

P-0S1 * STEPPER Photollth: reticle KA14R PL Light Field: nom. 1.1 um resist STANDARD 15 

0-2 * See Engineer for Instructions 15% 
P-RHBO • Hardbake for dry etch (WAFER 1 ..12,14-16) 15 

0 
D-SP2S testwafers (WAFER 14-16): Etch Poiy/AmSI. Anlsot. SYS90 HBr 2 step. (For LF patterns) 

ETCH 300nm deethis Is a <sl> etch not a poly etchl l l 
15 

BB y l 
0 

G-2 * See Engineer for instructions 19 

0 D-SP2S Etch Poly/AmSi. Anisot. SYS90 HBr 2 step. (For LF patterns) ETCH 250nm deep (WAFER 
1..3) this is a <si> etch not a poly etch III 3 

D-SP2S Etch Poly/AmSI. Anlsot. SYS90 HBr 2 step. (For LF patterns) ETCH 300nm deep (WAFER 
4..6) this Is a <si> etch not a poly etchll l 

3 

D-SP2S Etch Poly/AmSi. Anisot. SYS90 HBr 2 step. (For LF patterns) ETCH 350nm deep (WAFER 
7-9) this Is a <si> etch not a poly etchlll 

3 

D-SP2S Etch Poly/AmSi. Anlsot, SYS90 HBr 2 step, (For LF patterns) ETCH 350nm deep (WAFER 
10..12) this is a <si> etch not a poly etchlll 3 

SI 0 
P.RS • Resist strip (WAFER 1-12) 12 

feomla ACTIVE AREA (WAFER 1-12) 

W-CI • RCA Clean (WAFER 1-12,13,14) 12 

F5-9002P * Pad oxidation: SOOdegC, 20nn>H Snm, 02 * HCI (WAFER 1..12) 
and check wafer 13,14 111 

13 

LN-130 " Deposit SI3N4 130nm+-20nm @ 740degC DCS:NH4 1:4,2.3nm/m. (WAFER 1..12,14) 12 

P-QSI ' STEPPER Photollth: reticle KA14RAA Light Field: nom. I . l u m resist STANDARD Wafers 
1-12,14 

12 

G-2 • See Engineer for Instructions 12 

- - - -
PRHBD • Hardbake for dry etch (WAFER 1 ..12,14) 12 

- - - - D-N01E Etch SI3N4+PadSI02. Anlsot. L/F EBMF/OPTlCAL resist 0PT80+CHF3+Ar (WAFER 1-12,14) 12 

P-RS " Resist strip (WAFER 1-12,14) 12 
W-C1 ' RCA clean (WAFER 1..12.14) 12 

F6-W0060 ' Hydrox oxWatlon: lOOOdegC, 600nm+-20nm, H2 + 0 2 (WAFER 1-12,14) 12 

U i i i i r a 
com3b nitride spacers... and vertical oxide.-

WH-202 Dip etch, 20:1 BHF 25degC. 30 seconds to remove any oxide on nitride (WAFER 1-12,14) 12 

D-0 Dry Etch Sf3N4 + pad oxWe OPT50+CHF3+Ar TO LEAVE SIDEWALL SPACERS (WAFER 
1-12,14) 5-10% overetch 

12 

D-D60 'Descum: 3 min. SRS barrel 02 (WAFER 1-12,14) 12 

W-C1 • RCA clean (WAFER 1-12,14) 12 

0 
F6-0 • Furnace 6: Load In N2: SOnm © lOOOdegC wafers #1-9,14 10 W-C2 • Fuming Nitric acid clean, 2nd pot only wafers #10-12 0 0 
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R Q No 1 2 3 4 5 Dasciiptlon 

bulk eofrtact knplmtK-
STEPPER Photomh: reticle KA14R. PP Dark FtekJ: nom. 1.1 um retlgt STANDARD (WAFER 

1..12) 
See Englrteer for Inttructtona _12 1 

12 i Hardbake for Implant (WAreR 1..12) 

Implant B K I El 5 47keV (WAFER 1-9) Implant B»;1 El 5 25keV (WAFER 10,12) 

Resist atrip (WAFER 1..12) _12 I 
12 i Fuming Nitric acid dean, 2nd pot only (WAFER 1..12) 

n+ source and drain Implants for gate after Implant t ransls„ 
STEPPER Photoltth: retkle KA14R, NQA Dark FleM: nom. I . l um resist 

(WAFER 1 ..12) 
* See Engineer for Instructions _12 i 

12 I Hardbake for implant (WAFER 1..12) 

' Implant As+: 3e15120keV 
Implant direction: west 
(WAFER 1.J) 

' Implant As+; 3el5120keV 
Impant direction: east 
(WAFER 1.^) 

• Implant As+: 3e15 50keV 
implant direction: west 
(WAFER 10_12) 

Implant As+: 3e15 50keV 
impant direction: east 
(WAFER 10_12) 

• Resist strip (WAFER 1..12) 
* Furring Nitric acid clean. 2nd pot only (WAFER 1-12) 

remove nitride fillets and stress relief oxWe... 
Dip etch, 20:1 BHF 25degC. Until just hydrophobic - > to remove any access oxkte on the 

nitride (WAFER 1..12) max 5 sec 
12 \ 

"12 Strfp/Wet etch Si3N4, Orthophosphoric acid ISOdegC 
this is to remove the fillets and the nitride on top of the pillar 
(WAFER 1-12) 

we need some gate oxide over the pillars-. (WAFER 1 . j ) 

Dip etch, 20:1 BHF 25degC. Until just hydrophobic - > about 40s6c for 20nm stress relief 
oxkle... (WAFER 1,4.7,10) +checkwafer 13m!imilin!lllltHnillHl 
• RCA clean (WAFER 1,4,7,10 + check 13) 
• Gate oxidation 2: Temp = OOOdegC or less, < IQnm, 02(+HCI) 
3nm SI02 on SI, 02 
(WAFER 1,4, 7,10 + check13) at BQOdegC BEST EFFORT !11 

Low Pressure Epitaxy-> deposit 200nm poly 5619 at 650..670degC (WAFERS 1,4,7,10) and 
check wafer13in 
Dip etch, 20:1 BHF 25degC. Until just hydrophobic ~> about 40sec for 20nm stress relief 

oxide... (WAFER 2,5,8,11) 
• RCA clean (WAFER2,5.8,11) 
' Gate oxidalton 2: Temp = OOOdegC or less, <10nm, 02 (+HCI) 
6nm SI02 on Si, 02 
(WAFER 2,5,8,11) at BOCdegC BEST EFFORT 10 
Low Pressure Epitaxy > deposit MOnm poly 5e19 at 650..670degC (WAFERS 2,5,8,11) 

Dip etch, 20:1 BHF 25degC. Until just hydrophobic ~> about 40sec for 20nm stress relief 
oxkte... (WAFER 3,6,9,12) 
• RCA clean (WAFERS,6,9,12) 
* Gate oxidation 2: Temp = 90DdegC or less, < lOnm, 02 (+ HCI) 
9nm SI02 on SI, 02 
(WAFER 3,8,9,12) at 800degC BEST EFFORT !l! 
Low Pressure Epitaxy-> deposit 200nm poly 5e19 at 650..670degC (WAFERS 3,6,9,12) 

conUaaa - Wafer 1..12: polysllkon gate etch..-
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Description 

STEPPER Photollth: reticle KA14R, PI Light Field: nom. I . l um resist STANDARD 

' See Engineer: INSPECT 
* Hardbake for dry etch 
Etch Poly/AmSI. Anisot. on THIN gate ox, <15nm SY^O HBr 3 step. (For LP patterns) 
WAFER1-12 Use ICP etcher 

leave poly fillets - stop on 2nm oxkte**** 

12 I 

Resist strip (WAFER 1..12) 
Fuming Nitric acid clean, 2nd pot only 

n+ Implant on gate before Implant t r a r l s 
STEPPER Photollth: retkde KA14R, NGB Dark Field: nom. I . lum resist 

PWAFER1..12) 
1211 

l i i See Engineer; INSPECT 
* Hardbake for Implant (WAFER1_12) 
please, please, please, hardbake the wafers foor 2h ni l 

Implant As-t-; 3e15 90keV Implant direction: west (WAFER1_9) 
Implant As+: 3e1S 90keV Implant direction: east (WAFER1..9) 
Implant As+: 3e15 SOkeV Implant direction: west (WAFER10-12) 
implant As+; 3e15 50keV Implant direction: east (WAFER10_12) 

Resist strip (WAFER1..12) _ 1 2 I 

1 2 i Fuming Nitric acid dean, 2nd pot only (WAFER1..12) 

remove poly silicon fillets (WAFERI _12) 
STEPPER Photollth: reticle KA14R, PR Light Field: nom. I . l um resist STANDARD 

' See Engineer for Instructtons See Tony about next dry etch stage _12ii 
12 i P-RHBD 

D-0 
* Hardbake for dry etch 
Dry etch: Use isotropic SFS polySl etch In the OPT80+ To remove 200nm polysillcon fillets. No 
visible end point ~*~See engineer for rwnstandard process - best effort*"' 
please renr>ember to stop In the thin gate oxWe if possible 

Resist strip 

oxide depo and so on (WAFER1..12) 
Fuming Nitric acid clean, 2nd pot only U I 

12 i BPSG: Deposit lOOnm undoped Silox + SOOnm BPSG (4%P/'10%'B approx) 
Fuming Nitric acid clean, 2nd pot only _12;l 

12 i RTA Implant activation lOsecsllOOdegC (Std.CMOS S ^ ) 
• this Is for annealing and re flow 
Fuming Nitric acid clean, 2nd pot only 
STEPPER Photollth: reticle KA14R,CW Dark Field: nom. I . l um resist STANDARD 

See Engineer for Instructions 
Hardbake for dry etch (WAFERI..12) 

Etch SI02. Anisot For D/F EBMF/OPTICAL resist OPT80+ CHF3+Ar 21 ' 
1 2 i l Resist strip (WAFER 1..12) 

Fuming Nitric acid clean, 2nd pot only 

metal depo metal deposition... (WAFERI-12) 
Dip etch, 20:1 BHF 25degC. 30 seconds. (Pre-metallsatton) 
Sputter lOOOnm TI-AI/S11% in TRIKON SIGMA 
RESIST PROHIBITED 
' STEPPER Photollth: reticle KA14r; Ml .Light Field: nom. 2.2um resist (For SI etch>1um or 
metal) 
* See Engineer for Instructions 

Hardbake for dry etch 
General inspection stage 

metal etching (WAFER1..12) 

+ Etch AI,A!/Si and/or T l . for OPTICAL resist SRSSS1C CI2+Sia4+Ar (WHOLE 4* wfrs) 
WAFERS #1,4 

1105 
| 1 0 6 
1107 

Resist strip 
Add ARC to wafers #2,3,5-10.12 
•STEPPER Photollth: reticle KA14r; Ml.Light Field: nom. 2.2um resist (For SIetch>1um or 
metal) 
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iB |R |Q No 2 3 4 5 6 ID Description 3ou iB |R |Q 
108 0-2 ' See Engineer for instructions 0 1 

iB |R |Q 

109 P-RHBD * Hardbalce for dry etch 0 1 

iB |R |Q 

110 D-MATI + Etch Al,AI/Siw>d/orn. for OPTICAL resist SRSSS1C Ci2+SiCM+Ar (WHOLE 4" wfrs) 0 1 

G 

111 General inflection stage CHECK DENSITY OF SI QRAINYNESS 12 1 
112 P-RS * Resist strip 12 1 

W-C3 
F9.H42 

* Fuming Nitric Acid clean, metallised wafers 
'Alloy/Anneal: 30mlns H2/N2 420degC 5'N2,30'H2/N2^'N2. 

12 1 
12 i 

S i 

Figure C.3: Listing for vertical MOS transistors 
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Publications 

D . l Conference papers 

• "Electrical Characteristics of Single, Double & Surround Gate Vertical MOS-

FETs with Reduced Overlap Capacitance", E. Gili, V. D. Kunz, C. H. de Groot, 

T. Uchino, D. onaghy, S. Hall, RAshburn, submitted for ESSDERC 2003 

• "Reduction of parasitic capacitance in vertical MOSFET's by fillet local ox-

idation (FILOX)", C. H. de Groot, V. D. Kunz, T. Uchino, P. Ashburn, 

D. C. Donaghy, S. Hall, Y. Wang, P.L.F. Hemment, ULIS 2003 

• " Modelling of gain control in SiGe HBTs and Si bipolar transistors by Ge incor-

poration in the polysilicon emitter", V. D. Kunz, C. H. de Groot, I. M. Anteney, 

A. I. Abdul-Rahim, S. Hall, P. Ashburn, Nanotechnology 2003, San Francisco 

• "Application of Polycrystalline SiGe for Gain Control in SiGe Heterojunction 

Bipolar Transistor", V. D. Kunz, C. H. de Groot, S. Hall, I. M. Anteney, 

A. I. Abdul-Rahim, P. Ashburn, ESSDERC 2002 

• "Investigating 50nm channel length vertical MOSFETs containing a dielectric 

pocket, in a circuit environment", D. Donaghy, S. Hall, V. D. Kunz, C. H. de 

Groot, P. Ashburn, ESSDERC 2002 

• "Thermal Evaluation of a micromachined PGR chip", C. G. J. Schabmueller, 

A. G. R. Evans, G. Ensell, A. Brunschweiler, H. Sehr, T. E. G. Niblock, 

V. D. Kunz, M. Bu, Micromechanics Europe 2002 

• "A 50nm channel vertical MOSFET concept incorporating a retrograde channel 

and a dielectric pocket", A. C. Lamb, L. S. Riley, 8. Hall, V. D. Kunz, C. H. de 

Groot, P. Ashburn, ESSDERC 2001 
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D.2 Journal papers 

• " Gain Control in SiGe HBTs by the Introduction of Germanium into Polysilicon 

Emitters", V. D. Kunz, C. H. de Groot, S. Hall, P. Ashburn, accepted for 

pubhcation in IEEE Transactions on Electron Devices 

• "Reduction of parasitic capacitance in vertical MOSFETs by spacer local oxi-

dation", V. D. Kunz, T. Uchino, C. H. de Groot, P. Ashburn, D. C. Donaghy, 

S. Hall, Y. Wang, L. F. Hemment, accepted for publication in IEEE Transac-

tions on Electron Devices 
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