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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF PHYSICAL SCIENCES AND ENGINEERING

ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by Samuel John Odell Miller

Over the coming years, distribution network operators (DNOs) face the challenge of

incorporating an increased number of electrical distributed generators (DGs) into their

already capacity-constrained distribution networks. To overcome this challenge will re-

quire the DNOs to use active network management techniques, which are already preva-

lent in the transmission network, in order to constantly monitor and coordinate these

generators, whilst ensuring that the bidirectional flows they engender on the network are

safe. Therefore, this thesis presents novel decentralised message passing algorithms that

coordinate generators in acyclic electricity distribution networks, such that the costs

(in terms of carbon dioxide (CO2) emissions) of the entire network are minimised; a

technique commonly referred to as optimal dispatch. In more detail, we cast the optimal

dispatch problem as a decentralised agent-based coordination problem and formalise it

as a distributed constraint optimisation problem (DCOP). We show how this DCOP

can be decomposed as a factor graph and solved in a decentralised manner using algo-

rithms based on the generalised distributive law; in particular the max-sum algorithm.

We go on to show that max-sum applied näıvely in this setting performs a large num-

ber of redundant computations. To address this issue, we present both a discrete and a

continuous novel decentralised message passing algorithm that outperforms max-sum by

pruning much of the search space. Our discrete version is applicable to network settings

that are entirely composed of discrete generators (such as wind turbines or solar panels),

and when the constraints of the electricity network have been discretised. Our contin-

uous version can be applied to a wider range of network settings containing multiple

types of generators, without the need to discretise the electricity distribution network

constraints. We empirically evaluate our algorithms, using two large real electricity

distribution network topologies, and show that they outperform max-sum (in terms of

computational time and total size of messages sent).
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Chapter 1

Introduction

Over the coming years, distribution network operators (DNOs) face the challenge of

incorporating an increased number of electrical distributed generators (DGs) into their

already capacity-constrained distribution networks. Coupled with this is the desire to

distribute and decentralise the management of these generators since traditional cen-

tralised techniques may present a number of issues.1 To overcome these challenges will

require the DNOs to use active network management techniques, which are already

prevalent in the transmission network, in order to constantly monitor and coordinate

these generators, whilst ensuring that the bidirectional flows they engender on the net-

work are safe. This presents an interesting coordination problem which could be solved

by using techniques from the artificial intelligence community. However, in order to fully

understand this coordination problem, we first need to elaborate on the reasons why the

distribution network will experience this increase in DGs.

Due to concerns about the effects climate change may have on regions of the world

in the future, as a result of increasing levels of carbon dioxide (CO2) emissions (US

Department of Energy, 2003; UK Department of Energy and Climate Change, 2009a;

Ramchurn et al., 2012; Intergovernmental Panel on Climate Change, 2013), agreements

have been made by numerous governments to reduce global CO2 emissions.2 To help

achieve this global reduction of CO2 emissions, the UK has committed to transition to

a low carbon economy via an 80% reduction in emissions by the year 2050. In the UK,

the major contributors of CO2 emissions are the residential and transport sectors. Thus,

significantly reducing the CO2 emissions from both these sectors will dramatically help

the UK in achieving a low carbon economy.

In more detail, the residential sector accounts for 13% of all UK CO2 emissions, with

the majority as a consequence of heating living spaces and water (UK Department

1We discuss the issues associated with centralised control later in this section and also in more detail
in Section 2.3.2.

2See (International Energy Agency, 2011) for a full list of countries.
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of Energy and Climate Change, 2009b). Residential heating predominantly uses gas

which produces high levels of CO2 emissions. However, the transition to a low carbon

economy will see an increasing demand for efficient electric heating technologies such as

ground-source and air-source heat pumps (MacKay, 2008; UK Department of Energy and

Climate Change, 2009a). A similarly high emitting sector is transport which accounts

for 22% of all UK CO2 emissions (UK Department of Energy and Climate Change,

2009b). Thus, a shift from conventional vehicles to ultra-low carbon vehicles (ULCV)

will be needed in order to further reduce CO2 emissions. Due to all of these factors,

the demand for electricity will increase dramatically over the coming decades. However,

if the electricity is only produced using conventional generators (i.e., coal or gas), the

increasing demand for electricity will result in more CO2 emissions. Therefore, a key

aspect of achieving the 2050 targets will be to increase the amount of low CO2 emitting

electricity generators, which use renewable resources such as wind and solar, in electricity

networks.

In particular, a large amount of this increased generation will be connected to distribu-

tion networks,3 in the form of potentially thousands of DGs,4 in order to help satisfy

local demands (Roberts, 2004; Alarcon-Rodriguez et al., 2006; UK Department of En-

ergy and Climate Change, 2009a). However, current electricity networks around the

world are outdated, inefficient at transporting electricity, and unable to sustain this

increase in generation (US Department of Energy, 2003; UK Department of Energy

and Climate Change, 2009a). In particular, distribution networks are already highly

capacity-constrained (or becoming increasingly so) with little automation for control-

ling the generators in the network (Roberts, 2004). Thus, incorporating potentially

thousands of DGs, into already capacity-constrained distribution networks, is a major

challenge that DNOs will face.

The current practice that UK DNOs use to connect additional generation to their net-

works involves adding network reinforcements to increase network capacity. Network

reinforcements consist of additional circuitry and distribution cables to ensure that any

additional generators added to the electricity network do not overload existing infrastruc-

ture. Whilst this is essential, installing network reinforcements can be time consuming

and may have significant monetary and environmental costs (Roberts, 2004). In order

to avoid these costly network reinforcements, Roberts (2004) and the US Department of

Energy (2003) suggest that more dynamic and ‘smart’ electricity networks, capable of

managing electricity more efficiently, are needed; a vision commonly referred to as the

smart grid. The smart grid is a fully automated power delivery network that is capable

3National electricity networks consist of a high voltage transmission network, and lots of lower voltage
distribution networks. See Section 2.2 for more details.

4These generators are considered to be distributed because they will be embedded throughout the
distribution network instead of the transmission network.
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of managing data from smart meters,5 end users, micro-storage devices, and DGs using

a two-way flow of electricity and information.

One key aspect of this smart grid is the ability to add additional DGs into increas-

ingly capacity-constrained networks. Roberts (2004) and the Department for Business

Enterprise and Regulatory Reform (2008) suggest the use of active network manage-

ment (ANM) to incorporate additional DGs. ANM allows the electricity to be efficiently

managed whilst satisfying demands and ensuring the maximum capacities of the distri-

bution cables are not exceeded. Therefore, there is a clear incentive for DNOs to adopt

ANM techniques in order to incorporate potentially thousands of DGs without using

costly network reinforcements. In particular, ANM can be used to coordinate the power

output of DGs such that the loads and the constraints of the network are satisfied.

The coordination of generators in an electricity network is typically referred to as opti-

mal dispatch (Wood and Wollenberg, 1995) and has been traditionally completed using

centralised calculations.

For a central control system to work, large amounts of data must be transmitted to a

central location, manipulated, and then sent back to each generator. However, as the

electricity network size increases, the complete control loop that is necessary, in order

to control the electricity generators centrally, may be too slow to respond to fluctuating

changes in a timely fashion (Department for Business Enterprise and Regulatory Reform,

2008; Granada et al., 2008) (See Section 2.3.2 for a thorough discussion of centralised

versus distributed and decentralised control in electricity networks). Hence, this thesis

is concerned with how DNOs can incorporate distributed and decentralised optimal

dispatch methods, using ANM, in order to be able to manage an increased number of

DGs in the distribution networks, whilst reducing CO2 emissions and ensuring electricity

demand is satisfied.6 The following section discusses the requirements of a system for

controlling the power outputs of generators in electricity distribution networks.

1.1 Research Requirements

From the discussion of the problems in the previous section, a number of requirements

can be identified for coordinating generators in an electricity distribution network, whilst

reducing the cost of the network, and satisfying the loads and the network constraints:

I Autonomy The algorithms developed should require minimal human interaction

in order to coordinate the power output of generators in electricity networks. This

5A smart meter is an electrical device that receives real-time electricity pricing and displays this
information to customers.

6It should be noted that considering the change of electricity demand over time is beyond the scope of
this thesis. We consider the demands of a network to be static. See Chapter 6 for future work concerning
varying demand over time.
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is because as the size of the network grows, it may become increasingly difficult for

human operators to make optimal and efficient decisions due to the large amount

of data and computation required.

II Minimise CO2 Emissions The generators should coordinate such that they

increase the efficiency of the network by minimising CO2 emissions.

III Scalability The algorithms should be able to scale to large electricity networks

that contain thousands of generators and distribution cables.

IV Handle Different Types of Generation The algorithms should be able to

coordinate different types of generators with varying outputs and constraints. For

instance, renewable generators, such as wind turbines, will only generate electricity

when the wind blows. Thus, the algorithms need to be able to handle intermittent

generators.

V Distributed and Decentralised Control The algorithms must decentralise and

distribute the computation and information throughout the electricity distribution

network. Each generator in the network will take on some of the computation to

solve the optimal dispatch problem. See Section 2.3.2 for a discussion of the

advantages of distributing and decentralising control in electricity networks.

VI Enable Plug-and-Play Since the electricity network is going to evolve and in-

crease in size over the coming years, the algorithms will need to be able to adapt

to different network topologies and electrical devices. Thus, they should allow

operators to “plug-and-play” new generators, loads and distribution cables into

(and out of) the network. This should be achievable without having to redesign

the algorithms for the particular problem at hand.

VII Graceful Degradation In the event that one or more generators malfunction

and are unable to communicate with their neighbours, the algorithms should still

be able to compute a solution without failing in an unexpected way.

The following section discusses the existing work on coordinating generators in an elec-

tricity network, and the gap in the literature that this thesis addresses.

1.2 Research Challenges

From the problems and requirements identified in the previous section, there are some

key challenges that must be addressed for coordinating generators within an electricity

network:
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1. When coordinating generators in an electricity network, the first key challenge is

ensuring the algorithms minimise the global cost of the network (i.e., CO2 emis-

sions) whilst satisfying the local and global constraints of the electricity network.

The local constraints of the electricity network consist of the maximum thermal

capacities of the distribution cables, and the maximum and minimum power out-

puts of the generators. The global constraint of the electricity network requires

that total production must equal total consumption of electricity.

2. The algorithms that coordinate generators in an electricity network must be robust

to failure (i.e., if one of the generators is unable to communicate, due to a commu-

nication network failure, the algorithm should still be able to arrive at a solution).

This implies that the system should be decentralised so that the computation does

not rely on a single entity, and also that the system should be distributed so that

the computation is distributed between generators, giving higher robustness than

a centralised approach.7 Thus, the second key challenge is ensuring that the co-

ordination problem is split up in such a way so that the optimal decision for each

generator can still be calculated without centralised control.

Some of these key challenges are already being addressed within the artificial intelligence

and power systems communities using ANM. In particular a number of authors address

the issues of coordinating generation from intermittent resources in the transmission

network (where lines are less constrained than in the distribution network) (Kim and

Baldick, 1997; Davidson et al., 2009). For example, Davidson et al. (2009) present an

algorithm to manage the power output of the generators in the transmission network

in order to reduce overloaded transmission lines.8 However, their technique involves a

central authority calculating the power output of each generator. As the size of the

network grows, solving an optimisation problem in a centralised manner may become

infeasible. This is due to the amount of data that must be held centrally about each

generator and distribution cable.9

Kim and Baldick (1997) overcome the above issue by introducing a decentralised algo-

rithm which uses Lagrangian techniques and the auxiliary problem principle (APP). The

network is split into regions and each region communicates with its neighbouring regions

to decide the optimal power outputs for their generators. However, this algorithm has

only been tested on problems containing up to two regions. Thus, it is unclear whether

it will scale well when applied to larger electricity networks. Recently, Kraning et al.

7See Section 2.3.2 for a discussion of the advantages of distributing and decentralising control within
an electricity network.

8An overloaded transmission line (or distribution cable) occurs when the power travelling through it
is higher than its normal operating thermal capacity. As a result, the transmission line protection will
trip and the line will be unable to transmit power leading to network failure.

9For instance, data such as the minimum and maximum outputs, carbon intensity, and current output
of the generators, topology of the network, and the amount of power flowing through each distribution
cable. See Section 2.3.2 for a detailed discussion of centralised and decentralised control within electricity
networks.
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(2013) present a solution that decomposes an electricity network into subproblems using

similar techniques to the APP. They claim they are able to coordinate networks contain-

ing up to 100,000 nodes and project that it will take 200ms to solve in a decentralised

way. However, no concrete results are presented.

In contrast, Kumar et al. (2009) introduce a message passing technique which extends

distributed pseudotree optimisation procedure (DPOP) to solve the related area of re-

search for reconfiguring feeder trees within a distribution network. While this approach

is decentralised, and was shown to work for real-world networks, it does not address the

problems highlighted above of incorporating an increasing amount of generation in the

distribution network, and the need to coordinate their output.

Against this background, there is a clear need for a decentralised algorithm that can

coordinate an increased amount of generation in the distribution networks, such that

CO2 emissions of the entire network are minimised (Requirement II). The algorithm

should scale well with the size of the network (Requirement III), and distribute the

information and computation required to coordinate electricity generators (Requirement

V). Due to the projected increase in renewable generators embedded in distribution

networks, the algorithm will need to be able to handle a wide variety of different types

of generator (Requirement IV).

Now, Requirement I means the system should run automatically and require no human

intervention. This suggests the use of software agents (Wooldridge and Jennings, 1995)10

that interact with each other as part of a multi-agent system. Using a multi-agent

system also means that Requirements V, VI, and VII will be met. Multi-agent systems

typically do not require a fixed number of agents to interact with each other at any one

time. Thus, they can be inherently plug-and-play capable (Requirement VI) and can

gracefully degrade (Requirement VII) since any agent can join the system (or leave) and

the remaining agents are still capable of interacting. Moreover, multi-agent systems can

be implemented in a decentralised and distributed fashion (Requirement V) so that each

agent undertakes some of the computation to reach a global solution.

By distributing and decentralising the computation, the scalability issues of a system

can be addressed (Requirement III). Centralised approaches to coordinate generators in

an electricity network can be fast, as Davidson et al. (2009) show, but could become

infeasible for large networks. This is due to the large amount of data that must be

transmitted to a central location. Moreover, having a central authority provides a central

point of failure for the entire system.11 Thus, to address the scalability issues, there is

a clear incentive to decompose and distribute the computation.

10An agent is an autonomous piece of software that has the ability to interact with its environment,
exhibiting goal driven behaviour, in order to maximise the agent’s utility function.

11The disadvantages of centralised control within an electricity network are discussed in more detail
in Section 2.3.2.
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The decentralised and distributed coordination of potentially tens of thousands of phys-

ically distributed entities has long been a focus of research for the distributed con-

straint optimisation problem (DCOP) community (Modi et al., 2005; Petcu and Falt-

ings, 2005; Mailler and Lesser, 2006; Farinelli et al., 2008). As such, the DCOP com-

munity have an extensive set of algorithms to coordinate distributed systems using

agent-based message passing. Examples include DPOP (Petcu and Faltings, 2005),

asynchronous distributed constraint optimisation (ADOPT) (Modi et al., 2005), asyn-

chronous partial overlay (APO) (Mailler and Lesser, 2006), optimal asynchronous partial

overlay (OptAPO) (Mailler and Lesser, 2004), and max-sum (Farinelli et al., 2008). A

subset of these algorithms (i.e., DPOP and max-sum) are from the generalised distribu-

tive law (GDL) family of algorithms (Aji and McEliece, 2000; Farinelli et al., 2013) which

provides a message passing framework that has been proven analytically and empirically

to converge to optimal solutions very quickly (Aji and McEliece, 2000; Kschischang et al.,

2001; Farinelli et al., 2008). Thus, these existing algorithms provide a starting point for

solving the optimal dispatch problem in a distributed and decentralised fashion.

The following section discusses the research contributions of this thesis.

1.3 Research Contributions

To address the challenges of distributing and decentralising the optimal dispatch prob-

lem, we present a number of novel message passing algorithms in Chapters 3, 4, and

5, which solve the problem of coordinating generators in acyclic electricity distribution

networks (i.e., radial networks, or ring main and interconnected networks that have

been configured into acyclic networks). In what follows, we elaborate on the individual

contributions of this thesis.

In Chapter 3 we provide a new formalism of the optimal dispatch problem as a DCOP.

We show how this can be decomposed as a factor graph and solved using algorithms

based on the GDL family, such as max-sum. We go on to show that discrete max-sum

applied näıvely in this setting performs a large number of redundant computations. To

address this issue, in Chapters 4 and 5 we present both discrete and continuous novel

message passing algorithms.

In order to apply a discrete algorithm to the optimal dispatch problem, the electricity

distribution network constraints must be discretised as detailed in Section 3.4. Whilst

discretising the electricity distribution network constraints using a small discretisation

unit decreases the error between the discrete optimal dispatch solution and the actual

optimal dispatch solution, the computation time increases. However, if a large dis-

cretisation unit is used, a discrete algorithm can outperform a continuous algorithm for
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certain scenarios.12 In contrast, a continuous algorithm does not require the electricity

constraints to be discretised and does not suffer from accuracy issues as a result.

In more detail, in Chapter 4 we present a novel message passing algorithm, called

D–DYDOP (Discrete–DYnamic programming Decentralised OPtimal dispatch) which

discretises the power outputs of the generators, the loads, and the distribution cable

flows. Agents communicate with their neighbours to determine the optimal power out-

puts for the entire network such that the global objective to minimise CO2 emissions is

achieved. In Section 4.4 we benchmark D–DYDOP against both an optimal centralised

approach based on mixed integer programming (MIP), and our benchmark decentralised

algorithm in Chapter 3. The contents of Chapters 3 and 4 appeared in Miller et al. (2012)

and Miller et al. (2013).

In Chapter 5 we present C–DYDOP (Continuous–DYnamic programming Decentralised

OPtimal dispatch) which extends D–DYDOP to use continuous variables for genera-

tor power outputs, loads, and distribution cable flows. Instead of calculating a cost

for each discrete power output, agents use piecewise linear functions to represent the

cost of generating power over a range of distribution cable flows. This allows for a

much more compact representation of a message which agents communicate with their

neighbours. The advantage of using continuous variables is that C–DYDOP does not

suffer from the discretisation of the search space; unlike D–DYDOP which must iter-

ate through every possible combination of discrete values when calculating messages.

Furthermore, compared to D–DYDOP, C–DYDOP does not suffer from the branch-

ing factor of the network, or accuracy issues with regard to the optimal answer. We

benchmark C–DYDOP against D–DYDOP, the centralised approach, and max-sum, to

show that C–DYDOP outperforms D–DYDOP and max-sum in terms of total number

of message elements sent and computation time. The contents of this chapter appeared

in Miller et al. (2013). The following section details the structure of this thesis.

1.4 Thesis Structure

The remainder of this thesis is structured as follows:

Chapter 2 A review of the literature relevant to this thesis is presented. We intro-

duce the global target to reduce CO2 emissions and how the UK is helping to

achieve this target. The UK electricity network is described along with the cur-

rent problems that exist and the need for a ‘smarter’ electricity network. Power

flow coordination, the problems associated with electrical power flows, and active

network management are discussed along with various approaches to coordinating

12In Section 5.4 we show that our discrete algorithm D–DYDOP can outperform, in terms of compu-
tation time, our continuous algorithm C–DYDOP when a large discretisation unit is used.
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the power output of generators using a smarter grid. We present typical distribu-

tion network topologies including radial, ring main, and interconnected. Finally,

we explain DCOPs and introduce the GDL family of algorithms including a formal

definition of max-sum.

Chapter 3 We introduce the electricity network model that is used by Chapters 3, 4,

and 5. Furthermore, we present our novel representation of an electricity distribu-

tion network as a DCOP and solve using our benchmark decentralised algorithm

discrete max-sum. Note that the techniques presented in Section 3.4 are required

to discretise the electricity distribution network constraints before applying max-

sum. Thus, the accuracy of the solution calculated by max-sum is dependent on

this discretisation. Moreover, max-sum applied näıvely in this setting performs a

large number of redundant computations. The contents of this chapter appeared

in Miller et al. (2012) and Miller et al. (2013).

Chapter 4 To address the redundant computation problems associated with applying a

näıve implementation of max-sum, we present our novel message passing algorithm,

called D–DYDOP, which uses techniques based on local consistency to prune much

of the search space. Messages are propagated from leaf nodes, up to the root

of the tree using a dynamic programming approach. Like with discrete max-

sum, D–DYDOP requires the electricity distribution network constraints to be

discretised. The contents of this chapter appeared in Miller et al. (2012) and Miller

et al. (2013).

Chapter 5 In order to alleviate the accuracy issues associated with both discrete max-

sum and D–DYDOP, we present an extension of D–DYDOP, called C–DYDOP,

which does not require the electricity distribution network constraints to be dis-

cretised. C–DYDOP uses continuous values for the generator power outputs and

distribution cable flows, enabling computational overheads to be reduced. The

contents of this chapter appeared in Miller et al. (2013).

Chapter 6 Finally, we conclude by summarising this thesis and giving a detailed plan

of the future work.
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Chapter 2

Background

This chapter gives a detailed overview of the key background research related to this

thesis and provides the necessary theory in developing the algorithms and techniques

presented in Chapters 3, 4, and 5. Section 2.1 describes the global drivers and initia-

tives to reduce carbon dioxide (CO2) emissions, and how the UK government is aiming

to achieve its reduction targets. Section 2.2 introduces nationwide electricity networks,

describes the physics of electricity, introduces the complexities that arise when coordi-

nating power flows within a network, and presents typical electricity distribution network

topologies. Section 2.3 presents the need for a smarter network and describes state of

the art techniques for coordinating generators within a smart grid. Moreover, we detail

active network management (ANM), which provides an alternative solution to network

reinforcements, several techniques for coordinating generators in both a centralised and

decentralised framework, and a discussion of the advantages of distributing and de-

centralising the control of generators in electricity networks. Section 2.4 introduces

the distributed bucket elimination algorithm, the distributed constraint optimisation

problem (DCOP) framework, and the generalised distributive law (GDL) family of al-

gorithms. Finally, Section 2.5 summarises the key concepts described and justifies the

techniques that are built upon within this thesis.

2.1 Reducing Global Carbon Dioxide Emissions

As discussed in Chapter 1, agreements have been made by numerous governments to

reduce global CO2 emissions (International Energy Agency, 2011). In particular, the UK

has committed to transition to a low carbon economy with the specific claim of achieving

an 80% reduction of CO2 emissions by 2050 (UK Department of Energy and Climate

Change, 2009b). This is set against a background where the UK residential sector

accounts for 13% of all UK CO2 emissions, (the majority of which is a consequence of
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heating living spaces and water) while the UK transport sector contributes 22% of all

UK CO2 emissions (UK Department of Energy and Climate Change, 2009b).1

In more detail, the UK residential sector predominantly uses gas for heating which pro-

duces high levels of CO2 emissions. However, the transition to a low carbon economy

will see an increasing demand for more efficient heating technologies such as electric

ground-source and electric air-source heat pumps (MacKay, 2008; UK Department of

Energy and Climate Change, 2009a).2 Within the transport sector, a shift from conven-

tional vehicles to ultra-low carbon vehicles (ULCV) will be needed in order to further

reduce CO2 emissions.3 Thus, this transition to a low carbon economy, from both the

residential and transport sectors, will dramatically increase the demand for electricity

over the coming decades.4 However, if electricity is only generated using coal or gas,

the increasing demand for electricity will result in more CO2 emissions. Therefore, a

key aspect of achieving the 2050 targets will be to increase the amount of low CO2

emitting electricity generators, which use renewable resources such as wind and solar,

into electricity networks.

In particular, a large amount of this increased generation will be connected to distri-

bution networks, in the form of potentially thousands of distributed generators (DGs),

in order to help satisfy local demands (Roberts, 2004; UK Department of Energy and

Climate Change, 2009a).5 However, current distribution networks are already highly

capacity-constrained with little automation for controlling the generators in the net-

work (Weedy and Cory, 2004; Roberts, 2004). Therefore, in order to incorporate po-

tentially thousands of DGs, the UK national electricity network, and in particular the

distribution network, will need to be updated (US Department of Energy, 2003). In

order to understand the motivations for updating national electricity networks, the fol-

lowing section elaborates on current national electricity infrastructure and how power is

transmitted.

2.2 Existing Transmission and Distribution of Electricity

Electric power grids are made up of a transmission and a distribution network, enabling

the transportation of electricity from generators to consumers (Weedy and Cory, 2004;

1The majority of the remaining 65% of UK CO2 emissions can be attributed to the energy supply
and business sectors.

2Heat pumps use electricity to efficiently transfer thermal energy in order to heat (or cool) buildings.
3Typically, ULCVs use either solid state batteries or hydrogen fuel cells.
4The UK has already experienced an increase from 59GW of peak electricity demand in 2010 to

61GW in 2013, and will experience a predicted increase to 65GW by the year 2017 (National Grid,
2011).

5Examples of DGs include photovoltaic panels which convert sunlight into electricity, wind turbines
which convert wind into electricity, biomass generators which convert biodegradable matter and specially
grown crops into electricity, and combined heat and power (CHP) generators which attempt to capture
the heat lost during electricity generation and use it to heat buildings.
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Gönen, 2007; Grigsby, 2012). The transmission network consists of heavy duty lines

capable of transmitting electricity at 400kV and above between a number of large power

stations and the main substations. The large power stations generate electricity, using

coal, gas, oil, and nuclear fuels, as three-phase alternating current (AC) at a voltage of

11–25kV. Transformers situated nearby are used to increase the voltage to 400kV for

transportation on the transmission network. High voltages are used, when transporting

electricity, in order to reduce power loss caused by resistance. Resistance is part of

impedance which is the measure of the opposition that a circuit presents to AC when a

voltage is applied. The following equation defines the impedance of a path Z where the

real part R, is the resistance and the imaginary part X, is the reactance:

Z = R+ jX (2.1)

Thus, in more detail, the amount of power lost Ploss, due to heat, is proportional to the

resistance and the current I:

Ploss = I2R (2.2)

Now, if a high voltage E is used, a low current is required to produce the same amount

of power P :

P = IE (2.3)

Thus, for a particular transmission line, assuming the resistance remains constant, a

lower current results in a smaller amount of power lost. Once the power reaches the

main substations, step-down transformers are used to decrease the voltage from 400kV

to either 33kV, 11kV, or 6.6kV which is fed onto the distribution network controlled

by the distribution network operators (DNOs). In order to meet local demands, the

distribution network also contains a high number of smaller generation units distributed

throughout the network. Distribution cables transport electricity between further trans-

formers to decrease the voltage to 400–415V three-phase, giving 230–240V per phase

which is suitable for end consumers (i.e., households).

Having given an overview of electricity generation, transmission, and distribution, we

now focus on distribution network topologies (since this thesis is concerned with con-

trolling generators in distribution networks). Distribution networks differ in a number

of ways from transmission networks. Typically, distribution networks contain a higher

number of branches throughout the network,6 and are much more capacity-constrained

compared with the transmission network (Weedy and Cory, 2004; Roberts, 2004). This

means that the projected introduction of possibly thousands of DGs in the distribution

network will need to be managed efficiently in order to ensure the network does not

become overloaded. In the following section we provide a detailed explanation of typical

distribution network topologies.

6For example, the Indian distribution network topology that we use to test our algorithms, Figure
4.2(a), contains a substation which is connected by 4 distribution cables.
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Figure 2.1: (a) Radial electricity distribution network. (b) Ring main electricity
distribution network. (c) Interconnected electricity distribution network.

2.2.1 Distribution Network Topologies

There are three common types of distribution network topologies, exemplified on Figure

2.1, that are used around the world; radial, ring main, and interconnected (Weedy

and Cory, 2004; Gönen, 2007; Grigsby, 2012). Substations are represented by the thick

horizontal lines, each with an arrow indicating a load; the thickest substation at the top of

each figure is connected to the transmission network. Substations are connected to each

other by distribution cables carrying 11kV, represented by the thin vertical lines. Figure

2.1(a) shows a radial distribution network which is predominantly used in rural areas.

There is only one path from the step-down transformer, connected to the transmission

network, to each load via the connecting substations (i.e., an acyclic network). Loads

are relatively small and widely dispersed (5–50kVA per group of houses).

Suburban distribution networks combine rural distribution network topologies into a ring

main network, as shown in Figure 2.1(b). A ring main network contains a number of

substations in a ring around the step-down transformer connected to the transmission

network. The ring is sectionalised7 so that all substations can still be supplied if a

7A sectionalised network contains a number of switches which can be opened to cut off power to a
particular section of the network.
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distribution cable were to fail, and allows it to be configured into an acyclic network.

Loads are higher than in rural networks (2–10MW/mile2) due to higher density housing.

Finally, Figure 2.1(c) shows an interconnected system used in urban towns and cities

with very heavy loadings (up to 100MW/mile2). Each substation is connected to a

number of other substations resulting in a sectionalised interconnected network. Higher

33kV distribution cables are used as well as 11kV in order to supply power to the loads.

Throughout this thesis, we only consider acyclic electricity distribution networks.8 This

assumption can be justified as follows. Ring main and interconnected networks con-

tain cycles but are configured into acyclic networks, using switches, in order to supply

power (Weedy and Cory, 2004; Grigsby, 2012). The extra distribution cables are used to

ensure uninterrupted supply to all loads in the event of a distribution cable being unable

to transmit power.9 To clarify, consider Figures 2.2(a) and 2.2(b) which are examples of

the interconnected electricity distribution network in Figure 2.1(c) configured as acyclic

networks. Figure 2.2(a) shows an example configuration where two paths from the

transmission network connection to each load pass through separate substations. Figure

2.2(b) shows an example configuration where two paths from the transmission network

connection to each load pass through some of the same substations. Switches inside each

substation ensure the paths are not connected when both paths pass through the same

substation.

Currently, distribution networks contain little automation for the transportation of

power.10 Whilst automation was not necessary in distribution networks when nation-

wide electricity networks came into existence, as electricity distribution networks grow

and become more complex, it becomes increasingly hard for human operators to control

all of the factors within the network without more intelligent techniques (Roberts, 2004;

Department for Business Enterprise and Regulatory Reform, 2008). In Sections 2.3 and

2.4, and Chapters 3, 4, and 5, we explore the intelligent techniques to enable DNOs to

manage their distribution networks efficiently. However, to fully understand the com-

plexity of electricity transmission, distribution, and management, the following section

discusses the physics of electricity.

2.2.2 Physics of Electricity in a Network

In a network of generators and loads (represented by nodes) connected by distribution

cables, the amount of power flowing through each distribution cable will vary according

8We leave cyclic distribution networks for future work, see Chapter 6.
9For instance, Kumar et al. (2009) address the problem of configuring cyclic distribution networks

into acyclic topologies when a fault has occurred.
10It should be noted that the transmission network is already highly automated using supervisory

control and data acquisition/generation management system (SCADA/GMS). SCADA/GMS supervises,
controls, optimises, and manages large scale generation, and transmission systems. However, distribution
networks still lack a lot of this automation (Roberts, 2004).
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(a) (b)

Figure 2.2: Example of the interconnected electricity distribution network in Figure
2.1(c) configured as two different acyclic electricity distribution networks. 2.2(a) shows
an example configuration where two paths from the transmission network connection
to each load pass through separate substations. 2.2(b) shows an example configuration
where two paths from the transmission network connection to each load pass through
some of the same substations. Switches inside each substation ensure the paths are not

connected when both paths pass through the same substation.

to Kirchoff’s laws.11 Thus, complications arise (such as overloaded distribution cables)

when transporting power through networks. This is because power cannot be sent

through a particular distribution cable and must be indirectly manipulated by varying

the loads and the generation within the network. Power flows through each available

path inversely proportional to the impedance of that path. The following equation links

the voltage and the current flowing through the path, with the impedance of the path:

E = IZ (2.4)

Assuming the voltage stays constant, if the impedance is increased, the current will

decrease and vice versa. The consequence of Equations (2.1) and (2.4) is that in a net-

work of generators and loads connected by distribution cables, if one of the distribution

cables in the network is overloaded, the power cannot be easily redirected away from

the overloaded distribution cable. Instead, in order to change the amount of power

flowing through a distribution cable (i.e., the power flow (PF)), the power output of the

generators across the network must be changed.

To calculate the PF through each distribution cable in a network of generators and

loads, alternating current power flow (AC PF) equations can be used, which consider

the nonlinear constraints: balance, branch flow, and generation for real and reactive

power (Wood and Wollenberg, 1995). However, due to the nonlinear nature of these cal-

culations, finding a solution is computationally intensive (Overbye et al., 2004). There-

fore, in practice, AC PF equations are approximated by more feasible linear direct cur-

rent power flow (DC PF) equations that use the real power constraints and make a

number of simplifying assumptions (Kaye and Wu, 1984), specifically:

11The sum of the currents flowing into and out of a node in an electrical circuit is zero (Kirchoff’s
current law). The directed sum of the voltages in a network is zero (Kirchoff’s voltage law).
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1. Line losses are assumed to be zero.

2. The difference between two neighbouring nodes’ voltage phase angles12 θi and θj

are assumed to be small, such that cos(θi − θj) ≈ 1 and sin(θi − θj) ≈ 0.

3. Voltages are assumed to be identically unity using the per-unit system.13

Although DC PF is an approximation, results show that it provides a good approxima-

tion to the actual AC PF with the advantage that it is much faster to compute (Overbye

et al., 2004; Sun and Tesfatsion, 2007). The DC PF equations calculate the power trav-

elling through distribution cables that connect k nodes within an electricity network. In

what follows, we denote vi as node i and tij as the distribution cable that connects vi

and vj where i, j ∈ {1, . . . , k}:
P = BΘ (2.5)

where P = {p1, . . . , pk} is a vector of real resultant power such that pi ∈ R+ kW is

the real resultant power for vi. B = [bij ]k×k is a k × k sparse symmetrical matrix

of susceptances for the distribution cables, where bij ∈ R− siemens is the negative

susceptance of tij for i 6= j, bii =

k∑
j=0

|bij | is the sum of the susceptances for row i, and

the susceptance of tij is given by:

bij =
1

xij
(2.6)

where xij ∈ R+Ω is the reactance of tij . For vi and vj that are not connected, bij = 0.

Finally, Θ = {θ1, . . . , θk} is a vector of voltage phase angles, where θi ∈ R is the

voltage phase angle at vi. The following equation calculates the power flowing through

a distribution cable:

fij = bij(θi − θj) (2.7)

where fij ∈ R kW is the power flowing through tij .
14 Θ can be calculated by rearranging

Equation (2.5) to give:

Θ = PB−1 (2.8)

If one node were to change the power output of its generator, one or more distribution

cable power flows would change due to the coupled nature between the power outputs,

the node voltage angles, and the susceptances of the distribution cables in Equation

(2.5).

In more detail, changing pi in Equation (2.5) will cause one or more θ to change in Θ

(since B is fixed for a particular network). Thus, changing θi will affect the flow of each

12When generating AC electricity, the voltage varies along a sinusoid curve between a positive and
negative amount. The voltage phase angle corresponds to the angle of the sinusoid curve.

13The per unit system expresses actual values of quantities as fractions of referenced quantities (Weedy
and Cory, 2004).

14It should be noted that the sign of fij gives the direction of flow. When fij > 0 the power is flowing
from vi to vj , and when fij < 0 the power is flowing from vj to vi.

17



+100kW

+120kW

+500kW

+360kW

+650kW

+420kW −240kW

−160kW
−210kW

−220kW

−190kW
−210kW

−250kW

−240kW

−200kW

−230kW

A

B

(a)

240kW

170kW

100kW

280kW
120kW

260kW

500kW

360kW

150kW

420kW

30kW

220kW

450kW

650kW

230kW

A

B

(b)

240kW

670kW

100kW

780kW
120kW

260kW

500kW

860kW

650kW

420kW

470kW

280kW

50kW

650kW

270kW

A

B

(c)

Figure 2.3: (a) Consumption and generation within an example electricity distribu-
tion network. (b) Resulting distribution cable power flows from (a). (c) Consumption at
load A changes to –700kW, generator B increases its power output to compensate. The
amount of power travelling along distribution cables that have changed are marked with
dashed red boxes, and the power travelling along distribution cables that have changed

direction are marked with dashed red arrows.
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distribution cable connected to vi due to Equation (2.7). Figure 2.3 shows an example

of how changing the power output of a generator in a network affects the power flows of

multiple distribution cables. Figure 2.3(a) shows consumption and generation within an

electricity network, and Figure 2.3(b) shows the resulting power flows of the distribution

cables from Figure 2.3(a). Figure 2.3(c) shows the new distribution cable power flows if

load A changes its consumption to –700kW and generator B increases its power output

to compensate. The amount of power travelling along distribution cables that have

changed are marked with dashed red boxes, and the power travelling along distribution

cables that have changed direction are marked with dashed red arrows. This illustrates

the difficulty of coordinating power in an electricity network; changing the power output

of one generator in one part of the network can potentially affect power flows in all other

parts of the network. Having presented the physics of controlling electricity in a network,

as well as the associated difficulties, the following section presents the vision of a more

intelligent electricity network capable of managing an increased number of generators,

end consumers, and electrical devices, in capacity-constrained networks more efficiently.

2.3 The Smart Grid

To transition to a low carbon economy, the outdated electricity networks will have to

be modernised in order to incorporate increased generation capacity and more efficient

management of electricity by creating a smart grid. The US Department of Energy

(2003) describes a smart grid as:

A fully automated power delivery network that monitors and controls every customer

and node, ensuring a two-way flow of electricity and information between the power

plant and the appliance, and all points in between. Its distributed intelligence, cou-

pled with broadband communications and automated control systems, enables real-time

market transactions and seamless interfaces among people, buildings, industrial plants,

generation facilities, and the electric network.

The UK Department of Energy and Climate Change (2009a) identifies the following

principles of the smart grid which will need to be implemented in order to achieve a

smarter electricity network:

Observable View a wide range of operational statistics including the location of losses

in the system and the current condition of equipment in not only the transmission

network but also the distribution network.

Controllable Manage and optimise the smart grid to a greater extent than current

electricity networks. This will allow network operators to control some demand

for electricity depending on the supply available and will facilitate the integration

of intermittent renewable generation on a large scale.
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Automated The smart grid will be able to ‘intelligently’ manage the electricity produc-

tion and consumption in an automated manner. It will also be able to ‘self-heal’

in the event of a network failure (i.e., it will identify the fault and then reconfigure

the network in an optimal manner such that the fault is resolved).

Fully integrated Components on the smart grid will need to be fully compatible with

existing electricity networks.

The smart grid separates the electricity network into manageable micro-grids15 that in-

corporate smart metering techniques for real time pricing of electricity, DG and micro-

storage devices (US Department of Energy, 2003; UK Department of Energy and Climate

Change, 2009a). A micro-grid may be connected to major electricity generators, such

as nuclear or coal power stations, much like the current system. However, the difference

is that each micro-grid can be disconnected and isolated from the main electricity net-

work (i.e., working in island mode) and continue to balance the supply and demand by

managing the electricity flow around the decentralised network.

The European smart grids technology platform (European Commission, 2006) and EPRI’s

IntelliGrid initiative (Chuang and Gellings, 2008) have both proposed smart grids as the

key to meeting rising future demands for energy. Therefore, various research groups and

consortia are investigating the technologies that would be needed for such a smart grid.

A partnership in the UK between seven universities, EDF Energy, ScottishPower and

ABB have developed a smart grid called the autonomous regional active network man-

agement system (AuRA-NMS). The main direction of research for the AuRA-NMS is

voltage control and power flow management.

Voltage control involves managing the voltage of a network to ensure that all the devices

and distribution cables that are part of the network operate within safe working lim-

its (Taylor et al., 2008, 2010). Taylor et al. (2010) present a distributed way to maintain

safe voltage levels within AuRA-NMS using case based reasoning (CBR) techniques. For

each case, a number of precomputed solutions are produced using simulations offline,

that describe what measures should be taken to return the network to safe voltage lev-

els. When a voltage excursion is detected, a number of cases are selected which match

the current situation. Each solution is verified using power flow calculations and then a

single preferred solution is selected to be implemented. If more than one solution exists,

then contract agreements between the network operators and the generators are taken

into consideration.16

Rahman et al. (2007) propose another promising micro-grid management system called

the intelligent distributed autonomous power system (IDAPS). This focuses on the

15A micro-grid is an electricity network that contains a number of electrical devices as well as end
users.

16In the UK, these contract agreements are based on a last in first out approach (i.e., generators that
were connected more recently will be switched off first).
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integration of cleaner and more efficient small-scale generation sources and advanced

IP-based communication technologies in order to build a resilient power system. The

project conducted a number of experiments where they tested IDAPS in both grid

mode (i.e., connected to the main electricity network) and island mode. Results showed

that IDAPS could be used to incorporate renewable generation, voltage and frequency

control, communication protocols, and fault resolution in an efficient manner (Rahman

and Pipattanasomporn, 2010), such that demand within the network is satisfied when

working in both grid mode and island mode. By combining these technologies, the

IDAPS and the AuRA-NMS projects proved that it is possible to make an electricity

network that is able to cope with the increased amount of generation and load that will

be experienced in the future without costly network reinforcements.

The above approaches focus on a wide variety of problems associated with implementing

a smarter electricity grid, such as communication between devices on a network, small-

scale generation, renewable generation, voltage control, and power flow management.

This thesis will focus on how an increased amount of generation, particularly from

renewable sources, can be coordinated in distribution networks without the need to

install additional infrastructure by using ANM. The following section introduces ANM

along with the state of the art approaches to implement such a system.

2.3.1 Active Network Management

The current practice for adding generation to electricity networks generally involves

constructing new circuits (network reinforcements) to increase network capacity. Whilst

this is essential, installing network reinforcements can be time consuming and may have

significant monetary and environmental costs (Roberts, 2004). To alleviate the need

for network reinforcements, generators can be connected to the electricity network with

additional constraints, such as voltage limits and thermal overloads, that can be applied

when the system capacity is restricted.

For each generator that is added in this way, a number of predetermined ‘hard-wired’

intertrip schemes have been developed to decrease the power output of the generators in

the event of a network failure. Whilst this is a solution for individual generators, as more

generators are added, these predetermined schemes become increasingly complex and

quickly become infeasible to implement (Roberts, 2004). Moreover, renewable generators

that are added to electricity networks create further problems since they use resources

that are intermittent. Thus, balancing supply with demand using renewable generators

will be more complex than using higher CO2 emitting coal or gas generators that are

not intermittent in nature and more controllable. Therefore, to minimise the cost of

network reinforcement and CO2 emissions, Roberts (2004) suggest the use of ANM that

incorporates dynamic schemes for coordinating generators in an electricity network.

When calculating what power output each generator should have, there is often an
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associated cost.17 Therefore, finding the optimal configuration that minimises the cost

of the network is often desired. This type of problem is referred to in the literature as

optimal power flow (OPF) (Kaye and Wu, 1984; Sun and Tesfatsion, 2007).

As with PF, alternating current optimal power flow (AC OPF) can be approximated by

a more feasible direct current optimal power flow (DC OPF) using Equations (2.5) –

(2.8) (Kaye and Wu, 1984). Sun and Tesfatsion (2007) provide a comprehensive study of

the accuracy of DC OPF compared with AC OPF and conclude that DC OPF is much

faster to compute and is a good approximation for AC OPF. The following section

discusses and compares the current techniques for coordinating generators in an elec-

tricity network, in order to minimise the cost of the network, using centralised, as well

as decentralised and distributed, approaches.

2.3.2 Coordination of Generators

Using a central authority to calculate the power output of each generator requires the

data from every device connected to the network to be transfered to the central authority.

The advantage of having a complete view of the data is that the central authority is able

to calculate the optimal solution. For example, Davidson et al. (2009) use constraint

programming (CP) to change the power outputs of the generators in the transmission

network in order to reduce the power travelling through an overloaded transmission line

subject to a number of constraints; such as ensuring the capacity of each transmission

line is not exceeded. For a given situation, there may be many different solutions for

each generator that meets the constraints of the network. In this case, Davidson et al.

(2009) use a number of preference constraints which attempt to maximise the use of

DGs subject to contract agreements for each generator. CP has an advantage over OPF

because it can offer a number of ranked solutions based on the contract constraints.

If one solution does not reduce the overloaded line to within a safe working level, the

next best solution can be used instead. Typically, OPF simply gives one solution to the

problem and if that solution cannot satisfy all the constraints in the network then the

resulting management of the generators may fail.

The central control of generators, however, presents a number of issues. For a central

control system to work, large amounts of data must be transmitted to a central location,

manipulated, and then sent back to each generator. As the electricity network size

increases, the amount of data that must be transmitted will increase as well; eventually

it may actually be infeasible to transmit that amount of data due to the capacity and

quality of the communication channels (Granada et al., 2008). As such, a centralised

approach may have significant scalability issues for large networks (Platt, 2007; Granada

et al., 2008; Kumar et al., 2009). Moreover, a centralised control system creates a single

point of failure (Roberts, 2004; Solanki et al., 2007), which could be detrimental to the

17For instance, cost in terms of CO2 emissions, fuel consumption, or line losses.
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security of electricity supply with respect to reliability (Platt, 2007; Kumar et al., 2009).

If the centralised control system was to fail (in terms of communication error, processor

malfunction, or power supply loss for instance), each generator would be unable to

determine what it should efficiently output.18 Furthermore, a large change in the total

demand (i.e., larger than can be satisfied by just following the frequency signal), could

result in significant problems if the generator power outputs are not changed accordingly;

problems such as overloaded distribution cables which could lead to complete loss of

power throughout the entire electricity network.

Local environmental conditions (such as fluctuating wind, cloud cover, and rain) can

potentially create another problem to centralised techniques. Although considering the

change of electricity demand over time is beyond the scope of this thesis, future systems

will need to take full advantage of renewable generators in order to ensure the reduction

of CO2 emissions. Using a central system to predict the availability of the environmental

resources that renewable generators harness, as well as controlling generators at remote

locations, requires large amounts of data to be transmitted periodically to the central

system. A centralised approach may be unable to respond to very localised changing

conditions in a timely fashion (i.e., in a matter of seconds) due to the complete con-

trol loop that is necessary to control the generators centrally (Department for Business

Enterprise and Regulatory Reform, 2008).

Thus, in order to address the reliability and scalability issues, and the need for localised

control, a decentralised19 and distributed20 approach to electricity network control will

be needed (Solanki et al., 2007; Granada et al., 2008; Kumar et al., 2009). In terms of

electricity generator control, the decentralised and distributed coordination of genera-

tors involves dividing the computation and information required to calculate the optimal

power output for each generator, among the nodes in the network.21 The nodes com-

municate with their respective neighbours (i.e., the nodes that they are connected to

via a distribution cable) in order to decide the level of output required to balance the

loads while respecting distribution cable capacities. Doing so provides the following

advantages over centralised techniques.

The decentralised and distributed control addresses the reliability issue associated with

centralised control (Platt, 2007; Kumar et al., 2009). If the computing capabilities

of one of the nodes fails, the rest of the network may still be able to compute an

18Most generators in electricity networks are synchronously connected and hence all produce power at
the same frequency (Weedy and Cory, 2004). This means that generators can to some extent satisfy the
demand in the network by just using this frequency signal. However, this process is not optimal when
considering additional costs of the network (for instance CO2 emissions).

19Decentralised computation does not use one central entity to compute a solution but uses multiple
entities that can each compute part of a solution (often in parallel). Note, this computation could still
be within one machine on multiple processors or cores.

20Distributed computation requires the processing entities to be physically distributed throughout a
network.

21Each node would have some computing capability in order to control the generators it is connected
to.
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optimal solution (provided that the required information from the failed node can be

computed by another neighbouring node) because the computation does not solely rely

on a single entity (Granada et al., 2008). Even if a neighbouring node is unable to

receive the required information from the failed node, then a suboptimal solution can

still be calculated.22 In contrast, if the computer of a centralised system were to fail,

each generator would be unable to determine the optimal output with respect to its

neighbouring generators. This could, in the worst case, lead to overloaded distribution

cables.

Finally, by distributing the computation, each distributed node can monitor the local

conditions of the network (for instance, environmental changes to the resources avail-

able), and update its neighbouring nodes via small amounts of data (Granada et al.,

2008). Since nodes only send data to their neighbours, and perform the computation

locally, the control loop (i.e., from a change in the local conditions to performing the

required actions) is small. This is in contrast with a centralised approach which would

require a node to transmit each local change to the central controller, wait for it to be

processed, and then receive a control action back (Department for Business Enterprise

and Regulatory Reform, 2008; Granada et al., 2008). Furthermore, a distributed ap-

proach allows local networks to grow without the need to notify the centre of additional

nodes. Having discussed the advantages of distributing and decentralising generator

control in an electricity network, the rest of this section details the current state of the

art in the literature for doing so.

Kim and Baldick (1997) first presented the notion of decentralised generator coordination

using Lagrangian techniques (Wu et al., 1994). The problem is decomposed into regions

which contain a number of generators, loads, and distribution cables by using the

auxiliary problem principle (APP) (Cohen, 1980). Each region iteratively communicates

with its neighbours, via the distribution cables spanning the regions, in order to solve

the global OPF. Two neighbouring regions construct a dummy bus23 that holds a

number of variables: real and reactive power, voltage magnitude, and phase angle. The

dummy bus variables are duplicated between two regions and each region iteratively

updates its values by exchanging messages until duplicate variables from both regions

converge to within some tolerance. This process is performed in parallel for all regions

and the global OPF is calculated for the entire network. To avoid the need to construct

a dummy bus, thus removing the need to perform costly fine tuning of the dummy

bus parameters, Bakirtzis and Biskas (2003) decouple the OPF problem by using the

distribution cables to separate the OPF parameters between regions. However, both the

above techniques have only been tested on problems containing up to six regions. Thus,

it is unclear whether they will scale well when applied to larger electricity networks.

22In this case the node with the failed generator can be removed from the network topology (using
switches), and two subnetworks can be created which can still calculate what each generator should
output.

23A bus in this context can be thought of as a node.
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Recently, Kraning et al. (2013) presented a novel approach to decomposing an electricity

network into subproblems using similar techniques to the APP. They use alternating

direction method of multipliers (ADMM) to achieve both separability and robustness for

distributed optimisation. Moreover, using ADMM allows them to control the direction

of convergence without external parameters; the parameters are implicitly embedded in

ADMM. They mention that they can solve a network size of 100,000 nodes in 5 minutes

on average using a centralised implementation of their algorithm. Although they have

not created a working decentralised implementation of their algorithm, they project that

it will take roughly 200ms to solve the network of 100,000 nodes. However, no concrete

results are presented.

In contrast to using Lagrangian techniques, Kumar et al. (2009) introduce a mes-

sage passing technique which extends distributed pseudotree optimisation procedure

(DPOP) (Petcu and Faltings, 2005) for reconfiguring feeder trees within a distribution

network (a related area of research). DPOP is a dynamic programming based algorithm

which solves DCOP problems. Kumar et al. (2009) apply their algorithm to the distri-

bution network and decompose the network into overlapping acyclic regions such that

there is a single path from a generator to loads. Experiments show that their algorithm

is able to overcome the limitations of other resource constrained algorithms applied to

multiple constraint DCOP problems (Bowring et al., 2006), such as asynchronous dis-

tributed constraint optimisation (ADOPT) (Modi et al., 2005), because DPOP is able

to exploit the structure and topology of the network. However, it does not address

the problems highlighted above of incorporating an increasing amount of DGs in the

distribution network, and the need to coordinate their output.

Having introduced the current literature on generator coordination in electricity net-

works, and discussed the advantages of distributing and decentralising control, the fol-

lowing section introduces the necessary theory for formulating problems as a distributed

constraint optimisation problem.

2.4 Distributed Constraint Optimisation Problems

This section presents the formal definition of a DCOP (Yokoo and Durfee, 1991; Rossi

et al., 2006). A DCOP is a tuple 〈X ,D,F ,A〉 consisting of a set of h variables X =

{x1, . . . , xh} which can be assigned discrete values in the set of finite domains D =

{d1, . . . ,dh} respectively, and F = {F1, . . . , Fk} is the set of functions (also called

constraints) where Fi : di1×. . .×dij → R+ denotes the cost of each possible combination

of the involved variable values. We denote A = {A1, . . . , Ak} as the set of k agents

where each variable xi is assigned to an agent. In our representation of a DCOP, only

the agent that is assigned the variable has knowledge of its domain and control over its
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value. Moreover, the constraint Fi corresponds to the utility of agent i. For instance, in

the case of an electricity network, each agent could have control of a generator.

The goal of the agents is to find an assignment X ∗ for the variables in X that minimises

the sum of the functions:

arg min
X ∗

k∑
i=0

Fi (2.9)

A DCOP can be represented by a factor graph, whose vertices correspond to variables

and the edges denote the dependencies between the variables. The advantage of using a

factor graph is that the GDL family of algorithms provide a message passing framework

which can be applied to DCOPs using factor graphs. Therefore, in Section 3.2, we show

how a typical electricity network can be transformed into a factor graph. The following

section introduces the GDL family of algorithms, and specifically the max-sum message

passing algorithm.

2.4.1 The Generalised Distributive Law

The generalised distributive law is based on the distributive law, which states that ab+

ac ≡ a(b+c). The left side of this equation involves one addition and two multiplications.

However, the right side of the equation involves only one addition and one multiplication

(since it has been factorised). Therefore, the distributive law gives a fast way (i.e., fewer

arithmetic operations) of computing ab+ac. By generalising the distributive law (hence

GDL), Aji and McEliece (2000) present a large family of fast algorithms that are able to

exploit factorisable problems in order to solve them quickly.24 A DCOP that has been

decomposed into a factor graph can be solved by applying one of the algorithms from

the GDL family; namely max-sum (or min-sum) (Farinelli et al., 2008; Rogers et al.,

2011).25

Max-sum can be seen as a decentralised and distributed version of the bucket elimination

algorithm (Dechter, 1996), which is based on the generalised forms of variable elimination

and nonserial dynamic programming. Bucket elimination can be used to solve a wide

variety of problems including adaptive consistency for constraint satisfaction (Dechter

and Pearl, 1987), dynamic programming for combinatorial optimisation (Bertele and

Brioschi, 1972), and directional resolution for propositional satisfiability (Davis and

Putnam, 1960). Bucket elimination splits the problem up into a number of buckets, and

processes these buckets in a given order. Each time a bucket is processed, the result is

placed in an unprocessed bucket until all buckets have been processed.

24In order to generalise the distributive law, Aji and McEliece (2000) use commutative semirings. A
commutative semiring is a set K with two binary operations called “+” and “.” which can be substituted
for a variety of operations. For instance, the set of real or complex numbers with ordinary addition and
multiplication is a semiring (i.e., (a.b) + (a.c) ≡ a.(b+ c)).

25We use the term max-sum to encompass both max-sum and min-sum as they are identical except
for the maximisation or minimisation of the objective function respectively.
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As an example, consider the context of constraint satisfaction, whereby the value of

each variable must satisfy a number of constraints. Each bucket is a set of constraints

for a particular variable. Processing a bucket involves eliminating the variable from the

bucket’s constraints, and adding the new constraints to the other buckets. Once all

buckets have been processed, the variable values can be calculated. Bucket elimination

was first proposed as a centralised algorithm. However, as well as max-sum, a number of

other algorithms have also extended the bucket elimination framework to solve DCOPs;

algorithms such as DPOP (Petcu and Faltings, 2005), D–DYDOP (Chapter 4), and

C–DYDOP (Chapter 5). In the following section we formally describe the max-sum

algorithm.

2.4.2 Max-sum

Farinelli et al. (2008) were the first to show how to apply max-sum to maximise the

sum of utilities of all the agents in a network. Max-sum scales well with the size of

the network, since the size and number of messages sent, is only dependent on a local

neighbourhood. Max-sum works by factorising the network into a bipartite graph that

consists of variables and functions (utilities) assigned to agents. Each variable has a

number of discrete possible values with a certain utility that is affected by their neigh-

bour’s variable values. Each agent exchanges messages with its immediate neighbours

by making local decisions to maximise their local utilities. In so doing, the global util-

ity is maximised. In more detail, the agents communicate with each other by sending

messages from variable to function, and from function to variable as follows:

From variable to function:

Qb→a(xb) =
∑

a′∈A(b)\a

Ra′→b(xb) (2.10)

From function to variable:

Ra→b(xb) = min
Xa\b

Fa(Xa) +
∑

b′∈B(a)\b

Qb′→a(xb′)

 (2.11)

Let B(a) be the set of variables connected to the function a, A(b) be the set of functions

connected to the variable xb, Fa(Xa) be the utility of agent a when each variable in B(a)

has a certain value, and finally Xa\b ≡ {xb′ : b′ ∈ B(a)\b}. To find the optimal value

for each variable xb, an agent uses the following equation:

arg max
xb

Zb(xb) (2.12)
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where Zb(xb) is the sum of R messages flowing into xb:

Zb(xb) =
∑
a∈A(b)

Ra→b(xb) (2.13)

Max-sum is provably optimal and guaranteed to converge when applied to acyclic graphs

(Aji and McEliece, 2000; Farinelli et al., 2008; Vinyals et al., 2010). Whilst only limited

theoretical results exist for applying max-sum to cyclic graphs, there exists extensive

empirical evidence of its effectiveness on such graphs (Aji et al., 1998; Weiss, 2000;

Farinelli et al., 2008; Vinyals et al., 2010; Winsper and Chli, 2012). Therefore, max-

sum presents a compelling framework to apply to the electricity domain.26 In Chapter

3, we show how max-sum can be used to solve the optimal dispatch problem, and in

Chapters 4 and 5 we benchmark our novel message passing algorithms (D–DYDOP and

C–DYDOP) against max-sum.

As an alternative to discretising the search space, Stranders et al. (2009) present an

extension to max-sum which uses continuous variable values.27 This is particularly

applicable in areas where the variables involved cannot or should not be discretised (i.e.,

problems involving velocities, orientation, or location). The following section provides a

summary of the current state of the art research related to this thesis.

2.5 Summary

A key challenge in the delivery of a more efficient electricity network is how additional

generation can be added to the smart grid without using costly network reinforce-

ments. Roberts (2004) suggests that ANM is the key to adding increased generation

within electricity networks without using complex predetermined intertrip schemes or

network reinforcements. There are a number of centralised and decentralised systems

which coordinate the power outputs of the generators using ANM.

Using a centralised approach, Davidson et al. (2009) use constraint satisfaction tech-

niques to calculate generator power outputs, which conform to flows within the network

and contracted agreements. Whilst this calculates an optimal solution, it uses a cen-

tralised approach to coordinate generators for which we have discussed the disadvantages

in Section 2.3.2. Thus, using this technique does not address Requirements III and V

since the system may have scaling issues when applied to larger networks, and is not

distributed or decentralised. Moreover, it assumes that complete information about each

generator is known centrally which might not always be possible.

26However, applying max-sum to cyclic electricity networks does not work because the resulting opti-
misation problem cannot be decomposed into subproblems to be solved independently using traditional
DCOP techniques. Dealing with cyclic networks remains a key challenge for the general DCOP research
community and is beyond the scope of this thesis, see Chapter 6.

27Chapter 5 uses the notion of piecewise linear functions in (Stranders et al., 2009) and extends it to
be used with C–DYDOP
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In contrast, distributed constraint optimisation techniques have been developed to solve

the related area of research for reconfiguring feeder trees within a distribution network

using an extension of DPOP (Kumar et al., 2009). However, they do not address the

need to incorporate an increased amount of generation into the distribution network

whilst reducing CO2 emissions. Thus, their techniques do not satisfy Requirement III,

when applied to a large network, or Requirement II.

To address the challenge of producing decentralised and distributed algorithms that

scale well with the size of the network, we present a novel extension of max-sum, called

D–DYDOP, that coordinates the power outputs of generators whilst minimising CO2

emissions, in Chapter 4.28 We benchmark our approach on real distribution network

topologies against both an optimal centralised approach, based on a mixed integer pro-

gram solver, and a näıve implementation of max-sum (presented in Chapter 3). In

Chapter 5 we extend D–DYDOP to the continuous domain, called C–DYDOP, which

uses continuous variables for the generator power outputs and the distribution cable

flows. The advantage is that C–DYDOP does not suffer from the discretisation of the

search space, since D–DYDOP must iterate through every possible combination of dis-

crete values when calculating messages. We benchmark C–DYDOP against D–DYDOP

and the centralised approach on the same distribution network topologies.

28Our algorithm uses dynamic programming techniques that have been used in other DCOP algorithms
such as DPOP.

29





Chapter 3

A Benchmark Algorithm for

Decentralised Optimal Dispatch

in Acyclic Electricity Networks

Using Discrete Variables

Against the background highlighted in Chapter 2, this chapter addresses the challenge

of coordinating large numbers of DGs, embedded in the distribution network, by pro-

viding a novel formalism of the optimal dispatch problem as a decentralised agent-based

coordination problem, represented as a DCOP. We show how this DCOP can be decom-

posed as a factor graph and solved using algorithms based on the GDL framework (Aji

and McEliece, 2000), such as max-sum (Farinelli et al., 2008). In more detail, each node

in the network is represented by an agent that undertakes some of the computation

required to solve the optimal dispatch problem; such that demands within the network

are satisfied and CO2 emissions of the entire network are minimised. In particular, we

solve the optimal dispatch problem on the most common distribution network topolo-

gies, namely acyclic networks (see Section 2.2.1). We use the max-sum algorithm as

a benchmark for testing our novel message passing algorithms in Chapters 4 and 5.

Crucially, our algorithms handle the complexities of balancing flows within the network,

without needing central verification of a particular solution.

The remainder of this chapter is organised as follows: Section 3.1 introduces the elec-

tricity network model that is used by this chapter, and Chapters 4 and 5, in order to

solve the optimal dispatch problem. In Section 3.2 we detail our novel formalism of

the optimal dispatch as a DCOP. We show how this DCOP can be decomposed as a

factor graph and solved using algorithms based on the GDL family, such as the max-sum

algorithm in Section 3.3. Section 3.4 presents the necessary techniques for discretising
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the electricity distribution network constraints so that a discrete algorithm can actually

be applied to the optimal dispatch problem. Finally, Section 3.5 concludes.

3.1 Electricity Network Model

In this section, we formally describe the model of an electricity network for which we need

to solve the optimal dispatch problem. Hence, we consider an electricity distribution

network to be a network of generators, loads, and distribution cables. In this network,

we consider a set of n generators G = {g1, . . . , gn}. Each generator gi has a certain

power output variable αi ∈ R+ kW, which is bounded by αmini ∈ R+ and αmaxi ∈ R+

such that αmini ≤ αi ≤ αmaxi .

In this model we consider different classes of generators. Continuous generators capable

of producing any amount of power between αmini and αmaxi (i.e., diesel or biomass

generators), and discrete generators capable of producing power at set intervals between

αmini and αmaxi (i.e., wind turbines or solar panels can either produce the maximum

amount of power available given the current environment, or be switched off). Thus,

each discrete generator has a set of power output levels which it can produce such that

αi ∈ Si kW, where Si = {si1, . . . , siqi}, s
i
j ∈ R+ and qi ∈ Z+ is the number of power

output levels for generator gi. Let α = {α1, . . . , αn} denote the set of power output

variables for the generators in G. Let ei = CIiαi denote the CO2 emissions that are

produced when gi, with carbon intensity CIi ∈ R+kgCO2/kWh, outputs αi.

We consider a set of m loads L = {l1, . . . , lm}. Each load li has a certain power consump-

tion βi ∈ R− kW, where β = {β1, . . . , βm} is the set of power consumption variables for

the loads in L. We denote V = {v1, . . . , vk} as the set of k nodes within the network. A

node relays power to other nodes but can also contain a combination of generators and

loads. Let adj(vi) denote all nodes that are connected to vi via a distribution cable, let

L(vi) be the set of loads that are at vi and G(vi) be the set of generators that are at vi.

T is the set of s distribution cables within the network, where tij ∈ T. Each distribution

cable has an associated thermal capacity tcij ∈ R+ kW, which is the maximum power

the cable can safely carry. It should be noted that we assume that all the distribution

cables have the same reactance.

Finally, W(V,T) is a finite undirected graph describing a network of nodes and distri-

bution cables. F is the set of all power flows fij ∈ R kW along the distribution cables in

the network. Given the above definitions, the optimal dispatch problem, of finding an

allocation of power outputs α whilst minimising CO2 emissions,1 is defined as per the

1In this thesis, our objective function minimises CO2 emissions as part of the optimal dispatch prob-
lem. Typically, optimal dispatch (also referred to as economic dispatch) is concerned with minimising
the monetary cost of running the generators in the network (Fink et al., 1969; Ross and Kim, 1980). We
are simply using a different metric of cost in terms of CO2 emissions instead of generator running costs.
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following objective function:

arg min
α

n∑
i=0

CIiαi (3.1)

subject to the following constraints:

Constraint 1 The flow along a distribution cable cannot exceed its capacity:

|fij | ≤ tcij (3.2)

Constraint 2 The net flow from vi to vj must be the opposite of the net flow from vj

to vi:

fij = −fji (3.3)

Constraint 3 The sum of the outputs from each generator at vi, the sum of the loads

at vi and the net flow from each node w connected to vi is zero:∑
w∈adj(vi)

fwi +
∑

l∈L(vi)

βl +
∑

g∈G(vi)

αg = 0 (3.4)

The optimal dispatch problem presented here can be solved using a mixed integer pro-

gramming (MIP) solver; in this thesis we use IBM’s ILOG CPLEX 12.2. However, simply

solving this MIP with CPLEX uses a centralised approach. As the complexity and size

of the distribution networks grow, using a centralised MIP approach may suffer from a

number of the issues highlighted in Section 2.3.2. Thus, in the remainder of this chapter,

and Chapters 4 and 5, we present novel message passing techniques which can solve the

optimal dispatch problem in a distributed and decentralised fashion. However, in order

to solve the optimal dispatch problem using distributed and decentralised techniques,

the following section decomposes the optimal dispatch problem into a DCOP.

3.2 DCOP Representation

Using the notation introduced in Section 2.4, this section shows how we decompose the

optimal dispatch problem, as defined in Equations (3.1) – (3.4), into a DCOP represented

as a factor graph. Crucially, we provide a mapping of the DCOP to a factor graph that

preserves the acyclic topology of the electricity network. Moreover, this mapping allows

the optimal dispatch problem to be calculated in a fully decentralised way, without

needing centralised verification, whilst balancing all of the loads with generation, and

satisfying the constraints of the distribution cables and generators.

Figure 3.1(a) shows an example electricity distribution network consisting of distribution

cables, generators, and nodes. Example values for the power output range and carbon
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Figure 3.1: (a) An electricity distribution network. Showing example values for the
power output range and carbon intensity of the generators, thermal capacity of the
distribution cables, and power consumption at the loads. Node v0 is connected to
the rest of the electricity grid. (b) The corresponding factor graph representation of
the electricity distribution network, showing variables xi and the functions Fj between
dependent variables connected by edges. The dashed circles give an example of the

agents with the variables they control.

intensity of each generator, thermal capacity of the distribution cables, and power con-

sumption at the loads are given. Node v0 is connected to the rest of the electricity grid.

In our representation of a DCOP, xi corresponds to either a generator power output or a

distribution cable flow, X = α∪F where X is the set of h variables. The corresponding

domain di of xi is:

di =

Si if xi ∈ α

{−tcab, . . . , tcab} if xi ∈ F
(3.5)

For clarification, if xi corresponds to a distribution cable flow fab, the domain of xi is

{−tcab, . . . , tcab}. The function Fi ∈ F corresponds to the utility of agent i. With regard

to our formulation of an optimal dispatch problem, Fi maps to the CO2 emissions of

vi with respect to the constraints of the network (i.e., a lower cost means lower CO2

emissions):

Fi =


∑

g∈G(vi)

CIgαg if Equation (3.4) holds for vi

∞ otherwise

(3.6)

where ∞ is used to penalise variable values that lead to inconsistent flows within the

network (i.e., when Equation (3.4) is not satisfied). With this in mind, the objective

function of the optimal dispatch problem, Equation (3.1), can be factorised in terms of

the agent utility functions using Equation (3.6). The goal of the agents is to find an

34



assignment X ∗ for the variables in X that minimises the CO2 emissions of the network

using Equation (2.9).

Figure 3.1(b) shows the corresponding factor graph of the electricity network in Figure

3.1(a). Note that by using our decomposition of the optimal dispatch problem to a

DCOP, an acyclic electricity distribution network has a corresponding acyclic factor

graph. Once an electricity distribution network has been decomposed into a factor

graph, the optimal dispatch problem can be solved using an algorithm from the GDL

family, such as max-sum.

We choose max-sum to solve the DCOP because max-sum maps directly onto a factor

graph, and directly works with n-ary constraints (i.e., functions connected to more

than two variables, see F5 on Figure 3.1(b) for an example) without any additional

modifications. This property is particularly attractive because electricity distribution

networks often contain a large number of nodes with high branching factors. As discussed

in Section 1.2, other algorithms exist for solving DCOPs, such as ADOPT, or optimal

asynchronous partial overlay (OptAPO), but they have a number of drawbacks (Farinelli

et al., 2008). For instance, OptAPO uses mediator agents which may need to perform

calculations that grow exponentially with the size of the subproblem for which they are

responsible. Similarly, agents using ADOPT will exchange an exponential number of

messages depending on the height of the problem tree. Max-sum, on the other hand,

will only perform calculations that grow exponentially with the number of variables

which each factor graph function depends on; incidentally, this is much smaller than

the subproblems in OptAPO. Moreover, the number of messages exchanged when using

max-sum grows linearly with the number of agents in the system (Farinelli et al., 2008,

2009). The following section explains how the max-sum algorithm, introduced in Section

2.4.2, can be applied to solve the optimal dispatch problem.

3.3 Max-sum Optimal Dispatch

As described in Section 2.4.2, the max-sum algorithm (or min-sum as is the case with

minimising CO2 emissions) uses message passing in order to propagate the utilities of

the variables around the factor graph using Equations (2.10) – (2.13). In max-sum,

functions and variables can be arbitrarily assigned to any agent. However, in our model

each agent is assigned the computation of one function which is associated with a specific

node within the network. Moreover, a natural assignment of variables to agents involves

an agent controlling the generator variables at its designated node, and the distribution

cable variables connected to its node. If two or more agents’ functions share the same

variable, the variable is arbitrarily assigned to one of them, as shown in Figure 3.1(b)

by the dashed circles.
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More importantly, since max-sum has been proven to converge to an optimal solution on

acyclic factor graphs, and given that we provide a mapping from an acyclic electricity

network to an acyclic factor graph, max-sum will be able to calculate the optimum

solution to the optimal dispatch problem. The utility of each agent Fi (used in Equation

(2.11) to calculate the value of a function to variable message and denoted Fi(Xi)), is

calculated using Equation (3.6). In order for an agent to choose the optimal output

for each generator it controls, it sums all the messages it receives from neighbouring

variables using Equation (2.13), and then using Equation (2.12), chooses the combination

of generator power outputs which have minimum CO2 emissions. It should be noted that

the optimal solution taken by each agent is exactly the same as the optimal solution

calculated using the MIP technique detailed in Section 3.1. In what follows, we describe

what each message, from function to variable and from variable to function, means in

terms of the optimal dispatch problem.

A max-sum message sent from function to distribution cable variable is a function of the

flow in the cable with its domain bounded by the thermal capacity of the distribution

cable. In order to apply a discrete algorithm to the electricity distribution network in

Figure 3.1(a), the network must first be discretised. A full discussion on the need to

discretise the electricity distribution network constraints, and the techniques for doing

so, are presented in Section 3.4. For now, consider the following example from Figure

3.2, which is the discretised version of the electricity distribution network in Figure

3.1(a) (when the discretisation unit ω = 1kW). Let the distribution cable t59 between

v5 and v9 have a thermal capacity tc59 of 40kW, the load l9 at v9 be –11kW, and the

generator g5 at v9 have a power output range of 0–30kW. The message R9→13(x13),

sent from F9 to x13 on the corresponding factor graph, Figure 3.1(b), will have domain

x13 ∈ {−40, . . . , 0, . . . , 40}, having 81 utility values corresponding to the 81 variable

values, when ω = 1kW. A negative variable value indicates that the power is travelling

from v5 to v9, and a positive variable value indicates that the power is travelling from

v9 to v5.

A max-sum message sent from function to generator variable is bounded by the mini-

mum and maximum output of the generator. Consider the following example. Let the

generator g5 at v9 have a power output range of 0–30kW. The message R9→5(x5) will

have domain x5 ∈ {0, . . . , 30}, having 31 utility values corresponding to the 31 variable

values. Each possible value indicates the amount of power α5 that g5 is producing.

Messages are propagated around the factor graph until the values of the messages con-

verge. Messages are guaranteed to converge to the optimal solution on acyclic graphs,

at which point each variable chooses its optimal value using Equation (2.12). However,

simply applying the max-sum algorithm näıvely in this manner produces poor perfor-

mance. This is because much of the search space is infeasible and does not need to be

searched. For instance, consider the previous example for the message R9→13(x13). The

message has a total of 81 variable values. However, the maximum amount of power that
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Figure 3.2: The discretised version of the electricity distribution network in Figure
3.1(a) when the discretisation unit ω = 1kW.

could travel along t59 from v5 to v9, in order to satisfy l9, is only 11kW. Moreover, the

maximum output of g5 means that the maximum amount of power that could travel

along t59 from v9 to v5, after l9 is satisfied, is 19kW. Therefore, the utilities calculated

for variable values {−40, . . . ,−12} and {20, . . . , 40} are all infeasible, even though it is

within the thermal capacities of the distribution cable. This highlights the wasted com-

putation that a näıve implementation of max-sum performs. The domain of the message

is bounded by tc59. However, the actual feasible variable values are dependant on the

load and the available generation at v9, which is considerably less. As the network size

grows, this wasted computation from calculating the utility of infeasible states becomes

a major overhead (as we show in Section 4.1.1.2).

Thus, to address this wasted computation issue, in Chapter 4 we present a novel decen-

tralised message passing algorithm, D–DYDOP, which uses techniques based on local

consistency and dynamic programming. As we show later, doing so greatly reduces the

computation time as it allows us to prune much of the search space. However, in order

for a solution to be generated by D–DYDOP or max-sum, the electricity distribution

network constraints must be discretised, as presented in the following section.

3.4 Converting the Electricity Network into a Discrete Op-

timal Dispatch Problem

To be able to use a discrete algorithm to coordinate generators in an electricity network

(such as discrete max-sum or D–DYDOP), the electricity distribution network con-

straints (i.e., the thermal capacity of the distribution cables, loads, and the generator

power outputs) must be discretised. We denote ω ∈ R+ kW as the discrete unit of power
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that will be used to discretise the electricity distribution network constraints. A seem-

ingly sensible approach would be to discretise each variable in the electricity network to

be multiples of ω. However, as we go on to show in this section, discretising the electric-

ity distribution network constraints in order to apply a discrete algorithm only works

within certain scenarios. We denote βi ≤ βi as the discretised load, αmini ≥ αmini as the

discretised minimum output of a generator, αmaxi ≤ αmaxi as the discretised maximum

output of a generator, and t
c
ij ≤ tcij as the discretised thermal capacity of a distribution

cable.

The discretised load must always overestimate the actual amount of power required since

excess power can be wasted (although this is not favourable) but never generated to make

up a shortfall at a load. Similarly, the discretised minimum output of the generators must

always overestimate the actual minimum otherwise the constraints of the generators

will be violated. Conversely, the discretised maximum output of the generators, and

the discretised thermal capacity of the distribution cables must always underestimate

the actual amount of power, again because the constraints of the generators and the

distribution cables will otherwise be violated.

Therefore, the following equations are used to calculate the discretised variables such

that they are multiples of ω:

βi =

⌊
βi
ω

⌋
ω αmini =

⌈
αmini

ω

⌉
ω αmaxi =

⌊
αmaxi

ω

⌋
ω t

c
ij =

⌊
tcij
ω

⌋
ω (3.7)

For example, consider the electricity network in Figure 3.1(a), Figure 3.2 shows the same

electricity network discretised with ω = 1kW. For instance, αmax5 = 30.6kW becomes

αmax5 = 30kW, β3 = −9.2kW becomes β3 = −10kW, and tc35 = 100.9kW becomes

t
c
35 = 100kW. Thus, the set of power outputs of gi become Si = {αmini , (αmini +ω), (αmini +

2ω), . . . , (αmini + (qi − 1)ω), αmaxi }. For the continuous generator g5, the power output

range 0–30.6kW gets discretised to S5 = {0kW,1kW,2kW,. . .,29kW,30kW}. For the

discrete generator g3, the power output values 0kW and 11.3kW get discretised to S3 =

{0kW,11kW}.

The discretised values can be computed in a decentralised way by each node before a

discrete algorithm can be used to coordinate the power outputs of the generators. The

solution calculated will correspond to the discretised version of the electricity network.

Now, if the appropriate discretisation unit is used (i.e., one where each value is not over-

or underestimated), then the solution calculated for the discretised version is guaranteed

to work on the real electricity network. For instance, take the distribution network in

Figure 3.1(a). If ω = 0.1kW then αmax5 = 30.6kW = αmax5 , β3 = −9.2kW = β3,

and tc35 = 100.9kW = t
c
35. Since the real network loads are expressed to 0.1kW, it is

impossible for a solution to contain a generator that will output anything finer than

this amount (such as 5.05kW). Therefore, a discrete algorithm applied to the discretised
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network will produce a solution that can be applied to the real network. In other words,

there is no error between the discretised network and the real network.

However, if the discretisation unit is not appropriate for the current network (i.e., some

of the values have to be over- or underestimated), then the solution requires some ma-

nipulation in order for it to be applicable to the real electricity distribution network.

This is primarily because of the overestimation of the loads. Furthermore, these tech-

niques do not guarantee that the solution is even feasible as it may violate some of the

constraints of the distribution cables, as we shall now demonstrate.

Consider the electricity distribution network in Figure 3.3(a). Nodes va, vb, and vc have

loads of –1.1kW, –2.1kW, and –5.1kW respectively, with a total of –8.3kW. However, in

the corresponding discretised network, Figure 3.3(b), using a discretisation unit of 1kW,

nodes va, vb, and vc have loads of –2kW, –3kW, and –6kW respectively, with a total

of –11kW. This means that any solution that the discrete algorithm calculates for the

discrete network will be for a total load of –11kW. However, since the real electricity

distribution network only has a total load of –8.3kW, there is a difference of 2.7kW

which must be accounted for in some way.

We now detail three ways to apply such a solution calculated by a discrete algorithm

to the real electricity distribution network; by the use of electricity storage batteries

in Section 3.4.1, by reducing the power output of a number of generators and then re-

running the discrete algorithm in Section 3.4.2, and by modifying the distribution cable

constraints before running the discrete algorithm in Section 3.4.3.

3.4.1 Battery Storage

We first consider that each node in the network has access to a battery that could store

any of the remaining power on the network. Hence, any excess power at each node can

be used to charge the battery, and ensures demand and supply are balanced. This would

allow a solution to the discretised electricity distribution network to be directly applied

to the real electricity distribution network. However, requiring each node to have a

battery is an impractical assumption due to the current cost of battery technology; this

cost is magnified when applied to large networks with thousands of nodes. Therefore,

the following section describes a solution that does not require battery storage.

3.4.2 Reducing Generator Power Outputs

The second solution would be to reduce the power output from some of the generators by

the difference between the sum of the actual consumption and discretised consumption

(i.e., 2.7kW for the example in Figure 3.3). However, this introduces a new problem in

that changing the power output of a generator in the network may change the power
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Figure 3.3: (a) An electricity distribution network, showing example values for the
power output range and carbon intensity of the generators, thermal capacity of the
distribution cables, and power consumption at the loads. (b) The discretised version

of the same network when ω = 1kW.

flowing along one or more distribution cables (see Figure 2.3). As a result, this could lead

to distribution cables that have violated their thermal capacity constraints resulting in

an infeasible solution to the problem. To overcome this, we would have to check that all

the distribution cables in the network are within their thermal capacities, adjusting the

power outputs of the generators if some distribution cables are not. Thus, in order for

this technique to work, and allow us to apply a solution calculated by a discrete algorithm

to the real electricity distribution network, we must do the following. Firstly, a number

of generators must reduce their power output until the actual total load has been met.

This can be done in a decentralised fashion by starting at an arbitrary node (i.e., the

node with the smallest ID in the network) and reducing as much of its generator’s power

output as it can. Secondly, the chosen node chooses one of its neighbours with the

highest carbon intensity to repeat the process until the required amount of power has

been reduced. In order to ensure that each distribution cable is still within its capacity,

each generator that reduced its power output fixes it at the current level. Finally, the

discrete algorithm (be it D–DYDOP or max-sum) can then be run again on the modified

network to produce a solution that can then be applied to the real electricity distribution

network. However, there are a number of disadvantages to this technique. Firstly, it

is obviously not optimal due to the arbitrary starting point to decide which generators

must reduce their output. Secondly, once the generator that changed its output has

been fixed, there may not even be a feasible solution that can be calculated. Finally,

it requires the discrete algorithm to be run twice on the network problem and this is

computationally expensive. Therefore, to avoid the need to run a discrete algorithm

twice, the following section describes a solution that modifies the network constraints

before applying a discrete algorithm.
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3.4.3 Modifying the Distribution Cable Constraints

The third solution overcomes the need to run the discrete algorithm a second time

on the network (after a number of generators have reduced their output to match the

total actual consumption in the network), by constraining the distribution cables. The

distribution cables are constrained, to specific values, to ensure that when reducing

the generator power outputs to match the total amount of actual consumption, the

maximum amount of power (flowing along a distribution cable) that can change, will

never exceed the actual thermal capacity of any of the distribution cables.

Consider the example electricity distribution network in Figure 3.3(a) and the corre-

sponding discretised electricity distribution network in Figure 3.3(b). The optimal so-

lution for the discretised electricity distribution network is αa = 2kW, αb = 3kW, and

αc = 6kW giving 2.7kW of excess power and fab = fac = 0kW (i.e., no power is flowing

through either distribution cable), where f ij is the amount of power flowing through tij

and αi is the power output of gi, for the discretised electricity distribution network. In

order to apply this solution to the real electricity distribution network, one or more of

the generators must reduce its power output to a total of 2.7kW. For this example, we

will choose the generator that can reduce its power output by the entire amount of power

required (i.e., gc). Therefore, the solution applied to the real electricity distribution net-

work becomes α̃a = 2kW, α̃b = 3kW and α̃c = 6 − 2.7 = 3.3kW, with f̃ab = −0.9kW

and f̃ac = 1.8kW; we use a tilde over a variable (i.e., α̃a) to denote the value of the

variable after the electricity generators in the discretised electricity distribution network

have been adjusted to match the actual consumption of the network. Therefore, the

maximum amount the power flow of a distribution cable has varied by, between the

initial discretised network and the network after the generators have been changed, is

1.8kW.

Now, consider the worst case where each load, in the real electricity distribution network,

is very close to a discrete unit of power (i.e., multiples of ω = 1kW in this example)

requiring an overestimation of ≈1kW. The optimal solution for the discretised electricity

distribution network is still αa = 2kW, αb = 3kW, αc = 6kW, and fab = fac = 0kW, but

with an excess of ≈3kW. Again, we choose gc to reduce its power output by ≈3kW. Thus,

the solution applied to the real electricity distribution network becomes α̃a = 2kW,

α̃b = 3kW and α̃c ≈ 6 − 3 ≈ 3kW, with f̃ab ≈ −1kW and f̃ac ≈ 2kW. As the loads

get closer to a multiple of ω (requiring a large overestimate), the maximum amount by

which the power flow in distribution cable tij can vary is bounded by:

||f ij | − |f̃ij || ≤ sω (3.8)
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To clarify, f ij is the amount of power flowing through tij before the generators in the

network have been adjusted to match the actual consumption in the electricity distri-

bution network, and f̃ij is the amount of power flowing through tij after the generators

have been adjusted. Thus, we must do the following to apply a discrete algorithm to a

real electricity distribution network and avoid having to run it twice. When discretis-

ing the network, we subtract sω from the thermal capacity of each distribution cable by

modifying the distribution cable discretisation from Equation (3.7). Thus, the maximum

thermal capacity of each distribution cable becomes t
c
ij = ω

⌊
tcij
ω

⌋
− sω = ω

(⌊
tcij
ω

⌋
− s
)

.

Once a solution to the discretised electricity distribution network has been calculated

using a discrete algorithm, the generators can safely reduce their power outputs (as de-

scribed previously) and the maximum amount the power flow in each distribution cable

will vary by is sω. Since the thermal capacity of each distribution cable has already been

reduced by sω for the discretised network, it is not possible for a solution to violate the

constraints of the original electricity distribution network.

With this method of constraining the distribution cables when discretising the electricity

distribution network, a discrete algorithm only needs to be run once. However, there

are a number of problems with this technique. If tcij < sω then this technique cannot be

applied because subtracting sω would result in a negative thermal capacity constraint,

which is of course infeasible. Furthermore, even if each distribution cable can be reduced

by sω, there is no guarantee that there is a feasible solution to the discretised electricity

distribution network. Finally, as with the technique in the previous section, the solution

is not optimal. The following section tests the feasibility of solutions from a discrete

algorithm applied to electricity networks.

3.4.4 Testing the Feasibility of Discrete Algorithms Applied to the

Optimal Dispatch Problem

The experiment was run in Java on a 2.67GHz Intel Xeon quadcore with 12GB of RAM

for max-sum. During each iteration, a random topology is generated with a maximum

branching factor of 2 and the number of nodes fixed at 200. Nodes are assigned a

uniformly distributed load value in the range of [1kW, 5kW], and either a continuous

or discrete generator with a uniformly distributed carbon intensity. There is a 90%

chance that the generator will be continuous.2 If the generator is continuous, it is

assigned a uniformly distributed minimum power output in the range of [0kW, 2kW],

and a uniformly distributed maximum power output in the range of [3kW, 20kW]. If

the generator is discrete, it is assigned a uniformly distributed power output level η

in the range of [3kW, 20kW] (i.e., each discrete generator can either be off, or produce

ηkW). Each distribution cable in the network is assigned a uniformly distributed thermal

2This is an arbitrary number chosen so that the majority of the network contains continuous gener-
ators.
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Figure 3.4: Experiment to show how increasing the amount of excess power per dis-
tribution cable affects the number of feasible solutions generated by max-sum. Using
random acyclic electricity distribution network topologies with 200 nodes and a maxi-

mum branching factor of 2, $max is varied from 15kW to 60kW in 5kW steps.

capacity tcij in the range of [$min, $max], where $max is varied from 15kW to 60kW

in 5kW steps with 200 iterations each, and $min = $max − 5kW. The real electricity

distribution network is then discretised using the equations in (3.7) and max-sum is

applied.

To determine whether each solution max-sum calculates is feasible when applied back

to the real electricity distribution network, we apply the same technique as in Section

3.4.2. We then check, using direct current (DC) power flow analysis, that the discretised

electricity distribution network is still a feasible solution given the thermal capacities of

the distribution cables and the changed electricity generator power outputs.

Figure 3.4 shows how increasing the amount of excess power per distribution cable af-

fects the number of feasible solutions generated by max-sum. By increasing the amount

of excess each distribution cable has available (whilst the total load in the network re-

mains constant), the number of feasible solutions increases. This is because if there is

more power available per distribution cable, adjusting the power output of a number

of generators is less likely to overload one or more distribution cables. Thus, in order

to apply discrete algorithms to electricity distribution networks by adjusting the power

output from a number of generators, one of two techniques can be used. The first tech-

nique is to increase the capacity of each distribution cable within the network. However,

this process can be time consuming and has significant monetary and environmental

costs (Roberts, 2004). The second technique is to use a smaller discretisation unit.

Using a smaller discretisation unit decreases the difference between the total load in
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the real electricity distribution network and the total load in the discretised electricity

distribution network. Thus, a smaller total load difference requires fewer generators to

reduce their power output, meaning the distribution cables are less likely to become

overloaded, resulting in more feasible solutions. However, using a smaller discretisation

unit increases the computation time of a discrete algorithm, as will be shown in Sec-

tions 4.4 and 5.4. The following section provides a discussion of discrete and continuous

algorithms applied to the optimal dispatch problem.

3.4.5 Discussion of Discrete and Continuous Algorithms Applied to

the Optimal Dispatch Problem

As discussed previously, in order for a solution to be generated by a discrete algorithm

such as max-sum (or D–DYDOP presented in Chapter 4), the electricity distribution

network constraints must be discretised. Unless an appropriate discretisation unit is

used (which is often very small resulting in an increased amount of computation) the

solution produced is not always guaranteed to be applicable to the real electricity distri-

bution network. While discretising the electricity distribution network constraints can

be completed in a distributed and decentralised way, a large improvement would be to

use a continuous algorithm (such as C–DYDOP presented in Chapter 5) that can be

applied directly to the optimal dispatch problem.

However, there are a number of advantages for using a discrete algorithm over a con-

tinuous algorithm to solve the optimal dispatch problem. Firstly, if the appropriate

discretisation unit is large, a discrete algorithm can reduce its computation time signif-

icantly and may be able to outperform a continuous algorithm for certain scenarios.3

By using a larger discretisation unit, the number of different power output values that

must be evaluated for each generator is reduced. For example, consider the previous

example of the continuous generator g5 from Figure 3.3(a) with a power output range

of 0–30.6kW. Using a discretisation unit ω = 5kW, the power output range of g5 gets

discretised as S5 = {0kW,5kW,10kW,15kW,20kW,25kW,30kW}. Instead of having to

evaluate 31 different power outputs (i.e., when ω = 1kW), only 7 different power outputs

need to be evaluated. Secondly, if the network contains only discrete generators, then a

continuous algorithm is not appropriate for finding a solution and a discrete algorithm

must be used instead. The following section concludes this chapter.

3.5 Conclusions

In this chapter we addressed the optimal dispatch challenges faced by DNOs. Namely

how an increasing amount of cleaner DGs can be added to already highly constrained

3In Section 5.4 we show that our discrete algorithm D–DYDOP can actually outperform our contin-
uous algorithm C–DYDOP when a large discretisation unit is used.
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distribution networks, and coordinated in an efficient fashion using optimal dispatch.

We provided a novel DCOP formulation of the optimal dispatch problem; we showed

how this can be decomposed as a factor graph and solved in a decentralised manner

using algorithms based on GDL; in particular, the max-sum algorithm. Furthermore,

we showed that max-sum applied näıvely in this setting performs a large number of

redundant computations.

To address the problems associated with applying a näıve implementation of max-sum

(i.e., calculating utilities for infeasible solutions), in the following chapter we present our

novel message passing algorithm, called D–DYDOP, which uses techniques based on local

consistency to prune much of the search space. We empirically evaluate D–DYDOP to

test its performance on different network topologies and benchmark it against max-sum.

Moreover, as discussed in Section 3.4, discrete algorithms can only be applied to the

optimal dispatch problem in certain settings. Thus, to avoid the issues associated with

discretising the optimal dispatch problem, in Chapter 5 we present C–DYDOP, which

uses continuous variables for the power output ranges of the generators, the thermal

capacities of the distribution cables, and the loads.
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Chapter 4

A Novel Algorithm for

Decentralised Optimal Dispatch

in Acyclic Electricity Networks

Using Discrete Variables

As discussed in the previous chapter, max-sum applied näıvely to the optimal dispatch

problem performs a large number of redundant computations. Thus, to address this

issue, we present a novel message passing algorithm, called D–DYDOP, to calculate an

optimal solution in a decentralised and distributed fashion. Thus, this chapter makes

the following contributions to the state of the art:

1. We present D–DYDOP, a novel decentralised message passing algorithm, that

outperforms max-sum by only exploring the search space of feasible generator and

distribution cable states.

2. We provide proof of the optimality of D–DYDOP and empirically evaluate it on

a variety of large real electricity distribution network topologies, showing that it

outperforms max-sum in terms of computational time and total size of messages

sent.

The remainder of this chapter is organised as follows: Section 4.1 describes the two mes-

sage passing phases of D–DYDOP including the construction and merging of discrete

messages as they are propagated up the acyclic network. Section 4.2 provides a proof

of the completeness and correctness of D–DYDOP, and Section 4.3 calculates the com-

putational complexity with regard to the size and topology of the network. Section 4.4

provides an empirical evaluation against the benchmark algorithm max-sum, presented

in Section 3.3, and a highly optimised centralised approach based on MIP. Finally,

Section 4.5 concludes.
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Figure 4.1: The tree representation of the electricity distribution network in Figure
3.1(a).

4.1 Message Passing Phases

D–DYDOP can be applied to acyclic electricity networks and uses a dynamic program-

ming approach. Figure 4.1 gives a simplified tree representation of the electricity distri-

bution network in Figure 3.1(a) using nodes. Each node is assumed to have a number

of generators, and a number of loads. For instance v3 contains generator g1 and load

l3, where as v4 contains just load l4. Each node, which is controlled by an agent, has

exactly one parent node and zero or more child nodes, apart from one node v0 which

is the root node and has no parent. Leaf nodes, (i.e., v7, v8, and v9), have no children.

D–DYDOP proceeds in two phases (which we describe in more detail in the following

sections):

Phase 1 – Value Calculation PowerCost messages are sent from the leaf nodes to

the root node. A node waits until it has received PowerCost messages from all of its

children before computing its own PowerCost message which it sends to its parent.

Each PowerCost message describes the CO2 emissions of its own generation and

the generation of its children.

Phase 2 – Value Propagation When the root node receives PowerCost messages

from all of its children, it calculates the optimum power output for each of its

own generators such that the demands of its children are satisfied and the CO2

emissions are minimised. It then propagates power flow values to all its children

which in turn propagate power flow values to their children.

The algorithm terminates when all leaf nodes receive a power flow value, at which point

each generator knows the optimal amount of power it needs to output. It should be

noted that we draw on the techniques used in the max-sum algorithm and in similar
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dynamic programming algorithms such as DPOP. Max-sum, D–DYDOP, and DPOP

are similar in that D–DYDOP and DPOP are essentially extended versions of the max-

sum algorithm (specifically the GDL family of algorithms). The similarities between

DPOP and D–DYDOP are that each algorithm contains two stages that are similar

(called UTIL propagation and VALUE propagation in DPOP). However, D–DYDOP

differs in the optimisation of the message values and the number of message values sent

in the value calculation stage. D–DYDOP only sends the optimal message values at each

stage after local consistency techniques have been applied allowing us to prune much of

the search space. We elaborate on this pruning, along with the two phases of message

propagation in the following section.

4.1.1 Phase 1: Value Calculation

In what follows we give a detailed overview of the value calculation phase of D–DYDOP.

Section 4.1.1.1 introduces the structure of a discrete PowerCost message, Section 4.1.1.2

describes how a leaf node constructs its discrete PowerCost messages, and finally Section

4.1.1.3 details how a node merges discrete PowerCost messages from its children.

4.1.1.1 Discrete PowerCost Messages

A discrete PowerCost message sent from vi to its parent v̂i, is an array of y flowCO

elements:

PowerCosti→î = [flowCO1, . . . ,flowCOy] (4.1)

where a flowCO element describes the CO2 emissions that occur, when vi and all of its

children output certain amounts of power, such that there is a specified flow of power

between vi and its parent v̂i along the distribution cable tîi:

flowCOj =< fîi,γ(fîi) > (4.2)

where flowCOj denotes the jth flowCO element, fîi ∈ R kW is the resultant power

flow travelling along tîi, and |fîi| ≤ tc
îi

where tc
îi

is the thermal capacity of tîi. Note

that fîi > 0 denotes the resulting power is flowing out of vi to v̂i, fîi < 0 denotes the

resulting power is flowing into vi from v̂i, fîi = 0 denotes no power is flowing between vi

and v̂i. The function γ : R→ R+ kgCO2/h denotes the CO2 emissions that result from

vi and all of its children generating certain amounts of power.1 Each flowCO element

that vi calculates maps to an OPCStatej which describes the power output at vi along

with the flows between vi and its children that results in the CO2 emission described by

the function γ(fîi):

OPCStatej = 〈[αi,F(vi)]〉 (4.3)

1Generator g5 at node v9 (Figure 3.2) with a carbon intensity of 0.1kgCO2/kWh and a power output
of 20kW, will have a resulting CO2 emissions of 2kgCO2/h and 9kW of resulting power travelling to v5.
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Algorithm 1 Constructing a leaf node PowerCost message.

constructDiscreteLeafMessage() {

1. FOREACH (αi ∈ Si) { // Iterate through generator power output values

2. fîi ← αi + βi; // Calculate resultant flow

3. IF (|fîi| ≤ t
c
îi
) { //If the thermal capacity is not violated

4. γ(fîi)← αiCIi; // Calculate resultant CO2 emissions

5. flowCO←createFlowCO(fîi,γ(fîi)); // Create flowCO element and store in PowerCost

// message

6. OPCState←linkToOPCState(flowCO); //Link flowCO element to OPCState

7. }

8. }

9. sendPowerCostMessageToParent ();

}

where the array [αi,F(vi)] contains the power output of a generator at vi and the set

of power flows F(vi) from the distribution cables connecting vi to its children.2 This

mapping represents the dynamic programming aspect of D–DYDOP because as power

flow values are propagated down the tree, during the value propagation phase, the

associated OPCState is used to find the power output of vi given a particular power

flow fîi. Having introduced the notation of a discrete PowerCost message, the following

section describes how to construct discrete PowerCost messages at leaf nodes.

4.1.1.2 Constructing a Discrete PowerCost Message at a Leaf Node

Only the power output of the generators, and the loads at the leaf node need to be taken

into consideration when a leaf node constructs a discrete PowerCost message. For each

power output from each generator at vi, it constructs a corresponding flowCO element

with flow fîi calculated as:

fîi =
∑

l∈L(vi)

βl +
∑

g∈G(vi)

αg (4.4)

giving the resultant power flowing between vi and v̂i. The CO2 emissions γ(fîi) of the

flowCO element, is calculated as:

γ(fîi) =
∑

g∈G(vi)

αgCIg (4.5)

where CIg is the carbon intensity of generator g situated at vi. See Algorithm 1 for

a pseudocode representation of constructing a discrete PowerCost message at a leaf

node.3 We iterate through the power outputs of the generator at vi (lines 1 – 8). For

2The definition assumes one generator at vi. The generalisation to more than one generator at each
node is trivial.

3For ease of reading, all pseudocode representations in this thesis assume that each node vi in the
network contains one generator gi and one load li; the generalisation to more than one generator and
more than one load at each node is trivial.
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each power output the resultant flow is calculated (line 2). If the thermal capacity of

the distribution cable to the parent node is not violated (line 3), the corresponding CO2

emissions are calculated (line 4), and then a flowCO element is created (line 5) and

linked to the OPCState using the generator’s power output which resulted in the CO2

emissions (line 6). All the flowCO elements created are added to a discrete PowerCost

message and then sent to the parent node (line 9). Note that OPCStates that are linked

to by each flowCO element are never sent on to the parent node and are instead kept

for use during phase 2 of the algorithm.

Consider the following discrete PowerCost9→5 message, which v9 sends to v5, as shown in

Figure 3.2. Let the distribution cable t59 have a thermal capacity tc59 of 40kW, the load

l9 be –11kW, and the generator g5 have a power output range of 0–30kW and a carbon

intensity CI5 of 0.1kgCO2/kWh. The following is part of the discrete PowerCost9→5

message:

flowCOj = < 0, 1.1 > → [+11kW ]

flowCOj+1 = < 1, 1.2 > → [+12kW ]

flowCOj+2 = < 2, 1.3 > → [+13kW ]

(4.6)

Now, flowCOj+2 indicates that a flow of 2kW, from v9 to v5, will result in 1.3kgCO2/h

emission with g5 outputting 13kW. The total number of flowCO elements in the dis-

crete PowerCost9→5 message is 31. By contrast, compare with the example R9→13(x13)

message of max-sum in Section 3.3, which has 81 variable values instead. This further

highlights the wasted computation that the näıve implementation of max-sum performs

and the advantages of pruning the search space (i.e., a difference of 50 variable values).

The pruning of the search space is related to ensuring local consistency of the con-

straints and variable values (i.e., thermal capacities of the distribution cables and gen-

erator power outputs), via constraint propagation in a distributed manner (Dechter,

2003). More specifically we ensure node and arc consistency. Node consistency for vi is

enforced for each flowCO element by constricting αi to conform to tc
îi

and βi (i.e., the

range of power gi is capable of outputting will not be the actual power output range

it could generate due to the thermal capacity of its parent’s distribution cable and the

consumption at vi). As a result, arc consistency is also enforced because each flowCO

element will only specify a flow of power between vi and vî that not only conforms to

tc
îi

, but also the actual amount of power that can flow from vî to vi;
4 this is known since

messages are propagated from leaf nodes to the root of the tree. The following section

describes how discrete PowerCost messages are merged.

4Whereas DPOP would send utility values (message values) based on the number of power outputs
the generator at vî has, which could contain solutions with infeasible power flows along tîi (Petcu and
Faltings, 2005).
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Algorithm 2 Merging PowerCost messages.

mergeDiscreteMessages() {

1. FOREACH (αi ∈ Si) { // Iterate through generator ’s power output values

2. FOREACH (flowCO ∈ getChildPowerCostMessages ()) { // Iterate through each

// combination of flowCO

// elements from each child

3. fîi ← αi + βi + sum(state(fci)); // Calculate resultant flow using a flowCO

// element from each child

4. IF (|fîi| ≤ t
c
îi
) { //If the thermal capacity is not violated

5. γ(fîi)← αiCIi + sum(state(γ(fci))); // Calculate resultant CO2 emissions

//using flowCO element from each child

6. IF (MIN(fîi,γ(fîi))) { //If the resultant CO2 emissions for the resultant

//flow is the minumum calculated so far

7. flowCO←createFlowCO(fîi,γ(fîi)); // Create flowCO element and store in

//PowerCost message

8. setNewMinimum(fîi,γ(fîi)); //Set resultant CO2 emissions as new minimum

//for resultant flow

9. OPCState←linkToOPCState(flowCO); //Link flowCO element to OPCState

10. }

11. }

12. }

13. }

14. sendPowerCostMessageToParent ();

}

4.1.1.3 Merging Discrete PowerCost messages

For each vi that has at least one child, the discrete PowerCost messages that it receives

must be processed in order to produce its own discrete PowerCost message that it sends

to v̂i. The amount of power that can flow from vi to v̂i, or from v̂i to vi, is bounded

by tc
îi

. With these bounds, vi is able to calculate each valid flow that can travel into or

out of it. For each valid flow, vi calculates the minimum CO2 emissions that result from

the power output at vi, and the power output from all of vi’s children. To calculate the

flowCO element for each resultant flow with the lowest CO2 emissions value, vi iterates

through every possible power output that it can produce and every flowCO element from

each of its children’s discrete PowerCost message. A state represents the combination

of a flowCO element from each of vi’s children and the power output at vi.
5 The flow

fîi of this state is calculated as:

fîi =
∑

l∈L(vi)

βl +
∑

g∈G(vi)

αg +
∑

c∈chi(vi)

fci (4.7)

where
∑

c∈chi(vi)

fci is the sum of the chosen flowCO elements’ flows from each of vi’s

immediate children chi(vi). In order to choose the minimum state for each resultant

5Note, this state is different from an OPCState which contains only the power flow from each of vi’s
children and the power output at vi.
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flow, the CO2 emissions of the state must be calculated as follows:

γ(fîi) =
∑

g∈G(vi)

αgCIg +
∑

c∈chi(vi)

γ(fci) (4.8)

where
∑

c∈chi(vi)

γ(fci) is the sum of the chosen flowCO elements’ CO2 emissions from each

of vi’s immediate children chi(vi). See Algorithm 2 for a pseudocode representation of

merging PowerCost messages. We iterate through the power outputs of the generator at

vi (lines 1 – 13). For each power output, we iterate through every possible combination

of the flowCO elements from the children of vi’s discrete PowerCost messages (lines 2

– 12). For a particular state (i.e., a combination of flowCO elements, one from each

child, and the power output of the generator at vi) the resultant flow is calculated by

summing each flow of the flowCO elements, in the state, with the generator power output

and the load (line 3). If the thermal capacity of the distribution cable to the parent

node is not violated (line 4), the resultant CO2 emissions are calculated by summing

the CO2 emissions of the flowCO elements, in the state, together with the product of

the generator’s power output and its carbon intensity (line 5). If the resultant CO2

emissions are the minimum recorded for the particular resultant flow (line 6), then the

flowCO element is created (line 7), set as the new minimum for that particular resultant

flow (line 8), and linked to the OPCState (line 9). All the flowCO elements created are

added to a discrete PowerCost message and then sent to the parent node (line 14).

As an example of merging discrete PowerCost messages, consider the following discrete

PowerCost5→3 message, v5 sends to v3, as shown in Figure 3.2. Let tc35 be 100kW,

tc58 be 20kW, tc59 be 40kW, l5 be –10kW, l8 be –41kW, l9 be –11kW, g2 have a power

output range of 0–20kW, CI2 be 0.7kgCO2/kWh, g4 have a power output range of 0–

40kW, CI4 be 0.25kgCO2/kWh, g5 have a power output range of 0–30kW, and CI5

be 0.1kgCO2/kWh. The following is part of the discrete PowerCost5→3 message (after

receiving messages from v8 and v9):

flowCOj = < −10, 8.5 > → [+0kW ] v8(−19) v9(19)

flowCOj+1 = < −9, 8.75 > → [+0kW ] v8(−18) v9(19)

flowCOj+2 = < −8, 9.00 > → [+0kW ] v8(−17) v9(19)

(4.9)

Now, flowCOj+1 indicates that a flow of 9kW, from v3 to v5, will result in 8.75kgCO2/h

emission with g2 outputting 0kW, a flow of 18kW from v5 to v8, and a flow of 19kW

from v9 to v5. The following section describes the second phase of D–DYDOP whereby

power output values are propagated from the root node to the leaf nodes.
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4.1.2 Phase 2: Value Propagation

Once the root node has received discrete PowerCost messages from all of its children,

it calculates how much power each of its generators should output in order to satisfy its

immediate children’s loads whilst minimising CO2 emissions. It does this by iterating

through every possible power output that it can produce and every flowCO element from

each of its children’s discrete PowerCost messages. Equation (4.7) is used to calculate

the resultant flow of a state. If the flow is not equal to zero, then this particular

state for the network is infeasible, since excess power means that supply and demand

is imbalanced. For every state that has a flow equal to zero, the CO2 emissions of the

network are calculated by using Equation (4.8).

The root node’s state with the minimum CO2 emissions corresponds to the minimum

CO2 emissions for the entire network, and is selected as the optimum state.6 Power

flow values are then sent to each of the root node’s children telling them which of

their flowCO elements resulted in the minimum CO2 emissions. The child retrieves the

correct flowCO element by matching the power flow value sent to them with the flow

from the flowCO element. The OPCState which is referenced by each child recipient’s

corresponding flowCO element tells the child exactly how much power to output. The

child recipient can then send the power flow specified in its OPCState to each of its

corresponding children. Power flow values are propagated in this manner to the leaf

nodes, at which point each generator in the network knows its optimum power output

that results in the minimum CO2 emissions for the entire network. It should be noted

that if there are no states with a flow equal to zero, this indicates that there is no

solution possible which D–DYDOP will report. There are two possibilities for not being

able to find a solution. The first possibility is that there is actually no solution given

the real electricity distribution network constraints (i.e., CPLEX would also report a

solution does not exist). The second possibility is that due to the discretisation unit

used, there is no solution to the discretised electricity distribution network. In this case

a smaller discretisation unit can be used to determine whether a solution does exist to

the real electricity distribution network. Having introduced D–DYDOP, we now present

completeness and correctness of the algorithm.

6If multiple states exist with the same minimum CO2 emissions, this indicates there are multiple
optimal configurations for the outputs of the generators and one of the states is chosen arbitrarily. This
can happen when two or more generators have the same carbon intensity.
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4.2 Completeness and Correctness

In what follows, we prove that D–DYDOP applied to acyclic networks is complete7 and

correct.8

Proposition 4.1. D–DYDOP is complete.9

Proof. To construct discrete PowerCost messages, vi must iterate through all of its

own generator’s possible power outputs and every flowCO element from each of its

children’s discrete PowerCost messages. Each flowCO element contains the minimum

CO2 emissions that result from each l ∈ L(vi), and all of its childrens’ loads, being

satisfied. The root node chooses a feasible state that results in the minimum CO2

emissions. Therefore, at each node, all feasible states are evaluated and the root node

chooses the optimal state which minimises CO2. Hence, the algorithm is complete.

Proposition 4.2. D–DYDOP is correct.

Proof. This proof follows on from Proposition 4.1. When constructing messages, vi only

evaluates feasible states; the states that conform to Equations (3.2) – (3.4) and the power

outputs of each g ∈ G(vi). Each message will contain the minimum CO2 emissions that

result from a feasible set of states. Therefore, any solution calculated by the algorithm

will be valid as it has explicitly conformed to the local and global constraints of the entire

network (since constraint checks are explicitly embedded in the algorithm). Hence, the

algorithm is correct.

Having presented the correctness and completeness of D–DYDOP, we now calculate the

computational complexity.

4.3 Computational Complexity

Here, the worst-case complexity of D–DYDOP is calculated, with regard to the size of

the network and the number of children of a node, in order to show its suitability for

large optimal dispatch problems (Requirement III).

Proposition 4.3. The size of discrete PowerCost messages (i.e., the total number of

flowCO elements) sent by D–DYDOP grows linearly with the size of the network.

7Complete in terms of finding the optimal solution calculated by CPLEX using Equations (3.1) –
(3.4).

8Correct such that any solution returned by D–DYDOP is feasible given Equations (3.1) – (3.4).
9To clarify, if an optimal solution exists for the real electricity distribution network, D–DYDOP will

find the optimal solution to the discretised electricity distribution network. Furthermore, as discussed
in Section 3.4, if the appropriate discretisation unit is used (i.e., each discretised value does not over-
or underestimate the real value), then the solution calculated for the discretised electricity distribution
network is guaranteed to work on the real electricity distribution network.
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Proof. In the worst case, the maximum size of the discrete PowerCost message vi has

to create and send to v̂i is Φi:

Φi =
2tc
îi

ω
(4.10)

This highlights how ω influences a node’s message size; a small ω increases the size of

the message, whereas a large ω decreases the size of the message, see Section 3.4 for a

full description of the discretisation unit ω. In the worst case, the size of the messages

D–DYDOP has to create and send in total is:∑
vi∈V\vr

Φi (4.11)

where vr is the root node. Therefore, the size of the messages D–DYDOP sends grows

linearly in O(|V|).

Proposition 4.4. The number of states that vi must iterate through is exponential in

|chi(vi)|.

Proof. When merging discrete PowerCost messages, vi must iterate through all states

in the Cartesian product of all of its children’s states and its own power output values.

Therefore, the number of states a node must iterate through in the worst case grows

exponentially in O(M |chi(vi)|), where M is the maximum number of flowCO elements a

discrete PowerCost message received from the children of vi contains.

Even though the worst-case complexity of D–DYDOP is exponential in the number of

children a node has, it is significantly less than the total number of nodes in the entire

network. Thus, D–DYDOP may be able to exploit the structure of the network (unlike

max-sum that does not explicitly take this structure into consideration) and compute

an optimal solution with less computation. Having presented D–DYDOP and analysed

its theoretical properties, the following section provides an empirical evaluation against

max-sum and a highly optimised centralised approach based on MIP.

4.4 Empirical Evaluation

To highlight the improvements of D–DYDOP against the discrete max-sum algorithm

presented in Section 3.3, we conducted two experiments on two large real electricity

distribution network topologies (see Figure 4.2), and one experiment on large random

acyclic electricity distribution network topologies.10 We benchmark D–DYDOP against

max-sum and a highly optimised centralised approach, which uses IBM’s ILOG CPLEX

10We use random topologies in order to vary the branching factor of each node.
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12.2. CPLEX simply solves a large MIP without having to use message passing or decen-

tralised control. Thus, CPLEX is able to calculate a solution in under a second.11 The

reason we benchmark D–DYDOP against the large MIP solution to the optimal dispatch

problem, calculated by CPLEX, is because this solution represents the optimal decision

for each generator. As discussed previously in Section 3.2, we choose to benchmark

D–DYDOP against max-sum, instead of benchmarking against other message passing

algorithms such as ADOPT, OptAPO, or DPOP, because max-sum is the current state

of the art message passing algorithm for solving DCOPs. The three experiments were

conducted in order to test the following:

Experiment 1 Tests the effect of ω for CPLEX, D–DYDOP, and max-sum on the two

large real electricity distribution network topologies in Figure 4.2.

Experiment 2 Tests the effect of the size of the network for CPLEX, D–DYDOP, and

max-sum on the two large real electricity distribution network topologies in Figure

4.2.

Experiment 3 Tests the effect of the branching factor for CPLEX, D–DYDOP, and

max-sum on large random acyclic electricity distribution network topologies.

Figure 4.2 shows the two real electricity distribution networks used for the experiments.

Figure 4.2(a) is located in India12 and contains 76 substations, each of which can further

be connected to as many as 400 nodes. Figure 4.2(b) is a section of the electricity

distribution network located in Southampton UK, and contains 27 substations, each of

which can further be connected to hundreds of nodes. We have taken a small section

of the Southampton electricity distribution network and indicated which substations

connect to the larger distribution network.13 We only use two real network topologies

because the topologies of electricity distribution networks are similar throughout the

world. The remainder of this section is organised as follows: Section 4.4.1 describes

the setup of the electricity distribution networks. Section 4.4.2 details Experiment 1,

Section 4.4.3 details Experiment 2, and Section 4.4.4 details Experiment 3. Finally,

Section 4.4.5 draws conclusions from all three experiments.

4.4.1 Experiment Setup

Each experiment was run in Java on a 2.67GHz Intel Xeon quadcore with 12GB of RAM.

During each iteration, nodes are assigned a uniformly distributed load value in the range

11Although centralised techniques in this context are fast, they suffer from a number of problems
as described in Section 2.3.2. Thus, distributed and decentralised techniques may be the only feasible
solution to coordinating the power output of generators in electricity networks.

12We cannot disclose the exact location due to commercial sensitivities.
13This section was chosen in order to contrast against the Indian electricity distribution network. The

Southampton electricity distribution network is smaller but contains a higher number of high branching
factor substations.
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(b)

Figure 4.2: (a) Indian electricity distribution network topology containing 76 sub-
stations. (b) A section of Southampton UK electricity distribution network topology

containing 27 substations.

of [1kW, 5kW], and either a continuous or discrete generator with a uniformly distributed

carbon intensity. There is a 90% chance that the generator will be continuous.14 If the

generator is continuous, it is assigned a uniformly distributed minimum power output

in the range of [0kW, 2kW], and a uniformly distributed maximum power output in the

range of [3kW, 20kW]. If the generator is discrete, it is assigned a uniformly distributed

14This is an arbitrary number chosen so that the majority of the network contains continuous gener-
ators.
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power output level η in the range of [3kW, 20kW] (i.e., each discrete generator can

either be off, or produce ηkW). Each distribution cable in the network is assigned a

uniformly distributed thermal capacity in the range of [10kW, 15kW]. The electricity

distribution network constraints are then discretised with the equations in (3.7) (where

ω is varied between 0.5kW and 3.0kW in Experiment 1, and ω = 1kW in Experiments

2 and 3), in order to apply D–DYDOP and max-sum. Having described the setup for

each experiment, the following section details the first experiement.

4.4.2 Experiment 1 : Impact of Varying Discretisation Unit

Experiment 1 was set up in order to test the effect of ω for CPLEX, D–DYDOP, and

max-sum. Using both the Indian and UK electricity distribution networks, the number

of additional nodes at each substation was fixed at 8 and arranged as a random acyclic

network with a maximum branching factor of 2.15 Thus, the total number of nodes in the

whole network was 596 and 203 for the Indian and UK electricity distribution networks

respectively. The discretisation unit ω, used to discretise the electricity distribution

network constraints, was varied from 0.5kW to 3.0kW in 0.5kW steps, each with 50

iterations.16 During each iteration, the nodes and distribution cables were initialised as

in Section 4.4.1.

Figure 4.3 shows four plots of the results from the first experiment (error bars showing

the standard error across the 50 iterations omitted due to being negligible). We use a

logarithmic scale for the y-axis in all four plots. Figures 4.3(a) and 4.3(b) show how

the computation time is affected by the discretisation unit ω for CPLEX, D–DYDOP,

and max-sum on the Indian and UK electricity distribution networks respectively. For

CPLEX, regardless of the discretisation unit, the computation times remain constant.

This is because CPLEX does not require the electricity distribution network constraints

to be turned into a discrete problem before it can calculate a solution. However, for

D–DYDOP and max-sum, the time complexity is exponential in ω.

Thus, it can be seen that for small ω, the computation time for both D–DYDOP and

max-sum suffers greatly. This is because a small discretisation unit results in both al-

gorithms iterating through many generator power outputs (in increments of ω), and

message elements, to calculate the utility of each possible resultant amount of power

that can flow along a distribution cable, as shown by Pseudocode 1 and 2. Max-sum

performs significantly worse than D–DYDOP because of the wasted computation that

it undertakes to calculate the utility for infeasible amounts of distribution cable power

(see Section 4.1.1.2 for an example of the wasted computation a näıve implementation of

15We choose a branching factor of 2 so that the discrete algorithms can calculate a solution within a
reasonable time frame.

16We found 50 iterations to be an adequate amount since further iterations did not improve the
statistical significance of the results.
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(a) Indian electricity distribution network.
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(b) UK electricity distribution network.
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(c) Indian electricity distribution network.
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(d) UK electricity distribution network.

Figure 4.3: Experiment 1 tests the effect of ω for CPLEX, D–DYDOP, and max-
sum. Using both electricity distribution network topologies in Figure 4.2, the number
of additional nodes at each substation was fixed at 8 and arranged as a random acyclic
network with a maximum branching factor of 2. The discretisation unit ω was varied
from 0.5kW to 3.0kW in 0.5kW steps, each with 50 iterations. 4.3(a) and 4.3(b) show
how ω affects computation time for CPLEX, D–DYDOP, and max-sum on the Indian
and UK electricity distribution networks respectively. 4.3(c) and 4.3(d) show how ω
affects the total number of message elements sent for D–DYDOP and max-sum on the
Indian and UK electricity distribution networks respectively. We use a logarithmic scale

for the y-axis in all four plots.

max-sum performs). As the disretisation unit is increased, both algorithms have to cal-

culate fewer state utilities, resulting in decreased computation time. It can be seen that

there is a difference of performance for D–DYDOP and max-sum on the two networks.

D–DYDOP is faster at computing a solution for the UK electricity distribution network

as apposed to the Indian electricity distribution network, whereas max-sum is faster at

computing a solution for the Indian electricity distribution network as apposed to the

UK electricity distribution network. This difference between Figures 4.3(a) and 4.3(b)

for the two algorithms is because the section of UK electricity distribution network is

smaller, but contains a number of nodes with higher branching factors. The higher num-

ber of high branching factor nodes affects max-sum more than D–DYDOP. Therefore,

even though the UK electricity distribution network contains a smaller number of total
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nodes, compared with the Indian electricity distribution network, max-sum is affected

much more by the branching factor of a network as apposed to a larger number of total

nodes in a network (see Section 4.4.4 for the branching factor experiment).

Figures 4.3(c) and 4.3(d) show how the total number of message elements sent (i.e., the

sum of the total message sizes) is affected by the discretisation unit ω for D–DYDOP

and max-sum. Note that CPLEX cannot be compared to the other algorithms using

the discretisation unit because it does not use message passing to calculate a solution.

The total number of message elements sent grows exponentially with regard to ω for

D–DYDOP and max-sum. For small ω, D–DYDOP and max-sum send a large number

of message elements. As explained previously in this section, this is because both al-

gorithms must iterate through a large number of states in order to calculate the utility

for each resultant flow along a distribution cable, and consequently send more message

elements. It can be seen that for each discretisation unit, max-sum sends almost double

the number of message elements compared to D–DYDOP. This is because max-sum

calculates the utility for states that are infeasible, as shown in Section 3.3. Having

presented the first experiment, the following section details the second experiment.

4.4.3 Experiment 2 : Impact of Varying Network Size

Experiment 2 was set up to demonstrate how the size of the network affects CPLEX,

D–DYDOP, and max-sum. Using both the Indian and UK electricity distribution net-

works, the number of additional nodes at each substation was varied from 0 to 30 in steps

of 5, each with 50 iterations. At 30 additional nodes per substation, the total number

of nodes in the network was 2026 and 687 for the Indian and UK distribution networks

respectively. During each iteration, the nodes and distribution cables are initialised as

in Section 4.4.1. Figure 4.4 shows four plots of the results from the second experiment

(error bars showing the standard error across the 50 iterations omitted due to being

negligible). We use a logarithmic scale for the y-axis in all four plots.

Figure 4.4(a) and 4.4(b) show how the computation time is affected by the number of

nodes at each substation (and consequently the total number of nodes in the network)

for CPLEX, D–DYDOP, and max-sum on the Indian and UK electricity distribution

networks respectively. The time complexity of each algorithm is linear in the total

number of nodes in the network. CPLEX has an almost constant computation time of

100ms on average (for very large networks, the effects of the network size on CPLEX

would obviously be more apparent, but still linear). Max-sum has the worst computation

time, quickly reaching over 5 seconds to calculate a solution when there are more than 300

nodes in the Indian electricity distribution network, and over 5 seconds when there are

more than 60 nodes in the UK electricity distribution network. Again, this is because

of the wasted computation that max-sum undertakes when calculating the utility for

infeasible states. Moreover, the effect of the branching factor on max-sum can be seen
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(a) Indian electricity distribution network.
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(b) UK electricity distribution network.
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(c) Indian electricity distribution network.
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(d) UK electricity distribution network.

Figure 4.4: Experiment 2 tests how the size of the network affects CPLEX,
D–DYDOP, and max-sum. Using both electricity distribution network topologies in
Figure 4.2, the number of additional nodes at each substation was varied from 0 to 30
in steps of 5, each with 50 iterations. 4.4(a) and 4.4(b) show how the number of nodes
in the network affects the computation time for CPLEX, D–DYDOP, and max-sum
on the Indian and UK electricity distribution networks respectively. 4.4(c) and 4.4(d)
show how the number of nodes in the network affects the total number of message ele-
ments sent for D–DYDOP and max-sum on the Indian and UK electricity distribution

networks respectively. We use a logarithmic scale for the y-axis in all four plots.

between the two networks by comparing Figures 4.4(a) and 4.4(b). As discussed in the

previous section, even with fewer nodes in the UK electricity distribution network, the

higher number of high branching factor nodes greatly affects the computation time of

max-sum.

However, the large reduction in computation time by using a dynamic programming

approach, and propagating messages from leaf nodes up to the root of the tree, can be

clearly seen from the results of D–DYDOP. For 2026 nodes in the Indian electricity

distribution network, Figure 4.4(a), there is a reduction of computation time by a factor

of 10 for D–DYDOP compared with max-sum. For 687 nodes in the UK electricity

distribution network, Figure 4.4(b), there is a reduction of computation time by a factor

of 65 for D–DYDOP compared with max-sum.
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Figure 4.5: Experiment 3 tests how the branching factor of the electricity distribution
network affects CPLEX, D–DYDOP, and max-sum. Using random acyclic electricity
distribution network topologies with 200 nodes, the branching factor of the network
was varied from 1 to 4 with 50 iterations for each. 4.5(a) shows how the branching
factor of the network affects the computation time for CPLEX, D–DYDOP, and max-
sum. 4.5(b) shows how the branching factor of the network affects the total number
of message elements sent for D–DYDOP and max-sum. We use a logarithmic scale for

the y-axis in both plots.

Figures 4.4(c) and 4.4(d) show how the total number of message elements sent is af-

fected by the number of nodes at each substation for D–DYDOP and max-sum on the

Indian and UK electricity distribution networks respectively. The total number of mes-

sage elements sent for D–DYDOP and max-sum grows linearly with regard to the total

number of nodes in the network. Max-sum sends more than twice as many message

elements compared with D–DYDOP for both the Indian and UK electricity distribution

networks. Having presented the second experiment, the following section details the

final experiment.

4.4.4 Experiment 3 : Impact of Varying Branching Factor

Finally, Experiment 3 was set up to demonstrate how the branching factor of the net-

work affects CPLEX, D–DYDOP, and max-sum. Random acyclic electricity distribution

network topologies were used to test this aspect of the algorithms since a variation of

the branching factor was required. The number of nodes in the electricity distribution

network was fixed at 200, and the branching factor of the network was varied from 1

to 4 with 50 iterations for each. During each iteration, a random acyclic electricity

distribution network was generated with the nodes and distribution cables initialised as

in Section 4.4.1. Figure 4.5 shows two plots of the results from the third experiment

(error bars showing the standard error across the 50 iterations omitted due to being

negligible). We use a logarithmic scale for the y-axis in both plots.
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Figure 4.5(a) shows how the computation time is affected by the branching factor of

the network for CPLEX, D–DYDOP, and max-sum. CPLEX has constant computation

time with regard to the branching factor of the network because it does not use the

structure of the network in order to solve the optimal dispatch problem; it simply solves

a very large optimisation problem, that includes every node and distribution cable, in a

centralised fashion. On the contrary, D–DYDOP and max-sum both have an exponen-

tial time complexity with regard to the branching factor of the network. This is because

both D–DYDOP and max-sum must iterate through every possible combination of gen-

erator power outputs and message elements in order to calculate a utility for each state

of a distribution cable. As the branching factor increases, the number of possible combi-

nations grows exponentially, shown in Proposition 4.4. Max-sum performs significantly

worse due to the wasted computation that it undertakes when calculating utilities for

infeasible states of the distribution cables.

Figure 4.5(b) shows how the total number of message elements sent is affected by the

branching factor of the network for D–DYDOP and max-sum. The total number of mes-

sage elements sent for D–DYDOP and max-sum decreases exponentially in the branching

factor of the network. This is because as the number of children for each node increases,

the height of the network (i.e., from leaf node to root node) decreases meaning that

fewer messages (and consequently fewer message elements) must be sent in order to

calculate a solution (see Section 4.1.1 for how D–DYDOP constructs message elements).

The reasons why D–DYDOP sends fewer message elements than max-sum have already

been explained in Section 4.4.2. The following section discusses the results from all three

experiments.

4.4.5 Discussion

Our results show that D–DYDOP significantly outperforms a näıve implementation of

max-sum, for the optimal dispatch problem, in terms of the total number of message

elements sent and the computation time by pruning the search space efficiently. When

compared to the centralised CPLEX approach, both D–DYDOP and max-sum are sig-

nificantly slower in terms of computation time. However, due to the disadvantages of

a centralised approach highlighted in Section 2.3.2, a decentralised and distributed al-

gorithm, which solves the optimal dispatch problem, may be the only solution. The

following section concludes this chapter.

4.5 Conclusions

To address the redundant computation issues which result from a näıve implementation

of max-sum (introduced in Section 3.3), in this chapter we presented D–DYDOP, a
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novel decentralised message passing algorithm which uses dynamic programming, that

outperforms max-sum by pruning the search space. It does this by propagating messages

from leaf nodes to the root and only calculates the utility for feasible variable states using

techniques based on local consistency. We empirically evaluated D–DYDOP using two

real electricity distribution network topologies based in India and the UK, showing that

it outperformed max-sum (in terms of computational time and total size of messages

sent).

As we have shown in Sections 4.4.2, 4.4.3, and 4.4.4, however, discrete algorithms are

greatly affected by the branching factor of the network. Moreover, in order for a so-

lution to be generated by D–DYDOP or max-sum, the electricity distribution network

constraints must be discretised, as presented in Section 3.4. While this process can be

completed in a distributed and decentralised way, there are only certain scenarios where

a discrete algorithm is a viable solution to the optimal dispatch problem (this is discussed

in depth in Section 3.4). Therefore, to avoid the need to discretise the electricity distri-

bution network constraints, and address the issues associated with the branching factor

of a network when using discrete algorithms, the following chapter extends D–DYDOP

to use continuous variables.
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Chapter 5

A Novel Algorithm for

Decentralised Optimal Dispatch

in Acyclic Electricity Networks

Using Continuous Variables

D–DYDOP suffers from a number of issues due to the discretisation of the electricity

distribution network constraints (see Section 3.4). Therefore, in the following section

we present C–DYDOP, which extends D–DYDOP, such that discretising the electric-

ity distribution network constraints is not necessary. We do this by using continuous,

instead of discrete, variables. This extension is non-trivial because it not only requires

a new way of representing PowerCost messages, using piecewise linear functions, but

also requires additional techniques for creating and merging PowerCost messages, with

a number of special cases. Continuous variables have been used in max-sum using sim-

ilar techniques (Stranders et al., 2009). We use the notion of piecewise linear functions

and adapt it to be used with C–DYDOP.1 Thus, this chapter makes the following

contributions to the state of the art:

1. We present C–DYDOP which extends D–DYDOP by using continuous variables

for the power outputs of the generators, the loads, and the thermal capacities of

the distribution cables. The advantage of using continuous instead of discrete val-

ues, is that the real electricity distribution network constraints do not need to be

discretised before C–DYDOP can be applied. Moreover, since continuous Power-

Cost messages can now be represented by continuous piecewise linear functions,

1To clarify, C–DYDOP differs from continuous max-sum in (Stranders et al., 2009) because, like
D–DYDOP, C–DYDOP uses dynamic programming and local consistency to prune much of the search
space.

67



fewer flowCO elements need to be created, which greatly reduces the amount of

computation required.

2. We provide proof of the optimality of our algorithm and empirically evaluate it on

a variety of large real electricity distribution network topologies, showing that it

outperforms D–DYDOP in terms of computational time and total size of messages

sent.

By presenting C–DYDOP, we address the drawbacks of D–DYDOP and increase the

standard of benchmarks for the deployment of agent-based coordination algorithms to

solve the optimal dispatch problem in the smart grid.

The remainder of this chapter is organised as follows: Section 5.1 describes the two

message passing phases of C–DYDOP including the construction and merging of con-

tinuous messages as they are propagated up the acyclic network. Section 5.2 provides a

proof of the completeness and correctness of C–DYDOP, and Section 5.3 calculates the

computational complexity with regard to the size and topology of the network. Section

5.4 provides an empirical evaluation against D–DYDOP, presented in Chapter 4, and a

highly optimised centralised approach based on MIP. Finally, Section 5.5 concludes.

5.1 Message Passing Phases

In order to extend D–DYDOP we use the continuous model of an electricity distribu-

tion network, presented in Section 3.1, in its entirety. The mechanism for propagating

messages is exactly the same as D–DYDOP (i.e., a value calculation phase and a value

propagation phase). We elaborate on the value calculation phase in the following section.

5.1.1 Phase 1: Value Calculation

In what follows, we present the continuous versions of constructing and merging Power-

Cost messages, and constructing OPCStates. Section 5.1.1.1 describes a new formulation

for continuous PowerCost messages and OPCStates, Section 5.1.1.2 shows how a leaf

node constructs a continuous PowerCost message, and Section 5.1.1.3 details how a node

merges continuous PowerCost messages from its children.

5.1.1.1 Continuous PowerCost Messages

A continuous PowerCost message sent from vi to its parent v̂i, is a piecewise linear

function2 which describes the CO2 emissions that occur between a range of power flowing

2We use a piecewise linear function because it represents the underlying utility of carbon emissions
from a generator against the generator’s power output.
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Figure 5.1: Continuous PowerCost messages, sent within the electricity distribu-
tion network in Figure 3.1(a), depicted as piecewise linear functions, where 5.1(a) is
the continuous PowerCost5→3 message sent from v5 to v3, 5.1(b) is the continuous
PowerCost3→1 message sent from v3 to v1, 5.1(c) is the continuous PowerCost3→1 mes-
sage when g1 has a carbon intensity of 0.4kgCO2/kWh (instead of 0kgCO2/kWh), and
5.1(d) is the continuous PowerCost3→1 when g1 has discrete power values of 0kW and

95.8kW (instead of 0kW and 11.2kW).

along the distribution cable tîi. The power comes from generators at vi and all generators

in the subtree below it outputting certain amounts of power whilst satisfying their loads.

The gradient of each line segment of the piecewise linear function corresponds to the

carbon intensity of one of the generators either at vi or in the subtree below it. If vi and

all nodes in the subtree below it contain generators that are continuous, then the message

sent to v̂i will be a monotonically increasing piecewise linear function, as described

in Figure 5.1(a). However, if vi or its subtree contains discrete generators, then the

piecewise linear function may be discontinuous and won’t necessarily be monotonically

increasing, as described in Figures 5.1(b) – 5.1(d).

Figure 5.1 shows the continuous PowerCost messages, sent within the electricity distribu-

tion network in Figure 3.1(a), depicted as piecewise linear functions. Each figure shows

a possible type of continuous PowerCost message that can be sent using C–DYDOP

(i.e., monotonically increasing gradients, Figure 5.1(a), discontinuous, Figure 5.1(b),

non-monotonically increasing gradients, Figure 5.1(c), and infeasible power ranges, Fig-

ure 5.1(d)). A continuous PowerCost message could be very complex and contain an

amalgamation of more than one type.
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In more detail, Figure 5.1(a) describes continuous PowerCost5→3 that v5 sends to v3.

The x-axis corresponds to the power flowing along t35, and the y-axis corresponds to the

resulting CO2 emissions when g2, g4, and g5 output certain amounts of power. It should

be noted that for each line segment of the piecewise linear function, the cleanest generator

available (i.e., the generator with smallest CIi that is not at its maximum output)

increases its output. All other generators that this particular continuous PowerCost

message represents stay at the same output. Thus, between –40.6kW and –10kW g5 will

increase its output, between –10kW and 9.7kW g4 will increase its output, and finally

between 9.7kW and 29.8kW g2 will increase its output.

Figure 5.1(b) describes continuous PowerCost3→1 that v3 sends to v1 on the example

electricity distribution network given in Figure 3.1(a). The x-axis corresponds to the

power flowing along t13, and the y-axis corresponds to the resulting CO2 emissions

when g1, g2, g4, and g5 output certain amounts of power. The discontinuity at –38.6kW

indicates that the discrete generator g1 has switched from producing 0kW of power to

11.2kW of power. The drop in CO2 emissions at –38.6kW is because g1 has a lower

carbon intensity (i.e., 0kgCO2/kWh) than g2, g4, and g5. Thus, switching g1 on allows

the same amount of power that could have been produced by just g2, g4, and g5 to be

produced at a lower cost.

Figure 5.1(c) describes an alternative continuous PowerCost3→1 message which results

from g1 having a carbon intensity of 0.4kgCO2/kWh instead of 0kgCO2/kWh. The

non-monotonicity of the gradients is because at 4.23kW, g1 can switch on (i.e., produc-

ing 11.2kW) whilst g2 (the generator with the highest carbon intensity in the current

subtree) can be switched off, and g4 can reduce its power output. Therefore, the line

segment immediately following 4.23kW has a gradient of CI4. This is because the addi-

tional power from g1 means that g4 now has some available power to produce before it

reaches its maximum output. This results in less CO2 emissions than if g1 had remained

off.

Finally, Figure 5.1(d) describes another alternative continuous PowerCost3→1 message

which results from g1 having discrete power values of 0kW and 95.8kW instead of 0kW

and 11.2kW. The infeasible region indicates that between 20.6kW and 46kW, power

cannot feasibly flow along t13 due to the configuration of the generators. This is because

at 20.6kW, g1 is off, and g2, g4, and g5 are all at their maximum outputs. When g1

is switched on it produces 95.8kW of additional power. Even if g2, g4, and g5 are all

switched off, 46kW is the minimum amount of power that can flow along t13. Thus, an

infeasible region of power is created in the continuous PowerCost message.

Each piecewise linear function is represented as an array of y flowCO elements:

PowerCosti→î =
[
flowCO1, . . . ,flowCOy

]
(5.1)
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A flowCOj element describes the jth line segment of the piecewise linear function:

flowCOj =
〈[
fmin
îi

, fmax
îi

]
, δ,
[
γ(fmin

îi
),γ(fmax

îi
)
]〉

(5.2)

where [fmin
îi

, fmax
îi

] denotes the range of power flowing along tij , δ denotes the gradient

of the line segment, and [γ(fmin
îi

),γ(fmax
îi

)] denotes the range of corresponding CO2

emissions. Each flowCOj element that vi calculates, maps to an OPCStatej describing

the power output at vi, along with the flows between vi and its children, that results in

the range of CO2 emissions
[
γ(fmin

îi
),γ(fmax

îi
)
]
:

OPCStatej = 〈[αi,F(vi)] , vari〉 (5.3)

where the array [αi,F(vi)] contains vi’s own power output and the set of power flows

F(vi) from the distribution cables connecting vi to its children when fmin
îi

is flowing

along tîi, and vari indicates the node that varies its output between [fmin
îi

, fmax
îi

].3 This

mapping represents the dynamic programming aspect of C–DYDOP because as power

flow values are propagated down the tree, during the value propagation phase, the

associated OPCState is used to find node vi’s power output given a particular power

flow fîi. Consider the continuous PowerCost5→3 in Figure 5.1(a) using the notation of

Equations (5.1) – (5.3):

〈[−40.6,−10] , 0.1, [5.1, 8.16]〉 → 〈[α2 = 0, f58 = −20.3, f59 = −10.8] , v9〉
PowerCost5→3 = 〈[−10, 9.7] , 0.25, [8.16, 13.085]〉 → 〈[α2 = 0, f58 = −20.3, f59 = 19.8] , v8〉

〈[9.7, 29.8] , 0.7, [13.085, 27.155]〉 → 〈[α2 = 0, f58 = −0.6, f59 = 19.8] , v5〉
(5.4)

which shows the continuous PowerCost message sent to v3 and the mapping from each

flowCO element to OPCState that v5 stores for use during the propagation phase. For

example, the flowCO element 〈[−40.6,−10] , 0.1, [5.1, 8.16]〉 details that for power flowing

along t35 in the range of [−40.6,−10], the CO2 emissions for nodes v5, v8, and v9 will

increase from 5.1kgCO2/h to 8.16kgCO2/h at a rate of 0.1 (i.e., CI5). The corresponding

OPCState 〈[α2 = 0, f58 = −20.3, f59 = −10.8] , v9〉 denotes that when 40.6kW flows from

v3 to v5 along t35, g2 will output 0kW, 20.3kW will flow from v5 to v8 along t58, and

10.8kW will flow from v5 to v9 along t59. The node that will increase its output with

the flow range of the flowCO element is v9. The resulting CO2 emissions for nodes v5,

v8, and v9 will be 5.1kgCO2/h.

Thus, if 20kW were to flow from v3 to v5, α2 = 0kW, f58 = −20.3kW and f59 =

f59 + |fmin35 − f35| = −10.8 + | − 40.6 − −20| = 9.8kW with a corresponding CO2

emissions of γ(fmin35 ) + (|fmin35 − f35| × δ) = 5.1 + (20.6× 0.1) = 7.16kgCO2/h.

In the following sections, in order to clearly explain the construction and merging of

continuous PowerCost messages effectively, we assume that each node vi in the network

3The definition assumes one generator at vi. The generalisation to more than one generator at each
node is trivial.
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Algorithm 3 Constructing continuous PowerCost messages at leaf nodes.

constructContinuousLeafMessage() {

1. fmin
îi

← minFlow (); // Calculate the minimum flow

2. fmax
îi

← maxFlow (); // Calculate the maximum flow

3. αi ← calculateOutput(fmin
îi

); // Calculate the power output of the generator

4. flowCO←createFlowCO(fmin
îi

, fmax
îi

); // Create flowCO element and store in PowerCost

// message

5. OPCState←linkToOPCState(flowCO); //Link flowCO element to OPCState

6. sendPowerCostMessageToParent ();

}

contains one generator gi and one load li; the generalisation to more than one generator

and more than one load at each node is trivial.

5.1.1.2 Constructing a Continuous PowerCost Message at a Leaf Node

A leaf node vi with one continuous generator gi and a corresponding carbon intensity

CIi will be a piecewise linear function with only one line segment (i.e., it will be a linear

function and will be constructed with one flowCO element),4 δ = CIi, and fmin
îi

, fmax
îi

,

γ(fmin
îi

), and γ(fmax
îi

) calculated as follows:

fmin
îi

= max
(
αmini + βi,−tcîi

)
fmax
îi

= min
(
αmaxi + βi, t

c
îi

)
(5.5)

γ(fmin
îi

) = |βi − fminîi
|CIi γ(fmax

îi
) = |βi − fmaxîi

|CIi (5.6)

Algorithm 3 gives a pseudocode representation of constructing a continuous PowerCost

message at a leaf node vi. The minimum and maximum flow along tîi is calculated

using Equation (5.5) (lines 1 – 2). The power output that needs to be produced for the

minimum flow fmin
îi

is αi = fmin
îi
−βi (line 3). The flowCO element is constructed using

fmin
îi

and fmax
îi

(line 4), and linked to the OPCState containing αi indicating that vi

varies its output (line 5). The continuous PowerCost message is sent to v̂i (line 6). For

clarification, consider the following example where v9 sends a continuous PowerCost9→5

message to v5 using the real (and not discretised) electricity distribution network from

3.1(a) (compare with the previous example in Section 4.1.1.2 which sends a discrete

PowerCost9→5 message). The following is the resulting continuous PowerCost9→5 mes-

sage:

PowerCost9→5 = 〈[−10.8, 19.8] , 0.1, [0, 3.06]〉 → 〈[α5 = 0] , v9〉 (5.7)

Thus, for the power flowing along t59 in the range of [−10.8, 19.8], the CO2 emissions

will increase from 0kgCO2/h to 3.06kgCO2/h at a rate of 0.1 (i.e., CI5). If 5kW of

power were to flow from v9 to v5, α5 = αmin5 + |fmin59 − f59| = 0 + | − 10.8− 5| = 15.8kW

4For n generators at node vi, the resulting continuous PowerCost message will contain up to n line
segments (defined by n flowCO elements).
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with a corresponding CO2 emissions of γ(fmin59 ) + (|fmin59 − f59| × δ) = 0 + (15.8× 0.1) =

1.58kgCO2/h.

The total number of flowCO elements in the continuous PowerCost9→5 is 1. By contrast,

compare the example discrete PowerCost9→5 message of D–DYDOP in Section 4.1.1.2

which has 31 flowCO elements, and the example discrete R9→13(x13) message of max-

sum in Section 3.3, which has 81 variable values. This further highlights the wasted

computation that the discrete algorithms perform. The following section describes how

continuous PowerCost messages are merged.

5.1.1.3 Merging Continuous PowerCost Messages

For each vi that has at least one child, the PowerCost messages that it receives (be

it continuous or discrete) must be processed in order to produce its own continuous

PowerCost message that it sends to v̂i. Once vi has received a PowerCost message

from each of its children it can then calculate its own PowerCost message. The type of

PowerCost messages vi receives affects the way in which a new continuous PowerCost

message is constructed as follows:

Constructing a continuous PowerCost message when vi and all nodes in

the subtree below it contain generators that are continuous This is the

simplest case because each continuous PowerCost message constructed will be

exactly the same type (i.e., Figure 5.1(a)).

Constructing a continuous PowerCost message when discrete and continuous

generators are present This is more complex (containing three specific cases

which will be explained in more detail later in this section) because each output of

a discrete generator must be iterated through, and the resulting piecewise linear

functions must be minimised and merged. Moreover, each continuous PowerCost

message constructed could be of any type (i.e., Figure 5.1(a) – 5.1(d)).

The former case will be explained first followed by the latter.

First, vi must calculate fmin
îi

and fmax
îi

based on tîi, βi, and its children’s continuous

PowerCost messages:

fmin
îi

= max

αmini + βi +
∑

c∈chi(vi)

fminci ,−tc
îi

 (5.8)

fmax
îi

= min

αmaxi + βi +
∑

c∈chi(vi)

fmaxci , tc
îi

 (5.9)
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Algorithm 4 Merging continuous PowerCost messages.

mergeContinuousMessages() {

1. createFlowCOElements (); // Create flowCO elements , see Algorithm 5

2. sendPowerCostMessageToParent ();

}

where
∑

c∈chi(vi)

fminci is the sum of the minimum power flow from each continuous Power-

Cost message of vi’s children and
∑

c∈chi(vi)

fmaxci is the sum of the maximum power flow

from each continuous PowerCost message. As a result, vi solves the following optimi-

sation problem in order to calculate the optimal αi and the corresponding flows to its

children, fci, based on fmin
îi

:

min
∑

c∈chi(vi)

PWL(PowerCostc→i) + CIiαi (5.10)

subject to the power flow balancing at vi:

αi + βi +
∑

c∈chi(vi)

fci − fminîi
= 0 (5.11)

where PWL(PowerCostc→i) is the piecewise linear function of continuous PowerCostc→i.

Using the calculated values for αi and fci, vi will then iteratively construct a piecewise

linear function, in the form of a continuous PowerCost message, based on the gradients

of its children’s flowCO elements and vi’s own carbon intensity CIi (see Algorithm 4 for

a pseudocode representation of merging continuous PowerCost messages at node vi).

The flowCO elements of the continuous PowerCost message are constructed (line 1),

and then sent to v̂i (line 2). See Algorithm 5 for a pseudocode representation of

createFlowCOMessageElements(). The minimum and maximum flow along tîi is calcu-

lated using Equations (5.8) – (5.9) (lines 1 – 2). The optimisation problem in Equations

(5.10) – (5.11) is solved giving an optimal value for αi and each fci for fmin
îi

(line 3).

The current flow fîi is initialised to the minimum flow fmin
îi

(line 4). While fîi is smaller

than fmax
îi

or there is no more power NMP() available (line 5 – 11), we iteratively choose

the best node to increase its power output (line 6). See Algorithm 6 for a pseudocode

representation of chooseBestNode(). The available power at that particular cost (i.e.,

carbon intensity) is calculated (line 7), and a flowCO element is constructed (line 8).

The flowCO element is linked to the OPCState containing αi and each fci with an in-

dicator of the node that varied its output (line 9). The current flow fîi is updated (line

10).

Algorithm 6 gives a pseudocode representation of the steps for choosing the next best

node to increase its output. We iterate through each immediate child of vi (lines 1 – 8).
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Algorithm 5 Creating flowCO message elements.

createFlowCOElements() {

1. fmin
îi

← minFlow (); // Calculate the minimum flow

2. fmax
îi

← maxFlow (); // Calculate the maximum flow

3. solveForMinFlow(fmin
îi

); //Solve optimisation problem for the minimum flow ,

// giving optimal value for the power output of the

// generator and each child distribution cable ’s flow

4. fîi ← fmin
îi

// Initialise current flow to the minimum

5. WHILE (fîi < fmax
îi

) OR NMP (){ //While the current flow does not exceed the

// maximum flow , or there is no more power

// available from the generator or its children

6. bestNode , bestElement ← chooseBestNode (); // Choose the next node to

// increase its output , see

// Algorithm 6

7. powerIncrease ← calculatePIncrease(bestNode ); // Calculate the power

// increase

8. flowCO←createFlowCO(fîi, bestElement , powerIncrease ); // Create flowCO

// element and store

//in PowerCost message

9. OPCState←linkToOPCState(flowCO); //Link flowCO element to OPCState

10. fîi ← fîi + powerIncrease; // Update current flow

11. }

}

For each vc ∈ chi(vi), the flowCO element at its current flow fci and the corresponding

carbon intensity are retrieved (line 2). If childCI is smaller than the best carbon

intensity observed so far, then the best carbon intensity bestCI, best flowCO element

bestElement, and best node bestNode are recorded (lines 3 – 7). This means that

given the current power flow fci of each distribution cable tci that connects vc to vi,

the flowCO with the smallest carbon intensity (that contains fci) is chosen to be used

because increasing the power from the corresponding vc will have the least cost. However,

if the carbon intensity of vi is smaller than the chosen child node’s childCI, and vi is

currently not outputting its maximum, vi is the best node to use first (lines 9 – 13). The

best node to increase its output and the corresponding flowCO element are returned

(line 14).

As an example of merging continuous PowerCost messages, let’s consider how the con-

tinuous PowerCost5→3 message (5.4) is constructed. First, v5 must receive continuous

PowerCost9→5 message (5.7) and continuous PowerCost8→5 message (5.12) from v9 and

v8 respectively.

PowerCost8→5 = 〈[−20.3,−0.6] , 0.25, [5.1, 10.025]〉 → 〈[α4 = 20.4] , v8〉 (5.12)

The minimum flow between v5 and v3 is fmin35 = −40.6kW. Using this value, v5 solves the

optimisation problem in Equations (5.10) – (5.11) giving optimal values of α2 = 0kW,

f58 = −20.3kW, and f59 = −10.8kW for f35 = −40.6kW with 5.1kgCO2 emissions.

Thus, v5 iteratively constructs flowCO elements based on the cleanest power available.

The carbon intensity at each node’s current flow is 0.7, 0.25, and 0.1 for v5, v8, and v9

respectively. Therefore, the cleanest power is available from v9 with flowCO element
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Algorithm 6 Choosing the next node to increase its generation.

bestNode , bestElement ← chooseBestNode() {

1. FOREACH (vc ∈ chi(vi)) { //For each child ofvi
2. childCI , childElement ← getCIElementAtCurrentFlow(fci); // Retrieve the carbon intensity and the flowCO

// element which corresponds to the child

// distribution cable ’s flow

3. IF (childCI < bestCI) { //If the carbon intensity of the child is smaller than the current best carbon

// intensity

4. bestCI ← childCI; // Update the best carbon intensity with the carbon intensity of the child

5. bestElement ← childElement; // Update the best flowCO element with the flowCO element of the child

6. bestNode ← vc; // Update the best node with the child node

7. }

8. }

9. IF (CIi < bestCI) AND (αi < αmax
i ) { //If the carbon intensity of vi is smaller than the best carbon

// intensity and the generator at vi is not at its maximum output

10. bestCI ← CIi; // Update the best carbon intensity with the carbon intensity of vi
11. bestElement ← flowCO(αmin

i , αmax
i ); // Update the best flowCO element with vi’s newly constructed flowCO

// element

12. bestNode ← vi; // Update the best node with vi
13. }

14. RETURN bestNode , bestElement;

}

〈[−10.8, 19.8] , 0.1, [0, 3.06]〉 at a cost of 0.1kgCO2/kWh and a maximum increase of

30.6kW. Thus, the first flowCO element of continuous PowerCost5→3 can be constructed

and the flow along t59 can be increased to f59 = 19.8kW.

The flowCO element 〈[−20.3,−0.6] , 0.25, [5.1, 10.025]〉 with a cost of 0.25kgCO2/kWh

and maximum increase of 19.7kW is chosen next. Thus, the second flowCO element of

continuous PowerCost5→3 can be constructed and the flow along t58 can be increased to

f58 = −0.6kW. Finally, v5 chooses its own generator g2 at a cost of 0.7kgCO2/kWh and

maximum increase of 20.1kW. Thus, the third and final flowCO element of continuous

PowerCost5→3 can be constructed. There is no more power available so the continuous

PowerCost5→3 can be sent to v3.

Now, consider the more complex cases when there is a discrete generator at vi or in the

subtree below it. There are three cases we must consider:

1. If vi contains the discrete generator (i.e., g1 in Figure 3.1(a) when v3 sends a

continuous PowerCost message to v1), to construct the final continuous PowerCost

message, vi must iterate through the power output values of the generator (i.e.,

0kW and 11.2kW) in order to calculate all possible configurations of the generators.

For each power output it can then iteratively construct a piecewise linear function,

in the form of a continuous PowerCost message, based on the gradients of its

children’s flowCO elements.

2. If one of vi’s immediate children contains the discrete generator and is a leaf node

(i.e., g3 in Figure 3.1(a) when v6 sends a continuous PowerCost message to v4),

vi will receive a discrete PowerCost message with discrete flowCO elements as

described in Equation (4.2). Thus, vi must iterate through each discrete flowCO

element. For each discrete flowCO element it can then iteratively construct a piece-

wise linear function, based on the gradients of its remaining children’s continuous

flowCO elements and the carbon intensity of gi.
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Algorithm 7 Merging continuous PowerCost messages.

mergeContinuousDiscreteMessages () {

1. FOREACH (αi ∈ Si) { // Iterate through each output of the generator

2. createFlowCOMessageElements (); // Create corresponding flowCO elements

//for generator power output , see Algorithm 5

3. }

4. createFinalMessageElements (); // Create final flowCO elements and store

//in PowerCost message , see Algorithm 8

5. sendPowerCostMessageToParent ();

}

3. The most complex case is when there is a discrete generator at a node, vd, in

the subtree of vi that is not an immediate child leaf node (i.e., g1 in Figure 3.1(a)

when v1 sends a continuous PowerCost message to v0). The continuous PowerCost

message vi receives from the subtree which contains vd will be one of the types

specified in Figures 5.1(b) – 5.1(d). It will contain points where the discrete

generator will change to another power output; a step point. For example, in

Figure 5.1(c), for a power range of range0 = [–49.8kW, 4.23kW] flowing along

t13, g1 is producing 0kW. For a power range of range1 = [4.23kW, 31.8kW], g1

changes its output to 11.2kW. Thus, in order to iterate through each power output

of v3, v1 can restrict the amount of power that could travel along t13 to range0

and iteratively construct a piecewise linear function, based on the gradients of its

children’s continuous flowCO elements. It can then restrict the amount of power

that could travel along t13 to range1 and repeat the process. By doing this, v1

is indirectly iterating through each power output of g1 in order to calculate all

possible configurations of the generators.

Essentially, each possible discrete generator power output must be iterated through in

order to calculate all the possible generator configurations. This is done directly, if the

discrete generator is situated at vi and vi is currently sending a continuous PowerCost

message, or indirectly, by iterating through each step point of the child continuous

PowerCost message that contains the discrete generator in its subtree. Once this process

has finished, there will be multiple piecewise linear functions that give different costs

for the same ranges of power flowing along tîi. Therefore, the minimum piecewise linear

function must be constructed by merging the multiple piecewise linear functions. For

clarification, we shall first detail a pseudocode representation (see Algorithm 7) and then

present a detailed example.

Algorithm 7 is a pseudocode representation of merging continuous PowerCost messages

in a network of continuous generators when there exists at least one discrete generator.

For this pseudocode, we assume that the discrete generator is situated at vi sending

the continuous PowerCost message. Therefore, we iterate through each power output
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Algorithm 8 Constructing the final continuous PowerCost message from a collection
of flowCO elements.

createFinalMessageElements () {

1. flowPointArray ← getStartEndAndIntersectFlowPoints (); // Initialise flowPointArray with the start and

//end points of each flowCO element , and all

// intersection points. Sorted by smallest flow

//point

2. currentFlowPoint ← flowPointArray [0]; // Initialise currentFlowPoint to first point in flowPointArray

3. currentElement ← firstFlowCOElement (); // Initialise current flowCO element to the minimum flowCO (i.e.,

//the one with the smallest minimum flow)

4. FOREACH (nextFlowPoint ∈ flowPointArray) { // Iterate through each flow point in the flowPointArray

5. nextElement ← getMinFlowCOElement(nextFlowPoint ); // Initialise next flowCO element to the minimum

//flowCO for nextFlowPoint

6. IF (nextElement != currentElement) {

7. flowCO←createFlowCO(currentFlowPoint , nextFlowPoint , currentElement ); // Create final flowCO element ,

//store in PowerCost message

8. OPCState←linkToOPCState(flowCO); //Link flowCO element to OPCState

9. currentFlowPoint ← nextFlowPoint; // Initialise currentFlowPoint to nextFlowPoint

10. currentElement ← nextElement; // Initialise current flowCO element to next flowCO element

11. }

12. }

}

of the discrete generator situated at vi (lines 1 – 3).5 For the current power output of

the discrete generator, vi creates a piecewise linear function based on the gradients of

its children’s continuous flowCO elements (line 2). Multiple piecewise linear functions

which give different costs for the same ranges of power that could flow along tîi must

then be merged together (line 4). See Algorithm 8 for a pseudocode representation of

how the final continuous PowerCost message is created by merging multiple piecewise

linear functions. Finally, the continuous PowerCost message is sent to v̂i (line 5).

Now, Algorithm 8 details the steps to merge the multiple piecewise linear functions, that

are created during Algorithm 7 (lines 1 – 3), to produce the final continuous PowerCost

message. The start and end flow points, and the intersection flow points, of all the

flowCO elements, that were constructed in Algorithm 7, are initialised to an array (line

1). The first flow point is retrieved from the array (line 2), and the minimum flowCO

element is retrieved (i.e., the one with the largest negative minimum power flow followed

by the smallest minimum CO2 emissions) (line 3). We iterate through each remaining

flow point in the array (lines 4 – 12). For each flow point, the flowCO element with the

minimum CO2 emissions at nextFlowPoint is retrieved (line 5). It should be noted that

if two flowCO elements intersect at their extremes (i.e., the maximum of one flowCO

element lies on the same point as the minimum of another flowCO element), the flowCO

element that intersects with its minimum is chosen. If nextElement is not equal to

currentElement (line 6), a new flowCO element is created from currentElement be-

tween currentFlowPoint and nextFlowPoint (line 7), and then linked to the OPC-

State containing αi and each fci with an indicator of the node that varied its output

(line 8). Both currentFlowPoint and currentElement are updated (lines 9 and 10

respectively). If nextElement is equal to currentElement (line 6), this indicates that

there is still more power available from currentElement, so skip to the next iteration.

5If there were multiple discrete generators, situated at vi and further down the tree, vi would iterate
through every possible combination of power outputs from its own discrete generator and each step point
from each child continuous PowerCost message.
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Once this algorithm has finished, the resulting continuous PowerCost message consists

of the minimum merged flowCO elements.

To exemplify the above process, consider how the continuous PowerCost3→1 message

(depicted as a piecewise linear function in Figure 5.1(b)) is constructed. First, v3 must

receive continuous PowerCost5→3 message (5.4) from v5. Using Algorithm 7, v3 must

iterate through each of g1’s power outputs (i.e., 0kW and 11.2kW) and for each power

output, construct a piecewise linear function from the flowCO elements of continuous

PowerCost5→3 message. When g1 outputs 0kW, the minimum flow between v1 and v3

is fmin13 = −49.8kW. Using this value, v3 solves the optimisation problem in Equations

(5.10) – (5.11) giving optimal values of α1 = 0kW and f35 = −40.6kW for f13 =

−49.8kW with 5.1kgCO2 emissions. Thus, v3 iteratively constructs flowCO elements

based on the cleanest power available (since v5 is the only child node, its flowCO elements

are the only flowCO elements used):

〈[−49.8,−19.2] , 0.1, [5.1, 8.16]〉 → 〈[α1 = 0, f35 = −40.6] , v5〉
〈[−19.2, 0.5] , 0.25, [8.16, 13.085]〉→ 〈[α1 = 0, f35 = −10] , v5〉
〈[0.5, 20.6] , 0.7, [13.085, 27.155]〉 → 〈[α1 = 0, f35 = 9.7] , v5〉

(5.13)

Next, v3 calculates that when g1 outputs 11.2kW, the minimum flow between v1 and v3

is fmin13 = −38.6kW. Using this value, v3 solves the optimisation problem in Equations

(5.10) – (5.11) which gives optimal values of α1 = 11.2kW and f35 = −40.6kW for f13 =

−38.6kW with 5.1kgCO2 emissions. Thus, v3 iteratively constructs flowCO elements

based on the cleanest power available:

〈[−38.6,−8] , 0.1, [5.1, 8.16]〉 → 〈[α1 = 11.2, f35 = −40.6] , v5〉
〈[−8, 11.7] , 0.25, [8.16, 13.085]〉 → 〈[α1 = 11.2, f35 = −10] , v5〉
〈[11.7, 31.8] , 0.7, [13.085, 27.155]〉→ 〈[α1 = 11.2, f35 = 9.7] , v5〉

(5.14)

Figure 5.2 shows (5.13) and (5.14) depicted as piecewise linear functions on the same

graph.

Finally, v3 must merge the flowCO elements from (5.13) and (5.14) using Algorithm

8, to produce the piecewise linear function in Figure 5.1(b). The currentElement is

initialised to 〈[−49.8,−19.2] , 0.1, [5.1, 8.16]〉 and the currentFlowPoint is initialised

to –49.8. From here, each flow point is used to retrieve the minimum flowCO ele-

ment. Starting with –38.6, the flowCO element with the minimum CO2 emissions

at –38.6 is 〈[−38.6,−8] , 0.1, [5.1, 8.16]〉. Therefore, a new flowCO element is created

from currentElement with –49.8kW and –38.6kW, 〈[−49.8,−38.6] , 0.1, [5.1, 6.19]〉, and

linked to the OPCState. The currentFlowPoint is assigned –38.6 and currentElement

is assigned 〈[−38.6,−8] , 0.1, [5.1, 8.16]〉, and the process repeats. The result is the final
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Figure 5.2: The two piecewise linear functions that are constructed, by changing the
output of g1 from 0kW to 11.2kW, and then merged to produce the final continuous

PowerCost3→1 message sent from v3 to v1, Figure 5.1(b).

continuous PowerCost3→1 message which is sent to v1:

〈[−49.8,−38.6] , 0.1, [5.1, 6.19]〉 → 〈[α1 = 0, f35 = −40.6] , v5〉
PowerCost3→1 = 〈[−38.6,−8] , 0.1, [5.1, 8.16]〉 → 〈[α1 = 11.2, f35 = −40.6] , v5〉

〈[−8, 11.7] , 0.25, [8.16, 13.085]〉 → 〈[α1 = 11.2, f35 = −10] , v5〉
〈[11.7, 31.8] , 0.7, [13.085, 27.155]〉→ 〈[α1 = 11.2, f35 = 9.7] , v5〉

(5.15)

By comparing the two piecewise linear functions in Figure 5.2 with the final piecewise

linear function sent to v1 in Figure 5.1(b), it can be seen that the final continuous

PowerCost message is created by using the minimum flowCO elements (i.e., the elements

with the smallest CO2 emissions) when two or more flowCO elements overlap the same

range of power flow. The following section describes the second phase of C–DYDOP

whereby power output values are propagated from the root node to the leaf nodes.

5.1.2 Phase 2: Value Propagation

Once the root node vi has received PowerCost messages from all of its children, it calcu-

lates how much power to output in order to satisfy all the loads within the network and

minimise CO2 emissions. It does this by solving the optimisation problem in Equation

(5.10) subject to the flows at vi equaling zero:

αi + βi +
∑

c∈chi(vi)

fci = 0 (5.16)

This is a slightly simpler optimisation problem than when nodes merge PowerCost mes-

sages because the minimum flow to the parent node does not need to be calculated

since the root does not have a parent. The solution to Equation (5.16) will produce an

optimal power output αi and an optimal flow value fci for each of its children. As with

D–DYDOP, flow values are then sent to each of the root node’s children telling them

which of their flowCO elements resulted in the minimum CO2 emissions. The children

retrieve the correct flowCO element by matching the power flow value sent to them with
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the range of flow from the flowCO message. The OPCState which is referenced by each

child recipient’s corresponding flowCO element tells the child exactly how much power

to output. The child recipient can then send the power flow specified in the OPCState

to each of its corresponding children. Power flow values are propagated in this manner

to the leaf nodes, at which point each node in the network knows their optimum power

output that results in the minimum CO2 emissions for the entire network. It should

be noted that if there is no solution to Equation (5.16), no solution exists for the real

electricity distribution network (i.e., CPLEX would also report a solution does not exist)

which C–DYDOP reports.

Having introduced C–DYDOP, we now present the completeness and correctness of the

algorithm.

5.2 Completeness and Correctness

In what follows, we prove that C–DYDOP applied to acyclic networks is complete6 and

correct.7

Proposition 5.1. C–DYDOP is complete.

Proof. This proof follows on from Proposition 4.1. Leaf nodes, vi, construct their contin-

uous PowerCost messages by summarising the cost of producing power, whilst satisfying

each l ∈ L(vi), within the feasible range of power that will be flowing between vi and v̂i.

As continuous PowerCost messages are propagated up the tree, each vi also calculates

the cost of producing power within the feasible range of power flowing between vi and

v̂i. The root node receives continuous PowerCost messages which summarise the entire

cost of the network to produce power for all feasible flows of each distribution cable

within the network. Thus, at each node, all feasible ranges of flow are evaluated and

the root node chooses the optimal state which minimises CO2. Hence, the algorithm is

complete.

Proposition 5.2. C–DYDOP is correct.

Proof. This proof follows on from Proposition 5.1 and is exactly the same as Proposition

4.2. Any solution calculated by the algorithm will be valid as it has explicitly conformed

to the local and global constraints of the entire network (since constraint checks are

explicitly embedded in the algorithm). Hence, the algorithm is correct.

Having presented the correctness and completeness of C–DYDOP, we now calculate the

computational complexity.

6Complete in terms of finding the optimal solution calculated by CPLEX using Equations (3.1) –
(3.4).

7Correct such that any solution returned by C–DYDOP is feasible given Equations (3.1) – (3.4).
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5.3 Computational Complexity

Here, the worst-case complexity of C–DYDOP is calculated, with regard to the size

of the network, in order to show its suitability for large optimal dispatch problems

(Requirement III).

Proposition 5.3. The size of continuous PowerCost messages sent by C–DYDOP grows

polynomially with the size of the network.

Proof. Consider a network of k nodes with each node containing one generator. Thus,

k = n, where n is the number of generators in the network. The worst case is when the

network is a line of connected nodes with a single leaf node vi; since the computation

must be completed sequentially. The size of vi’s continuous PowerCost message will

be 1 since it contains one flowCO element describing the cost of gi producing power

αi with a certain carbon intensity CIi. When vi’s parent v̂i calculates its own con-

tinuous PowerCost message, in the worst case, its continuous PowerCost message will

contain two flowCO elements. Thus, as each consecutive node vi calculates its own

continuous PowerCost message, the size of their continuous PowerCost message will be

|PowerCostc→i| + 1 where c is the child of vi. The total size of the message sent by

C–DYDOP will be:
n (n+ 1)

2
(5.17)

Therefore, the size of the messages C–DYDOP sends, in the worst case, grows polyno-

mially in O(n2).

Having presented C–DYDOP and analysed its theoretical properties, the following sec-

tion provides an empirical evaluation against D–DYDOP and a highly optimised cen-

tralised approach based on MIP.

5.4 Empirical Evaluation

To highlight the improvements of C–DYDOP against D–DYDOP (presented in Chapter

4), we conducted two experiments on the two large real electricity distribution network

topologies from Section 4.4 (see Figure 4.2), and one experiment on large random acyclic

electricity distribution network topologies.8 We benchmark C–DYDOP and D–DYDOP

against a highly optimised centralised approach, which uses IBM’s ILOG CPLEX 12.2.9

CPLEX simply solves a large MIP without having to use message passing or decentralised

8We use random topologies in order to vary the branching factor of each node.
9Note, we do not benchmark C–DYDOP against max-sum as we have already benchmarked

D–DYDOP against max-sum (in Section 4.4) and showed that D–DYDOP is more efficient at cal-
culating a solution to the optimal dispatch problem than max-sum (in terms of computational time and
number of message elements sent).
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control. Thus, CPLEX is able to calculate a solution in under a second. The three

experiments were conducted in order to test the following:

Experiment 1 Tests the effect of ω for CPLEX, C–DYDOP, and D–DYDOP on the

two large real electricity distribution network topologies in Figure 4.2.

Experiment 2 Tests the effect of the size of the network for CPLEX, C–DYDOP,

and D–DYDOP on the two large real electricity distribution network topologies in

Figure 4.2.

Experiment 3 Tests the effect of the branching factor for CPLEX, C–DYDOP, and

D–DYDOP on large random acyclic electricity distribution network topologies.

The remainder of this section is organised as follows: Section 5.4.1 describes the setup

of the electricity distribution networks. Section 5.4.2 details experiment 1, Section 5.4.3

details experiment 2, and Section 5.4.4 details experiment 3. Finally, Section 5.4.5 draws

conclusions from all three experiments.

5.4.1 Experiment Setup

Each experiment was run in Java on a 2.67GHz Intel Xeon quadcore with 12GB of RAM.

During each iteration, nodes are assigned a uniformly distributed load value in the range

of [1kW, 5kW], and either a continuous or discrete generator with a uniformly distributed

carbon intensity. There is a 90% chance that the generator will be continuous.10 If the

generator is continuous, it is assigned a uniformly distributed minimum power output

in the range of [0kW, 2kW], and a uniformly distributed maximum power output in the

range of [3kW, 20kW]. If the generator is discrete, it is assigned a uniformly distributed

power output level η in the range of [3kW, 20kW] (i.e., each discrete generator can

either be off, or produce ηkW). Each distribution cable in the network is assigned a

uniformly distributed thermal capacity in the range of [10kW, 15kW]. The electricity

distribution network constraints are then discretised with the equations in (3.7) (where

ω is varied between 0.5kW and 3.0kW in experiment 1, and ω = 1kW in experiments 2

and 3), in order to apply D–DYDOP. Having described the setup for each experiment,

the following section details the first experiement.

5.4.2 Experiment 1 : Impact of Varying Discretisation Unit

Experiment 1 was set up in order to test the effect of ω for CPLEX, C–DYDOP, and

D–DYDOP. Using both the Indian and UK electricity distribution networks, the number

10This is an arbitrary number chosen so that the majority of the network contains continuous gener-
ators.
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(a) Indian electricity distribution network.
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(b) UK electricity distribution network.
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(c) Indian electricity distribution network.
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(d) UK electricity distribution network.

Figure 5.3: Experiment 1 tests the effect of ω for CPLEX, C–DYDOP, and
D–DYDOP. Using both electricity distribution network topologies in Figure 4.2, the
number of additional nodes at each substation was fixed at 8 and arranged as a random
acyclic network with a maximum branching factor of 2. The discretisation unit was
varied from 0.5kW to 3.0kW in 0.5kW steps, each with 50 iterations. 5.3(a) and 5.3(b)
show how the discretisation unit ω affects computation time for CPLEX, C–DYDOP,
and D–DYDOP on the Indian and UK electricity distribution networks respectively.
5.3(c) and 5.3(d) show how the discretisation unit ω affects the total number of mes-
sage elements sent for C–DYDOP and D–DYDOP on the Indian and UK electricity
distribution networks respectively. We use a logarithmic scale for the y-axis in all four

plots.

of additional nodes at each substation was fixed at 8 and arranged as a random acyclic

network with a maximum branching factor of 2.11 Thus, the total number of nodes in the

whole network was 596 and 203 for the Indian and UK electricity distribution networks

respectively. The discretisation unit ω, used to discretise the electricity distribution

network constraints, was varied from 0.5kW to 3.0kW in 0.5kW steps, each with 50

iterations.12 During each iteration, the nodes and distribution cables were initialised as

in Section 5.4.1.

11We choose a branching factor of 2 so that D–DYDOP can calculate a solution within a reasonable
time frame.

12We found 50 iterations to be an adequate amount since further iterations did not improve the
statistical significance of the results.
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Figure 5.3 shows four plots of the results from the first experiment (error bars showing

the standard error across the 50 iterations omitted due to being negligible). We use a

logarithmic scale for the y-axis in all four plots. Figures 5.3(a) and 5.3(b) show how the

computation time is affected by the discretisation unit ω for CPLEX, C–DYDOP, and

D–DYDOP on the Indian and UK electricity distribution networks respectively. For

CPLEX and C–DYDOP, regardless of the discretisation unit, the computation times

remain constant. This is because both algorithms do not require the electricity distribu-

tion network constraints to be turned into a discrete problem before they can calculate

a solution. However, for D–DYDOP the time complexity is exponential in ω.

Thus, it can be seen that even for small ω, the computation time for D–DYDOP suffers

greatly (as discussed in Section 4.4.2). As the discretisation unit is increased, D–DYDOP

has to calculate fewer state utilities, resulting in decreased computation time. For ex-

ample, D–DYDOP computes a solution faster than C–DYDOP for a discretisation unit

greater than 1.2 when applied to the Indian electricity disitribution network (Figure

5.3(a)). C–DYDOP must solve a small optimisation problem for each node and merge

piecewise linear functions. This overhead means that in certain settings, a discrete algo-

rithm may be faster to use (see Section 3.4 for a discussion of the settings when discrete

algorithms can be used). In comparison, for the UK electricity distribution network in

Figure 5.3(b), D–DYDOP is able to compute a solution faster than C–DYDOP for a

discretisation unit greater than 1.3.13 Moreover, C–DYDOP calculates a solution three

times faster than it does on the Indian electricity distribution network. This difference

between Figures 5.3(a) and 5.3(b) is because the section of UK electricity distribution

network is smaller, and contains a number of nodes with higher branching factors. Both

C–DYDOP and D–DYDOP are affected less by the branching factor of the network

(compared with max-sum, which is affected much more by the branching factor of the

network, see Section 4.4.2) as opposed to the number of nodes in the network.

Figures 5.3(c) and 5.3(d) show how the total number of message elements sent (i.e., the

sum of the total message sizes) is affected by the discretisation unit ω for C–DYDOP and

D–DYDOP. Note that CPLEX cannot be compared to the other algorithms using the

discretisation unit because it does not use message passing to calculate a solution. As

13In terms of accuracy of the resulting solution calculated by a discrete algorithm, when a small
discretisation unit is used, D–DYDOP was able to calculate an optimal solution to the discretised
electricity distribution network that was very close to the optimal solution calculated by CPLEX and
C–DYDOP. For instance, when ω = 0.5kW for the Indian and UK electricity distribution network
topologies, D–DYDOP on average calculated a solution within 0.1% of the optimal solution (in terms
of CO2 emissions), with an average RMSE error of 0.07kW for each generator power output. However,
as the discretisation unit is increased, the accuracy of the resulting solution calculated by D–DYDOP
decreases. For instance, when ω = 3kW for the Indian electricity distribution network, D–DYDOP on
average calculated a solution which had CO2 emissions that were 47% higher than the optimal solution,
with an average RMSE error of 2.4kW for each generator power output. Similarly, when ω = 3kW for
the UK electricity distribution network, D–DYDOP on average calculated a solution which had CO2

emissions that were 27% higher than the optimal solution, with an average RMSE error of 2.4kW for each
generator power output. Thus, even though D–DYDOP can calculate a solution faster than C–DYDOP
for certain settings, the accuracy of the resulting solution must be taken into consideration.
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with Figures 5.3(a) and 5.3(b), the total message size of C–DYDOP is not affected by the

discretisation unit. However, the total number of message elements D–DYDOP sends

grows exponentially with regard to ω. For small ω, D–DYDOP sends a large number of

message elements. As explained previously in this section, this is because D–DYDOP

must iterate through a large number of states in order to calculate the utility for each

resultant flow along a distribution cable, and consequently sends more message elements.

It can be seen that even for a very large discretisation unit, D–DYDOP sends twice as

many message elements compared to C–DYDOP. Thus, even though C–DYDOP sends

fewer message elements, there is clearly some overhead with regard to computation

from merging piecewise linear functions and solving an optimisation problem at each

node. However, this overhead is small and remains constant. Having presented the first

experiment, the following section details the second experiment.

5.4.3 Experiment 2 : Impact of Varying Network Size

Experiment 2 was set up to demonstrate how the size of the network affects CPLEX,

C–DYDOP, and D–DYDOP. Using both the Indian and UK electricity distribution

networks, the number of additional nodes at each substation was varied from 0 to 30

in steps of 5, each with 50 iterations. At 30 additional nodes per substation, the total

number of nodes in the network was 2026 and 687 for the Indian and UK distribution

networks respectively. During each iteration, the nodes and distribution cables are

initialised as in Section 5.4.1. Figure 5.4 shows four plots of the results from the second

experiment (error bars showing the standard error across the 50 iterations omitted due

to being negligible). We use a logarithmic scale for the y-axis in all four plots.

Figure 5.4(a) and 5.4(b) show how the computation time is affected by the number of

nodes at each substation (and consequently the total number of nodes in the network)

for CPLEX, C–DYDOP, and D–DYDOP, on the Indian and UK electricity distribu-

tion networks respectively. The time complexity of each algorithm is linear in the total

number of nodes in the network. CPLEX has an almost constant computation time of

100ms on average (for very large networks, the effects of the network size on CPLEX

would obviously be more apparent, but still linear). When comparing our two novel algo-

rithms, C–DYDOP is faster at computing a solution for a given network size as apposed

to D–DYDOP. For 2026 nodes in the Indian electricity distribution network, Figure

5.4(a), there is a reduction of computation time by a factor of 1.5 for C–DYDOP com-

pared with D–DYDOP. For 687 nodes in the UK electricity distribution network, Figure

5.4(b), there is a reduction of computation time by a factor of 2 for C–DYDOP com-

pared with D–DYDOP. This highlights the computational efficiency that C–DYDOP

has over D–DYDOP, which is due to being able to summarise a range of power flows by

a single function, instead of using discrete values.
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(a) Indian electricity distribution network.
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(b) UK electricity distribution network.
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(c) Indian electricity distribution network.
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(d) UK electricity distribution network.

Figure 5.4: Experiment 2 tests how the size of the network affects CPLEX,
C–DYDOP, and D–DYDOP. Using both electricity distribution network topologies
in Figure 4.2, the number of additional nodes at each substation was varied from 0
to 30 in steps of 5, each with 50 iterations. 5.4(a) and 5.4(b) show how the number
of nodes in the network affects the computation time for CPLEX, C–DYDOP, and
D–DYDOP on the Indian and UK electricity distribution networks respectively. 5.4(c)
and 5.4(d) show how the number of nodes in the network affects the total number of
message elements sent for C–DYDOP and D–DYDOP on the Indian and UK electricity
distribution networks respectively. We use a logarithmic scale for the y-axis in all four

plots.

Figures 5.4(c) and 5.4(d) show how the total number of message elements sent is affected

by the number of nodes at each substation for C–DYDOP and D–DYDOP on the Indian

and UK electricity distribution networks respectively. The total number of message

elements sent for C–DYDOP and D–DYDOP grows linearly with regard to the total

number of nodes in the network. C–DYDOP sends the smallest total number of message

elements followed by D–DYDOP. Having presented the second experiment, the following

section details the final experiment.
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Figure 5.5: Experiment 3 tests how the branching factor of the electricity distribution
network affects CPLEX, C–DYDOP, and D–DYDOP. Using random acyclic electricity
distribution network topologies with 200 nodes, the branching factor of the network was
varied from 1 to 4 with 50 iterations for each. 5.5(a) shows how the branching factor
of the network affects the computation time for CPLEX, C–DYDOP, and D–DYDOP.
5.5(b) shows how the branching factor of the network affects the total number of message
elements sent for C–DYDOP, and D–DYDOP. We use a logarithmic scale for the y-axis

in both plots.

5.4.4 Experiment 3 : Impact of Varying Branching Factor

Finally, Experiment 3 was set up to demonstrate how the branching factor of the network

affects CPLEX, C–DYDOP, and D–DYDOP. Random acyclic electricity distribution

network topologies were used to test this aspect of the algorithms since a variation of

the branching factor was required. The number of nodes in the network was fixed at

200, and the branching factor of the network was varied from 1 to 4 with 50 iterations

for each. During each iteration, a random acyclic electricity distribution network was

generated with the nodes and distribution cables initialised as in Section 5.4.1. Figure

5.5 shows two plots of the results from the third experiment (error bars showing the

standard error across the 50 iterations omitted due to being negligible). We use a

logarithmic scale for the y-axis in both plots. Figure 5.5(a) shows how the computation

time is affected by the branching factor of the network for CPLEX, C–DYDOP, and

D–DYDOP. CPLEX and C–DYDOP have constant computation time with regard to

the branching factor of the network. As discussed in Section 4.4.4, CPLEX is not affected

by the branching factor because it does not use the structure of the network in order

to solve the optimal dispatch problem. Similarly, C–DYDOP is not affected because

each node chooses the best child messages to use given the constraints of its parent’s

distribution cable. Adding more children means that there are more message elements

to choose from, but does not necessarily mean that every message element is used.

Therefore, the additional children nodes have a negligible impact on the computation

required. On the contrary, D–DYDOP has an exponential time complexity with regard

to the branching factor of the network. This is because D–DYDOP must iterate through
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every possible combination of generator power outputs and message elements in order

to calculate a utility for each feasible power flow along a distribution cable. As the

branching factor increases, the number of possible combinations grows exponentially,

shown in Proposition 4.4.

Figure 5.5(b) shows how the total number of message elements sent is affected by the

branching factor of the network for C–DYDOP and D–DYDOP. The total number

of message elements sent for C–DYDOP and D–DYDOP decreases exponentially in

the branching factor of the network. This is because as the number of children for

each node is increased, the height of the network (i.e., from leaf node to root node)

decreases meaning that fewer messages (and consequently fewer message elements) must

be sent in order to calculate a solution (see Sections 4.1.1 and 5.1.1 for how D–DYDOP

and C–DYDOP construct message elements respectively). The reasons why C–DYDOP

sends fewer message elements compared with D–DYDOP, have already been explained

in Section 5.4.2. The following section discusses the results from all three experiments.

5.4.5 Discussion

Our results show that both D–DYDOP and C–DYDOP significantly outperform a näıve

implementation of max-sum, for the optimal dispatch problem, in terms of total num-

ber of message elements sent and computation time, by pruning the search space ef-

ficiently. Moreover, it is clear that C–DYDOP is a significant improvement compared

to D–DYDOP and max-sum.14 Firstly, the computation time of C–DYDOP is not af-

fected by the discretisation of the network, whereas the computational complexity of

both D–DYDOP and max-sum is exponential in the discretisation unit ω. Secondly, the

computation time of C–DYDOP is less affected by the total number of nodes in the net-

work compared with D–DYDOP or max-sum. Thirdly, the number of message elements

that C–DYDOP must send is much lower than D–DYDOP and max-sum regardless of

discretisation unit, total size of the network, or branching factor. Fourthly, the compu-

tation time of C–DYDOP is not affected by the branching factor of the network, whereas

the time complexity for both D–DYDOP and max-sum is exponential with regard to

the branching factor. Finally, we have shown that C–DYDOP can be applied to any real

electricity distribution network problem as it does not require the electricity distribution

network constraints to be discretised first (this is discussed in Section 3.4 as well as the

justifications for when discrete algorithms can be used). Thus, C–DYDOP can flexibly

coordinate generators in acyclic networks and can readily be applied to a wider range

of network problems, compared to D–DYDOP and discrete max-sum. The following

section concludes this chapter.

14Since we showed that D–DYDOP outperformed max-sum in Section 4.4, and we showed in Section
5.4 that C–DYDOP outperforms D–DYDOP, we can infer that C–DYDOP also outperforms max-sum.
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5.5 Conclusions

In this chapter, we have shown how D–DYDOP can be adapted to consider continu-

ous generator power outputs and perform faster than the discrete version. Thus, we

believe that it can be readily applied to a wider variety of network problems compared

with D–DYDOP. This is due to the decreased overhead when constructing continuous

PowerCost messages, since there are fewer flowCO elements to calculate, and because

C–DYDOP does not suffer from discretising the search space or from the branching factor

of the network. C–DYDOP is able to handle arbitrary generator and power flow values

without suffering from computational overheads. Thus, it is more readily applicable to

real electricity networks.

As discussed in Section 3.4, in order for a solution to be generated by D–DYDOP or

max-sum, the electricity distribution network constraints must be discretised. While

the process can be completed in a distributed and decentralised way, this is obviously

a disadvantage when compared with C–DYDOP, which does not require the electricity

distribution network constraints to be discretised. A further disadvantage is that unless

the appropriate discretisation unit is used (which is often very small resulting in an

increased amount of computation) the solution produced is not always guaranteed to be

applicable to the real distribution network.

However, there are a number of advantages for using D–DYDOP over C–DYDOP.

Firstly, for low branching networks, and when the appropriate discretisation unit is large,

D–DYDOP can outperform C–DYDOP in terms of computation time, as we have shown

in Section 5.4.2. This is because C–DYDOP must merge piecewise linear functions and

solve many small optimisation problems for each node. This creates an overhead that in

certain settings is more computationally expensive than it takes D–DYDOP to exhaus-

tively search every possible combination of power outputs for each generator. Secondly,

if the electricity distribution network contains only discrete generators, then C–DYDOP

is not appropriate for finding a solution and D–DYDOP must be used instead.

The following chapter provides a detailed summary of this thesis, as well as points of

departure for future work in the area of optimal dispatch.
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Chapter 6

Conclusions and Future Work

This chapter gives a detailed summary of the work presented in this thesis and introduces

the future work in order to address all of the requirements in Section 1.1.

6.1 Summary and Conclusions

This thesis focused on decentralised and distributed message passing algorithms, to

coordinate electricity generator power outputs, for a future smart grid. In particular, we

investigated how an increased amount of generation can be incorporated into distribution

networks without the need to install additional infrastructure by using ANM. This was

motivated against a background where numerous global governments have agreed to

reduce CO2 emissions, as discussed in Chapters 1 and 2, and the increase in electricity

generators embedded in electricity distribution networks as a result. In Chapter 3 we

provided a new formalism of the optimal dispatch problem as a DCOP. We showed

how this DCOP can be decomposed as a factor graph and solved using algorithms based

on the GDL family, such as max-sum. We went on to show that max-sum applied

näıvely in this setting performs a large number of redundant computations. Therefore,

to address this issue, in Chapter 4 we presented a novel message passing algorithm, called

D–DYDOP, which outperforms max-sum by using techniques based on local consistency

to prune much of the search space.

The computational complexity of D–DYDOP, with regard to message size and number

of states it must process, was analytically calculated to be O(|V|) and O(M |chi(vi)|)

respectively. In order to demonstrate the computational efficiency of D–DYDOP, we

empirically evaluated it against both an optimal centralised approach, based on the

MIP solver CPLEX, and max-sum, on two real electricity distribution network topologies

using three experiments (see Section 4.4). Experiment 1 varied the discretisation unit,

Experiment 2 varied the size of the network, and Experiment 3 varied the branching

factor of the network.
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When varying the discretisation unit (Experiment 1), the time complexity for both

D–DYDOP and max-sum was exponential in ω. Due to the redundant computation

that a näıve implementation of max-sum performs, D–DYDOP outperformed max-sum

in terms of computation time and number of message elements sent. When varying

network size (Experiment 2), the time complexity for both D–DYDOP and max-sum,

was linear in the total number of nodes in the network, with max-sum exhibiting the

worst computational efficiency. In the worst case, for 2026 nodes in the Indian electricity

distribution network, there was a reduction of computation time by a factor of 10 for

D–DYDOP compared with max-sum. For 687 nodes in the UK electricity distribution

network there was a reduction of computation time by a factor of 65 for D–DYDOP

compared with max-sum. Finally, when varying the branching factor (Experiment 3)

the time complexity for both D–DYDOP and max-sum was exponential in the branch-

ing factor of the network. Again, max-sum performed significantly worse in terms of

computation time and number of message elements sent. For all three experiments, the

computation time of CPLEX was highly linear and almost constant.

As can be seen from the results in Section 4.4, the computation time of both D–DYDOP

and max-sum suffers greatly from the size of the discretisation unit ω, which is used to

discretise the electricity distribution network constraints, and the branching factor of

the network. Thus, to address these issues we presented an extension to D–DYDOP in

Chapter 5, called C–DYDOP, which uses continuous variables for the generator power

outputs and the distribution cable flows. C–DYDOP uses continuous piecewise linear

functions to represent continuous PowerCost messages enabling it to greatly reduce the

computation time necessary to calculate a solution to the optimal dispatch problem. In

order to demonstrate the computational efficiencies of C–DYDOP, we empirically eval-

uated D–DYDOP, C–DYDOP, and CPLEX using the same two electricity distribution

network topologies from Chapter 4 and the same three experiments (see Section 5.4):

When varying the discretisation unit (Experiment 1), for the Indian electricity distri-

bution network, D–DYDOP computed a solution faster than C–DYDOP for a discreti-

sation unit greater than 1.2. In comparison, for the UK electricity distribution network

D–DYDOP was able to compute a solution faster than C–DYDOP for a discretisation

unit greater than 1.3. However, in order for a discrete algorithm to produce accurate so-

lutions, the discretisation unit must be small (see Section 3.4 for a discussion). Moreover,

for small discretisation units, the computation time of D–DYDOP was much higher than

C–DYDOP. With regard to message elements sent, in the worst case, D–DYDOP sent

twice as many message elements compared to C–DYDOP. When varying the network

size (Experiment 2), C–DYDOP was faster at computing a solution for a given network

size as apposed to D–DYDOP. For 2026 nodes in the Indian electricity distribution

network there was a reduction of computation time by a factor of 1.5 for C–DYDOP

compared with D–DYDOP. For 687 nodes in the UK electricity distribution network

there was a reduction of computation time by a factor of 2 for C–DYDOP compared with
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D–DYDOP. Finally, when varying the branching factor (Experiment 3), C–DYDOP had

constant computation time with regard to the branching factor of the network, whereas

D–DYDOP had an exponential time complexity with regard to the branching factor of

the network. Again, for all three experiments, the computation time of CPLEX was

highly linear and almost constant.

The algorithms presented in Chapters 3, 4, and 5 have achieved a number of the re-

quirements from Section 1.1. Requirement II has been achieved because the algorithms

coordinate power within the electricity distribution network such that CO2 emissions

are minimised. Our algorithms scale up to large networks containing thousands of nodes

achieving Requirement III. Requirement IV has been partially met since our algorithms

are able to handle generations with different output types. However, the intermittency

of generators (i.e., such as wind turbines) should be addressed in future work.

Requirement I has been met since the algorithms coordinate autonomously with minimal

human interaction. Furthermore, by using agent-based message passing algorithms with

a DCOP framework, Requirement V has been satisfied. Finally, Requirements VI and

VII have been partially met. However, in terms of graceful degradation, we leave for

future work the non-trivial extension for D–DYDOP and C–DYDOP to handle commu-

nication networks with faulty channels (such that messages could fail to be sent between

nodes).

In order to apply the algorithms presented in Chapters 3, 4, and 5 to real world systems,

a communication network that is constructed on top of existing electricity distribution

networks would be required. This communication network would not require a high

bandwidth, but the speed and accuracy (in terms of error free message sending) would

have to be high.1 Each node (consisting of a combination of generators, loads, and a

substation) would have to contain a computation device and be able to monitor and

control each connected generator and load with limited or no human interaction. Each

node would communicate with its connected neighbouring nodes periodically to ensure

that the network is configured optimally with regard to certain costs.2 As discussed

in Section 2.3.2, decentralising and distributing control in electricity networks has a

number of advantages. For instance a distributed system that does not rely on a central

authority for control is much more robust because there is no single point of failure.3 In

1Coupled with this high accuracy of message sending would be the need to handle potentially error
prone messages in our algorithms, see the following section on future work.

2Practically, depending on where this technology is deployed, multiple objective functions may be
necessary. For instance, in an electricity distribution network of generators owned by different entities,
where the power generated creates revenue for the generator owner, trying to reduce CO2 emissions
would require some owners to reduce their output, and hence reduce their revenue. Therefore, in this
setting there must be a balance between reducing CO2 emissions and revenue earned, as well as providing
incentives for owners to allow the power output of their generators to be decreased if the CO2 emissions
of the electricity distribution network needs to be reduced.

3For a decentralised and distributed system, if the computation device was to fail at a node, the
required computation could be outsourced to neighbouring nodes. However, if the computation device
of a centralised system was to fail, the generators would be unable to calculate the optimum output with
regard to their neighbours, which could lead to overloaded distribution cables.
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terms of contributions to the DCOP research area, this thesis proves that DCOPs can

be applied to the coordination of generators in electricity distribution networks. Our

approaches could be generalised to other settings which exhibit similar global and local

constraints.4

Therefore, with regard to decentralising and distributing electricity network control, our

algorithms set the benchmark for the deployment of agent-based coordination algorithms

to solve the optimal dispatch problem in electricity distribution networks. Moreover, our

work highlights the challenge of constructing a DCOP from an electricity distribution

network (i.e., ensuring that an acyclic electricity distribution network remains acyclic

when transformed into a DCOP). This is challenging because of the coupled nature

of electricity networks. Therefore, future DCOP decompositions must ensure that they

address this challenge directly.

In terms of implementing each algorithm, we ran into a number of issues with regard to

rounding error when calculating a solution using max-sum, D–DYDOP, and C–DYDOP.

Rounding error was particularly an issue when merging messages because a small round-

ing error for a particular variable state can mean the difference between choosing a

feasible configuration for the generators and choosing an infeasible configuration. The

problem was that we had to round merged message values (to at least 10 decimal places)

in order to evaluate them against each other; since computers introduce small rounding

errors when storing floating point numbers. As these rounding errors were propagated

around the network, eventually it would cause a wrong variable state to be chosen. In

order to solve this issue, we used whole number values for the electricity distribution

network model. It should be noted that this problem is not due to the algorithms,

but is a limitation of how floating point numbers are stored and used in computers.

Moreover, this phenomenon happened rarely and only for large electricity distribution

networks (typically over 1000 nodes). The following section provides points of departure

for future work.

6.2 Future Work

In terms of future work, we would like to consider a number of possible extensions.

Firstly, each algorithm presented handles a particular instance of an electricity distri-

bution network (i.e., a one-shot optimisation problem). Therefore, it is a non-trivial

extension to factor time into our model.5 This would allow our algorithms to continu-

ously manage a real world electricity distribution network. Moreover, time would allow

4For example, our algorithms could be applied to a factory supply chain setting where it is imperative
that the total amount of supply must equal the total amount of demand (in order to minimise wastage for
instance), and the goal is to decide the quantity of each item whilst minimising the monetary expenditure
of the entire system.

5We would extend our model to incorporate consumption that varies over time periods, instead of
the static consumption in our current model.
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us to model the latency6 and intermittency7 of the generators. As a result, the optimal

dispatch problem becomes a much more complex time dependent problem. Coordinat-

ing electricity generators in an electricity distribution network over time involves taking

into account the latency of each generator, the resources available (i.e., wind and so-

lar), and the predicted loads across the day. Possible solutions may involve running

the coordination algorithm every thirty minutes, giving each generator a range of power

that it can output between and still be optimal (so that small fluctuations of power

consumption and production can be satisfied). If the consumption changes significantly

(as determined by a variation in the frequency), the coordination algorithm can be run

again to calculate new optimal power output ranges for each generator.

Secondly, in this thesis we have considered acyclic electricity distribution networks (in-

cluding electricity distribution networks that have been configured into acyclic topolo-

gies). However, electricity distribution networks could contain cycles during operation.

Cyclic electricity networks present a number of additional challenges because of the re-

sulting tightly coupled optimisation problem. This makes it non-trivial to: (i) split into

independent subproblems, (ii) know exactly how much power will be travelling along

each distribution cable, (iii) calculate the utility of a certain amount of power travelling

along a certain distribution cable.

Initially, we decomposed a cyclic electricity distribution network into a DCOP and ap-

plied max-sum; since there exists extensive empirical evidence of its effectiveness on

cyclic graphs (Aji et al., 1998; Weiss, 2000; Farinelli et al., 2008; Vinyals et al., 2010;

Winsper and Chli, 2012). However, we found that due to the cycles in the electricity

distribution network, each message sent from function to distribution cable flow variable,

or generator power output variable, contained a number of message elements with the

same optimal utility value. In order to resolve the deadlock between variable states re-

quired an additional value propagation phase which did not always result in the correct

answer. Therefore, using the techniques that we apply to acyclic electricity distribu-

tion networks (either with max-sum, D–DYDOP, or C–DYDOP) cannot be applied to

cyclic networks in the same way. In order to use distributed techniques with cyclic elec-

tricity networks, the duality of optimisation problems using Lagrangian techniques and

the APP (Cohen, 1980) must be exploited. The advantage of both these techniques is

that they allow the decomposition of a coupled problem into subproblems which can be

solved independently, suggesting a distributed agent-based approach would be applica-

ble (Kim and Baldick, 1997; Bakirtzis and Biskas, 2003; Granada et al., 2008; Kraning

et al., 2013). Moreover, additional parameters and constraints must be considered when

calculating power flow within a cyclic network (such as voltage phase angle at nodes

and susceptance of distribution cables) which we excluded from our original electricity

network model in Section 3.1.

6The time it takes a generator to change its power output.
7For example, wind turbines or photovoltaic panels are intermittent because they depend on inter-

mittent resources.
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Finally, another non-trivial extension would be to implement and thoroughly test robust

versions of D–DYDOP and C–DYDOP to incorporate message failures and situations

when whole nodes in the electricity distribution network could fail. To achieve this

would involve a number of non-trivial additions. Firstly, a message passing framework

must be constructed which delivers the messages to each agent.8 Secondly, coupled with

this must be a model of each message channel along with failure rates. Finally, robust-

ness to message failure and corruption would need to be built into both D–DYDOP

and C–DYDOP in order for each algorithm to handle the uncertain nature of actual

communication networks (as discussed in the previous section with regard to an accu-

rate communication network). The intricate details of communication networks, whilst

interesting, is beyond the scope of this thesis as it would require considerable changes

to our model and algorithms.

8Currently messages are received instantly, there is no latency associated with a real message delivery.
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