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UNIVERSITY OF SOUTHAMPTON
ABSTRACT

FACULTY OF PHYSICAL SCIENCES AND ENGINEERING
ELECTRONICS AND COMPUTER, SCIENCE

Doctor of Philosophy

by Samuel John Odell Miller

Over the coming years, distribution network operators (DNOs) face the challenge of
incorporating an increased number of electrical distributed generators (DGs) into their
already capacity-constrained distribution networks. To overcome this challenge will re-
quire the DNOs to use active network management techniques, which are already preva-
lent in the transmission network, in order to constantly monitor and coordinate these
generators, whilst ensuring that the bidirectional flows they engender on the network are
safe. Therefore, this thesis presents novel decentralised message passing algorithms that
coordinate generators in acyclic electricity distribution networks, such that the costs
(in terms of carbon dioxide (COg) emissions) of the entire network are minimised; a
technique commonly referred to as optimal dispatch. In more detail, we cast the optimal
dispatch problem as a decentralised agent-based coordination problem and formalise it
as a distributed constraint optimisation problem (DCOP). We show how this DCOP
can be decomposed as a factor graph and solved in a decentralised manner using algo-
rithms based on the generalised distributive law; in particular the max-sum algorithm.
We go on to show that max-sum applied naively in this setting performs a large num-
ber of redundant computations. To address this issue, we present both a discrete and a
continuous novel decentralised message passing algorithm that outperforms max-sum by
pruning much of the search space. Our discrete version is applicable to network settings
that are entirely composed of discrete generators (such as wind turbines or solar panels),
and when the constraints of the electricity network have been discretised. Our contin-
uous version can be applied to a wider range of network settings containing multiple
types of generators, without the need to discretise the electricity distribution network
constraints. We empirically evaluate our algorithms, using two large real electricity
distribution network topologies, and show that they outperform max-sum (in terms of

computational time and total size of messages sent).
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Chapter 1

Introduction

Over the coming years, distribution network operators (DNOs) face the challenge of
incorporating an increased number of electrical distributed generators (DGs) into their
already capacity-constrained distribution networks. Coupled with this is the desire to
distribute and decentralise the management of these generators since traditional cen-
tralised techniques may present a number of issuesEl To overcome these challenges will
require the DNOs to use active network management techniques, which are already
prevalent in the transmission network, in order to constantly monitor and coordinate
these generators, whilst ensuring that the bidirectional flows they engender on the net-
work are safe. This presents an interesting coordination problem which could be solved
by using techniques from the artificial intelligence community. However, in order to fully
understand this coordination problem, we first need to elaborate on the reasons why the

distribution network will experience this increase in DGs.

Due to concerns about the effects climate change may have on regions of the world
in the future, as a result of increasing levels of carbon dioxide (COg) emissions (US|
[Department of Energyl [2003; [UK Department of Energy and Climate Change, [2009a);

Ramchurn et al., 2012; Intergovernmental Panel on Climate Changel [2013), agreements

have been made by numerous governments to reduce global CO, emissionsEl To help
achieve this global reduction of COy emissions, the UK has committed to transition to
a low carbon economy via an 80% reduction in emissions by the year 2050. In the UK,
the major contributors of CO2 emissions are the residential and transport sectors. Thus,
significantly reducing the CO2 emissions from both these sectors will dramatically help

the UK in achieving a low carbon economy.

In more detail, the residential sector accounts for 13% of all UK COs emissions, with

the majority as a consequence of heating living spaces and water (UK Department)|

I

We discuss
in Section [2.3.2]
See (International Energy Agency, [2011)) for a full list of countries.




of Energy and Climate Changel |2009b). Residential heating predominantly uses gas

which produces high levels of COy emissions. However, the transition to a low carbon

economy will see an increasing demand for efficient electric heating technologies such as

ground-source and air-source heat pumps (MacKayl, 2008; [UK Department of Energy and|

|Climate Change, 20092). A similarly high emitting sector is transport which accounts
for 22% of all UK COg2 emissions (UK Department of Energy and Climate Changel,
2009b). Thus, a shift from conventional vehicles to ultra-low carbon vehicles (ULCV)

will be needed in order to further reduce COs emissions. Due to all of these factors,

the demand for electricity will increase dramatically over the coming decades. However,
if the electricity is only produced using conventional generators (i.e., coal or gas), the
increasing demand for electricity will result in more COs2 emissions. Therefore, a key
aspect of achieving the 2050 targets will be to increase the amount of low COs emitting
electricity generators, which use renewable resources such as wind and solar, in electricity

networks.

In particular, a large amount of this increased generation will be connected to distribu-
tion networksEl in the form of potentially thousands of DGsEl in order to help satisfy
local demands (Roberts|, |2004; |Alarcon-Rodriguez et al., [2006; UK Department of En-|

ergy and Climate Changel 2009a)). However, current electricity networks around the

world are outdated, inefficient at transporting electricity, and unable to sustain this

increase in generation (US Department of Energyl 2003; [UK Department of Energyl|

land Climate Change, [2009a)). In particular, distribution networks are already highly

capacity-constrained (or becoming increasingly so) with little automation for control-
ling the generators in the network 2004). Thus, incorporating potentially
thousands of DGs, into already capacity-constrained distribution networks, is a major
challenge that DNOs will face.

The current practice that UK DNOs use to connect additional generation to their net-
works involves adding network reinforcements to increase network capacity. Network
reinforcements consist of additional circuitry and distribution cables to ensure that any
additional generators added to the electricity network do not overload existing infrastruc-
ture. Whilst this is essential, installing network reinforcements can be time consuming
and may have significant monetary and environmental costs . In order
to avoid these costly network reinforcements, and the [US Department of]

(2003)) suggest that more dynamic and ‘smart’ electricity networks, capable of
managing electricity more efficiently, are needed; a vision commonly referred to as the

smart grid. The smart grid is a fully automated power delivery network that is capable

3National electricity networks consist of a high voltage transmission network, and lots of lower voltage
distribution networks. See Section@ for more details.

4These generators are considered to be distributed because they will be embedded throughout the
distribution network instead of the transmission network.



of managing data from smart metersﬁ end users, micro-storage devices, and DGs using

a two-way flow of electricity and information.

One key aspect of this smart grid is the ability to add additional DGs into increas-
ingly capacity-constrained networks. Roberts| (2004)) and the Department for Business
Enterprise and Regulatory Reform| (2008) suggest the use of active network manage-
ment (ANM) to incorporate additional DGs. ANM allows the electricity to be efficiently
managed whilst satisfying demands and ensuring the maximum capacities of the distri-
bution cables are not exceeded. Therefore, there is a clear incentive for DNOs to adopt
ANM techniques in order to incorporate potentially thousands of DGs without using
costly network reinforcements. In particular, ANM can be used to coordinate the power
output of DGs such that the loads and the constraints of the network are satisfied.
The coordination of generators in an electricity network is typically referred to as opti-
mal dispatch (Wood and Wollenberg, 1995) and has been traditionally completed using

centralised calculations.

For a central control system to work, large amounts of data must be transmitted to a
central location, manipulated, and then sent back to each generator. However, as the
electricity network size increases, the complete control loop that is necessary, in order
to control the electricity generators centrally, may be too slow to respond to fluctuating
changes in a timely fashion (Department for Business Enterprise and Regulatory Reform,
2008; |Granada et al., |2008) (See Section for a thorough discussion of centralised
versus distributed and decentralised control in electricity networks). Hence, this thesis
is concerned with how DNOs can incorporate distributed and decentralised optimal
dispatch methods, using ANM, in order to be able to manage an increased number of
DGs in the distribution networks, whilst reducing CO9 emissions and ensuring electricity
demand is satisﬁedﬁ The following section discusses the requirements of a system for

controlling the power outputs of generators in electricity distribution networks.

1.1 Research Requirements

From the discussion of the problems in the previous section, a number of requirements
can be identified for coordinating generators in an electricity distribution network, whilst

reducing the cost of the network, and satisfying the loads and the network constraints:

I Autonomy The algorithms developed should require minimal human interaction

in order to coordinate the power output of generators in electricity networks. This

®A smart meter is an electrical device that receives real-time electricity pricing and displays this
information to customers.

51t should be noted that considering the change of electricity demand over time is beyond the scope of
this thesis. We consider the demands of a network to be static. See Chapter [6]for future work concerning
varying demand over time.



is because as the size of the network grows, it may become increasingly difficult for
human operators to make optimal and efficient decisions due to the large amount

of data and computation required.

II Minimise COy Emissions The generators should coordinate such that they

increase the efficiency of the network by minimising CO2 emissions.

III Scalability The algorithms should be able to scale to large electricity networks

that contain thousands of generators and distribution cables.

IV Handle Different Types of Generation The algorithms should be able to
coordinate different types of generators with varying outputs and constraints. For
instance, renewable generators, such as wind turbines, will only generate electricity
when the wind blows. Thus, the algorithms need to be able to handle intermittent

generators.

V Distributed and Decentralised Control The algorithms must decentralise and
distribute the computation and information throughout the electricity distribution
network. Each generator in the network will take on some of the computation to
solve the optimal dispatch problem. See Section for a discussion of the

advantages of distributing and decentralising control in electricity networks.

VI Enable Plug-and-Play Since the electricity network is going to evolve and in-
crease in size over the coming years, the algorithms will need to be able to adapt
to different network topologies and electrical devices. Thus, they should allow
operators to “plug-and-play” new generators, loads and distribution cables into
(and out of) the network. This should be achievable without having to redesign

the algorithms for the particular problem at hand.

VII Graceful Degradation In the event that one or more generators malfunction
and are unable to communicate with their neighbours, the algorithms should still

be able to compute a solution without failing in an unexpected way.

The following section discusses the existing work on coordinating generators in an elec-

tricity network, and the gap in the literature that this thesis addresses.

1.2 Research Challenges

From the problems and requirements identified in the previous section, there are some
key challenges that must be addressed for coordinating generators within an electricity

network:



1. When coordinating generators in an electricity network, the first key challenge is
ensuring the algorithms minimise the global cost of the network (i.e., CO2 emis-
sions) whilst satisfying the local and global constraints of the electricity network.
The local constraints of the electricity network consist of the maximum thermal
capacities of the distribution cables, and the maximum and minimum power out-
puts of the generators. The global constraint of the electricity network requires

that total production must equal total consumption of electricity.

2. The algorithms that coordinate generators in an electricity network must be robust
to failure (i.e., if one of the generators is unable to communicate, due to a commu-
nication network failure, the algorithm should still be able to arrive at a solution).
This implies that the system should be decentralised so that the computation does
not rely on a single entity, and also that the system should be distributed so that
the computation is distributed between generators, giving higher robustness than
a centralised approachm Thus, the second key challenge is ensuring that the co-
ordination problem is split up in such a way so that the optimal decision for each

generator can still be calculated without centralised control.

Some of these key challenges are already being addressed within the artificial intelligence
and power systems communities using ANM. In particular a number of authors address
the issues of coordinating generation from intermittent resources in the transmission
network (where lines are less constrained than in the distribution network) (Kim and
Baldickl [1997; Davidson et al., [2009). For example, Davidson et al. (2009) present an
algorithm to manage the power output of the generators in the transmission network
in order to reduce overloaded transmission linesﬁ However, their technique involves a
central authority calculating the power output of each generator. As the size of the
network grows, solving an optimisation problem in a centralised manner may become
infeasible. This is due to the amount of data that must be held centrally about each

generator and distribution cable[]

Kim and Baldick| (1997)) overcome the above issue by introducing a decentralised algo-
rithm which uses Lagrangian techniques and the auxiliary problem principle (APP). The
network is split into regions and each region communicates with its neighbouring regions
to decide the optimal power outputs for their generators. However, this algorithm has
only been tested on problems containing up to two regions. Thus, it is unclear whether

it will scale well when applied to larger electricity networks. Recently, Kraning et al.

"See Section for a discussion of the advantages of distributing and decentralising control within
an electricity network.

8 An overloaded transmission line (or distribution cable) occurs when the power travelling through it
is higher than its normal operating thermal capacity. As a result, the transmission line protection will
trip and the line will be unable to transmit power leading to network failure.

9For instance, data such as the minimum and maximum outputs, carbon intensity, and current output
of the generators, topology of the network, and the amount of power flowing through each distribution
cable. See Sectionfor a detailed discussion of centralised and decentralised control within electricity
networks.



(2013) present a solution that decomposes an electricity network into subproblems using
similar techniques to the APP. They claim they are able to coordinate networks contain-
ing up to 100,000 nodes and project that it will take 200ms to solve in a decentralised

way. However, no concrete results are presented.

In contrast, Kumar et al.| (2009)) introduce a message passing technique which extends
distributed pseudotree optimisation procedure (DPOP) to solve the related area of re-
search for reconfiguring feeder trees within a distribution network. While this approach
is decentralised, and was shown to work for real-world networks, it does not address the
problems highlighted above of incorporating an increasing amount of generation in the

distribution network, and the need to coordinate their output.

Against this background, there is a clear need for a decentralised algorithm that can
coordinate an increased amount of generation in the distribution networks, such that
COg emissions of the entire network are minimised (Requirement . The algorithm
should scale well with the size of the network (Requirement , and distribute the
information and computation required to coordinate electricity generators (Requirement
V). Due to the projected increase in renewable generators embedded in distribution
networks, the algorithm will need to be able to handle a wide variety of different types
of generator (Requirement [[V)).

Now, Requirement [[] means the system should run automatically and require no human
intervention. This suggests the use of software agents (Wooldridge and Jennings, 1995)@
that interact with each other as part of a multi-agent system. Using a multi-agent
system also means that Requirements [V} [VI} and [VII will be met. Multi-agent systems
typically do not require a fixed number of agents to interact with each other at any one
time. Thus, they can be inherently plug-and-play capable (Requirement and can
gracefully degrade (Requirement since any agent can join the system (or leave) and
the remaining agents are still capable of interacting. Moreover, multi-agent systems can
be implemented in a decentralised and distributed fashion (Requirement [V]) so that each

agent undertakes some of the computation to reach a global solution.

By distributing and decentralising the computation, the scalability issues of a system
can be addressed (Requirement . Centralised approaches to coordinate generators in
an electricity network can be fast, as Davidson et al.| (2009) show, but could become
infeasible for large networks. This is due to the large amount of data that must be
transmitted to a central location. Moreover, having a central authority provides a central
point of failure for the entire SystemE Thus, to address the scalability issues, there is

a clear incentive to decompose and distribute the computation.

10An agent is an autonomous piece of software that has the ability to interact with its environment,
exhibiting goal driven behaviour, in order to maximise the agent’s utility function.
" The disadvantages of centralised control within an electricity network are discussed in more detail

in Section @



The decentralised and distributed coordination of potentially tens of thousands of phys-
ically distributed entities has long been a focus of research for the distributed con-
straint optimisation problem (DCOP) community (Modi et al., 2005; Petcu and Falt-
ings, 2005; [Mailler and Lesser, 2006; Farinelli et al. |2008]). As such, the DCOP com-
munity have an extensive set of algorithms to coordinate distributed systems using
agent-based message passing. Examples include DPOP (Petcu and Faltings, 2005)),

asynchronous distributed constraint optimisation (ADOPT) (Modi et al., 2005)), asyn-
chronous partial overlay (APO) (Mailler and Lesser, 2006)), optimal asynchronous partial
overlay (OptAPO) (Mailler and Lesser, |2004), and max-sum (Farinelli et al., [2008). A
subset of these algorithms (i.e., DPOP and max-sum) are from the generalised distribu-
tive law (GDL) family of algorithms (Aji and McEliece, |2000; |Farinelli et al., [2013) which
provides a message passing framework that has been proven analytically and empirically
to converge to optimal solutions very quickly (Aji and McEliecel, 2000; |Kschischang et al.,
2001; |[Farinelli et al., 2008). Thus, these existing algorithms provide a starting point for

solving the optimal dispatch problem in a distributed and decentralised fashion.

The following section discusses the research contributions of this thesis.

1.3 Research Contributions

To address the challenges of distributing and decentralising the optimal dispatch prob-
lem, we present a number of novel message passing algorithms in Chapters and
which solve the problem of coordinating generators in acyclic electricity distribution
networks (i.e., radial networks, or ring main and interconnected networks that have
been configured into acyclic networks). In what follows, we elaborate on the individual

contributions of this thesis.

In Chapter 3| we provide a new formalism of the optimal dispatch problem as a DCOP.
We show how this can be decomposed as a factor graph and solved using algorithms
based on the GDL family, such as max-sum. We go on to show that discrete max-sum
applied naively in this setting performs a large number of redundant computations. To
address this issue, in Chapters [4] and [5| we present both discrete and continuous novel

message passing algorithms.

In order to apply a discrete algorithm to the optimal dispatch problem, the electricity
distribution network constraints must be discretised as detailed in Section 3.4 Whilst
discretising the electricity distribution network constraints using a small discretisation
unit decreases the error between the discrete optimal dispatch solution and the actual
optimal dispatch solution, the computation time increases. However, if a large dis-

cretisation unit is used, a discrete algorithm can outperform a continuous algorithm for



certain scenariosH In contrast, a continuous algorithm does not require the electricity

constraints to be discretised and does not suffer from accuracy issues as a result.

In more detail, in Chapter [] we present a novel message passing algorithm, called
D-DYDOP (Discrete-DYnamic programming Decentralised OPtimal dispatch) which
discretises the power outputs of the generators, the loads, and the distribution cable
flows. Agents communicate with their neighbours to determine the optimal power out-
puts for the entire network such that the global objective to minimise CO2 emissions is
achieved. In Section [£.4] we benchmark D-DYDOP against both an optimal centralised
approach based on mixed integer programming (MIP), and our benchmark decentralised
algorithm in Chapter The contents of Chaptersandappeared in Miller et al.| (2012)
and Miller et al.| (2013).

In Chapter [5| we present C-DYDOP (Continuous-DYnamic programming Decentralised
OPtimal dispatch) which extends D-DYDOP to use continuous variables for genera-
tor power outputs, loads, and distribution cable flows. Instead of calculating a cost
for each discrete power output, agents use piecewise linear functions to represent the
cost of generating power over a range of distribution cable flows. This allows for a
much more compact representation of a message which agents communicate with their
neighbours. The advantage of using continuous variables is that C-DYDOP does not
suffer from the discretisation of the search space; unlike D-DYDOP which must iter-
ate through every possible combination of discrete values when calculating messages.
Furthermore, compared to D-DYDOP, C-DYDOP does not suffer from the branch-
ing factor of the network, or accuracy issues with regard to the optimal answer. We
benchmark C-DYDOP against D-DYDOP, the centralised approach, and max-sum, to
show that C-DYDOP outperforms D-DYDOP and max-sum in terms of total number
of message elements sent and computation time. The contents of this chapter appeared
in Miller et al.| (2013). The following section details the structure of this thesis.

1.4 Thesis Structure

The remainder of this thesis is structured as follows:

Chapter [2| A review of the literature relevant to this thesis is presented. We intro-
duce the global target to reduce CO2 emissions and how the UK is helping to
achieve this target. The UK electricity network is described along with the cur-
rent problems that exist and the need for a ‘smarter’ electricity network. Power
flow coordination, the problems associated with electrical power flows, and active

network management are discussed along with various approaches to coordinating

121 Sectionwe show that our discrete algorithm D-DYDOP can outperform, in terms of compu-
tation time, our continuous algorithm C-DYDOP when a large discretisation unit is used.



the power output of generators using a smarter grid. We present typical distribu-
tion network topologies including radial, ring main, and interconnected. Finally,
we explain DCOPs and introduce the GDL family of algorithms including a formal

definition of max-sum.

Chapter [3] We introduce the electricity network model that is used by Chapters [3 [4]
and [bl Furthermore, we present our novel representation of an electricity distribu-
tion network as a DCOP and solve using our benchmark decentralised algorithm
discrete max-sum. Note that the techniques presented in Section [3.4] are required
to discretise the electricity distribution network constraints before applying max-
sum. Thus, the accuracy of the solution calculated by max-sum is dependent on
this discretisation. Moreover, max-sum applied naively in this setting performs a
large number of redundant computations. The contents of this chapter appeared
in Miller et al.| (2012)) and [Miller et al.| (2013)).

Chapter [4 To address the redundant computation problems associated with applying a
naive implementation of max-sum, we present our novel message passing algorithm,
called D-DYDOP, which uses techniques based on local consistency to prune much
of the search space. Messages are propagated from leaf nodes, up to the root
of the tree using a dynamic programming approach. Like with discrete max-
sum, D-DYDOP requires the electricity distribution network constraints to be
discretised. The contents of this chapter appeared in Miller et al.| (2012)) and Miller:
et al.|(2013).

Chapter |5/ In order to alleviate the accuracy issues associated with both discrete max-
sum and D-DYDOP, we present an extension of D-DYDOP, called C-DYDOP,
which does not require the electricity distribution network constraints to be dis-
cretised. C-DYDOP uses continuous values for the generator power outputs and
distribution cable flows, enabling computational overheads to be reduced. The

contents of this chapter appeared in Miller et al.| (2013]).

Chapter [6] Finally, we conclude by summarising this thesis and giving a detailed plan

of the future work.






Chapter 2
Background

This chapter gives a detailed overview of the key background research related to this
thesis and provides the necessary theory in developing the algorithms and techniques
presented in Chapters and [5l Section describes the global drivers and initia-
tives to reduce carbon dioxide (CO3) emissions, and how the UK government is aiming
to achieve its reduction targets. Section introduces nationwide electricity networks,
describes the physics of electricity, introduces the complexities that arise when coordi-
nating power flows within a network, and presents typical electricity distribution network
topologies. Section presents the need for a smarter network and describes state of
the art techniques for coordinating generators within a smart grid. Moreover, we detail
active network management (ANM), which provides an alternative solution to network
reinforcements, several techniques for coordinating generators in both a centralised and
decentralised framework, and a discussion of the advantages of distributing and de-
centralising the control of generators in electricity networks. Section introduces
the distributed bucket elimination algorithm, the distributed constraint optimisation
problem (DCOP) framework, and the generalised distributive law (GDL) family of al-
gorithms. Finally, Section summarises the key concepts described and justifies the

techniques that are built upon within this thesis.

2.1 Reducing Global Carbon Dioxide Emissions

As discussed in Chapter [I| agreements have been made by numerous governments to
reduce global CO2 emissions (International Energy Agency, 2011). In particular, the UK
has committed to transition to a low carbon economy with the specific claim of achieving
an 80% reduction of CO4 emissions by 2050 (UK Department of Energy and Climate
Change, 2009b). This is set against a background where the UK residential sector

accounts for 13% of all UK CO9 emissions, (the majority of which is a consequence of
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heating living spaces and water) while the UK transport sector contributes 22% of all
UK COg emissions (UK Department of Energy and Climate Change, 2009b)E]

In more detail, the UK residential sector predominantly uses gas for heating which pro-
duces high levels of CO3 emissions. However, the transition to a low carbon economy
will see an increasing demand for more efficient heating technologies such as electric
ground-source and electric air-source heat pumps (MacKayl 2008; UK Department of
Energy and Climate Changel, 2009&)EI Within the transport sector, a shift from conven-
tional vehicles to ultra-low carbon vehicles (ULCV) will be needed in order to further
reduce CO» emissionsE] Thus, this transition to a low carbon economy, from both the
residential and transport sectors, will dramatically increase the demand for electricity
over the coming decadesﬁ However, if electricity is only generated using coal or gas,
the increasing demand for electricity will result in more COgy emissions. Therefore, a
key aspect of achieving the 2050 targets will be to increase the amount of low COq
emitting electricity generators, which use renewable resources such as wind and solar,

into electricity networks.

In particular, a large amount of this increased generation will be connected to distri-
bution networks, in the form of potentially thousands of distributed generators (DGs),
in order to help satisfy local demands (Roberts, [2004; UK Department of Energy and
Climate Change, 2009a)ﬂ However, current distribution networks are already highly
capacity-constrained with little automation for controlling the generators in the net-
work (Weedy and Cory, 2004; Roberts, 2004). Therefore, in order to incorporate po-
tentially thousands of DGs, the UK national electricity network, and in particular the
distribution network, will need to be updated (US Department of Energy, [2003)). In
order to understand the motivations for updating national electricity networks, the fol-
lowing section elaborates on current national electricity infrastructure and how power is

transmitted.

2.2 Existing Transmission and Distribution of Electricity

Electric power grids are made up of a transmission and a distribution network, enabling

the transportation of electricity from generators to consumers (Weedy and Cory), 2004;

!The majority of the remaining 65% of UK COz emissions can be attributed to the energy supply
and business sectors.

2Heat pumps use electricity to efficiently transfer thermal energy in order to heat (or cool) buildings.

3Typically, ULCVs use either solid state batteries or hydrogen fuel cells.

“The UK has already experienced an increase from 59GW of peak electricity demand in 2010 to
61GW in 2013, and will experience a predicted increase to 66GW by the year 2017 (National Grid,
2011)).

°Examples of DGs include photovoltaic panels which convert sunlight into electricity, wind turbines
which convert wind into electricity, biomass generators which convert biodegradable matter and specially
grown crops into electricity, and combined heat and power (CHP) generators which attempt to capture
the heat lost during electricity generation and use it to heat buildings.
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Gonen, [2007; |Grigsby, [2012). The transmission network consists of heavy duty lines
capable of transmitting electricity at 400kV and above between a number of large power
stations and the main substations. The large power stations generate electricity, using
coal, gas, oil, and nuclear fuels, as three-phase alternating current (AC) at a voltage of
11-25kV. Transformers situated nearby are used to increase the voltage to 400kV for
transportation on the transmission network. High voltages are used, when transporting
electricity, in order to reduce power loss caused by resistance. Resistance is part of
impedance which is the measure of the opposition that a circuit presents to AC when a
voltage is applied. The following equation defines the impedance of a path Z where the

real part R, is the resistance and the imaginary part X, is the reactance:
Z=R+jX (2.1)

Thus, in more detail, the amount of power lost P45, due to heat, is proportional to the

resistance and the current I:
Pioss = I’R (2.2)

Now, if a high voltage E is used, a low current is required to produce the same amount
of power P:
P=1IF (2.3)

Thus, for a particular transmission line, assuming the resistance remains constant, a
lower current results in a smaller amount of power lost. Once the power reaches the
main substations, step-down transformers are used to decrease the voltage from 400kV
to either 33kV, 11kV, or 6.6kV which is fed onto the distribution network controlled
by the distribution network operators (DNOs). In order to meet local demands, the
distribution network also contains a high number of smaller generation units distributed
throughout the network. Distribution cables transport electricity between further trans-
formers to decrease the voltage to 400-415V three-phase, giving 230-240V per phase

which is suitable for end consumers (i.e., households).

Having given an overview of electricity generation, transmission, and distribution, we
now focus on distribution network topologies (since this thesis is concerned with con-
trolling generators in distribution networks). Distribution networks differ in a number
of ways from transmission networks. Typically, distribution networks contain a higher
number of branches throughout the networkﬁ and are much more capacity-constrained
compared with the transmission network (Weedy and Cory}, 2004; Roberts, [2004). This
means that the projected introduction of possibly thousands of DGs in the distribution
network will need to be managed efficiently in order to ensure the network does not
become overloaded. In the following section we provide a detailed explanation of typical

distribution network topologies.

SFor example, the Indian distribution network topology that we use to test our algorithms, Figure
4.2(a)} contains a substation which is connected by 4 distribution cables.
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2.2.1 Distribution Network Topologies

There are three common types of distribution network topologies, exemplified on Figure
that are used around the world; radial, ring main, and interconnected (Weedy
and Cory, 2004; |Gonen, 2007} |Grigsby}, 2012). Substations are represented by the thick
horizontal lines, each with an arrow indicating a load; the thickest substation at the top of
each figure is connected to the transmission network. Substations are connected to each
other by distribution cables carrying 11kV, represented by the thin vertical lines. Figure
shows a radial distribution network which is predominantly used in rural areas.
There is only one path from the step-down transformer, connected to the transmission
network, to each load via the connecting substations (i.e., an acyclic network). Loads

are relatively small and widely dispersed (5-50kVA per group of houses).

Suburban distribution networks combine rural distribution network topologies into a ring
main network, as shown in Figure A ring main network contains a number of
substations in a ring around the step-down transformer connected to the transmission

network. The ring is Sectionalisedm so that all substations can still be supplied if a

"A sectionalised network contains a number of switches which can be opened to cut off power to a
particular section of the network.
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distribution cable were to fail, and allows it to be configured into an acyclic network.

Loads are higher than in rural networks (2-10MW /mile?) due to higher density housing.

Finally, Figure [2.1(c)| shows an interconnected system used in urban towns and cities
with very heavy loadings (up to 100MW /mile?). Each substation is connected to a
number of other substations resulting in a sectionalised interconnected network. Higher

33kV distribution cables are used as well as 11kV in order to supply power to the loads.

Throughout this thesis, we only consider acyclic electricity distribution networksﬁ This
assumption can be justified as follows. Ring main and interconnected networks con-
tain cycles but are configured into acyclic networks, using switches, in order to supply
power (Weedy and Cory, 2004} |Grigsby, 2012). The extra distribution cables are used to
ensure uninterrupted supply to all loads in the event of a distribution cable being unable
to transmit powerﬂ To clarify, consider Figures w and m which are examples of
the interconnected electricity distribution network in Figure configured as acyclic
networks. Figure shows an example configuration where two paths from the

transmission network connection to each load pass through separate substations. Figure

2.2(b)| shows an example configuration where two paths from the transmission network
connection to each load pass through some of the same substations. Switches inside each
substation ensure the paths are not connected when both paths pass through the same

substation.

Currently, distribution networks contain little automation for the transportation of
powerm Whilst automation was not necessary in distribution networks when nation-
wide electricity networks came into existence, as electricity distribution networks grow
and become more complex, it becomes increasingly hard for human operators to control
all of the factors within the network without more intelligent techniques (Roberts, 2004;
Department for Business Enterprise and Regulatory Reform), [2008). In Sections and
and Chapters [3] [4 and [f] we explore the intelligent techniques to enable DNOs to
manage their distribution networks efficiently. However, to fully understand the com-
plexity of electricity transmission, distribution, and management, the following section

discusses the physics of electricity.

2.2.2 Physics of Electricity in a Network

In a network of generators and loads (represented by nodes) connected by distribution

cables, the amount of power flowing through each distribution cable will vary according

8We leave cyclic distribution networks for future work, see Chapter @

9For instance, [Kumar et al| (2009) address the problem of configuring cyclic distribution networks
into acyclic topologies when a fault has occurred.

107t should be noted that the transmission network is already highly automated using supervisory
control and data acquisition/generation management system (SCADA/GMS). SCADA /GMS supervises,
controls, optimises, and manages large scale generation, and transmission systems. However, distribution
networks still lack a lot of this automation (Roberts| [2004)).
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FIGURE 2.2: Example of the interconnected electricity distribution network in Figure

configured as two different acyclic electricity distribution networks. shows

an example configuration where two paths from the transmission network connection

to each load pass through separate substations. [2.2(b)[shows an example configuration

where two paths from the transmission network connection to each load pass through

some of the same substations. Switches inside each substation ensure the paths are not
connected when both paths pass through the same substation.

to Kirchofl’s lawsﬂ Thus, complications arise (such as overloaded distribution cables)
when transporting power through networks. This is because power cannot be sent
through a particular distribution cable and must be indirectly manipulated by varying
the loads and the generation within the network. Power flows through each available
path inversely proportional to the impedance of that path. The following equation links

the voltage and the current flowing through the path, with the impedance of the path:
E=1Z (2.4)

Assuming the voltage stays constant, if the impedance is increased, the current will
decrease and vice versa. The consequence of Equations and is that in a net-
work of generators and loads connected by distribution cables, if one of the distribution
cables in the network is overloaded, the power cannot be easily redirected away from
the overloaded distribution cable. Instead, in order to change the amount of power
flowing through a distribution cable (i.e., the power flow (PF)), the power output of the

generators across the network must be changed.

To calculate the PF through each distribution cable in a network of generators and
loads, alternating current power flow (AC PF) equations can be used, which consider
the nonlinear constraints: balance, branch flow, and generation for real and reactive
power (Wood and Wollenberg, |1995). However, due to the nonlinear nature of these cal-
culations, finding a solution is computationally intensive (Overbye et al. 2004). There-
fore, in practice, AC PF equations are approximated by more feasible linear direct cur-
rent power flow (DC PF) equations that use the real power constraints and make a

number of simplifying assumptions (Kaye and Wu, [1984), specifically:

"The sum of the currents flowing into and out of a node in an electrical circuit is zero (Kirchoff’s
current law). The directed sum of the voltages in a network is zero (Kirchoff’s voltage law).
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1. Line losses are assumed to be zero.

2. The difference between two neighbouring nodes’ voltage phase angleﬁ 0; and 0;

are assumed to be small, such that cos(f; — 6;) =~ 1 and sin(§; — ;) ~ 0.

3. Voltages are assumed to be identically unity using the per-unit systemE

Although DC PF is an approximation, results show that it provides a good approxima-
tion to the actual AC PF with the advantage that it is much faster to compute (Overbye
et al., [2004; |[Sun and Tesfatsion, 2007)). The DC PF equations calculate the power trav-
elling through distribution cables that connect k nodes within an electricity network. In
what follows, we denote v; as node i and t;; as the distribution cable that connects v;
and vj where i,j € {1,...,k}:

P=BO (2.5)
where P = {p1,...,px} is a vector of real resultant power such that p; € R kW is
the real resultant power for v;. B = [bjj]pxk is a k X k sparse symmetrical matrix
of susceptances for the distribution cables, where b;; € R~ siemens is the negative

k
susceptance of t;; for i # j, by = Z |bij| is the sum of the susceptances for row 4, and
§=0
the susceptance of ¢;; is given by:
1
bijj = — 2.6
= (20

where x;; € RTQ is the reactance of t;j. For v; and v; that are not connected, b;; = 0.
Finally, ® = {01,...,0;} is a vector of voltage phase angles, where 6; € R is the
voltage phase angle at v;. The following equation calculates the power flowing through

a distribution cable:
fij = bij(0i = 05) (2.7)

where f;; € R kW is the power flowing through tijE © can be calculated by rearranging

Equation ({2.5)) to give:
®©=PB! (2.8)

If one node were to change the power output of its generator, one or more distribution
cable power flows would change due to the coupled nature between the power outputs,

the node voltage angles, and the susceptances of the distribution cables in Equation

&3).

In more detail, changing p; in Equation (2.5) will cause one or more 6 to change in @

(since B is fixed for a particular network). Thus, changing ; will affect the flow of each

12When generating AC electricity, the voltage varies along a sinusoid curve between a positive and
negative amount. The voltage phase angle corresponds to the angle of the sinusoid curve.

13The per unit system expresses actual values of quantities as fractions of referenced quantities (Weedy
and Cory), |2004)).

'*It should be noted that the sign of f;; gives the direction of flow. When f;; > 0 the power is flowing
from v; to v;, and when f;; < 0 the power is flowing from v; to v;.
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distribution cable connected to v; due to Equation . Figure shows an example
of how changing the power output of a generator in a network affects the power flows of
multiple distribution cables. Figure[2.3(a)|shows consumption and generation within an
electricity network, and Figure shows the resulting power flows of the distribution
cables from Figure Figure [2.3(c)| shows the new distribution cable power flows if
load A changes its consumption to —700kW and generator B increases its power output
to compensate. The amount of power travelling along distribution cables that have
changed are marked with dashed red boxes, and the power travelling along distribution
cables that have changed direction are marked with dashed red arrows. This illustrates
the difficulty of coordinating power in an electricity network; changing the power output
of one generator in one part of the network can potentially affect power flows in all other
parts of the network. Having presented the physics of controlling electricity in a network,
as well as the associated difficulties, the following section presents the vision of a more
intelligent electricity network capable of managing an increased number of generators,

end consumers, and electrical devices, in capacity-constrained networks more efficiently.

2.3 The Smart Grid

To transition to a low carbon economy, the outdated electricity networks will have to
be modernised in order to incorporate increased generation capacity and more efficient
management of electricity by creating a smart grid. The [US Department of Energy

(2003) describes a smart grid as:

A fully automated power delivery network that monitors and controls every customer
and node, ensuring a two-way flow of electricity and information between the power
plant and the appliance, and all points in between. Its distributed intelligence, cou-
pled with broadband communications and automated control systems, enables real-time
market transactions and seamless interfaces among people, buildings, industrial plants,

generation facilities, and the electric network.

The UK Department of Energy and Climate Change| (2009a)) identifies the following
principles of the smart grid which will need to be implemented in order to achieve a

smarter electricity network:

Observable View a wide range of operational statistics including the location of losses
in the system and the current condition of equipment in not only the transmission

network but also the distribution network.

Controllable Manage and optimise the smart grid to a greater extent than current
electricity networks. This will allow network operators to control some demand
for electricity depending on the supply available and will facilitate the integration

of intermittent renewable generation on a large scale.
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Automated The smart grid will be able to ‘intelligently’ manage the electricity produc-
tion and consumption in an automated manner. It will also be able to ‘self-heal’
in the event of a network failure (i.e., it will identify the fault and then reconfigure

the network in an optimal manner such that the fault is resolved).

Fully integrated Components on the smart grid will need to be fully compatible with

existing electricity networks.

The smart grid separates the electricity network into manageable micro—grid&{T_S] that in-
corporate smart metering techniques for real time pricing of electricity, DG and micro-
storage devices (US Department of Energy, |2003; UK Department of Energy and Climate
Changel [2009a). A micro-grid may be connected to major electricity generators, such
as nuclear or coal power stations, much like the current system. However, the difference
is that each micro-grid can be disconnected and isolated from the main electricity net-
work (i.e., working in island mode) and continue to balance the supply and demand by

managing the electricity flow around the decentralised network.

The European smart grids technology platform (European Commission, 2006) and EPRI’s
IntelliGrid initiative (Chuang and Gellings|, [2008) have both proposed smart grids as the
key to meeting rising future demands for energy. Therefore, various research groups and
consortia are investigating the technologies that would be needed for such a smart grid.
A partnership in the UK between seven universities, EDF Energy, ScottishPower and
ABB have developed a smart grid called the autonomous regional active network man-
agement system (AuRA-NMS). The main direction of research for the AuRA-NMS is

voltage control and power flow management.

Voltage control involves managing the voltage of a network to ensure that all the devices
and distribution cables that are part of the network operate within safe working lim-
its (Taylor et al., 2008, 2010). Taylor et al.| (2010]) present a distributed way to maintain
safe voltage levels within AuRA-NMS using case based reasoning (CBR) techniques. For
each case, a number of precomputed solutions are produced using simulations offline,
that describe what measures should be taken to return the network to safe voltage lev-
els. When a voltage excursion is detected, a number of cases are selected which match
the current situation. Each solution is verified using power flow calculations and then a
single preferred solution is selected to be implemented. If more than one solution exists,
then contract agreements between the network operators and the generators are taken

into consideration 9]

Rahman et al.| (2007) propose another promising micro-grid management system called

the intelligent distributed autonomous power system (IDAPS). This focuses on the

!5 A micro-grid is an electricity network that contains a number of electrical devices as well as end
users.

16T the UK, these contract agreements are based on a last in first out approach (i.e., generators that
were connected more recently will be switched off first).
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integration of cleaner and more efficient small-scale generation sources and advanced
IP-based communication technologies in order to build a resilient power system. The
project conducted a number of experiments where they tested IDAPS in both grid
mode (i.e., connected to the main electricity network) and island mode. Results showed
that IDAPS could be used to incorporate renewable generation, voltage and frequency
control, communication protocols, and fault resolution in an efficient manner (Rahman
and Pipattanasomporn, 2010)), such that demand within the network is satisfied when
working in both grid mode and island mode. By combining these technologies, the
IDAPS and the AuRA-NMS projects proved that it is possible to make an electricity
network that is able to cope with the increased amount of generation and load that will

be experienced in the future without costly network reinforcements.

The above approaches focus on a wide variety of problems associated with implementing
a smarter electricity grid, such as communication between devices on a network, small-
scale generation, renewable generation, voltage control, and power flow management.
This thesis will focus on how an increased amount of generation, particularly from
renewable sources, can be coordinated in distribution networks without the need to
install additional infrastructure by using ANM. The following section introduces ANM

along with the state of the art approaches to implement such a system.

2.3.1 Active Network Management

The current practice for adding generation to electricity networks generally involves
constructing new circuits (network reinforcements) to increase network capacity. Whilst
this is essential, installing network reinforcements can be time consuming and may have
significant monetary and environmental costs (Roberts, 2004). To alleviate the need
for network reinforcements, generators can be connected to the electricity network with
additional constraints, such as voltage limits and thermal overloads, that can be applied

when the system capacity is restricted.

For each generator that is added in this way, a number of predetermined ‘hard-wired’
intertrip schemes have been developed to decrease the power output of the generators in
the event of a network failure. Whilst this is a solution for individual generators, as more
generators are added, these predetermined schemes become increasingly complex and
quickly become infeasible to implement (Roberts,|[2004)). Moreover, renewable generators
that are added to electricity networks create further problems since they use resources
that are intermittent. Thus, balancing supply with demand using renewable generators
will be more complex than using higher CO5 emitting coal or gas generators that are
not intermittent in nature and more controllable. Therefore, to minimise the cost of
network reinforcement and CO emissions, Roberts (2004) suggest the use of ANM that
incorporates dynamic schemes for coordinating generators in an electricity network.

When calculating what power output each generator should have, there is often an
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associated costE] Therefore, finding the optimal configuration that minimises the cost
of the network is often desired. This type of problem is referred to in the literature as
optimal power flow (OPF) (Kaye and Wul |1984; Sun and Tesfatsion, [2007]).

As with PF, alternating current optimal power flow (AC OPF) can be approximated by
a more feasible direct current optimal power flow (DC OPF) using Equations -
(2.8) (Kaye and Wu, 1984])). |Sun and Tesfatsion| (2007) provide a comprehensive study of
the accuracy of DC OPF compared with AC OPF and conclude that DC OPF is much
faster to compute and is a good approximation for AC OPF. The following section
discusses and compares the current techniques for coordinating generators in an elec-
tricity network, in order to minimise the cost of the network, using centralised, as well

as decentralised and distributed, approaches.

2.3.2 Coordination of Generators

Using a central authority to calculate the power output of each generator requires the
data from every device connected to the network to be transfered to the central authority.
The advantage of having a complete view of the data is that the central authority is able
to calculate the optimal solution. For example, Davidson et al. (2009) use constraint
programming (CP) to change the power outputs of the generators in the transmission
network in order to reduce the power travelling through an overloaded transmission line
subject to a number of constraints; such as ensuring the capacity of each transmission
line is not exceeded. For a given situation, there may be many different solutions for
each generator that meets the constraints of the network. In this case, [Davidson et al.
(2009) use a number of preference constraints which attempt to maximise the use of
DGs subject to contract agreements for each generator. CP has an advantage over OPF
because it can offer a number of ranked solutions based on the contract constraints.
If one solution does not reduce the overloaded line to within a safe working level, the
next best solution can be used instead. Typically, OPF simply gives one solution to the
problem and if that solution cannot satisfy all the constraints in the network then the

resulting management of the generators may fail.

The central control of generators, however, presents a number of issues. For a central
control system to work, large amounts of data must be transmitted to a central location,
manipulated, and then sent back to each generator. As the electricity network size
increases, the amount of data that must be transmitted will increase as well; eventually
it may actually be infeasible to transmit that amount of data due to the capacity and
quality of the communication channels (Granada et al., [2008). As such, a centralised
approach may have significant scalability issues for large networks (Platt| 2007} |Granada
et al., 2008; Kumar et al., [2009)). Moreover, a centralised control system creates a single
point of failure (Roberts, 2004; Solanki et al., |2007), which could be detrimental to the

"For instance, cost in terms of COs emissions, fuel consumption, or line losses.
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security of electricity supply with respect to reliability (Platt) [2007; Kumar et al., 2009)).
If the centralised control system was to fail (in terms of communication error, processor
malfunction, or power supply loss for instance), each generator would be unable to
determine what it should efficiently outputE Furthermore, a large change in the total
demand (i.e., larger than can be satisfied by just following the frequency signal), could
result in significant problems if the generator power outputs are not changed accordingly;
problems such as overloaded distribution cables which could lead to complete loss of

power throughout the entire electricity network.

Local environmental conditions (such as fluctuating wind, cloud cover, and rain) can
potentially create another problem to centralised techniques. Although considering the
change of electricity demand over time is beyond the scope of this thesis, future systems
will need to take full advantage of renewable generators in order to ensure the reduction
of CO; emissions. Using a central system to predict the availability of the environmental
resources that renewable generators harness, as well as controlling generators at remote
locations, requires large amounts of data to be transmitted periodically to the central
system. A centralised approach may be unable to respond to very localised changing
conditions in a timely fashion (i.e., in a matter of seconds) due to the complete con-
trol loop that is necessary to control the generators centrally (Department for Business

Enterprise and Regulatory Reform), [2008]).

Thus, in order to address the reliability and scalability issues, and the need for localised
control, a decentralisedlg and distributedlﬂ approach to electricity network control will
be needed (Solanki et all 2007; (Granada et al [2008; Kumar et al., 2009). In terms of
electricity generator control, the decentralised and distributed coordination of genera-
tors involves dividing the computation and information required to calculate the optimal
power output for each generator, among the nodes in the network@ The nodes com-
municate with their respective neighbours (i.e., the nodes that they are connected to
via a distribution cable) in order to decide the level of output required to balance the
loads while respecting distribution cable capacities. Doing so provides the following

advantages over centralised techniques.

The decentralised and distributed control addresses the reliability issue associated with
centralised control (Platt, 2007; [Kumar et al. [2009). If the computing capabilities

of one of the nodes fails, the rest of the network may still be able to compute an

18Most generators in electricity networks are synchronously connected and hence all produce power at
the same frequency (Weedy and Cory| 2004). This means that generators can to some extent satisfy the
demand in the network by just using this frequency signal. However, this process is not optimal when
considering additional costs of the network (for instance CO2 emissions).

YDecentralised computation does not use one central entity to compute a solution but uses multiple
entities that can each compute part of a solution (often in parallel). Note, this computation could still
be within one machine on multiple processors or cores.

2'Distributed computation requires the processing entities to be physically distributed throughout a
network.

2'Each node would have some computing capability in order to control the generators it is connected
to.
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optimal solution (provided that the required information from the failed node can be
computed by another neighbouring node) because the computation does not solely rely
on a single entity (Granada et all) 2008). Even if a neighbouring node is unable to
receive the required information from the failed node, then a suboptimal solution can
still be calculated@ In contrast, if the computer of a centralised system were to fail,
each generator would be unable to determine the optimal output with respect to its
neighbouring generators. This could, in the worst case, lead to overloaded distribution

cables.

Finally, by distributing the computation, each distributed node can monitor the local
conditions of the network (for instance, environmental changes to the resources avail-
able), and update its neighbouring nodes via small amounts of data (Granada et al.,
2008]). Since nodes only send data to their neighbours, and perform the computation
locally, the control loop (i.e., from a change in the local conditions to performing the
required actions) is small. This is in contrast with a centralised approach which would
require a node to transmit each local change to the central controller, wait for it to be
processed, and then receive a control action back (Department for Business Enterprise
and Regulatory Reform, 2008; |Granada et al., 2008). Furthermore, a distributed ap-
proach allows local networks to grow without the need to notify the centre of additional
nodes. Having discussed the advantages of distributing and decentralising generator
control in an electricity network, the rest of this section details the current state of the

art in the literature for doing so.

Kim and Baldick| (1997) first presented the notion of decentralised generator coordination
using Lagrangian techniques (Wu et al., [1994). The problem is decomposed into regions
which contain a number of generators, loads, and distribution cables by using the

auxiliary problem principle (APP) (Cohen, 1980)). Each region iteratively communicates
with its neighbours, via the distribution cables spanning the regions, in order to solve
the global OPF. Two neighbouring regions construct a dummy bu@ that holds a
number of variables: real and reactive power, voltage magnitude, and phase angle. The
dummy bus variables are duplicated between two regions and each region iteratively
updates its values by exchanging messages until duplicate variables from both regions
converge to within some tolerance. This process is performed in parallel for all regions
and the global OPF is calculated for the entire network. To avoid the need to construct
a dummy bus, thus removing the need to perform costly fine tuning of the dummy
bus parameters, Bakirtzis and Biskas| (2003) decouple the OPF problem by using the
distribution cables to separate the OPF parameters between regions. However, both the
above techniques have only been tested on problems containing up to six regions. Thus,

it is unclear whether they will scale well when applied to larger electricity networks.

22Tn this case the node with the failed generator can be removed from the network topology (using
switches), and two subnetworks can be created which can still calculate what each generator should
output.

23A bus in this context can be thought of as a node.
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Recently, Kraning et al.|(2013) presented a novel approach to decomposing an electricity
network into subproblems using similar techniques to the APP. They use alternating
direction method of multipliers (ADMM) to achieve both separability and robustness for
distributed optimisation. Moreover, using ADMM allows them to control the direction
of convergence without external parameters; the parameters are implicitly embedded in
ADMM. They mention that they can solve a network size of 100,000 nodes in 5 minutes
on average using a centralised implementation of their algorithm. Although they have
not created a working decentralised implementation of their algorithm, they project that
it will take roughly 200ms to solve the network of 100,000 nodes. However, no concrete

results are presented.

In contrast to using Lagrangian techniques, Kumar et al. (2009) introduce a mes-
sage passing technique which extends distributed pseudotree optimisation procedure
(DPOP) (Petcu and Faltings|, 2005) for reconfiguring feeder trees within a distribution
network (a related area of research). DPOP is a dynamic programming based algorithm
which solves DCOP problems. Kumar et al.| (2009) apply their algorithm to the distri-
bution network and decompose the network into overlapping acyclic regions such that
there is a single path from a generator to loads. Experiments show that their algorithm
is able to overcome the limitations of other resource constrained algorithms applied to
multiple constraint DCOP problems (Bowring et al., 2006), such as asynchronous dis-
tributed constraint optimisation (ADOPT) (Modi et al [2005), because DPOP is able
to exploit the structure and topology of the network. However, it does not address
the problems highlighted above of incorporating an increasing amount of DGs in the

distribution network, and the need to coordinate their output.

Having introduced the current literature on generator coordination in electricity net-
works, and discussed the advantages of distributing and decentralising control, the fol-
lowing section introduces the necessary theory for formulating problems as a distributed

constraint optimisation problem.

2.4 Distributed Constraint Optimisation Problems

This section presents the formal definition of a DCOP (Yokoo and Durfee, [1991; Rossi
et al., 2006). A DCOP is a tuple (X, D, F, A) consisting of a set of h variables X =
{z1,...,2p} which can be assigned discrete values in the set of finite domains D =
{dy,...,dp} respectively, and F = {F},...,Fy} is the set of functions (also called
constraints) where F; : d;; X...X d;; — R* denotes the cost of each possible combination
of the involved variable values. We denote A = {A;,..., A;} as the set of k agents
where each variable x; is assigned to an agent. In our representation of a DCOP, only

the agent that is assigned the variable has knowledge of its domain and control over its
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value. Moreover, the constraint F; corresponds to the utility of agent ¢. For instance, in

the case of an electricity network, each agent could have control of a generator.

The goal of the agents is to find an assignment X'* for the variables in X that minimises

the sum of the functions: i
arg minZE (2.9)
X+ 4
=0

A DCOP can be represented by a factor graph, whose vertices correspond to variables
and the edges denote the dependencies between the variables. The advantage of using a
factor graph is that the GDL family of algorithms provide a message passing framework
which can be applied to DCOPs using factor graphs. Therefore, in Section [3.2] we show
how a typical electricity network can be transformed into a factor graph. The following
section introduces the GDL family of algorithms, and specifically the max-sum message

passing algorithm.

2.4.1 The Generalised Distributive Law

The generalised distributive law is based on the distributive law, which states that ab-+
ac = a(b+c). The left side of this equation involves one addition and two multiplications.
However, the right side of the equation involves only one addition and one multiplication
(since it has been factorised). Therefore, the distributive law gives a fast way (i.e., fewer
arithmetic operations) of computing ab+ ac. By generalising the distributive law (hence
GDL), |Aji and McEliece| (2000) present a large family of fast algorithms that are able to
exploit factorisable problems in order to solve them quickly@ A DCOP that has been
decomposed into a factor graph can be solved by applying one of the algorithms from

the GDL family; namely max-sum (or min-sum) (Farinelli et al., 2008; Rogers et al.,

2011) P

Max-sum can be seen as a decentralised and distributed version of the bucket elimination
algorithm (Dechter} [1996)), which is based on the generalised forms of variable elimination
and nonserial dynamic programming. Bucket elimination can be used to solve a wide
variety of problems including adaptive consistency for constraint satisfaction (Dechter
and Pearl, 1987), dynamic programming for combinatorial optimisation (Bertele and
Brioschi, (1972), and directional resolution for propositional satisfiability (Davis and
Putnam), 1960). Bucket elimination splits the problem up into a number of buckets, and
processes these buckets in a given order. Each time a bucket is processed, the result is

placed in an unprocessed bucket until all buckets have been processed.

24In order to generalise the distributive law, |Aji and McEliece| (2000) use commutative semirings. A
commutative semiring is a set K with two binary operations called “+” and “.” which can be substituted
for a variety of operations. For instance, the set of real or complex numbers with ordinary addition and
multiplication is a semiring (i.e., (a.b) + (a.c) = a.(b+ ¢)).

25We use the term max-sum to encompass both max-sum and min-sum as they are identical except
for the maximisation or minimisation of the objective function respectively.
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As an example, consider the context of constraint satisfaction, whereby the value of
each variable must satisfy a number of constraints. Each bucket is a set of constraints
for a particular variable. Processing a bucket involves eliminating the variable from the
bucket’s constraints, and adding the new constraints to the other buckets. Once all
buckets have been processed, the variable values can be calculated. Bucket elimination
was first proposed as a centralised algorithm. However, as well as max-sum, a number of
other algorithms have also extended the bucket elimination framework to solve DCOPs;
algorithms such as DPOP (Petcu and Faltings, 2005), D-DYDOP (Chapter [4), and
C-DYDOP (Chapter [5)). In the following section we formally describe the max-sum

algorithm.

2.4.2 Max-sum

Farinelli et al. (2008) were the first to show how to apply max-sum to maximise the
sum of utilities of all the agents in a network. Max-sum scales well with the size of
the network, since the size and number of messages sent, is only dependent on a local
neighbourhood. Max-sum works by factorising the network into a bipartite graph that
consists of variables and functions (utilities) assigned to agents. Fach variable has a
number of discrete possible values with a certain utility that is affected by their neigh-
bour’s variable values. Each agent exchanges messages with its immediate neighbours
by making local decisions to maximise their local utilities. In so doing, the global util-
ity is maximised. In more detail, the agents communicate with each other by sending
messages from variable to function, and from function to variable as follows:

From variable to function:

Qvsalm) = D Rup(w) (2.10)

a’eA(b)\a

From function to variable:

Raop(ap) = min | Fo(Xa) + D Qusala) (2.11)
a\ b €B(a)\b

Let B(a) be the set of variables connected to the function a, A(b) be the set of functions
connected to the variable zp, Fy(X,) be the utility of agent a when each variable in B(a)
has a certain value, and finally X,\b = {xy : ¥’ € B(a)\b}. To find the optimal value

for each variable x;, an agent uses the following equation:

arg max Zy(xp) (2.12)

Zp
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where Zp(xp) is the sum of R messages flowing into z:

Zy(xp) = Z Rop(xp) (2.13)
acA(b)

Max-sum is provably optimal and guaranteed to converge when applied to acyclic graphs
(Aji and McEliece, 2000; Farinelli et al., 2008; Vinyals et al., [2010). Whilst only limited
theoretical results exist for applying max-sum to cyclic graphs, there exists extensive
empirical evidence of its effectiveness on such graphs (Aji et al., 1998 |Weiss, [2000;
Farinelli et al.l 2008; [Vinyals et al., 2010; |Winsper and Chli, 2012)). Therefore, max-
sum presents a compelling framework to apply to the electricity domainﬁ In Chapter
we show how max-sum can be used to solve the optimal dispatch problem, and in
Chapters |4 and [5| we benchmark our novel message passing algorithms (D-DYDOP and
C-DYDOP) against max-sum.

As an alternative to discretising the search space, [Stranders et al. (2009) present an
extension to max-sum which uses continuous variable values@ This is particularly
applicable in areas where the variables involved cannot or should not be discretised (i.e.,
problems involving velocities, orientation, or location). The following section provides a

summary of the current state of the art research related to this thesis.

2.5 Summary

A key challenge in the delivery of a more efficient electricity network is how additional
generation can be added to the smart grid without using costly network reinforce-
ments. Roberts| (2004)) suggests that ANM is the key to adding increased generation
within electricity networks without using complex predetermined intertrip schemes or
network reinforcements. There are a number of centralised and decentralised systems

which coordinate the power outputs of the generators using ANM.

Using a centralised approach, Davidson et al.| (2009) use constraint satisfaction tech-
niques to calculate generator power outputs, which conform to flows within the network
and contracted agreements. Whilst this calculates an optimal solution, it uses a cen-
tralised approach to coordinate generators for which we have discussed the disadvantages
in Section [2.3.2] Thus, using this technique does not address Requirements [[T]] and [V]
since the system may have scaling issues when applied to larger networks, and is not
distributed or decentralised. Moreover, it assumes that complete information about each

generator is known centrally which might not always be possible.

26However, applying max-sum to cyclic electricity networks does not work because the resulting opti-
misation problem cannot be decomposed into subproblems to be solved independently using traditional
DCOP techniques. Dealing with cyclic networks remains a key challenge for the general DCOP research
community and is beyond the scope of this thesis, see Chapter [6]

2TChapter |5| uses the notion of piecewise linear functions in (Stranders et al.,[2009) and extends it to
be used with C-DYDOP
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In contrast, distributed constraint optimisation techniques have been developed to solve
the related area of research for reconfiguring feeder trees within a distribution network
using an extension of DPOP (Kumar et al. [2009). However, they do not address the
need to incorporate an increased amount of generation into the distribution network
whilst reducing CO2 emissions. Thus, their techniques do not satisfy Requirement

when applied to a large network, or Requirement [[I}

To address the challenge of producing decentralised and distributed algorithms that
scale well with the size of the network, we present a novel extension of max-sum, called
D-DYDOP, that coordinates the power outputs of generators whilst minimising COq
emissions, in Chapter We benchmark our approach on real distribution network
topologies against both an optimal centralised approach, based on a mixed integer pro-
gram solver, and a naive implementation of max-sum (presented in Chapter [3)). In
Chapter [p| we extend D-DYDOP to the continuous domain, called C-DYDOP, which
uses continuous variables for the generator power outputs and the distribution cable
flows. The advantage is that C-DYDOP does not suffer from the discretisation of the
search space, since D-DYDOP must iterate through every possible combination of dis-
crete values when calculating messages. We benchmark C-DYDOP against D-DYDOP

and the centralised approach on the same distribution network topologies.

280ur algorithm uses dynamic programming techniques that have been used in other DCOP algorithms
such as DPOP.
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Chapter 3

A Benchmark Algorithm for
Decentralised Optimal Dispatch
in Acyclic Electricity Networks

Using Discrete Variables

Against the background highlighted in Chapter [2], this chapter addresses the challenge
of coordinating large numbers of DGs, embedded in the distribution network, by pro-
viding a novel formalism of the optimal dispatch problem as a decentralised agent-based
coordination problem, represented as a DCOP. We show how this DCOP can be decom-
posed as a factor graph and solved using algorithms based on the GDL framework (Aji
and McEliece, 2000)), such as max-sum (Farinelli et al., [2008). In more detail, each node
in the network is represented by an agent that undertakes some of the computation
required to solve the optimal dispatch problem; such that demands within the network
are satisfied and CO2 emissions of the entire network are minimised. In particular, we
solve the optimal dispatch problem on the most common distribution network topolo-
gies, namely acyclic networks (see Section . We use the max-sum algorithm as
a benchmark for testing our novel message passing algorithms in Chapters 4] and
Crucially, our algorithms handle the complexities of balancing flows within the network,

without needing central verification of a particular solution.

The remainder of this chapter is organised as follows: Section introduces the elec-
tricity network model that is used by this chapter, and Chapters [4] and 5] in order to
solve the optimal dispatch problem. In Section we detail our novel formalism of
the optimal dispatch as a DCOP. We show how this DCOP can be decomposed as a
factor graph and solved using algorithms based on the GDL family, such as the max-sum

algorithm in Section Section [3.4] presents the necessary techniques for discretising
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the electricity distribution network constraints so that a discrete algorithm can actually

be applied to the optimal dispatch problem. Finally, Section [3.5| concludes.

3.1 Electricity Network Model

In this section, we formally describe the model of an electricity network for which we need
to solve the optimal dispatch problem. Hence, we consider an electricity distribution
network to be a network of generators, loads, and distribution cables. In this network,
we consider a set of n generators G = {g1,...,9n}. Each generator g; has a certain
power output variable a; € RT™ kW, which is bounded by o/ € RT and o/"%* € RT

such that azni” <o <ot

In this model we consider different classes of generators. Continuous generators capable

n max

of producing any amount of power between a%m and o

(i.e., diesel or biomass

generators), and discrete generators capable of producing power at set intervals between

s and ot

amount of power available given the current environment, or be switched off). Thus,

« (i.e., wind turbines or solar panels can either produce the maximum
each discrete generator has a set of power output levels which it can produce such that
a; € S; kW, where S; = {si,...,sfh}, sé- € RT and ¢; € Z* is the number of power
output levels for generator g;. Let o = {ay,...,a,} denote the set of power output
variables for the generators in G. Let e; = CI;a; denote the CO9 emissions that are

produced when g;, with carbon intensity CI; € RTkgCO2/kWh, outputs a;.

We consider a set of m loads L = {ly,...,l,,}. Each load l; has a certain power consump-
tion ; € R~ kW, where 3 = {f1, ..., B} is the set of power consumption variables for
the loads in L. We denote V = {v1,...,v;} as the set of k nodes within the network. A
node relays power to other nodes but can also contain a combination of generators and
loads. Let adj(v;) denote all nodes that are connected to v; via a distribution cable, let

L(v;) be the set of loads that are at v; and G(v;) be the set of generators that are at v;.

T is the set of s distribution cables within the network, where ¢;; € T. Each distribution
cable has an associated thermal capacity tfj € R* kW, which is the maximum power
the cable can safely carry. It should be noted that we assume that all the distribution

cables have the same reactance.

Finally, W(V,T) is a finite undirected graph describing a network of nodes and distri-
bution cables. F is the set of all power flows f;; € R kW along the distribution cables in
the network. Given the above definitions, the optimal dispatch problem, of finding an

allocation of power outputs a whilst minimising COq emissionsE is defined as per the

'In this thesis, our objective function minimises CO2 emissions as part of the optimal dispatch prob-
lem. Typically, optimal dispatch (also referred to as economic dispatch) is concerned with minimising
the monetary cost of running the generators in the network (Fink et al.l|1969; Ross and Kim), [1980). We
are simply using a different metric of cost in terms of CO2 emissions instead of generator running costs.

32



following objective function:
n
arg minZCIiai (3.1)
* =0

subject to the following constraints:

Constraint 1 The flow along a distribution cable cannot exceed its capacity:
| fig] < t5; (3.2)

Constraint 2 The net flow from v; to v; must be the opposite of the net flow from v;
to v;:

fij = —Jji (3.3)

Constraint 3 The sum of the outputs from each generator at v;, the sum of the loads

at v; and the net flow from each node w connected to v; is zero:

SNoofuit Y B+ Y ag=0 (3.4)

weadj(v;) leL(v;) 9€G(v;)

The optimal dispatch problem presented here can be solved using a mixed integer pro-
gramming (MIP) solver; in this thesis we use IBM’s ILOG CPLEX 12.2. However, simply
solving this MIP with CPLEX uses a centralised approach. As the complexity and size
of the distribution networks grow, using a centralised MIP approach may suffer from a
number of the issues highlighted in Section [2.3.2] Thus, in the remainder of this chapter,
and Chapters [4] and [5] we present novel message passing techniques which can solve the
optimal dispatch problem in a distributed and decentralised fashion. However, in order
to solve the optimal dispatch problem using distributed and decentralised techniques,

the following section decomposes the optimal dispatch problem into a DCOP.

3.2 DCOP Representation

Using the notation introduced in Section [2.4] this section shows how we decompose the
optimal dispatch problem, as defined in Equations - , into a DCOP represented
as a factor graph. Crucially, we provide a mapping of the DCOP to a factor graph that
preserves the acyclic topology of the electricity network. Moreover, this mapping allows
the optimal dispatch problem to be calculated in a fully decentralised way, without
needing centralised verification, whilst balancing all of the loads with generation, and

satisfying the constraints of the distribution cables and generators.

Figure|3.1(a)|shows an example electricity distribution network consisting of distribution

cables, generators, and nodes. Example values for the power output range and carbon
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FIGURE 3.1: @ An electricity distribution network. Showing example values for the

power output range and carbon intensity of the generators, thermal capacity of the

distribution cables, and power consumption at the loads. Node v is connected to

the rest of the electricity grid. The corresponding factor graph representation of

the electricity distribution network, showing variables z; and the functions F; between

dependent variables connected by edges. The dashed circles give an example of the
agents with the variables they control.

intensity of each generator, thermal capacity of the distribution cables, and power con-
sumption at the loads are given. Node vg is connected to the rest of the electricity grid.
In our representation of a DCOP, x; corresponds to either a generator power output or a
distribution cable flow, X = a¢ UF where X is the set of h variables. The corresponding
domain d; of x; is:

d, S; if r; € (3.5)

{—tgb, e 7t2b} ifx; € F

For clarification, if x; corresponds to a distribution cable flow f,;, the domain of x; is
{5, ..., 15, }. The function F; € F corresponds to the utility of agent . With regard
to our formulation of an optimal dispatch problem, F; maps to the CO9 emissions of
v; with respect to the constraints of the network (i.e., a lower cost means lower COq
emissions):

Z Clja, if Equation holds for v;

Fi = ¢ 9eG(v) (3.6)

00 otherwise

where oo is used to penalise variable values that lead to inconsistent flows within the
network (i.e., when Equation is not satisfied). With this in mind, the objective
function of the optimal dispatch problem, Equation , can be factorised in terms of
the agent utility functions using Equation . The goal of the agents is to find an
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assignment X* for the variables in A that minimises the COy emissions of the network
using Equation (2.9)).

Figure shows the corresponding factor graph of the electricity network in Figure
Note that by using our decomposition of the optimal dispatch problem to a
DCOP, an acyclic electricity distribution network has a corresponding acyclic factor
graph. Once an electricity distribution network has been decomposed into a factor
graph, the optimal dispatch problem can be solved using an algorithm from the GDL

family, such as max-sum.

We choose max-sum to solve the DCOP because max-sum maps directly onto a factor
graph, and directly works with n-ary constraints (i.e., functions connected to more
than two variables, see F5 on Figure for an example) without any additional
modifications. This property is particularly attractive because electricity distribution
networks often contain a large number of nodes with high branching factors. As discussed
in Section other algorithms exist for solving DCOPs, such as ADOPT, or optimal
asynchronous partial overlay (OptAPO), but they have a number of drawbacks (Farinelli
et al., [2008)). For instance, OptAPO uses mediator agents which may need to perform
calculations that grow exponentially with the size of the subproblem for which they are
responsible. Similarly, agents using ADOPT will exchange an exponential number of
messages depending on the height of the problem tree. Max-sum, on the other hand,
will only perform calculations that grow exponentially with the number of variables
which each factor graph function depends on; incidentally, this is much smaller than
the subproblems in OptAPO. Moreover, the number of messages exchanged when using
max-sum grows linearly with the number of agents in the system (Farinelli et al., [2008|
2009)). The following section explains how the max-sum algorithm, introduced in Section

2.4.2 can be applied to solve the optimal dispatch problem.

3.3 Max-sum Optimal Dispatch

As described in Section the max-sum algorithm (or min-sum as is the case with
minimising CO2 emissions) uses message passing in order to propagate the utilities of
the variables around the factor graph using Equations - . In max-sum,
functions and variables can be arbitrarily assigned to any agent. However, in our model
each agent is assigned the computation of one function which is associated with a specific
node within the network. Moreover, a natural assignment of variables to agents involves
an agent controlling the generator variables at its designated node, and the distribution
cable variables connected to its node. If two or more agents’ functions share the same
variable, the variable is arbitrarily assigned to one of them, as shown in Figure
by the dashed circles.
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More importantly, since max-sum has been proven to converge to an optimal solution on
acyclic factor graphs, and given that we provide a mapping from an acyclic electricity
network to an acyclic factor graph, max-sum will be able to calculate the optimum
solution to the optimal dispatch problem. The utility of each agent F; (used in Equation
to calculate the value of a function to variable message and denoted Fj;(&j)), is
calculated using Equation . In order for an agent to choose the optimal output
for each generator it controls, it sums all the messages it receives from neighbouring
variables using Equation , and then using Equation , chooses the combination
of generator power outputs which have minimum COs emissions. It should be noted that
the optimal solution taken by each agent is exactly the same as the optimal solution
calculated using the MIP technique detailed in Section [3.1] In what follows, we describe
what each message, from function to variable and from variable to function, means in

terms of the optimal dispatch problem.

A max-sum message sent from function to distribution cable variable is a function of the
flow in the cable with its domain bounded by the thermal capacity of the distribution
cable. In order to apply a discrete algorithm to the electricity distribution network in
Figure the network must first be discretised. A full discussion on the need to
discretise the electricity distribution network constraints, and the techniques for doing
so, are presented in Section For now, consider the following example from Figure
which is the discretised version of the electricity distribution network in Figure
3.1(a)| (when the discretisation unit w = 1kW). Let the distribution cable t59 between
vs and vg have a thermal capacity t5y of 40kW, the load lg at vg be ~11kW, and the
generator gs at vg have a power output range of 0-30kW. The message Rg_13(213),
sent from Fy to x13 on the corresponding factor graph, Figure will have domain
x13 € {—40,...,0,...,40}, having 81 utility values corresponding to the 81 variable
values, when w = 1kW. A negative variable value indicates that the power is travelling
from v to vg, and a positive variable value indicates that the power is travelling from

Vg tO V5.

A max-sum message sent from function to generator variable is bounded by the mini-
mum and maximum output of the generator. Consider the following example. Let the
generator gs at vg have a power output range of 0-30kW. The message Rg_,5(x5) will
have domain z5 € {0,...,30}, having 31 utility values corresponding to the 31 variable
values. Each possible value indicates the amount of power as that gs is producing.
Messages are propagated around the factor graph until the values of the messages con-
verge. Messages are guaranteed to converge to the optimal solution on acyclic graphs,
at which point each variable chooses its optimal value using Equation (2.12f). However,
simply applying the max-sum algorithm naively in this manner produces poor perfor-
mance. This is because much of the search space is infeasible and does not need to be
searched. For instance, consider the previous example for the message Rg_,13(x13). The

message has a total of 81 variable values. However, the maximum amount of power that
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F1GURE 3.2: The discretised version of the electricity distribution network in Figure
when the discretisation unit w = 1kW.

could travel along t59 from v to vg, in order to satisfy lg, is only 11kW. Moreover, the
maximum output of g5 means that the maximum amount of power that could travel
along ts9 from vg to vs, after lg is satisfied, is 19kW. Therefore, the utilities calculated
for variable values {—40,...,—12} and {20,...,40} are all infeasible, even though it is
within the thermal capacities of the distribution cable. This highlights the wasted com-
putation that a naive implementation of max-sum performs. The domain of the message
is bounded by tf,. However, the actual feasible variable values are dependant on the
load and the available generation at vg, which is considerably less. As the network size

grows, this wasted computation from calculating the utility of infeasible states becomes

a major overhead (as we show in Section [4.1.1.2)).

Thus, to address this wasted computation issue, in Chapter [4] we present a novel decen-
tralised message passing algorithm, D-DYDOP, which uses techniques based on local
consistency and dynamic programming. As we show later, doing so greatly reduces the
computation time as it allows us to prune much of the search space. However, in order
for a solution to be generated by D-DYDOP or max-sum, the electricity distribution

network constraints must be discretised, as presented in the following section.

3.4 Converting the Electricity Network into a Discrete Op-
timal Dispatch Problem

To be able to use a discrete algorithm to coordinate generators in an electricity network
(such as discrete max-sum or D-DYDOP), the electricity distribution network con-
straints (i.e., the thermal capacity of the distribution cables, loads, and the generator

power outputs) must be discretised. We denote w € R kW as the discrete unit of power
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that will be used to discretise the electricity distribution network constraints. A seem-
ingly sensible approach would be to discretise each variable in the electricity network to
be multiples of w. However, as we go on to show in this section, discretising the electric-
ity distribution network constraints in order to apply a discrete algorithm only works

within certain scenarios. We denote (3; < B; as the discretised load, ag’“’” > a,f”m as the

discretised minimum output of a generator, @"** < /""" as the discretised maximum
output of a generator, and ffj < tfj as the discretised thermal capacity of a distribution

cable.

The discretised load must always overestimate the actual amount of power required since
excess power can be wasted (although this is not favourable) but never generated to make
up a shortfall at a load. Similarly, the discretised minimum output of the generators must
always overestimate the actual minimum otherwise the constraints of the generators
will be violated. Conversely, the discretised maximum output of the generators, and
the discretised thermal capacity of the distribution cables must always underestimate
the actual amount of power, again because the constraints of the generators and the

distribution cables will otherwise be violated.

Therefore, the following equations are used to calculate the discretised variables such

that they are multiples of w:

_ . . min maz _ te.
B; = {&J w " = [al —‘ w 't = {al J w tfj = {”J w (3.7)
w

w w w

For example, consider the electricity network in Figure Figure shows the same
electricity network discretised with w = 1kW. For instance, af'** = 30.6kW becomes
arer = 30kW, B3 = —9.2kW becomes 3 = —10kW, and t§5 = 100.9kW becomes
155 = 100kW. Thus, the set of power outputs of g; become S; = {@™", (@M"+w), (@ +
2w),..., (@™ + (¢; — 1)w),a**®}. For the continuous generator gs, the power output
range 0-30.6kW gets discretised to S5 = {0kW,1kW 2kW,...,29kW,30kW}. For the
discrete generator gs, the power output values 0kW and 11.3kW get discretised to S5 =

{OKW,11kW}.

The discretised values can be computed in a decentralised way by each node before a
discrete algorithm can be used to coordinate the power outputs of the generators. The
solution calculated will correspond to the discretised version of the electricity network.
Now, if the appropriate discretisation unit is used (i.e., one where each value is not over-
or underestimated), then the solution calculated for the discretised version is guaranteed
to work on the real electricity network. For instance, take the distribution network in
Figure If w = 0.1kW then o = 30.6kW = af** B3 = —9.2kW = s,
and t§; = 100.9kW = #5;. Since the real network loads are expressed to 0.1kW, it is
impossible for a solution to contain a generator that will output anything finer than

this amount (such as 5.05kW). Therefore, a discrete algorithm applied to the discretised
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network will produce a solution that can be applied to the real network. In other words,

there is no error between the discretised network and the real network.

However, if the discretisation unit is not appropriate for the current network (i.e., some
of the values have to be over- or underestimated), then the solution requires some ma-
nipulation in order for it to be applicable to the real electricity distribution network.
This is primarily because of the overestimation of the loads. Furthermore, these tech-
niques do not guarantee that the solution is even feasible as it may violate some of the

constraints of the distribution cables, as we shall now demonstrate.

Consider the electricity distribution network in Figure Nodes v,, vp, and v, have
loads of —1.1kW, —2.1kW, and —5.1kW respectively, with a total of —-8.3kW. However, in
the corresponding discretised network, Figure using a discretisation unit of 1kW,
nodes v, vp, and v, have loads of 2kW, —3kW, and —6kW respectively, with a total
of —11kW. This means that any solution that the discrete algorithm calculates for the
discrete network will be for a total load of —11kW. However, since the real electricity
distribution network only has a total load of —8.3kW, there is a difference of 2.7kW

which must be accounted for in some way.

We now detail three ways to apply such a solution calculated by a discrete algorithm
to the real electricity distribution network; by the use of electricity storage batteries
in Section by reducing the power output of a number of generators and then re-
running the discrete algorithm in Section and by modifying the distribution cable

constraints before running the discrete algorithm in Section [3.4.3]

3.4.1 Battery Storage

We first consider that each node in the network has access to a battery that could store
any of the remaining power on the network. Hence, any excess power at each node can
be used to charge the battery, and ensures demand and supply are balanced. This would
allow a solution to the discretised electricity distribution network to be directly applied
to the real electricity distribution network. However, requiring each node to have a
battery is an impractical assumption due to the current cost of battery technology; this
cost is magnified when applied to large networks with thousands of nodes. Therefore,

the following section describes a solution that does not require battery storage.

3.4.2 Reducing Generator Power Outputs

The second solution would be to reduce the power output from some of the generators by
the difference between the sum of the actual consumption and discretised consumption
(i.e., 2.7kW for the example in Figure [3.3]). However, this introduces a new problem in

that changing the power output of a generator in the network may change the power
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FIGURE 3.3: @ An electricity distribution network, showing example values for the

power output range and carbon intensity of the generators, thermal capacity of the

distribution cables, and power consumption at the loads. @ The discretised version
of the same network when w = 1kW.

flowing along one or more distribution cables (see Figure. As a result, this could lead
to distribution cables that have violated their thermal capacity constraints resulting in
an infeasible solution to the problem. To overcome this, we would have to check that all
the distribution cables in the network are within their thermal capacities, adjusting the
power outputs of the generators if some distribution cables are not. Thus, in order for
this technique to work, and allow us to apply a solution calculated by a discrete algorithm
to the real electricity distribution network, we must do the following. Firstly, a number
of generators must reduce their power output until the actual total load has been met.
This can be done in a decentralised fashion by starting at an arbitrary node (i.e., the
node with the smallest ID in the network) and reducing as much of its generator’s power
output as it can. Secondly, the chosen node chooses one of its neighbours with the
highest carbon intensity to repeat the process until the required amount of power has
been reduced. In order to ensure that each distribution cable is still within its capacity,
each generator that reduced its power output fixes it at the current level. Finally, the
discrete algorithm (be it D-DYDOP or max-sum) can then be run again on the modified
network to produce a solution that can then be applied to the real electricity distribution
network. However, there are a number of disadvantages to this technique. Firstly, it
is obviously not optimal due to the arbitrary starting point to decide which generators
must reduce their output. Secondly, once the generator that changed its output has
been fixed, there may not even be a feasible solution that can be calculated. Finally,
it requires the discrete algorithm to be run twice on the network problem and this is
computationally expensive. Therefore, to avoid the need to run a discrete algorithm
twice, the following section describes a solution that modifies the network constraints

before applying a discrete algorithm.
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3.4.3 Modifying the Distribution Cable Constraints

The third solution overcomes the need to run the discrete algorithm a second time
on the network (after a number of generators have reduced their output to match the
total actual consumption in the network), by constraining the distribution cables. The
distribution cables are constrained, to specific values, to ensure that when reducing
the generator power outputs to match the total amount of actual consumption, the
maximum amount of power (flowing along a distribution cable) that can change, will

never exceed the actual thermal capacity of any of the distribution cables.

Consider the example electricity distribution network in Figure and the corre-
sponding discretised electricity distribution network in Figure The optimal so-
lution for the discretised electricity distribution network is @, = 2kW, @, = 3kW, and
@, = 6kW giving 2.7kW of excess power and f,, = f,. = 0kW (i.e., no power is flowing
through either distribution cable), where fij is the amount of power flowing through ¢;;
and @; is the power output of g;, for the discretised electricity distribution network. In
order to apply this solution to the real electricity distribution network, one or more of
the generators must reduce its power output to a total of 2.7kW. For this example, we
will choose the generator that can reduce its power output by the entire amount of power
required (i.e., g.). Therefore, the solution applied to the real electricity distribution net-
work becomes G = 2kW, &, = 3kW and &, = 6 — 2.7 = 3.3kW, with f,, = —0.9kW
and f,. = 1.8kW; we use a tilde over a variable (i.e., &q) to denote the value of the
variable after the electricity generators in the discretised electricity distribution network
have been adjusted to match the actual consumption of the network. Therefore, the
maximum amount the power flow of a distribution cable has varied by, between the
initial discretised network and the network after the generators have been changed, is
1.8kW.

Now, consider the worst case where each load, in the real electricity distribution network,
is very close to a discrete unit of power (i.e., multiples of w = 1kW in this example)
requiring an overestimation of ~1kW. The optimal solution for the discretised electricity
distribution network is still @, = 2kW, @, = 3kW, @, = 6kW, and f,, = f,. = OkW, but
with an excess of ~3kW. Again, we choose g, to reduce its power output by ~3kW. Thus,
the solution applied to the real electricity distribution network becomes &, = 2kW,
ap = 3kW and a. ~ 6 — 3 ~ 3kW, with fab ~ —1kW and fac ~ 2kW. As the loads
get closer to a multiple of w (requiring a large overestimate), the maximum amount by

which the power flow in distribution cable t;; can vary is bounded by:

1733l = 1fisll < sw (3.8)
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To clarify, ?l-j is the amount of power flowing through ¢;; before the generators in the
network have been adjusted to match the actual consumption in the electricity distri-
bution network, and fij is the amount of power flowing through ¢;; after the generators
have been adjusted. Thus, we must do the following to apply a discrete algorithm to a
real electricity distribution network and avoid having to run it twice. When discretis-
ing the network, we subtract sw from the thermal capacity of each distribution cable by
modifying the distribution cable discretisation from Equation . Thus, the maximum
thermal capacity of each distribution cable becomes ffj =w {%J —Sw=uw ({%J — s).
Once a solution to the discretised electricity distribution network has been calculated
using a discrete algorithm, the generators can safely reduce their power outputs (as de-
scribed previously) and the maximum amount the power flow in each distribution cable
will vary by is sw. Since the thermal capacity of each distribution cable has already been
reduced by sw for the discretised network, it is not possible for a solution to violate the

constraints of the original electricity distribution network.

With this method of constraining the distribution cables when discretising the electricity
distribution network, a discrete algorithm only needs to be run once. However, there
are a number of problems with this technique. If tfj < sw then this technique cannot be
applied because subtracting sw would result in a negative thermal capacity constraint,
which is of course infeasible. Furthermore, even if each distribution cable can be reduced
by sw, there is no guarantee that there is a feasible solution to the discretised electricity
distribution network. Finally, as with the technique in the previous section, the solution
is not optimal. The following section tests the feasibility of solutions from a discrete

algorithm applied to electricity networks.

3.4.4 Testing the Feasibility of Discrete Algorithms Applied to the
Optimal Dispatch Problem

The experiment was run in Java on a 2.67GHz Intel Xeon quadcore with 12GB of RAM
for max-sum. During each iteration, a random topology is generated with a maximum
branching factor of 2 and the number of nodes fixed at 200. Nodes are assigned a
uniformly distributed load value in the range of [1kW, 5kW], and either a continuous
or discrete generator with a uniformly distributed carbon intensity. There is a 90%
chance that the generator will be continuousE] If the generator is continuous, it is
assigned a uniformly distributed minimum power output in the range of [0kW, 2kW],
and a uniformly distributed maximum power output in the range of [3kW, 20kW]. If
the generator is discrete, it is assigned a uniformly distributed power output level 7
in the range of [3kW, 20kW] (i.e., each discrete generator can either be off, or produce
nkW). Each distribution cable in the network is assigned a uniformly distributed thermal

2This is an arbitrary number chosen so that the majority of the network contains continuous gener-
ators.
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FIGURE 3.4: Experiment to show how increasing the amount of excess power per dis-

tribution cable affects the number of feasible solutions generated by max-sum. Using

random acyclic electricity distribution network topologies with 200 nodes and a maxi-
mum branching factor of 2, @w™?* is varied from 15kW to 60kW in 5kW steps.

capacity t§; in the range of [w™in, ™) where w™ is varied from 15kW to 60kW
in 5kW steps with 200 iterations each, and @™" = w™* — 5kW. The real electricity
distribution network is then discretised using the equations in and max-sum is
applied.

To determine whether each solution max-sum calculates is feasible when applied back
to the real electricity distribution network, we apply the same technique as in Section
We then check, using direct current (DC) power flow analysis, that the discretised
electricity distribution network is still a feasible solution given the thermal capacities of

the distribution cables and the changed electricity generator power outputs.

Figure |3.4] shows how increasing the amount of excess power per distribution cable af-
fects the number of feasible solutions generated by max-sum. By increasing the amount
of excess each distribution cable has available (whilst the total load in the network re-
mains constant), the number of feasible solutions increases. This is because if there is
more power available per distribution cable, adjusting the power output of a number
of generators is less likely to overload one or more distribution cables. Thus, in order
to apply discrete algorithms to electricity distribution networks by adjusting the power
output from a number of generators, one of two techniques can be used. The first tech-
nique is to increase the capacity of each distribution cable within the network. However,
this process can be time consuming and has significant monetary and environmental
costs (Roberts, [2004). The second technique is to use a smaller discretisation unit.

Using a smaller discretisation unit decreases the difference between the total load in
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the real electricity distribution network and the total load in the discretised electricity
distribution network. Thus, a smaller total load difference requires fewer generators to
reduce their power output, meaning the distribution cables are less likely to become
overloaded, resulting in more feasible solutions. However, using a smaller discretisation
unit increases the computation time of a discrete algorithm, as will be shown in Sec-
tions [4.4] and The following section provides a discussion of discrete and continuous

algorithms applied to the optimal dispatch problem.

3.4.5 Discussion of Discrete and Continuous Algorithms Applied to
the Optimal Dispatch Problem

As discussed previously, in order for a solution to be generated by a discrete algorithm
such as max-sum (or D-DYDOP presented in Chapter , the electricity distribution
network constraints must be discretised. Unless an appropriate discretisation unit is
used (which is often very small resulting in an increased amount of computation) the
solution produced is not always guaranteed to be applicable to the real electricity distri-
bution network. While discretising the electricity distribution network constraints can
be completed in a distributed and decentralised way, a large improvement would be to
use a continuous algorithm (such as C-DYDOP presented in Chapter that can be
applied directly to the optimal dispatch problem.

However, there are a number of advantages for using a discrete algorithm over a con-
tinuous algorithm to solve the optimal dispatch problem. Firstly, if the appropriate
discretisation unit is large, a discrete algorithm can reduce its computation time signif-
icantly and may be able to outperform a continuous algorithm for certain scenariosﬁ
By using a larger discretisation unit, the number of different power output values that
must be evaluated for each generator is reduced. For example, consider the previous
example of the continuous generator gs from Figure with a power output range
of 0-30.6kW. Using a discretisation unit w = 5kW, the power output range of g5 gets
discretised as S5 = {0kW,5kW,10kW,15kW 20kW 25k W,30kW}. Instead of having to
evaluate 31 different power outputs (i.e., when w = 1kW), only 7 different power outputs
need to be evaluated. Secondly, if the network contains only discrete generators, then a
continuous algorithm is not appropriate for finding a solution and a discrete algorithm

must be used instead. The following section concludes this chapter.

3.5 Conclusions

In this chapter we addressed the optimal dispatch challenges faced by DNOs. Namely

how an increasing amount of cleaner DGs can be added to already highly constrained

3In Section we show that our discrete algorithm D-DYDOP can actually outperform our contin-
uous algorithm C-DYDOP when a large discretisation unit is used.
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distribution networks, and coordinated in an efficient fashion using optimal dispatch.
We provided a novel DCOP formulation of the optimal dispatch problem; we showed
how this can be decomposed as a factor graph and solved in a decentralised manner
using algorithms based on GDL; in particular, the max-sum algorithm. Furthermore,
we showed that max-sum applied naively in this setting performs a large number of

redundant computations.

To address the problems associated with applying a naive implementation of max-sum
(i.e., calculating utilities for infeasible solutions), in the following chapter we present our
novel message passing algorithm, called D-DYDOP, which uses techniques based on local
consistency to prune much of the search space. We empirically evaluate D-DYDOP to
test its performance on different network topologies and benchmark it against max-sum.
Moreover, as discussed in Section discrete algorithms can only be applied to the
optimal dispatch problem in certain settings. Thus, to avoid the issues associated with
discretising the optimal dispatch problem, in Chapter [5| we present C-DYDOP, which
uses continuous variables for the power output ranges of the generators, the thermal

capacities of the distribution cables, and the loads.
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Chapter 4

A Novel Algorithm for
Decentralised Optimal Dispatch
in Acyclic Electricity Networks

Using Discrete Variables

As discussed in the previous chapter, max-sum applied naively to the optimal dispatch
problem performs a large number of redundant computations. Thus, to address this
issue, we present a novel message passing algorithm, called D-DYDOP, to calculate an
optimal solution in a decentralised and distributed fashion. Thus, this chapter makes

the following contributions to the state of the art:

1. We present D-DYDOP, a novel decentralised message passing algorithm, that
outperforms max-sum by only exploring the search space of feasible generator and

distribution cable states.

2. We provide proof of the optimality of D-DYDOP and empirically evaluate it on
a variety of large real electricity distribution network topologies, showing that it
outperforms max-sum in terms of computational time and total size of messages

sent.

The remainder of this chapter is organised as follows: Section [4.1] describes the two mes-
sage passing phases of D-DYDOP including the construction and merging of discrete
messages as they are propagated up the acyclic network. Section provides a proof
of the completeness and correctness of D-DYDOP, and Section [4.3] calculates the com-
putational complexity with regard to the size and topology of the network. Section
provides an empirical evaluation against the benchmark algorithm max-sum, presented
in Section and a highly optimised centralised approach based on MIP. Finally,
Section 4.5l concludes.
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FIGURE 4.1: The tree representation of the electricity distribution network in Figure

4.1 Message Passing Phases

D-DYDOP can be applied to acyclic electricity networks and uses a dynamic program-
ming approach. Figure 4.1] gives a simplified tree representation of the electricity distri-
bution network in Figure [3.1(a)| using nodes. Each node is assumed to have a number
of generators, and a number of loads. For instance vs contains generator ¢g; and load
l3, where as vy contains just load l4. Each node, which is controlled by an agent, has
exactly one parent node and zero or more child nodes, apart from one node vy which
is the root node and has no parent. Leaf nodes, (i.e., vy, vs, and vg), have no children.
D-DYDOP proceeds in two phases (which we describe in more detail in the following

sections):

Phase 1 — Value Calculation PowerCost messages are sent from the leaf nodes to
the root node. A node waits until it has received PowerCost messages from all of its
children before computing its own PowerCost message which it sends to its parent.
Each PowerCost message describes the COs emissions of its own generation and

the generation of its children.

Phase 2 — Value Propagation When the root node receives PowerCost messages
from all of its children, it calculates the optimum power output for each of its
own generators such that the demands of its children are satisfied and the COq
emissions are minimised. It then propagates power flow values to all its children

which in turn propagate power flow values to their children.

The algorithm terminates when all leaf nodes receive a power flow value, at which point
each generator knows the optimal amount of power it needs to output. It should be

noted that we draw on the techniques used in the max-sum algorithm and in similar
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dynamic programming algorithms such as DPOP. Max-sum, D-DYDOP, and DPOP
are similar in that D-DYDOP and DPOP are essentially extended versions of the max-
sum algorithm (specifically the GDL family of algorithms). The similarities between
DPOP and D-DYDOP are that each algorithm contains two stages that are similar
(called UTIL propagation and VALUE propagation in DPOP). However, D-DYDOP
differs in the optimisation of the message values and the number of message values sent
in the value calculation stage. D-DYDOP only sends the optimal message values at each
stage after local consistency techniques have been applied allowing us to prune much of
the search space. We elaborate on this pruning, along with the two phases of message

propagation in the following section.

4.1.1 Phase 1: Value Calculation

In what follows we give a detailed overview of the value calculation phase of D-DYDOP.
Section [4.1.1.1]introduces the structure of a discrete PowerCost message, Section [4.1.1.2
describes how a leaf node constructs its discrete PowerCost messages, and finally Section
details how a node merges discrete PowerCost messages from its children.

4.1.1.1 Discrete PowerCost Messages

A discrete PowerCost message sent from v; to its parent o, is an array of y flowCO
elements:

PowerCost;_,; = [flowCOy, ..., flowCO,| (4.1)

where a flowCO element describes the CO4 emissions that occur, when v; and all of its
children output certain amounts of power, such that there is a specified flow of power

between v; and its parent v; along the distribution cable ¢ :

flowCOj =< fi277(fii) > (4.2)

where flowCO; denotes the 7" flowCO element, [;; € R kW is the resultant power

flow travelling along ¢, and |f;

< t:% where t% is the thermal capacity of ¢;. Note
that f > 0 denotes the resulting power is flowing out of v; to v;, f;; < 0 denotes the
resulting power is flowing into v; from 4;, f,; = 0 denotes no power is flowing between v;
and ¢;. The function v : R — RT kgCO4/h denotes the COy emissions that result from
v; and all of its children generating certain amounts of powerE Each flowCO element
that v; calculates maps to an OPCState; which describes the power output at v; along
with the flows between v; and its children that results in the CO9 emission described by
the function ~y(f;):

OPCState; = ([a, F(v;)]) (4.3)

!Generator gs at node vy (Figure with a carbon intensity of 0.1kgCO2/kWh and a power output
of 20kW, will have a resulting CO2 emissions of 2kgCO2/h and 9kW of resulting power travelling to vs.
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Algorithm 1 Constructing a leaf node PowerCost message.

constructDiscreteLeafMessage() {
FOREACH (a; € S;) { //Iterate through generator power output values
fig<—04i+Bi? //Calculate resultant flow
IF (\fﬁ\gt%) { //1f the thermal capacity is not violated
Y(f;;) < «;CI;; //Calculate resultant CO2 emissions
flowCO <—createFlowCO (f;;,v(f;;)); //Create flowCO element and store in PowerCost
//message
0PCState<-1inkToOPCState (flowC0); //Link flowCO element to OPCState
}
}

sendPowerCostMessageToParent () ;

g WwN e

© 00 N O

}

where the array [o;, F(v;)] contains the power output of a generator at v; and the set
of power flows F(v;) from the distribution cables connecting v; to its childrenE] This
mapping represents the dynamic programming aspect of D-DYDOP because as power
flow values are propagated down the tree, during the value propagation phase, the
associated OPCState is used to find the power output of v; given a particular power
flow f. Having introduced the notation of a discrete PowerCost message, the following

section describes how to construct discrete PowerCost messages at leaf nodes.

4.1.1.2 Constructing a Discrete PowerCost Message at a Leaf Node

Only the power output of the generators, and the loads at the leaf node need to be taken
into consideration when a leaf node constructs a discrete PowerCost message. For each
power output from each generator at v;, it constructs a corresponding flowCO element

with flow f;: calculated as:

fa= D B+ > o (4.4)

leL(v;) g€G(v;)

giving the resultant power flowing between v; and v;. The CO2 emissions (f;;) of the

flowCO element, is calculated as:

Y(f) = D a,Cl (4.5)

9€G(v;)

where C1, is the carbon intensity of generator g situated at v;. See Algorithm [I] for
a pseudocode representation of constructing a discrete PowerCost message at a leaf

nodeE] We iterate through the power outputs of the generator at v; (lines 1 — 8). For

2The definition assumes one generator at v;. The generalisation to more than one generator at each
node is trivial.

3For ease of reading, all pseudocode representations in this thesis assume that each node v; in the
network contains one generator g; and one load [;; the generalisation to more than one generator and
more than one load at each node is trivial.
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each power output the resultant flow is calculated (line 2). If the thermal capacity of
the distribution cable to the parent node is not violated (line 3), the corresponding CO4
emissions are calculated (line 4), and then a flowCO element is created (line 5) and
linked to the OPCState using the generator’s power output which resulted in the COq
emissions (line 6). All the flowCO elements created are added to a discrete PowerCost
message and then sent to the parent node (line 9). Note that OPCStates that are linked
to by each flowCO element are never sent on to the parent node and are instead kept

for use during phase 2 of the algorithm.

Consider the following discrete PowerCosty_,5 message, which vg sends to vs, as shown in
Figure Let the distribution cable t59 have a thermal capacity tg, of 40kW, the load
lg be —11kW, and the generator g5 have a power output range of 0-30kW and a carbon
intensity CI5 of 0.1kgCO2/kWh. The following is part of the discrete PowerCosty_5

message:

flowCO;, = <0,1.1> — [+11kW]
flowCO;,» = <2,1.3> — [+13kW]

Now, flowCO;, indicates that a flow of 2kW, from vg to vs, will result in 1.3kgCO2/h
emission with gs outputting 13kW. The total number of flowCO elements in the dis-
crete PowerCosty_,5 message is 31. By contrast, compare with the example Rg_,13(x13)
message of max-sum in Section which has 81 variable values instead. This further
highlights the wasted computation that the naive implementation of max-sum performs

and the advantages of pruning the search space (i.e., a difference of 50 variable values).

The pruning of the search space is related to ensuring local consistency of the con-
straints and variable values (i.e., thermal capacities of the distribution cables and gen-
erator power outputs), via constraint propagation in a distributed manner (Dechter,
2003)). More specifically we ensure node and arc consistency. Node consistency for v; is
enforced for each flowCO element by constricting «; to conform to t% and 3; (i.e., the
range of power g; is capable of outputting will not be the actual power output range
it could generate due to the thermal capacity of its parent’s distribution cable and the
consumption at v;). As a result, arc consistency is also enforced because each flowCO
element will only specify a flow of power between v; and v; that not only conforms to
t%, but also the actual amount of power that can flow from v; to viﬂ this is known since
messages are propagated from leaf nodes to the root of the tree. The following section

describes how discrete PowerCost messages are merged.

4Whereas DPOP would send utility values (message values) based on the number of power outputs
the generator at v; has, which could contain solutions with infeasible power flows along ¢,; (Petcu and
Faltings, 2005).
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Algorithm 2 Merging PowerCost messages.

mergeDiscreteMessages() {
1. FOREACH (a; € S;) { //Iterate through generator’s power output values
2. FOREACH (flowCO € getChildPowerCostMessages()) { //Iterate through each
//combination of flowCO
//elements from each child

3. fﬁeaiJrBi + sum(state(fe;)); //Calculate resultant flow using a flowCO
//element from each child

4. IF (|fﬁ|§t2) { //If the thermal capacity is not violated

5. Y(f;;) < a;CI; + sum(state(y(fci))); //Calculate resultant CO2 emissions
//using flowCO element from each child

6. IF (MIN(f;,7(f;))) { //If the resultant CO2 emissions for the resultant

//flow is the minumum calculated so far
7. flowCO<—createFlowCO(f;;,v(f;)); //Create flowCO element and store in

//PowerCost message
5:¥(f;;)); //Set resultant CO2 emissions as new minimum
//for resultant flow
9. 0PCState<-1inkToOPCState (flowCO); //Link flowCO element to OPCState
10. }
11. }
12. }
13. }
14. sendPowerCostMessageToParent () ;

}

8. setNewMinimum (f,

4.1.1.3 Merging Discrete PowerCost messages

For each v; that has at least one child, the discrete PowerCost messages that it receives
must be processed in order to produce its own discrete PowerCost message that it sends
to ¥;. The amount of power that can flow from v; to v;, or from v; to v;, is bounded
by t%. With these bounds, v; is able to calculate each valid flow that can travel into or
out of it. For each valid flow, v; calculates the minimum CO9 emissions that result from
the power output at v;, and the power output from all of v;’s children. To calculate the
flowCO element for each resultant flow with the lowest CO9 emissions value, v; iterates
through every possible power output that it can produce and every flowCO element from
each of its children’s discrete PowerCost message. A state represents the combination
of a flowCO element from each of v;’s children and the power output at viE] The flow

fii of this state is calculated as:

fa= D Bt D agt Y fa (4.7)

leL(v;) 9€G(v;) cechi(v;)

where Z fei is the sum of the chosen flowCO elements’ flows from each of v;’s
c€chi(v;)
immediate children chi(v;). In order to choose the minimum state for each resultant

5Note, this state is different from an OPCState which contains only the power flow from each of v;’s
children and the power output at v;.
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flow, the CO9 emissions of the state must be calculated as follows:

v(fz) = Z ogCly + Z Y (fei) (4.8)

9€G(v;) cechi(v;)

where Z ~(fei) is the sum of the chosen flowCO elements’ CO4 emissions from each
cechi(v;)
of v;’s immediate children chi(v;). See Algorithm 2] for a pseudocode representation of

merging PowerCost messages. We iterate through the power outputs of the generator at
v; (lines 1 — 13). For each power output, we iterate through every possible combination
of the flowCO elements from the children of v;’s discrete PowerCost messages (lines 2
— 12). For a particular state (i.e., a combination of flowCO elements, one from each
child, and the power output of the generator at v;) the resultant flow is calculated by
summing each flow of the flowCO elements, in the state, with the generator power output
and the load (line 3). If the thermal capacity of the distribution cable to the parent
node is not violated (line 4), the resultant CO2 emissions are calculated by summing
the CO9 emissions of the flowCO elements, in the state, together with the product of
the generator’s power output and its carbon intensity (line 5). If the resultant COq
emissions are the minimum recorded for the particular resultant flow (line 6), then the
flowCO element is created (line 7), set as the new minimum for that particular resultant
flow (line 8), and linked to the OPCState (line 9). All the flowCO elements created are

added to a discrete PowerCost message and then sent to the parent node (line 14).

As an example of merging discrete PowerCost messages, consider the following discrete
PowerCosts_,3 message, vs sends to vs, as shown in Figure Let t55 be 100kW,
s be 20kW, t£y be 40kW, I5 be ~10kW, Ig be ~41kW, lg be ~11kW, go have a power
output range of 0-20kW, CIs be 0.7kgCO2/kWh, g4 have a power output range of 0—
40kW, C1I, be 0.25kgCO2/kWh, g5 have a power output range of 0-30kW, and C1I5
be 0.1kgCO2/kWh. The following is part of the discrete PowerCosts—_,3 message (after

receiving messages from vg and vg):

flowCO; = <-10,85> — [+0kW] vg(—19) v9(19)
flowCO;, = <-=9,875> — [+0kW] vg(—18) vy(19) (4.9)
flowCO; 5, = < —=89.00> — [+0kW] vg(—17) ve(19)

Now, flowCO;, indicates that a flow of 9kW, from v3 to vs, will result in 8.75kgCO2/h
emission with go outputting OkW, a flow of 18kW from wvs to vg, and a flow of 19kW
from vg to vs. The following section describes the second phase of D-DYDOP whereby

power output values are propagated from the root node to the leaf nodes.

53



4.1.2 Phase 2: Value Propagation

Once the root node has received discrete PowerCost messages from all of its children,
it calculates how much power each of its generators should output in order to satisfy its
immediate children’s loads whilst minimising COy emissions. It does this by iterating
through every possible power output that it can produce and every flowCO element from
each of its children’s discrete PowerCost messages. Equation is used to calculate
the resultant flow of a state. If the flow is not equal to zero, then this particular
state for the network is infeasible, since excess power means that supply and demand
is imbalanced. For every state that has a flow equal to zero, the CO4 emissions of the
network are calculated by using Equation .

The root node’s state with the minimum COs emissions corresponds to the minimum
CO» emissions for the entire network, and is selected as the optimum stateﬁ Power
flow values are then sent to each of the root node’s children telling them which of
their flowCO elements resulted in the minimum COy emissions. The child retrieves the
correct flowCO element by matching the power flow value sent to them with the flow
from the flowCO element. The OPCState which is referenced by each child recipient’s
corresponding flowCO element tells the child exactly how much power to output. The
child recipient can then send the power flow specified in its OPCState to each of its
corresponding children. Power flow values are propagated in this manner to the leaf
nodes, at which point each generator in the network knows its optimum power output
that results in the minimum COy emissions for the entire network. It should be noted
that if there are no states with a flow equal to zero, this indicates that there is no
solution possible which D-DYDOP will report. There are two possibilities for not being
able to find a solution. The first possibility is that there is actually no solution given
the real electricity distribution network constraints (i.e., CPLEX would also report a
solution does not exist). The second possibility is that due to the discretisation unit
used, there is no solution to the discretised electricity distribution network. In this case
a smaller discretisation unit can be used to determine whether a solution does exist to
the real electricity distribution network. Having introduced D-DYDOP, we now present

completeness and correctness of the algorithm.

5If multiple states exist with the same minimum CO, emissions, this indicates there are multiple
optimal configurations for the outputs of the generators and one of the states is chosen arbitrarily. This
can happen when two or more generators have the same carbon intensity.
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4.2 Completeness and Correctness

In what follows, we prove that D-DYDOP applied to acyclic networks is completeﬂ and

correct E|

Proposition 4.1. D-DYDOP is completeﬂ

Proof. To construct discrete PowerCost messages, v; must iterate through all of its
own generator’s possible power outputs and every flowCO element from each of its
children’s discrete PowerCost messages. Each flowCO element contains the minimum
COg2 emissions that result from each | € L(v;), and all of its childrens’ loads, being
satisfied. The root node chooses a feasible state that results in the minimum COsq
emissions. Therefore, at each node, all feasible states are evaluated and the root node

chooses the optimal state which minimises COs. Hence, the algorithm is complete. [

Proposition 4.2. D-DYDOP is correct.

Proof. This proof follows on from Proposition When constructing messages, v; only
evaluates feasible states; the states that conform to Equations - and the power
outputs of each g € G(v;). Each message will contain the minimum COq emissions that
result from a feasible set of states. Therefore, any solution calculated by the algorithm
will be valid as it has explicitly conformed to the local and global constraints of the entire
network (since constraint checks are explicitly embedded in the algorithm). Hence, the

algorithm is correct. O

Having presented the correctness and completeness of D-DYDOP, we now calculate the

computational complexity.

4.3 Computational Complexity

Here, the worst-case complexity of D-DYDOP is calculated, with regard to the size of
the network and the number of children of a node, in order to show its suitability for
large optimal dispatch problems (Requirement .

Proposition 4.3. The size of discrete PowerCost messages (i.e., the total number of
flowCO elements) sent by D-DYDOP grows linearly with the size of the network.

"Complete in terms of finding the optimal solution calculated by CPLEX using Equations -
B4).

®Correct such that any solution returned by D-DYDOP is feasible given Equations - (4.

9To clarify, if an optimal solution exists for the real electricity distribution network, D-DYDOP will
find the optimal solution to the discretised electricity distribution network. Furthermore, as discussed
in Section if the appropriate discretisation unit is used (i.e., each discretised value does not over-
or underestimate the real value), then the solution calculated for the discretised electricity distribution
network is guaranteed to work on the real electricity distribution network.
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Proof. In the worst case, the maximum size of the discrete PowerCost message v; has

to create and send to v; is ®;:

P; = 1 (4.10)

This highlights how w influences a node’s message size; a small w increases the size of
the message, whereas a large w decreases the size of the message, see Section for a
full description of the discretisation unit w. In the worst case, the size of the messages
D-DYDOP has to create and send in total is:

> (4.11)

v;EV\v,

where v, is the root node. Therefore, the size of the messages D-DYDOP sends grows
linearly in O(|V]). O

Proposition 4.4. The number of states that v; must iterate through is exponential in
|chi(v;)].

Proof. When merging discrete PowerCost messages, v; must iterate through all states
in the Cartesian product of all of its children’s states and its own power output values.
Therefore, the number of states a node must iterate through in the worst case grows
exponentially in O(MI"()l) where M is the maximum number of flowCO elements a

discrete PowerCost message received from the children of v; contains. O

Even though the worst-case complexity of D-DYDOP is exponential in the number of
children a node has, it is significantly less than the total number of nodes in the entire
network. Thus, D-DYDOP may be able to exploit the structure of the network (unlike
max-sum that does not explicitly take this structure into consideration) and compute
an optimal solution with less computation. Having presented D-DYDOP and analysed
its theoretical properties, the following section provides an empirical evaluation against

max-sum and a highly optimised centralised approach based on MIP.

4.4 Empirical Evaluation

To highlight the improvements of D-DYDOP against the discrete max-sum algorithm
presented in Section [3.3, we conducted two experiments on two large real electricity
distribution network topologies (see Figure , and one experiment on large random
acyclic electricity distribution network topologiesm We benchmark D-DYDOP against
max-sum and a highly optimised centralised approach, which uses IBM’s ILOG CPLEX

'"We use random topologies in order to vary the branching factor of each node.
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12.2. CPLEX simply solves a large MIP without having to use message passing or decen-
tralised control. Thus, CPLEX is able to calculate a solution in under a second["| The
reason we benchmark D-DYDOP against the large MIP solution to the optimal dispatch
problem, calculated by CPLEX, is because this solution represents the optimal decision
for each generator. As discussed previously in Section we choose to benchmark
D-DYDOP against max-sum, instead of benchmarking against other message passing
algorithms such as ADOPT, OptAPO, or DPOP, because max-sum is the current state
of the art message passing algorithm for solving DCOPs. The three experiments were

conducted in order to test the following:

Experiment 1 Tests the effect of w for CPLEX, D-DYDOP, and max-sum on the two

large real electricity distribution network topologies in Figure 4.2

Experiment 2 Tests the effect of the size of the network for CPLEX, D-DYDOP, and
max-sum on the two large real electricity distribution network topologies in Figure
4.2

Experiment 3 Tests the effect of the branching factor for CPLEX, D-DYDOP, and

max-sum on large random acyclic electricity distribution network topologies.

Figure shows the two real electricity distribution networks used for the experiments.
Figure is located in Indiam and contains 76 substations, each of which can further
be connected to as many as 400 nodes. Figure is a section of the electricity
distribution network located in Southampton UK, and contains 27 substations, each of
which can further be connected to hundreds of nodes. We have taken a small section
of the Southampton electricity distribution network and indicated which substations
connect to the larger distribution networkE We only use two real network topologies
because the topologies of electricity distribution networks are similar throughout the
world. The remainder of this section is organised as follows: Section describes
the setup of the electricity distribution networks. Section [£.4.2] details Experiment 1,
Section details Experiment 2, and Section details Experiment 3. Finally,

Section draws conclusions from all three experiments.

4.4.1 Experiment Setup

Each experiment was run in Java on a 2.67GHz Intel Xeon quadcore with 12GB of RAM.

During each iteration, nodes are assigned a uniformly distributed load value in the range

11 Although centralised techniques in this context are fast, they suffer from a number of problems
as described in Section 2:3.2] Thus, distributed and decentralised techniques may be the only feasible
solution to coordinating the power output of generators in electricity networks.

12We cannot disclose the exact location due to commercial sensitivities.

13This section was chosen in order to contrast against the Indian electricity distribution network. The
Southampton electricity distribution network is smaller but contains a higher number of high branching
factor substations.
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FIGURE 4.2: l@] Indian electricity distribution network topology containing 76 sub-
stations. @ A section of Southampton UK electricity distribution network topology
containing 27 substations.

of [IkW, 5kW], and either a continuous or discrete generator with a uniformly distributed
carbon intensity. There is a 90% chance that the generator will be continuouspz] If the
generator is continuous, it is assigned a uniformly distributed minimum power output
in the range of [0kW, 2kW], and a uniformly distributed maximum power output in the

range of [3kW, 20kW]. If the generator is discrete, it is assigned a uniformly distributed

14This is an arbitrary number chosen so that the majority of the network contains continuous gener-
ators.
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power output level 7 in the range of [3kW, 20kW] (i.e., each discrete generator can
either be off, or produce nkW). Each distribution cable in the network is assigned a
uniformly distributed thermal capacity in the range of [LI0kW, 15kW]. The electricity
distribution network constraints are then discretised with the equations in (where
w is varied between 0.5kW and 3.0kW in Experiment 1, and w = 1kW in Experiments
2 and 3), in order to apply D-DYDOP and max-sum. Having described the setup for

each experiment, the following section details the first experiement.

4.4.2 Experiment 1 : Impact of Varying Discretisation Unit

Experiment 1 was set up in order to test the effect of w for CPLEX, D-DYDOP, and
max-sum. Using both the Indian and UK electricity distribution networks, the number
of additional nodes at each substation was fixed at 8 and arranged as a random acyclic
network with a maximum branching factor of 2E Thus, the total number of nodes in the
whole network was 596 and 203 for the Indian and UK electricity distribution networks
respectively. The discretisation unit w, used to discretise the electricity distribution
network constraints, was varied from 0.5kW to 3.0kW in 0.5kW steps, each with 50

iterationsE During each iteration, the nodes and distribution cables were initialised as

in Section {411

Figure shows four plots of the results from the first experiment (error bars showing

the standard error across the 50 iterations omitted due to being negligible). We use a

logarithmic scale for the y-axis in all four plots. Figures 4.3(a)| and 4.3(b)| show how
the computation time is affected by the discretisation unit w for CPLEX, D-DYDOP,

and max-sum on the Indian and UK electricity distribution networks respectively. For

CPLEX, regardless of the discretisation unit, the computation times remain constant.
This is because CPLEX does not require the electricity distribution network constraints
to be turned into a discrete problem before it can calculate a solution. However, for

D-DYDOP and max-sum, the time complexity is exponential in w.

Thus, it can be seen that for small w, the computation time for both D-DYDOP and
max-sum suffers greatly. This is because a small discretisation unit results in both al-
gorithms iterating through many generator power outputs (in increments of w), and
message elements, to calculate the utility of each possible resultant amount of power
that can flow along a distribution cable, as shown by Pseudocode |1 and |2, Max-sum
performs significantly worse than D-DYDOP because of the wasted computation that
it undertakes to calculate the utility for infeasible amounts of distribution cable power
(see Section for an example of the wasted computation a naive implementation of

'5We choose a branching factor of 2 so that the discrete algorithms can calculate a solution within a
reasonable time frame.

6We found 50 iterations to be an adequate amount since further iterations did not improve the
statistical significance of the results.
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F1GURE 4.3: Experiment 1 tests the effect of w for CPLEX, D-DYDOP, and max-
sum. Using both electricity distribution network topologies in Figure the number
of additional nodes at each substation was fixed at 8 and arranged as a random acyclic
network with a maximum branching factor of 2. The discretisation unit w was varied
from 0.5kW to 3.0kW in 0.5kW steps, each with 50 iterations. [4.3(a)| and |4.3(b)| show
how w affects computation time for CPLEX, D-DYDOP, and max-sum on the Indian
and UK electricity distribution networks respectively. [4.3(c)| and [4.3(d)| show how w
affects the total number of message elements sent for D-DYDOP and max-sum on the
Indian and UK electricity distribution networks respectively. We use a logarithmic scale
for the y-axis in all four plots.

max-sum performs). As the disretisation unit is increased, both algorithms have to cal-
culate fewer state utilities, resulting in decreased computation time. It can be seen that
there is a difference of performance for D-DYDOP and max-sum on the two networks.
D-DYDOP is faster at computing a solution for the UK electricity distribution network
as apposed to the Indian electricity distribution network, whereas max-sum is faster at
computing a solution for the Indian electricity distribution network as apposed to the
UK electricity distribution network. This difference between Figures [4.3(a)| and 4.3(b)|

for the two algorithms is because the section of UK electricity distribution network is

smaller, but contains a number of nodes with higher branching factors. The higher num-
ber of high branching factor nodes affects max-sum more than D-DYDOP. Therefore,

even though the UK electricity distribution network contains a smaller number of total
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nodes, compared with the Indian electricity distribution network, max-sum is affected
much more by the branching factor of a network as apposed to a larger number of total
nodes in a network (see Section for the branching factor experiment).

Figures 4.3(c) and |4.3(d)| show how the total number of message elements sent (i.e., the

sum of the total message sizes) is affected by the discretisation unit w for D-DYDOP
and max-sum. Note that CPLEX cannot be compared to the other algorithms using
the discretisation unit because it does not use message passing to calculate a solution.
The total number of message elements sent grows exponentially with regard to w for
D-DYDOP and max-sum. For small w, D-DYDOP and max-sum send a large number
of message elements. As explained previously in this section, this is because both al-
gorithms must iterate through a large number of states in order to calculate the utility
for each resultant flow along a distribution cable, and consequently send more message
elements. It can be seen that for each discretisation unit, max-sum sends almost double
the number of message elements compared to D-DYDOP. This is because max-sum
calculates the utility for states that are infeasible, as shown in Section Having

presented the first experiment, the following section details the second experiment.

4.4.3 Experiment 2 : Impact of Varying Network Size

Experiment 2 was set up to demonstrate how the size of the network affects CPLEX,
D-DYDOP, and max-sum. Using both the Indian and UK electricity distribution net-
works, the number of additional nodes at each substation was varied from 0 to 30 in steps
of 5, each with 50 iterations. At 30 additional nodes per substation, the total number
of nodes in the network was 2026 and 687 for the Indian and UK distribution networks
respectively. During each iteration, the nodes and distribution cables are initialised as
in Section Figure [£.4] shows four plots of the results from the second experiment
(error bars showing the standard error across the 50 iterations omitted due to being

negligible). We use a logarithmic scale for the y-axis in all four plots.

Figure [4.4(a)| and |4.4(b)[ show how the computation time is affected by the number of

nodes at each substation (and consequently the total number of nodes in the network)
for CPLEX, D-DYDOP, and max-sum on the Indian and UK electricity distribution
networks respectively. The time complexity of each algorithm is linear in the total
number of nodes in the network. CPLEX has an almost constant computation time of
100ms on average (for very large networks, the effects of the network size on CPLEX
would obviously be more apparent, but still linear). Max-sum has the worst computation
time, quickly reaching over 5 seconds to calculate a solution when there are more than 300
nodes in the Indian electricity distribution network, and over 5 seconds when there are
more than 60 nodes in the UK electricity distribution network. Again, this is because
of the wasted computation that max-sum undertakes when calculating the utility for

infeasible states. Moreover, the effect of the branching factor on max-sum can be seen
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FiGURE 4.4: Experiment 2 tests how the size of the network affects CPLEX,
D-DYDOP, and max-sum. Using both electricity distribution network topologies in
Figure the number of additional nodes at each substation was varied from 0 to 30
in steps of 5, each with 50 iterations. [4.4(a)|and [4.4(b)|show how the number of nodes
in the network affects the computation time for CPLEX, D-DYDOP, and max-sum
on the Indian and UK electricity distribution networks respectively. [4.4(c)| and [4.4(d)|
show how the number of nodes in the network affects the total number of message ele-
ments sent for D-DYDOP and max-sum on the Indian and UK electricity distribution
networks respectively. We use a logarithmic scale for the y-axis in all four plots.

between the two networks by comparing Figures 4.4(a) and 4.4(b)l As discussed in the

previous section, even with fewer nodes in the UK electricity distribution network, the

higher number of high branching factor nodes greatly affects the computation time of

max-suinl.

However, the large reduction in computation time by using a dynamic programming
approach, and propagating messages from leaf nodes up to the root of the tree, can be
clearly seen from the results of D-DYDOP. For 2026 nodes in the Indian electricity
distribution network, Figure there is a reduction of computation time by a factor
of 10 for D-DYDOP compared with max-sum. For 687 nodes in the UK electricity
distribution network, Figure there is a reduction of computation time by a factor

of 65 for D-DYDOP compared with max-sum.
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FIGURE 4.5: Experiment 3 tests how the branching factor of the electricity distribution
network affects CPLEX, D-DYDOP, and max-sum. Using random acyclic electricity
distribution network topologies with 200 nodes, the branching factor of the network
was varied from 1 to 4 with 50 iterations for each. shows how the branching
factor of the network affects the computation time for CPLEX, D-DYDOP, and max-
sum. [4.5(b)| shows how the branching factor of the network affects the total number
of message elements sent for D-DYDOP and max-sum. We use a logarithmic scale for
the y-axis in both plots.

Figures 4.4(c)| and |4.4(d)| show how the total number of message elements sent is af-

fected by the number of nodes at each substation for D-DYDOP and max-sum on the
Indian and UK electricity distribution networks respectively. The total number of mes-
sage elements sent for D-DYDOP and max-sum grows linearly with regard to the total
number of nodes in the network. Max-sum sends more than twice as many message
elements compared with D-DYDOP for both the Indian and UK electricity distribution
networks. Having presented the second experiment, the following section details the

final experiment.

4.4.4 Experiment 3 : Impact of Varying Branching Factor

Finally, Experiment 3 was set up to demonstrate how the branching factor of the net-
work affects CPLEX, D-DYDOP, and max-sum. Random acyclic electricity distribution
network topologies were used to test this aspect of the algorithms since a variation of
the branching factor was required. The number of nodes in the electricity distribution
network was fixed at 200, and the branching factor of the network was varied from 1
to 4 with 50 iterations for each. During each iteration, a random acyclic electricity
distribution network was generated with the nodes and distribution cables initialised as
in Section 4.4.1} Figure shows two plots of the results from the third experiment
(error bars showing the standard error across the 50 iterations omitted due to being

negligible). We use a logarithmic scale for the y-axis in both plots.
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Figure shows how the computation time is affected by the branching factor of
the network for CPLEX, D-DYDOP, and max-sum. CPLEX has constant computation
time with regard to the branching factor of the network because it does not use the
structure of the network in order to solve the optimal dispatch problem; it simply solves
a very large optimisation problem, that includes every node and distribution cable, in a
centralised fashion. On the contrary, D-DYDOP and max-sum both have an exponen-
tial time complexity with regard to the branching factor of the network. This is because
both D-DYDOP and max-sum must iterate through every possible combination of gen-
erator power outputs and message elements in order to calculate a utility for each state
of a distribution cable. As the branching factor increases, the number of possible combi-
nations grows exponentially, shown in Proposition Max-sum performs significantly
worse due to the wasted computation that it undertakes when calculating utilities for

infeasible states of the distribution cables.

Figure shows how the total number of message elements sent is affected by the
branching factor of the network for D-DYDOP and max-sum. The total number of mes-
sage elements sent for D-DYDOP and max-sum decreases exponentially in the branching
factor of the network. This is because as the number of children for each node increases,
the height of the network (i.e., from leaf node to root node) decreases meaning that
fewer messages (and consequently fewer message elements) must be sent in order to
calculate a solution (see Section for how D-DYDOP constructs message elements).
The reasons why D-DYDOP sends fewer message elements than max-sum have already
been explained in Section The following section discusses the results from all three

experiments.

4.4.5 Discussion

Our results show that D-DYDOP significantly outperforms a naive implementation of
max-sum, for the optimal dispatch problem, in terms of the total number of message
elements sent and the computation time by pruning the search space efficiently. When
compared to the centralised CPLEX approach, both D-DYDOP and max-sum are sig-
nificantly slower in terms of computation time. However, due to the disadvantages of
a centralised approach highlighted in Section [2.3.2] a decentralised and distributed al-
gorithm, which solves the optimal dispatch problem, may be the only solution. The

following section concludes this chapter.

4.5 Conclusions

To address the redundant computation issues which result from a naive implementation
of max-sum (introduced in Section [3.3), in this chapter we presented D-DYDOP, a
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novel decentralised message passing algorithm which uses dynamic programming, that
outperforms max-sum by pruning the search space. It does this by propagating messages
from leaf nodes to the root and only calculates the utility for feasible variable states using
techniques based on local consistency. We empirically evaluated D-DYDOP using two
real electricity distribution network topologies based in India and the UK, showing that
it outperformed max-sum (in terms of computational time and total size of messages

sent).

As we have shown in Sections and however, discrete algorithms are

greatly affected by the branching factor of the network. Moreover, in order for a so-
lution to be generated by D-DYDOP or max-sum, the electricity distribution network
constraints must be discretised, as presented in Section While this process can be
completed in a distributed and decentralised way, there are only certain scenarios where
a discrete algorithm is a viable solution to the optimal dispatch problem (this is discussed
in depth in Section . Therefore, to avoid the need to discretise the electricity distri-
bution network constraints, and address the issues associated with the branching factor
of a network when using discrete algorithms, the following chapter extends D-DYDOP

to use continuous variables.
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Chapter 5

A Novel Algorithm for
Decentralised Optimal Dispatch
in Acyclic Electricity Networks

Using Continuous Variables

D-DYDOP suffers from a number of issues due to the discretisation of the electricity
distribution network constraints (see Section [3.4). Therefore, in the following section
we present C-DYDOP, which extends D-DYDOP, such that discretising the electric-
ity distribution network constraints is not necessary. We do this by using continuous,
instead of discrete, variables. This extension is non-trivial because it not only requires
a new way of representing PowerCost messages, using piecewise linear functions, but
also requires additional techniques for creating and merging PowerCost messages, with
a number of special cases. Continuous variables have been used in max-sum using sim-
ilar techniques (Stranders et al., 2009)). We use the notion of piecewise linear functions
and adapt it to be used with CfDYDOPE] Thus, this chapter makes the following

contributions to the state of the art:

1. We present C-DYDOP which extends D-DYDOP by using continuous variables
for the power outputs of the generators, the loads, and the thermal capacities of
the distribution cables. The advantage of using continuous instead of discrete val-
ues, is that the real electricity distribution network constraints do not need to be
discretised before C-DYDOP can be applied. Moreover, since continuous Power-

Cost messages can now be represented by continuous piecewise linear functions,

To clarify, C-DYDOP differs from continuous max-sum in (Stranders et al., [2009) because, like
D-DYDOP, C-DYDOP uses dynamic programming and local consistency to prune much of the search
space.
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fewer flowCO elements need to be created, which greatly reduces the amount of

computation required.

2. We provide proof of the optimality of our algorithm and empirically evaluate it on
a variety of large real electricity distribution network topologies, showing that it
outperforms D-DYDOP in terms of computational time and total size of messages

sent.

By presenting C-DYDOP, we address the drawbacks of D-DYDOP and increase the
standard of benchmarks for the deployment of agent-based coordination algorithms to

solve the optimal dispatch problem in the smart grid.

The remainder of this chapter is organised as follows: Section describes the two
message passing phases of C-DYDOP including the construction and merging of con-
tinuous messages as they are propagated up the acyclic network. Section [5.2] provides a
proof of the completeness and correctness of C-DYDOP, and Section calculates the
computational complexity with regard to the size and topology of the network. Section
provides an empirical evaluation against D-DYDOP, presented in Chapter [ and a
highly optimised centralised approach based on MIP. Finally, Section [5.5| concludes.

5.1 Message Passing Phases

In order to extend D-DYDOP we use the continuous model of an electricity distribu-
tion network, presented in Section [3.1] in its entirety. The mechanism for propagating
messages is exactly the same as D-DYDOP (i.e., a value calculation phase and a value

propagation phase). We elaborate on the value calculation phase in the following section.

5.1.1 Phase 1: Value Calculation

In what follows, we present the continuous versions of constructing and merging Power-
Cost messages, and constructing OPCStates. Section[5.1.1.1]describes a new formulation
for continuous PowerCost messages and OPCStates, Section shows how a leaf
node constructs a continuous PowerCost message, and Section [5.1.1.3]details how a node

merges continuous PowerCost messages from its children.

5.1.1.1 Continuous PowerCost Messages

A continuous PowerCost message sent from v; to its parent ¥;, is a piecewise linear

functiorﬂ which describes the CO4 emissions that occur between a range of power flowing

2We use a piecewise linear function because it represents the underlying utility of carbon emissions
from a generator against the generator’s power output.
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FiGure 5.1: Continuous PowerCost messages, sent within the electricity distribu-

tion network in Figure [3.1(a)l depicted as piecewise linear functions, where [5.1(a)| is
the continuous PowerCost;_,5 message sent from vs to vs, [5.1(b)| is the continuous

PowerCosts_,1 message sent from v3 to vy, is the continuous PowerCosts_,; mes-

sage when g7 has a carbon intensity of 0.4kgCO5/kWh (instead of OkgCO5/kWh), and

5.1(d)|is the continuous PowerCosts_,1 when g; has discrete power values of 0kW and
95.8kW (instead of OkW and 11.2kW).

along the distribution cable ¢;. The power comes from generators at v; and all generators
in the subtree below it outputting certain amounts of power whilst satisfying their loads.
The gradient of each line segment of the piecewise linear function corresponds to the
carbon intensity of one of the generators either at v; or in the subtree below it. If v; and
all nodes in the subtree below it contain generators that are continuous, then the message
sent to ¥; will be a monotonically increasing piecewise linear function, as described
in Figure However, if v; or its subtree contains discrete generators, then the

piecewise linear function may be discontinuous and won’t necessarily be monotonically

increasing, as described in Figures |5.1(b)|—[5.1(d)|

Figure[5.I]shows the continuous PowerCost messages, sent within the electricity distribu-
tion network in Figure depicted as piecewise linear functions. Each figure shows
a possible type of continuous PowerCost message that can be sent using C-DYDOP
(i.e., monotonically increasing gradients, Figure discontinuous, Figure |5.1(b)
non-monotonically increasing gradients, Figure and infeasible power ranges, Fig-
ure . A continuous PowerCost message could be very complex and contain an

amalgamation of more than one type.
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In more detail, Figure describes continuous PowerCosts_,3 that vs sends to vs.
The x-axis corresponds to the power flowing along ¢35, and the y-axis corresponds to the
resulting CO4 emissions when gs, g4, and g5 output certain amounts of power. It should
be noted that for each line segment of the piecewise linear function, the cleanest generator
available (i.e., the generator with smallest C'I; that is not at its maximum output)
increases its output. All other generators that this particular continuous PowerCost
message represents stay at the same output. Thus, between —40.6kW and —~10kW g5 will
increase its output, between —10kW and 9.7kW g4 will increase its output, and finally
between 9.7kW and 29.8kW g, will increase its output.

Figure describes continuous PowerCosts_,1 that vy sends to v; on the example
electricity distribution network given in Figure The x-axis corresponds to the
power flowing along t13, and the y-axis corresponds to the resulting CO2 emissions
when g1, g2, g4, and g5 output certain amounts of power. The discontinuity at —38.6kW
indicates that the discrete generator g; has switched from producing 0kW of power to
11.2kW of power. The drop in CO5y emissions at —38.6kW is because g; has a lower
carbon intensity (i.e., OkgCO9/kWh) than g9, g4, and g5. Thus, switching g; on allows
the same amount of power that could have been produced by just g2, g4, and g5 to be

produced at a lower cost.

Figure describes an alternative continuous PowerCosts—,; message which results
from g; having a carbon intensity of 0.4kgCO9/kWh instead of OkgCOo/kWh. The
non-monotonicity of the gradients is because at 4.23kW, g1 can switch on (i.e., produc-
ing 11.2kW) whilst go (the generator with the highest carbon intensity in the current
subtree) can be switched off, and g4 can reduce its power output. Therefore, the line
segment immediately following 4.23kW has a gradient of C'I4. This is because the addi-
tional power from g; means that g4 now has some available power to produce before it

reaches its maximum output. This results in less CO9 emissions than if g; had remained

off.

Finally, Figure [5.1(d)| describes another alternative continuous PowerCosts_,; message
which results from g; having discrete power values of OkW and 95.8kW instead of 0kW
and 11.2kW. The infeasible region indicates that between 20.6kW and 46kW, power
cannot feasibly flow along ¢13 due to the configuration of the generators. This is because
at 20.6kW, gi1 is off, and g2, g4, and g5 are all at their maximum outputs. When g¢;
is switched on it produces 95.8kW of additional power. Even if go, g4, and g5 are all
switched off, 46kW is the minimum amount of power that can flow along ¢15. Thus, an

infeasible region of power is created in the continuous PowerCost message.

Fach piecewise linear function is represented as an array of y flowCO elements:

PowerCost, _,: = [ﬂowCOl, . ,ﬂowCOy] (5.1)
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A flowCO; element describes the jth line segment of the piecewise linear function:
flowC0; = ([ fmin, fmae] s, [y(fim), (7o) ) (5.2)

where | fgi”, fg“a:‘] denotes the range of power flowing along ¢;;, 0 denotes the gradient
of the line segment, and [v( fglm),'y( f;’mz)] denotes the range of corresponding COs
emissions. Each flowCO; element that v; calculates, maps to an OPCState; describing
the power output at v;, along with the flows between v; and its children, that results in
the range of CO2 emissions [’y( fg”"),'y( fgwm )|:

OPCState; = ([a;, F(v;)], var;) (5.3)

where the array [a;, F(v;)] contains v;’s own power output and the set of power flows
F(v;) from the distribution cables connecting v; to its children when f;’”” is flowing
along t:, and var; indicates the node that varies its output between [ fg“”, f;’w‘”]ﬂ This
mapping represents the dynamic programming aspect of C-DYDOP because as power
flow values are propagated down the tree, during the value propagation phase, the
associated OPCState is used to find node v;’s power output given a particular power
flow f;;. Consider the continuous PowerCost; .3 in Figure using the notation of

Equations (5.1) — (5.3):

([~40.6,—10],0.1,[5.1,8.16])  — ([aa = 0, fss = —20.3, fs0 = —10.8] , vo)
PowerCosts 5 = ([—10,9.7],0.25, [8.16,13.085]) — ([az = 0, fss = —20.3, fso = 19.8] ,vs)  (5.4)
(19.7,29.8] ,0.7, [13.085, 27.155]) — ([ovz = 0, fss = —0.6, fso = 19.8] , v5)

which shows the continuous PowerCost message sent to vs and the mapping from each
flowCO element to OPCState that vs stores for use during the propagation phase. For
example, the flowCO element ([—40.6,—10],0.1, [5.1, 8.16]) details that for power flowing
along t35 in the range of [—40.6, —10], the CO2 emissions for nodes vs, vs, and vg will
increase from 5.1kgCOz2/h to 8.16kgCO4 /h at a rate of 0.1 (i.e., C'I5). The corresponding
OPCState {[ay = 0, f58 = —20.3, f50 = —10.8] , vg) denotes that when 40.6kW flows from
vg to vs along tss, g2 will output OkW, 20.3kW will flow from vs to vg along ts5, and
10.8kW will flow from wvs to vg along ts9. The node that will increase its output with
the flow range of the flowCO element is vg. The resulting CO9 emissions for nodes vs,
vg, and vg will be 5.1kgCO4 /h.

Thus, if 20kW were to flow from wvs to vs, as = 0kW, fzs = —20.3kW and fs9 =
fs0 + | £33 — f35) = —10.8 + | — 40.6 — —20| = 9.8kW with a corresponding COy
emissions of y(f2) + (| fi2"™ — f35| x §) = 5.1+ (20.6 x 0.1) = 7.16kgCO2/h.

In the following sections, in order to clearly explain the construction and merging of

continuous PowerCost messages effectively, we assume that each node v; in the network

3The definition assumes one generator at v;. The generalisation to more than one generator at each
node is trivial.
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Algorithm 3 Constructing continuous PowerCost messages at leaf nodes.

constructContinuousLeafMessage() {

1. fmme minFlow(); //Calculate the minimum flow
2. fm‘“”e maxFlow(); //Calculate the maximum flow
3. «a; + calculateOutput (f"”") //Calculate the power output of the generator
4. flowCO<createFlowCO (fmm fm‘“”); //Create flowCO element and store in PowerCost
//message
5. O0OPCState<-1inkToOPCState (flowCO); //Link flowCO element to OPCState
6. sendPowerCostMessageToParent () ;
}

contains one generator g; and one load [;; the generalisation to more than one generator

and more than one load at each node is trivial.

5.1.1.2 Constructing a Continuous PowerCost Message at a Leaf Node

A leaf node v; with one continuous generator g; and a corresponding carbon intensity
C1; will be a piecewise linear function with only one line segment (i.e., it will be a linear
function and will be constructed with one flowCO element),ﬂ 0 = C1I;, and fg‘m, fgww,
Y(fF"), and y(f7'**) calculated as follows:

fmzn — max ( min + 5“ o “> fgmx — min ( max ,Bz,tc) (55)
V() = |B; — fTnICT, Y(fTeT) = |8, — f7|C, (5.6)

Algorithm [3] gives a pseudocode representation of constructing a continuous PowerCost
message at a leaf node v;. The minimum and maximum flow along t: is calculated
using Equation (lines 1 — 2). The power output that needs to be produced for the
minimum flow f;;”” isa; = f;m” — B; (line 3). The flowCO element is constructed using
f;”m and fl”lmw (line 4), and linked to the OPCState containing «; indicating that v;
varies its output (line 5). The continuous PowerCost message is sent to v; (line 6). For
clarification, consider the following example where vg sends a continuous PowerCosty_,5
message to vs using the real (and not discretised) electricity distribution network from
3.1(a)| (compare with the previous example in Section which sends a discrete
PowerCosty_,5 message). The following is the resulting continuous PowerCosty_,5 mes-
sage:

PowerCosty_,5 = ([—10.8,19.8],0.1, [0, 3.06]) — ([as = 0], vg) (5.7)

Thus, for the power flowing along t59 in the range of [—10.8,19.8], the CO2 emissions
will increase from 0kgCOs/h to 3.06kgCOy/h at a rate of 0.1 (i.e., Cl5). If 5kW of
power were to flow from vy to vs, az = P + | fII — fsg| = 0+ | — 10.8 — 5| = 15.8kW

4For n generators at node v;, the resulting continuous PowerCost message will contain up to n line
segments (defined by n flowCO elements).
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with a corresponding COy emissions of ~y(ffai™) + (| f&i" — fsg| x §) = 0+ (15.8 x 0.1) =
1.58kgCOs /.

The total number of flowCO elements in the continuous PowerCostg_,5 is 1. By contrast,
compare the example discrete PowerCosty_,5 message of D-DYDOP in Section
which has 31 flowCO elements, and the example discrete Rg_,13(z13) message of max-
sum in Section which has 81 variable values. This further highlights the wasted
computation that the discrete algorithms perform. The following section describes how

continuous PowerCost messages are merged.

5.1.1.3 Merging Continuous PowerCost Messages

For each v; that has at least one child, the PowerCost messages that it receives (be
it continuous or discrete) must be processed in order to produce its own continuous
PowerCost message that it sends to ¥;. Once v; has received a PowerCost message
from each of its children it can then calculate its own PowerCost message. The type of
PowerCost messages v; receives affects the way in which a new continuous PowerCost

message is constructed as follows:

Constructing a continuous PowerCost message when v; and all nodes in
the subtree below it contain generators that are continuous This is the

simplest case because each continuous PowerCost message constructed will be

exactly the same type (i.e., Figure [5.1(a))).

Constructing a continuous PowerCost message when discrete and continuous
generators are present This is more complex (containing three specific cases
which will be explained in more detail later in this section) because each output of
a discrete generator must be iterated through, and the resulting piecewise linear

functions must be minimised and merged. Moreover, each continuous PowerCost

message constructed could be of any type (i.e., Figure [5.1(a)|—|5.1(d)).

The former case will be explained first followed by the latter.

First, v; must calculate f7"" and f2'** based on t;, 3;, and its children’s continuous
23 23

PowerCost messages:

fgi” = max | o™ + B; + Z min —t% (5.8)
cechi(v;)

fE =min [ o™ + B; + Z pAR 3 (5.9)
c€chi(v;)
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Algorithm 4 Merging continuous PowerCost messages.

mergeContinuousMessages () {
1. createFlowCOElements (); //Create flowCO elements, see Algorithm
2. sendPowerCostMessageToParent ();

}

where E o is the sum of the minimum power flow from each continuous Power-

c€echi(v;)

Cost message of v;’s children and Z 719% is the sum of the maximum power flow

cechi(v;)
from each continuous PowerCost message. As a result, v; solves the following optimi-

sation problem in order to calculate the optimal «; and the corresponding flows to its

children, f.;, based on f;m”

min Z PW L(PowerCost.—;) + ClL;c; (5.10)
c€echi(v;)

subject to the power flow balancing at v;:

QG+ Bit Y. fua— =0 (5.11)

i
cechi(v;)

where PW L(PowerCost.—,;) is the piecewise linear function of continuous PowerCost._;.
Using the calculated values for a; and f.;, v; will then iteratively construct a piecewise
linear function, in the form of a continuous PowerCost message, based on the gradients
of its children’s flowCO elements and v;’s own carbon intensity C'I; (see Algorithm (4| for

a pseudocode representation of merging continuous PowerCost messages at node v;).

The flowCO elements of the continuous PowerCost message are constructed (line 1),
and then sent to v; (line 2). See Algorithm [5| for a pseudocode representation of
createFlowCOMessageElements (). The minimum and maximum flow along ¢ ; is calcu-
lated using Equations - (lines 1 — 2). The optimisation problem in Equations
- is solved giving an optimal value for «; and each f.; for f;’”” (line 3).
The current flow f;; is initialised to the minimum flow f7" (line 4). While f; is smaller
than fg,mx or there is no more power NMP () available (line 5 — 11), we iteratively choose
the best node to increase its power output (line 6). See Algorithm @] for a pseudocode
representation of chooseBestNode (). The available power at that particular cost (i.e.,
carbon intensity) is calculated (line 7), and a flowCO element is constructed (line 8).
The flowCO element is linked to the OPCState containing a; and each f.; with an in-
dicator of the node that varied its output (line 9). The current flow f;; is updated (line
10).

Algorithm [6] gives a pseudocode representation of the steps for choosing the next best

node to increase its output. We iterate through each immediate child of v; (lines 1 — 8).
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Algorithm 5 Creating flowCO message elements.

createFlowCOElements() {
1. fg“”<f minFlow(); //Calculate the minimum flow

N

fg“zéf maxFlow () ; //Calculate the maximum flow

3. solveForMinFlow(fg”"); //Solve optimisation problem for the minimum flow,
//giving optimal value for the power output of the
//generator and each child distribution cable’s flow

4. fa effg”” //Initialise current flow to the minimum

5. WHILE (ﬂ€<:fgmz) OR NMP(){ //While the current flow does not exceed the

//maximum flow, or there is no more power

//available from the generator or its children

6. bestNode, bestElement < chooseBestNode(); //Choose the next node to
//increase its output, see
//Algorithm
7. powerIncrease < calculatePIncrease(bestNode); //Calculate the power
//increase
8. flowCUe—createFlowCO(fﬁ, bestElement , powerIncrease); //Create flowCO

//element and store
//in PowerCost message

9. OPCState<+-1inkToOPCState (flowCO); //Link flowCO element to OPCState
10. f;; « f; + powerIncrease; //Update current flow
1. }

}

For each v, € chi(v;), the flowCO element at its current flow f.; and the corresponding
carbon intensity are retrieved (line 2). If childCI is smaller than the best carbon
intensity observed so far, then the best carbon intensity bestCI, best flowCO element
bestElement, and best node bestNode are recorded (lines 3 — 7). This means that
given the current power flow f.; of each distribution cable ¢, that connects v. to v;,
the flowCO with the smallest carbon intensity (that contains f;) is chosen to be used
because increasing the power from the corresponding v, will have the least cost. However,
if the carbon intensity of v; is smaller than the chosen child node’s childCI, and wv; is
currently not outputting its maximum, v; is the best node to use first (lines 9 — 13). The
best node to increase its output and the corresponding flowCO element are returned
(line 14).

As an example of merging continuous PowerCost messages, let’s consider how the con-
tinuous PowerCost;_,3 message (|5.4) is constructed. First, vs must receive continuous
PowerCosty_,5 message (.7) and continuous PowerCostg_,5 message (5.12)) from vg and

vg respectively.
PowerCosts_5 = ([—20.3,—0.6],0.25,[5.1,10.025]) — ([aq = 20.4] , vg) (5.12)

The minimum flow between v5 and vg is fg’gm = —40.6kW. Using this value, v5 solves the
optimisation problem in Equations - giving optimal values of ag = 0kW,
fss = —20.3kW, and fs9 = —10.8kW for f35 = —40.6kW with 5.1kgCO2 emissions.
Thus, vs iteratively constructs flowCO elements based on the cleanest power available.
The carbon intensity at each node’s current flow is 0.7, 0.25, and 0.1 for vs, vg, and vg

respectively. Therefore, the cleanest power is available from vg with flowCO element
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Algorithm 6 Choosing the next node to increase its generation.

bestNode, bestElement < chooseBestNode() {
1. FOREACH (v¢ € chi(v;)) { //For each child ofw;
2. childCI, childElement < getCIElementAtCurrentFlow(f.;); //Retrieve the carbon intensity and the flowCO
//element which corresponds to the child
//distribution cable’s flow
3. IF (childCI < bestCI) { //If the carbon intensity of the child is smaller than the current best carbon
//intensity
4 bestCI <« childCI; //Update the best carbon intensity with the carbon intensity of the child
5. bestElement <— childElement; //Update the best flowCO element with the flowCO element of the child
6. bestNode < wv.; //Update the best node with the child node
7 }
8. }
9 IF (CI; < bestCI) AND (a; < aj*®*) { //If the carbon intensity of v; is smaller than the best carbon
//intensity and the generator at v; is not at its maximum output

10. bestCI <« CI;; //Update the best carbon intensity with the carbon intensity of v;

11. bestElement %flowCH(a;nln,a;nam); //Update the best flowCO element with v;’s newly constructed flowCO
//element

12. bestNode < v;; //Update the best node with v;

3. %}

14. RETURN bestNode, bestElement;
¥

([-10.8,19.8],0.1,]0,3.06]) at a cost of 0.1kgCO2/kWh and a maximum increase of
30.6kW. Thus, the first flowCO element of continuous PowerCosts_,3 can be constructed
and the flow along t59 can be increased to fz9 = 19.8kW.

The flowCO element ([—20.3,—0.6],0.25,[5.1,10.025]) with a cost of 0.25kgCOy/kWh
and maximum increase of 19.7kW is chosen next. Thus, the second flowCO element of
continuous PowerCosts_,3 can be constructed and the flow along t5g can be increased to
f58 = —0.6kW. Finally, vs chooses its own generator g, at a cost of 0.7kgCO2/kWh and
maximum increase of 20.1kW. Thus, the third and final flowCO element of continuous
PowerCosts_,3 can be constructed. There is no more power available so the continuous

PowerCosts_,3 can be sent to vs.

Now, consider the more complex cases when there is a discrete generator at v; or in the

subtree below it. There are three cases we must consider:

1. If v; contains the discrete generator (i.e., g; in Figure when vz sends a
continuous PowerCost message to v ), to construct the final continuous PowerCost
message, v; must iterate through the power output values of the generator (i.e.,
0kW and 11.2kW) in order to calculate all possible configurations of the generators.
For each power output it can then iteratively construct a piecewise linear function,
in the form of a continuous PowerCost message, based on the gradients of its

children’s flowCO elements.

2. If one of v;’s immediate children contains the discrete generator and is a leaf node
(i.e., g3 in Figure when vg sends a continuous PowerCost message to vy),
v; will receive a discrete PowerCost message with discrete flowCO elements as
described in Equation . Thus, v; must iterate through each discrete flowCO
element. For each discrete flowC'O element it can then iteratively construct a piece-
wise linear function, based on the gradients of its remaining children’s continuous

flowCO elements and the carbon intensity of g;.
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Algorithm 7 Merging continuous PowerCost messages.

mergeContinuousDiscreteMessages () {
1. FOREACH (a; € S;) { //Iterate through each output of the generator
createFlowCOMessageElements (); //Create corresponding flowCO elements
//for generator power output, see Algorithm

3.}
4. <createFinalMessageElements(); //Create final flowCO elements and store
//in PowerCost message, see Algorithm
5. sendPowerCostMessageToParent ();
}

3. The most complex case is when there is a discrete generator at a node, vq4, in
the subtree of v; that is not an immediate child leaf node (i.e., g1 in Figure [3.1(a)|
when v1 sends a continuous PowerCost message to vg). The continuous PowerCost

message v; receives from the subtree which contains vy will be one of the types

specified in Figures [5.1(b)| — [5.1(d)l It will contain points where the discrete

generator will change to another power output; a step point. For example, in
Figure for a power range of rangey = [-49.8kW, 4.23kW] flowing along
t13, g1 is producing OkW. For a power range of range; = [4.23kW, 31.8kW], g1
changes its output to 11.2kW. Thus, in order to iterate through each power output
of w3, v1 can restrict the amount of power that could travel along ti3 to rangeg
and iteratively construct a piecewise linear function, based on the gradients of its
children’s continuous flowCO elements. It can then restrict the amount of power
that could travel along t13 to range; and repeat the process. By doing this, vy
is indirectly iterating through each power output of g; in order to calculate all

possible configurations of the generators.

Essentially, each possible discrete generator power output must be iterated through in
order to calculate all the possible generator configurations. This is done directly, if the
discrete generator is situated at v; and v; is currently sending a continuous PowerCost
message, or indirectly, by iterating through each step point of the child continuous
PowerCost message that contains the discrete generator in its subtree. Once this process
has finished, there will be multiple piecewise linear functions that give different costs
for the same ranges of power flowing along t:. Therefore, the minimum piecewise linear
function must be constructed by merging the multiple piecewise linear functions. For
clarification, we shall first detail a pseudocode representation (see Algorithm and then

present a detailed example.

Algorithm [7]is a pseudocode representation of merging continuous PowerCost messages
in a network of continuous generators when there exists at least one discrete generator.
For this pseudocode, we assume that the discrete generator is situated at v; sending

the continuous PowerCost message. Therefore, we iterate through each power output
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Algorithm 8 Constructing the final continuous PowerCost message from a collection
of flowCO elements.

createFinalMessageElements () {

1. flowPointArray < getStartEndAndIntersectFlowPoints(); //Initialise flowPointArray with the start and
//end points of each flowCO element, and all
//intersection points. Sorted by smallest flow

//point
2. currentFlowPoint < flowPointArray[0]; //Initialise currentFlowPoint to first point in flowPointArray
3. currentElement < firstFlowCOElement(); //Initialise current flowCO element to the minimum flowCO (i.e.,

//the one with the smallest minimum flow)
4. FOREACH (nextFlowPoint € flowPointArray) { //Iterate through each flow point in the flowPointArray
5. nextElement < getMinFlowCOElement (nextFlowPoint); //Initialise next flowCO element to the minimum
//flowCO for nextFlowPoint

6. IF (nextElement != currentElement) {

7. flowCO <—createFlowCO (currentFlowPoint, nextFlowPoint, currentElement); //Create final flowCO element,
//store in PowerCost message

8. OPCState<—1inkToOPCState (flowC0); //Link flowCO element to OPCState

9. currentFlowPoint < nextFlowPoint; //Initialise currentFlowPoint to nextFlowPoint

10. currentElement < nextElement; //Initialise current flowCO element to next flowCO element

11 }

12. %}

of the discrete generator situated at v; (lines 1 — 3)E| For the current power output of
the discrete generator, v; creates a piecewise linear function based on the gradients of
its children’s continuous flowCO elements (line 2). Multiple piecewise linear functions
which give different costs for the same ranges of power that could flow along ¢ must
then be merged together (line 4). See Algorithm |8 for a pseudocode representation of
how the final continuous PowerCost message is created by merging multiple piecewise

linear functions. Finally, the continuous PowerCost message is sent to ¢; (line 5).

Now, Algorithm [§|details the steps to merge the multiple piecewise linear functions, that
are created during Algorithm [7| (lines 1 — 3), to produce the final continuous PowerCost
message. The start and end flow points, and the intersection flow points, of all the
flowCO elements, that were constructed in Algorithm 7] are initialised to an array (line
1). The first flow point is retrieved from the array (line 2), and the minimum flowCO
element is retrieved (i.e., the one with the largest negative minimum power flow followed
by the smallest minimum COg emissions) (line 3). We iterate through each remaining
flow point in the array (lines 4 — 12). For each flow point, the flowCO element with the
minimum COs2 emissions at nextFlowPoint is retrieved (line 5). It should be noted that
if two flowCO elements intersect at their extremes (i.e., the maximum of one flowCO
element lies on the same point as the minimum of another flowCO element), the flowCO
element that intersects with its minimum is chosen. If nextElement is not equal to
currentElement (line 6), a new flowCO element is created from currentElement be-
tween currentFlowPoint and nextFlowPoint (line 7), and then linked to the OPC-
State containing «; and each f. with an indicator of the node that varied its output
(line 8). Both currentFlowPoint and currentElement are updated (lines 9 and 10
respectively). If nextElement is equal to currentElement (line 6), this indicates that

there is still more power available from currentElement, so skip to the next iteration.

°If there were multiple discrete generators, situated at v; and further down the tree, v; would iterate
through every possible combination of power outputs from its own discrete generator and each step point
from each child continuous PowerCost message.
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Once this algorithm has finished, the resulting continuous PowerCost message consists

of the minimum merged flowCO elements.

To exemplify the above process, consider how the continuous PowerCosts_,1 message
(depicted as a piecewise linear function in Figure [5.1(b)|) is constructed. First, v3 must
receive continuous PowerCost;_,3 message from vs. Using Algorithm |7, v3 must
iterate through each of ¢g;’s power outputs (i.e., 0kW and 11.2kW) and for each power
output, construct a piecewise linear function from the flowCO elements of continuous
PowerCosts_,3 message. When g7 outputs 0kW, the minimum flow between v; and vs

is {gm = —49.8kW. Using this value, vs solves the optimisation problem in Equations

(5.10) — (5.11]) giving optimal values of ay = O0kW and f35 = —40.6kW for fi3 =
—49.8kW with 5.1kgCOy emissions. Thus, v3 iteratively constructs flowCO elements
based on the cleanest power available (since vs is the only child node, its flowCO elements

are the only flowCO elements used):

([-49.8,—19.2],0.1,[5.1,8.16]) — ([ay = 0, f35 = —40.6] , v5)
([~19.2,0.5] ,0.25, [8.16, 13.085]) — ([ay = 0, f35 = —10] , vs) (5.13)
([0.5,20.6] 0.7, [13.085, 27.155]) — ([a1 = 0, f35 = 9.7] , vs)

Next, vz calculates that when g; outputs 11.2kW, the minimum flow between v; and vg
is {gm = —38.6kW. Using this value, v3 solves the optimisation problem in Equations
- which gives optimal values of a; = 11.2kW and f35 = —40.6kW for fi3 =
—38.6kW with 5.1kgCQOy emissions. Thus, v3 iteratively constructs flowCO elements

based on the cleanest power available:

([-38.6,—8],0.1,[5.1,8.16])  — ([ay = 11.2, f35 = —40.6] , vs)
([~8,11.7],0.25,[8.16,13.085])  — ([ay = 11.2, f35 = —10] ,v5) (5.14)
([11.7,31.8],0.7,[13.085, 27.155]) — ([ = 11.2, f35 = 9.7] , vs)

Figure shows (5.13]) and (5.14]) depicted as piecewise linear functions on the same
graph.

Finally, v3 must merge the flowCO elements from and using Algorithm
to produce the piecewise linear function in Figure The currentElement is
initialised to ([—49.8,—-19.2],0.1,[5.1,8.16]) and the currentFlowPoint is initialised
to —49.8. From here, each flow point is used to retrieve the minimum flowCO ele-
ment. Starting with —38.6, the flowCO element with the minimum CO; emissions
at —38.6 is ([—38.6,—8],0.1,[5.1,8.16]). Therefore, a new flowCO element is created
from currentElement with ~49.8kW and —38.6kW, ([—49.8, —38.6],0.1,[5.1,6.19]), and
linked to the OPCState. The currentFlowPoint is assigned —38.6 and currentElement
is assigned ([—38.6,—8],0.1,[5.1,8.16]), and the process repeats. The result is the final
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FI1GURE 5.2: The two piecewise linear functions that are constructed, by changing the
output of g; from OkW to 11.2kW, and then merged to produce the final continuous
PowerCostz_,1 message sent from vz to vy, Figure

continuous PowerCost;_,1 message which is sent to vq:

—49.8,-38.6],0.1,[5.1,6.19)) —
—38.6,—8],0.1,[5.1,8.16]) —
—8,11.7],0.25,[8.16,13.085]) —
11.7,31.8],0.7, [13.085, 27.155]) —

PowerCosts_y1 =

([
([
([
([

By comparing the two piecewise linear functions in Figure [5.2] with the final piecewise
linear function sent to v; in Figure it can be seen that the final continuous
PowerCost message is created by using the minimum flowCO elements (i.e., the elements
with the smallest CO9 emissions) when two or more flowCO elements overlap the same
range of power flow. The following section describes the second phase of C-DYDOP

whereby power output values are propagated from the root node to the leaf nodes.

5.1.2 Phase 2: Value Propagation

Once the root node v; has received PowerCost messages from all of its children, it calcu-
lates how much power to output in order to satisfy all the loads within the network and
minimise COy emissions. It does this by solving the optimisation problem in Equation
subject to the flows at v; equaling zero:

ai+Bi+ > fi=0 (5.16)

cechi(v;)

This is a slightly simpler optimisation problem than when nodes merge PowerCost mes-
sages because the minimum flow to the parent node does not need to be calculated
since the root does not have a parent. The solution to Equation will produce an
optimal power output «; and an optimal flow value f.; for each of its children. As with
D-DYDOP, flow values are then sent to each of the root node’s children telling them
which of their flowCO elements resulted in the minimum COy emissions. The children

retrieve the correct flowCO element by matching the power flow value sent to them with
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the range of flow from the flowCO message. The OPCState which is referenced by each
child recipient’s corresponding flowCO element tells the child exactly how much power
to output. The child recipient can then send the power flow specified in the OPCState
to each of its corresponding children. Power flow values are propagated in this manner
to the leaf nodes, at which point each node in the network knows their optimum power
output that results in the minimum COs emissions for the entire network. It should
be noted that if there is no solution to Equation , no solution exists for the real
electricity distribution network (i.e., CPLEX would also report a solution does not exist)
which C-DYDOP reports.

Having introduced C-DYDOP, we now present the completeness and correctness of the

algorithm.

5.2 Completeness and Correctness

In what follows, we prove that C-DYDOP applied to acyclic networks is completdﬂ and

correct JZ]

Proposition 5.1. C-DYDOP is complete.

Proof. This proof follows on from Proposition[f.1] Leaf nodes, v;, construct their contin-
uous PowerCost messages by summarising the cost of producing power, whilst satisfying
each [ € L(v;), within the feasible range of power that will be flowing between v; and v;.
As continuous PowerCost messages are propagated up the tree, each v; also calculates
the cost of producing power within the feasible range of power flowing between v; and
v;. The root node receives continuous PowerCost messages which summarise the entire
cost of the network to produce power for all feasible flows of each distribution cable
within the network. Thus, at each node, all feasible ranges of flow are evaluated and
the root node chooses the optimal state which minimises COs. Hence, the algorithm is

complete. 0

Proposition 5.2. C-DYDOP is correct.

Proof. This proof follows on from Proposition and is exactly the same as Proposition
Any solution calculated by the algorithm will be valid as it has explicitly conformed
to the local and global constraints of the entire network (since constraint checks are

explicitly embedded in the algorithm). Hence, the algorithm is correct. O

Having presented the correctness and completeness of C-DYDOP, we now calculate the

computational complexity.

SComplete in terms of finding the optimal solution calculated by CPLEX using Equations (3.1)) —

--
Correct such that any solution returned by C-DYDOP is feasible given Equations (3.1]) — (3.4).
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5.3 Computational Complexity

Here, the worst-case complexity of C-DYDOP is calculated, with regard to the size

of the network, in order to show its suitability for large optimal dispatch problems

(Requirement [[TI)).

Proposition 5.3. The size of continuous PowerCost messages sent by C~-DYDOP grows

polynomially with the size of the network.

Proof. Consider a network of k nodes with each node containing one generator. Thus,
k = n, where n is the number of generators in the network. The worst case is when the
network is a line of connected nodes with a single leaf node v;; since the computation
must be completed sequentially. The size of v;’s continuous PowerCost message will
be 1 since it contains one flowCO element describing the cost of g; producing power
«; with a certain carbon intensity C'I;. When v;’s parent ¢; calculates its own con-
tinuous PowerCost message, in the worst case, its continuous PowerCost message will
contain two flowCO elements. Thus, as each consecutive node v; calculates its own
continuous PowerCost message, the size of their continuous PowerCost message will be
| PowerCost.—;| + 1 where ¢ is the child of v;. The total size of the message sent by

C-DYDOP will be:
n(n+1)

5.17
. (517
Therefore, the size of the messages C-DYDOP sends, in the worst case, grows polyno-
mially in O(n?). O

Having presented C-DYDOP and analysed its theoretical properties, the following sec-
tion provides an empirical evaluation against D-DYDOP and a highly optimised cen-

tralised approach based on MIP.

5.4 Empirical Evaluation

To highlight the improvements of C-DYDOP against D-DYDOP (presented in Chapter
4)), we conducted two experiments on the two large real electricity distribution network
topologies from Section (see Figure , and one experiment on large random acyclic
electricity distribution network topologiesﬁ We benchmark C-DYDOP and D-DYDOP
against a highly optimised centralised approach, which uses IBM’s ILOG CPLEX 12.2E|

CPLEX simply solves a large MIP without having to use message passing or decentralised

8We use random topologies in order to vary the branching factor of each node.

9Note, we do not benchmark C-DYDOP against max-sum as we have already benchmarked
D-DYDOP against max-sum (in Section and showed that D-DYDOP is more efficient at cal-
culating a solution to the optimal dispatch problem than max-sum (in terms of computational time and
number of message elements sent).
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control. Thus, CPLEX is able to calculate a solution in under a second. The three

experiments were conducted in order to test the following:

Experiment 1 Tests the effect of w for CPLEX, C-DYDOP, and D-DYDOP on the
two large real electricity distribution network topologies in Figure

Experiment 2 Tests the effect of the size of the network for CPLEX, C-DYDOP,
and D-DYDOP on the two large real electricity distribution network topologies in

Figure

Experiment 3 Tests the effect of the branching factor for CPLEX, C-DYDOP, and
D-DYDOP on large random acyclic electricity distribution network topologies.

The remainder of this section is organised as follows: Section describes the setup
of the electricity distribution networks. Section details experiment 1, Section [5.4.3
details experiment 2, and Section details experiment 3. Finally, Section draws

conclusions from all three experiments.

5.4.1 Experiment Setup

Each experiment was run in Java on a 2.67GHz Intel Xeon quadcore with 12GB of RAM.
During each iteration, nodes are assigned a uniformly distributed load value in the range
of [IkW, 5kW], and either a continuous or discrete generator with a uniformly distributed
carbon intensity. There is a 90% chance that the generator will be continuousm If the
generator is continuous, it is assigned a uniformly distributed minimum power output
in the range of [0kW, 2kW], and a uniformly distributed maximum power output in the
range of [3kW, 20kW]. If the generator is discrete, it is assigned a uniformly distributed
power output level 1 in the range of [3kW, 20kW] (i.e., each discrete generator can
either be off, or produce nkW). Each distribution cable in the network is assigned a
uniformly distributed thermal capacity in the range of [L0kW, 15kW]. The electricity
distribution network constraints are then discretised with the equations in (where
w is varied between 0.5kW and 3.0kW in experiment 1, and w = 1kW in experiments 2
and 3), in order to apply D-DYDOP. Having described the setup for each experiment,

the following section details the first experiement.

5.4.2 Experiment 1 : Impact of Varying Discretisation Unit

Experiment 1 was set up in order to test the effect of w for CPLEX, C-DYDOP, and
D-DYDOP. Using both the Indian and UK electricity distribution networks, the number

10This is an arbitrary number chosen so that the majority of the network contains continuous gener-
ators.
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FiGURE 5.3: Experiment 1 tests the effect of w for CPLEX, C-DYDOP, and
D-DYDOP. Using both electricity distribution network topologies in Figure the
number of additional nodes at each substation was fixed at 8 and arranged as a random
acyclic network with a maximum branching factor of 2. The discretisation unit was
varied from 0.5kW to 3.0kW in 0.5kW steps, each with 50 iterations. [5.3(a)| and [5.3(b)|
show how the discretisation unit w affects computation time for CPLEX, C-DYDOP,
and D-DYDOP on the Indian and UK electricity distribution networks respectively.
[5.3(c)| and |5.3(d)| show how the discretisation unit w affects the total number of mes-
sage elements sent for C-DYDOP and D-DYDOP on the Indian and UK electricity
distribution networks respectively. We use a logarithmic scale for the y-axis in all four
plots.

of additional nodes at each substation was fixed at 8 and arranged as a random acyclic
network with a maximum branching factor of 2]E| Thus, the total number of nodes in the
whole network was 596 and 203 for the Indian and UK electricity distribution networks
respectively. The discretisation unit w, used to discretise the electricity distribution
network constraints, was varied from 0.5kW to 3.0kW in 0.5kW steps, each with 50
iterationsE During each iteration, the nodes and distribution cables were initialised as

in Section £.4.11

"'We choose a branching factor of 2 so that D-DYDOP can calculate a solution within a reasonable
time frame.

12WWe found 50 iterations to be an adequate amount since further iterations did not improve the
statistical significance of the results.
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Figure shows four plots of the results from the first experiment (error bars showing

the standard error across the 50 iterations omitted due to being negligible). We use a

logarithmic scale for the y-axis in all four plots. Figures|[5.3(a) and [5.3(b)[show how the
computation time is affected by the discretisation unit w for CPLEX, C-DYDOP, and
D-DYDOP on the Indian and UK electricity distribution networks respectively. For
CPLEX and C-DYDOP, regardless of the discretisation unit, the computation times

remain constant. This is because both algorithms do not require the electricity distribu-

tion network constraints to be turned into a discrete problem before they can calculate

a solution. However, for D-DYDOP the time complexity is exponential in w.

Thus, it can be seen that even for small w, the computation time for D-DYDOP suffers
greatly (as discussed in Section. As the discretisation unit is increased, D-DYDOP
has to calculate fewer state utilities, resulting in decreased computation time. For ex-
ample, D-DYDOP computes a solution faster than C-DYDOP for a discretisation unit
greater than 1.2 when applied to the Indian electricity disitribution network (Figure
. C-DYDOP must solve a small optimisation problem for each node and merge
piecewise linear functions. This overhead means that in certain settings, a discrete algo-
rithm may be faster to use (see Section for a discussion of the settings when discrete
algorithms can be used). In comparison, for the UK electricity distribution network in
Figure D-DYDOP is able to compute a solution faster than C-DYDOP for a
discretisation unit greater than 1.3@ Moreover, C-DYDOP calculates a solution three

times faster than it does on the Indian electricity distribution network. This difference

between Figures [5.3(a)| and [5.3(b)| is because the section of UK electricity distribution

network is smaller, and contains a number of nodes with higher branching factors. Both
C-DYDOP and D-DYDOP are affected less by the branching factor of the network
(compared with max-sum, which is affected much more by the branching factor of the
network, see Section as opposed to the number of nodes in the network.

Figures |5.3(c) and [5.3(d)| show how the total number of message elements sent (i.e., the

sum of the total message sizes) is affected by the discretisation unit w for C-DYDOP and
D-DYDOP. Note that CPLEX cannot be compared to the other algorithms using the

discretisation unit because it does not use message passing to calculate a solution. As

13In terms of accuracy of the resulting solution calculated by a discrete algorithm, when a small
discretisation unit is used, D-DYDOP was able to calculate an optimal solution to the discretised
electricity distribution network that was very close to the optimal solution calculated by CPLEX and
C-DYDOP. For instance, when w = 0.5kW for the Indian and UK electricity distribution network
topologies, D-DYDOP on average calculated a solution within 0.1% of the optimal solution (in terms
of CO2 emissions), with an average RMSE error of 0.07kW for each generator power output. However,
as the discretisation unit is increased, the accuracy of the resulting solution calculated by D-DYDOP
decreases. For instance, when w = 3kW for the Indian electricity distribution network, D-DYDOP on
average calculated a solution which had CO2 emissions that were 47% higher than the optimal solution,
with an average RMSE error of 2.4kW for each generator power output. Similarly, when w = 3kW for
the UK electricity distribution network, D-DYDOP on average calculated a solution which had COq
emissions that were 27% higher than the optimal solution, with an average RMSE error of 2.4kW for each
generator power output. Thus, even though D-DYDOP can calculate a solution faster than C-DYDOP
for certain settings, the accuracy of the resulting solution must be taken into consideration.
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with Figures[5.3(a)land [5.3(b)} the total message size of C-DYDOP is not affected by the

discretisation unit. However, the total number of message elements D-DYDOP sends

grows exponentially with regard to w. For small w, D-DYDOP sends a large number of
message elements. As explained previously in this section, this is because D-DYDOP
must iterate through a large number of states in order to calculate the utility for each
resultant flow along a distribution cable, and consequently sends more message elements.
It can be seen that even for a very large discretisation unit, D-DYDOP sends twice as
many message elements compared to C-DYDOP. Thus, even though C-DYDOP sends
fewer message elements, there is clearly some overhead with regard to computation
from merging piecewise linear functions and solving an optimisation problem at each
node. However, this overhead is small and remains constant. Having presented the first

experiment, the following section details the second experiment.

5.4.3 Experiment 2 : Impact of Varying Network Size

Experiment 2 was set up to demonstrate how the size of the network affects CPLEX,
C-DYDOP, and D-DYDOP. Using both the Indian and UK electricity distribution
networks, the number of additional nodes at each substation was varied from 0 to 30
in steps of 5, each with 50 iterations. At 30 additional nodes per substation, the total
number of nodes in the network was 2026 and 687 for the Indian and UK distribution
networks respectively. During each iteration, the nodes and distribution cables are
initialised as in Section Figure shows four plots of the results from the second
experiment (error bars showing the standard error across the 50 iterations omitted due

to being negligible). We use a logarithmic scale for the y-axis in all four plots.

Figure [5.4(a)| and [5.4(b)| show how the computation time is affected by the number of

nodes at each substation (and consequently the total number of nodes in the network)
for CPLEX, C-DYDOP, and D-DYDOP, on the Indian and UK electricity distribu-
tion networks respectively. The time complexity of each algorithm is linear in the total
number of nodes in the network. CPLEX has an almost constant computation time of
100ms on average (for very large networks, the effects of the network size on CPLEX
would obviously be more apparent, but still linear). When comparing our two novel algo-
rithms, C-DYDOP is faster at computing a solution for a given network size as apposed
to D-DYDOP. For 2026 nodes in the Indian electricity distribution network, Figure
there is a reduction of computation time by a factor of 1.5 for C-DYDOP com-
pared with D-DYDOP. For 687 nodes in the UK electricity distribution network, Figure
there is a reduction of computation time by a factor of 2 for C-DYDOP com-
pared with D-DYDOP. This highlights the computational efficiency that C-DYDOP
has over D-DYDOP, which is due to being able to summarise a range of power flows by

a single function, instead of using discrete values.
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FiGUrRE 5.4: Experiment 2 tests how the size of the network affects CPLEX,
C-DYDOP, and D-DYDOP. Using both electricity distribution network topologies
in Figure the number of additional nodes at each substation was varied from 0
to 30 in steps of 5, each with 50 iterations. [5.4(a)| and |5.4(b)| show how the number
of nodes in the network affects the computation time for CPLEX, C-DYDOP, and
D-DYDOP on the Indian and UK electricity distribution networks respectively.
and show how the number of nodes in the network affects the total number of
message elements sent for C-DYDOP and D-DYDOP on the Indian and UK electricity
distribution networks respectively. We use a logarithmic scale for the y-axis in all four
plots.

Figures[5.4(c)|and [5.4(d)[show how the total number of message elements sent is affected
by the number of nodes at each substation for C-DYDOP and D-DYDOP on the Indian
and UK electricity distribution networks respectively. The total number of message
elements sent for C-DYDOP and D-DYDOP grows linearly with regard to the total

number of nodes in the network. C-DYDOP sends the smallest total number of message

elements followed by D-DYDOP. Having presented the second experiment, the following

section details the final experiment.
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FIGURE 5.5: Experiment 3 tests how the branching factor of the electricity distribution
network affects CPLEX, C-DYDOP, and D-DYDOP. Using random acyclic electricity
distribution network topologies with 200 nodes, the branching factor of the network was
varied from 1 to 4 with 50 iterations for each. shows how the branching factor
of the network affects the computation time for CPLEX, C-DYDOP, and D-DYDOP.
shows how the branching factor of the network affects the total number of message

elements sent for C-DYDOP, and D-DYDOP. We use a logarithmic scale for the y-axis
in both plots.

5.4.4 Experiment 3 : Impact of Varying Branching Factor

Finally, Experiment 3 was set up to demonstrate how the branching factor of the network
affects CPLEX, C-DYDOP, and D-DYDOP. Random acyclic electricity distribution
network topologies were used to test this aspect of the algorithms since a variation of
the branching factor was required. The number of nodes in the network was fixed at
200, and the branching factor of the network was varied from 1 to 4 with 50 iterations
for each. During each iteration, a random acyclic electricity distribution network was
generated with the nodes and distribution cables initialised as in Section Figure
shows two plots of the results from the third experiment (error bars showing the
standard error across the 50 iterations omitted due to being negligible). We use a
logarithmic scale for the y-axis in both plots. Figure shows how the computation
time is affected by the branching factor of the network for CPLEX, C-DYDOP, and
D-DYDOP. CPLEX and C-DYDOP have constant computation time with regard to
the branching factor of the network. As discussed in Section[f.4.4, CPLEX is not affected
by the branching factor because it does not use the structure of the network in order
to solve the optimal dispatch problem. Similarly, C-DYDOP is not affected because
each node chooses the best child messages to use given the constraints of its parent’s
distribution cable. Adding more children means that there are more message elements
to choose from, but does not necessarily mean that every message element is used.
Therefore, the additional children nodes have a negligible impact on the computation
required. On the contrary, D-DYDOP has an exponential time complexity with regard
to the branching factor of the network. This is because D-DYDOP must iterate through
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every possible combination of generator power outputs and message elements in order
to calculate a utility for each feasible power flow along a distribution cable. As the
branching factor increases, the number of possible combinations grows exponentially,

shown in Proposition [£.4]

Figure shows how the total number of message elements sent is affected by the
branching factor of the network for C-DYDOP and D-DYDOP. The total number
of message elements sent for C-DYDOP and D-DYDOP decreases exponentially in
the branching factor of the network. This is because as the number of children for
each node is increased, the height of the network (i.e., from leaf node to root node)
decreases meaning that fewer messages (and consequently fewer message elements) must
be sent in order to calculate a solution (see Sections and for how D-DYDOP
and C-DYDOP construct message elements respectively). The reasons why C-DYDOP
sends fewer message elements compared with D-DYDOP, have already been explained

in Section The following section discusses the results from all three experiments.

5.4.5 Discussion

Our results show that both D-DYDOP and C-DYDOP significantly outperform a naive
implementation of max-sum, for the optimal dispatch problem, in terms of total num-
ber of message elements sent and computation time, by pruning the search space ef-
ficiently. Moreover, it is clear that C-DYDOP is a significant improvement compared
to D-DYDOP and max—sumE Firstly, the computation time of C-DYDOP is not af-
fected by the discretisation of the network, whereas the computational complexity of
both D-DYDOP and max-sum is exponential in the discretisation unit w. Secondly, the
computation time of C-DYDOP is less affected by the total number of nodes in the net-
work compared with D-DYDOP or max-sum. Thirdly, the number of message elements
that C-DYDOP must send is much lower than D-DYDOP and max-sum regardless of
discretisation unit, total size of the network, or branching factor. Fourthly, the compu-
tation time of C-DYDOP is not affected by the branching factor of the network, whereas
the time complexity for both D-DYDOP and max-sum is exponential with regard to
the branching factor. Finally, we have shown that C-DYDOP can be applied to any real
electricity distribution network problem as it does not require the electricity distribution
network constraints to be discretised first (this is discussed in Section as well as the
justifications for when discrete algorithms can be used). Thus, C-DYDOP can flexibly
coordinate generators in acyclic networks and can readily be applied to a wider range
of network problems, compared to D-DYDOP and discrete max-sum. The following

section concludes this chapter.

1Since we showed that D-DYDOP outperformed max-sum in Section and we showed in Section
that C-DYDOP outperforms D-DYDOP, we can infer that C-DYDOP also outperforms max-sum.
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5.5 Conclusions

In this chapter, we have shown how D-DYDOP can be adapted to consider continu-
ous generator power outputs and perform faster than the discrete version. Thus, we
believe that it can be readily applied to a wider variety of network problems compared
with D-DYDOP. This is due to the decreased overhead when constructing continuous
PowerCost messages, since there are fewer flowCO elements to calculate, and because
C-DYDOP does not suffer from discretising the search space or from the branching factor
of the network. C-DYDOP is able to handle arbitrary generator and power flow values
without suffering from computational overheads. Thus, it is more readily applicable to

real electricity networks.

As discussed in Section [3.4] in order for a solution to be generated by D-DYDOP or
max-sum, the electricity distribution network constraints must be discretised. While
the process can be completed in a distributed and decentralised way, this is obviously
a disadvantage when compared with C-DYDOP, which does not require the electricity
distribution network constraints to be discretised. A further disadvantage is that unless
the appropriate discretisation unit is used (which is often very small resulting in an
increased amount of computation) the solution produced is not always guaranteed to be

applicable to the real distribution network.

However, there are a number of advantages for using D-DYDOP over C-DYDOP.
Firstly, for low branching networks, and when the appropriate discretisation unit is large,
D-DYDOP can outperform C-DYDOP in terms of computation time, as we have shown
in Section This is because C-DYDOP must merge piecewise linear functions and
solve many small optimisation problems for each node. This creates an overhead that in
certain settings is more computationally expensive than it takes D-DYDOP to exhaus-
tively search every possible combination of power outputs for each generator. Secondly,
if the electricity distribution network contains only discrete generators, then C-DYDOP

is not appropriate for finding a solution and D-DYDOP must be used instead.

The following chapter provides a detailed summary of this thesis, as well as points of

departure for future work in the area of optimal dispatch.
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Chapter 6

Conclusions and Future Work

This chapter gives a detailed summary of the work presented in this thesis and introduces

the future work in order to address all of the requirements in Section

6.1 Summary and Conclusions

This thesis focused on decentralised and distributed message passing algorithms, to
coordinate electricity generator power outputs, for a future smart grid. In particular, we
investigated how an increased amount of generation can be incorporated into distribution
networks without the need to install additional infrastructure by using ANM. This was
motivated against a background where numerous global governments have agreed to
reduce COy emissions, as discussed in Chapters [1I| and [2, and the increase in electricity
generators embedded in electricity distribution networks as a result. In Chapter [3| we
provided a new formalism of the optimal dispatch problem as a DCOP. We showed
how this DCOP can be decomposed as a factor graph and solved using algorithms based
on the GDL family, such as max-sum. We went on to show that max-sum applied
naively in this setting performs a large number of redundant computations. Therefore,
to address this issue, in Chapter [4] we presented a novel message passing algorithm, called
D-DYDOP, which outperforms max-sum by using techniques based on local consistency

to prune much of the search space.

The computational complexity of D-DYDOP, with regard to message size and number
of states it must process, was analytically calculated to be O(|V|) and O(MIehivil)
respectively. In order to demonstrate the computational efficiency of D-DYDOP, we
empirically evaluated it against both an optimal centralised approach, based on the
MIP solver CPLEX, and max-sum, on two real electricity distribution network topologies
using three experiments (see Section . Experiment 1 varied the discretisation unit,
Experiment 2 varied the size of the network, and Experiment 3 varied the branching

factor of the network.
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When varying the discretisation unit (Experiment 1), the time complexity for both
D-DYDOP and max-sum was exponential in w. Due to the redundant computation
that a naive implementation of max-sum performs, D-DYDOP outperformed max-sum
in terms of computation time and number of message elements sent. When varying
network size (Experiment 2), the time complexity for both D-DYDOP and max-sum,
was linear in the total number of nodes in the network, with max-sum exhibiting the
worst computational efficiency. In the worst case, for 2026 nodes in the Indian electricity
distribution network, there was a reduction of computation time by a factor of 10 for
D-DYDOP compared with max-sum. For 687 nodes in the UK electricity distribution
network there was a reduction of computation time by a factor of 65 for D-DYDOP
compared with max-sum. Finally, when varying the branching factor (Experiment 3)
the time complexity for both D-DYDOP and max-sum was exponential in the branch-
ing factor of the network. Again, max-sum performed significantly worse in terms of
computation time and number of message elements sent. For all three experiments, the

computation time of CPLEX was highly linear and almost constant.

As can be seen from the results in Section the computation time of both D-DYDOP
and max-sum suffers greatly from the size of the discretisation unit w, which is used to
discretise the electricity distribution network constraints, and the branching factor of
the network. Thus, to address these issues we presented an extension to D-DYDOP in
Chapter |5} called C-DYDOP, which uses continuous variables for the generator power
outputs and the distribution cable flows. C-DYDOP uses continuous piecewise linear
functions to represent continuous PowerCost messages enabling it to greatly reduce the
computation time necessary to calculate a solution to the optimal dispatch problem. In
order to demonstrate the computational efficiencies of C-DYDOP, we empirically eval-
uated D-DYDOP, C-DYDOP, and CPLEX using the same two electricity distribution
network topologies from Chapter 4 and the same three experiments (see Section :

When varying the discretisation unit (Experiment 1), for the Indian electricity distri-
bution network, D-DYDOP computed a solution faster than C-DYDOP for a discreti-
sation unit greater than 1.2. In comparison, for the UK electricity distribution network
D-DYDOP was able to compute a solution faster than C-DYDOP for a discretisation
unit greater than 1.3. However, in order for a discrete algorithm to produce accurate so-
lutions, the discretisation unit must be small (see Section [3.4]for a discussion). Moreover,
for small discretisation units, the computation time of D-DYDOP was much higher than
C-DYDOP. With regard to message elements sent, in the worst case, D-DYDOP sent
twice as many message elements compared to C-DYDOP. When varying the network
size (Experiment 2), C-DYDOP was faster at computing a solution for a given network
size as apposed to D-DYDOP. For 2026 nodes in the Indian electricity distribution
network there was a reduction of computation time by a factor of 1.5 for C-DYDOP
compared with D-DYDOP. For 687 nodes in the UK electricity distribution network

there was a reduction of computation time by a factor of 2 for C-DYDOP compared with
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D-DYDOP. Finally, when varying the branching factor (Experiment 3), C-DYDOP had
constant computation time with regard to the branching factor of the network, whereas
D-DYDOP had an exponential time complexity with regard to the branching factor of
the network. Again, for all three experiments, the computation time of CPLEX was

highly linear and almost constant.

The algorithms presented in Chapters and 5| have achieved a number of the re-
quirements from Section Requirement [[T has been achieved because the algorithms
coordinate power within the electricity distribution network such that COs emissions
are minimised. Our algorithms scale up to large networks containing thousands of nodes
achieving Requirement [T} Requirement [V] has been partially met since our algorithms
are able to handle generations with different output types. However, the intermittency

of generators (i.e., such as wind turbines) should be addressed in future work.

Requirement [[ has been met since the algorithms coordinate autonomously with minimal
human interaction. Furthermore, by using agent-based message passing algorithms with
a DCOP framework, Requirement [V] has been satisfied. Finally, Requirements [VI and
[VII] have been partially met. However, in terms of graceful degradation, we leave for
future work the non-trivial extension for D-DYDOP and C-DYDOP to handle commu-
nication networks with faulty channels (such that messages could fail to be sent between

nodes).

In order to apply the algorithms presented in Chapters[3] [, and [5|to real world systems,
a communication network that is constructed on top of existing electricity distribution
networks would be required. This communication network would not require a high
bandwidth, but the speed and accuracy (in terms of error free message sending) would
have to be highm Each node (consisting of a combination of generators, loads, and a
substation) would have to contain a computation device and be able to monitor and
control each connected generator and load with limited or no human interaction. Each
node would communicate with its connected neighbouring nodes periodically to ensure
that the network is configured optimally with regard to certain CostsE| As discussed
in Section decentralising and distributing control in electricity networks has a
number of advantages. For instance a distributed system that does not rely on a central

authority for control is much more robust because there is no single point of failureﬂ In

1Coupled with this high accuracy of message sending would be the need to handle potentially error
prone messages in our algorithms, see the following section on future work.

2Practically, depending on where this technology is deployed, multiple objective functions may be
necessary. For instance, in an electricity distribution network of generators owned by different entities,
where the power generated creates revenue for the generator owner, trying to reduce CO2 emissions
would require some owners to reduce their output, and hence reduce their revenue. Therefore, in this
setting there must be a balance between reducing CO2 emissions and revenue earned, as well as providing
incentives for owners to allow the power output of their generators to be decreased if the CO2 emissions
of the electricity distribution network needs to be reduced.

3For a decentralised and distributed system, if the computation device was to fail at a node, the
required computation could be outsourced to neighbouring nodes. However, if the computation device
of a centralised system was to fail, the generators would be unable to calculate the optimum output with
regard to their neighbours, which could lead to overloaded distribution cables.
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terms of contributions to the DCOP research area, this thesis proves that DCOPs can
be applied to the coordination of generators in electricity distribution networks. Our
approaches could be generalised to other settings which exhibit similar global and local

constraintsﬂ

Therefore, with regard to decentralising and distributing electricity network control, our
algorithms set the benchmark for the deployment of agent-based coordination algorithms
to solve the optimal dispatch problem in electricity distribution networks. Moreover, our
work highlights the challenge of constructing a DCOP from an electricity distribution
network (i.e., ensuring that an acyclic electricity distribution network remains acyclic
when transformed into a DCOP). This is challenging because of the coupled nature
of electricity networks. Therefore, future DCOP decompositions must ensure that they

address this challenge directly.

In terms of implementing each algorithm, we ran into a number of issues with regard to
rounding error when calculating a solution using max-sum, D-DYDOP, and C-DYDOP.
Rounding error was particularly an issue when merging messages because a small round-
ing error for a particular variable state can mean the difference between choosing a
feasible configuration for the generators and choosing an infeasible configuration. The
problem was that we had to round merged message values (to at least 10 decimal places)
in order to evaluate them against each other; since computers introduce small rounding
errors when storing floating point numbers. As these rounding errors were propagated
around the network, eventually it would cause a wrong variable state to be chosen. In
order to solve this issue, we used whole number values for the electricity distribution
network model. It should be noted that this problem is not due to the algorithms,
but is a limitation of how floating point numbers are stored and used in computers.
Moreover, this phenomenon happened rarely and only for large electricity distribution
networks (typically over 1000 nodes). The following section provides points of departure

for future work.

6.2 Future Work

In terms of future work, we would like to consider a number of possible extensions.
Firstly, each algorithm presented handles a particular instance of an electricity distri-
bution network (i.e., a one-shot optimisation problem). Therefore, it is a non-trivial
extension to factor time into our modelﬂ This would allow our algorithms to continu-

ously manage a real world electricity distribution network. Moreover, time would allow

4For example, our algorithms could be applied to a factory supply chain setting where it is imperative
that the total amount of supply must equal the total amount of demand (in order to minimise wastage for
instance), and the goal is to decide the quantity of each item whilst minimising the monetary expenditure
of the entire system.

5We would extend our model to incorporate consumption that varies over time periods, instead of
the static consumption in our current model.
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us to model the latency| and intermittency’| of the generators. As a result, the optimal
dispatch problem becomes a much more complex time dependent problem. Coordinat-
ing electricity generators in an electricity distribution network over time involves taking
into account the latency of each generator, the resources available (i.e., wind and so-
lar), and the predicted loads across the day. Possible solutions may involve running
the coordination algorithm every thirty minutes, giving each generator a range of power
that it can output between and still be optimal (so that small fluctuations of power
consumption and production can be satisfied). If the consumption changes significantly
(as determined by a variation in the frequency), the coordination algorithm can be run

again to calculate new optimal power output ranges for each generator.

Secondly, in this thesis we have considered acyclic electricity distribution networks (in-
cluding electricity distribution networks that have been configured into acyclic topolo-
gies). However, electricity distribution networks could contain cycles during operation.
Cyclic electricity networks present a number of additional challenges because of the re-
sulting tightly coupled optimisation problem. This makes it non-trivial to: (i) split into
independent subproblems, (ii) know exactly how much power will be travelling along
each distribution cable, (iii) calculate the utility of a certain amount of power travelling

along a certain distribution cable.

Initially, we decomposed a cyclic electricity distribution network into a DCOP and ap-
plied max-sum; since there exists extensive empirical evidence of its effectiveness on
cyclic graphs (Aji et al., 1998} |Weiss|, 2000; Farinelli et al.l [2008; Vinyals et al., 2010;
Winsper and Chli, 2012)). However, we found that due to the cycles in the electricity
distribution network, each message sent from function to distribution cable flow variable,
or generator power output variable, contained a number of message elements with the
same optimal utility value. In order to resolve the deadlock between variable states re-
quired an additional value propagation phase which did not always result in the correct
answer. Therefore, using the techniques that we apply to acyclic electricity distribu-
tion networks (either with max-sum, D-DYDOP, or C-DYDOP) cannot be applied to
cyclic networks in the same way. In order to use distributed techniques with cyclic elec-
tricity networks, the duality of optimisation problems using Lagrangian techniques and
the APP (Cohen, 1980) must be exploited. The advantage of both these techniques is
that they allow the decomposition of a coupled problem into subproblems which can be
solved independently, suggesting a distributed agent-based approach would be applica-
ble (Kim and Baldick}, [1997; Bakirtzis and Biskas, 2003; Granada et al., 2008; Kraning
et al., 2013). Moreover, additional parameters and constraints must be considered when
calculating power flow within a cyclic network (such as voltage phase angle at nodes
and susceptance of distribution cables) which we excluded from our original electricity

network model in Section 311

5The time it takes a generator to change its power output.
"For example, wind turbines or photovoltaic panels are intermittent because they depend on inter-
mittent resources.
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Finally, another non-trivial extension would be to implement and thoroughly test robust
versions of D-DYDOP and C-DYDOP to incorporate message failures and situations
when whole nodes in the electricity distribution network could fail. To achieve this
would involve a number of non-trivial additions. Firstly, a message passing framework
must be constructed which delivers the messages to each agentﬁ Secondly, coupled with
this must be a model of each message channel along with failure rates. Finally, robust-
ness to message failure and corruption would need to be built into both D-DYDOP
and C-DYDOP in order for each algorithm to handle the uncertain nature of actual
communication networks (as discussed in the previous section with regard to an accu-
rate communication network). The intricate details of communication networks, whilst
interesting, is beyond the scope of this thesis as it would require considerable changes

to our model and algorithms.

8Currently messages are received instantly, there is no latency associated with a real message delivery.
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