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IN VITRO ANALYSIS OF POTENTIAL ANTICANCER EFFECTS ASSOCIATED 

WITH WATERCRESS  
 

by Breeze Erin Cavell 
 
Epidemiological studies indicate that there is an inverse relationship between 
consumption of cruciferous vegetables and risk of cancer. As a result there is much 
interest in understanding the anticancer potential not only of cruciferous vegetables 
themselves but also of the key phytochemicals contained in them. This project focuses 
on the potential anticancer properties of watercress, a cruciferous vegetable which is 
cultivated around the world and eaten raw as a salad vegetable as well as in cooked 
dishes. Watercress is the most abundant source of gluconasturtiin, a precursor to the 
phytochemical phenethyl isothiocyanate (PEITC), and is also a rich source of indole-3-
carbinol (I3C) and quercetin. 

This project addressed the hypothesis that the in vitro anticancer activity of 
watercress can be enhanced by altering the growth environment. To investigate this it 
was necessary to develop assays that can be used to assess the in vitro anticancer 
activity of watercress-derived compounds, to explore the mechanisms by which PEITC 
exhibits its anticancer effects, and to determine potential effects of altered growth 
conditions on in vitro anticancer properties. 

The activity of watercress-derived phytochemicals was analysed in a series of 
in vitro assays. Based on these results, inhibition of MCF7 cell growth and activation of 
Nrf2-dependent transcription were selected as potential assays for subsequent 
analysis of watercress extracts. Mechanistic studies demonstrated that PEITC inhibited 
the transcriptional activity of hypoxia inducible factor (HIF), a key positive regulator of 
angiogenesis in malignant cells. Inhibition of HIF function was associated with 
inhibition of mammalian target of rapamycin complex 1 (mTORC1) activity and 
decreased HIF1α mRNA translation, and was dependent on the presence of the 
mTORC1 regulator, tuberous sclerosis complex 2 (TSC2). I also demonstrated that, in 
addition to effects on HIF1α mRNA translation, PEITC inhibited general protein 
synthesis and modulated two other key regulators of translation, eukaryotic initiation 
factor 2 (eIF2) and eukaryotic elongation factor 2 (eEF2). In proof-of-principle 
experiments, I demonstrated that growth inhibition and Nrf2 activation assays were 
suitable for the analysis of crude watercress extracts and that a natural variety of “red” 
watercress displayed approximately 10-fold more potent in vitro anticancer activity than 
standard, commercial “green” watercress. However, in a series of field trials, 
modulation of time of harvest, water availability or sulfur fertilisation did not alter the in 
vitro effects of watercress extracts in growth inhibition/Nrf2 activation assays. 

In conclusion, this study suggests that, rather than altering environmental 
factors, selective breeding might be a better approach to increase the in vitro 
anticancer activity of watercress. Moreover, my findings have increased our 
understanding of the mechanisms underlying the anticancer activity of PEITC, 
uncovering a novel role for PEITC in inhibiting HIF1α and total protein synthesis, and 
identifying several key regulators of these processes that are modulated by PEITC. 
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1.1 Overview of introduction 
 

The work described in this thesis was performed as part of an Industrial CASE 

studentship with Vitacress Salad Leaves Ltd, a major grower of watercress in the UK.  

Although the potential health benefits of consumption of a diet rich in watercress and 

other cruciferous vegetables remain unproven, extensive data demonstrate that 

aqueous extracts of watercress, as well as its key phytochemical constituents, inhibit 

the growth of human cancer cells in vitro and in experimental animals. The primary 

goal of the project was to investigate molecular mechanisms by which watercress 

extracts/phytochemicals inhibited cancer cell growth in vitro. The secondary goal was 

to use this knowledge to investigate potential enhancement of the in vitro anticancer 

effects of watercress through manipulation of the crop. The project focused on breast 

cancer cell lines as a well validated model to investigate effects on human cancer 

cells. 

 

In this introduction, an overview of the cancer process is provided before the 

epidemiology and characterisation of human breast cancer is described. Some 

molecules and pathways that contribute to breast cancer development and 

progression, and are potential targets for modulation by watercress compounds, 

including histone deacetylases (HDACs), hypoxia inducible factor (HIF), mammalian 

target of rapamycin (mTOR) and the phosphatidylinositol 3-kinase (PI3K)/Akt and 

mitogen activated protein kinase (MAPK) pathways, are then described. A background 

on the cultivation of watercress in the UK, and the potential strategies that could be 

used to manipulate its potential anticancer properties are also described. Finally, the 

key phytochemicals of watercress and their known molecular effects, focusing on 

phenethyl isothiocyanate (PEITC) are detailed. 

    

1.2 Molecular genetics of cancer 
 

Cancer results from genetic and/or epigenetic changes within a cell. Oncogenic 

mutations occur in two different types of genes, both of which are required for normal 

cell homeostasis. Gain-of-function mutations in oncogenes act to promote cell division 

and survival, whereas loss-of-function mutations in tumour suppressor genes 

inactivate negative regulatory proteins which normally prevent inappropriate cell 

division and survival. Tumourigenesis is a multistep process whereby normal cells 

accumulate multiple mutations to acquire a fully malignant phenotype. This is 
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consistent with the idea that, whilst cancer incidence is high within human populations, 

the frequency of conversion to a fully malignant phenotype is extremely low for any 

given cell within an individual. It has been proposed that there are six essential 

hallmarks that need to be acquired by all cancers, although these may be achieved 

through different mechanistic strategies; independence from growth signals, 

insensitivity to growth-inhibitory signals, resistance to apoptosis, limitless replicative 

potential, angiogenesis, and finally tissue invasion and metastasis (Hanahan and 

Weinberg, 2000). Several other hallmarks have since emerged, notably the ability to 

evade the immune system and dysregulate metabolism. In addition, genomic instability 

and inflammation have been highlighted as enabling characteristics which promote 

tumour progression (Hanahan and Weinberg, 2011).    

 

1.3 Breast cancer 
 

1.3.1 Epidemiology 
 

In 2008, 48,034 new cases of breast cancer were diagnosed in the UK, with >99% of 

these being in women (Cancer Research UK, accessed February 2011). Breast cancer 

is the second most common cause of death from cancer in women following lung 

cancer. The highest rates of breast cancer occur in the developed world, particularly in 

Northern and Western Europe, as well as Australia and North America, whereas the 

lowest rates are found in Asia and parts of Africa.  

 

In the UK the lifetime risk for women of developing breast cancer is 1 in 8. The onset of 

breast cancer is strongly associated with age and more than 80% of breast cancer 

cases occur in women over the age of 50, with the highest number of cases diagnosed 

in the 50-69 age range. Approximately 10-15% of patients with breast cancer develop 

distant metastasis within 3 years of detection of the primary tumour (Weigelt et al., 

2005). Despite a continued increase in the incidence of breast cancer, the number of 

women dying from breast cancer has steadily declined since 1989. This is likely due to 

better drug treatments such as tamoxifen, which has been widely used since 1992, 

and the introduction of the national screening program in the UK in 1988. Current 5-

year survival rates for women with breast cancer in the UK are approximately 80% 

(Cancer Research UK, accessed February 2011).  
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1.3.2 Familial genetic risk 
 

A predisposition to breast cancer has been identified in people that inherit mutations in 

the high-risk BRCA1, BRCA2 and TP53 genes (Lalloo et al., 2006). However, these 

genes account for only a minority, approximately 5%, of all breast cancers in the 

population (Key et al., 2001). Most cases of breast cancers are therefore sporadic and 

more the result of environmental and lifestyle factors. 

 

1.3.3 Subtypes 
 

Breast cancer is a complex and highly heterogeneous disease and as a result there 

are many different subtypes. The majority of all invasive breast cancers are 

adenocarcinomas and tend to be either ductal (85%) or lobular (15%) (see Figure 1.1 

for structure of the human breast), and both can be further divided according to 

histological appearance (Table 1.1). In addition to this there are also two types of non-

invasive in situ breast cancers, Ductal Carcinoma In Situ (DCIS) and Lobular 

Carcinoma In Situ (LCIS). LCIS is relatively rare and is believed to be a high risk factor 

for invasive breast cancer rather than a direct precursor. On the other hand DCIS is 

the most common type of non-invasive breast cancer and accounts for 20% of all 

breast cancers detected (Page et al., 1995).  

 

Various markers have also been identified to further characterise breast cancer with an 

aim to predict prognosis and response to therapy. The most established biomarkers 

are oestrogen receptor α (ERα) status, progesterone receptor (PR) status and human 

epidermal growth factor receptor 2 (HER2) expression. Breast cancers that are ERα- 

and PR-positive are generally associated with a good prognosis and are more likely to 

respond to endocrine therapy. Alternatively HER2 overexpression is indicative of a 

poor clinical outcome in patients with axillary-lymph-node metastasis. HER2 

expression is particularly important in assessing the potential response to trastuzumab 

(Herceptin), an antibody directly targeted to HER2 (Weigelt et al., 2005). 

 

Gene expression arrays have expanded upon characterisation of breast cancer and 

identified various subtypes of breast cancer based on the presence of several 

prognostic markers together. ERα negative tumours can be further divided into basal-

like group which exhibit high expression of basal epithelial markers such as basal 

keratins 5/6, HER2 positive group which overexpresses HER2, and  
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Figure 1.1: Structure of the normal adult human breast.  
The ducts connect the milk-producing lobules to the nipple. The lobules and ducts are 
surrounded by fatty connective tissue and ligaments (Adams, 2008).  
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Table 1.1: Histopathological subtypes of invasive breast cancer, frequency of 
occurrence and 10-year survival rates.  
Information from Weigelt et al. (2005). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Histopathological type of invasive breast 
cancer 

Frequency 10-year survival rate 

Invasive ductal carcinoma of no special type 50-80% 35-50% 

Invasive lobular carcinoma 5-15% 35-50% 

Mixed type, lobular and ductal features 4-5% 35-50% 

Tubular/invasive cribiform carcinoma 1-6% 90-100% 

Mucinous carcinoma <5% 80-100% 

Medullary carcinoma 1-7% 50-90% 

Invasive papillary carcinoma <1-2% 60% 

Invasive micropapillary carcinoma <3% Unknown 

Metaplastic carcinoma <5% Unknown 

Adenoid cystic carcinoma 0.1% Unknown 

Invasive aprocrine carcinoma 0.3-4% Unknown 

Neuroendocrine carcinoma 2-5% Unknown 

Secretory carcinoma 0.01-0.15% Unknown 

Lipid-rich carcinoma <1-6% Unknown 

Acinic-cell carcinoma 7 cases Unknown 

Glycogen-rich, clear-cell carcinoma 1-3% Unknown 

Sebaceous carcinoma 4 cases Unknown 
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normal breast like group which resemble the normal breast, expressing genes of 

adipose-cell and other non-epithelial-cell origin (Perou et al., 2000). Nearly all basal-

like breast cancers are triple-negative in that they are negative for both ERα and PR, 

and do not overexpress HER2. This type of breast cancer has been reported to be 

particularly aggressive and less responsive to treatment resulting in poor prognosis 

(Dent et al., 2007). Perou et al. (2000) classified all ERα positive tumours in a luminal-

type group as they all overexpressed breast luminal cell markers, however, this group 

has since been divided into luminal A which overexpress HER2 and luminal B which 

do not (Sorlie et al., 2003). 

 

1.3.4 Oestrogen receptor 
 

Oestrogen receptor α (ERα) positive breast cancer is seen in a third of patients  under 

50, and this rises to approximately 80% in women over 50 (Clarke et al., 1998 and see 

Table 1.2). ERs are transcription factors which mediate the response to the hormone 

oestrogen. In humans there are two ER subtypes, ERα and ERβ, which exhibit 

different expression patterns in specific tissues. Both receptors share a high level of 

homology and belong to the nuclear hormone receptor superfamily. Although ERα and 

ERβ bind to oestrogen with equal affinity, other ligands preferentially bind to one or the 

other (Enmark and Gustafsson, 1999). In the context of breast cancer ERα is thought 

to be the most important and it is the status of this subtype that is assessed in clinical 

practice (Badve and Nakshatri, 2009). However, there is increasing interest in the 

potential clinical significance of ERβ. Homna et al. (2008) found ERβ1-positive breast 

cancers treated with adjuvant tamoxifen were associated with significantly better 

survival independent of ERα expression. This is of particular interest when considering 

triple-negative breast cancer (negative for ERα, PR, and HER2), that might still be 

positive for ERβ.  

 

     

ERα+ve/PR+ve ERα-ve/PR-ve ERα+ve/PR-ve ERα-ve/PR+ve 

54.8% 22.1% 19.8% 3.2% 

Table 1.2: Frequency of progesterone and oestrogen receptor α phenotypes in 
breast cancer.  
Information from Rhodes et al. (2000). 
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Oestrogen is a lipophilic steroid and able to diffuse through the phospholipid plasma 

membrane to the cytoplasm where it can bind to intracellular ERα or ERβ. The binding 

of oestrogen to these receptors induces phosphorylation, dissociation from chaperones 

such as heat shock protein 90 (Hsp90), and a change in protein conformation, 

ultimately allowing the ERs to dimerise and recruit co-activators to enhance 

transcription. The ligand bound receptor complex activates transcription either through 

direct binding to ERE (oestrogen response elements) in the promoter region of ER-

dependent genes or through interactions with other transcription factors such as SP1 

(Salvatori et al., 2003). It has also been reported that ERs at the cell membrane can 

mediate non-genomic effects of oestrogen, termed membrane-initiated steroid 

signalling (MISS), which results in the activation of a variety of cell signalling cascades 

such as the MAPK pathway (discussed later) (Song et al., 2002) .   

 

In women oestrogen is primarily produced in the ovaries and is responsible for 

controlling sexual development. One role of oestrogen is to promote the growth of 

breasts by stimulating cell division. ER positive breast cancers are dependent on 

oestrogen to grow and as a result this pathway is an important target for therapeutic 

therapy (Anderson, 2002). 

 

1.3.4.1 Tamoxifen 
 

Tamoxifen is the most widely used treatment of ERα-positive breast cancer, and when 

given as adjuvant therapy in early stage breast cancer it has been shown to improve 

survival rates (Clarke et al., 1998). Tamoxifen is a selective oestrogen receptor 

modulator (SERM) in that it acts as an antagonist in breast tissue, but partial-agonist in 

the uterus and bone. Through direct binding with ERs in breast tissue tamoxifen 

induces a conformational change which, in contrast to oestrogen, favours recruitment 

of co-repressors to the ER, inhibiting transcriptional activity (Shou et al., 2004).  

 

1.3.4.2 Aromatase inhibitors 
 

A second class of drugs, aromatase inhibitors (AIs), prevent the synthesis of oestrogen 

by inhibiting the enzyme aromatase that catalyses the conversion of androgens to 

oestrogens. This therapy is only used in postmenopausal women whose main source 

of oestrogen comes from converted androgens in the periphery tissues, not the 

ovaries. Examples of AIs include anastrozole, letrozole, and exemestane, and they 
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tend to be used in preference to tamoxifen in postmenopausal women with ERα 

positive breast cancer due to better efficacy and less adverse effects (Mokbel, 2002).  

 

1.3.5 Human epidermal growth factor receptor 2 
 

Aberrant expression of epidermal growth factor (EGF) receptors has been linked to 

many cancers. In particular, human epidermal growth factor receptor 2 (HER2; also 

known as HER2/neu and ErbB2) gene amplification or protein overexpression is found 

in 20-30% of human breast cancers and is indicative of poor prognosis (Slamon et al., 

1987; Slamon et al., 1989). HER2 along with HER1 (EGFR, ErbB2), HER3 (ErbB3), 

and HER4 (ErbB4) form the human epidermal growth factor receptor (HER) family of 

tyrosine kinase receptors. Activation of these receptors by ligands such as EGF 

causes homo- or heterodimerisation and subsequent phosphorylation. This initiates a 

signal cascade through activation of both the PI3K/Akt and MAPK pathways 

(discussed later) that ultimately results in altered gene expression, with biological 

responses ranging from proliferation to migration (Bazley and Gullick, 2005). No ligand 

has yet been identified to bind HER2 directly, although the receptor has been shown to 

act as the preferred heterodimerisation partner to all other ligand-bound members of 

the HER family (Graus-Porta et al., 1997). It seems HER2 overexpression causes 

transformation of malignant breast cancer cells by amplifying the signals of other 

receptors, with Akt phosphorylation being shown in HER1 and HER2 overexpressing 

cells even in the absence of ligands (Longva et al., 2005). 

 

1.3.5.1 Herceptin 
 

The humanised monoclonal antibody Trastuzumab (more commonly known as 

Herceptin) is used as a treatment for patients with breast cancer that overexpress 

HER2. Herceptin is targeted to the extracellular domain of HER2 with treatment being 

shown to induce regression of HER2 overexpressing breast cancers (Vogel et al., 

2002). Although the mechanism is not fully understood it is thought to involve inhibition 

of Akt phosphorylation, a target of the PI3K pathway activated by HER2 that regulates 

many processes including cell proliferation, apoptosis, and glycogen metabolism 

(Longva et al., 2005; Yakes et al., 2002). In particular, Herceptin treated cells have 

been shown to arrest in the G1 phase of the cell cycle, believed to be the result of Akt 

inhibition stabilising the cyclin-dependent kinase 2 (CDK2) inhibitor p27 (Le et al., 

2005; Yakes et al., 2002).  
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1.4 Key molecular pathways in breast cancer 
 

1.4.1 Hypoxia inducible factor pathway 
 

Tumours are only able to grow to approximately 1-2 mm2 in size before they outgrow 

the existing vasculature and lack of oxygen and nutrients become a limiting factor. 

Therefore, in order for solid tumours to progress they must adapt to hypoxic conditions, 

or increase vascularisation, or both. Hypoxia inducible factors (HIFs) are transcription 

factors that are critical for this adaptation as they increase expression of genes that 

enable cells to survive in hypoxic conditions and promote angiogenesis (the growth of 

new blood vessels), such as glucose transporter 1 (GLUT-1) and vascular endothelial 

growth factor-A (VEGF-A) (Carmeliet and Jain, 2000).  

 

HIFs are heterodimeric complexes composed of an α-subunit and a β-subunit and are 

members of the basic helix-loop-helix (bHLH)-PER-ARNT-Sim (PAS) family of 

transcription factors. Both subunits are constitutively expressed. However, while HIF1β 

is maintained at relatively constant levels, the HIF1α protein has a very short half life 

(T1/2 ∼ 5 min) in normoxia, due to oxygen-dependent proteolysis (Figure 1.2). In an 

oxygen rich environment, proline residues 402 and 577 of HIF1α are hydroxylated by 

prolyl hydroxylase domain-containing (PHD) proteins. This hydroxylation triggers 

association with the von Hippel-Lindau tumour suppressor protein (pVHL), a member 

of the E3 ubiquitination complex, which subsequently ubiquitinates HIF1α and targets it 

for degradation by the 26S proteasome. The significance of this tumour suppressor 

protein and importance of normal HIF regulation is evident in individuals who inherit a 

defective VHL allele. VHL disease is characterised by the presence of hypervascular 

tumours in multiple organs, although kidney cancer is the primary cause of death (Ohh, 

2006). The PHD proteins, which contain iron, require oxygen as a co-factor for activity. 

In hypoxia when there is a low availability of oxygen the activity of the prolyl 

hydroxylases is inhibited, HIF1α is no longer targeted for ubiquitination and is 

stabilised. HIF1α is translocated to the nucleus where it dimerises with HIF1β. The 

transcriptionally active HIF complex binds to hypoxic response elements (HRE) in the 

promoter region of hypoxia regulated genes such as those involved in angiogenesis 

(VEGF-A) and pH regulation (carbonic anhydrase IX; CAIX) (Ke and Costa, 2006; Lee 

et al., 2004).  
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Figure 1.2: Oxygen-dependent regulation of hypoxia inducible factor 1α.   
In normoxia where there is an abundance of oxygen (O2) HIF1α is hydroxylated by 
proyl hydroxylases (PHDs). This triggers association with von Hippel-Lindau tumour 
suppressor protein (pVHL) which acts to polyubiquitinate HIF1α and subsequently 
targets it for degradation by the 26S proteasome. However, in hypoxia PHDs are 
unable to hydroxylate HIF1α. Consequently it is no longer targeted for degradation and 
is free to translocate to the nucleus. In the nucleus HIF1α forms heterodimers with 
HIF1β and the active transcription factor complex can then bind to hypoxia response 
elements (HRE) in the promoter region of target genes to initiate transcription. BNIP3 
(Bcl2/adenovirus E1B 19kDa interacting protein 3), CAIX (carbonic anhydrase IX), 
GLUT-1 (glucose transporter 1), VEGF-A (vascular endothelial growth factor A); U 
(ubiquitin).  
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While only one β-subunit has been identified (HIF1β, also known as aryl hydrocarbon 

nuclear translocator; ARNT), three α-subunits have been identified; HIF1α, HIF2α (also 

termed endothelial PAS protein; EPAS1/HIF-like factor; HRF/HIF-related factor; 

HRF/member of PAS superfamily 2; MOP2) and HIF3α. HIF1α and HIF2α are 

implicated in the induction of hypoxia responsive genes. HIF1α is ubiquitously 

expressed whereas HIF2α has been found to be predominantly expressed in the lung, 

endothelium and carotid body (Ke and Costa, 2006; Wiesener et al., 2003). Little is 

known about HIF3α but it is known to act as a dominant-negative regulator of HIF1 

(Makino et al., 2002).  

 

Due to the importance of hypoxia adaption in the progression of tumour development, 

HIF1α and HIF2α have been found to be overexpressed in a variety of cancers, 

including breast cancer (Zhong et al., 1999), and are often associated with resistance 

to cancer therapies (Teicher, 1994) 

 

1.4.2 Histone deacetylases  
 

DNA is not free within the nucleus but is present in the form of chromatin, where 

sections of DNA are wrapped around nucleosomes. These nucleosomes are 

composed of two molecules each of the core histones, H2A, H2B, H3, and H4 that 

initially form two heterodimers, H2A-H2B and H3-H4, which then combine to produce 

an octamer barrel structure that the DNA wraps around twice. The fifth class of 

histone, H1, is the largest with a molecular weight of 23-kDa, and is believed to link the 

nucleosomes together. In total 200bp of DNA are associated with each nucleosome, 

with approximately 146bp making up two turns of the DNA around the histone core, 

with the remaining DNA acting as a linker, connecting the nucleosomes. All the histone 

proteins exhibit a net positive charge, as approximately 20-30% of their amino acid 

sequence comprises of the basic amino acids arginine and lysine. This characteristic 

enables the histones to have a strong charge attraction to the negatively charged 

phosphate groups in the backbone of DNA. This not only results in the DNA being 

tightly associated with nucleosomes, but by neutralising the negative charge on DNA 

the histones also facilitate DNA folding (Geiman and Robertson, 2002; Hames, 2000; 

Latchman, 2005). 

 

How tightly chromatin is organised correlates with the extent of transcriptional activity 

in that region of the genome as a result of changes to the accessibility of 
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transcriptional machinery to the DNA. Therefore tightly packaged chromatin, 

heterochromatin, is associated with transcriptional repression, and loosely packaged 

chromatin, euchromatin, is indicative of transcriptional activity. This more relaxed state 

of chromatin is the result of modifications to either the DNA or histones that decrease 

the ionic bond between the negatively charged DNA and the positively charged 

histones (Latchman, 2005).  

 

There are various forms of histone modification that can alter transcriptional activity in 

different ways and they predominantly occur on the amino tails of the histones that 

extend out from the nucleosome, typically the amino-terminal tails of the core histones 

H3 and H4. Methylation, phosphorylation and ubiquitination, are all known 

modifications that alter transcriptional activity, but perhaps the most characterised form 

is acetylation (Latchman, 2005). Patterns of acetylation are determined by the 

opposing activities of histone acetyltransferases (HATs) and histone deacetylases 

(HDACs). HATs transfer an acetyl group to lysines present on the  

amino-terminal tails of histones, neutralising the positively charged histones and thus 

resulting in a decreased affinity of the nucleosomes to the DNA (Figure 1.3). As a 

result acetylation of histones H3 and H4 correlates with transcriptional activity with 

acetylation positions including K9, K14, K18, and K27 on histone H3, and K5, K8, K12, 

and K16 on histone H4 (Salozhin et al., 2005). Conversely HDACs remove the acetyl 

group, restoring the ionic interaction between the histones and the DNA promoting 

heterochromatinisation. 

 

Aberrant histone acetylation is found in many cancers and results in irregular gene 

expression patterns. As a result molecules that are able to inhibit HDACs are providing 

a promising new way to treat cancer (Ropero and Esteller, 2007).  

 

1.4.3 PI3K/Akt pathway 
 
As already touched upon, the phosphatidylinositol (PI3K)/Akt pathway lies downstream 

of HER2 signalling. However, PI3K can also be activated by other receptor tyrosine 

kinases (RTKs) as well as G protein-coupled receptors (GPCR) in response to a broad 

range of stimuli including growth factors and hormones. PI3K catalyses the addition of 

a phosphate group to phosphatidylinositol (4,5)-bisphosphate (PIP2) giving rise to 

phosphatidylinositol (3,4,5)-trisphosphate (PIP3).  PIP3 is required to recruit pleckstrin 

homology (PH) domain-containing proteins, such as Akt and phosphoinositide  
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Figure 1.3: Balance between HDACs and HATs in chromatin modelling.  
Histone acetyl transferases (HATs) transfer acetyl groups (ac) to lysines on the tails of 
histones in the nucleosome, decreasing the ionic bond between DNA and the histones. 
This results in more loosely packaged chromatin that is accessible to transcriptional 
machinery. Conversely histone deacetylases (HDACs) remove acetyl groups, returning 
the chromatin to a tightly packaged and transcriptionally inactive state.  
 

 

 

dependent kinase 1 (PDK1) to the cell membrane. This acts to colocalise enzymes and 

their substrates. The tumour suppressor protein phosphatase and tensin homolog 

deleted on chromosome 10 (PTEN) reverses this action by dephosphorylating PIP3, 

inhibiting the PI3K/Akt signalling pathway. Aberrant activation of Akt as a result of PI3K 

or Akt gene amplification, or mutation/loss of PTEN is commonly seen in a variety of 

cancers (Osaki et al., 2004). Once at the cell membrane Akt (also known as protein 

kinase B; PKB) is phosphorylated at multiple sites, threonine 308 (Thr308) located in 

the activation loop by PDK1 (Alessi et al., 1997) and serine 473 (Ser473) present in 

the hydrophobic motif by mammalian target of rapamycin complex 2 (mTORC2) 

(Sarbassov et al., 2005). While it seems phosphorylation at both sites is required for 

full activation of Akt (Alessi et al., 1996), the disruption of mTORC2 stability and 

subsequent loss of Ser473 phosphorylation of Akt has been seen to only effect a small 

number of Akt targets, namely the forkhead box (FOX) family of transcription factors 

(Jacinto et al., 2006). 

 

There are numerous downstream targets of Akt that are involved in the regulation of 

cell survival and proliferation (Figure 1.4) (Osaki et al., 2004). For example, Akt exerts 

its anti-apoptotic effects by inhibiting the FOX transcription factors, FOXO1, FOXO3a, 

and FOXO4, preventing expression of pro-apoptotic proteins such as Fas ligand  
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Figure 1.4: Overview of the PI3K/Akt pathway. 
PI3K (phosphatidylinositol 3-kinase) can be activated directly by binding to phospho-
sites on activated tyrosine kinase receptors or indirectly through adaptor proteins 
activating small G protein Ras. PI3K converts PIP2 (phosphatidylinositol (4,5)-
bisphosphate) to PIP3 (phosphatidylinositol (3,4,5)-trisphosphate), which can recruit 
proteins such as Akt and PDK1 (phosphoinositide dependent kinase 1) to the cell 
membrane. Akt is activated following phosphorylation by PDK1 and mTORC2 
(mammalian target of rapamycin complex 2) and has many downstream effectors 
involved in the regulation of cell survival and proliferation. PTEN (phosphatase and 
tensin homolog deleted on chromosome 10) reverses the action of PI3K. EGFR 
(epidermal growth factor receptor), FOX3a (forkhead box transcription factor 3a), GSK-
3 (glycogen synthase kinase 3), Rheb (Ras homolog enriched in brain), TSC1/2 
(tuberous sclerosis complex 1/2). 
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(FasL) (Brunet et al., 1999) . Whereas, the phosphorylation and inactivation of 

tuberous sclerosis complex 1/2 (TSC1/2) by Akt enhances protein synthesis via the 

mammalian target of rapamycin complex 1 (mTORC1) pathway (Cai et al., 2006).  

 

1.4.4 MAPK pathway 
 

There are multiple mitogen activated protein (MAP) kinases which are activated 

downstream of protein kinase cascades in response to distinct stimuli including growth 

factors, inflammatory cytokines and environmental stresses. Activation of these 

pathways mediates diverse cellular responses such as cell proliferation, apoptosis, and 

the inflammatory response. The signal is transmitted via a series of sequentially 

activated kinases; MAP kinase kinase kinase (M3K), MAP kinase kinase (MKK) and 

MAP kinase (MAPK). There are three main MAPK families, the extracellular-signal 

regulated kinases (ERK1/2, also known as classical MAPK), the C-Jun N-terminal 

kinase (JNK, also known as stress-activated protein kinase; SAPK), and p38 kinases 

(Krishna and Narang, 2008).  

 

The ERK1/2 pathway is the most characterised and is preferentially activated by 

growth factors (Figure 1.5). Signalling is typically initiated by activation of RTKs, 

resulting in activation of the small G protein Ras. Activated Ras triggers the protein 

kinase activity of M3K, Raf, which then phosphorylates and activates the MKK, 

MEK1/2. MEK1/2 then phosphorylate ERK1/2 at two sites, a threonine and a tyrosine 

residue. Once active, ERK1/2 can translocate to the nucleus and activate transcription 

factors such as Elk1, resulting in the elevated expression of a variety of proteins 

associated with proliferation and differentiation. Other downstream targets of ERK1/2 

include cytoskeletal and scaffold proteins, and protein kinases such as 90 kDa 

ribosomal S6 kinases (p90RSK) which further propagate the signal (Yoon and Seger, 

2006). Both ERK1/2 and p90RSK can also increase protein synthesis via the 

phosphorylation of several proteins involved in translational regulation such as 

negative regulator of mTORC1, TSC2, and eukaryotic elongation factor 2 kinase 

(eEF2K) (Ma et al., 2005; Wang et al., 2001).    

 

Aberrant activity of the ERK1/2 pathway is observed in multiple cancers, and can be 

the result of activating mutations in the ras or raf oncogenes, and overexpression or 

activating mutations in EGFRs. Consequently many inhibitors of the ERK pathway are 

currently in clinical trials (Kohno and Pouyssegur, 2006). 
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Figure 1.5: Overview of the ERK pathway. 
Activation of the small G protein Ras, activates the protein kinase activity of Raf 
initiating the protein kinase cascade. Raf phosphorylates MEK1/2 (MAP kinase kinase 
1/2), which in turn phosphorylates ERK1/2 (extracellular-signal regulated kinases 1/2). 
ERK1/2 also phosphorylates another protein kinase, p90RSK (90 kDa ribosomal S6 
kinase). Both ERK1/2 and p90RSK can translocate to the nucleus and activate several 
transcription factors, as well as phosphorylating multiple translational regulators to 
increase protein synthesis. eEF2K (eukaryotic elongation factor 2 kinase), EGFR 
(epidermal growth factor receptor), mTORC1 (mammalian target of rapamycin 
complex), SRF (serum response factor), Rheb (Ras homolog enriched in brain), SRE 
(serum response element), TSC1/2 (tuberous sclerosis complex 1/2). 
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1.4.5 mTOR 
 
Mammalian target of rapamycin (mTOR) is a serine/threonine protein kinase that forms 

the catalytic domain of two distinct complexes; mTORC1 and mTORC2. In addition to 

mTOR, mTORC1 is composed of mLST8 (mammalian lethal with Sec13 protein 8, also 

known as GβL) and Raptor (regulatory associated protein of mTOR). Two further 

proteins have also been found to interact with mTORC1, PRAS40 (proline-rich Akt 

substrate 40 kDa), and Deptor (DEP-domain containing mTOR interacting protein), 

both of which are believed to have an inhibitory influence on mTORC1 (Haar et al., 

2007; Peterson et al., 2009). mTORC2 is less studied than mTORC1 and contains 

mTOR, mLST8, Rictor (rapamycin-insensitive companion of mTOR), Sin1 (stress-

activated protein kinase interacting protein 1) and Proctor. Deptor has also been 

shown to interact with and inhibit mTORC2 (Peterson et al., 2009). Notably, mTORC1 

and mTORC2 can be distinguished by their sensitivity to the immunosuppressant drug, 

rapamycin. Rapamycin binds to the intracellular protein FKBP12 and together interacts 

with mTOR only within mTORC1, specifically inhibiting mTORC1 activity (Jacinto et al., 

2004; Sarbassov et al., 2004). However, it should be noted that some rapamycin-

insensitive functions of mTORC1 have been identified, examples will be given below.  

As reviewed by Menen and Manning (2008), mTORC1 activity is frequently 

upregulated in a number of cancers, including breast cancer, and as a result there is 

much interest in furthering our understanding of this pathway.  

 
1.4.5.1 mTORC1 substrates 
 
The best known substrates of mTORC1 are the eIF4E binding proteins (4E-BP) and 70 

kDa ribosomal S6 protein kinases (p70 S6K), both of which are involved in the control 

of mRNA translation. It seems that these substrates are directed to mTOR by Raptor 

via Tor signalling motifs (TOS) (Nojima et al., 2003). The 4E-BP family are key 

negative regulators of the eukaryotic initiation factor 4F (eIF4F) complex required for 

cap-dependent translation. eIF4F complexes form at the 5’ end of mRNA and are 

composed of three subunits, the scaffold protein eukaryotic initiation factor 4G (eIF4G), 

the RNA-helicase eukaryotic initiation factor 4A (eIF4A) and the cap-binding protein 

eukaryotic initiation factor 4E (eIF4E). Specifically, the 4E-BPs, of which 4E-BP1 is the 

most prominent, tightly regulates the availability of eIF4E by competing with eIF4G for 

an overlapping binding site on eIF4E in a phosphorylation-dependent manner. 

Hypophosphorylated 4E-BP1 binds strongly to eIF4E thus preventing the assembly of  

the eIF4F complex (Haghighat et al., 1995; Lin et al., 1994). mTORC1 phosphorylates 
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4E-BP1 at multiple sites in a hierarchical manner. Phosphorylation of Thr37 and Thr46 

occur first, in response to amino acids, and although these modifications are not 

sufficient to inhibit the interaction between 4E-BP1 and eIF4E, they act as a priming 

step for the phosphorylation of Thr70 and then Ser65 when mTORC1 is further 

stimulated by growth factors (Gingras et al., 2001). However, while phosphorylation of 

all 4E-BP1 sites is mediated by mTORC1, phosphorylation of Thr37 and Thr46 are 

insensitive to rapamycin (Wang et al., 2005).  

 
The other main mTORC1 substrate, p70 S6K, is itself a serine/threonine protein 

kinase, and phosphorylation by mTORC1 increases its activity. Targets of p70 S6K 

include the S6 ribosomal protein, which forms part of the 40S ribosomal subunit, 

eukaryotic initiation factor 4B (eIF4B) (Raught et al., 2004) and programmed cell death 

protein 4 (Pdcd4) (Dorrello et al., 2006), which respectively enhance and impair mRNA 

helicase eIF4A, and the eukaryotic elongation factor 2 kinase (eEF2K), which inhibits 

eEF2 (Wang et al., 2001). p70 S6K is known to be an important regulator of cell size 

(Shima et al., 1998) and considering the known targets of the kinase it seems p70 S6K 

has a positive influence on ribosome biogenesis and protein synthesis. However, as 

several p70 S6K targets are also phosphorylated by downstream effectors of the 

MAPK pathway, its impact on the overall control of protein synthesis is not clear 

(Shahbazian et al., 2006; Wang et al., 2001).  

 
mTORC1 can also increase the protein synthesis capacity of cells by upregulating 

specific mRNAs such as those encoding ribosomal proteins. Many of these mRNAs 

contain a tract of pyrimidines in their 5’ untranslated regions (5’UTR) that ordinarily 

impair translation. The ability of mTORC1 to control translation of 5’ tract 

oligopyrimidine (5’TOP) mRNAs was originally attributed to p70 S6K however, this has 

since been found not to be the case (Pende et al., 2004). Therefore, despite this 

process being sensitive to rapamycin, the exact mechanism by which mTORC1 

increases translation of these mRNAs remains unknown.      

 
1.4.5.2 Upstream control of mTORC1 
 
The PI3K/Akt and MAPK pathways both converge on mTORC1 to increase protein 

synthesis in response to hormones and growth factors. mTORC1 is also regulated by 

other pathways that sense whether or not conditions are favorable for cell growth and 

proliferation, such as nutrient availability, cellular energy levels and oxygen levels, 

activating or inhibiting mTORC1 accordingly (Figure 1.6). The response of mTORC1 to 

many of these cellular stresses and growth factors is orchestrated by the tuberous 
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sclerosis complex 1/2 (TSC1/2) (Dibble and Manning, 2010). Although it should be 

noted that mTORC1 can also be regulated independently of TSC1/2, as observed in 

amino acid mediated activation of mTORC1 (Smith et al., 2005).TSC1/2 is a 

heterodimeric complex composed of TSC1 (also known as hamartin) and TSC2 which 

acts as a negative regulator of mTORC1. Genetic mutations in either gene can cause 

the genetic disorder of the same name, TSC, with patients presenting with multiple 

benign tumours (hamartomas) in various organs including the brain and kidneys 

(Kwiatkowski, 2003). TSC2 acts as a guanosine triphosphatase activating protein 

(GAP), stimulating the intrinsic GTPase activity of Ras homolog enriched in brain 

(Rheb), and catalysing its conversion from GTP to GDP bound state. It has been 

shown that Rheb-GTP activates mTORC1, although the precise mechanism behind 

this is unknown (Inoki et al., 2003a; Tee et al., 2003). 

 
Many of the pathways shown to act via TSC1/2 to control mTORC1 signalling can also 

influence mTORC1 in a TSC1/2-independent manner by phosphorylating Raptor 

(Carrière et al., 2008; Gwinn et al., 2008). In addition, Akt can phosphorylate PRAS40, 

another protein known to associate with the mTORC1 complex (Haar et al., 2007). 

Interestingly, PRAS40 has also been identified as a substrate for mTORC1 and it 

seems that phosphorylation by both Akt and mTOR is required for its dissociation from 

the mTORC1 complex. However, the functional role of this is not fully understood, as 

while PRAS40 dissociation has been shown to increase 4E-BP1 binding to mTORC1, 

it does not promote mTORC1 signalling (Rapley et al., 2011). 

 
1.4.5.3 mTORC2 
 
Although mTORC2 activity is enhanced by growth factors little is known about the 

signalling events involved in mTORC2 regulation (García-martínez and Alessi, 2008). 

One of the main functions of mTORC2 is to phosphorylate Akt on Ser473, which along 

with phosphorylation on Thr308 by PDK1 is required for full Akt activation (Sarbassov 

et al., 2005). However, while this would suggest mTORC2 acts upstream of mTORC1, 

the disruption of mTORC2 stability and subsequent loss of Ser473 phosphorylation on 

Akt did not attenuate phosphorylation of TSC2 (Jacinto et al., 2006). mTORC2 also 

phosphorylates and activates serum- and glucocorticoid-induced protein kinase 1 

(SGK1) which is involved in activating various sodium and potassium channels 

(García-martínez and Alessi, 2008), and protein kinase Cα (PKCα) which has a role in 

multiple cellular processes including apoptosis, cell cycle control and regulation of cell 

shape and mobility (Sarbassov et al., 2004). 
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Figure 1.6: Outline of the mTORC1 pathway.   
mTORC1 (mammalian target of rapamycin complex 1) is regulated by multiple 
pathways that sense whether or not conditions are favorable for cell growth and 
proliferation, such as nutrient availability, cellular energy levels and oxygen levels and 
the presence of growth factors, activating or inhibiting mTORC1 accordingly. p70 S6K 
(70 kDa S6 ribosomal protein kinase) p90RSK (90 kDa ribosomal protein kinase), 
AMPK (5’ adenosine monophosphate-activated kinase), 4E-BP1 (eIF4E binding 
protein 1), ERK (extracellular-signal regulated kinase), PKCα (protein kinase C α),  
PTEN (phosphatase and tensin homolog deleted on chromosome 10), PI3K 
(phosphoinositide 3-kinase), PDK1 (phosphoinositide dependent kinase 1), PRAS40 
(proline-rich Akt substrate 40 kDa), mLST8 (mammalian lethal with Sec13 protein 8), 
MEK (mitogen activated protein kinase kinase), Raptor (regulatory associated protein 
of mTOR), Rheb (Ras homolog enriched in brain), REDD1 (regulated in development 
and DNA damage response 1), Rictor (rapamycin-insensitive companion of mTOR), 
SGK1 (Serum- and glucocorticoid-induced protein kinase 1), Sin1 (stress-activated 
protein kinase interacting protein 1), TSC1/2 (tuberous sclerosis complex 1/2). 
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1.5 Regulation of mRNA translation 
 

In eukaryotes the majority of mRNAs are translated via cap-dependent translation, 

which involves three steps; initiation, elongation and termination. This is a tightly 

controlled process with multiple factors regulating both initiation and elongation. 

Notably, many of the factors involved in the regulation of mRNA translation have been 

implicated in downstream oncogenic signalling (Rajasekhar and Holland, 2004). 

 

Initiation begins with the formation of a eukaryotic initiation factor 4F (eIF4F) complex 

at the 7-methyl guanosine cap at the 5’ end of mRNA (Figure 1.7). eIF4F is composed 

of three subunits, the scaffold protein eIF4G, the cap-binding protein eIF4E, and the 

RNA-helicase eIF4A which is thought to unwind secondary structure in the 5’UTR. The 

small 40S ribosomal subunit and associated eIF2-GTP-Met-tRNAi complex is recruited 

to the eIF4F complex by ribosome-associated protein eIF3 which interacts with the 

eIF4G scaffold protein. eIF4G also interacts with the poly(A)-binding protein (PABP) 

which binds to the poly-A tail present in most eukaryotic mRNAs, resulting in the 

circularisation of the mRNA molecule (Cormier et al., 2003). A further eukaryotic 

initiation factor, eIF4B, binds to eIF4A and eIF3, enhancing the helicase activity of 

eIF4A. eIF4B is a target for p70 S6K phosphorylation which increases its affinity to 

eIF3 (Raught et al., 2004). Binding of eIF4E to the mRNA 5’-cap is the rate limiting 

step of cap dependent translation and as a result is tightly regulated. As already 

mentioned, the availability of eIF4E is controlled by 4E-BPs, which when 

hypophosphorylated sequester eIF4E away from the eIF4F complex. However, eIF4E 

can also be regulated by MAPK-signal integrating kinases 1 and 2 (Mnk1/2; also 

known as MAPK-interacting kinases), which lie downstream of ERK and p38 MAPK, 

and interact with eIF4G. Phosphorylated eIF4E displays a decreased affinity for the 5’-

cap structure, despite the fact signalling pathways that lead to its phosphorylation are 

associated with increased protein synthesis (Scheper et al., 2002). It is proposed that 

this facilitated dissociation of eIF4E from 5’-cap of an mRNA molecule already being 

translated allows eIF4E to bind other mRNAs.    

 

As reviewed in Kimball (1999), after the formation of eIF4F complex at the 5’ end of the 

mRNA molecule and recruitment of the 40S ribosomal subunit, this pre-initiation 

complex (PIC) scans along the mRNA in the 5’ to 3’ direction until it locates the AUG 

start codon. The Met-tRNAi is then transferred to the 40S ribosomal subunit by 

hydrolysis of eIF2-GTP to eIF2-GDP facilitated by the GTPase activating protein eIF5. 
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Figure 1.7: Eukaryotic translation: initiation. 
Briefly, various eukaryotic initiation factors (eIFs) form a complex at the 5’ cap of 
mRNA and recruit the 40S ribosome. When the start codon is identified Met-tRNAi is 
transferred to the 40S ribosomal subunit by hydrolysis of eIF2-GTP to eIF2-GDP 
facilitated by eIF5. The 60S ribosome then binds and elongation can begin. See text 
for more details. 4E-BP1, eIF4E binding protein 1; mTORC1, mammalian target of 
rapamycin 1; PABP, poly(A)-binding protein. 
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The 60S ribosomal subunit is then recruited to form the functional 80S ribosome and 

elongation of the polypeptide chain can begin.  The guanine nucleotide exchange 

factor (GEF) eIF2B is required for the regeneration of eIF2-GDP to its active eIF2-GTP 

state and continued initiation of translation and protein synthesis. Regulation of this 

step provides an important mechanism by which the rate of translation can be 

controlled. eIF2 is comprised of three subunits, α, β and γ,  and when Ser51 on the α 

subunit is phosphorylated it acts as a competitive inhibitor for eIF2B, displaying a 

higher affinity than unphosphorylated eIF2 (Webb and Proud, 1997).   

 

Elongation requires three eukaryotic elongation factors, eEF1α, eEF2β and eEF2 

(Figure 1.8). The aminoacyl-tRNA corresponding to the next codon in the mRNA is 

recruited by GTP bound eEF1α and transferred to the A (aminoacyl) site of the 80S 

ribosome by hydrolysis of eEF1α -GTP to eEF1α-GDP. However, before eEF1α can 

recruit another aminoacyl-tRNA it must first be regenerated to its active eEF1α-GTP 

state. This is catalysed by the GEF, eEF2β. Once positioned, a peptide bond is formed 

between the two amino acids, catalysed by the ribosome, and eEF2 is required for the 

translocation of the peptidyl chain along the ribosome from the A site to the P (peptidyl) 

site (Proud, 2007). Phosphorylation of eEF2 at Thr56 by eEF2K disrupts eEF2 binding 

to the ribosome effectively inhibiting its activity and thus translation (Carlberg et al., 

1990). eEF2K is a calcium/calmodulin (CAM)-dependent kinase also regulated by 

multiple phosphorylation sites which have both activatory (e.g. cAMP-dependent 

protein kinase; PKA) and inhibitory (e.g. p70 S6K) influences (Diggle et al., 2001; 

Wang et al., 2001).  

 

1.6 Benefits of healthy diet 
 

In 1989, following numerous epidemiological studies that reported diets rich in fruit and 

vegetables reduced incidence of cancer and heart disease, the National Academy of 

Sciences’ report on diet and health made the recommendation to eat 5 or more 

servings of a variety of fruit or vegetables every day (National Academy of Sciences, 

1989). The 5-a-Day program was subsequently initiated to encourage the consumption 

of at least five 80 g servings of fruit or vegetables daily, and promote public awareness 

of the potential health benefits (Liu, 2004). Although it should be noted Boffetta et al. 

(2010) recently reported that while there is an inverse correlation between fruit and 

vegetable consumption and cancer risk, the effect is not as great as once thought.  
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Figure 1.8: Eukaryotic translation: elongation.  
Briefly, hydrolysis of eukaryotic elongation factor 1α (eEF1α) transfers the next aminoacyl-
tRNA to the aminoacyl (A) site of the ribosome. Following peptide bond formation eEF2 
aids in translocation of the tRNA with the peptidyl chain from the A site to the peptidyl (P) 
site, and the deacylated tRNA moves to the exit (E) site and exits the ribosome. The 
process can then be repeated. See text for more details. 
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Specifically, cruciferous vegetable intake has been associated with reduced cancer 

risk (Verhoeven et al., 1996). In one study, subtype analysis of specific groups of 

vegetables identified a stronger inverse association with consumption of cruciferous 

vegetable and reduced risk of colorectal cancer, than overall consumption of fruit and 

vegetables (Voorrips et al., 2000). 

 

1.7 Watercress 
 

1.7.1 Cultivation 
 

Watercress (Nasturtium officinale, formerly Rorippa nasturtium-aquaticum) belongs to 

the Brassicaceae (Cruciferae) family along with Brussels sprouts, broccoli, and 

cabbage (Figure 1.9). Originating in Europe, watercress has been used since the first 

century AD for medicinal purposes and consumption as a raw leaf crop. Watercress is 

now cultivated around the world and, as well as being eaten raw as a salad vegetable, 

is becoming a popular addition to a variety of cooked dishes (Palaniswamy and 

McAvoy, 2001).  

 

Watercress is a perennial semi-aquatic crop, thriving in alkaline waters, and can often 

be found growing wild in and around open-running waterways in chalk or limestone 

areas. The first recorded commercial cultivation of watercress in Britain dates back to 

the early 1800s when it was grown along the River Ebbsfleet at Springfield, Kent. In 

the last 80 years it has been common practice to cultivate watercress in purpose built 

gravel lined beds that are fed by a constant flow of natural spring water. The 

temperature of the water is important as it provides a source of heat in the colder 

months, maintaining growth, and ideally should be 10-11°C. Due to an abundance of 

uncontaminated alkaline water with a constant temperature at source of 10°C or 11°C, 

watercress production in Britain tends to be concentrated in Hampshire, Wiltshire and 

Dorset (Stevens, 1983).   

 

Although watercress can be vegetatively propagated from cuttings this limits genetic 

variation and means the crop becomes susceptible to diseases, such as fungal crook 

root disease. As a result watercress is now typically propagated from seed.  

Commercially, seeds are germinated in polytunnels on a thin layer of soil and at 7-10 

days old are transplanted into gravel lined concrete beds. Watercress grows best in 

spring and autumn, and during this time has a growing period of approximately 4-6   
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Figure 1.9: Image of green watercress growing in a commercial bed.  
 

 

weeks from transplanted seedling to mature crop. Watercress flowers under long day 

conditions, appearing as small white clusters, traditionally meaning that watercress 

was not sold in the summer months. However, this has now been largely overcome by 

selecting for late flowering cultivars (Stevens, 1983). In the colder winter months 

watercress grows much more slowly and in order to maintain annual supply in Britain, 

the crop is grown abroad in warmer climates and imported back. For example, 

Vitacress Salad Leaves Ltd. supply the UK with British grown watercress from March 

through to November, but grows watercress in farms in the USA from November to 

April to provide watercress over the winter months. In addition, Vitacress Salad Leaves 

Ltd. grow watercress throughout the year in farms in Portugal. 

 

Up until the Second World War there were two species of watercress being cultivated, 

the typical green watercress seen cultivated today and brown watercress. Brown 

watercress, characterised by brown/purple leaves, is a sterile hybrid between 

Nasturtium officinale and a wild watercress, Nasturtium microphyllum (formally Rorippa 

microphylla). Although, as brown watercress could only be propagated vegetatively it 

was susceptible to disease and now green watercress is the only species currently 

cultivated commercially. Nonetheless, within this species there are multiple cultivars. 

Most of the commercially available watercress can be characterised by their dark 
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green circular leaves and are believed to be genetically very similar. However, as 

every commercial grower carries out their own selections for desirable characteristics 

each have their own unique cultivar (Stevens, 1983). Interestingly, an American red 

variety of watercress has recently been commercially cultivated. It is characterised by 

red/purple leaves and is also sterile so perhaps has similar origins to brown 

watercress.  

 

1.7.2 Increasing the anticancer activity of watercress 
 

Given the public interest in healthy diet, it might be considered a commercial and 

health benefit to generate crops with enhanced anticancer activity. Indeed, previous 

studies have manipulated both genetics and environmental factors to increase 

glucosinolate concentration in a variety of cruciferous vegetables.    

 

1.7.2.1 Genetics 
 

Conventional breeding involves cross-pollination of two related plants to produce a 

new variety with favourable genetic traits from both and an absence of any negative 

traits. This is a laborious process. As per the nature of sexual recombination, progeny 

inherit a random mix of genes, and hence further selection and cross breeding over 

several generations is required to identify a variety with all the desired traits. On the 

other hand, genetic engineering of crops allows for the insertion of a single gene or 

genes associated with a specific trait into the genome of another plant. This produces 

a crop with the desired trait without altering the parent genotype. However, there is still 

public concern on the long term effects of consuming genetically modified (GM) crops 

and as a result they are often avoided by consumers (Harlander, 2002).  

   

Using plant genomics to identify genetic markers linked to desired traits allows for 

improved selection of progeny generated from conventional breeding programs, 

speeding up the process. This marker-assisted breeding was utilised in the generation 

of an isothiocyanate-enriched variety of broccoli (Mithen et al., 2003). The 

introgression of three genomic segments from the Brassica villosa, a wild relative of 

broccoli, into the genetic background of commercial broccoli (B. oleracea var. italica) 

was shown to increase glucosinolate levels. These three segments were identified as 

being responsible for the increased glucosinolate content of wild broccoli and while 

each contains a quantitative trait locus (QTL), the exact function of the gene or genes 
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remain unknown. Compared to commercial broccoli, the broccoli hybrid was 80-fold 

more potent at inducing quinone reductase activity. This effect was attributed not only 

to an increase in 3-methylsulphinylpropyl and 4-methylsulphinylbutyl glucosinolates, 

but also a greater conversion of the glucosinolate precursors to their respective 

isothiocyanates, iberin and sulforaphane. 

 

1.7.2.2 Environment 
 

Previous groups have reported that glucosinolate concentration in a variety of 

cruciferous vegetables was effected by temperature, photoperiod, light quality, water 

availability, and sulfur and nitrogen fertilisation (Bouchereau et al., 1996; Engelen-

Eigles et al., 2006; Rosen et al., 2005). 

 

In studies looking at watercress, crops grown under long days (16 h), low night  

temperatures (10°C or 15°C), and supplemented with red light (light quality)  were 

found to have higher gluconasturtiin concentrations, the glucosinolate precursor of 

PEITC, compared to those grown under short days (8 h), higher night temperatures 

(20°C or 25°C), and far-red light supplementation (Engelen-Eigles et al., 2006). 

Increasing either sulfur or nitrogen fertilisation in watercress was also found to 

enhance glucosinolate concentration. However, while sulfur fertilisation increased 

glucosinolate levels in a linear manner, there was an optimal concentration of nitrogen 

with the highest nitrogen concentration causing a drop in glucosinolate content 

(Kopsell et al., 2007). 

 

1.7.3 Key active components in watercress 
 

1.7.3.1 Glucosinolates 
 

Cruciferous vegetables are characteristically rich in glucosinolates, nitrogen and sulfur 

containing glycosides, which make up a class of relatively inert phytochemicals. 

However, upon tissue damage, such as bruising, cutting or mastication, glucosinolates 

are hydrolysed by the plant β-thioglucosidase enzyme, myrosinase, to generate 

various bioactive compounds. The disruption to the tissue acts to break the physical 

barrier between the glucosinolates and myrosinase, with the latter being sequestered 

within aqueous vacuoles (Fahey et al., 2001; Holst and Williamson, 2004). Microflora 

present in the gut also have myrosinase activity although it is relatively limited. Thus, 
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individuals consuming watercress that has been cooked to completely denature all the 

plant myrosinase have considerably less glucosinolate metabolites in their urine 

(Getahun and Chung, 1999).  

 

1.7.3.1.1 Glucosinolate metabolism 
 

Structurally, glucosinolates are (cis)-N-hydroximinosulphate esters with a sulfur-linked 

β-[D]-glucopyranose group and a highly variable side chain (R) that may include 

aliphatic, aromatic or heterocyclic groups. Myrosinase cleaves off the β-glucosyl 

moiety by hydrolysing the thioglycosidic bond to generate glucose, sulfate and the 

unstable aglycone, thiohydroxamate-O-sulfonate (Fahey et al., 2001). Depending on 

the R side chain, reaction conditions and the presence of specifier proteins, 

thiohydroxamate-O-sulfonate rapidly converts to a series of hydrolysis products, 

principally isothiocyanates, nitriles, or thiocyanates (Figure 1.10). The generation of 

isothiocyanates from glucosinolates is believed to be adapted as a defence 

mechanism, making the plant bitter and unpalatable to predators (Rask et al., 2000).   

 

1.7.3.1.2 Isothiocyanates  
 

Watercress contains several glucosinolates which can be subsequently converted to 

their constituent isothiocyanate (Table 1.3). The most abundant isothiocyanate derived 

from watercress is phenethyl isothiocyanate (PEITC), with watercress being the richest 

dietary source of this compound.  
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Figure 1.10: General schematic of the hydrolysis of a glucosinolate to an 
isothiocyanate, a nitrile or a thiocyanate by myrosinase.  
The exact product of hydrolysis depends on the R side chain of the glucosinolate. 
Adapted from Fahey et al. (2001). 
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Table 1.3: The isothiocyanate and glucosinolate content of watercress.  
Information taken from 1Gill et al. (2007) and 2Rose et al. (2000)

Glucosinolate Isothiocyanate 

Chemical Name Common Name Chemical Name µmol/g fresh weight µmol/g dry weight 

2-Phenylethyl-GLS 

 

Gluconasturtiin  2-Phenylethyl-ITC  1.531 17.981, 23.72 

6-Methylsulfinylhexyl-GLS Glucohesperin 

 

6-Methylsulfinylhexyl-ITC  0.22 

7-Methylsulfinylheptyl-GLS Glucoibarin 

 

7-Methylsulfinylheptyl-ITC 0.11 1.071, 3.92 

8-Methylsulfinyloctyl-GLS Glucohirsutin 

 

8-Methylsulfinyloctyl-ITC 0.061 0.681, 2.12 

7-Methylthioheptyl-GLS 

 

- 7-Methylthioheptyl-ITC  1.82 

8-Methylthiooctyl-GLS 

 

- 8-Methylthiooctyl-ITC  0.82 

4-Methoxy-3-indolylmethyl-GLS 

 

4-Methoxyglucobrassin 4-Methoxy-3-indolylmethyl-ITC 0.0651 0.7911 

3-Indolylmethyl-GLS 

 

Glucobrassin Indole-3-carbinol 0.041 0.431 

 

0.72 
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Isothiocyanates are generally very electrophilic and as a result rapidly conjugate with 

thiols. This can occur either via enzymatic or non-enzymatic processes, and 

subsequently the issue of enzyme availability is not rate-limiting for the formation of 

thiol conjugates. As the most abundant thiol in cells is glutathione (GSH), most 

isothiocyanates after diffusion into cells form S-(N-phenylethylthiocarbamoyl) 

glutathione. These dithiocarbamate conjugates can then be exported out of the cell by 

various transporters such as multidrug resistance protein 1 (MRP1) and enter the 

mercapturic acid pathway. Here they are metabolised to cysteine conjugates and 

finally acetylated to mercapturic acids, which are isothiocyanate-N-acetylcysteine 

conjugates (ITC-NAC) in the kidney and excreted in the urine (see Figure 1.11 for 

metabolism pathway). ITC-NACs are the main ITC metabolite excreted by humans in 

the urine, and have been used to study the bioavailability of ITCs (Callaway et al., 

2004). Chung et al. (1992) determined that after consumption of 30 g watercress, 

containing 21.6 mg gluconasturtiin, 30-67% of the gluconasturtiin was recovered as the 

mercapturic acid metabolite NAC-PEITC in the urine. Assuming that there was 

quantitative hydrolysis to PEITC, 21.6 mg gluconasturtiin would yield 7.6 mg PEITC. 

Furthermore, the excretion of NAC-PEITC in the urine peaked between 2-4 h and was 

completely absent by 24 h, suggesting PEITC is rapidly metabolised.  
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Figure 1.11: The metabolism of isothiocyanates.   
After conjugation of glutathione and isothiocyanate to form glutathione 
dithiocarbamate, glutathione dithiocarbamate enters the mercapturic acid pathway ([ ]) 
to generate an isothiocyanate-N-acetylcysteine (GST, glutathione-S-transferase; 
GGTP, γ-glutamyltransferase; CG, cysteinylglycinase; NAT, N-acetyltransferases). 
Adapted from Holst and Williamson (2004). 
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However, following export of GSH-ITC conjugates out of the cell, extracellular 

hydrolysis can also occur, releasing free ITCs which are able to re-enter the cell and 

again react with GSH. This results in cellular depletion of GSH and rapid accumulation 

of intracellular ITCs, 100-200-fold over extracellular concentrations (Zhang, 2001). 

Once GSH levels are depleted, ITCs can conjugate to other protein cysteinyl thiols and 

this is thought to be important in ITC-mediated apoptosis and cell cycle arrest (Figure 

1.12). In human non-small lung cancer A549 cells treated with PEITC, intracellular 

levels of PEITC–GSH conjugates reached a maximum at 30 min post treatment and 

dropped rapidly thereafter. By contrast, PEITC–protein content gradually increased, 

accounting for 87% of total cellular content by 4 h. Interestingly, SFN–protein 

conjugates accounted for only 12% of total SFN uptake at the same time point. PEITC 

appears to bind to proteins more readily than SFN, perhaps accounting for its more 

potent apoptosis promoting activity (Mi et al., 2007). However, the critical targets 

involved in growth inhibition by ITCs are not known and only a few proteins have been 

shown to be direct targets for ITCs, including negative regulator of Nrf2, Keap1, 

cytoskeletal protein α-tubulin and protein kinase MEKK1 (Brown and Hampton, 2011). 

 
Furthermore, as GSH is a major antioxidant its depletion by ITCs reduces the redox 

buffering capacity of the cell and causes an increase in intracellular reactive oxygen 

species (ROS). Generation of ROS is thought to contribute to ITC-mediated apoptosis, 

as the addition of hydrogen peroxide-scavenging enzyme catalase attenuated PEITC-

induced cell death (Trachootham et al., 2006). 

 

Interestingly, the indole glucosinolates such as glucobrassin, which is present in 

watercress, generate very unstable isothiocyanates that readily undergo hydrolysis 

leaving the subsequent alcohol indole-3-carbinol (I3C), in the case of glucobrassin, 

and a thiocyanate ion. Furthermore, I3C can further condense, and in an acidic pH 

such as that provided by the gut, form various condensation products including 3,3’-

diindoylmethane (DIM) that can then form dimers, trimers and tetramers (Grose and 

Bjeldanes, 1992).  

 

1.7.4 Carotenoids 
 

Carotenoids are another class of photochemical that can be further split into two 

groups of compounds, the carotenes such as β-carotene and α-carotene that are 

unoxygenated, and the xanthophylls like lutein and zeaxanthin that contain oxygen.  

Watercress contains relatively high concentrations of β-carotene, a precursor to  
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Figure 1.12: Intracellular accumulation of isothiocyanates.  
Following their initial diffusion into cells (1), isothiocyanates (ITCs) are rapidly 
conjugated to glutathione (GSH) via the action of glutathione-S-transferases (GST) (2). 
The GSH conjugates are exported from the cells via efflux pumps (3). Extracellular 
hydrolysis of the GSH conjugate (4) gives rise to the free ITC which is able to re-enter 
the cell. The net effect of this cycle is the rapid (1–3 h) and profound (100- to 200-fold) 
accumulation of ITC and the concomitant depletion of GSH. Once GSH levels are 
reduced, ITCs are able to conjugate to intracellular protein cysteinyl thiols. From Cavell 
et al. (2011). 
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vitamin A, and lutein. Despite there being variation between sources on the exact 

content of both β-carotene and lutein in watercress the amount of lutein is generally 

twice that of β-carotene (Table 1.4). Following the consumption of 85g of raw 

watercress daily for a period of 8 weeks, plasma concentration of β-carotene increased 

by 33% and that of lutein increased by 100% (Gill et al., 2007). 

 

1.7.5 Phenolics 
 

Flavonoids are antioxidant polyphenolics consisting of five subclasses of which 

watercress contains compounds present in two, the flavones and the flavonols (Table 

1.5). In plants these compounds are typically glycosylated, the majority thought to be 

converted to the more active aglycone by cleavage of the glycoside in the 

gastrointestinal tract.  Of particular interest is quercetin which is present in 

considerably higher amounts than any of the other flavonoids. Quercetin is present in 

watercress in the form of various glycosides such as rutin, consisting of quercetin and 

the disaccharide rutinose (Rice-Evans et al., 1996). Watercress also contains a 

relatively large concentration of the phenolics, hydroxycinamic acid derivatives (Gill et 

al., 2007). 

 

1.8 Anticancer effects of PEITC 
 

The breakdown products of glucosinolates were initially recognised as potential agents 

in preventing cancer by their ability to alter the activity of phase I and phase II drug 

metabolising enzymes. More recent studies point to there being a direct anticancer role 

for ITCs, by inducing apoptosis and inhibiting cell cycle progression, angiogenesis and 

metastasis. However, despite this, the upstream triggering events remain largely 

unknown.  

 

The anticancer activity of ITCs has been the topic of multiple reviews (Cavell et al., 

2011; Cheung and Kong, 2010; Zhang et al., 2006). As a result, this introduction will 

focus on the effects of ITCs on Nrf2 activity and angiogenesis as this relates 

specifically to the work within this study. Nonetheless, a brief overview of the potential 

mechanisms contributing to the anticancer effects of PEITC will be given in order to 

provide an insight into the scope of downstream effectors. 

 

 



                                              Chapter 1: Introduction                        

 

36 

Carotenoid μg/100g fresh weight 

β-carotene 47771, 25202 

Lutein 107131, 57672 (lutein and zeaxanthin) 

Table 1.4: The carotenoid content of watercress.  
Information taken from 1Hart and Scott (1995) and 2Food Standards Agency (2002). 
 

 

Flavonoids µg/100g fresh weight 

Flavones  

Apigenin 10 

Luteolin 20 

Flavonols  

Kaempferol 1400 

Myricetin 200 

Quercetin 7440 

Table 1.5: The flavonoid content of watercress.  
Information from the USDA Database for the Flavonoid Content of Selected Foods, 
Release 2 (2006). 
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1.8.1 Chemopreventive effects 
 

Phase I enzymes include cytochrome P-450 enzymes (CYP), reductases, and 

hydrolases, the former being the most influential, which are involved in the 

biotransformation and subsequent activation of many chemical carcinogens. On the 

other hand phase II enzymes like glutathione-S-transferase (GST), N-acetyltransferase 

(NAT) and NAD(P)H:quinone oxidoreductase 1 (NQO1) are detoxification enzymes 

that convert carcinogens to polar conjugates so that they can be easily excreted in the 

urine or bile and therefore removed from the body (Conaway et al., 2002).  

 

Inhibition of carcinogen-induced tumourigenesis in rodents by PEITC has been 

demonstrated in a variety of tissues and is associated with a reduction of DNA adducts 

and carcinogen metabolism, as well as increase in carcinogen excretion (Huang et al., 

1993; Morse et al., 1989; Stoner et al., 1991). For example, PEITC has been shown to 

inhibit lung tumourigenesis induced by key tobacco carcinogen 4-(methylnitrosamino)-

1-(3-pyridyl)-1-butanone (NNK) in rats. F344 rats were fed approximately 49 μM/d 

PEITC for 1 week prior and for the following 111 weeks during which NNK was also 

given. An increase in NNK metabolites, NNAL and NNAL-Gluc, in the urine of rats 

treated with PEITC and NNK compared to just NNK, suggests that PEITC not only 

enhances detoxification but also interferes with the metabolic activation of NNK that 

otherwise would give rise to more harmful intermediates (Hecht et al., 1996). As a 

result these chemopreventive effects of PEITC are believed to be due to modulation of 

the activity of phase I and II drug metabolising enzymes.  

 

Indeed, PEITC has been shown to induce activity of several phase II drug metabolising 

enzymes including GST and NQO1 in vitro and in vivo (Dingley et al., 2003; Rose et 

al., 2000). GST catalyses the conjugation of GSH to electrophilic moieties on a variety 

of substrates (Armstrong, 1991), while NQO1 catalyses two electron reduction of 

quinones, effectively preventing one electron reduction that would give rise to harmful 

radical species (Li et al., 1995). Observations that PEITC caused an increase in the 

mRNA levels of GST, NQO1 and antioxidant enzyme heme oxygenase 1 (HO1) 

indicates that PEITC acts at the level of transcription (Ernst et al., 2011; Keum et al., 

2003; Xu et al., 2006b).  

 

Phase II metabolising and antioxidant enzymes are transcriptionally upregulated by the 

transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) binding to 

antioxidant response elements (ARE) present in their promoter regions. Nrf2 is 
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negatively regulated by Kelch-like ECH-associated protein 1 (Keap1), which binds to 

Nrf2 and prevents it from translocating to the nucleus as well as targeting Nrf2 for 

degradation via the ubiquitin-proteasome pathway (Itoh et al., 2003). Keap-1 

dissociates from Nrf2 in response to ROS and electrophiles, allowing Nrf2 to 

translocate to the nucleus where along with small Maf proteins it can bind to AREs and 

enhance transcription of responsive genes (Figure 1.13). In mice genetically ablated 

for Nrf2, protection against benzo(a)pyrene-induced gastric tumour formation by 

sulforaphane (SFN), an isothiocyanate found in broccoli, was lost (Fahey et al., 2002). 

Furthermore, induction of NQO1 gene expression by SFN was abolished in Nrf2 null 

MEFs (Nioi et al., 2003). These studies demonstrate the importance of Nrf2 in ITC-

mediated induction of phase II drug metabolising enzymes and protection from 

carcinogen-induced tumourigenesis.  

 

ITCs have been shown to induce transcription of phase II drug metabolising enzyme 

by binding directly to several key cysteine residues in Keap1 (Ahn et al., 2010; 

Dinkova-Kostova et al., 2002). Conjugation of Keap1 with ITCs was initially thought to 

trigger the release of Nrf2, however it is now believed that ITCs inhibit Keap-1 

dependent ubiquitination and proteasome mediated degradation of Nrf2 (Zhang and 

Hannink, 2003). As ROS can also react with Keap1 to activate Nrf2, PEITC may also 

be able to activate Nrf2 indirectly. However, while Ernst et al. (2011) found induction of 

ARE-driven expression by hydrogen peroxide to be attenuated by the antioxidant 

catalase, induction by allyl isothiocyanate (AITC) was not. This suggests that 

thiocarbamoylation rather than ROS generation is responsible for ITC-induced Nrf2 

dependent transcription. Although, activation of the MAPK pathway by ITCs may also 

contribute to the upregulation of phase II drug metabolising enzymes, via downstream 

phosphorylation of Nrf2 (Keum et al., 2003; Xu et al., 2006b). Indeed, loss of PEITC-

induced ERK phosphorylation by an inhibitor of the MAPK pathway was found to 

attenuate the rise in mRNA levels of drug metabolising enzyme HQO1 (Ernst et al., 

2011).  

 

1.8.2 Anticancer effects 
 

The potential mechanisms contributing to the anticancer effects of PEITC are outlined 

in Table 1.6. While the underlying mechanisms are unknown, inhibition of cancer cell 

proliferation has been shown to be due to the ability of isothiocyanates to induce 

apoptosis and/or cause cell cycle arrest, and an overview of the signalling pathways 

implicated is provided in Figure 1.14. 
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Figure 1.13: Activation of Nrf2. 
Keap1 (Kelch-like ECH-associated protein 1) binds to Nrf2 (nuclear factor erythroid 2-
related factor 2), targeting it for ubiquitination (U) by Cul3 (Cullin 3)-based E3 ligase. 
Electrophiles, such as isothiocyanates, and pro-oxidants, like ROS, attack ( ) the thiol 
group (S-H) of several key cysteine residues on Keap-1, allowing accumulation of Nrf2. 
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Biological response Effect Concentration1 

Cell cycle arrest Inhibition of cell cycle progression has been observed in a wide variety of cell lines 
derived from both solid and haematological malignancies. Arrest in S or G2/M 
phases of the cell cycle has been described.  

5 µM (Xiao et al., 2004) 
10 µM (Mi et al., 2008) 
1-5 µM (Hwang and Lee, 2010) 
5-10 µM (Wu et al., 2011) 
7.5 µM (Tang and Zhang, 2004) 
 

Induction of apoptosis Induction of both the intrinsic and the extrinsic pathways has been observed in a 
wide variety of cell lines derived from both solid and haematological malignancies. 

20 µM (Satyan et al., 2006) 
5-10 µM (Huong et al., 2011) 
15 µM (Tang and Zhang, 2005) 
5 µM (Trachootham et al., 2008) 
5 µM (Xiao and Singh, 2002) 
 

In vivo tumour growth PEITC inhibits tumour growth in a variety of xenograft models.  9-12 µM/d (Monday to Friday) by oral 
gavage for up to 31 days (Xiao et al., 2006) 
50 mg/kg (five days a week) given 
intraperitoneally for up to 60 days 
(Trachootham et al., 2006) 
50 mg/kg given intraperitoneally for 20 days 
(Gao et al., 2011) 
 

Angiogenesis  ITCs inhibit angiogenesis in in vitro and in vivo models. 1 µM (Xiao and Singh, 2007) 
5 µg/ml AITC (Thejass and Kuttan, 2007a) 
0.1-1 µM SFN (Bertl et al., 2006) 
 

Metastasis ITCs inhibit cell adhesion, invasion and migration in vitro, and metastasis in vivo. 5 µM (Hwang and Lee, 2006)  
2 µM (Xiao and Singh, 2007) 
10 µM (Wu et al., 2010a) 
 

Table 1.6: Potential mechanisms contributing to the anticancer effects of PEITC. 
In the interests of space, only selected references are provided. 1 Typical effective concentration. Note that differences in assay design 
preclude direct comparison between studies. Due to limited studies on the anti-angiogenic activity of PEITC, I have included data collected on 
additional ITCs, namely allyl isothiocyanate (AITC) and sulforaphane (SFN).
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Figure 1.14: The various signalling pathways, known or suggested, in which 
PEITC can induce apoptosis and cell cycle arrest.  
DR (death receptor), FADD (Fas-associated protein with death domain), GSH 
(glutathione), X (thiol compounds, such as GSH), Bid (BH3 interacting domain death 
agonist), Bcl-2 (B cell lymphoma 2), Apaf1 (apoptosis protease activation factor 1), Cyt. 
C (cytochrome C), MRP1 (multidrug resistance-associated protein 1), ROS (reactive 
oxygen species), MAPK (mitogen-activated protein kinase), HDAC (histone 
deacetylase), CDK1 (cyclin dependent kinase 1), Cdc25C (cell division cycle 25C). 
Adapted from Zhang et al. (2006). 
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1.8.2.1 Induction of cell cycle arrest 
 

Cell cycle arrest as a result of PEITC treatment predominantly occurs in the G2/M 

phase, this is associated with a downregulation of cyclin dependent kinase 1 (CDK1), 

cyclin B1 and/or cell division cycle 25C (cdc25C) (Hwang and Lee, 2010; Xiao et al., 

2004). Ordinarily CDK1 forms complexes with cyclin B and is then activated by cdc25C 

which targets it for dephosphorylation. The activated CDK1-cyclin B complex is 

required for transition into mitosis and cell cycle arrest occurs by decreasing levels of 

CDK1 or cyclin B1 or preventing CDK1 phosphorylation. PEITC has also been reported 

to cause mitotic arrest by disrupting tubulin polymerisation and spindle assembly (Mi et 

al., 2008). Notably, Mi et al. (2008) demonstrated that PEITC disrupted tubulin 

polymerisation by directly conjugating to α-tubulin, later this was shown to induce 

proteasome-mediated degradation of tubulin (Mi et al., 2009). In some cell lines, arrest 

in the S phase is also observed, and is associated with a reduction in protein levels of 

S phase regulator cyclin A (Wu et al., 2011). 

 

1.8.2.2 Influence on apoptotic machinery 
 

Satyan et al. (2006) demonstrated that PEITC induces apoptosis exclusively via 

activation of the intrinsic pathway in the ovarian OVCAR3 cancer cell line. This was 

associated with a reduction in anti-apoptotic Bcl-2 protein levels and an increase in 

pro-apoptotic Bax levels, as well as activation of the MAPKs, JNK and p38.  

Furthermore, in UM-UC-3 bladder cancer cells, PEITC was found to increase Bcl-2 

phosphorylation and promote translocation of Bak to the mitochondria (Tang and 

Zhang, 2005). Therefore it seems PEITC ultimately induces apoptosis through the 

transcriptional or post-translational modulation of multiple Bcl-2 family members. 

Although, PEITC-mediated apoptosis has also been shown to occur via the extrinsic 

pathway through increased expression of death receptors 4 and 5 (DR4, DR5) (Huong 

et al., 2011).  

 

1.8.2.3 Inhibition of angiogenesis 
 

Studies on the anti-angiogenic and anti-metastatic activity of PEITC are limited. 

However, several groups have found that other isothiocyanates can also inhibit 

angiogenesis and metastasis. Both PEITC and SFN have independently been shown 

to inhibit the growth of cultured human umbilical vein endothelial (HUVEC) cells and 

prevent tube formation of these cells on matrigel, a well recognised technique for 



                                              Chapter 1: Introduction 

43 

determining in vitro angiogenesis (Asakage et al., 2006; Xiao and Singh, 2007).  

Similar results have been shown for SFN using the immortalised human microvascular 

endothelial cell line, HMEC-1, whereby treatment prevented tube formation of these 

cells on basement membrane (Bertl et al., 2006).  

 

In ex vivo tissue culture models, SFN caused a dose dependent reduction of 

microcapillary density in a placental vessel fragment outgrowth assay (Bertl et al., 

2006) and PEITC decreased vascular density in chicken egg chorioallantoic membrane 

assays (Xiao and Singh, 2007). AITC demonstrated both in vitro and in vivo anti-

angiogenic activity by decreasing outgrowth of microvessels from rat aortic rings, and 

inhibiting in vivo tumour directed capillary formation in the mouse B16F-10 melanoma 

model (Thejass and Kuttan, 2007a). Furthermore, intravenous administration of SFN 

decreased in vivo angiogenesis in VEGF-impregnated matrigel plugs in female Balb/C 

mice (Jackson et al., 2007). SFN also reduced blood vessel density in vivo in MIA-

PaCa2 xenografts (Kallifatidis et al., 2009). 

 

Inhibition of angiogenesis by ITCs in vivo has been associated with reduced production 

of multiple pro-angiogenic factors including VEGF, nitric oxide and tumour necrosis 

factor α (Thejass and Kuttan, 2007a; Thejass and Kuttan, 2007b). Bertl et al. (2006) 

also observed a decrease in HIF1α accumulation, and VEGF production in HUMEC-1 

cells, an in vitro model of angiogenesis, following SFN treatment. HIF1α is a major 

regulator of angiogenesis which promotes transcription of VEGF. PEITC and SFN have 

been shown by both our lab and other groups to reduce HIF1α accumulation and 

VEGF expression in a variety of cancer cell lines (Wang et al., 2009; Yao et al., 2008). 

 

1.8.2.4 Inhibition of metastasis 
 

Xiao and Singh (2007) demonstrated that PEITC inhibited the in vitro migration of 

endothelial HUVEC cells and prostate cancer PC3 cells. PEITC has also been shown 

to inhibit adhesion, invasion and migration of human hepatoma SK-Hep1 cells and 

highly metastatic human lung cancer L9981 cells (Hwang and Lee, 2006; Wu et al., 

2010a). This activity was associated with a decrease in matrix metalloproteinase 

(MMP) 2 and 9, and membrane type 1 matrix metalloproteinase (MT-MMP) expression, 

and an increase in expression of tissue inhibitors of matrix metalloproteinase (TIMPs) 1 

and 2, which inhibit the activity of the MMPs (Hwang and Lee, 2006). In vivo, oral 

administration of SFN reduced pulmonary metastasis in TRAMP mice, a transgenic 

mouse model of prostate cancer (Singh et al., 2009b).     
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1.9 Anticancer effects of watercress 
 

In addition to studies of isolated phytochemicals, a number of studies have 

investigated potential anti-cancer effects of watercress extracts (referred to as 

“watercress juice”), predominantly focusing on chemopreventive capabilities. Boyd et 

al. (2006) demonstrated that watercress extract protects colon cancer HT29 cells from 

oxidative DNA damage induced by various genotoxins, 4-Hydroxy Nonenal (4-HNE), 

hydrogen peroxide, and fecal water. Furthermore, the addition of watercress juice  to 

human hepatoma Hep G2 cells has been shown to protect against benzo(a)pyrene 

(B(a)P) induced DNA damage. However, this effect appears not to be due to PEITC 

alone, as when it was added in concentrations similar to that present in the juice, it was 

unable to protect the Hep G2 cells against the DNA damage induced by B(a)P. The 

watercress juice also increased the activities of the drug metabolising enzymes, GST 

and CYP1A1, although this action alone was unlikely to be responsible for the 

protection against the genotoxic effect of B(a)P, as garden cress juice showed similar 

protection against B(a)P-induced DNA damage in Hep G2 cells but the activity of GST 

and CYP1A1 was not affected (Kassie et al., 2003). Overall, this indicates that there 

are phytochemicals present in watercress, other than PEITC, that seem to be having 

an effect and that these effects are not limited to modifying drug metabolising 

enzymes.  

 

Indeed, Rose et al. (2000) discovered that despite being present in watercress at 

concentrations approximately 3 times less than PEITC, the methylsulfinylalkyl 

isothiocyanates, 7-methylthioheptyl-ITC and 8-methylthiooctyl-ITC were far more 

potent at inducing NQO1 activity in murine heptatoma Hepa 1c1c7 cells. While only 0.2 

µM of 7-methylthioheptyl-ITC and 0.5 µM of 8-methylthiooctyl-ITC were required to 

induce a two-fold increase in NQO1 activity, 5 µM of PEITC was needed to produce 

the same results. The PEITC glutathione conjugate, S-(N-β-phenylethylthiocarbomyl) 

glutathione (PECG) was also found to have a similar potency to PEITC in regards to 

increasing quinine reductase activity.   

 

These chemopreventive actions have also been demonstrated in human consumption 

studies. Hecht et al. (1995) reported that the consumption of watercress, 56.8 g with 

every meal for 3 days, inhibited the metabolic activation of a key tobacco carcinogen  

NNK in smokers. The reduction in NNK carcinogenicity is thought to be the result of 

PEITC, as changes in the excretion of PEITC metabolite PEITC-NAC in the urine 

correlated with the increased urinary detoxification metabolites used to measure 
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oxidative metabolism of NNK. Furthermore consumption of 85 g of raw watercress 

once a day for eight weeks decreased several measures of DNA damage in 

lymphocytes, a cancer biomarker, and increased plasma levels of the antioxidants, β-

carotene and lutein. There was a statistically significant decrease in basal DNA 

damage, basal plus oxidative purine DNA damage, and basal DNA damage in 

response to hydrogen peroxide challenge. In addition to this there was a greater and 

more significant change in those subjects who were smokers, indicating that their 

increased exposure to toxins resulted in their observed lower antioxidant status, and 

therefore they benefited more from a boost in antioxidants than non-smokers (Gill et 

al., 2007).  

 

Interestingly Gill et al. (2007) also examined the activity of the detoxifying enzymes, 

superoxide dismutase (SOD) and glutathione peroxidase (GPX), with little change 

being observed between the watercress and control phase. Similar to what was 

concluded from the in vivo studies, this suggests that there are other mechanisms at 

work, which may be attributed to PEITC or even to other compounds present in 

watercress. When these data were later subdivided according to the genetic profile of 

the subjects, an increase in the activity of SOD and GPX in individuals with a GST Mu 

1 (GSTM1) null genotype was identified (Hofmann et al., 2009). GST is responsible for 

the conjugation of ITCs with GSH, and individuals with GSTM1 or GST theta 1 

(GSTT1) null genotypes have been previously reported to benefit more than those that 

are GSTM1 or T1 positive from the protective effects of cruciferous vegetables (Seow 

et al., 2005). As ITC-GSH conjugates are rapidly exported from the cell, it is proposed 

that loss of GST enzyme activity in these individuals slows the metabolism of ITCs 

prolonging their presence in the body. However, a recent study found that irrespective 

of the GSTM1 or T1 null genotype, there was no difference in excretion rates of 

PEITC-NAC in the urine of subjects who drank 200 ml watercress juice (Dyba et al., 

2010). While ITCs are known to initially form conjugates with GSH, one mechanism by 

which ITCs are thought to exert their anticancer effects is through conjugation with 

other cellular proteins once GSH has been depleted. It is possible that ITCs 

preferentially conjugate with GSH because of the activity of GST, and loss of that 

activity would allow ITCs to conjugate more readily with other cellular thiols, accounting 

for the enhanced protective effect seen in GSTM1 or T1 null individuals.   

 

Some studies have begun to investigate the anti-proliferation and anti-metastatic 

activity of watercress, for the first time looking not only at a chemopreventive role for 

watercress but more wholly as an anti-cancer agent. Watercress extract was found to 
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inhibit cell cycle progression of colon cancer HT29 cells, specifically halting them in S 

phase, as well as inhibiting the invasion of HT115, a particularly invasive colon cancer 

cell line, through matrigel (Boyd et al., 2006). Rose et al. (2005) demonstrated that 

watercress extract, although more specifically the non-volatile 7-methylsulphinylheptyl 

isothiocyanate component, reduced MMP9 activity in the human breast cancer MDA-

MB-231 cell-line. MMP9 is a proteolytic enzyme whose activity is essential for cell 

invasion and is often upregulated in cancer cells. Subsequently treatment of 12-O-

tetradecanoylphorbol-13-acetate (TPA) stimulated MDA-MB-231 cells with either 

watercress extract or simply a fraction containing methylsulfinylheptyl-ITC resulted in 

inhibition of their invasiveness. Due to the volatility of the other ITCs present in 

watercress they where not tested in this study but Rose et al. (2005) also looked at 

broccoli extract in which they identified 4-methylsulphinylbutyl (sulforaphane) which 

demonstrated similar anti-invasive and anti-metalloproteinase activity, suggesting that 

this activity is not specific to particular ITCs.  

 

1.10 Aims 
 

Epidemiological studies indicate that there is an inverse relationship between the 

consumption of cruciferous vegetables and the risk of cancer development (Verhoeven 

et al., 1996; Voorrips et al., 2000). As a result there is much interest in understanding 

the anticancer potential not only of cruciferous vegetables themselves but also of the 

key phytochemicals contained in them. I hypothesise that the in vitro anticancer activity 

of watercress can be enhanced by altering environmental factors. To address this, the 

following aims will be investigated: 

 

i) Select assays to assess the in vitro anticancer effects of watercress-derived 

compounds.  

ii) Explore the mechanisms by which PEITC exhibits its anticancer effects.  

iii) Carry out proof-of-principle experiments to discover the suitability of the assays 

selected for the analysis of crude watercress extracts.  

iv) Investigate whether altering growth environment can increase the in vitro 

anticancer activity of watercress.
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2.1 Cell culture 
 

2.1.1 Cell lines 
 

Human breast cancer cell lines, MCF7 and SK-BR-3 (Table 2.1) were purchased from 

American Type Culture Collection (ATCC; Manasses, USA). MCF7 cells stably 

transfected with antioxidant response element (ARE) plasmid (Wang et al., 2006) were 

a generous gift of Professor Roland Wolf (University of Dundee, Scotland).  

 

Mouse embryonic fibroblasts (MEFs) lacking tuberin (TSC2-/-TP53-/-) and wild type 

control MEFs (TSC2+/+TP53-/-) (Zhang et al., 2003a) were a kind gift of Professor 

Christopher Proud (University of Southampton, UK) who obtained them from Dr David 

Kwiatkowski (Harvard Medical School, Boston, USA). MEFs that homozygously 

express the eukaryotic elongation factor 2α Ser51Ala mutation (eIF2α AA) and wild 

type control MEFs (eIF2α SS) (Scheuner et al., 2001) were a generous gift of 

Professor Randal Kaufman (University of Michigan Medical Center, Ann Arbor, USA). 

MEFs both homozygous and heterozygous for knockout of the phosphatase and tensin 

homolog deleted on chromosome 10 gene (PTEN -/-; PTEN +/-) along with wild type 

control (PTEN +/+) (Stambolic et al., 1998) were a kind gift of Dr. Vuk Stambolic 

(University of Toronto, Canada).   

 

All cell lines were maintained in complete Dulbecco’s modified Eagle’s Medium 

(DMEM; Lonza Group Ltd, Basel, Switzerland) (i.e. supplemented with 10% (v/v) fetal 

bovine serum (FBS; PAA Laboratories, Yeovil, UK), 2 mM glutamine, 50 U/ml penicillin 

and 50 U/ml streptomycin (Lonza Group Ltd). Cells were grown in a 37ºC incubator 

supplied with 10% (v/v) CO2 (Hera cell, Heraeus). 

 
 

Cell Line Characteristics References 

MCF7 Malignant pleural effusion secondary to breast 
carcinoma. Retains characteristics of 
differentiated mammary epithelium including 
oestrogen receptor expression. 
 

Tong et al. (1999), 
ATCC 

SK-BR-3 Malignant pleural effusion secondary to breast 
carcinoma. Overexpresses the HER2 gene 
product. Negative for oestrogen receptor 
expression. 
 

Kallioniemi et al. 
(1992), Tong et al. 
(1999), ATCC 

Table 2.1: Cell lines and characteristics. 
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2.1.2 Cell culture 
 

Cells were maintained in 175 cm2 tissue culture flasks (Greiner Bio-One Ltd., 

Gloucestershire, UK) and routinely passaged at 60-70% confluence. Media was 

aspirated from flasks and Trypsin-Versene® (EDTA) Mixture (3 ml; 0.05% (w/v) trypsin 

and 0.02% (w/v) versene (EDTA); Lonza Group Ltd.) was used to rinse away any 

remaining cell debris before being discarded. Trypsin-Versene® (EDTA) Mixture (4 ml) 

was added to the flask and incubated at 37ºC/10% CO2 for a minimum of 3 min to 

detach cells. Following this complete DMEM (8 ml) was added to the flask to inactivate 

the trypsin and collect the cells. The required volume of cell suspension to produce the 

desired dilution was removed and either discarded or transferred to a 15 ml centrifuge 

tube (Greiner Bio-One Ltd.) where the cells were then counted and used for an 

experiment. Complete DMEM (25 ml) was added to the remaining cells in the flask and 

incubated at 37ºC/10% (v/v) CO2.  

 

2.1.3 Hypoxia 
 

To expose cells to hypoxia, cells were sealed in a modulator incubator chamber 

(Billups-Rothenberg, Inc.; Del Mar, USA) which was flushed for 2 min with 1% (v/v) O2, 

5% (v/v) CO2, 94% (v/v) N2 (BOC, Surrey, UK) and placed in a 37ºC/5% (v/v) CO2 

incubator (Galaxy S, RSBiotech) alongside the normoxia control. After 1 h the chamber 

was re-flushed for 2 min with 1% (v/v) O2, 5% (v/v) CO2, 94% (v/v) N2 and placed back 

in the incubator for the desired length of time. For some experiments hypoxic 

responses were induced using the hypoxia mimetics cobalt chloride (CoCl2; Sigma, 

Poole, UK) or desferrioxamine (DFO; Sigma). Both stabilise HIF1α by preventing 

binding of the pVHL; CoCl2 by directly binding to HIF1α and blocking the pVHL binding 

site (Yuan et al., 2003), and DFO by acting as an iron chelator and inhibiting the 

activity of the iron-dependent proyl hydroxylases which hydroxylate HIF1α required for 

pVHL recognition (Wang and Semenza, 1993). Cells were pretreated with 100 μM 

CoCl2 or DFO immediately prior to treatment with the test compound. 

 

2.1.4 Freezing cells for long term storage 
 

Freezing media was prepared by adding 10% dimethyl sulphoxide (DMSO; Sigma) to 

90% FBS. Cells were trypsinised as described in Section 2.1.2 and counted before 

being centrifuged at 1300 rpm for 3 min in a Sorvall® Legend RT bench top centrifuge 
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(360 g). The cell pellet was resuspended in freezing media to at a concentration of 

2x106 – 6x106 cells per ml. Aliquots (1 ml) were transferred to labelled Cryo.s™ 1.0 ml 

cyrovial (Greiner Bio-One Ltd.) and frozen in a NALGENE® Mr Frosty (Thermo Fisher 

Scientific) filled with isopropanol (250 ml; Thermo Fisher Scientific) at -80ºC overnight 

and transferred to liquid nitrogen for long term storage. 

 

2.1.5 Thawing cells for culture 
 

Cells were quickly thawed by hand, to maintain cell viability, whilst the cryovial lid was 

loosened gently. Thawed cells were transferred to a 1.5 ml microcentrifuge tube and 

centrifuged at 2000 rpm for 3 min in a Heraeus® Biofuge® fresco microfuge (380 g) to 

remove DMSO. The supernatant was discarded and the cell pellet resuspended in 

complete DMEM (1 ml) that was then further added to more complete DMEM (9 ml) in 

a 25 cm2 tissue culture flask (Greiner Bio-One Ltd.) and incubated at 37ºC/10% (v/v) 

CO2. 

 

2.2 Compounds and extracts 
 

2.2.1 Analytical grade compounds 
 

Phenethyl isothiocyanate (PEITC), indole-3-carbinol (I3C) and quercetin dihydrate 

were all purchased from Sigma. 10 mM PEITC, 100 mM I3C and 100 mM quercetin 

stock solutions were made in DMSO fresh on the day of use.   

 

2.2.2 Watercress extracts 
 

Green and red watercress samples were obtained directly from Vitacress Salads Ltd. 

(Andover, UK). Samples were snap frozen in liquid nitrogen and stored at -80ºC.  2 g 

of leaf and 2 g of stem were weighed and placed in a 20 ml syringe (BD Biosciences, 

Oxford, UK) that had had the plunger removed and a circular 25 mm glass microfibre 

filter (Whatman, Dassel, Germany) placed at the bottom. The syringe was then placed 

inside a 50 ml centrifuge tube without the lid and centrifuged at 2641 rpm for 30 min in 

a Sorvall® Legend RT bench top centrifuge (1500 g) to collect the extract. This crude 

watercress extract was then filtered through a 0.22 µm filter (Whatman) and used 

immediately.  
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2.3 Cell proliferation  
 

2.3.1 Preparation of assays 

 
MCF7 cells and MEFs were seeded at a density of 1000 cells per well of a 96 well 

plate (Greiner Bio-One Ltd.) in complete DMEM (50 µl). SK-BR-3 cells were seeded at 

a density of 5000 cells per well of a 96 well plate in complete DMEM (50 µl). The 

outside wells of the 96 well plate were not used and were instead filled with phosphate 

buffered saline (100 µl; PBS; see Section 2.11) to avoid the cells drying out and to 

allow for no cell blank controls. Cells were incubated at 37ºC/10% (v/v) CO2 overnight. 

The following day cells were treated with watercress-derived compounds, watercress 

juice or solvent controls. The non-specific protein kinase inhibitor staurosporine (50 

nM; Sigma) was used as a positive control (Jacobson et al., 1996). For compounds, a 

DMSO solvent control was carried out equivalent to the largest volume of compound 

added. Dilutions were made in a 24 well plate (Greiner Bio-One Ltd.) at 2x final 

concentration and added to the cells in complete DMEM (50 µl) to give a total volume 

of 100 µl. Breast cancer cell lines were incubated at 37ºC/10% (v/v) CO2 for a further 

six days, while the MEFs were only incubated for a further four days due to their faster 

rate of proliferation.   

 

2.3.2 MTS assay 
 

Metabolically active cells convert the tetrazolium compound 3-(4,5-dimethylthiazol-2-

yl)-5-(3-carboxymethoxyphenyl)-2-(-4-sulfophenyl-2H-tetrazolium inner salt (MTS) that 

is contained in the CellTiter 96® AQueous One Solution Reagent (Promega, 

Southampton, UK) to the coloured product formazan. The colour intensity of the 

formazan dye is widely used as a measure of the number of viable cells.  However, it 

should be noted that whilst this assay provides a simple method to measure the effect 

of compounds on cells, it does not provide a direct measure of cell division. Apparent 

cell number will be influenced by both cell division and cell death, and changes in 

metabolic activity may also affect the amount of formazan generated.  

 

At the end of the culture period, growth media was removed from the wells of the 96-

well plate and discarded. Roswell Park Memorial Institute 1640 media (100 µl; RPMI; 

Lonza Group Ltd) and CellTiter 96® AQueous One Solution Reagent (5 µl) was added per 

well. The 96 well plate was placed in a 37ºC incubator supplied with 5% (v/v) CO2 for 
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90 min to allow for the colorimetric reaction to occur. Changes in absorbance were 

measured by a Varioskan Flash plate reader (Thermo Fisher Scientific Inc, Rockford, 

USA) at 490 nm. An average value obtained from the blanks was subtracted from all 

other values to allow for any background absorbance of the RPMI and these 

normalised values were set as a percent of the average from the untreated wells. 

 

2.3.3 Analysis 
 

Data obtained from the simple growth inhibition experiments was analysed by the 

software program GraphPad Prism 4 (GraphPad Software Inc.) to produce survival 

curves and calculate the IC50 value.  

 

2.4 SDS-PAGE and western blotting 
 

2.4.1 Preparation of cell lysates 
 

Cells were seeded at a density of 1x106 cells per 60 mm dish (Greiner Bio-One Ltd.) in 

complete DMEM (4 ml) and incubated overnight. The following day cells were treated 

with the watercress derived compounds, DMSO as a solvent control, or were left 

untreated and incubated for the desired length of time. For serum starvation cells were 

plated in complete DMEM overnight, washed (3 x 1 ml) with serum free DMEM and 

incubated for 24 h in serum free DMEM (4 ml). For those cells that were re-stimulated 

with serum, the serum free DMEM was replaced with complete DMEM for 2 h.  

 

To prepare protein lysates, the growth media was decanted from the tissue culture 

dishes and the cells were rinsed with ice cold PBS (1 ml). Ice cold PBS (1 ml) was then 

added and the cells were detached using a plastic cell scraper (Greiner Bio-One Ltd.) 

and collected in a 1.5 ml microcentrifuge tube. This protocol was carried out for all cell 

lines with the exception of TSC2 null and wild type MEFs as PEITC seemed to 

interfere with the adherence of the former cells. It was observed that after 3 h PEITC at 

as low as 5 µM resulted in a large number of the cells detaching, however if left 

incubated overnight re-adhered. Therefore in the case of TSC2 null and wild type 

MEFs, these cells were scraped on ice in their media before the whole volume was 

transferred to a 15 ml centrifuge tube and centrifuged at 4ºC and 1500 rpm in a 

Sorvall® Legend RT bench top centrifuge (500 g) for 5 min. The supernatant was 
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discarded and the cell pellet resuspended in ice-cold PBS (1 ml) before being 

transferred to a 1.5 ml microcentrifuge tube. 

 

Cells were centrifuged at 4ºC and 3000 rpm for 1 min in a Heraeus® Biofuge® 

microfuge (860 g) and the supernatant discarded. Cell pellets were resuspended in 1x 

RIPA buffer (see Section 2.11) plus 1:100 dilution of protease inhibitor cocktail (Sigma; 

see Section 2.11) and phosphatase inhibitor cocktail 1 (Sigma) as required. Cell 

lysates were left on ice for 30 min and centrifuged at 4ºC and 13000 rpm for 15 min in 

a Heraeus® Biofuge® fresco microfuge (16100 g). The lysate supernatant was 

removed, aliquoted into a fresh microcentrifuge tube and kept on ice. Protein lysates 

were quantified on a Varioskan Flash plate reader spectrophotometer at 595 nm using 

the BSA protein assay described below. 

 

2.4.2 BSA protein assay 
 

BioRad protein assay dye concentrate (BioRad Laboratories, Hercules, USA) was 

diluted 1:5 with PBS and aliquoted (250 µl) into 96 well plate. 1 µl of each sample or 

desired amount of bovine serum albumin (BSA; Promega) was added and mixed. BSA 

standards were made up in the following concentrations by adding various volumes of 

1mg/ml BSA, adding the appropriate volume of distilled H2O to give a total volume of 5 

µl each time:  

 

0: 0 mg/ml: 0 µl (Blank) 

1: 0.2 mg/ml: 1 µl 

2. 0.4 mg/ml: 2 µl 

3. 0.6 mg/ml: 3 µl 

4. 0.8 mg/ml: 4 µl 

5. 1 mg/ml: 5 µl 

 

Wells were mixed thoroughly, left for 5 min at room temperature and absorbance 

measured at 595 nm on a Varioskan Flash plate reader spectrophotometer.  

 

2.4.3 Making Tris-HCl gels 
 

Tris-HCl gels were prepared reusing the BioRad Mini-PROTEAN 3 system in 

accordance to the recipes detailed in Table 2.2 and Table 2.3. 10% gels were used in 
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the majority of cases except when probing for extremely large proteins (i.e. TSC2) 

where 6% gels were used.  

 

 

Resolving Gel Reagents 

6% gel 
 

10% gel 

H2O 5.3 ml 4 ml 
30% (v/v) acrylamide 2 ml 3.3 ml 
1.5 M Tris pH 8.8 2.5 ml 2.5 ml 
10% (w/v) SDS 100 µl 100 µl 
10% (w/v) ammonium persulphate (APS) 100 µl 100 µl 
TEMED (N, N, N’, N’-tetramethylenediamine) 10 µl 10 µl 

Table 2.2: Recipe for 10 ml 6% and 10% Tris-HCl resolving gels. 
 

 

Reagents Stacking Gel 
 

H2O 2.7 ml 
30% (v/v) acrylamide 670 µl  
1.5 M Tris pH 8.8 500 µl 
10% (w/v) SDS 40 µl 
10% (w/v) APS 40 µl 
TEMED  5 µl 

Table 2.3: Recipe for 8 ml Tris-HCl stacking gel. 
 
 

2.4.4 Western blotting 
 

Tris-HCl gels were placed in a BioRad Mini-PROTEAN 3 Cell containing approximately 

500 ml 1x running buffer (see Section 2.11).  Equal amounts (15-30 µg) of protein from 

each sample was made up to 10 µl with distilled H2O and mixed with 5 µl 3x SDS 

Sample Buffer Red (Cell Signaling Technology, Danvers, USA; see Section 2.11) 

supplemented with 0.1 M dithiothreitol (DTT; Cell Signaling Technology) to give a final 

volume of 15 µl. The samples along with the protein marker (New England BioLabs, 

Ipswich, USA) were heated at 95ºC for 5 min before being spun briefly up to 13000 

rpm in a Heraeus® Biofuge® microfuge (16100 g).  Protein marker (5 µl) was loaded 

into the first well and the samples (15 µl) loaded into subsequent wells. The gel was 

resolved at 150 V for a minimum of 60 min. The gel was removed and placed between 

transfer filter paper and membrane in a ‘sandwich’ consisting of 1 sponge (BioRad 

Laboratories), 1 filter paper, nitrocellulose blotting membrane (Whatman), a further 1 
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filter paper and 1 sponge in a  BioRad Mini-Trans Blot Cell as per manufacturers 

instructions. Approximately 500 ml transfer buffer (see Section 2.11) was added to the 

BioRad Mini-Trans Blot Cell before being transferred at 100 V for 1 h.  This is with the 

exception of the 6% gel used when looking at large proteins (i.e. tuberin) where the gel 

was transferred at 30 V overnight at 4°C followed by 70 V for 1 h at room temperature 

the following day.  

 

Membranes were blocked with 5% (w/v) milk (dried non-fat Marvel) made in 0.1% (w/v) 

TBS-Tween (5 ml; TBS-TW; see Section 2.11) for 1 h at room temperature on an 

automatic roller before being stained with primary antibody (see Table 2.4) overnight at 

4°C. The following day membranes were then washed (3x 5 min) with 0.1% TBS-TW 

(5 ml) and stained with the appropriate secondary horseradish peroxidase-conjugated 

(HRP) antibody (see Table 2.4) for 1 h at room temperature. Membranes were again 

washed (3x 5 min) with 0.1% TBS-TW (5 ml). 1:1 mixture of stable peroxide solution 

and luminol enhancer that form the Supersignal West Pico Chemilluminescent 

substrate reagent (Thermo Fisher Scientific) was applied to the membrane for 1 min. 

Chemilluminescence was detected on a ChemiDoc-It® Imaging System (Ultra-Violet 

Products Ltd., Cambridge, UK) using VisionWorks®LS Image Acquisition and Analysis 

Software (UVP Ltd). Protein band quantification was carried out using ImageJ software 

(http://rsb.info.nih.gov/ij/). Protein expression values were normalised to expression of 

β-actin and then to untreated control. For phospho-specific antibodies, expression 

values were expressed relative to total protein. For 4E-BP1, phosphorylation was 

detected as a decrease in the migration of 4E-BP1 detected using non-phospho-

specific antibody and phosphorylated forms were quantified as a proportion of total 4E-

BP1 expression. 

 

2.4.5 Stripping of membranes 
 

Membranes were washed for 5 min in stripping buffer (5 ml; see Section 2.11) to strip 

off the antibody complexes prior to re-probing. Blots were further washed (3x 5 min 

and 2x 10 min) with 0.1% TBS-TW (5 ml) to restore pH and finally re-blocked in 5% 

(w/v) milk in 0.1% TBS-TW (5 ml) for 1 h at room temperature before being re-probed. 
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Primary antibody 

Species 
raised in 

Blocking 
step 

 
Supplier 

 
Dilution 

4E-BP1 rabbit BSA Cell Signaling Technology  1:1000 
Akt  rabbit BSA Cell Signaling Technology 1:1000 
AMPK rabbit BSA Cell Signaling Technology 1:1000 
β-actin rabbit milk Sigma 1:1000 
eEF2 rabbit BSA Cell Signaling Technology 1:1000 
eIF2α rabbit BSA Cell Signaling Technology 1:1000 
ERK1/2 mouse BSA Cell Signaling Technology 1:1000 
HIF1α  mouse milk BD Biosciences 1:250 
Hsc70 mouse milk Santa Cruz Biotechnology 

Ltd., Heidelberg, Germany 
1:1000 

NDRG1 rabbit BSA Cell Signaling Technology 1:1000 
p70 S6K rabbit BSA Cell Signaling Technology 1:1000 
P-Akt (Thr308)  rabbit BSA Cell Signaling Technology 1:1000 
P-Akt (Ser473)  rabbit BSA Cell Signaling Technology 1:1000 
P-AMPK (Thr172) rabbit BSA Cell Signaling Technology 1:1000 
P-eEF2 (Thr56) rabbit BSA Cell Signaling Technology 1:1000 
P-eIF2α (Ser51) rabbit BSA Cell Signaling Technology 1:1000 
P-ERK1/2 
(Thr202/Tyr204) 

rabbit BSA Cell Signaling Technology 1:1000 

P-NDRG1 
(Thr346) 

rabbit BSA Cell Signaling Technology 1:1000 

P-p70 S6K 
(Thr389) 

rabbit BSA Cell Signaling Technology 1:1000 

PTEN goat milk Santa Cruz Biotechnology 
Ltd. 

1:200 

Tuberin mouse milk Santa Cruz Biotechnology 
Ltd. 

1:200 

Secondary 
antibody 

Species 
raised in 

Blocking 
step 

 
Supplier 

 
Dilution 

goat rabbit milk Dako, Stockport, UK 1:5000 
mouse sheep milk GE Healthcare UK Ltd., 

Buckinghamshire, UK 
1:5000 

rabbit donkey milk GE Healthcare UK Ltd. 1:5000 

Table 2.4: List of antibodies used for western blotting. 
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2.5 HDAC inhibition assay 
 

Cells were seeded at a density of 1000 cells per well of a 96 well plate in complete 

DMEM (81 µl) and incubated overnight at 37ºC/10% (v/v) CO2. The following day cells 

were treated in the absence or presence of watercress-derived compounds. A DMSO 

solvent control was carried out and known HDAC inhibitors trichostatin A (TSA; Sigma) 

(Yoshida et al., 1990) or suberoylanilide hydroxamic acid (SAHA; Enzo Life Sciences 

Ltd., Exeter, UK) (Richon et al., 1998) were used as positive controls. A blank 

containing all reagents but no cells was also analysed. Stock solutions were diluted in 

DMSO to give 100x final concentrations before 4 μl of each was added to complete 

DMEM (36 μl) in a dilution plate. 9 μl of the serially diluted compound was added to 

each well. This way every well has the same concentration of DMSO. Cells were 

incubated for 16 h. 10 μl of either 2 mM BOC-lys(ac)-AMC (Bachem, Weil am Rhein, 

Germany) or 2 mM control, BOC-lys-AMC (Bachem), was added to each well and cells 

incubated for a further 1 h. Lysis buffer/developer mix (100 μl; see Section 2.11) was 

added to each well and incubated for 16 h before fluorescence (excitation 355 nm, 

emission 460 nm) was measured on Varioskan Flash plate reader. See Figure 2.1 for 

schematic of the mechanism. 

2.6 Luciferase reporter assay 

 

2.6.1 Plasmid transformation 
 

0.5 μl of each plasmid was added to 50 μl competent JM109 bacterial cells (kind gift of 

Patrick Duriez, Cr-UK Protein Core Facility, Southampton, UK) including a negative 

control (no addition) and incubated on ice for 30 min. The bacteria were then heat 

shocked for 60 seconds at 42°C and immediately cooled on ice for 2 min. L Broth (450 

μl; LB) warmed to 37ºC was added and the tubes were agitated at 200 rpm for 45 min 

in an incubating shaker (37ºC). 50 μl was spread on LB agar plates containing 50 

ug/ml ampicillin (Sigma) and incubated at 37°C overnight. A single colony from each 

positive plate was picked using a sterile pipette tip and placed in a 50 ml centrifuge 

tube containing LB (5 ml) supplemented with 50 ug/ml ampicillin and placed in an 

incubating shaker overnight (200 rpm at 37°C). The following day 400 μl from the 

culture was removed and placed in 1 L conical flask along with 200 ml LB and 200 μl 

ampicillin, and returned to an incubating shaker overnight (200 rpm at 37°C). 

Maxipreps were prepared using a Hi Speed® Plasmid Maxi Kit (Qiagen Ltd, Sussex,  



                                                                                       Chapter 2: Materials and methods 

58 

 

Figure 2.1: Schematic of the mechanism behind the HDAC inhibition assay.  
(a) In the absence of a HDAC inhibitor the BOC-lys(ac)-AMC compound is 
deacetylated by HDACs in the cells. This allows the trypsin in the lysis buffer to cleave 
the bond between the now unprotected lysine and the AMC fluorescent fluorophore, 
releasing it. The fluorophore gives off a fluorescent signal. (b) In the presence of a 
HDAC inhibitor the cells are prevented from deacetylating the BOC-lys(ac)-AMC 
compound, so the lysine remains acetylated. The trypsin is unable to cleave the 
fluorophore and subsequently there is a reduction in fluorescent signal. HDAC, histone 
deacetylase; Lys, lysine; Ac, acetyl group; AMC, 7-amino-4-methylcoumarin; HDACi, 
histone deacetylase inhibitor. 

AMC BOC-lys + 

BOC-lys(ac )-AMC  

BOC-lys-AMC  

Trypsin 

HDAC Step 1: HDACs remove acetyl  
             group from substrate. 

Step 2: Bond between lysine and  
             AMC is cleaved by trypsin. 

AMC fluorophore is free to 
fluoresce. 

a) 

HDAC HDACi 

BOC-lys(ac)-AMC  

BOC-lys(ac)-AMC  

BOC-lys(ac)-AMC  

Trypsin 

Step 1: Activity of HDACs is  
             inhibited and the substrate            
             remains acetylated. 

Step 2: Bond between lysine and  
             AMC is protected by the  
             acetyl group and trypsin is  
             unable to cleave it. 

AMC fluorophore remains  
attached and does not fluoresce. 

b) 
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UK) as per manufacturer’s instructions. Plasmid DNA was quantified on a NanoDrop 

1000 Spectrophotometer (Thermo Fisher Scientific) and stored at + 4°C. 

 

2.6.2 Transfecting cell lines 
 

Cells were seeded at a density of 3x106 cells per 10 cm culture dish (Greiner Bio-One 

Ltd.)  in complete DMEM (15 ml) and incubated overnight at 37°C/10% (v/v) CO2. The 

following day cells were transfected with either the HIF-dependent luciferase reporter 

construct pGL2-TK-HRE (Rapisarda et al., 2002) (a kind gift of Giovanni Melillo, 
Tumour Hypoxia Laboratory, NCI, USA) or a control pGL3-promotor (Promega).   

Transfection mixtures containing 6 ml serum free DMEM, 4 µg desired plasmid DNA 

and 90 µl TransFast™ Transfection Reagent (Promega) were incubated for 12 min at 

room temperature and mixed intermittently. Media was removed from cells and 

replaced with the transfection mixture. Cells were incubated for a further 2 h at 

37°C/10% (v/v) CO2 after which the transfection mixtures were removed and replaced 

with complete DMEM (15 ml). Cells were incubated overnight at 37°C/10% (v/v) CO2. 

 

2.6.3 Treating the cells 
 

Transfected cells were recovered and plated in white 96 well plates (PerkinElmer Ltd., 

Cambridge, UK) at a density of 2000 cells per well in complete DMEM (50 μl).  Cells 

were incubated for 5 h to allow cells to adhere before being treated with increasing 

concentrations of crude watercress extract, and distilled water as a control. Cells were 

cultivated with or without hypoxia mimetic DFO for 24 h at 37°C/10% (v/v) CO2.   

 

When analysing the effect on antioxidant response element (ARE) activity, stably 

transfected MCF-7 derived reporter cells, AREc32, were used. In this instance cells 

were simply plated in white 96 well plates at a density of 5000 cells per well in 

complete DMEM (50 μl) and left overnight to adhere. The following day the cells were 

treated with increasing concentrations of PEITC or crude watercress extract, and either 

DMSO or distilled water as solvent controls respectively for 24 h at 37°C/10% (v/v) 

CO2. 

 

2.6.4 Bright Glo assay 
 

Luciferase activity was measured after 24 h. Bright -Glo™ (100 µl; Promega) was 

added to each of the wells before the 96 well plate was placed in a Varioskan Flash 
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plate reader where the plates were shaken for 2 min and incubated at 37°C for 12 min. 

Luminescence was then measured.   

 

2.7 Quantitative-reverse transcription-polymerase chain 
reaction (Q-RT-PCR) 
 

2.7.1 Total RNA extraction 
 

MCF7 cells were seeded at a density of 1x106 cells in 60 mm culture plates in 

complete DMEM (5 ml) and incubated at 37ºC/10% (v/v) CO2 overnight to adhere. The 

following day cells were treated in duplicate with PEITC or DMSO as a solvent control, 

or were left untreated. Cells were cultured in a hypoxia chamber for 16 h before being 

harvested. On ice, media was decanted and discarded and the cells were rinsed with 

ice cold PBS (1 ml). More ice cold PBS (1 ml) was added and the cells were scraped 

with a plastic cell scraper and collected in a 1.5 ml microcentrifuge tube.  

 

Cells were centrifuged at 4ºC and 3000 rpm for 1 min in a Heraeus® Biofuge® fresco 

microfuge (860 g) and the supernatant decanted and discarded. The cell pellet was 

resuspended in TRIZOL (1 ml; Invitrogen, Paisley, UK) and incubated at room 

temperature for 5 min. Samples were further centrifuged at 4ºC and 13000 rpm for 15 

min in a Heraeus® Biofuge® fresco microfuge (16100 g) and the supernatant 

transferred to a fresh 1.5 ml microcentrifuge tube. Phenol chloroform (200 μl; Applied 

Biosystems, CA, USA) was added to each sample before they were vortexed 

vigorously for 15 seconds and incubated at room temperature for 3 min. Samples were 

again centrifuged 4ºC and 13000 rpm for 15 min in a Heraeus® Biofuge® fresco 

microfuge (16100 g) to separate the mixture into a lower phenol-chloroform phase, an 

interphase, and a colourless upper aqueous phase. RNA remains exclusively in the 

aqueous phase. The upper aqueous phase was carefully transferred into a fresh 1.5 ml 

microcentrifuge tube without disturbing the interface. Isopropanol (500 μl) was added 

to precipitate the RNA and the samples were incubated at room temperature for 10 min 

before being centrifuged at 4ºC and 13000 rpm for 15 min in a Heraeus® Biofuge® 

fresco microfuge (16100 g). The supernatant was decanted and discarded and the 

pellets washed with 75% (v/v) ethanol (1 ml) by vortexing samples and centrifuging at 

4ºC and 7500 rpm for 15 min in a Heraeus® Biofuge® fresco microfuge (5360 g) and 

again discarding the supernatant. The remaining RNA pellet was partially air-dried for 

5-10 min and dissolved in nuclease free water (20 µl; Promega). RNA was quantified 
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on NanoDrop 1000 Spectrophotometer and all samples had an A260/A280 ratio > 2.0 

confirming the purity of the samples. 

 

2.7.2 Generation of cDNA by reverse transcriptase  
 

1 μg total RNA was added to 1 μl oligo (dT) primer (500 μg/ml; Promega) and made up 

to 15 μl with nuclease-free water (Promega). Samples were vortexed and spun briefly 

at 13000 rpm in a Heraeus® Biofuge® fresco microfuge (16100 g) before being 

incubated at 70ºC for 5 min. 5 μl M-MLV RT 5x buffer (see Section 2.11), 1.25 μl of 10 

mM dNTP mix, 0.625 μl RNasin (40 U/μl), 1 μl M-MLV reverse transcriptase enzyme 

(200 U/μl) and 2.125 μl nuclease-free water were added to each sample. Samples 

were again vortexed and spun briefly at 13000 rpm in a Heraeus® Biofuge® fresco 

microfuge before being incubated at 42ºC for 60 min and 95ºC for 5 min. 75 μl 

nuclease-free water was added to make the final volume 100 μl and the samples 

stored at -20ºC. 

 

2.7.3 Q-PCR 
 

Q-PCR was performed in 20 μl reactions containing 10μl Taqman® Universal 2x PCR 

Master Mix (P/N 4304437 contains AmpliTaq Gold DNA Polymerase, AmpErase UNG, 

dNTPs with dUTP, Passive Reference, and optimized buffer components; Applied 

Biosystems), 1 µl of the Taqman® Gene Expression Assay of interest (Applied 

Biosystems), 5 μl cDNA and 4 μl nuclease free water. Expression assays used for this 

study were; BNIP3 (Hs00969293_mH), VEGF-A (Hs00173626_m1), CAIX 

(Hs00154208_m1), GLUT1 (Hs00892681_m1) and β-actin (Hs99999903_m1). All 

reactions were performed in duplicate. PCR plates were spun briefly up to 1000 rpm in 

a Sorvall® Legend RT bench top centrifuge (200 g) before PCR was performed using 

the ABI PRISM 7500 Sequence Detection System (Applied Biosystems) according to 

the following thermal cycle protocol: 94°C 10 min followed by 40 cycles of denaturation 

at 94°C for 15 s and annealing/extension at 60°C for 1 min. Control reactions with no 

cDNA were run on each plate for each Taqman® Gene Expression Assay used and no 

amplification was detected in any control reaction. All expression values were 

normalised using expression of β-actin as a control. 
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2.8 Metabolic radiolabelling experiments 
 

2.8.1 Metabolic radiolabelling  
 

Cells were seeded at a density of 1x106 cells per well in a 6 well dish (Greiner Bio-One 

Ltd.) in complete DMEM (2 ml) and incubated overnight to adhere. The following day 

cells were washed three times in warm DMEM (1 ml) lacking L-glutamine, L-cysteine 

and L-methionine (MP Biomedicals, Illkirch, France) before being incubated in DMEM 

(1 ml) without L-glutamine, L-cysteine and L-methionine supplemented with 10% (v/v) 

dialysed FBS and 2 mM glutamine for 1 h. Cells were pretreated for 1 h in the absence 

or presence of crude watercress extract, PEITC, 0.3% DMSO (equivalent to the 

highest volume of PEITC) or 10 μg/ml cycloheximide (CHX; Sigma) before the cells 

were radioactively labelled. In one experiment cells were also treated with 25 nM of the 

mTORC1 inhibitor rapamycin (Sigma). CHX is an inhibitor of general protein synthesis 

(Baliga et al., 1969) and acts as a positive control. In experiments where CoCl2 was 

used to mimic hypoxia, 100 μM was added at the same time as PEITC.  0.75 MBq per 

ml TRAN35S - LABEL™ No - Thaw Metabolic Labelling Reagent (MP Biomedicals) with 

specific activity >37.0 TBq/mmol was added to each well and the cells incubated for 2 

h at 37°C/10% (v/v) CO2. Future experiments were performed using the same amount 

of [35S]methionine and [35S]cysteine. 

 

2.8.2 Immunoprecipitation 
 

Following S35 metabolic cell labelling (see Section 2.8.1), media was decanted and 

discarded and the cells washed with ice cold PBS (1 ml) on ice. 1x RIPA buffer (800 μl) 

with a 1:100 dilution of protease inhibitor cocktail and phosphatase inhibitor cocktail 1 

was added and intermittently pipetted up and down to lyse all the cells. Lysates were 

transferred to a 1.5 ml microcentrifuge tube and left on ice for 15 min. Samples were 

centrifuged at 4ºC and 13000 rpm in a Heraeus® Biofuge® fresco bench top centrifuge 

(16100 g) for 10 min and the supernatant removed and aliquoted into a fresh 

microcentrifuge tube. Samples were incubated with 1 μg anti-HIF1α (BD Biosciences) 

overnight at 4ºC on a suspension mixer. Meanwhile G-coupled Sepharose beads (GE 

Healthcare UK Ltd.), were washed in 1x RIPA buffer (3x 1 ml) before being 

resuspended in twice their volume of 1x RIPA buffer and stored at 4ºC overnight. The 

following day G-coupled Sepharose beads (100 μl of 2x slurry) were added to each 

sample and incubated for 4 h at 4ºC on a suspension mixer. Beads were washed in 1x 
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RIPA buffer (4x 500 μl) and resuspended in 30 µl 3x SDS Sample Buffer Red 

supplemented with 0.1 M DTT before being stored at -20ºC. 

 

2.8.3 SDS-PAGE and phosphor imaging 
 

See Section 2.4.3 for making Tris-HCl gels. Gels were placed in a BioRad Mini-

PROTEAN 3 Cell and surrounded with approximately 500 ml 1x running buffer.  The 

samples along with the protein marker were heated at 95ºC for 5 min before being 

spun briefly up to 13000 rpm in a Heraeus® Biofuge® fresco microfuge (16100 g). The 

protein marker (5 µl) was loaded into the first well and samples (15 µl) loaded into 

subsequent wells. The gel was resolved at 150 V for a minimum of 60 min before being 

removed and washed in 75% (v/v) ethanol (10 ml; Thermo Fisher Scientific) for 15 min 

at room temperature to fix it. The gel was dried for approximately 1 h in a BioRad 

GelAir Dryer according to the manufacturer’s instructions with Saran™ wrap the size of 

the gel between the first layer of BioRad GelAir Cellophane Support and the gel for 

easy removal of the cellophane at the end of drying. The gel was placed in a BioRad 

Exposure Cassette-K for 24 h, face up against a Kodak storage phosphor screen 

(BioRad Laboratories). The Kodak storage phosphor screen was scanned by the 

BioRad Personal Molecular Imager® FX and analysed by BioRad Quantity One 

Software. 

 

2.8.4 Trichloroacetic acid precipitation 
 

Following S35 metabolic cell labelling (see Section 2.8.1), media was decanted and 

discarded and the cells washed with ice cold PBS (1 ml) on ice. Ice cold PBS (1 ml) 

was then added and the cells were detached with a plastic cell scrapper and collected 

in a 1.5 ml microcentrifuge tube.  This protocol was carried out for all cell lines with the 

exception of TSC2+/+TP53-/- and TSC2-/-TP53-/- MEFs. In this case, cells were 

scraped on ice in their media before the whole volume was transferred to a 15 ml 

centrifuge tube and centrifuged at 4ºC and 1500 rpm in a Sorvall® Legend RT bench 

top centrifuge (500 g) for 5 min. The supernatant was discarded and the cell pellet 

resuspended in ice-cold PBS (1 ml) before being transferred to a 1.5 ml 

microcentrifuge tube. Cells were centrifuged at 4ºC and 1500 rpm in a Sorvall® Legend 

RT bench top centrifuge (500 g) for 5 min and were again washed in ice-cold PBS (1 

ml).  
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Cell pellets were resuspended in distilled H2O (100 μl) by vortexing. 50 μl of 3 mg/ml 

methionine (Sigma) and 3 mg/ml cysteine (Sigma) in 1 M NaOH (diluted from 10 M 

stock; Thermo Fisher Scientific) was added and the tubes incubated at 37°C for 15 

min. 25% (w/v) trichloroacetic acid (100 μl; TCA; Sigma) was added to each tube 

before being cooled on ice. The resultant precipitate was collected on 25 mm glass 

microfibre filters (Whatman) using a sample manifold and the filters washed with 10% 

(w/v) TCA (3x 1 ml) and 95% (v/v) ethanol (2x 1 ml). The filter paper was air dried 

before being placed in a scintillation tube and covered with scintillation fluid (4 ml). 

Radioactivity was analysed on a WALLAC 1409 liquid scintillation counter (Perkin 

Elmer).  

 

2.9 Statistical Analysis  
 

All error bars represent ± the standard deviation of the mean for that data set. Data 

was analysed using the software package GraphPad Prism 4. The statistical 

significance of any differences was analysed using paired t-test. Asterisks on graphs 

are used to denote the following: * P < 0.05; **P < 0.01; ***P< 0.005. 

 

2.10 Field trials 
 

Three field trials were carried out at either Vitacress’ Fobdown farm in Alresford or 

Vitacress’ Doddings farm in Bere Regis in August 2009, September 2010 and April 

2011. In general, watercress seeds were germinated in polytunnels on a thin layer of 

soil and transplanted into gravel lined concrete beds supplied with a constant flow of 

spring water from a bore hole. Seedling density and base application of fertiliser, 

containing 7.5% N (CaNO3), 12% P2O4, 7.5% K2O, 4.5% MgO + SO3, followed by a 

second application once the plant roots had established themselves in the bed, were 

kept in accordance to Vitacress’ standard practice. Growing period varied between the 

trials from 4-8 weeks, depending on weather, and the watercress was considered 

ready to harvest when leaf size reached approximately 3 cm in diameter. Samples of 

approximately 100 g were cut using scissors from each of the top, middle and bottom 

sections of the beds to allow for biological repeats and ensure any effect seen applied 

to the entire bed. Samples were collected in freezer bags and immediately put on ice, 

before being snap frozen in liquid nitrogen and stored at -80°C on return to the 

laboratory.   
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During the trials growing conditions were altered by cutting off spring water supply to 

the bed and the addition of sulfur-rich fertilisers. Microthiol® Special, which contains 

80% w/w sulfur, was purchased from Fargro Ltd. (Littlehampton, UK) and was applied 

to the watercress as a foliar spray. Palm Brand sulfur powder, which is 99.8% sulfur, 

was also purchased from Fargro Ltd. and was added as a base application prior to 

transplanting the watercress seedlings. SoluPotasse, containing 55.8% SO4, 50.9% 

K2O and 0.6% Cl, and citric acid anhydrous (used to increase nutrient uptake) were 

purchased from Solufeed Ltd. (West Sussex, UK) and applied as a top dressing to the 

watercress. 

 

For the second and third field trials, fresh samples from each of the beds were sent to 

Natural Resource Management Ltd. (NRM; Berkshire, UK) for chemical analysis of 

total sulfur content. 

 

2.11 Media and solutions  
 
Complete Dulbecco’s modified Eagle’s medium (DMEM) 
500 ml DMEM  

50 ml FBS 

2 mM L-glutamine 

50 U/ml Penicillin 

50 U/ml Streptomycin 

(For culture of all cell lines) 

 

Serum free DMEM 
500 ml DMEM 

2 mM L-glutamine 

50 U/ml Penicillin 

50 U/ml Streptomycin 

 

Roswell Park Memorial Institute 1640 (RPMI) 
500 ml RPMI 

 

Phosphate buffered saline (PBS) 
137 mM NaCl  

2.7 mM KCl  
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4.3 mM Na2HPO4  

1.47 mM KH2PO4 

Adjust to a final pH of 7.4.  

 

5x Radioimmunoprecipitation assay (RIPA) buffer 
250 mM Tris-HCl (pH 8.0) 

750 mM NaCl 

5% (v/v) Igepal CA-630 

2.5% (w/v) Deoxycholate (DOC)  

0.5% (w/v) Sodium dodecylsulfate (SDS)  

 

Protease inhibitor cocktail (Sigma) 
2 mM AEBSF  

1 mM EDTA  

130 µM Bestatin  

14 µM E-64  

1 µM Leupeptin  

0.3 µM Aprotinin  
 

3x SDS sample buffer red (Cell Signaling Technology) 
187.5 mM Tris-HCl (pH 6.8 at 25°C) 

6% (w/v) SDS 

30% (v/v) glycerol  

0.03% (w/v) phenol red 

 

10x Running buffer 
250 mM Tris-base 

1.92 M glycine 

1% (w/v) SDS 

 

Transfer buffer 
25 mM Tris-base 

192 mM glycine 

0.1% (w/v) SDS 

25% (v/v) ethanol 
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10x TBS (Tris-buffered saline) 
100 mM Tris-HCl (pH 8.0) 

1.5 M NaCl 

 

TBS-Tween 
10 mM Tris-HCl (pH 8.0) 

150 mM NaCl 

0.1% (v/v) Tween-20 

 

Stripping buffer 
25 mM glycine (pH 2.0)  
1% (w/v) SDS 

 

Lysis buffer/developer mix 
25 mM Tris-HCl (pH 8.0) 

70 mM NaCl 

1.3 mM KCl 

1 mM MgCl2 

0.5% (v/v) Igepal CA-630 

Just before use add: 

2 mg/ml Trypsin (Sigma) 

10 μM TSA 

 

M-MLV RT 5x buffer (Promega) 
250 mM Tris-HCl (pH 8.3 at 25°C) 

375 mM KCl 

15 mM MgCl2  

50 mM DTT 



 

 

 
 

Chapter 3
 
Selection of assays to 
assess the in vitro 
anticancer effects of 
watercress-derived 
compounds 
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3.1 Introduction 
 
The long term goal of this project was to determine whether it was possible to 

manipulate the growth environment of watercress to improve its potential anticancer 

activities. An important first step in this process was to identify approaches suitable for 

the accurate quantitation of anticancer effects. Therefore, the aim of the work 

described in this chapter was to select assays to assess the in vitro anticancer effects 

of watercress-derived compounds. Once assays have been identified, subsequent 

studies would then use these assays to assess the effects of watercress extracts from 

crops grown under different cultivation conditions. 

 

This initial study focused on specific watercress-derived compounds, rather than 

watercress extracts. This approach was adopted before moving on to more complex 

proof-of-principle studies using extracts. Three specific watercress-derived 

compounds, PEITC, I3C and quercetin (see Figure 3.1 for compound structures) were 

selected for these studies. These compounds were selected because they have been 

shown to exert anticancer effects in a range of assays and were known to be present 

at high levels in watercress extracts. The assays selected for analysis included (i) 

inhibition of cell growth, (ii) inhibition of PI3K/Akt signalling, (iii) inhibition of HDAC 

activity and (iv) activation of Nrf2. Watercress compounds have been shown to inhibit 

the growth of various cancer cell lines (Chinni et al., 2001; Lee et al., 2009; Zhang et 

al., 2003b) and PEITC has previously been shown to inhibit PI3K signalling and HDAC 

activity, and to activate Nrf2 (Bonnesen et al., 2001; Myzak et al., 2006; Satyan et al., 

2006). Human MCF7 breast cancer cells were used for the majority of experiments, 

although some studies were also performed in SK-BR-3 cells to determine potential 

effects within distinct subtypes of breast cancer. 

 

3.2 Results 
 

3.2.1 Effect of PEITC, I3C and quercetin on the growth inhibition of 
breast cancer cell lines 
 

The MTS assay was used as a quick and simple way to measure growth inhibition by 

means of metabolic activity following treatment with PEITC, I3C or quercetin. In this 

context the term growth inhibition refers to the number of cells although it should be  
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Figure 3.1: Structure of watercress-derived compounds.  
(a) phenethyl isothiocyanate (PEITC), (b) indole-3-carbinol (I3C), (c) quercetin. 
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noted that the MTS assay in fact assesses metabolic activity and this is not an 

absolute measure of cell number. Changes to number of mitochondria can also alter 

metabolic activity. However, all plates were routinely checked under a microscope to 

confirm that the observed decrease in MTS reduction also correlated with reduced cell 

number.  MCF7 and SK-BR-3 breast cancer cell lines were treated with the 

watercress-derived compounds for 6 days prior to the MTS assay. Representative 

growth inhibition data in the form of survival curves are shown for PEITC, I3C and 

quercetin in Figure 3.2, Figure 3.3, and Figure 3.4 respectively. 

 

All compounds inhibited the growth of MCF7 and SK-BR-3 cells in a dose-dependent 

manner. Compounds provided simple sigmoidal dose response curves, allowing for 

robust curve-fitting and reproducible determination of relative IC50 values using the 

Prism software (Table 3.1). PEITC was found to be the most potent of the watercress-

derived compounds in both MCF7 and SK-BR-3 cells, although MCF7 cells appear to 

be approximately 2.5-fold more sensitive to PEITC than SK-BR-3 cells. In contrast 

there was no statistically significant difference in IC50 values for either I3C or quercetin 

between the cell lines.  

 

  

IC50/µM Value (mean ± SD) Watercress-derived 
compound 

MCF7 SK-BR-3 

PEITC 10.6 ± 1.4 27.0 ± 6.7*** 

I3C 104.7 ± 25.6 77.3 ± 25.0 

Quercetin 51.1 ± 11.7 133.9 ± 96.7 

Table 3.1: IC50 values of PEITC, I3C and quercetin in MCF7 and SK-BR-3 cells.  
IC50 values represent mean values ± standard deviation (SD) from at least five 
experiments performed in triplicate. Statistically significant differences in IC50 values for 
the compounds between the two cell lines are indicated (*** p<0.005). 
 

 

3.2.2 Molecular assays 
 

3.2.2.1 Effect of PEITC, I3C and quercetin on PI3K/Akt pathway  
 

HER2 is a member of the epidermal growth factor receptor (EGFR) family that when 

activated initiates a signal via the PI3K/Akt pathway that results in cell proliferation. 

HER2 has been found to be overexpressed in many cancers, and this overexpression  
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Figure 3.2: Effect of PEITC on growth inhibition of MCF7 and SK-BR-3 cells.  
Representative growth inhibition experiments of (a) MCF7 and (b) SK-BR-3 cell lines. 
Cells were treated with various concentrations of PEITC ( ), DMSO ( ) equivalent to 
the highest volume of PEITC and 0.5 μM STS as a positive control ( ). After six days 
metabolic activity was determined by MTS assay using the CellTiter 96® AQueous One 
Solution reagent. Data shown are derived from means of triplicate wells (± SD).  
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Figure 3.3: Effect of I3C on growth inhibition of MCF7 and SK-BR-3 cells. 
Representative growth inhibition experiments of (a) MCF7 and (b) SK-BR-3 cell lines. 
Cells were treated with various concentrations of I3C ( ), DMSO ( ) equivalent to the 
highest volume of I3C and 0.5 μM STS as a positive control ( ). After six days 
metabolic activity was determined by MTS assay using the CellTiter 96® AQueous One 
Solution reagent. Data shown are derived from means of triplicate wells (± SD). 
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Figure 3.4: Effect of quercetin on growth inhibition of MCF7 and SK-BR-3 cells.  
Representative growth inhibition experiments of (a) MCF7 and (b) SK-BR-3 cell lines. 
Cells were treated with various concentrations of quercetin ( ), DMSO ( ) equivalent to 
the highest volume of quercetin and 0.5 μM STS as a positive control ( ). After six days 
metabolic activity was determined by MTS assay using the CellTiter 96® AQueous One 
Solution reagent. Data shown are derived from means of triplicate wells (± SD). 
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is consistent with poor clinical outcome (Slamon et al., 1987; Slamon et al., 1989). This 

pathway was chosen to be investigated as it represents a key cancer pathway, 

especially in certain breast cancer subtypes, and quercetin has been previously shown 

to reduce HER2 expression (Kim et al., 2005).  

 

Akt phosphorylation was used as a measure of the effect of watercress-derived 

compounds on HER2. The activation of HER2 triggers a signal cascade involving 

recruitment of Akt to the cell membrane and its subsequent phosphorylation.  Akt is 

phosphorylated at multiple sites, at threonine 308 (Thr308) by PDK1 (Alessi et al., 

1997) and at serine 473 (Ser473) by mTORC2 (Sarbassov et al., 2005). It has been 

shown that the monoclonal antibody Herceptin inhibits HER2 induced proliferation and 

this correlates with reduced Akt phosphorylation at Thr308 and Ser473 (Longva et al., 

2005; Tseng et al., 2006). Herceptin is only effective in cancers where HER2 is 

overexpressed (Vogel et al., 2002) and as a result the SK-BR-3 breast cancer cell line 

was used initially in this experiment as these cells overexpress HER2. Cells were 

incubated in the presence or absence of PEITC, I3C or quercetin for 2 h and Akt 

phosphorylation at both Thr308 and Ser473 analysed by western blot (Figure 3.5 and 

3.6). Blots were stripped and reprobed for β-actin and total Akt to demonstrate equal 

loading and that changes in Akt phosphorylation occurred independent of changes to 

total Akt protein levels. It should be noted that sometimes there are two bands 

detected when probing for phospho-Akt (Thr308). The faster migrating band may be 

Akt 2 isoform that has a Mw of 56 kDa compared to 60 kDa of Akt 1 and 3.  

 

Quercetin induced a statistically significant decrease in phosphorylation of Akt at 

Ser473 at both concentrations tested, but had no effect on phosphorylation at Thr308. 

There appeared to be a trend towards increased phosphorylation of both sites in 

PEITC-treated cells, although this did not reach statistical significance. There was no 

effect of I3C on either Akt phosphorylation site. 

 

As receptors other than HER2 can lead to Akt phosphorylation the effect of watercress-

derived compounds on Akt phosphorylation was also investigated in MCF7 cells 

(Figure 3.7 and 3.8). Similar to SK-BR-3 cells, quercetin has no effect on Thr308 

phosphorylation but caused a statistically significant reduction in Akt Ser473 

phosphorylation. There was no change observed following I3C treatment. Similar to 

SK-BR-3 cells, PEITC increased Akt phosphorylation at both Thr308 and Ser473 and, 

in MCF7 cells, this did reach statistical significant at all concentrations tested. Taken 

together the data demonstrate that watercress compounds do modulate Akt  
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Figure 3.5: Effect of PEITC, I3C and quercetin on Akt phosphorylation in SK-BR-3 
cells.  
SK-BR-3 cells were treated with indicated concentrations (µM) of PEITC, I3C, or 
quercetin (Qn), DMSO (equivalent to the highest volume), or left untreated (UT) for 2 h. 
20 µg of whole cell lysate was subjected to SDS-page and analysed by western blot for 
either phospho-Akt (Thr308) or phospho-Akt (Ser473) then stripped and reprobed for 
total Akt (60 kDa) and β-actin (42 kDa). Western blots are representative of three 
independent experiments, the results of which are combined in the densitometry graph 
(Figure 3.6). 
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Figure 3.6: Densitometry of effect of PEITC, I3C and quercetin on Akt 
phosphorylation in SK-BR-3 cells western blot.  
SK-BR-3 cells were treated with indicated concentrations (µM) of PEITC, I3C, or 
quercetin (Qn), DMSO (equivalent to the highest volume), or left untreated (UT) for 2 h. 
Whole cell lysate was subjected to SDS-page and analysed by western blot for either 
phospho-Akt (Thr308) or phospho-Akt (Ser473) then stripped and reprobed for total 
Akt. Band area from three independent experiments were analysed by ImageJ 
software and mean band area of (a) P-Akt (308) or (b) P-Akt (473) relative to total Akt 
are shown (± SD). Statistically significant differences between UT and the treatments 
are indicated (*** p<0.005). All other comparisons were not statistically significant. 
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Figure 3.7: Effect of PEITC, I3C and quercetin on Akt phosphorylation in MCF7 
cells.  
MCF7 cells were treated with indicated concentrations (µM) of PEITC, I3C, or 
quercetin (Qn), DMSO (equivalent to the highest volume), or left untreated (UT) for 2 h. 
20 µg of whole cell lysate was subjected to SDS-page and analysed by western blot for 
either phospho-Akt (Thr308) or phospho-Akt (Ser473) then stripped and reprobed for 
total Akt (60 kDa) and β-actin (42 kDa). Western blots are representative of three 
independent experiments, the results of which are combined in the densitometry graph 
(Figure 3.8). 
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Figure 3.8: Densitometry of effect of PEITC, I3C and quercetin on Akt 
phosphorylation in MCF7 cells western blot.  
MCF7 cells were treated with indicated concentrations (µM) of PEITC, I3C, or 
quercetin (Qn), DMSO (equivalent to the highest volume), or left untreated (UT) for 2 h. 
Whole cell lysate was subjected to SDS-page and analysed by western blot for either 
phospho-Akt (Thr308) or phospho-Akt (Ser473) then stripped and reprobed for total 
Akt. Band area from three independent experiments were analysed by ImageJ 
software and mean band area of (a) P-Akt (308) or (b) P-Akt (473) relative to total Akt 
are shown (± SD). Statistically significant differences between UT and the treatments 
are indicated (* p<0.05; ** p<0.01; *** p<0.005). All other comparisons were not 
statistically significant. 
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phosphorylation in breast cancer cell lines. However, different compounds either 

increase or decrease phosphorylation. Overall there appears to be little difference in 

the effect of watercress derived compounds between the two cell lines suggesting that 

these responses are independent of HER2. Although as only two cell lines were looked 

at this would require further validation.   

 

3.2.2.2 Effect of PEITC, I3C and quercetin on HDAC inhibition 
 

Altered gene expression patterns due to modified chromatin organisation are found in 

many cancers. Epigenetic modifications such as the level of histone acetylation, which 

is determined by the balance between the activity of histone acetyltransferases (HATs) 

and histone deacetylases (HDACs), are responsible for remodeling chromatin into a 

transcriptionally active or inactive state (Ropero and Esteller, 2007). In particular, 

HDAC inhibitors are emerging as a promising new tool in the treatment of cancer. They 

offer the possibility to reverse the repression of various genes that are involved with 

apoptosis and cell cycle regulation such as Bax and p21. The assay to determine 

HDAC inhibition activity in the watercress-derived compounds was selected as there is 

some evidence that conjugates of ITCs act as HDAC inhibitors (Myzak et al., 2004). 

This HDAC inhibition coincides with increased global acetylation at histone H3 and H4, 

as well as specific acetylation at the p21 promoter. To examine if PEITC, I3C and 

quercetin act as HDAC inhibitors MCF7 cells were treated in the absence or presence 

of each compound for 16 h before the addition of a HDAC substrate, BOC-lys(ac)-

AMC, for a further hour. 

 

Cells were subsequently lysed and incubated overnight before fluorescence was 

determined on a plate reader.  If the BOC-lys(ac)-AMC compound is able to be 

deacetylated by the cells then when the lysis buffer is added the trypsin in it is able to 

cleave the bond between the now unprotected lysine and the AMC fluorescent 

fluorophore, thus releasing it and allowing it to give off a fluorescent signal. However, if 

the compounds act as HDAC inhibitors and prevent the cells from deacetylating the 

BOC-lys(ac)-AMC compound, then the lysine will remain acetylated. The trypsin will 

then be unable to cleave the fluorophore and subsequently there will be a reduction in 

fluorescent signal.   

 

The known HDAC inhibitor Trichostatin A (TSA) (Yoshida et al., 1990) was used as a 

positive control and shows complete loss of fluorescence at all concentrations tested  
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(Figure 3.9). With regards to the watercress-derived compounds there was very little 

change in fluorescence following either PEITC or I3C treatment, although there was a 

dose dependent decrease in fluorescence when the cells were treated with quercetin 

with an IC50 of 100.2 µM.  

 

It was important to determine whether quercetin acted as a true HDAC inhibitor, or 

whether it interfered with trypsin cleavage in the second phase of the assay (i.e. was a 

false positive). To investigate this, non-acetylated BOC-lys-AMC was added to 

quercetin treated cells alongside the BOC-lys(ac)-AMC reagent. If quercetin was a 

bona fide HDAC inhibitor than it would have no effect on the fluorescence of the non-

acetylated reagent as it is not a HDAC substrate. In this experiment another known 

HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) (Richon et al., 1998) was used 

as a positive control and demonstrated a dose-dependent loss of fluorescence (Figure 

3.10).  While a decrease in fluorescence was again observed in cells treated with 

quercetin and BOC-lys(ac)-AMC, a similar reduction in fluorescence was detected in 

cells treated with the non-acetylated reagent. Therefore, quercetin is not a true HDAC 

inhibitor but produced a false positive result by interfering with trypsin’s ability to cleave 

the bond between the deacetylated lysine and the AMC fluorescent fluorophore.  

 

3.2.2.3 Effect of PEITC on Nrf2 activity 
 

One of the key targets for xenobiotics and phytochemicals is the Nrf2 transcription 

factor. Activation of Nrf2 induces a battery of target genes involved in antioxidant 

protection. This is important not just for protecting cells from oxidative/electrophilic 

damage, but also the chemopreventive actions of compounds such as PEITC. I 

therefore analysed the effect of PEITC on Nrf2 activity. Nrf2 activity was analysed 

using AREc32 cells, a stable MCF-7 derived reporter cell-line containing a luciferase 

construct controlled by multiple copies of the antioxidant response element (ARE) 

(Wang et al., 2006). AREc32 cells were incubated in the presence of PEITC for 24 h 

before luciferase was assayed. PEITC caused a dose-dependent increase in ARE-

driven gene expression that was statistically significant at all doses tested (Figure 

3.11). In previous studies, effective concentrations have been considered as the 

concentration of compound that doubled induction of luciferase gene activity (CD) 

(Wang et al., 2006). In my hands, 2.5 µM PEITC resulted in over a 2-fold increase in 

Nrf2 activity. 
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Figure 3.9: Effect of watercress-derived compounds on HDAC inhibition.  
MCF7 cells were treated in the absence or presence of either PEITC ( ), I3C ( ), or 
quercetin ( ) for 16 h before the BOC-lys(ac)-AMC reagent was added for 1 h. Lysis 
buffer was added and the cells were incubated overnight before fluorescence was read 
on a 96-well plate reader. Known HDAC inhibitor TSA ( ) was used as a positive 
control and  represents untreated. Data shown are derived from means of triplicate 
wells ± SD. 
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Figure 3.10 Effect of quercetin on HDAC inhibition.  
MCF7 cells were treated in the absence or presence of quercetin for 16 h before either 
the BOC-lys(ac)-AMC reagent ( ) or non-acetylated control BOC-lys-AMC ( ) was 
added for 1 h. Lysis buffer was added and the cells were incubated overnight before 
fluorescence was read on a 96-well plate reader. Known HDAC inhibitor SAHA ( ) was 
used as a positive control.  and  represent untreated with either the BOC-lys(ac)-
AMC or BOC-lys-AMC respectively. Data shown are derived from means of triplicate 
wells ± SD. 
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Figure 3.11: Effect of PEITC on ARE-driven expression.  
MCF7 cells stably transfected with ARE were treated with the indicated concentrations 
of PEITC ( ) or equivalent volume of DMSO as a control ( ) for 24 h and then 
luciferase activity determined. Data shown is mean (± SD) of three independent 
experiments. Statistically significant differences between DMSO and PEITC treated 
cells are indicated (* p<0.05; ** p<0.01).
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3.3 Discussion 
 

The aim of the work described in this chapter was to identify assays that could be used 

for the subsequent analysis of the in vitro anticancer effects of watercress extracts. 

Based on published literature, I selected four assays to investigate, (i) growth 

inhibition, (ii) inhibition of PI3K/Akt signalling, (iii) HDAC activity and (iv) Nrf2 activity. 

 

3.3.1 Growth inhibition 
 

Growth inhibition appeared to be an appropriate assay to monitor the activity of 

watercress-derived compounds. The MTS assay is rapid and simple, and can be 

performed in 96 well plates allowing determination of IC50 values with good 

reproducibility. All compounds inhibited the growth of both MCF7 and SK-BR-3 cells in 

a dose-dependent manner. This is consistent with previous studies demonstrating that 

all three compounds inhibited the growth of a variety of human cancer cells grown in 

culture and within a similar concentration range (Chinni et al., 2001; Lee et al., 2009; 

Zhang et al., 2003b). Overall, PEITC was the most potent compound tested. There 

was relatively little difference in the response of the two cell lines to the compounds, 

and only for PEITC were responses statistically different, with MCF7 cells being 

approximately 2.5-fold more sensitive.  

 

It is not clear why MCF7 cells are more sensitive to growth inhibition by PEITC. MCF7 

cells have wild type p53 whereas SK-BR-3 cells contain mutant p53. Some studies 

have suggested that PEITC has similar effects in wild type and mutant p53 containing 

colon cancer cells (Pappa et al., 2006). However, other studies have shown that 

PEITC induced greater apoptosis in mouse epidermal JB6 p53 -/- cells compared to 

corresponding p53 +/+ cells (Huang et al., 1998). Therefore, the role of p53 in the 

differential responses of MCF7 and SK-BR-3 cells is unclear.  Recent studies in the 

laboratory suggest that MCF7 cells have relatively high basal levels of oxidative stress 

compared to other breast cancer cell lines (Sharaifah Syed Alwi, Breeze Cavell, 

Graham Packham, unpublished). Heightened basal ROS may explain why these cells 

are more susceptible to further PEITC-induced ROS accumulation. 

 

The mechanisms of PEITC induced growth inhibition are not clear. Due to the indirect 

nature of the MTS assay, decreased signals may be due to decreased cell division 

and/or increased apoptosis. Decreased metabolism could also contribute to reduced 
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MTS reduction. However, visual inspection of the plates confirmed that reduced MTS 

signals were associated with reduced cell numbers. Further studies in the group have 

shown that PEITC induces a G2/M arrest and high levels of apoptosis in MCF7 cells, 

and this could be studied further in SK-BR-3 cells using PI/cell cycle analysis and 

annexin V staining, respectively.  

 

The molecular mechanisms that mediate cell death/cell cycle arrest in response to 

watercress compounds are likely to be complex. As described in the introduction, 

PEITC has been shown to induce G2/M and S phase arrest via downregulation of 

CDK1, cyclin B and cyclin A (Hwang and Lee, 2010; Wu et al., 2011; Xiao et al., 2004), 

in addition to inducing apoptosis via both the intrinsic and extrinsic pathways (Satyan 

et al., 2006; Tang and Zhang, 2005). 

 

By contrast, I3C has consistently been shown to induce G1 cell cycle arrest in several 

different cancer cell lines, although the specific factors involved varied (Rogan, 2006). 

In MCF7 cells I3C has been reported to downregulate CDK6 expression by disrupting 

the binding of transcription factor SP1 to its promoter region, and inhibit CDK2 activity 

by altering the composition of the CDK2 protein complex to a larger less active form, 

both essential in the progression of G1 phase. I3C has also been recently shown to 

promote the degradation of phosphatase Cdc25A, required for dephosphorylation and 

activation of CDK2, in a panel of breast cancer cell lines (Wu et al., 2010b). With 

regards to apoptosis, it appears I3C may act to suppress the activation of nuclear 

transcription factor (NF-κB), which regulates a wide range of genes involved in 

apoptosis including Bcl-2 and Bcl-xL (Ahmad et al., 2011). This could be the result of 

the inactivation of Akt, an upstream regulator of NF-κB, as I3C treatment has been 

associated with a reduction in Akt activity (Rahman et al., 2004).  

 

Quercetin has been shown to inhibit cell cycle progression through the G2/M or G1/S 

transition. In the SK-BR-3 breast cancer cell line quercetin was shown to cause cell 

cycle arrest at G1 and this was associated with an increase in p21 expression and 

hypophosphorylation of retinoblastoma tumour suppressor protein (Rb). p21 is a CDK 

inhibitor and is proposed to inhibit cyclin-CDK activity required for phosphorylation of 

Rb. Unphosphorylated Rb sequesters transcription factor E2F1 preventing it from 

promoting expression of genes essential for cell cycle progression from G1 to S phase. 

However, in the same study quercetin was also shown to downregulate cyclin B and 

CDK1 in SK-BR-3 cells which are required for G2/M cell cycle progression (Jeong et 

al., 2009). Quercetin can also inhibit phosphorylation of Akt which is thought to result in 
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apoptosis by causing dissociation of Bax from Bcl-xL (Lee et al., 2008), and upregulate 

death receptor 5 (DR5) expression in prostate cancer DU-145 cells, sensitising them to 

TNF-related apoptosis-inducing ligand (TRAIL) induced apoptosis (Jung et al., 2010). 

 

3.3.2 PI3K/Akt signalling  
 

Several previous studies have shown that PEITC, I3C and quercetin modulate Akt 

phosphorylation and for the most part this was confirmed in my experiments using 

HER2 overexpressing SK-BR-3 cells. Although HER2 is an important activator of Akt in 

SK-BR-3 cells, the effects of the compounds may be independent of any specific affect 

on HER2 signalling, since similar results were obtained in MCF7 cells which lack HER2 

overexpression, and a wide range of signalling pathways have been shown to activate 

PI3K/Akt signalling. Despite the observed effects, analysis of Akt phosphorylation did 

not appear to be a suitable assay to monitor effects of watercress extracts. First, the 

assay was very time-consuming and quantitation limited by the semiquantitative nature 

of immunoblotting. Second, different compounds either increased or decreased Akt 

phosphorylation making it likely that effects of watercress extracts would be highly 

complex. 

 

Loss of Akt phosphorylation in response to quercetin has been observed in multiple 

cell lines and is associated with quercetin-induced apoptosis (Kim and Lee, 2007; Lee 

et al., 2008; Sun et al., 2010). The majority of these studies look only at Akt 

phosphorylation at Ser473, and this is consistent with my findings that quercetin 

inhibits phosphorylation at this site. Kim and Lee (2007) did observe inhibition of Akt 

phosphorylation at both Thr308 and Ser473 sites following treatment with 200 μM 

quercetin for 4 h in human prostate adenocarcinoma DU-145 cells. However, in MCF7 

and SK-BR-3 breast cancer cells I found quercetin had no effect on Thr308 Akt 

phosphorylation. Consequently, the effect of quercetin on Akt phosphorylation, 

particularly at Thr308, may be cell type specific. 

 

It is widely reported that PEITC inhibits Akt activation and this is believed to contribute 

to its anticancer activity (Gao et al., 2011; Satyan et al., 2006; Xiao and Singh, 2007). 

In contrast, I found Akt phosphorylation at both Thr308 and Ser473 sites was 

enhanced in response to PEITC. However, it was recently shown that while PEITC did 

cause a decrease in Akt phosphorylation in multiple myeloma MM.1S cells at later time 

points (12 h), this followed an initial increase in Akt phosphorylation (2 h) (Jakubikova 

et al., 2011). Therefore, the increase in Akt phosphorylation I observe after 2 h may 
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also only be transient. It has been previously reported that I3C can inhibit Akt 

phosphorylation in breast cancer and prostate cancer cell lines after 24-48 h 

treatments (Chinni and Sarkar, 2002; Rahman et al., 2004). While I did not observe 

any effect of I3C on Akt phosphorylation this may be due to the shorter time point (2 h) 

selected for this study.  

 

3.3.3 HDAC activity 
 

PEITC, I3C and quercetin were examined for HDAC inhibition activity in a cell-based 

assay using MCF7 cells.  Wang et al. (2007) have previously shown by both a cell-free 

assay and through the analysis of PEITC treated LNCap AD prostate cancer cell 

lysates, that as little as 5 μM PEITC is able to inhibit HDAC activity. In contrast to this, I 

observed no inhibition of HDAC activity following treatment with PEITC. Similar results 

were obtained with I3C. Quercetin did appear to be a potential HDAC inhibitor. 

However, subsequent control experiments demonstrated that this apparent activity was 

in fact likely to be due to inhibition of trypsin activity. Several flavonoids including 

quercetin have previously been shown to act as trypsin inhibitors through binding with 

the S1 region of trypsin via various electrostatic interactions that include at least one 

hydrogen bond (Jedinak et al., 2006; Maliar et al., 2004; Zhang et al., 2009). It is not 

clear why I did not observe HDAC inhibition with PEITC, but this may reflect the 

relatively short time point selected for these studies. Longer exposure may be required 

to allow accumulation of the PEITC-metabolites which are thought to be the active 

components for HDAC inhibition. Regardless, the HDAC assay was not considered to 

be suitable for analysis of watercress extracts. It was expensive and time-consuming to 

perform and clearly susceptible to false positive results. 

 

3.3.4 Nrf2 activity 
 

The effect of PEITC on Nrf2 activity was determined using a stable MCF7 derived 

reporter cell line containing a luciferase construct controlled by multiple copies of the 

ARE. As discussed in the introduction, PEITC has been shown to induce the 

expression of phase II drug metabolising enzymes via the ARE present in the promoter 

regions of these genes, and this is believed to be responsible for inhibition of 

carcinogen-induced tumourigenesis in rodents by PEITC.  I confirmed that PEITC 

increased Nrf2-dependent transcription in a dose-dependent manner, with a 

concentration of 2.5 µM required to double the induction of gene expression. This is in 

agreement with other studies that demonstrated 1.7 µM and 2 µM PEITC caused 2-fold 
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increase in the induction of Nrf2-dependent transcription using a chloramphenicol 

acetyltransferase (CAT) and luciferase reporter construct respectively (Bonnesen et 

al., 2001; Xu et al., 2006b).  Overall, the Nrf2 activity assay was considered suitable for 

subsequent analysis of watercress extracts since it was straightforward to perform and 

the assay produced quantitative data. Moreover, in contrast to Akt and HDAC, where 

the significance of any regulation remains poorly understood, it is clear that Nrf2 

activation is a key mediator of chemopreventive activities.  

 

I did not perform any studies with I3C as previous studies have shown it to be a 

relatively weak inducer of ARE-driven gene expression, instead inducing expression of 

phase I and phase II drug metabolising enzymes via xenobiotic response elements 

(XREs) (Bonnesen et al., 2001). In this case, transcriptional regulation is mediated by 

the aryl hydrocarbon receptor (AhR). Similarly, quercetin has also been reported to be 

a ligand for the AhR (Ciolino et al., 1999). 



 

 

 
 

Chapter 4
 
The effect of PEITC on 
hypoxia inducible factor  
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4.1 Introduction 
 

In addition to identifying assays suitable for analysis of watercress extracts, it is also 

important to discover more about how watercress-derived phytochemicals interfere 

with the growth of cancer cells. In this chapter I investigated the effects of PEITC on 

hypoxia inducible factors (HIFs), oxygen sensitive transcription factors that activate 

genes involved in the regulation of angiogenesis and cell survival. Overexpression of 

HIF has been found in many human cancers including breast cancer (Zhong et al., 

1999) and is often associated with resistance to cancer therapies such as 

chemotherapy.  This work focused on PEITC since several isothiocyanates, including 

PEITC, have already been shown to inhibit angiogenesis (Xiao and Singh, 2007)  

which is linked to inhibition of HIF1α expression (Yao et al., 2008). Furthermore, work 

in this laboratory has demonstrated that PEITC can inhibit HIF transcriptional activity 

(Wang et al., 2009).  

 

4.2 Results 
 

4.2.1 Effect of PEITC on the expression of HIF target genes 
 

It has been previously found in this laboratory that PEITC inhibits the activity of HIF as 

shown by using a hypoxia-dependent construct in a luciferase reporter assay (Wang et 

al., 2009). As HIFs are transcription factors it would be expected that a decrease in 

activity would result in decreased expression of HIF target genes. Therefore, the effect 

of PEITC on the expression of various target genes was examined. Four well known 

target genes were chosen that represent a range of processes effected by HIF; BNIP3 

(Bcl2/adenovirus E1B 19kDa interacting protein 3) involved in cell survival (Sowter et 

al., 2001), CAIX (carbonic anhydrase IX) involved in pH regulation (Wykoff et al., 

2000), GLUT1 (glucose transporter 1) involved in glucose metabolism (Airley et al., 

2001), and VEGF-A (vascular endothelial growth factor A) involved in angiogenesis 

(Forsythe et al., 1996). 

 

MCF7 cells were exposed to hypoxia for 16 h in the absence or presence of PEITC 

and the expression of the target genes analysed by Q-RT-PCR. All the target genes 

investigated were induced by hypoxia and demonstrated dose-dependent inhibition by 

PEITC that was statistically significant (Figure 4.1). CAIX was most strongly induced by 

hypoxia, showing a 50-fold increase in mRNA expression, and displayed statistically 
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significant inhibition by PEITC at all concentrations tested (Figure 4.1b). In comparison, 

mRNA expression of BNIP3, GLUT-1 and VEGFA was induced only 3-6 fold, and 

higher concentrations of PEITC were required to inhibit this expression. It has 

previously been reported that the promoter activity of CAIX is highly dependent on 

hypoxia and expression is very low under normoxic conditions giving a possible 

explanation for the increased sensitivity observed (Wykoff et al., 2000). Therefore, in 

addition to effects in artificial reporter assays, PEITC also decreases the expression of 

endogenous HIF-regulated target genes. 

 

4.2.2 Effect of PEITC on HIF1α accumulation 
 

To explore the mechanism by which PEITC inhibits HIF-dependent transcription the 

effect of PEITC on HIF1α accumulation in cells cultured under hypoxic conditions was 

investigated. MCF7 cells were placed in a hypoxia chamber for 5 h in the presence or 

absence of PEITC before being harvested and analysed by western blot (Figure 4.2). 

As expected, increased HIF1α expression was observed in cells exposed to hypoxia. 

However, treatment with 10 µM PEITC greatly reduced the levels of HIF1α, and at 15 

µM and 20 µM PEITC this reduction was statistically significant. Therefore, PEITC 

prevents the accumulation of HIF1α in hypoxia-treated cells. 

 

4.2.3 Effect of PEITC on mTOR 
 

Previous work in this laboratory has shown that inhibition of HIF activity by PEITC 

occurs independently of changes in the level of HIF1α mRNA as well as the activity of 

prolyl hydroxylases, the pVHL and the proteasome, which are all required for the rapid 

degradation of HIF1α in normoxia (Wang et al., 2009). It was therefore possible that 

PEITC inhibited the translation of HIF1α mRNA. Inhibition of HIF1α mRNA translation 

has previously been linked to impaired activity of the mammalian target of rapamycin 

complex 1 (mTORC1) (Bernardi et al., 2006). This forms part of a negative feedback 

loop to decrease HIF1α accumulation during prolonged hypoxia, as mTORC1 activity 

is suppressed in response to hypoxia through both HIF dependent and independent 

mechanisms (Arsham et al., 2003). Mouse embryonic fibroblasts (MEFs) lacking 

TSC2, which forms half of the heterodimeric negative regulator of mTORC1, TSC1/2, 

were unable to suppress mTORC1 activity in response to hypoxia and this was 

associated with increased HIF1α accumulation (Brugarolas et al., 2004). Furthermore, 

it has already been reported that HIF1α translation is reduced following treatment with  
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Figure 4.1: Effect of PEITC on expression of endogenous HIF target genes.  
MCF7 cells were left untreated as a control or incubated in hypoxic conditions for 16 h 
in the presence or absence of the indicated concentrations of PEITC (µM), or DMSO 
(equivalent volume to 26 µM PEITC). Expression of (a) BNIP3, (b) CAIX, (c) GLUT1 
and (d) VEGFA were analysed by Q-RT-PCR. Data are mean of duplicate 
determinations, normalised to expression of β-actin. Relative expression in untreated 
cells was set to 1.0. Statistically significant differences between DMSO and PEITC 
treated cells are indicated (* p<0.05; ** p<0.01; *** p<0.005). All other comparisons 
were not statistically significant different. 

 
 



                                                                                    Chapter 4: Hypoxia inducible factor  
 

93 

no
rm

ox
ia

U
T 20 D
M

S
O

15105

β-actin

HIF1α

hypoxia

PEITC (µM)

-0.5

0

0.5

1

1.5

2

2.5

no
rm

ox
ia U
T 5 10 15 20

D
M

SO

re
la

tiv
e 

ba
nd

 a
re

a 
th

 

hypoxia

PEITC (µM)

* ****

 
Figure 4.2: Effect of PEITC on HIF1α accumulation.  
MCF7 cells were incubated in hypoxic conditions for 5 h in the absence (UT) or 
presence of the indicated concentrations of PEITC (µM), or DMSO (equivalent to 20 
µM PEITC). 20 µg of whole cell lysate was subjected to SDS-page and analysed by 
western blot for HIF1α (120 kDa). Equal loading was determined by probing for β-actin 
(42 kDa). Western blot is representative of three independent experiments and all 
results are combined in the densitometry graph (± SD). Statistically significant 
differences between UT and the treatments are indicated (* p<0.05; *** p<0.005). All 
other comparisons were not statistically significant. 
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the mTORC1 antagonist, rapamycin (Thomas et al., 2006). 

 

I analysed the phosphorylation status of downstream substrates to investigate the 

effects of PEITC on mTORC1 kinase activity. The best known substrates of mTORC1 

are the eIF4E binding proteins (4E-BPs) and 70 kDa protein kinases (p70 S6K), both of 

which are involved in the control of mRNA translation. The 4E-BP family, of which 4E-

BP1 is the most prominent, are key negative regulators of the eukaryotic initiation 

factor 4F (eIF4F) complex required for cap-dependent translation. Hypophosphorylated 

4E-BP1 binds strongly to eIF4E, the cap-binding protein of eIF4F, thus preventing the 

assembly of this complex (Cormier et al., 2003). It was discovered that mRNAs with 

complex secondary structures within their 5’-untranslated region (5’UTR) were 

preferentially upregulated following overexpression of eIF4E (Koromilas et al., 1992). 

This subset of mRNAs may be more sensitive to changes in eIF4E, the limiting eIF4F 

factor, as they are particularly dependent on mRNA unwinding by the eIF4A 

component. Interestingly, HIF1α possess a highly structured 5’UTR and therefore 

could be particularly sensitive to 4E-BP1 sequestering eIF4E (Iyer et al., 1998).     

 

Phosphorylation of the other main mTORC1 substrate, p70 S6K, at Thr389 provides an 

excellent indicator of mTORC1 activity and was therefore looked at alongside 4E-BP1. 

Targets of p70 S6K, include the S6 ribosomal protein, which forms part of the 40S 

ribosomal subunit, eukaryotic initiation factor 4B (eIF4B) (Raught et al., 2004) and 

programmed cell death protein 4 (Pdcd4) (Dorrello et al., 2006), which respectively 

enhance and impair mRNA helicase eIF4A, and the eukaryotic elongation factor 2 

kinase (eEF2K), which inhibits eEF2 (Wang et al., 2001).  

 

MCF7 cells were treated with PEITC for 3 h and analysed by western blot (Figure 4.3). 

Consistent with the idea that PEITC inhibits mTORC1 activity, treatment of cells with 

PEITC resulted in reduced phosphorylation of p70 S6K. Phosphorylation of 4E-BP1 is 

a complex process involving multiple sites of modification (Thr37, Thr46, Thr70, and 

Ser65). This is consistent with the multiple slower-migrating isoforms of 4E-BP1 that 

were detected on a total 4E-BP1 blot. Similar to p70 S6K, treatment with PEITC 

reduced the levels of 4E-BP1 phosphorylation, as demonstrated by greater 

electroporetic mobility. The reduction in p70 S6K and 4E-BP1 phosphorylation was 

statistically significant in cells treated with 15 or 20 µM PEITC. Therefore, PEITC 

inhibits mTORC1 activity. 
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Figure 4.3: Effect of PEITC on mTORC1 signalling in MCF7 cells.  
MCF7 cells were treated with indicated concentrations of PEITC or DMSO 
(equivalent to 20 µM PEITC) for 3 h. 25 µg of whole cell lysate was subjected to 
SDS-page and analysed by western blot for phospho-p70 S6K (Thr389; 70 kDa) 
and total 4E-BP1 (15-20 kDa; as indicated, multiple bands represent different 
phospho-forms) then stripped and re-probed for total p70 S6K. Equal loading was 
determined by probing for β-actin (42 kDa). The blot is representative of three 
independent experiments and the results from all three are combined in the 
densitometry graphs (± SD). Statistically significant differences between UT and 
the treatments are indicated (* p<0.05; *** p<0.005). All other comparisons were 
not statistically significant. 
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To further investigate the effect of PEITC on mTORC1 activity a time course was 

carried out (Figure 4.4). mTORC1 activity was assessed by loss of p70 S6K 

phosphorylation as this seemed to be a clearer readout than 4E-BP1 phosphorylation. 

A noticeable reduction of p70 S6K phosphorylation was observed after only 30 min 

PEITC treatment, with almost total dephosphorylation seen at 1 h. This decrease in 

phospho-p70 S6K is maintained for at least 8 h indicating prolonged inhibition of 

mTORC1 by PEITC.  

 

4.2.4 Where in the mTORC1 pathway does PEITC act? 

 
It is clear PEITC inhibits the activity of mTORC1 as demonstrated by the reduced 

phosphorylation of p70 S6K and 4E-BP1, but how is this achieved? mTORC1 is 

regulated by multiple pathways that sense whether or not conditions are favorable for 

cell growth and proliferation, such as nutrient availability, cellular energy levels, oxygen 

levels and the presence growth factors, which then activate or inhibit mTORC1 

accordingly. In this section I investigated the effects of PEITC on various modulators of 

mTORC1 activity, including the PI3K/Akt pathway, ERK pathway, and 5’ adenosine 

monophosphate-activated kinase (AMPK).  

 

4.2.4.1 Effect of PEITC on PI3K/Akt pathway  
 

One of the ways growth factors can stimulate mTORC1 is through activation of the 

PI3K/Akt pathway. Akt has been shown to phosphorylate TSC2 at multiple sites 

although two in particular, Ser939 and Ser981, seem to be important in the binding of 

14-3-3 proteins which are proposed to sequester TSC2 to the cytosol and away from 

membrane associated TSC1 (Cai et al., 2006). In addition, Akt can phosphorylate 

PRAS40, which is known to associate with the mTORC1 complex (Haar et al., 2007). 

Although, as discussed in the introduction, the functional role of this is not fully 

understood (Rapley et al., 2011). 

 

PTEN reverses the action of PI3K by dephosphorylating PIP3, negatively regulating the 

PI3K/Akt pathway. As previously discussed one potential mechanism of action by 

PEITC is through protein thiocarbamoylation. The active site of PTEN contains several 

key cysteine residues that when oxidised form a disulphide bond, resulting in the 

inactivation of PTEN (Lee et al., 2002). Consequently, PTEN is a potential candidate 

for direct covalent modification by PEITC. Heterozygous and homozygous null PTEN  



                                                                                    Chapter 4: Hypoxia inducible factor  
 

97 

Total p70 S6K

β-actin

P-p70 S6K (Thr389)

D
M

SO

4803602401205 15 30 600Time (mins)

 
Figure 4.4: Time course of PEITC-induced inhibition of p70 S6K phosphorylation.  
MCF7 cells were treated with 20 µM of PEITC or DMSO (equivalent to 20 µM PEITC) 
for the indicated time points. 25 µg of whole cell lysate was subjected to SDS-page 
and analysed by western blot for phospho-p70 S6K (Thr389; 70 kDa) then stripped and 
re-probed for total p70 S6K. Equal loading was determined by probing for β-actin (42 
kDa). 
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MEFs along with wild type control were used to determine whether the effects of 

PEITC were dependent on PTEN. After PTEN status in each of the MEFs was 

confirmed (Figure 4.5), the homozygous null PTEN and wild type MEFs were treated 

with PEITC for 3 h and analysed by western blot to determine whether inhibition of 

mTORC1 activity by PEITC was reversed in the PTEN null cells (Figure 4.6). 

Treatment of PEITC caused a dose-dependent decrease of phospho-p70 S6K and 

band shift of 4E-BP1 to less phosphorylated forms in the wild type cells, confirming 

what was seen in the MCF7 cell line. However, PEITC also inhibited phosphorylation of 

these mTORC1 substrates in the PTEN null MEFs. Thus, PTEN status does not 

appear to influence effects of PEITC on mTORC1 activity.   

 

Furthermore, I have previously shown in Chapter 3 that PEITC treatment (2 h) did not 

inhibit Akt phosphorylation in MCF7 and SK-BR-3 cells (Figure 3.5 and 3.7), both of 

which have wild type PTEN (Li et al., 1998). In fact Akt phosphorylation appears to be 

enhanced by PEITC at both of its phosphorylation sites, suggesting that PEITC does 

not act through the PI3K/Akt pathway to inhibit mTORC1 activity.     

 

4.2.4.2 Effect of PEITC on ERK1/2 

 
In addition to the PI3K/Akt pathway, growth factors relay signals to TSC1/2 to positively 

regulate mTORC1 via activation of the classical MAPK pathway. Both ERK1/2 and 

downstream target p90RSK have been shown to phosphorylate TSC2 (Ma et al., 2005; 

Roux et al., 2004). These ERK1/2 and p90RSK directed phospho-sites are distinct 

from each other, but those linked to p90RSK overlap with some of the proposed Akt 

phosphorylation sites (Huang and Manning, 2008). Furthermore, it has been 

demonstrated that p90RSK may regulate mTORC1 more directly through 

phosphorylation of Raptor (Carrière et al., 2008).   

 

In order to determine whether PEITC acts via the classical MAPK cascade to inhibit 

mTORC1, MCF7 cells were treated with PEITC for 3 h before being analysed by 

western blot for phospho-ERK1/2 (Figure 4.7). Although decreased ERK1/2 

phosphorylation has been associated with reduced mTORC1 activity, ERK1/2 

phosphorylation actually increased in PEITC treated cells. This increase was 

reproducible but did not reach statistical significance due to variation between 

individual experiments. Thus, it is unlikely that PEITC acts on mTORC1 via ERK1/2. 

 



                                                                                    Chapter 4: Hypoxia inducible factor  
 

99 

PT
EN

 +
/+

PT
EN

 +
/-

PT
EN

 -/
-

PTEN

β-actin
 

Figure 4.5: Confirmation of homozygous and heterozygous PTEN deficient 
MEFs.  
30 µg of whole cell lysate from each of the MEF genotypes was subjected to SDS-
page and analysed by western blot for PTEN (55 kDa). Equal loading was determined 
by probing for β-actin (42 kDa). 
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Figure 4.6: Effect of PEITC on mTORC1 signalling in PTEN null and wild type 
MEFs.  
PTEN +/+ and -/- MEFs were treated with indicated concentrations of PEITC or DMSO 
(equivalent to 20 µM PEITC) for 3 h. 25 µg of whole cell lysate was subjected to SDS-
page and analysed by western blot for phospho-p70 S6K (Thr389; 70 kDa) and total 
4E-BP1 (15-20 kDa; as indicated, multiple bands represent different phospho-forms) 
then stripped and re-probed for total p70 S6K. Equal loading was determined by 
probing for β-actin (42 kDa).   
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Figure 4.7: Effect of PEITC on phosphorylation of ERK1/2.  
MCF7 cells were treated with indicated concentrations of PEITC or DMSO (equivalent 
to 20 µM PEITC) for 3 h. 25 µg of whole cell lysate was subjected to SDS-page and 
analysed by western blot for phospho-ERK1/2 (Thr202/Tyr204; 42/44 kDa) and then 
stripped and re-probed for total ERK1/2. Equal loading was determined by probing for 
Hsc70 (70 kDa). The blot is representative of three independent experiments and the 
results from all three are combined in the densitometry graphs (± SD). Statistically 
significant differences between UT and the treatments are indicated (* p<0.05). All 
other comparisons were not statistically significant.
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4.2.4.3 Effect of PEITC on AMPK 
 

5’ adenosine monophosphate-activated kinase (AMPK) acts as an energy sensor by 

responding to changes in 5’ adenosine monophosphate (AMP)/ 5’ adenosine 

triphosphate (ATP) ratio. Phosphorylation of Thr172 by serine/threonine kinase 11 

(STK11, also known as LKB1) is required for AMPK activation. It is thought that when 

ATP levels decline and AMP levels rise, the binding of AMP to AMPK facilitates this 

phosphorylation by LKB1 (Hardie et al., 2006). Activated AMPK has been shown to 

phosphorylate residues Thr1227 and Ser1345 on TSC2, however unlike 

phosphorylation by Akt, ERK1/2 and p90RSK, this is associated with enhanced 

TSC1/2 activity and subsequent inhibition of mTORC1 (Inoki et al., 2003b). 

Phosphorylation of Ser1345 by AMPK has been proposed to prime TSC2 for further 

phosphorylation and activation by glycogen synthase kinase 3 (GSK3), which is 

negatively regulated by the Wnt pathway (Inoki et al., 2006). Furthermore, AMPK has 

also been shown to phosphorylate Raptor, which is believed to inactivate mTORC1 by 

stimulating the binding of 14-3-3 proteins (Gwinn et al., 2008).   

 

To establish if PEITC impairs mTORC1 activity by activating AMPK, MCF7 cells were 

treated with PEITC for 3 h before being analysed by western blot for phospho-AMPK 

(Figure 4.8). There was no effect of PEITC treatment on Thr172 phosphorylation of 

AMPK. Therefore, it does not seem PEITC acts through AMPK to inhibit mTORC1. 

 

4.2.4.4 Does mTORC1 inactivation by PEITC require TSC1/2? 
 

TSC2 null and wild type MEFs (also deficient for p53) were used to determine whether 

PEITC-induced inhibition of mTORC1 activity was dependent on TSC1/2 (Zhang et al., 

2003a). Following verification of TSC2 status in each of the MEFs (Figure 4.9), the 

response of the two cell lines to serum starvation was also investigated. Serum 

contains growth factors that stimulate mTORC1, and serum withdrawal has been 

shown to impair mTORC1 activity in a TSC1/2-dependent manner (Zhang et al., 

2003a). TSC2 null and wild type MEFs were cultured in the absence of serum for 24 h 

before serum was reintroduced to control cells for 2 h. Phosphorylation of mTORC1 

substrates were analysed by western blot (Figure 4.10). As discussed, growth factors 

in the serum are believed to activate mTORC1 activity via phosphorylation and 

inhibition of TSC1/2, resulting in loss of its inhibitory influence on mTORC1. Serum  
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Figure 4.8: The effect of PEITC on phosphorylation of AMPK.  
MCF7 cells were treated with indicated concentrations of PEITC or DMSO (equivalent 
to 20 µM PEITC) for 3 h. 25 µg of whole cell lysate was subjected to SDS-page and 
analysed by western blot for phospho-AMPK (Thr172; 62 kDa) and then stripped and 
re-probed for total AMPK. Equal loading was determined by probing for β-actin (42 
kDa). Lack of positive data meant the experiment was only performed once. 
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Figure 4.9: Confirmation of TSC2+/+TP53-/- and TSC2-/-TP53-/- MEFs. 
TSC2+/+TP53-/- and TSC2-/-TP53-/- MEFs were serum starved for 24 h before media 
with the absence or presence of serum was added for 2 h.  40 µg of whole cell lysate 
was subjected to SDS-page and analysed by western blot for tuberin (TSC2; 200 kDa). 
Equal loading was determined by probing for Hsc70 (70 kDa). 
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Figure 4.10: Effect of serum on mTORC1 signalling in TSC2 null and wild type 
MEFs.  
TSC2+/+TP53-/- ( ) and TSC2-/-TP53-/- ( ) MEFs were serum starved for 24 h before 
media with the absence or presence of serum was added for 2 h. 25 µg of whole cell 
lysate was subjected to SDS-page and analysed by western blot for phospho-p70 S6K 
(Thr389; 70 kDa) and total 4E-BP1 (15-20 kDa; as indicated, multiple bands represent 
different phospho-forms) then stripped and re-probed for total p70 S6K. Equal loading 
was determined by probing for β-actin (42 kDa). The blot is representative of three 
independent experiments and the results from all three are combined in the 
densitometry graphs (± SD). Statistically significant differences between UT and the 
treatments are indicated (* p<0.05; ** p<0.05; *** p<0.005), and between the same 
treatment in the different cell lines (# p<0.05). All other comparisons were not 
statistically significant. 
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starvation should therefore restore TSC1/2 activity which in turn will inhibit mTORC1. 

As expected, wild type MEFs were sensitive to serum starvation with a decrease in 

phospho-p70 S6K and increase in 4E-BP1 electroporetic mobility observed. In MEFs 

deficient for TSC2, mTORC1 activity should be unrestrained and therefore resistant to 

inhibition by serum starvation. Indeed, in the TSC2 null MEFs there was no change in 

p70 S6K or 4E-BP1 phosphorylation following serum starvation. The TSC2 null MEFs 

also had higher basal phosphorylation of p70 S6K and 4EBP1, which would be 

expected in cells were mTORC1 is uninhibited by TSC2. However, I also observed 

lower overall levels of 4E-BP1 protein in the TSC2 null MEFs compared to the wild 

type MEFs. It has previously been reported that both the cell lines have similar levels 

of total 4E-BP1, so the reason for this difference is unclear (Smith et al., 2005). 

 

Subsequent experiments with the TSC2 null and wild type MEFs were carried out in 

the presence of serum. MEFs of either genotype were treated with PEITC for 3 h and 

analysed by western blot to determine whether TSC1/2 is required for mTORC1 

inhibition by PEITC (Figure 4.11). PEITC caused a statistically significantly dose-

dependent decrease in the phosphorylation of p70 S6K and 4E-BP1 (as indicated by 

the band shift) in the wild type MEFs which was not seen in the TSC2 null cells.  

Therefore, PEITC-induced inhibition of mTORC1 activity is dependent on TSC1/2. 

 

4.2.5 Effect of PEITC on mTORC2 
 

mTORC1 can negatively regulate mTORC2 activity via phosphorylation of Rictor by 

p70 S6K (Julien et al., 2010). Furthermore, mTORC1 inhibition can cause an increase 

in phosphorylation of Akt on Ser473, a target for mTORC2. Supposedly as a 

consequence of the lost inhibitory influence of p70 S6K (Breuleux et al., 2009). 

Therefore, the effect of PEITC on mTORC2 was also investigated. One of the main 

functions of mTORC2 is to phosphorylate Akt on Ser473, which along with 

phosphorylation on Thr308 by PDK1 is required for full Akt activation (Sarbassov et al., 

2005). Another substrate for mTORC2 is the serum- and glucocorticoid-induced protein 

kinase 1 (SGK1). N-myc downstream regulated gene 1 (NDRG1) is a downstream 

target of SGK1 and while its function is not well understood it has been shown to be a 

good indicator of mTORC2 activity (García-martínez and Alessi, 2008).  

 

The effect of PEITC on the phosphorylation of downstream targets of mTORC2, 

Ser473 on Akt, and SGK1 substrate, NDRG1 were analysed in the TSC2 null and  
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Figure 4.11: Effect of PEITC on mTORC1 signalling in TSC2 null and wild type 
MEFs.  
TSC2+/+TP53-/- ( ) and TSC2-/-TP53-/- ( ) MEFs were treated with indicated 
concentrations of PEITC or DMSO (equivalent to 20 µM PEITC) for 3 h. 25 µg of whole 
cell lysate was subjected to SDS-page and analysed by western blot for phospho-p70 
S6K (Thr389; 70 kDa) and total 4E-BP1 (15-20 kDa; as indicated, multiple bands 
represent different phospho-forms) then stripped and re-probed for total p70 S6K. 
Equal loading was determined by probing for β-actin (42 kDa). The blot is 
representative of three independent experiments and the results from all three are 
combined in the densitometry graphs (± SD). Statistically significant differences 
between UT and the treatments are indicated (* p<0.05; ** p<0.05; *** p<0.005), and 
between the same treatment in the different cell lines (# p<0.05). All other comparisons 
were not statistically significant. 
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wild type MEFs (Figure 4.12). As previously reported by Huang et al. (2009), I found 

TSC2 null MEFs have low basal levels of phosphorylated Akt (Ser473) and NDRG1 in 

comparison to their wild type counterparts. In response to PEITC treatment a dose-

dependent increase in Akt Ser473 and NDRG1 phosphorylation is observed in the wild 

type MEFs. This corresponds with the decrease in mTORC1 activity I have seen in 

previous experiments. However, PEITC also seems to induce mTORC2 activity in the 

TSC2 null MEFs (albeit from a lower basal level) even though mTORC1 activity is 

unaffected by PEITC in these cells. 

 

4.2.6 Effect of PEITC on growth inhibition in the MEF cell lines  
 

Since PEITC-dependent regulation of mTORC1 was dependent on the presence of 

TSC2, I investigated whether TSC2 also influenced the growth inhibitory response to 

PEITC. To assess the role of TSC2 in PEITC-induced growth inhibition, TSC2 null and 

wild type MEFs were treated with PEITC for four days prior to cell number being 

determined by the MTS assay (Figure 4.13). TSC2 null cells were less sensitive to 

PEITC-mediated growth inhibition relative to control cells. Although the difference in 

sensitivity of the two lines was small (IC50 4.7 µM versus 7.9 µM), this difference was 

statistically significant. Therefore, similar to mTORC1 regulation, TSC2 is required for 

optimal growth inhibition in response to PEITC. 

 

Similar experiments were performed using PTEN-deficient cells (Figure 4.14). There is 

a trend for heterozygous and homozygous null PTEN MEFs to be more resistant to 

PEITC-induced growth inhibition then the wild type cells, and in all experiments IC50 

values were higher in the former two cell lines compared to the latter. However, the 

difference between the IC50 values of the wild type and PTEN-deficient cell lines varied 

considerably from 0.5-fold higher to 3-fold higher. As a result of this high standard 

deviation differences in IC50 values, they were not statistically significant. There was no 

discernable trend between the heterozygous and homozygous null MEFs. 

 

4.2.7 Effect of PEITC on translation of HIF1α mRNA 
 

The observation that PEITC decreased mTORC1 activity is consistent with the idea 

that PEITC inhibits the translation of HIF1α mRNA. To directly test whether PEITC 

effects HIF1α mRNA translation, MCF7 cells were metabolically labelled with 

[35S]Met/Cys and HIF1α immunoprecipitated (Figure 4.15). To enhance the sensitivity  
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Figure 4.12: Effect of PEITC on mTORC2 signalling in TSC2 null and wild type 
MEFs.  
TSC2+/+TP53-/-and TSC2-/-TP53-/- MEFs were treated with indicated concentrations 
of PEITC or DMSO (equivalent to 20 µM PEITC) for 3 h. 25 µg of whole cell lysate was 
subjected to SDS-page and analysed by western blot for phospho-Akt (Ser473; 60 
kDa) as well as phospho-NDRG1 (Thr346; 46, 48 kDa) then stripped and re-probed for 
total equivalents. Equal loading was determined by probing for Hsc70 (70 kDa). 
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Figure 4.13: Effect of PEITC on growth inhibition of TSC2 null and wild type 
MEFs. 
Representative growth inhibition experiments. TSC2+/+TP53-/- ( ) or TSC2-/-TP53-/-  
( ) MEFs were treated with various concentrations of PEITC, DMSO ( ) equivalent to 
the highest dose of PEITC and 0.5 μM STS as a positive control ( ). After four days 
metabolic activity was determined by MTS assay using the CellTiter 96® AQueous One 
Solution reagent. Data shown are derived from means of triplicate wells (± SD). Table 
showing IC50 values represent mean values ± SD from three experiments performed in 
triplicate. A statistically significant difference between IC50 values for TSC2 null and 
wild type MEFs is indicated (* p<0.05). 
 

 

IC50/µM Value (mean ± SD)  

TSC2+/+TP53-/- TSC2-/-TP53-/- 

PEITC 4.7 ± 1.3 7.9 ± 0.8* 
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Figure 4.14: Effect of PEITC on growth inhibition of PTEN knockout and wild type 
MEFs. 
Representative growth inhibition experiments. PTEN +/+ ( ), PTEN +/- ( ) and PTEN -/- 
( ) MEFs were treated with various concentrations of PEITC, DMSO ( ) equivalent to 
the highest dose of PEITC and 0.5 μM STS as a positive control ( ). After four days 
metabolic activity was determined by MTS assay using the CellTiter 96® AQueous One 
Solution reagent. Data shown are derived from means of triplicate wells (± SD). Table 
showing IC50 values represent mean values ± SD from five experiments performed in 
triplicate. 
 
 

 

 

 

 

 

 

 

 

 

IC50/µM Value (mean ± SD)  

PTEN +/+ PTEN +/- PTEN -/- 

PEITC 5.4 ± 1.3 13.0 ± 4.9 10.9 ± 5.4 
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Figure 4.15: Effect of PEITC on the translation of HIF1α mRNA.   
MCF7 cells were pretreated with 100 µM cobalt chloride (CoCl2), a hypoxia mimetic, 
and then incubated in the absence (UT) or presence of indicated concentrations of 
PEITC, DMSO (equivalent to 20 µM PEITC), or 10 µg/ml cycloheximide (CHX) as a 
positive control for 1 h. 100 µCi/ml of [35S]Met/Cys protein labelling mix was added for 
2 h. Cells were lysed and immunoprecipitated for HIF1α protein (120 kDa). 
Immunoprecipitated proteins were separated on SDS-PAGE, gel dried and phosphor 
imaging used to detect radioactive bands. Gel image is representative of three 
independent experiments with all results combined in the densitometry graph (± SD). 
Statistically significant differences between UT and the treatments are indicated (* 
p<0.05; ** p<0.01; *** p<0.005). All other comparisons were not statistically significant.
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of the assay, cells were pretreated with hypoxia mimetic cobalt chloride (CoCl2), which 

acts to prevent binding of pVHL to HIF1α and its subsequent degradation. Consistent 

with this, addition of CoCl2 increased the apparent metabolic labelling of HIF1α. 

Translation of HIF1α was inhibited by PEITC in a dose-dependent manner and was 

statistically significant at concentrations of 5 µM and above. Concentrations of 10 µM 

PEITC and above resulted in almost total loss of radioactive HIF1α, similar to the 

control translation inhibitor cycloheximide. 

 

4.3 Discussion 
 

It has been previously found in this laboratory that PEITC inhibited the activity of HIF 

as shown by using a hypoxia-dependent construct in a luciferase reporter assay (Wang 

et al., 2009). I have further demonstrated that PEITC is able to inhibit the expression of 

a variety of endogenous HIF target genes, as well as inhibit HIF1α accumulation in 

hypoxia treated cells. Therefore, I conclude that PEITC is a potent inhibitor of HIF 

expression. 

 

Work in this laboratory has also shown PEITC can inhibit HIF1α accumulation in the 

pVHL-deficient RCC4 renal carcinoma cell line, which is unable to degrade HIFα 

proteins via the canonical pVHL pathway and as a result constituently expresses 

HIF1α in normoxia. Furthermore, it was demonstrated that inhibition of HIF 

accumulation by PEITC occurred independently of the proteasome, and treatment with 

PEITC had no effect on the expression of HIF1α mRNA (Wang et al., 2009).  This 

suggests that PEITC-induced inhibition of HIF expression does not occur via 

suppression of HIF transcription or by interfering with the degradation pathway. It is 

therefore proposed that PEITC acts at the level of mRNA translation. Inhibition of 

HIF1α mRNA translation has previously been linked to impaired activity of mTORC1 

(Bernardi et al., 2006). Phosphorylation of 4E-BP1 by mTORC1 decreases its affinity to 

eIF4E, the rate limiting component of the eIF4F complex, enabling cap-dependent 

translation. Possibly due to a greater need for mRNA unwinding by the eIF4A 

component, mRNAs with complex secondary structures within their 5’UTR are more 

sensitive to changes in eIF4E (Koromilas et al., 1992). HIF1α possess a highly 

structured 5’UTR (Iyer et al., 1998) and therefore the effect of PEITC on mTORC1 

activity was investigated. It was discovered that PEITC did inhibit mTORC1 activity as 

assessed by loss of substrate phosphorylation, p70 S6K and 4E-BP1. Consistent with 

my findings, PEITC has also been shown to inhibit 4E-BP1 phosphorylation at both 
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Thr70 and Ser65 sites in colorectal cancer HCT-116 cells and prostate cancer PC3 

cells (Hu et al., 2007). Hu et al. (2007) also demonstrated that PEITC preferentially 

inhibited cap-dependent translation as assessed by luciferase reporter constructs with 

and without a stem-loop secondary structure introduced into the 5’ UTR.  

 

In trying to unravel where in the mTORC1 pathway PEITC acts, it was found PEITC 

was unable to impair mTORC1 activity in TSC2 null MEFs, indicating that PEITC-

induced inhibition of mTORC1 is dependent on TSC1/2 activity. TSC1/2 integrates 

several regulatory pathways to control mTOR in response to various cellular stresses 

and growth factors, and these were also investigated. Akt phosphorylates and inhibits 

TSC2 in response to growth factors via PI3K pathway leading to enhanced mTORC1 

activity. This pathway is negatively regulated by PTEN. PTEN is subject to redox 

regulation and therefore presents an attractive target for direct protein modification by 

PEITC. However, using PTEN null MEFs it was found PEITC was able to suppress 

mTORC1 activity regardless of PTEN status. Furthermore, PEITC treatment did not 

inhibit Akt phosphorylation at either Thr308 or Ser473 sites, and was in fact found to be 

increased in both MCF7 and SK-BR-3 breast cancer cell lines. Activation of mTORC1 

via phosphorylation and inhibition of TSC2 in response to growth factors also occurs 

via the classical MAPK pathway involving ERK and p90RSK. Phosphorylation of ERK 

at Tyr202/Thr204 that corresponds to its activity is not inhibited by PEITC, and as with 

Akt, actually results in an increase in ERK phosphorylation at these sites. 

Phosphorylated AMPK, which activates TSC1/2 and consequently inhibits mTORC1 in 

response to ATP depletion, was also unaffected by PEITC treatment. 

 

mTORC1 activity can also be inhibited by regulated in development and DNA damage 

response 1 (REDD1; also known as RTP801), which is transcriptionally upregulated in 

response to a variety of cellular stresses including hypoxia (Shoshani et al., 2002) and 

ER stress (Jin et al., 2009; Whitney et al., 2009). How exactly REDD1 suppresses 

mTORC1 has not been fully elucidated but studies carried out with TSC2 null MEFs 

suggest it is upstream of TSC1/2 (Brugarolas et al., 2004). One theory is that REDD1 

functions to bind to and sequester inhibitory 14-3-3 proteins that interact with TSC2 

following its phosphorylation by Akt. When bound, the 14-3-3 proteins are thought to 

destabilise the interaction between TSC1 and 2 removing its inhibition on mTORC1 

(DeYoung et al., 2008). However, the rapid inhibition of p70 S6K phosphorylation by 

PEITC (30 min) likely discounts REDD1 as the target for PEITC-induced inhibition of 
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mTORC1, as per Balgi et al. (2011), considering de novo transcription of REDD1 takes 

considerably longer.  

 

These findings suggest that PEITC either acts on TSC1/2 itself or upstream of TSC1/2 

on an as of yet unknown regulator of mTORC1. A recent study has demonstrated that 

mTORC1 activity can also be impaired in response to acidic pH and that this is 

mediated via TSC1/2. Inhibition of mTORC1 activity was associated with a decrease in 

MEK and downstream ERK activity however, this had if anything only a modest effect 

on mTORC1 inhibition by acidification (Balgi et al., 2011). Similar to my study, Balgi et 

al. (2011) found no evidence that any of the other pathways known to regulate 

mTORC1 through TSC1/2 were involved. Therefore, it is likely that there is at least one 

unidentified regulator of mTORC1 that acts as a pH sensor.  

 

The anticancer effects of PEITC and other isothiocyanates are thought to target 

multiple aspects of tumour progression, including chemoprevention, induction of 

apoptosis and suppression of angiogenesis. However, knowledge of the upstream 

triggering events is limited. It is likely that generation of ROS and direct covalent 

modification of target proteins, particularly those with thiol containing cysteines, play a 

role.   

 

Sarbassov and Sabatini (2005) demonstrated that cysteine oxidants, diamide and 

phenylarsine oxide (PAO), stimulated mTORC1 activity even during nutrient 

withdrawal, and this was associated with an instability of the mTOR-Raptor interaction. 

Interestingly, the mTOR-Rictor interaction was unaffected by cysteine oxidants. 

Furthermore, the reducing agent BAL (British anti-Lewisite, or 2,3-dimercapto-1-

propanol) was found to inhibit mTORC1 activity. As already mentioned mTOR has 

several conserved cysteine residues that make it a potential target for redox regulation 

(Dames et al., 2005). However, as PEITC-induced inhibition of mTORC1 is dependent 

on TSC2 it does not seem that direct modification of mTOR is involved. Recently it was 

discovered that cysteine oxidants increased levels of Rheb-GTP and that redox 

regulation of mTORC1 by both cysteine oxidants and reducing agents was also 

dependent on TSC1/2. Similar to PEITC, mTORC1 activity, as assessed by 

phosphorylation of p70 S6K, was unaffected by treatment with either PAO or BAL in 

TSC2 null MEFs (Yoshida et al., 2011).  

 



                                                                                    Chapter 4: Hypoxia inducible factor  
 

114 

There is clearly a role for redox in the regulation of mTORC1, therefore the ability of 

PEITC to conjugate with protein cysteinyl thiols may be important in its effect on 

mTORC1 activity. However, as ROS acts like PAO to oxidise cysteines it is unlikely 

that ROS generation contributes to the observed inhibition of mTORC1 activity 

following PEITC treatment. Although, it should be noted despite initially acting as a pro-

oxidant, PEITC can also act indirectly as an anti-oxidant, by inducing Nrf2-mediated 

antioxidant gene expression.   

 

Furthermore, while it is known Akt, ERK/p90RSK and AMPK phosphorylate TSC2 at 

diverse sites, it is unclear how this can result in either the inhibition or stimulation of 

TSC1/2. It has been suggested that 14-3-3 proteins recognise Akt-directed 

phosphorylation sites on TSC2, and cause translocation of TSC2 to the cytosol and 

away from TSC1, disrupting the complex (Cai et al., 2006). Indeed, it is thought that 

REDD1 impairs mTORC1 by removing these 14-3-3 proteins and restoring the 

inhibitory influence of TSC1/2 (DeYoung et al., 2008).  

 

There are seven mammalian isoforms of 14-3-3 proteins that form hetero- or 

homodimers and bind to phospho-serine/phospho-threonine residues on a wide range 

of proteins. Binding can obstruct interaction of the target protein with essential partner 

proteins or substrates, or induce a conformational change to affect its stability or 

activity (Morrison, 2009). REDD1 does contain a serine residue (Ser137) within a 

consensus 14-3-3 binding motif, however this motif is not conserved and mutations to 

several key residues including the Ser137 did not affect REDD1-induced inhibition of 

mTORC1 (Vega-Rubin-de-Celis et al., 2010). As it is unclear exactly if or how REDD1 

binds 14-3-3 proteins, another protein may well exist that interacts with REDD1 and 

relays a signal to activate TSC1/2 that could be influenced by PEITC. It should be 

noted that 14-3-3 proteins can bind phospho-serine/phospho-threonine residues 

outside of recognised motifs and even in a phosphorylation-independent manner. 

However, another reservation on the proposed mechanism of 14-3-3 sequestration by 

REDD1 is that considering the abundance of 14-3-3 proteins and they’re interaction 

with over 100 different proteins how is it possible REDD1 achieves specificity and 

sequesters enough to be effective (Vega-Rubin-de-Celis et al., 2010; Wang and Proud, 

2010). It has been found that binding of 14-3-3 proteins to one partner, CD81, is 

prevented by redox sensitive palmitoylation of several of its cysteine residues (Clark et 

al., 2004). Perhaps binding of 14-3-3 proteins to TSC2 can also be redox regulated. 
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As recently reviewed by Wang and Proud (2010) there is much about mTORC1 

signalling that is still unknown and it may be that PEITC could be used as a probe to 

explore this pathway further. 

 

I have previously discussed the available literature on the effect of PEITC on Akt 

phosphorylation in Chapter 3. However, now in the context of mTOR, it is possible an 

increase in Akt phosphorylation is a consequence of PEITC-induced inhibition of 

mTORC1. In a negative feedback loop, mTORC1 and its substrate p70 S6K can 

phosphorylate insulin receptor substrate 1 (IRS1), reducing its stability (Shah and 

Hunter, 2006; Tzatsos and Kandror, 2006). As IRS1 is required for insulin and insulin-

growth factor 1 (IGF1) mediated activation of PI3K, stimulation by these growth factors 

no longer leads to recruitment of Akt to the cell membrane and phosphorylation by 

PDK1 and mTORC2. mTORC1 has also been shown to impair Akt phosphorylation by 

decreasing transcription of platelet derived growth factor receptor (PDGFR), that 

activates PI3K in response to a number of different growth factors (Zhang et al., 2007).  

The recent discovery that growth factor receptor-bound protein 10 (Grb10) is a 

substrate for mTORC1 highlights that the mTORC1-mediated negative feedback 

mechanism on growth factor induced stimulation is multifaceted.  Grb10 binds to and 

negatively regulates the insulin and IGF1 receptors, it is proposed phosphorylation of 

Grb10 by mTORC1 increases its activity by promoting protein stability (Hsu et al., 

2011).  Furthermore, p70 S6K has been found to directly phosphorylate mTORC2 

specific component Rictor, an action that seemingly impairs mTORC2-mediated 

phosphorylation of Akt (Julien et al., 2010).  Thus, suppression of mTORC1 and 

removal of these inhibitory influences may result in the increased Akt phosphorylation 

seen following PEITC treatment.  

 

In addition, mTORC1 inhibition has been shown to activate ERK in a mechanism that 

is dependent on PI3K and involves activation of the classical MAPK cascade 

(Carracedo et al., 2008). Therefore, the increase in ERK phosphorylation I see in 

MCF7 cells is possibly also a consequence of PEITC-induced inhibition of mTORC1. 

An increase in ERK phosphorylation following PEITC treatment has been previously 

reported in human prostate and bladder carcinoma cell lines and is associated with 

PEITC-induced apoptosis and Nrf2 mediated ARE activity (Pullar et al., 2004; Xiao and 

Singh, 2002; Xu et al., 2006a; Xu et al., 2006b). However, the effect of PEITC on ERK 

phosphorylation seems to be cell type specific as PEITC has been shown to inhibit 

ERK phosphorylation in human cervical and ovarian cancer cell lines (Huong et al., 



                                                                                    Chapter 4: Hypoxia inducible factor  
 

116 

2011; Satyan et al., 2006). Specifically Huong et al. (2011) reported loss of ERK 

phosphorylation resulted in upregulation of death receptors 4 and 5 (DR4 and DR5) 

causing PEITC-induced apoptosis.   

 

Consistent with the view mTORC1 inhibition enhances upstream signalling to 

mTORC2 due to the loss of p70 S6K-IRS1 negative feedback, I observed a dose-

dependent increase in Akt Ser473 and NDRG1 phosphorylation in wild type MEFs. 

This corresponded with the decrease in p70 S6K phosphorylation I have seen in 

previous experiments. Furthermore, I found that basal phosphorylation of mTORC2 

downstream effectors, Akt and NDRG1, was greatly impaired in TSC2 null MEFs 

where mTORC1 activity is unrestrained. Indeed, loss of mTORC2 activity in TSC2 null 

MEFs has been reported previously (Huang et al., 2008; Huang et al., 2009). Although, 

the authors attributed this observation to a direct effect of TSC2 on mTORC2, 

independent of its Rheb GAP activity. Despite this, I found PEITC treatment still 

caused a dose-dependent increase in mTORC2 activity in these cells. As I have 

previously shown, PEITC has a limited effect on mTORC1 activity in the TSC2 null 

MEFs, this increase in mTORC2 activity can not be attributed to a relief in p70 S6K-

mediated inhibition. Little is known about the regulation of mTORC2. However, it 

seems that while PEITC inhibits mTORC1 activity in a TSC2-dependent manner, it can 

also activate mTORC2 in a way that is independent of its effect on mTORC1 and does 

not require TSC2. This also indicates that elevated Akt phosphorylation in response to 

PEITC can not simply be attributed to loss of mTORC1 negative feedback loops as 

discussed earlier.        

 
The growth inhibitory action of PEITC has been well documented and I have 

demonstrated it myself in Chapter 3. mTORC1 inhibitor rapamycin has been shown to 

inhibit cell proliferation by arresting cell cycle progression at the G1/S boundary 

(Terada et al., 1993).  In particular, inhibition of cell proliferation due to loss of 

mTORC1 activity is dependent on 4E-BPs which when hypophosphorylated 

sequesters eIF4E, required for cap-dependent translation (Dowling et al., 2010). 

Overexpression of eIF4E has been shown to protect HCT-116 cells from PEITC-

induced growth inhibition, suggesting that growth inhibition by PEITC may in part be 

due to impaired protein synthesis (Hu et al., 2007). These effects are unlikely to be 

attributed to reduced HIF activity as these experiments were performed in normoxia. 

However, other studies have demonstrated overexpression of eIF4E preferentially 

increased translation of proteins involved in cell survival (Bcl-XL) and proliferation 

(cyclin D1), which may confer some protection from PEITC-mediated growth inhibition 
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(Li et al., 2003; Rosenwald et al., 1995). I found that TSC2 null MEFs which were 

resistant to mTORC1 inhibition by PEITC were slightly less sensitive to PEITC-induced 

growth inhibition compared to their wild type counterparts. Although, as this effect was 

only modest there are likely multiple mechanisms by which PEITC inhibits growth 

inhibition. Indeed, loss of one or both PTEN alleles also seemed to have a modest 

effect on PEITC-mediated growth inhibition, despite there being no effect of PTEN 

status on the ability of PEITC to suppress mTORC1 activity.      

 

I have proposed that PEITC-induced inhibition of HIF1α protein accumulation is the 

result of impaired translation of HIF1α mRNA and that this is a consequence of 

reduced mTORC1 activity. Through 35S-metabolic cell labelling I was able to directly 

look at translation and found that PEITC does appear to inhibit protein synthesis of 

HIF1α. Indeed, a downregulation in hypoxia induced HIF1α expression and VEGF 

production in human prostate cancer and tongue squamous cancer cell lines by the 

isothiocyanate SFN also appeared to be due to inhibition of HIF1α/ HIF2α mRNA 

translation (Yao et al., 2008). Although, there may also be a role for PEITC in 

modulating transcription, as while SFN was also shown to decrease HIF1α 

accumulation and VEGF production in HUMEC-1 cells this was associated with a 

reduction of HIF1α mRNA (Bertl et al., 2006). The effects of PEITC on translation are 

likely to be complex. Previous work in my laboratory has shown that PEITC also 

inhibits HIF2α protein accumulation in MCF7 cells (Wang et al., 2009), despite the 

absence of complex secondary structures within the 5’UTR of HIF2α mRNA. 

Furthermore, expression of HIF2α is unaffected by mTORC1 inhibitor rapamycin (Bhatt 

et al., 2008). It is possible PEITC affects global protein synthesis via inhibition of cap-

dependent translation, but that a small subset of mRNAs with highly structured 5’-

UTRs are particularly sensitive to decreased efficiency of translation. 

 
     

 



 

 

 

 

Chapter 5
 
The effect of PEITC on 
total mRNA translation 
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5.1 Introduction 
 

Following on from the discovery described in Chapter 4 that PEITC decreases HIF1α 

mRNA translation the effect of PEITC on total mRNA translation was investigated. 

Increased protein synthesis is an inevitable consequence of carcinogenesis, with 

uncontrolled cell growth and proliferation being a defining hallmark of cancer (Hanahan 

and Weinberg, 2000). Multiple factors involved in the regulation of translation including 

eukaryotic initiation factor 4E (eIF4E) and 2 (eIF2) have been implicated in 

downstream oncogenic signalling and as a result the translational machinery 

represents a potential target for cancer therapy (Rajasekhar and Holland, 2004).  Work 

described in this chapter demonstrates that PEITC acts as a general inhibitor of protein 

synthesis, and reveals that in addition to mTORC1, PEITC influences other key 

translational regulators.  

 

5.2 Results 
 

5.2.1 Effect of PEITC on total mRNA translation 
 

To determine the effect of PEITC on total mRNA translation, global protein synthesis 

was analysed following PEITC treatment. Treated MCF7 cells were metabolically 

labelled with [35S]Met/Cys and trichloroacetic acid (TCA) was used to precipitate the 

protein prior to quantitation of incorporation using a scintillation counter (Figure 5.1). 

Similar to HIF1α synthesis, PEITC resulted in a dose-dependent inhibition of total 

protein synthesis with 7.5 µM PEITC resulting in a statistically significant reduction. 

Furthermore, 10 µM PEITC decreased mRNA translation to the same extent as CHX, a 

general inhibitor of protein synthesis, suggesting that PEITC has an equivalent 

universal effect on translation. 

 

5.2.2 The role of mTORC1 pathway in PEITC-induced inhibition of total 
mRNA translation 
 

In Chapter 4 I established that PEITC inhibited the activity of mTORC1 as assessed by 

a decrease in 4E-BP1 and p70 S6K phosphorylation. As discussed, the exact role of 

p70 S6K in translation is not well defined, but 4E-BP1 is known to sequester cap-

binding protein eIF4E, which is required to form the eIF4F complex in cap-dependent 

translation. However, it seems that only a small subset of proteins are sensitive to  
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Figure 5.1: The effect of PEITC on total mRNA translation.  
MCF7 cells were incubated in the absence (UT) or presence of indicated 
concentrations of PEITC, DMSO (equivalent to 20 µM PEITC), or 10 µg/ml 
cycloheximide (CHX) as a positive control for 1 h. 100 µCi/ml of [35S]Met/Cys protein 
labelling mix was added for 2 h. Cells were harvested and protein extracted using TCA 
precipitation. Radioactivity was measured on a scintillation counter. Experiments were 
performed in duplicate and normalised to UT, graph shows means from three 
independent experiments ± SD. Statistically significant differences between UT and the 
treatments are indicated (* p<0.05). All other comparisons were not statistically 
significant. 
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changes in eIF4E, therefore it is unlikely that loss of mTORC1 activity can account for 

the almost complete inhibition of global protein synthesis by PEITC (Koromilas et al., 

1992). Indeed, treatment of wild type MEFs with mTORC1 inhibitor rapamycin only 

suppressed global protein synthesis by approximately 50% (Figure 5.2). Although, it 

should be noted that while not all functions of mTORC1 are inhibited by rapamycin, 

phosphorylation of p70 S6K and 4E-BP1 at site Ser65 are rapamycin-sensitive (Wang 

et al., 2005).  

 

To further explore the potential role of impaired mTORC1 activity in PEITC-induced 

inhibition of total mRNA translation, global protein synthesis was analysed in the TSC2 

null and wild type MEFs (Figure 5.3). I have previously shown that a statistically 

significant decrease in 4E-BP1 and p70 S6K phosphorylation is observed following 

PEITC treatment in the wild type TSC2 MEFs, but that this inhibition is lost in the TSC2 

deficient MEFs when mTORC1 is no longer under the regulatory influence of TSC1/2 

(Figure 4.6). If the effect of PEITC on total mRNA translation was a result of this 

inhibition of mTORC1 activity I would expect the TSC2 null MEFs to be less sensitive. 

However, global protein synthesis is equally inhibited by PEITC in both the MEF 

genotypes. 

 

5.2.3 Effect of PEITC on key translational proteins 
 

As inhibition of total mRNA translation by PEITC occurs regardless of a decrease in 

mTORC1 activity, I investigated the effect of PEITC on several other key proteins 

involved in general protein synthesis, eukaryotic initiation factor 2 (eIF2) and eukaryotic 

elongation factor 2 (eEF2). Phosphorylation of eIF2α subunit at Ser51, or eEF2 at 

Thr56 impairs the function of these proteins, inhibiting translation. 

 

MCF7 cells were treated with increasing concentrations of PEITC for 3 h and analysed 

by western blot (Figure 5.4).  PEITC caused a statistically significant dose-dependent 

increase in eIF2α phosphorylation. However, there was no change in eEF2 

phosphorylation. 

 

To further investigate the effect of PEITC on eIF2α I used MEFs that were 

homozygous for a mutation of eIF2α at amino acid reside 51. This serine to alanine 

conversion renders eIF2α unphosphorylatable at this critical regulatory residue. Mutant 

(eIF2α AA) and wild type (eIF2α SS) MEFs were treated with PEITC for 3 h and 

analysed by western blot for phosphorylation of the translational modulators eIF2α and  
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Figure 5.2: The effect of rapamycin on global mRNA translation in wild type 
MEFs.  
Wild type MEFs were incubated in the absence (UT) or presence of 25 nM rapamycin 
or 10 µg/ml cycloheximide (CHX) as a positive control for 1 h. 100 µCi/ml of 
[35S]Met/Cys protein labelling mix was added for 2 h. Cells were harvested and protein 
extracted using TCA precipitation. Radioactivity was measured on a scintillation 
counter. Experiment was performed once in duplicate and normalised to UT.  
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Figure 5.3: The effect of PEITC on global mRNA translation in TSC2 null and wild 
type MEFs.  
TSC2+/+TP53-/- ( ) and TSC2-/-TP53-/- ( ) MEFs were incubated in the absence (UT) 
or presence of indicated concentrations of PEITC, DMSO (equivalent to 20 µM PEITC), 
or 10 µg/ml cycloheximide (CHX) as a positive control for 1 h. 100 µCi/ml of 
[35S]Met/Cys protein labelling mix was added for 2 h. Cells were harvested and protein 
extracted using TCA precipitation. Radioactivity was measured on a scintillation 
counter. Experiments were performed in duplicate and normalised to UT, graph shows 
means from three independent experiments ± SD. Statistically significant differences 
between UT and the treatments are indicated (* p<0.05; *** p<0.005). All other 
comparisons were not statistically significant. 



                                                                                             Chapter 5: Total mRNA translation 

123 

U
T

1.
25

2.
5 5 7.
5

10 15 20 D
M

SO

PEITC (µM)

β-actin

P-eEF2 (Thr56)

Total eEF2

Total eIF2α

P-eIF2α (Ser51)

 

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

UT 1.25 2.5 5 7.5 10 15 20 DMSO

re
la

tiv
e 

ba
nd

 a
re

a

0

5

10

15

20

25

UT 1.25 2.5 5 7.5 10 15 20 DMSO

re
la

tiv
e 

ba
nd

 a
re

a

*

*

***

P-eEF2/eEF2

P-eIF2α /eIF2α

PEITC (µM)

PEITC (µM)

 

Figure 5.4: The effect of PEITC on key translational proteins in MCF7 cells.  
MCF7 cells were treated with indicated concentrations of PEITC or DMSO (equivalent 
to 20 µM PEITC) for 3 h. 25 µg of whole cell lysate was subjected to SDS-page and 
analysed by western blot for phospho-eEF2 (Thr56; 95 kDa) and phospho-eIF2α 
(Ser51; 38 kDa) then stripped and re-probed for total equivalents. Equal loading was 
determined by probing for β-actin (42 kDa). The blot is representative of three 
independent experiments and the results from all three are combined in the 
densitometry graphs (± SD). Statistically significant differences between UT and the 
treatments are indicated (* p<0.05; *** p<0.005). All other comparisons were not 
statistically significant. 
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eEF2, as well as indicators of mTORC1 activity, p70 S6K and 4E-BP1 phosphorylation 

(Figure 5.5). Confirming observations from MCF7 cells, PEITC caused a dose-

dependent increase in eIF2α phosphorylation in the eIF2α SS wild type MEFs, but as 

expected not in the unphosphorylatable eIF2α AA MEFs. This phosphorylation 

occurred independently of changes in mTORC1 activity as loss of 4E-BP1 and p70 

S6K phosphorylation is seen in both cell lines. In contrast to MCF7 cells, the basal 

levels of eEF2 phosphorylation were extremely low but eEF2 phosphorylation 

increased in a dose-dependent manner in PEITC treated cells. 

 

5.2.4 Role of eIF2α phosphorylation in PEITC-induced inhibition of total 
mRNA translation 
 

In order to establish the importance of eIF2α phosphorylation in PEITC-induced 

inhibition of total mRNA translation, global protein synthesis was analysed in the wild 

type eIF2α SS and eIF2α AA MEFs (Figure 5.6).  The inability of eIF2α to become 

phosphorylated did render eIF2 AA MEFs less sensitive than the wild type MEFs to 

PEITC-induced inhibition of total mRNA translation. However, at higher concentrations 

of PEITC global protein synthesis was statistically significantly inhibited in both cell 

lines. 

 

5.2.5 Role of eIF2α Phosphorylation in PEITC-Induced Growth Inhibition  
 

To examine the role of eIF2α phosphorylation in PEITC-induced growth inhibition, the 

sensitivity of wild type and eIF2α AA MEFs to various concentrations of PEITC was 

examined. MEFs were treated with PEITC for four days before relative cell number 

was measured by the MTS assay. Representative growth inhibition data in the form of 

survival curves and mean IC50 values are shown in Figure 5.7. MEFs of both 

genotypes demonstrated dose-dependent growth inhibition following PEITC treatment, 

but interestingly the wild type MEFs retained significantly higher cell numbers, giving 

rise to an IC50 value two-fold higher, than the MEFs with unphosphorylatable eIF2α. 

 

5.2.6 Effect of PEITC on eEF2 phosphorylation 
 

I have observed that while PEITC has no effect on phosphorylation of eEF2 in human 

breast cancer MCF7 cells (Figure 5.4), PEITC caused a dose-dependent increase in 

phospho-eEF2 in both the eIF2α SS and AA MEFs (Figure 5.5). To determine whether  
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Figure 5.5: The effect of PEITC on key translational proteins in eIF2α SS and 
eIF2α AA MEFs. 
MEFs were treated with indicated concentrations of PEITC or DMSO (equivalent to 20 
µM PEITC) for 3 h. 25 µg of whole cell lysate was subjected to SDS-page and 
analysed by western blot for phospho-eEF2 (Thr56; 95 kDa), phospho-p70 S6K 
(Thr389; 70 kDa), phospho-eIF2α (Ser51; 38 kDa) and total 4E-BP1 (15-20 kDa; as 
indicated, multiple bands represent different phospho-forms) then stripped and re-
probed for total equivalents. Equal loading was determined by probing for β-actin (42 
kDa).  
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Figure 5.6: The effect of PEITC on global mRNA translation in eIF2α SS and 
eIF2α AA MEFs.  
eIF2α SS ( ) and eIF2α AA ( ) MEFs were incubated in the absence (UT) or presence 
of indicated concentrations of PEITC, DMSO (equivalent to 20 µM PEITC), or 10 µg/ml 
cycloheximide (CHX) as a positive control for 1 h. 100 µCi/ml of [35S]Met/Cys protein 
labelling mix was added for 2 h. Cells were harvested and protein extracted using TCA 
precipitation. Radioactivity was measured on a scintillation counter. Experiments were 
performed in duplicate and normalised to UT, graph shows means from three 
independent experiments ± SD. Statistically significant differences between UT and the 
treatments are indicated (* p<0.05; ** p<0.01; *** p<0.005), and between the same 
treatment in the different cell lines (# p<0.05; ## p<0.01). All other comparisons were 
not statistically significant. 

 

 

 

  

 



                                                                                             Chapter 5: Total mRNA translation 

127 

-8 -7 -6 -5 -4 -3
-10

0
10
20
30
40
50
60
70
80
90

100
110

log10 concentration (M)

m
et

ab
ol

ic
 a

ct
iv

ity
 (%

 o
f u

nt
re

at
ed

)

 
 

  
 

 

Figure 5.7: PEITC-induced growth inhibition of eIF2α SS and eIF2α AA MEFs.  
eIF2α SS ( ) and eIF2α AA ( ) MEFs were treated with various concentrations of 
PEITC, DMSO ( ) equivalent to the highest dose of PEITC and 0.5 μM STS as a 
positive control ( ). After four days metabolic activity was determined by MTS assay 
using the CellTiter 96® AQueous One Solution reagent. Graph is representative and 
shows data derived from means of triplicate wells (± SD). Table showing IC50 values 
represent mean values ± SD from four experiments performed in triplicate. A 
statistically significant difference between IC50 values for eIF2α SS and AA MEFs is 
indicated (** p<0.01). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

IC50/µM Value (mean ± SD)  

eIF2α SS eIF2α AA 

PEITC 9.3 ± 1.4 4.8 ± 0.7** 
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PEITC could also induce phosphorylation of eEF2 in the other MEFs used within this 

study, they were also treated with PEITC for 3 h and analysed by western blot for 

phospho-eEF2 (Figure 5.8). Similar to the eIF2α MEFs, the PTEN MEFs of both 

genotypes seem to have low basal levels of eEF2 phosphorylation which increases in 

response to treatment with PEITC. On the other hand, basal eEF2 phosphorylation 

appears to be higher in both genotypes of the TSC2 MEFs and PEITC does not have 

any effect.  

 

Furthermore, as the response to PEITC is consistent between the wild type and 

genetically modified counterpart of each of the MEFs, the effect of PEITC on eEF2 

phosphorylation must be independent of PTEN, TSC2 and eIF2α phosphorylation. It 

should be noted that the concentrations of PEITC treatments between the PTEN and 

TSC2 MEFs are slightly different as to correlate with the range of concentrations 

previously tested in each of the cell lines. However, in both the PTEN and eIF2α 

MEFs, an increase in eEF2 phosphorylation is clearly evident at 10 µM PEITC 

treatment, while no change is observed at this concentration in the TSC2 MEFs. 

 

5.3 Discussion 
 

Following on from the discovery in Chapter 4 that PEITC inhibits translation of HIF1α 

mRNA in MCF7 cells, I investigated the effect of PEITC on global inhibition of protein 

synthesis in these cells and found that PEITC seems to have a general inhibitory effect 

on mRNA translation. However, it seemed unlikely that PEITC-induced inhibition of 

mTORC1 activity was responsible, as mTORC1 inhibitor rapamycin only suppressed 

global protein synthesis by approximately 50% in wild type MEFs. This is consistent 

with previous studies, which using various mTOR inhibitors demonstrated mTORC1 

only has a modest effect on total mRNA translation (Jefferies et al., 1994; Thoreen et 

al., 2009). Indeed, global protein synthesis in TSC null MEFs, which I have shown in 

Chapter 4 to be resistant to PEITC-induced suppression of mTORC1 activity, was 

inhibited by PEITC to a similar extent as their wild type counterparts. In an attempt to 

elucidate how PEITC was inhibiting total mRNA translation, I investigated the effect of 

PEITC on two other key regulators of protein synthesis, eIF2α and eEF2, in MCF7 

cells. While there was no effect of PEITC on eEF2 phosphorylation, eIF2α 

phosphorylation was significantly increased. Using MEFs that were homozygous for a 

mutation of eIF2α Ser51 to unphosphorylatable alanine (eIF2α AA), I confirmed that 

while PEITC caused a dose-dependent increase in eIF2α phosphorylation in the eIF2α 

SS wild type MEFs, it was unable to in the eIF2α AA MEFs. Furthermore, this  
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Figure 5.8: Effect of PEITC on phosphorylation of eEF2 in different MEFs. 
(a) PTEN wild type (+/+) and deficient (-/-), or (b) TSC2 wild type (+/+TP53-/-) and 
deficient (-/-TP53-/-) MEFs cells were treated with indicated concentrations of PEITC 
or DMSO (equivalent to 20 µM PEITC) for 3 h. 25 µg of whole cell lysate was 
subjected to SDS-page and analysed by western blot for phospho-eEF2 (Thr56; 95 
kDa) then stripped and re-probed for total eEF2. Equal loading was determined by 
probing for β-actin (42 kDa). Lysates used for blot (a) are the same as those shown in 
Figure 4.6.   
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phosphorylation occurred independently of changes in mTORC1 activity as loss of 4E-

BP1 and p70 S6K phosphorylation is seen in both cell lines. However, in contrast to 

what was observed in MCF7 cells, PEITC caused a dose-dependent increase in eEF2 

phosphorylation in both the eIF2α MEF genotypes. This difference will be discussed 

later. Importantly, I have shown that eIF2α phosphorylation does seem to contribute to 

PEITC-induced inhibition of total mRNA translation as the unphosphorylatable eIF2 AA 

MEFs were less sensitive than the wild type MEFs to inhibition of global protein 

synthesis by PEITC. Although, at higher concentrations of PEITC global protein 

synthesis was statistically significantly inhibited in both eIF2α MEF genotypes 

suggesting that other mechanisms are involved. 

   

eIF2 is a heterotrimeric protein, and when bound to GTP recruits Met-tRNAi and 

transfers it to the 40S ribosomal subunit in a process that requires hydrolysis of GTP 

and release of eIF2-GDP.  For continued initiation of translation and protein synthesis, 

eIF2 needs to exchange GDP for GTP and this is facilitated by the GEF eIF2B. 

However, phosphorylation of Ser51 on the α subunit of eIF2 stabilises the interaction 

between eIF2B and GDP bound eIF2, preventing nucleotide exchange (Webb and 

Proud, 1997). In mammals, eIF2α is known to be phosphorylated by four distinct 

kinases in response to a variety of environmental and cellular stresses; heme-

regulated inhibitor (HRI), protein kinase RNA-dependent (PKR), PKR-like ER 

(endoplasmic reticulum) kinase (PERK), and nutrient-regulated general control non-

depressible 2 (GCN2) (Wek et al., 2006).  

 

HRI kinase is abundantly expressed in erythroid tissues and was initially identified to 

phosphorylate eIF2α in response to heme deficiency, matching synthesis of globulin 

proteins with heme availability (Han et al., 2001). A single heme molecule directly 

interacts with HRI kinase through a cysteine residue in the C-terminal kinase domain 

and a histidine residue in the N-terminal domain, inhibiting HRI kinase activity when 

heme is abundant (Miksanova et al., 2006). However, oxidative stress induced by 

arsenite and heat stress has also been demonstrated to activate HRI kinase in 

erythroid cells, and although the exact mechanism remains unclear it seems to be 

independent of heme (Lu et al., 2001). In addition, HRI kinase is expressed in non-

erythroid cells (Berlanga et al., 1998), and using HRI knockout MEFs was shown to be 

the principal kinase responsible for eIF2α phosphorylation induced by 26S proteasome 

inhibition in these cells (Yerlikaya et al., 2008).  
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PKR plays a role in the antiviral defence mechanism, phosphorylating eIF2α to prevent 

translation of viral mRNA. Expression of PKR is upregulated by interferon and 

enzymatic activation occurs by binding of double stranded RNA (dsRNA) that 

accumulates during viral infection. PKR contains two dsRNA motifs that when are 

bound to dsRNA promotes homodimerisation and subsequent autophosphorylation to 

activate PKR (Cole, 2007). However, PKR can also be activated in the absence of viral 

infection, independent of dsRNA, by heterodimerisation with PKR-associated activator 

(PACT). Phosphorylation of PACT can be triggered by a variety of cellular stresses 

including oxidative stress, ER stress and serum deprivation, and leads to increased 

affinity for PKR (Patel et al., 2000; Singh et al., 2009a).  

 

PERK is an ER transmembrane kinase that phosphorylates eIF2α in response to a 

buildup of misfolded proteins in the ER (Harding et al., 2000). This forms part of the 

unfolded protein response (UPR), halting protein synthesis to prevent further burden 

on the chaperones required for proper folding of newly synthesised membrane and 

secretory proteins. PERK is maintained in an inactive form through binding with ER 

chaperone Grp78/BiP. However, accumulation of unfolded proteins sequesters 

Grp78/BiP away from PERK, activating the eIF2α kinase by allowing homodimerisation 

and autophosphorylation.  Changes to the luminal ER environment by altering redox 

state or calcium levels, or disruption to posttranslational modification such as N-linked 

glycosylation can all impair proper protein folding and lead to a buildup of misfolded 

proteins (Lai et al., 2007).  

 

GCN2 phosphorylates eIF2α in response to amino acid deprivation, coordinating 

protein synthesis with amino acid availability (Zhang et al., 2002). GCN2 possess a 

domain homologous to histidyl-tRNA synthetases (HisRS) enzyme and is believed to 

be activated by binding of uncharged tRNA molecules that increase in concentration 

during amino acid starvation. However, GCN2 has also been shown to be involved in 

eIF2α phosphorylation in response to UV irradiation and proteasome inhibition (Deng 

et al., 2002; Jiang and Wek, 2005). 

 

Considering the redundancy of these kinases to many of the cellular stresses and the 

pleiotrophic effects of PEITC, it is likely that PEITC activates several if not all the eIF2α 

kinases. Perhaps the most obvious means of PEITC to cause eIF2α phosphorylation is 

through oxidative stress, as it is known depletion of ROS-scavenger, glutathione 

(GSH), by PEITC leads to increased intracellular concentrations of ROS (Trachootham 
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et al., 2006). The exact mechanism by which oxidative stress causes activation of the 

eIF2α kinases HRI and PKR is unknown, however, as with modulation of other redox 

sensitive proteins it is likely to involve oxidation of key cysteine residues that alter 

protein activity. Indeed, a cysteine residue is required to coordinate heme to HRI 

kinase and thiol oxidation may disrupt this interaction, removing the inhibitory influence 

of heme (Miksanova et al., 2006). The presence of key regulatory cysteines means it is 

also possible that PEITC activates HRI through direct protein modification. 

Furthermore, conjugation of PEITC to protein cysteinyl thiols in the ER may prevent 

proper formation of disulphide bridges, resulting in an accumulation of misfolded 

proteins and activation of PERK.                                                                                                          

 

Both HRI and GCN2 have also been implicated in eIF2α phosphorylation in response 

to proteasome inhibition in MEFs, and 26S proteasome inhibitors MG132 and 

bortezomib have further been shown to induce phosphorylation of eIF2α in murine 

B16F10 melonama and 4T1 breast cancer cell lines (Yerlikaya and Dokudur, 2010). It 

has recently been shown that PEITC can inhibit both 20S and 26S proteasome activity 

in multiple myeloma cells (Mi et al., 2011a). This inhibition occurs independently of 

ROS generation or ITC-induced protein aggregation therefore, the authors propose 

that PEITC inhibits the proteasome through direct binding. Consequently it is possible 

PEITC thiocarbamoylation indirectly activates eIF2α kinases via the 26S proteasome.  

 

In addition to inhibiting general protein synthesis, eIF2α phosphorylation selectively 

induces translation of a subset of mRNAs that both promote cell survival, through 

adaptation to stress, and induce apoptosis (Harding et al., 2003). Coincident signalling 

pathways activated alongside eIF2α phosphorylation in response to cellular stresses 

can also contribute to cell survival and apoptosis. Seemingly, the ultimate fate of the 

cell depends on the balance between the cytoprotective and pro-apoptotic pathways, 

and these can be influenced by the intensity, duration and type of stress (Muaddi et al., 

2010; Rutkowski et al., 2006; Scheuner et al., 2006). I found that MEFs homozygous 

for an unphosphorylatable form of eIF2α were more sensitive to PEITC-induced growth 

inhibition than their wild type counterparts, suggesting that in this context eIF2α 

confers some protection from PEITC-induced stress.  

 

eEF2 is required for the translocation of the peptidyl chain along the ribosome from A 

to P site during elongation and is negatively regulated through eEF2 kinase directed 

phosphorylation, which prevents eEF2 from binding to the ribosome (Carlberg et al., 
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1990). eEF2K is a calcium/calmodulin (CAM)-dependent kinase also regulated by 

multiple phosphorylation sites which have both activatory and inhibitory influences. 

Several mTOR-dependent eEF2K phosphorylation sites have been identified that in 

response to insulin inhibit eEF2K thereby decreasing eEF2 phosphorylation and 

promoting mRNA translation. mTORC1 substrate p70 S6K directly phosphorylates 

eEF2K at Ser366, impairing its activity particularly at low calcium concentrations. This 

site can also be phosphorylated by downstream ERK target, p90RSK (Wang et al., 

2001). Cdc2/cyclin B has been shown to phosphorylate eEF2K at Ser 359 in a manner 

that is consistent with being regulated by mTORC1, although exactly how mTORC1 

controls Cdc2/cyclin B is unknown (Smith and Proud, 2008). Phosphorylation at Ser78 

inhibits the binding of calmodulin to eEF2K and is sensitive to rapamycin, although the 

kinase responsible has yet to be identified (Browne and Proud, 2004). On the other 

hand, phosphorylation of Ser398 by AMPK promotes eEF2K activity, inhibiting the 

energy consuming process of elongation when ATP levels are low (Browne et al., 

2004), and phosphorylation of Ser500 (Ser499 in rabbit reticulocytes) by cAMP-

dependent protein kinase (PKA) allows calcium-independent activation of eEF2 (Diggle 

et al., 2001).  

 

Despite PEITC inhibiting p70 S6K phosphorylation, in human MCF7 breast cancer 

cells, there does not appear to be any effect of PEITC on eEF2 phosphorylation. In 

Chapter 4 I demonstrated that PEITC enhanced phosphorylation of upstream p90RSK 

activator, ERK, and therefore it is possible that this compensates for the loss of p70 

S6K activity. While several other mTOR-dependent eEF2K phosphorylation sites have 

also been identified and PEITC does affect mTORC1 activity, as shown by loss of 4E-

BP1 and p70 S6K phosphorylation, it is possible that not all functions are inhibited.  

Surprisingly, when eEF2 phosphorylation was analysed in the eIF2α SS and eIF2α AA 

MEFs, PEITC resulted in a dose-dependent increase in phospho-eEF2 in both MEF 

genotypes. The effect of ERK phosphorylation was not examined in these cells, but as 

with MCF7 cells, PEITC similarly inhibited p70 S6K phosphorylation in both the wild 

type and unphosphorylatable eIF2α MEFs. Interestingly, the MEFs seemed to display 

lower basal levels of eEF2 phosphorylation than the MCF7 cells, which may be a 

consequence of different intracellular levels of calcium. As mentioned, phosphorylation 

by p70 S6K affects eEF2K activity particularly at low calcium concentrations and may 

explain why loss of p70 S6K phosphorylation relieves eEF2K inhibition, increasing 

eEF2 phosphorylation in the MEFs but not the MCF7 cells. I also examined the effect 

of PEITC on eEF2 phosphorylation in the other MEFs used in this study. Similar to the 
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eIF2α MEFs, the PTEN MEFs of both genotypes had low basal levels of eEF2 

phosphorylation which increased with PEITC treatment. However, basal eEF2 

phosphorylation appears to be higher in both genotypes of the TSC2 MEFs and PEITC 

does not have any effect. Notably, unlike the other MEFs, the TSC2 MEFs are also 

knockout for p53.
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6.1 Introduction 
 

An important aim of this project was to determine whether it was possible to enhance 

the in vitro anticancer activity of watercress. Based on results described in Chapter 3, 

growth inhibition and activation of Nrf2-dependent transcription were selected as 

candidate assays for in vitro analysis of crude watercress extracts and in this chapter, I 

describe a series of proof-of-principle experiments using these assays. The goals of 

these experiments were to (i) optimise methods for preparation of watercress extracts, 

(ii) determine the suitability of the assays for the analysis of crude watercress extracts, 

and (iii) to gain any insight into whether different watercress crops might possess 

distinct in vitro anticancer properties, as a precursor to direct agronomic experiments. 

 

Two varieties of watercress were selected for these proof-of-principle experiments. 

First, the commercially available ’regular’ green watercress from the Vitacress seed 

and second, an American ‘red’ variety of watercress (Figure 6.1).  Apart from the 

obvious difference in colour and the fact that red watercress is sterile little is known 

about the differences between these two varieties. Although, red watercress may have 

similar origins to brown watercress which up until the Second World War was 

commercially cultivated alongside the ’regular’ green watercress.  

 

6.2 Results 
 

6.2.1 Preparation of watercress extracts 
 

Before I could assess the in vitro anticancer activity of crude watercress extract it was 

necessary to optimise preparation of the extract. Previous studies investigating the in 

vitro anticancer potential of watercress prepared extracts by homogenising samples in 

a commercial juice processor (Boyd et al., 2006; Kassie et al., 2003). Cell debris was 

subsequently removed by centrifugation. This technique is not quantitative and 

therefore unsuitable for comparing between different watercress samples. The method 

obtained from colleagues in Biological Sciences, University of Southampton, UK 

involved grinding snap frozen samples to a fine powder in a pestle and mortar. Ground 

watercress was then decanted into a QIAshredder homogeniser (Qiagen) consisting of 

a mini-spin column and a collection tube. The sample was centrifuged to collect the 

extract. While this technique is quantifiable the grinding of samples is time-consuming. 

To determine whether grinding is necessary I compared crude watercress extracts  
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a) b)

Figure 6.1: Images of the two different watercress varieties tested.  
(a) Green watercress, (b) red watercress. 
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prepared using the QIAshredder method from either ground or whole snap frozen 

material in the MTS growth inhibition assay. I found no difference in IC50 values 

between the two samples (Figure 6.2). Snap freezing the sample seems sufficient to 

break open the plant cell walls and allow myrosinase to catalyse the conversion of 

glucosinolates to isothiocyanates. Therefore, in future experiments I used whole 

watercress. Another limitation to using the QIAshredder method was that due to its size 

only 1 g of sample could be prepared, producing approximately 500 µl crude 

watercress extract. Sterile filtering of the extract further reduced sample volume. 

Essentially the QIAshredder homogeniser consists of a column with a filter, sat within a 

collection tube. To create a larger version that could process more watercress, I placed 

a 20 ml syringe (BD Biosciences) that had had the plunger removed and a circular 25 

mm glass microfibre filter (Whatman) inserted in the bottom, inside a 50 ml centrifuge 

tube. Like with the QIAshredder homogenizer, centrifugation allowed for collection of 

crude watercress extract. Crude watercress extracts prepared using either the 

QIAshredder or syringe method were compared in the MTS growth inhibition assay. 

There was no discernable difference in IC50 values between the two samples (Figure 

6.3). As a result, the syringe method was used for the preparation of subsequent crude 

watercress extracts.   

        

I also compared the effect of crude watercress extracts prepared from either leaves or 

stems on growth inhibition in MCF7 cells. Interestingly, extracts from the leaves of 

watercress exhibited approximately 2.5-fold more in vitro anticancer activity than that 

from the stems (Figure 6.4). It is important the watercress extracts come from both the 

leaf and stem to be representative of what an individual may consume however, in 

order to avoid differences in leaf/stem ratio skewing results crude watercress extracts 

for future experiments were prepared from equal parts leaf and stem. 

 

6.2.2 Effect of crude watercress extract from different varieties of 
watercress on the growth inhibition of MCF7 cells  
 

I have already demonstrated that the MTS growth inhibition assay is suitable for the 

analysis of a crude watercress extract; however, I also wanted to investigate whether 

different varieties of watercress possess distinct in vitro anticancer properties. To 

compare the growth inhibitory activity of different varieties of watercress, MCF7 breast 

cancer cells were treated with crude watercress extract from either the green or red 

variety. Extracts from both varieties inhibited the growth of MCF7 cells, but crude 

watercress extract from red watercress was nearly 10-fold more potent than that from 
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Figure 6.2: Comparison of the ability of crude watercress extract prepared from 
either ground or whole sample to inhibit the growth of MCF7 cells. 
Representative growth inhibition experiments. Cells were treated with various 
concentrations of crude watercress extract prepared from ground ( ) or whole ( ) 
frozen samples of green watercress, PEITC for use as a standard ( ) or 0.5 μM STS as 
a positive control ( ). Note on the graph the units for PEITC and STS are M. After six 
days metabolic activity was determined by MTS assay using the CellTiter 96® AQueous 
One Solution reagent. Data shown are derived from means of duplicate wells (± SD). 
Table showing IC50 values represent mean values ± SD from three experiments.  
 
 

IC50 Value (mean ± SD) 

Ground Whole PEITC 

36.7 µl/ml ± 18.3 43.8 μl/ml ± 13.7 12.3 μM ± 2.1 
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Figure 6.3: Comparison of the ability of crude watercress extract prepared by the 
QIAshredder or syringe technique to inhibit the growth of MCF7 cells. 
Representative growth inhibition experiments. Cells were treated with various 
concentrations of crude watercress extract from green watercress prepared by the 
QIAshreder ( ) or syringe ( ) technique, PEITC for use as a standard ( ) or 0.5 μM STS 
as a positive control ( ). Note on the graph the units for PEITC and STS are M. After 
six days metabolic activity was determined by MTS assay using the CellTiter 96® 
AQueous One Solution reagent. Data shown are derived from means of duplicate wells 
(± SD). Table showing IC50 values represent mean values ± SD from three 
experiments. 
 
 
 

IC50 Value (mean ± SD) 

QIAshredder Syringe PEITC 

36.6 µl/ml ± 20.1 37.2 μl/ml ± 20.6 8.6 μM ± 5.8 
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Figure 6.4: Comparison of the ability of crude watercress extract from either the 
leaf or stem of green watercress to inhibit the growth of MCF7 cells. 
Representative growth inhibition experiments. Cells were treated with various 
concentrations of crude watercress extract from the leaf ( ) or stem ( ) of green 
watercress, PEITC for use as a standard ( ) or 0.5 μM STS as a positive control ( ). 
Note on the graph the units for PEITC and STS are M. After six days metabolic activity 
was determined by MTS assay using the CellTiter 96® AQueous One Solution reagent. 
Data shown are derived from means of duplicate wells (± SD). Table showing IC50 
values represent mean values ± SD from three experiments. A statistically significant 
difference between IC50 values for crude watercress extracts derived from the leaf and 
stem is indicated (* p<0.05). 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

IC50 Value (mean ± SD) 

Leaf Stem PEITC 

45.4 µl/ml ± 11.0 16.5 μl/ml ± 5.2* 14.4 μM ± 3.8 
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green watercress (Figure 6.5). 

 

6.2.3 Effect of crude watercress extract on Nrf2 activity 
 

To investigate effects of watercress extracts on Nrf2 activity, AREc32 cells were 

treated with crude watercress extract from green or red varieties for 24 h before 

luciferase was measured (Figure 6.6). Extracts from the green and red watercress both 

caused a dose-dependent increase in Nrf2-dependent transcription. Similar to 

observations from growth inhibition assays, extract from the red cultivar was 10-fold 

more potent than the green, with a 2-fold increase in Nrf2 activity seen at 0.3125 µM 

and 3.125 µM respectively. 

 

6.2.4 Effect of crude watercress extract on HIF activity 
 

In addition to growth inhibition and Nrf2 activation, I also investigated the effects of 

watercress extracts on other important cancer pathways. In particular, I analysed 

effects on HIF activity and total mRNA translation, shown to be modulated by PEITC in 

previous work (Chapters 4 and 5). 

 

To explore effects on HIF transcriptional activity, MCF7 cells were transiently 

transfected with a luciferase construct containing an upstream hypoxia response 

element (HRE) (Wang et al., 2009). To control for non-specific effects, the activity of 

the SV40-promoter based reporter plasmid pGL3-promoter was also analysed. MCF7 

cells were transfected with the HIF or pGL3-promoter construct and treated with 

increasing amounts of crude watercress extract from the green (Figure 6.7) or red 

(Figure 6.8) varieties, and water as a control. Cells were then exposed to the hypoxia 

mimetic DFO, an iron chelator that inhibits prolyl hydroxylase activity required to target 

HIF for degradation in normoxia.  

 

In both experiments, pretreatment with DFO resulted in strong induction in HIF activity 

with little change observed in the expression of luciferase controlled by the pGL3-

promoter construct. Crude watercress extract from the green variety caused a dose-

dependent decrease in the activity of the HIF reporter construct that is statistically 

significant at 50 µl/ml treatment. There does not seem to be any effect of the green 

watercress extract on the activity of the pGL3-promoter construct. Treatment with 

crude watercress extract from the red variety also resulted in a dose-dependent  
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Figure 6.5: Effect of crude watercress extract on the growth of MCF7 cells.  
Representative growth inhibition experiments. Cells were treated with various 
concentrations of crude watercress extract either from the green cultivar ( ) or the red 
cultivar ( ), PEITC for use as a standard ( ) or 0.5 μM STS as a positive control ( ). 
Note on the graph the units for PEITC and STS are M. After six days metabolic activity 
was determined by MTS assay using the CellTiter 96® AQueous One Solution reagent. 
Data shown are derived from means of duplicate wells (± SD). Table showing IC50 
values represent mean values ± standard deviation from three experiments. A 
statistically significant difference between IC50 values for green and red crude 
watercress extracts is indicated (** p<0.01). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

IC50 Value (mean ± SD) 

Green Wx Red Wx PEITC 

34.58 µl/ml ± 9.11 3.25 μl/ml ± 1.77** 17.12 μM ± 4.87 
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Figure 6.6: Effect of crude watercress extract on ARE-driven expression.  
MCF7 cells stably transfected with ARE were treated with the indicated concentrations 
of crude watercress extract either from (a) green cultivar ( ) or (b) red cultivar ( ) and 
equivalent amounts of H2O as a control ( ) for 24 h and then luciferase activity 
determined. Data shown is mean (± SD) of three independent experiments. Statistically 
significant differences between H2O and watercress treated cells are indicated (* 
p<0.05; ** p<0.01). All other comparisons were not statistically significant.
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Figure 6.7: Effect of a crude extract from green watercress on HIF activity.  
MCF7 cells were transfected with (a) pGL2-TK-HRE or (b) control pGL3-promoter 
reporter constructs  and treated with the indicated concentrations of crude watercress 
extract from the green cultivar ( ) or equivalent amounts of H2O as a control ( ) for 24 h 
and then luciferase activity determined. Data shown is mean (± SD) of three 
independent experiments. Statistically significant differences between H2O and 
watercress treated cells are indicated (* p<0.05). All other comparisons were not 
statistically significant. 
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Figure 6.8: Effect of a crude extract from red watercress on HIF activity.  
MCF7 cells were transfected with (a) pGL2-TK-HRE or (b) control pGL3-promoter 
reporter constructs  and treated with the indicated concentrations of crude watercress 
extract from the red cultivar ( ) or equivalent amounts of H2O as a control ( ) for 24 h 
and then luciferase activity determined. Data shown is mean (± SD) of three 
independent experiments. Statistically significant differences between H2O and 
watercress treated cells are indicated (* p<0.05). All other comparisons were not 
statistically significant. 
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decrease in the activity of the HIF reporter construct but at much lower concentrations. 

This is in agreement with the growth inhibition and Nrf2 activity data collected from the 

green and red watercress varieties. However, results were more variable with the red 

watercress extract and the reduction in HIF activity was not statistically significant. In 

addition, extract from the red watercress seemed to reduce activity of the control 

pGL3-promoter construct suggesting there may be non-specific effects. 

 

6.2.5 Effect of crude watercress extract on total mRNA translation 
 

To investigate effects of watercress extracts on total mRNA translation, MCF7 cells 

were treated with crude watercress extract from the green and red varieties. Cells were 

then metabolically labelled with [35S]Met/Cys and protein synthesis determined 

following TCA precipitation (Figure 6.9). Extracts from both green and red watercress 

caused a dose-dependent decrease in total mRNA translation. However, crude 

watercress extract from the red variety appears to be only 4-fold more potent than that 

from the green variety, as opposed to the 10-fold difference observed in the growth 

inhibition and Nrf2 activity assays. 

 

6.3 Discussion 
 

The goals of this chapter were to optimize preparation of a crude watercress extract, 

determine whether assays developed in previous chapters could be used to analyse 

the in vitro anticancer activity of a crude watercress extract, and investigate whether 

different varieties of watercress might possess distinct in vitro anticancer properties. I 

found that a crude watercress extract can inhibit the growth of MCF7 breast cancer 

cells using the MTS assay and enhance Nrf2 activity as assessed by ARE-driven gene 

expression in a luciferase reporter system. Moreover, I demonstrated that the extract 

from red watercress has more potent in vitro anticancer activity than extracts from the 

green watercress. Therefore, the MTS growth inhibition assay and Nrf2 activity assay 

appear to be suitable to investigate the in vitro anticancer activity of watercress grown 

under different agronomical conditions. I also looked at HIF activity, analysed by a HIF-

dependent construct in a luciferase reporter assay, as a potential means to assess the 

in vitro anticancer activity of crude watercress extract. Crude watercress extract was 

shown to inhibit HIF activity in this assay, and similar to the MTS and Nrf2 activity 

assays showed a difference in the potency of the two varieties of watercress tested. 

However, this assay produced large error bars which meant inhibition of HIF activity  
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Figure 6.9: Effect of crude watercress extract on total mRNA translation.  
MCF7 cells were incubated in the absence (UT) or presence of indicated 
concentrations of green ( ) or red ( )watercress extract, 20 µM PEITC ( ), or 10 µg/ml 
cycloheximide (CHX) as a positive control for 1 h. 100 µCi/ml of [35S]Met/Cys protein 
labelling mix was added for 2 h. Cells were harvested and protein extracted using TCA 
precipitation. Radioactivity was measured on a scintillation counter. Experiments were 
performed in duplicate and normalised to UT, graph shows means from three 
independent experiments ± SD. Statistically significant differences between UT and the 
treatments are indicated (* p<0.05; ** p<0.01; *** p<0.005). All other comparisons were 
not statistically significant.  
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was not always statistically significant, and there is also some question as to whether 

crude watercress extract causes non-specific inhibition of the control pGL3-promoter. 

As a result, I decided not to use this assay when determining the in vitro anticancer 

activity of my field trial samples. 

 

Very few studies have actually examined the effect of crude watercress extract on cell 

proliferation. In peripheral blood mononuclear cells (PBMCs) in vitro, 10 µl/ml crude 

watercress extract caused approximately 50% inhibition of metabolic activity while 

having little effect on membrane integrity, suggesting the cells are undergoing 

apoptosis (Hofmann et al., 2009). On the other hand, analysis of cell cycle progression 

following treatment of colorectal carcinoma HepG2 cells with crude watercress extract 

seemed to result in an accumulation in S phase (Boyd et al., 2006). Much of the work 

on crude watercress extract has focused on its effect on drug metabolising enzymes. 

Crude watercress extract has been shown to increase the activity of multiple phase II 

drug metabolising enzymes in vitro, including NQO1 and GST which are under the 

control of AREs (Kassie et al., 2003; Rose et al., 2000). This laboratory has previously 

published data demonstrating the inhibitory effect of crude watercress extract on HIF 

activity in an ARE luciferase system, and showed that consumption of 80 g watercress 

by healthy individuals may be sufficient to cause a transient decrease in 4E-BP1 

phosphorylation in vivo (Syed Alwi et al., 2010). To my knowledge no other groups 

have looked at the effect of watercress or any other cruciferous vegetable on HIF or 

angiogenesis.  

 

Notably, in the MTS and Nrf2 activity assays the crude watercress extract from the red 

variety was found to display considerably more in vitro anticancer activity than that 

from the green variety, being approximately 10-fold more potent. One obvious 

difference between the two varieties is colour. Despite being known as red watercress 

the leaves I tested actually looked more purple in colour, while the green variety of 

watercress was the typical light green colour generally associated with watercress. 

Indeed, the crude watercress extract collected were purple and green respectively. The 

reddy purple colours observed in the red watercress would suggest an increased 

presence of anthocyanins (Mol et al., 1998). It is well known that anthocyanins are 

powerful antioxidants and their presence may be a marker of stress induced changes.  

 

In addition to being antioxidants, there is evidence emerging that anthocyanins and 

their aglycones, anthocyanidins, may also play a more specific anticancer role (Wang 

and Stoner, 2008). Both pure anthocyanins and extracts from anthocyanin rich fruits 
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and vegetables have been shown to inhibit the growth of a variety of human cancer cell 

lines (Chen et al., 2005; Reddivari et al., 2007; Seeram et al., 2006). This is thought to 

be due to cell cycle arrest in G2/M phase, which is associated with down-regulation of 

a range of cell cycle regulatory proteins, as well as apoptosis initiated via both the 

intrinsic and extrinsic pathways.  It has also been demonstrated that anthocyanins can 

induce the activity of several phase II metabolising enzymes including GST and NQO1 

in rat liver clone 9 cells by promoting ARE-driven gene expression (Shih et al., 2007). 

Anthocyanins have also been reported to possess anti-angiogenic properties. Both the 

anthocyanidin delphinidin and an anthocyanin-rich berry extract were shown to inhibit 

angiogenesis in in vivo models and this was associated with a decrease in VEGF 

expression which is a target for HIF1α (Bagchi et al., 2004; Favot et al., 2003). 

However, it should be noted that these experiments were carried out using much 

higher concentrations of anthocyanins than are likely to be found in red watercress. 

 

If the red watercress does in fact have higher concentrations of anthocyanins than the 

green watercress this may cause the enhanced in vitro anticancer effect observed.   

However, it would be interesting to determine any differences in ITC content between 

the red and green watercress. Anthocyanin presence is an indicator stress and 

therefore other stress-induced changes may have occurred, and these are likely to 

also contribute to the differences in in vitro anticancer activity.  

 

As far as I am aware there has not been any previous data published linking extracts 

from watercress or any other cruciferous vegetable to a decrease in mRNA translation. 

Interestingly, while red crude watercress extract is still more potent than green at 

inhibiting total protein synthesis, the difference in activity is only 4-fold, opposed to the 

10-fold difference observed in the assays looking at growth inhibition and Nrf2 activity. 

It could also be said that crude watercress extract from red watercress is only 5-fold 

more potent than that from the green at inhibiting HIF activity. However, as already 

mentioned there is some difficulty in interpreting the results from this assay.   

 

When assessing the effect of crude watercress extracts on total mRNA translation, 

growth inhibition experiments were carried out alongside using the same extracts. This 

was to confirm that the difference in potency was specific to the effect of watercress on 

total mRNA translation and not an overall decrease in potency due to instability of 

phytochemicals in storage. While storage slightly decreased the potency of the 

watercress samples there was still a relative 10-fold difference between the green and 

red crude watercress extracts in the MTS growth inhibition assay (Appendix 1). These 
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results suggest that the compound in red watercress responsible for the increased 

growth inhibitory and Nrf2 activity could be different from that responsible for the 

increased inhibition of total mRNA translation. Alternatively, the increased potency in 

the growth inhibition and Nrf2 activity assays could be due to a synergistic effect with 

other phytochemicals, while inhibition of protein translation is caused by a single 

compound acting alone.   

 

One limitation of this study is that I was unable to successfully determine PEITC levels 

in the different watercress samples. Previous studies have highlighted the difficulty in 

measuring breakdown products of glucosinolates due to the volatile nature of many of 

the compounds (Boyd et al., 2006; Rose et al., 2000). However, through use of the 

cyclocondensation assay this problem can be overcome. This method relies on the 

quantitative reaction of ITCs with an excess of 1,2-benzenedithiol to yield the stable 

cyclic-ring product, 1,3-benzodithole-2-thione, and a free amine (Zhang et al., 

1992).The 1,3-benzodithole-2-thione product can then be measured using high-

performance liquid chromatography (HPLC) (Zhang et al., 1996). It should be noted 

that this assay can not distinguish between different isothiocyanates, or their 

conjugation products, therefore the cyclocondensation assay measures total 

isothiocyanates and their metabolites. Nonetheless, this assay could still provide 

valuable insight on whether the differences in in vitro anticancer activity I observed 

were a consequence of altered isothiocyanate content.  

 

In experiments not reported here, aimed at developing the cyclocondensation assay for 

analysis of watercress extracts, I was able to detect 1,3-benzodithole-2-thione in the 

PEITC standard. However, this peak was not seen in the crude watercress extract, 

even when this was spiked with the PEITC standard. The cyclocondensation assay 

has largely been used to determine total ITC content from urinary and plasma samples 

following ingestion of cruciferous vegetables, but crude extracts from broccoli sprouts 

have been analysed by this method (Conaway et al., 2000; Shapiro et al., 2001).  

During my analysis of crude watercress extract an extremely large peak is initially seen 

that was not present in the PEITC standard. This suggests that there is a large amount 

of non-specific binding derived from the watercress extracts that is quickly eluted. The 

non-specific binding may inundate the HPLC column preventing 1,3-benzodithole-2-

thione binding. Differences in the length and diameter of the C18 HPLC column could 

account for why others were still able to achieve 1,3-benzodithole-2-thione binding and 

thus detect ITCs in a crude vegetable extract. 



 

 

 
 

Chapter 7
 
Watercress: Field trials 
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7.1 Introduction 
 

This chapter explores whether it is possible to enhance the in vitro anticancer activity 

of watercress. As described in the introduction, manipulation of both genetics and 

environmental factors provide possible routes to enhance the concentration of 

glucosinolates in crops. Colleagues in Biological Sciences, Southampton University, 

UK are currently establishing a germplasm collection with the view to improve the 

anticancer potential of watercress through selective breeding. Therefore this study will 

investigate the impact of manipulating environmental factors. Altering various aspects 

of the growth environment such as temperature, photoperiod, light quality, sulfur 

fertilisation and water availability have all previously been shown to influence the 

glucosinolate content of cruciferous vegetables. As the changes I make have to be 

suitable for large scale cultivation of watercress in the field, temperature, photoperiod 

and light quality were excluded as variables that could be manipulated. However, 

increasing sulfur fertilisation and withholding water are changes that can be easily 

implemented in the field. Furthermore, it is known that the expression of some plant 

genes follow a circadian rhythm that can be influenced by environmental cues such as 

light and temperature (Schaffer et al., 2001). The fact that glucosinolate content can 

also be affected by these environmental cues suggests that glucosinolate biosynthesis 

may follow a circadian rhythm. ConsequentIy, I investigated whether (i) time of day 

harvest, (ii) increased sulfur fertilisation, and (iii) drought-induced stress, effect the in 

vitro anticancer activity of watercress.   

.   

7.2 Results 
 

7.2.1 First field trial 
 

On 6th August 2009 watercress seedlings were transplanted into three 50 yd2 gravel 

lined concrete beds at Vitacress’ Fobdown farm in Alresford. To increase sulfur 

fertilisation, Microthiol Special fertiliser, containing 80% w/w sulfur was applied as a 

foliar spray to one of the beds two weeks after planting (Figure 7.1a). In accordance to 

the manufacturer’s guidelines the 50 yd2 bed was sprayed with 42 g Microthiol Special 

dissolved in 2 L water.  After a further two weeks of growth, the crop was ready to 

harvest (Figure 7.1b). To introduce drought stress, water supply to the second 

watercress bed was cut off at 18:00 h the day before harvesting (see Figure 7.2 for an 

overview of the trial). Typically, harvesting would begin at approximately 07:00-08:00 h 
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Figure 7.1: Images from first field trial. 
(a) Fobdown farm manager, Ron Bainbridge applying a foliar spray of Microthiol 
Special to the sulfur fertilisation bed two weeks after the watercress seedlings were 
transplanted into the bed. (b) Myself harvesting watercress from the control bed four 
weeks after the watercress seedlings were transplanted into the bed.     

 

a) 

b) 
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Figure 7.2: Overview of first field trial. 
Three 50 yd2 gravel lined concrete beds at Vitacress’ Fobdown farm in Alresford, 
supplied with spring water from a bore-hole were transplanted with seedlings. Two 
weeks later sulfur-rich fertiliser Microthiol Special was sprayed onto the watercress in 
the sulfur fertilisation bed. Four weeks later the watercress was ready to harvest. The 
night before harvesting the water supply was cut off to the drought bed. On the day of 
harvest, nine samples from each of the beds were collected, three from each of the 
top, middle and bottom sections of the beds at 6:00 h and then every three hours until 
midnight. Samples were also taken at 6:00 h and 9:00 h the following morning from all 
three beds and at 18:00 h for two days following the first day of harvest from the 
control and drought beds.    
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with exact start and finish time depending on weather and size of order. I decided to 

harvest at first light, which was 6:00 h and then every three hours until midnight, 

repeating the 6:00 h and 9:00 h harvests the following morning to confirm any pattern 

was circadian.  

 

Although there was no rain, shutting off the water supply to the drought bed did not 

completely dry out the bed and there was still water at the 9:00 h harvest on 9th 

September 2009. Consequently, I decided to continue to take samples from the 

drought and control beds at 18:00 h everyday until the bed had dried out and the 

appearance of watercress no longer met quality standards. Samples were collected at 

18:00 h on the 9th and 10th September 2009 when there was still some water in the 

beds. However, on arriving at Fobdown at 18:00 h on 11th September 2009 I 

discovered that the water supply had erroneously been returned to the bed and as a 

result no further samples were collected.      

 

Initially I compared the in vitro anticancer activity of watercress samples harvested at 

different times throughout the day in the MTS growth inhibition assay (Figure 7.3) and 

Nrf2 activity assay (Figure 7.4). While I carried out experimental repeats on the same 

samples, I also carried out a biological repeat on samples harvested at the same time 

but from a different part of the bed. There was no difference observed in the ability of 

any of the samples to inhibit the growth of MCF7 cells or enhance Nrf2 activity. 

 

As time of day harvest had no effect on in vitro anticancer activity of watercress, when 

examining the effect of sulfur fertilisation only watercress samples harvested at 6:00 h 

and 18:00 h from the control and sulfur treated beds were compared. A single 

treatment of watercress with a foliar spray of Microthiol Special, at an application rate 

of 21 g/L/25 yd2 two weeks into a four week growing period, had no effect on the ability 

of watercress to inhibit the growth of MCF7 cells (Figure 7.5) or enhance Nrf2 activity 

(Figure 7.6). When comparing the control and drought stressed watercress I also 

analysed samples at 6:00 h and 18:00 h as well as samples harvested at 18:00 h on 

the following two days. Shutting off the water supply to watercress for three days to 

induce drought stress had no effect on the ability of watercress to inhibit the growth of 

MCF7 cells (Figure 7.7) or enhance Nrf2 activity (Figure 7.8). Although, it is important 

to note that the bed was never totally depleted of water, and as water supply was 

erroneously returned to the bed after four days the experiment ended prematurely.            
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Figure 7.3: Effect of time of harvest on the ability of crude watercress extract to 
inhibit the growth of MCF7 cells.  
(a) Representative growth inhibition experiment. MCF7 cells were treated with various 
concentrations of crude watercress extract from samples harvested at different times 
throughout the day (06:00 h ( ), 09:00 h ( ), 12:00 h ( ), 15:00 h ( ), 18:00 h ( ), 21:00 
h ( ), 00:00 h ( ), and 06:00 h ( ) and 09:00 h ( ) the following day), PEITC ( ) for use 
as a baseline or 0.5 μM STS ( ) as a positive control. Note on the graph the units for 
PEITC and STS are M. After six days metabolic activity was determined by MTS assay 
using the CellTiter 96® AQueous One Solution reagent. Data shown are derived from 
means of duplicate wells (± SD).  (b) Mean IC50 values ± SD. Block and hatched bars 
represent biological repeats, each performed in triplicate. 
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Figure 7.4 Effect of time of harvest on the ability of crude watercress extract to 
induce ARE-driven expression.  
MCF7 cells stably transfected with ARE were treated with the indicated concentrations 
of crude watercress extract from samples harvested at different times throughout the 
day (06:00 h ( ), 09:00 h ( ), 12:00 h ( ), 15:00 h ( ), 18:00 h ( ), 21:00 h ( ), 00:00 h    
( ), and 06:00 h ( ) and 09:00 h ( ) the following day), or equivalent amounts of H2O ( ) 
as a control for 24 h and then luciferase activity determined. Data shown is mean (± 
SD) of three independent experiments. (a) and (b) represent biological repeats.
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Figure 7.5: Effect of sulfur on the ability of crude watercress extract to inhibit the 
growth of MCF7 cells.  
(a) Representative growth inhibition experiment. MCF7 cells were treated with various 
concentrations of crude watercress extract from control beds (Ctrl) harvested at 06:00 
h ( ) or 18:00 h ( ), Microthiol Special (MS) treated beds at 06:00 h ( ) or 18:00 h ( ), 
PEITC ( ) for use as a baseline or 0.5 μM STS ( ) as a positive control. Note on the 
graph the units for PEITC and STS are M. After six days metabolic activity was 
determined by MTS assay using the CellTiter 96® AQueous One Solution reagent. Data 
shown are derived from means of duplicate wells (± SD).  (b) Mean IC50 values ± SD. 
Block and hatched bars represent biological repeats, each performed in triplicate. Data 
from the internal PEITC standard and control bed are the same as that used in Figure 
7.7 when looking at the effect of drought-induced stress.    
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Figure 7.6: Effect of sulfur on the ability of crude watercress extract to induce 
ARE-driven expression.  
MCF7 cells stably transfected with ARE were treated with the indicated concentrations 
of crude watercress extract from control beds harvested at 06:00 h ( ) or 18:00 h ( ), 
Microthiol Special (MS) treated beds at 06:00 h ( ) or 18:00 h ( ), or equivalent 
amounts of H2O ( ) as a control for 24 h and then luciferase activity determined. Data 
shown is mean (± SD) of three independent experiments. (a) and (b) represent 
biological repeats. Data from the H2O control and control bed are the same as that 
used in Figure 7.8 when looking at the effect of drought-induced stress.
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Figure 7.7: Effect of drought on the ability of crude watercress extract to inhibit 
the growth of MCF7 cells.  
(a) Representative growth inhibition experiment. MCF7 cells were treated with various 
concentrations of crude watercress extract from control (Ctrl) beds harvested at 06:00 
h ( ), 18:00 h ( ), 18:00 h 24 h later ( ) or 48 h later ( ), or beds where water supply 
was stopped at 18:00 h the day before (Drht) and harvested at 06:00 h ( ), 18:00 h ( ), 
18:00 h 24 h later ( ) or 48 h later ( ), PEITC ( ) for use as a baseline or 0.5 μM STS     
( ) as a positive control. Note on the graph the units for PEITC and STS are M. After 
six days metabolic activity was determined by MTS assay using the CellTiter 96® 
AQueous One Solution reagent. Data shown are derived from means of duplicate wells 
(± SD).  (b) Mean IC50 values ± SD. Block and hatched bars represent biological 
repeats, each performed in triplicate. Data from the internal PEITC standard and early 
control bed time points are the same as that used in Figure 7.5 when looking at the 
effect of sulfur fertilisation. 
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Figure 7.8: Effect of drought on the ability of crude watercress extract to induce 
ARE-driven expression.  
MCF7 cells stably transfected with ARE were treated with the indicated concentrations 
of crude watercress extract from control beds harvested at 06:00 h ( ), 18:00 h ( ), 
18:00 h 24 h later ( ) or 48 h later ( ), or beds where water supply was stopped at 
18:00 h the day before and harvested at 06:00 h ( ), 18:00 h ( ), 18:00 h 24 h later ( ) 
or 48 h later ( ), or equivalent amounts of H2O ( ) as a control for 24 h and then 
luciferase activity determined. Data shown is mean (± SD) of three independent 
experiments. (a) and (b) represent biological repeats. Data from the H2O control and 
early control bed time points are the same as that used in Figure 7.6 when looking at 
the effect of sulfur fertilisation.
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7.2.2 Second field trial  
 

Due to the difficulties encountered in drying out the watercress bed in the first trial and 

existence of potential problems of keeping the crop dry in wet weather, using drought-

induced stress to increase in vitro anticancer activity of watercress was not pursued 

further. Instead, the second field trial focused on developing the method to increase 

sulfur fertilisation. As the trial beds at Fobdown were unavailable, the second field trial 

was carried out at Doddings Farm in Bere Regis on 7th September 2010. The beds at 

Doddings Farm were larger and only two were available for my use, therefore in order 

to maximise the number of sulfur treatments, one of the beds was transplanted with 50 

yd2 strips of watercress seedlings, separated by a 25 yd2 strip. In the separate bed, 

400 g/25yd2 of Palm Brand sulfur powder, which is 99.8% sulfur, was added as a base 

application prior to transplanting the watercress seedlings (Figure 7.9a and Figure 

7.9b). It was decided to also try the Microthiol Special fertiliser again, but using 

repeated applications as well as higher application rates. Due to the cold weather the 

watercress was growing slowly so 4 weeks after planting one of the beds was sprayed 

with 42 g Microthiol Special dissolved in 2 L water, the same as the first trial, and 

another with 84 g dissolved in 2 L water (Figure 7.9c). Two weeks later this was 

repeated, see Figure 7.10 for an overview of the trial. After a further two weeks of 

growth, the crop was ready to harvest.  

 

Crude watercress extracts from samples exposed to different sulfur fertilisation 

treatments were compared in the MTS growth inhibition assay (Figure 7.11) and Nrf2 

activity assay (Figure 7.12). There was no difference observed in the ability of any of 

the samples to inhibit the growth of MCF7 cells or enhance Nrf2 activity. In order to 

determine whether the applications of sulfur fertilisation were indeed increasing sulfur 

in the watercress, fresh samples from each of the beds were sent to Natural Resource 

Management Ltd. (NRM; Berkshire, UK) for chemical analysis of total sulfur content. 

Unfortunately there was no difference in total sulfur content between the different 

treatments (Figure 7.13). As a result, it was not thought necessary to analyse biological 

repeats. 
 

7.2.3 Third field trial 
 

The third field trial was again carried out at Doddings Farm in Bere Regis on 12th April 

2011. Over two beds, six 25 yd2 strips of watercress seedlings were transplanted, 

separated by a 25 yd2 strip (Figure 7.14a). Analysis of the sulfur content of watercress  
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rial. Figure 7.9: Images from second field trial. 
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Figure 7.9: 
Images from 
second field 
trial. (a) Mark 
Newton applying 
a base 
application of 
sulfur powder to 
one of the beds. 
(b) Neal Thorn 
and Marc Miller 
transplanting the 
watercress 
seedlings.  
(c) Mark Newton 
applying a foliar 
spray of 
Microthiol 
Special. 
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Figure 7.10: Overview of second field trial. 
A base application of Palm Brand sulfur powder was applied to one bed prior to transplantation of four 50 yd2 strips of watercress seedlings in 
gravel lined concrete beds supplied with spring water from a bore-hole at Vitacress’ Doddings farm in Bere Regis. Four weeks later a low and 
high application of sulfur-rich fertiliser Microthiol Special was sprayed onto the watercress. This was repeated Two week later, and the 
watercress was harvested at eight weeks. Samples were taken from each of the top, middle and bottom sections of the beds.
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Figure 7.11: Effect of different sources of sulfur on the ability of crude 
watercress extract to inhibit the growth of MCF7 cells.  
(a) Representative growth inhibition experiment. MCF7 cells were treated with various 
concentrations of crude watercress extract from control (Ctrl; ), Palm Brand sulfur 
powder (SP; ), 21 g/L/25 yd2 Microthiol Special (Low MS; ) or 42 g/L/25 yd2 Microthiol 
Special (High MS; ) treated beds, PEITC ( ) for use as a baseline or 0.5 μM STS ( ) 
as a positive control. Note on the graph the units for PEITC and STS are M. After six 
days metabolic activity was determined by MTS assay using the CellTiter 96® AQueous 
One Solution reagent. Data shown are derived from means of duplicate wells (± SD).  
(b) Mean IC50 values ± SD from three independent experiments.    
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Figure 7.12: Effect of different sources of sulfur on the ability of crude 
watercress extract to induce ARE-driven expression.  
MCF7 cells stably transfected with ARE were treated with the indicated concentrations 
of crude watercress extract from control ( ), Palm Brand sulfur powder ( ), 21 g/L/25 
yd2 Microthiol Special ( ) or 42 g/L/25 yd2 Microthiol Special ( ) treated beds, or 
equivalent amounts of H2O ( ) as a control for 24 h and then luciferase activity 
determined. Data shown is mean (± SD) of three independent experiments.  
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Figure 7.13: Total sulfur content of sulfur treated beds in the second field trial.  
Fresh samples from control, Palm Brand sulfur powder (SP), 21 g/L/25 yd2 Microthiol 
Special (Low MS) or 42 g/L/25 yd2 Microthiol Special (High MS) treated beds were sent 
to Natural Resource Management Ltd. (NRM) for chemical analysis of total sulfur 
content. Data shown is mean (± SD) of two samples, one taken from the middle 
section of the bed and the other from the bottom.  
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samples from the previous trial revealed that sulfur treatments failed to increase sulfur 

concentration. As a result I decided to try sulfur from a different source, added with and 

without citric acid anhydrous (CA) which has been shown to increase nutrient uptake 

(Baldotto et al., 2011). 200 g or 400 g of the sulfur rich fertiliser, SoluPotasse, 

containing 55.8% SO4, 50.9% K2O and 0.6% Cl, was applied as a top dressing to the 

beds in the absence or presence of 25% w/w CA one week after planting the beds 

(Figure 7.14b). As a control, one of the beds was treated with only the highest volume 

of CA. This was repeated every week for four weeks; see Figure 7.15 for an overview 

of the trial. After another weeks growth the crop was ready to harvest (Figure 7.14c).     

 

The in vitro anticancer activity of watercress samples treated with increasing amounts 

of SoluPotasse, in the absence or presence of CA, were compared in the MTS growth 

inhibition assay (Figure 7.16) and Nrf2 activity assay (Figure 7.17). All the watercress 

samples inhibited the growth of MCF7 cells and enhanced Nrf2 activity, but there were 

no difference in their ability to do so. Again, fresh samples from each of the beds were 

sent to Natural Resource Management Ltd. (NRM; Berkshire, UK) for chemical 

analysis of total sulfur content. There was no change in total sulfur content between 

samples taken from the different beds (Figure 7.18).  

 

7.3 Discussion 
 

To investigate whether the in vitro anticancer activity of watercress can be increased 

by altering environmental factors, I introduced drought stress prior to harvesting and 

increased sulfur fertilisation throughout the growing period. In addition I examined 

whether time of day harvest influenced in vitro anticancer activity of watercress.  

 

Circadian rhythms cycle through a 24 h period and are maintained endogenously by 

what is known as the circadian clock. However, these rhythms are synchronised to the 

light/dark cycle by environmental inputs such as light and temperature. In plants, many 

biochemical and physiological processes are regulated by circadian rhythms and 

confer an adaptive advantage (McClung, 2006). For example, the emission of 

attractant volatiles are controlled by circadian rhythms so that they occur when 

pollinators are at their most active (Helsper et al., 1998). The influence of light and 

temperature on glucosinolate concentration in cruciferous vegetables suggests that 

glucosinolate biosynthesis may be regulated by circadian rhythms. However, I found  
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Figure 7.14: Images from third field trial. 
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Figure 7.14: 
Images from 
third field trial. 
(a) Neal Thorn 
and Mark 
Newton 
transplanting the 
watercress 
seedlings.  
(b) Neal Thorn 
applying a top 
dressing of 
SoluPotase in 
the absence or 
prescence of 
citric acid 
anhydrous.  
(c) After five 
weeks growth, 
the watercress 
beds are ready 
to harvest. 
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Figure 7.15: Overview of third field trial. 
Six 25 yd2 strips of watercress seedlings were transplanted in gravel lined concrete beds supplied with spring water from a bore-hole at 
Vitacress’ Doddings farm in Bere Regis. One week later a low and high application of sulfur-rich fertiliser SoluPotasse in absence or presence of 
25% w/w citric acid anhydrous (CA) was applied as a top dressing to the watercress. This was repeated every week for four weeks, before the 
watercress was harvested at five weeks. Samples were taken from each of the top, middle and bottom sections of the beds. 
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Figure 7.16: Effect of different application rates of sulfur on the ability of crude 
watercress extract to inhibit the growth of MCF7 cells.  
(a) Representative growth inhibition experiment. MCF7 cells were treated with various 
concentrations of crude watercress extract from control (Ctrl; ), 200 g/25 yd2 
SoluPotasse (Low SoP; ) or 400 g/25 yd2 SoluPotasse (High SoP; ) treated beds, 
with (solid lines) or without (dashed lines) the addition of citric anhydrous (CA), PEITC 
( ) for use as a baseline or 0.5 μM STS ( ) as a positive control. Note on the graph the 
units for PEITC and STS are M. After six days metabolic activity was determined by 
MTS assay using the CellTiter 96® AQueous One Solution reagent. Data shown are 
derived from means of duplicate wells (± SD).  (b) Mean IC50 values ± SD from three 
independent experiments.   
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Figure 7.17: Effect of different application rates sulfur on the ability of crude 
watercress extract to induce ARE-driven expression.  
MCF7 cells stably transfected with ARE were treated with the indicated concentrations 
of crude watercress extract from control ( ), 200 g/25 yd2 SoluPotasse ( ) or 400 g/25 
yd2 SoluPotasse ( ) treated beds, with (solid bars) or without (hatched bars) the 
addition of citric anhydrous (CA), or equivalent amounts of H2O ( ) as a control for 24 h 
and then luciferase activity determined. Data shown is mean (± SD) of three 
independent experiments.  
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Figure 7.18: Total sulfur content of sulfur treated beds in the third field trial.  
Fresh samples from control, 200 g/25 yd2 SoluPotasse (Low SoP) or 400 g/25 yd2 
SoluPotasse (High SoP) treated beds, with or without the addition of citric anhydrous 
(CA) were sent to Natural Resource Management Ltd. (NRM) for chemical analysis of 
total sulfur content. Data shown is mean (± SD) of two samples, one taken from the 
middle section of the bed and the other from the bottom.  
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no difference in the effect of watercress samples harvested at different times 

throughout the day and night to inhibit the growth of MCF7 cells or enhance Nrf2 

activity. Interestingly, it has been reported that transcription of genes encoding 

enzymes involved in glucosinolate biosynthesis are in fact circadian regulated, peaking 

between 21:00 - 01:00 h (Pan et al., 2009). However, even if glucosinolate 

biosynthesis does follow a circadian rhythm in watercress this does not seem to 

translate to increased in vitro anticancer activity. There might not be a sufficient 

increase in glucosinolate concentration to make a detectable difference in the assays 

used, or despite an increase in glucosinolate concentration there might not be optimal 

conversion to isothiocyanates.   

 

The production of plant secondary metabolites is known to increase in response to 

water stress, specifically the drought-stress induced rise in anthocyanin content in 

grapevine has been shown to be the result of enhanced biosynthesis (Castellarin et al., 

2007). It has previously been shown that water deprivation can also increase 

glucosinolate concentration in cultivated rapeseed (Bouchereau et al., 1996; Jensen et 

al., 1996). Glucosinolate levels may be sensitive to abiotic stress as the production of 

glucosinolates is believed to be adapted as a defence mechanism to biotic stresses, 

making the plant bitter and unpalatable to predators (Rask et al., 2000). However, I 

found shutting off the water supply to watercress for three days to induce drought-

stress had no effect on the ability of the crop to inhibit the growth of MCF7 cells or 

enhance Nrf2 activity. Although, it is important to note that the bed was never totally 

depleted of water, therefore it is unlikely that the watercress was exposed to any 

drought-induced stress. In future, water deficit could be confirmed by analysis of water 

content within the plant.  

 

In initial attempts to increase sulfur fertilisation I used a foliar spray of Microthiol 

Special. This had no effect on the ability of the crude watercress extract to inhibit the 

growth of MCF7 cells or enhance Nrf2 activity. To determine whether this was due to 

an insufficient application of fertiliser in the subsequent trial I increased both 

application rate and concentration of Microthiol Special. I also tried a different source of 

sulfur in the form of Palm brand sulfur that is applied as a base fetiliser prior to 

transplanting seedlings. However, again none of the sulfur treatments had any effect 

on the ability of the crude watercress extract to inhibit the growth of MCF7 cells or 

enhance Nrf2 activity. Chemical analysis of samples by an outside company, NRM, 

revealed that the sulfur treatments failed to increase sulfur concentrations in the 

watercress. As a result, in the final trial I used another source of sulfur in the form of 
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sulfur-rich fertiliser SoluPotasse at various application rates. This was also added with 

and without citric acid anhydrous, which has been shown to increase nutrient uptake 

(Baldotto et al., 2011). Nonetheless, total sulfur content within the watercress did not 

change following any of the treatments, and there was no change in the ability of the 

crude watercress extract to inhibit the growth of MCF7 cells or enhance Nrf2 activity. 

 

It has been widely reported that increasing sulfur fertilisation can increase 

glucosinolate concentrations in cruciferous vegetables (Falk et al., 2007; Kopsell et al., 

2007; Rosen et al., 2005). This is not wholly unsurprising as glucosinolates are sulfur 

containing compounds. Most of these studies were carried out in controlled growth 

rooms, and of those carried out in the field, the crops were grown in soil. My failure to 

increase sulfur concentrations in watercress is possibly a consequence of the open 

hydroponic system of watercress cultivation, with any nutrients introduced being 

quickly leached away.    

 

However, it should be noted that various attempts by groups to increase glucosinolate 

concentrations in broccoli by sulfur fertilisation have also been largely unsuccessful 

(Aires et al., 2006; Vallejo et al., 2003). This suggests that not all cruciferous 

vegetables may benefit from a fertilisation approach to increase glucosinolate content. 

Although, in the case of the study by Aires et al. (2006), the limited effect of sulfur (and 

nitrogen) fertilisation may be due to a concomitant increase in potassium chloride in 

the fertiliser. The authors suggest that salt-stress is responsible for the low 

glucosinolate levels. However, potassium has also been shown to specifically influence 

glucosinolate concentration. In Arabidopsis Thaliana, a small flowering plant often used 

as a model organism in plant biology, potassium deprivation was shown to increase 

glucosinolate content (Troufflard et al., 2010). As plants deficient in potassium exhibit 

traits that make them more attractive to herbivores, such as elevated sugar levels, it is 

proposed that increased glucosinolate biosynthesis has evolved as a means to 

enhance the plants resistance to attack under such conditions. In addition, while 

nitrogen fertilisation has also been shown to increase some glucosinolates in 

watercress, there is an optimum nitrogen concentration before levels start to decline 

again (Kopsell et al., 2007). This is believed to be due to the additional effect of 

nitrogen to increase tissue biomass. Therefore, as the rate of plant growth overtakes 

the rate of glucosinolate biosynthesis, the glucosinolates become diluted within the 

plant. This is likely to also account for why a study investigating the combined effect of 

nitrogen and sulfur fertilisation in cabbage, reported an increase in nitrogen to sulfur 

ratio decreased glucosinolate content (Rosen et al., 2005). 
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This data taken together indicates a complex interplay between different minerals to 

influence overall concentrations of glucosinolates within a crop. Therefore, when 

applying fertilisers the impact of each component needs to be considered. 

Furthermore, attempts to increase glucosinolate content via nutrient fertilisation would 

perhaps achieve greater results by identifying an optimum ratio between multiple 

minerals, rather than altering a single mineral. However ultimately, with regards to 

watercress, a method to successfully increase sulfur in the crop has to be established 

before it can be determined whether this translates to increased in vitro anticancer 

activity.    



 

 

 
 

Chapter 8
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8.1 Summary 
 

To investigate my hypothesis that the in vitro anticancer activity of watercress can be 

enhanced by altering environmental factors, I outlined four aims. The first aim was to 

select assays to assess the in vitro anticancer effects of watercress-derived 

compounds. This was addressed in Chapter 3. Growth inhibition and activation of Nrf2-

dependent transcription were selected as candidate assays for in vitro analysis of 

crude watercress extracts.  

  

The exact mechanism by which PEITC exhibits its anticancer activity is poorly 

understood, and therefore my second aim was to explore the anticancer effects of 

PEITC. Previously in this laboratory Wang et al. (2009) demonstrated that PEITC can 

inhibit HIF activity, therefore in Chapter 4 I investigated the effect of PEITC on HIF. 

The key findings are summarised below: 

 

• PEITC inhibits the expression of a variety of HIF target genes, as well as HIF1α 

accumulation in hypoxia treated MCF7 cells. 

• PEITC inhibits mTORC1 activity as assessed by loss of substrate 

phosphorylation (p70 S6K and 4E-BP1). It has previously been shown that 

impaired activity of mTORC1 can effect HIF1α mRNA translation (Bernardi et 

al., 2006). 

• PEITC-induced inhibition of mTORC1 is dependent on TSC1/2 activity, a 

negative regulator of mTORC1, but PEITC does not seem to work via any of 

the known pathways that control TSC1/2; PI3K/Akt, ERK, AMPK or REDD1.  

• PEITC-induced inhibition of mTORC1 contributes to its growth inhibitory activity, 

albeit modestly.  

• PEITC increases the activity of a second mTOR containing complex, mTORC2, 

seemingly independent of TSC1/2 and its effect on mTORC1.  

• PEITC inhibits protein synthesis of HIF1α as demonstrated by 35S-metabolic 

cell labelling.     

 

Following on from the discovery in Chapter 4 that PEITC decreases HIF1α mRNA 

translation, in Chapter 5 I investigated the effect of PEITC on total mRNA translation. 

The key findings are summarised below: 

 

• PEITC inhibits general protein synthesis.  
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• PEITC-induced inhibition of total mRNA translation is not a consequence of its 

inhibition of mTORC1 activity. 

• PEITC increases phosphorylation of key translational modulator, eIF2α, in 

MCF7 cells. 

• PEITC also increases eIF2α phosphorylation in MEFs, and this occurs 

independently of PEITC-induced inhibition of mTORC1 activity. 

• eIF2α phosphorylation contributes to PEITC-induced inhibition of total mRNA 

translation. 

• eIF2α phosphorylation confers modest protection from PEITC-induced growth 

inhibition.  

• PEITC increases phosphorylation of another regulator of translation, eEF2, in a 

cell specific manner.  

 

My third aim was to discover whether the assays selected in Chapter 3 were suitable 

for the analysis of a crude watercress extract. I also explored whether different 

watercress crops might possess distinct in vitro anticancer properties, as a precursor to 

direct agronomic experiments. This was addressed in Chapter 6. I demonstrated that a 

crude watercress extract can inhibit the growth of MCF7 breast cancer cells using the 

MTS assay, and enhance Nrf2-dependent transcription in a luciferase reporter assay. 

Moreover, through the analysis of two different varieties of watercress, green and red, I 

established that different watercress crops posses more in vitro anticancer activity than 

others. I also investigated the effect of a crude watercress extract on other important 

cancer pathways, shown to be modulated by PEITC in previous work. Similar to 

PEITC, I found a crude watercress extract inhibited both HIF activity and total protein 

translation. However, due to issues with practicality or assay sensitivity, neither assay 

was used as a means to assess the in vitro anticancer activity of crude watercress 

extracts collected from the field trials. 

 

The final aim, which is ultimately the crux of my hypothesis, was to investigate whether 

altering environmental factors can increase the in vitro anticancer activity of 

watercress. This was addressed in Chapter 7. I found the in vitro anticancer activity of 

crude watercress extract was unaffected by time of day harvest, increased sulfur 

fertilisation, or drought-induced stress. However, experiments were likely unsuccessful 

due to methodology, sulfur treatments failed to increase sulfur concentrations in the 

watercress, and true drought conditions were not achieved.    
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Overall, this study had two main goals, to investigate the mechanisms underlying the 

anticancer activity of PEITC, and to increase the in vitro anticancer activity of 

watercress by manipulating environmental factors.  

 

In exploring the anticancer effects of PEITC I have uncovered a novel role for PEITC in 

inhibiting HIF1α and total protein synthesis, and identified several key regulators of 

these processes, mTORC1 and eIF2α, that are modulated by PEITC. Inhibition of 

mTORC1 activity was found to contribute, albeit modestly, to PEITC-induced growth 

inhibition, while phosphorylation of eIF2α contributes in part to PEITC-induced 

inhibition of total mRNA translation. I also demonstrated that in response to PEITC 

treatment there is an increase in eEF2 phosphorylation, although this effect seems to 

be cell type specific therefore its biological relevance is unknown.  

 

mTORC1 via its substrate 4E-BP1 regulates the availability of cap binding protein 

eIF4E for association with the eIF4F complex at the 5’cap of mRNA to initiate cap-

dependent translation. It has been shown that mRNAs with complex secondary 

structures within their 5’UTR are more sensitive to changes in eIF4E (Koromilas et al., 

1992). As a result, it seems that 4E-BP1 only has translational control over a small 

subset of mRNAs, with many of these being involved in growth, proliferation and 

survival (Mamane et al., 2007). This selective inhibition of translation makes the 

mTORC1 pathway an attractive target for cancer therapy, as cancer cells are more 

dependent on growth and survival signals. Indeed, treatment with the mTORC1 

inhibitor rapamycin only reduces total protein synthesis by approximately 10-15% 

(Jefferies et al., 1994). Although, while rapamycin does inhibit phosphorylation at 

Thr70 and Ser65 sites on 4E-BP1, it does not have any effect on phosphorylation of 

Thr37 and 46, which are believed to act as priming steps for further phosphorylation at 

Thr70 and Ser65. Despite this, Torin1, which inhibits the catalytic kinase activity of 

mTOR and suppresses phosphorylation of 4E-BP1 even at the rapamycin-insensitive 

sites, only reduces total protein synthesis by a maximum of 50% (Thoreen et al., 

2009). mTORC1 can also increase the protein synthesis capacity of cells by 

upregulating specific mRNAs (often 5’TOP mRNAs) such as those encoding ribosomal 

proteins. However, although this function is sensitive to rapamycin, the exact 

mechanism by which mTORC1 increases translation of these mRNAs remains 

unknown (Pende et al., 2004).  

     

I have also demonstrated that PEITC acts as a global inhibitor of protein synthesis, at 

least in part by inducing the phosphorylation of eIF2α. Normal and transformed cells 
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are likely to be equally sensitive to inhibition of total mRNA translation, and therefore 

this action by PEITC may prove to be toxic. As a result, it is important to appreciate the 

balance between selective and general inhibition of protein synthesis by PEITC. It is 

possible that while PEITC does inhibit global protein synthesis, a small subset of 

mRNAs with highly structured 5’-UTRs are particularly sensitive to decreased 

efficiency of translation. 

 

Furthermore, I also found that PEITC increases the phosphorylation of Akt and ERK. 

These pathways are activated in response to mitogenic signalling and therefore their 

upregulation is often associated with promoting carcinogenesis. Nonetheless, PEITC 

displays many anticarcinogenic activities in vitro and in vivo, therefore the functional 

consequences of enhanced Akt and ERK signalling are unclear. However, it should be 

noted that I only looked at early time points (2-3 h), and the increase in Akt and ERK 

phosphorylation may only be transient, possibly the result of PEITC-induced inhibition 

of mTORC1 and loss of negative feedback loops. An initial increase in Akt 

phosphorylation followed by a more sustained decrease in Akt phosphorylation has 

previously been observed in response to PEITC (Jakubikova et al., 2011). 

 

However, the key question is whether normal dietary intake of cruciferous vegetables 

is sufficient to deliver effective concentrations of ITCs to induce these molecular 

changes in vivo. In fact, a pilot study carried out in this laboratory found that consuming 

a single 80 g portion of watercress was sufficient to cause a transient decrease in 4E-

BP1 phosphorylation in PMBCs (Syed Alwi et al., 2010). Other groups have also 

demonstrated that consumption of cruciferous vegetables can modulate pathways 

associated with anticancer effects of ITCs in vivo. HDAC activity was found to be 

inhibited in PBMCs of healthy human subjects after 3 h of consuming 68 g of SFN-

enriched broccoli sprouts (Myzak et al., 2007). Whereas consumption of 85 g of raw 

watercress once a day for 8 weeks decreased several measures of DNA damage in 

peripheral blood lymphocytes (Gill et al., 2007).  

 

The second goal of this study was to try to generate a watercress cultivar with 

enhanced anticancer activity. Even though I was unsuccessful, the above data is 

encouraging and suggests that efforts to increase glucosinolate concentrations in 

crops could indeed be beneficial. Within this study I found the open hydroponic system 

used in watercress cultivation makes it difficult to increase nutrient availability or 

introduce drought-stress. As a result, altering environmental factors may not be the 

best approach to increase the in vitro anticancer activity of watercress grown on a 
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large scale. Manipulation of genetics through selective breeding may be a better 

strategy, as used for the development of an ITC-enriched variety of broccoli (Mithen et 

al., 2003). However, enhancing the level of glucosinolates in watercress may reduce 

palatability as these compounds are responsible for the hot bitter taste of cruciferous 

vegetables (Drewnowski and Gomez-Carneros, 2000). Furthermore, while the intention 

is to generate a watercress variety with enhanced anticancer activity by increasing 

glucosinolate concentration, there is the possibility that this could in fact cause adverse 

effects, especially when considering PEITC can inhibit total protein synthesis. 

 

In addition, like 4E-BP1 phosphorylation, the molecular changes identified in this study 

could also be used as biomarkers to assess PEITC bioavailability. In that respect the 

work described in this study is also relevant in the context of clinical trials. There are 

currently two cancer clinical trials evaluating the potential chemopreventive/ 

chemotherapeutic effect of PEITC (http://www.cancer.gov/clinicaltrials). PEITC has 

been found to induce apoptosis in primary chronic lymphocytic leukaemia cells in vitro 

(Trachootham et al., 2008) and consequently a phase I trial (NCT00968461) is planned 

to determine the maximum tolerated dose of oral PEITC in patients with previously 

treated lymphoproliferative disorders. There is also a randomised and placebo-

controlled phase II trial (NCT00691132) in progress to assess the effects of oral PEITC 

in lung cancer in smokers. The primary objective of this trial is to determine the effect 

of PEITC on metabolism of the cigarette smoke procarcinogen 4-(methylnitrosoamino)-

1-(3-pyridyl)-1-butanone (NNK). Secondary objectives include histopathological 

evaluation of lung lesions and analysis of cell cycle and apoptosis biomarkers in 

bronchial tissue. Phosphorylation of p70 S6K and eIF2α may be useful biomarkers to 

monitor PEITC exposure.   

 

8.2 Suggestions for future work 
 

8.2.1 Identifying targets of PEITC  
 

Phosphorylation of eIF2α is mediated by four known kinases that are each stimulated 

by distinct environmental and cellular stresses, HRI, PKR, PERK, and GCN2 (Wek et 

al., 2006). The next step would be to determine if PEITC acts to increase eIF2α 

phosphorylation via any of these four kinases. MEF cell lines each deficient in one of 

the kinases already exist (Yerlikaya et al., 2008) and could be used to establish 

whether loss of a particular kinase prevents eIF2α phosphorylation in response to  
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PEITC. However, considering the diverse targets of PEITC it likely activates several of 

the eIF2α kinases. As a result, it may be necessary to use small interfering RNAs 

(siRNA) or inhibitors such as hemin (HRI inhibitor) in conjunction with the MEFs, or 

indeed MEFs that are deficient for multiple eIF2α kinases, in order to identify which of 

the kinases are involved.  

 

With regards to identifying how PEITC suppresses mTORC1 activity, this study 

discovered that PEITC-induced inhibition of mTORC1 occurs in a TSC1/2-dependant 

manner. However, PEITC does not seem to work via any of the known pathways that 

control TSC1/2, namely PI3K/Akt, ERK, AMPK or REDD1. It is therefore likely that at 

this time we have gone as far as we can go to dissect this pathway. Furthermore, 

following elucidation of the kinase(s) responsible for PEITC-induced phosphorylation of 

eIF2α, the exact mechanism of their activation by PEITC will remain unknown. The 

ability for PEITC to directly modify proteins is thought to be important in PEITC-

mediated apoptosis and cell cycle arrest, however only a few proteins have been 

shown to be direct targets for ITCs. Perhaps future studies exploring the anticancer 

activity of PEITC, and indeed other ITCs, should employ new strategies to identify 

these molecular targets.   

 

Brown et al. (2009) used immobilised PEITC and affinity purification to identify 

proinflammatory cytokine macrophage migration inhibitory factor (MIF) as a binding 

targets. Lysates were resolved by SDS-PAGE and bands either analysed by 

immunoblotting, or excised and analysed by mass spectrometry. On the other hand, 

tubulin was identified as a direct binding partner for PEITC by treating cells with 

radiolabelled PEITC ([C14]PEITC). Total protein profiles obtained by coomassie blue 

staining 2D-electrophoresis gels were overlaid with radioactivity patterns of the gels, 

allowing proteins that directly conjugate with PEITC to be identified. Proteins from 

spots of interest can then be identified by mass spectrometry (Mi et al., 2008). Using 

this method Mi et al. (2011b) identified approximately 50 potential binding targets for 

PEITC in human lung cancer A549 cells. However, a limitation of these approaches is 

that they are unable to detect transient dithiocarbamate adducts. In order to examine 

the cysteines modified in Keap-1 by SFN, a stable adduct was achieved by replacing 

the isothiocyanate group of SFN with a sulfoxythiocarbamate moiety (Ahn et al., 2010). 

These sulfoxythiocarbamate analogs are less reactive electrophiles so the adducts 

formed are more stable. However, as they are structurally different from SFN caution 

should be taken when interpreting results. McMahon et al. (2010) employed a biotin 

switch technique to convert unstable cysteine adducts to stable biotin-cysteine  



  Chapter 8: Final discussion 

183 

adducts, which could then be pulled out with streptavidin beads.   

 

Breast cancer is a highly heterogeneous disease, with distinct molecular subtypes 

giving rise to differential responses to target therapies. The majority of experiments in 

this study were carried out using only MCF7 cells, particularly those examining the 

novel role of PEITC in inhibiting HIF1α and total protein synthesis, which represent 

only one molecular subclass of breast cancer. Therefore, further work should be 

conducted to determine whether these findings are consistent with other molecular 

subtypes of breast cancer. Any variations in sensitivity between the different subtypes 

may also provide additional insight into the molecular mechanisms behind PEITCs 

mode of action. Furthermore, as mutations in the regulatory pathways of both HIF1α 

and total protein synthesis are not specific to breast cancer, this work could also be 

expanded into cancer cell lines derived from other tissues.   

      

8.2.2 Increasing the anticancer activity of watercress 
 

As already proposed, a selective breeding strategy may be a better than an 

environmental approach to increase the in vitro anticancer activity of watercress grown 

on a large scale. An ITC-enriched variety of broccoli was developed by cross breeding 

commercial broccoli with a wild variety of broccoli containing higher glucosinolate 

concentrations (Mithen et al., 2003).  

 

Similar to the wild broccoli, I found crude watercress extract from the red variety of 

watercress was more potent at inhibiting the growth of MCF7 cells and enhancing Nrf2 

activity than that from the commercial green watercress. It would be interesting to 

determine if this difference in potency was a consequence of a higher glucosinolate 

concentration. Little is known about the genetics of the red variety of watercress, but it 

may have similar origins to brown watercress, a hybrid between Nasturtium officinale 

and a wild watercress, Nasturtium microphyllum. Both are sterile and are characterised 

by purple/brown/red leaves (Stevens, 1983). The sterile nature of these varieties of 

watercress mean they can only be propagated vegetatively and are more susceptible 

to diseases. Indeed, the susceptibility of brown watercress to crook root disease is the 

reason it is no longer cultivated today. Due to disease susceptibility and coarser 

texture of red watercress, which makes it less appealing to the consumer, it might be 

beneficial to identify the genetic traits behind the enhanced in vitro anticancer activity 

of red watercress and introduce these into the genetic background of the commercial 

green watercress. Although as red watercress is sterile conventional cross-breeding 
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techniques can not be used. The relevant gene or genes would have to be inserted 

artificially via genetic engineering. However, it should be considered that GM crops 

carry negative connotations with the consumer, which may outweigh the perceived 

benefit of enhanced anticancer activity. Subsequently it might be more favorable to 

identify other wild watercress varieties which might display increased in vitro anticancer 

activity but are not sterile so can be bred using conventional techniques.        

 

Experiments carried out during optimisation of crude watercress extract preparation, 

found watercress leaves are slightly more potent than stems at inhibiting the growth of 

MCF7 cells. Increasing the ratio of leaf to stem may therefore may be a beneficial trait 

for selective breeding. This could be achieved by reducing internodal length, the length 

of the stem between each branch of leaves, which incidentally is already part of 

Vitacress’ breeding program as a shorter internodal length makes the crop more 

aesthetically pleasing. Alternatively, plants with a higher number of leaves could be 

selected for. 

 

Furthermore, a limitation to examining crude watercress extracts is that the 

phytochemical concentrations of the ‘juice’ are undefined. As described in Section 6.3, 

total isothiocyanate content of crude watercress extracts could be quantified using a 

cyclocondensation assay. Alternatively, crude watercress extracts could be analysed 

by high-performance liquid chromatography electro-spray mass spectrometry to 

determine the types and concentrations of phytochemicals present. 

 

8.3 Final comment 
 
In addressing the hypothesis of this study, that the in vitro anticancer activity of 

watercress can be enhanced by altering environmental factors, I have demonstrated 

the in vitro anticancer activity of PEITC and crude watercress extract. In particular, I 

have uncovered a novel role for PEITC in inhibiting HIF1α and total protein synthesis, 

and identified several key regulators of these processes that are modulated by PEITC. 

This work contributes to the understanding of the mechanisms underlying the 

anticancer activity of PEITC. However, in conclusion, manipulating environmental 

factors does not seem to be the best approach to increase the in vitro anticancer 

activity of watercress grown in the field. As I established that a different variety of 

watercress displayed more potent anticancer activity than the commercial variety, in 

the future selective breeding techniques would be better pursued instead.    
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Comparison of the ability of green and red crude watercress extract, used in the 
experiments to analyse protein synthesis, to inhibit the growth of MCF7 cells. 
Representative growth inhibition experiments. Cells were treated with various 
concentrations of crude watercress extract either from the green cultivar ( ) or the red 
cultivar ( ) alongside the experiments analysing protein synthesis (Figure 6.6), PEITC 
for use as a standard ( ) or 0.5 μM STS as a positive control ( ).Note on the graph the 
units for PEITC and STS are M. After six days metabolic activity was determined by 
MTS assay using the CellTiter 96® AQueous One Solution reagent. Data shown are 
derived from means of duplicate wells (± SD). Table showing IC50 values represent 
mean values ± SD from three experiments. A statistically significant difference between 
IC50 values for green and red crude watercress extracts is indicated (* p<0.05).  

IC50 Value (mean ± SD) 

Green Wx Red Wx PEITC 

46.77 µl/ml ± 6.81 5.99 μl/ml ± 4.92* 15.04 μM ± 1.497 


