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Abstract

Let π be a set of primes. Assume that G is a solvable minimax group and K ! G
such that G/K is π-minimax. We use cohomology to prove that, if G/K is either
finitely generated or virtually torsion-free, then G has a π-minimax subgroup X such
that [G : KX] is finite. In addition, we determine conditions that guarantee that X
may be chosen so that K ∩X = 1.

Mathematics Subject Classification (2010): 20F16, 20J06

1 Introduction

A group is minimax if it has a series of finite length in which each factor satisfies either the
minimal or maximal condition on subgroups. The most widely studied minimax groups are
the solvable ones, which admit a particularly simple characterization. A solvable group G
is minimax if and only if it has a series of finite length in which each factor is either cyclic
or quasicyclic. The set of primes that correspond to the quasicyclic factors in such a series
is an invariant of the group, called the spectrum of G, and denoted spec(G). If π is a set of
primes, then a π-minimax group is a solvable minimax group G such that spec(G) ⊂ π.

Solvable minimax groups occupy a position of central importance within the class of
solvable groups. Their special status arises largely from the fact, proved by D. J. S. Robinson
[15], that every finitely generated solvable group with finite abelian section rank is minimax.
Further underscoring the significance of minimax groups, the first author [8] generalizes
Robinson’s theorem by establishing that a finitely generated solvable group without any
sections that are wreath products of a finite group with C∞ must be minimax. Another
aspect of solvable minimax groups that has provided an impetus to their study is their
relevance to homological algebra. In particular, the class of minimax groups contains the
class of constructible solvable groups, whose torsion-free members are precisely those solvable
groups that have type FP (see [9]).

The present paper attempts to shed light on the structure of solvable minimax groups.
Its focus is on detecting the presence of certain types of near supplements and complements.
A near supplement to a normal subgroupK of a group G is a subgroupX such that [G : KX ]
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is finite. If, in addition, K ∩X = 1, then X is referred to as a near complement to K. We
investigate the situation where G is a solvable minimax group and G/K is π-minimax for
a set of primes π. Our objective is to ascertain conditions that will ensure the existence of
a π-minimax near supplement or complement to K. The approach that we adopt employs
cohomology and relies on the following elementary observation of Robinson, applied in [10,
Theorem C] to detect nilpotent near supplements.

Proposition 1.1. (Robinson [11, Theorem 10.1.15]; [14]; [15]) Assume that G is a group
and A a ZG-module. Let ξ ∈ H2(G,A) and 1 → A → E → G → 1 a group extension
corresponding to ξ. Then ξ has finite order if and only if E contains a subgroup X such that
X ∩ A is finite and [E : AX ] is finite.

The above property suggests that, in pursuit of our aims, it will be beneficial to identify
second cohomology groups that are torsion. For this purpose, we prove the following theorem
about the cohomology of π-minimax groups, which serves as the foundation for our two main
results concerning near supplements and complements (Theorems B and D).

Theorem A. Let π be a set of primes and G a virtually torsion-free π-minimax group.
Assume that A is a ZG-module whose underlying abelian group is torsion-free and minimax.
Suppose further that A does not have any nontrivial ZG-module sections that are torsion-free
and π-minimax as abelian groups. Then Hn(G,A) is torsion for n ≥ 0.

Although our group-theoretic results only require the case n = 2, we elect to prove
Theorem A for every dimension n, in the expectation that its general formulation may be
of interest independent of the applications described here. Section 3 is devoted to the proof
of this theorem and Section 2 to several properties of modules over group rings that are
required for the proof. Among these preliminary results on modules, the most important is
Proposition A below, which plays a pivotal role in the proof of Theorem A.

Proposition A. Let G be a finitely generated abelian group. Suppose that A and B are
ZG-modules whose additive groups are torsion-free minimax abelian groups. Assume further
that A and B fail to have a pair of respective rationally irreducible ZG-module sections that
are isomorphic. Then, for any ZG-module quotients Ā and B̄ of A and B, respectively,
ExtnZG(Ā, B̄) is torsion for n ≥ 0.

In § 4 we apply our cohomological findings from § 3 to discern the presence of π-minimax
near supplements. Our principal discovery in this vein is

Theorem B. Let G be a solvable minimax group. Assume that K is normal subgroup of
G such that G/K is π-minimax for some set π of primes. If G/K is virtually torsion-free,
then there is a π-minimax subgroup X of G such that [G : KX ] is finite.

The two key ingredients for Theorem B are Theorem A and a result of Robinson [15] that
describes a situation where the cohomology of a solvable minimax group with torsion coeffi-
cients turns out to be torsion. With these results, the proof of Theorem B becomes a rather
swift affair, involving the cohomology of G/K with coefficients in the factors of a certain
type of series in K.

As illustrated in Example 4.2, if G/K is not virtually torsion-free, then K may not have a
π-minimax near supplement. Nevertheless, we prove in Theorem C that it remains possible to
find a π-minimax subgroup X satisfying the weaker condition that KX has the same Hirsch
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length as G. Such a subgroup is referred to in the paper as a Hirsch-length supplement.
Furthermore, it is an elementary property of finitely generated solvable minimax groups
that any subgroup with the same Hirsch length as the group must have finite index (Lemma
4.4). As a result, if G/K is finitely generated, then any Hirsch-length supplement to K must
necessarily be a near supplement.

Theorems B and C are both generalizations of [4, Proposition I.20], which states that,
if G is a solvable minimax group and K ! G such that G/K is polycyclic, then K has a
polycyclic near supplement. The latter proposition is employed by M. R. Bridson and the
first author [4] in order to prove a result [4, Theorem I.3] on the homological dimension of an
abelian-by-polycyclic group. We conclude § 4 by applying Theorem C to generalize Bridson
and the first author’s theorem to a larger class of groups.

In the final section of the paper, we turn our attention to the detection of near com-
plements to a normal subgroup K of a solvable minimax group G when the quotient G/K
is π-minimax and virtually torsion-free. To ensure the presence of a near complement, we
insist on two conditions for K. The first is that K should be Noetherian as a G-operator
group, meaning that K satisfies the maximal condition on G-invariant subgroups. For our
second hypothesis, we suppose that K has no nontorsion π-minimax quotients. Denoting
the class of groups with the latter property by Xπ, we can express the main result of § 5 as
follows.

Theorem D. Let G be a solvable minimax group. Assume that K is a normal subgroup of
G such that K belongs to the class Xπ and K is Noetherian as a G-operator group. Suppose
further that G/K is π-minimax and virtually torsion-free. Then K has a near complement
in G.

Before proceeding to the body of the paper, we describe some of the terms and notation
that we will be using.

Notation and terminology. Throughout the paper, π will represent an arbitrary set of
primes.

If p is a prime, then Ẑp denotes the ring of p-adic integers and Q̂p the field of p-adic
rational numbers.

We will observe different conventions for modules and groups with operators, respectively.
Unless stated otherwise, all modules will be assumed to be left modules. However, if G is a
group, then a G-operator group K will always mean a right operator group. In the latter
instance, the function K ×G → K will be denoted by (x, g) '→ xg.

Assume that G is a group and R a commutative ring. If A is a ZG-module, then AR

represents the RG-module A⊗R.
Let A be a ZG-module. If AQ is a simple QG-module, then we will refer to A as rationally

irreducible. In other words, A is rationally irreducible if and only if the additive group of A
is not torsion and, for every submodule B of A, either B or A/B is torsion as an abelian
group.

Let G be a solvable group. Then τ(G) represents the torsion radical of G, that is, the join
of all the torsion normal subgroups of G. Furthermore, the join of all the nilpotent normal
subgroups of G, known as the Fitting subgroup, is denoted by Fitt(G).

If G is a solvable group of finite torsion-free rank, then h(G) denotes the Hirsch length of
G. If G is also minimax, then the minimax rank of G, written m(G), is the number of infinite
factors in any series of finite length in which each factor is either cyclic or quasicyclic. Like
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the Hirsch length, the minimax rank is an invariant of the group; in other words, it doesn’t
depend on the particular series selected.

2 Preliminary results on modules

In this section, we establish an array of results regarding modules, culminating in Proposition
A, mentioned in the introduction. Critical to our discussion is the relationship between a
module over an integral group ring and its rationalization. It is this connection that is
explored in the following two lemmas.

Lemma 2.1. Assume that G is a group. Let A and B be ZG-modules such that the additive
groups of A and B are not torsion and have finite torsion-free rank. If BQ is a QG-module
homomorphic image of AQ, then A and B must have two respective rationally irreducible
ZG-module sections that are isomorphic.

Proof. It suffices to consider the case where the additive groups of both A and B are torsion-
free. Let φ : AQ → BQ be a QG-module epimorphism. Suppose that {x1, · · · , xr} is a basis
for AQ as a vector space over Q, where each xi is chosen from A. Assume that m is a
positive integer such that mφ(xi) ∈ B for 1 ≤ i ≤ r. Now let A0 be the ZG-submodule
of A generated by the xi and B0 the ZG-submodule of B generated by the mφ(xi). Then
the restriction of mφ to A0 defines a ZG-module epimorphism from A0 to B0. Therefore,
A0/A0∩Kerφ and B0 are isomorphic nontrivial ZG-module sections of A and B, respectively,
whose additive groups are torsion-free. It follows, then, that A and B have two rationally
irreducible ZG-module sections, respectively, that are isomorphic.

Lemma 2.2. Let G be an abelian group. Assume that A and B are ZG-modules whose
underlying abelian groups have finite torsion-free rank. Suppose further that A and B fail
to have a pair of respective rationally irreducible ZG-module sections that are isomorphic.
Then ExtnQG(A

Q, BQ) = 0 for n ≥ 0.

Proof. The result is trivial if either A or B is torsion qua abelian group; hence we assume
that both are not. In this case, A and B each have a series of finite length in which all
the factors are rationally irreducible. Therefore, it suffices to consider the case where A
and B are both rationally irreducible. Let I and J be the annihilator ideals in QG of AQ

and BQ, respectively. By the above lemma, the simple QG-modules AQ and BQ are not
isomorphic. This means that I + J = QG. Since QG is commutative, ExtnQG(A

Q, BQ)
inherits a QG-module structure for all n ≥ 0. With respect to this module structure, both
I and J annihilate ExtnQG(A

Q, BQ), making ExtnQG(A
Q, BQ) = 0.

The next three results are of a purely homological nature. The first is well known and
entirely elementary; hence we omit its proof.

Lemma 2.3. Let G be a group. Suppose that R ⊂ S are commutative rings. If A is an
RG-module and B an SG-module, then

HomRG(A,B) ∼= HomSG(A⊗R S,B).

Moreover, if S is flat over R, then

ExtnRG(A,B) ∼= ExtnSG(A⊗R S,B)

for n ≥ 0.
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In the proposition below, we derive a spectral sequence involving the cohomology of a
group G and the functor Ext∗R, where R is a commutative ring. Although it seems likely
that this spectral sequence is already known, we are unaware of any reference to it in the
literature and thus include a complete proof. Our sole purpose in introducing the spectral
sequence is to extract from it a cohomological isomorphism (Corollary 2.5) that will find
frequent application throughout the paper. This isomorphism can also be proved in a direct
and elementary fashion; however, we find it illuminating to view it as part of a more general
phenomenon.

Proposition 2.4. Let G be a group and R a commutative ring. Suppose that A and B are
RG-modules and regard ExtnR(A,B) as a ZG-module via the diagonal action for n ≥ 0. Then
there is a first quadrant cohomology spectral sequence whose E2-page is given by

Epq
2 = Hp(G,ExtqR(A,B)),

and that converges to ExtnRG(A,B).

Proof. This will follow immediately from the Grothendieck spectral sequence in [7, Theorem
10.5] provided that we verify thatHn(G,HomR(A, I)) = 0 for any injective RG-module I and
n ≥ 1. To accomplish this, take a projective RG-module resolution · · · → P1 → P0 → A → 0
of A. Since I is injective as an RG-module, it is also injective as an R-module. Thus the
sequence

0 → HomR(A, I) → HomR(P0, I) → HomR(P1, I) → · · · (2.1)

is exact. We claim that Hn(G,HomR(Pi, I)) = 0 for i ≥ 0 and n ≥ 1. To show this,
it suffices to establish that Hn(G,HomR(RG, I)) = 0 for n ≥ 1. However, this is easily
seen to be true because HomR(RG, I) is isomorphic to the coinduced module Hom(ZG, I),
which has trivial cohomology in every positive dimension. Therefore, (2.1) is an acyclic
resolution of HomR(A, I) with respect to the functor H0(G, ). As a consequence, the
groups Hn(G,HomR(A, I)) are the cohomology groups of the cochain complex

0 → HomRG(P0, I) → HomRG(P1, I) → · · · .

But this complex is acyclic in view of the injectivity of I as anRG-module. HenceHn(G,HomR(A, I)) =
0 for n ≥ 1.

The desired isomorphism yielded by this spectral sequence is described below.

Corollary 2.5. Let G be a group and R a commutative ring. Suppose that A and B are
RG-modules such that either A is projective or B is injective as an R-module. Then, for
n ≥ 0,

ExtnRG(A,B) ∼= Hn(G,HomR(A,B)),

where HomR(A,B) is viewed as a ZG-module under the diagonal action.

Proof. We apply the spectral sequence above. In view of our assumptions about A or B,
Epq

2 = 0 for q += 0, thus yielding the isomorphism.

Remark. The case of Corollary 2.5 for R = Z and A a free Z-module appears in [5, p. 61].
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Our first application of Corollary 2.5 is the following lemma, required for the proof of
Proposition A.

Lemma 2.6. Let G be a polycyclic group and A and B ZG-modules. Assume that the
additive group of A is minimax and that of B torsion and divisible. For each prime p, let
Bp be the p-torsion subgroup of B. Then, if n ≥ 0, ExtnZG(A,B) is torsion if and only if
ExtnZG(A,Bp) is torsion for each prime p.

Proof. The “only if” part is trivial; hence we confine our attention to the “if” direction. Let
π be the set of all primes outside spec(A). Since ExtnZG(A, ) commutes with finite direct
sums, the conclusion will follow if we can establish that ExtnZG(A,Bπ) is torsion, where
Bπ is the π-torsion subgroup of B. To accomplish this, we notice that ExtnZG(A,Bπ) ∼=
Hn(G,Hom(A,Bπ)) by Corollary 2.5. Since Hom(A,Bπ) is torsion and G is of type FP∞,
it follows that ExtnZG(A,Bπ) is torsion.

Before establishing Proposition A, we discuss a key tool employed in the proof, namely,
the Pontryagin dual of a module, defined below.

Definition. Assume that p is a prime. If A is an abelian p-group, then the Pontryagin dual
A′ of A is the group Hom(A,Z/p∞). The dual A′ is an abelian pro-p group and, as such,
can be regarded as a Ẑp-module. If A happens to be endowed with a ZG-module structure
for a group G, then we equip A′ with a G-action by letting (g · f)(x) = f(g−1 · x) for every
g ∈ G, f ∈ A′, and x ∈ A. In this way, we may view A′ as a ẐpG-module.

We are especially interested in the Pontryagin dual of A when A is the direct sum of
finitely many copies of Z/p∞ for a prime p. In this case, A′ is the direct sum of the same
number of copies of Ẑp. Another elementary property of Pontryagin duals that will play an
important role is described in the following lemma.

Lemma 2.7. Let p be a prime. Suppose that A and B are abelian p-groups, and that B has
finite rank. Then there is a natural isomorphism

Hom(A,B) → HomẐp
(B′, A′).

Proof. To start, we observe that the finite rank condition implies that B′ is topologically
finitely generated as a pro-p group. A well-known theorem of J-P. Serre states that, in a
topologically finitely generated pro-p group, every subgroup of finite index is open ([19, The-
orem 4.3.5]). This implies that every homomorphism from a topologically finitely generated
pro-p group to a profinite group must be continuous. Hence HomẐp

(B′, A′) coincides with

the set of continuous homomorphisms from the pro-p group B′ to the pro-p group A′. The
result follows, then, from [19, Theorem 6.4.7].

From Lemma 2.7 we obtain the property below.

Lemma 2.8. Assume that p is a prime and G a group. Let A and B be ZG-modules whose
additive groups are p-groups. Suppose further that, as an abelian group, B is divisible and
has finite rank. Then

ExtnZG(A,B) ∼= Extn
ẐpG

(B′, A′)

for n ≥ 0.
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Proof. We have the following chain of isomorphisms.

ExtnZG(A,B) ∼= Hn(G,Hom(A,B)) ∼= Hn(G,HomẐp
(B′, A′)) ∼= Extn

ẐpG
(B′, A′).

The first isomorphism in this chain results from the divisibility of B and the last from the
fact that B′ is free as a Ẑp-module.

Armed with the lemmas above, we are finally ready to prove Proposition A.

Proposition A. Let G be a finitely generated abelian group. Suppose that A and B are
ZG-modules whose additive groups are both torsion-free and minimax. Assume further that
A and B fail to have a pair of respective rationally irreducible ZG-module sections that
are isomorphic. Then, for any ZG-module quotients Ā and B̄ of A and B, respectively,
ExtnZG(Ā, B̄) is torsion for n ≥ 0.

Proof. Assume that A and B are both nontrivial. Then A and B each have a series of sub-
modules of finite length in which all the factors are torsion-free and rationally irreducible.
This permits a reduction to the case where A and B are rationally irreducible. By Lemmas
2.2 and 2.3, ExtnZG(Ā, B̄Q) = 0 for n ≥ 0. The conclusion will then follow from the long exact
Ext-sequence if we can establish that ExtnZG(Ā, B̄

Q/B̄) is torsion for n ≥ 0. According to
Lemma 2.6, this will follow if we manage to show that, for each prime p, ExtnZG(Ā, B̄

Z[1/p]/B̄)
is torsion for n ≥ 0. With this aim in mind, we take p to be a prime and set Q = B̄Z[1/p]/B̄.
The module Ā contains a finitely generated submodule Ā0 such that Ā/Ā0 is torsion. More-
over, since ZG is Noetherian, Ā0 is of type FP∞, implying that ExtnZG(Ā0, Q) is torsion
for n ≥ 0. Hence the conclusion will follow if we can deduce that, for n ≥ 0, ExtnZG(P,Q)
is torsion for any ZG-module quotient P of A whose additive group is a divisible p-group.
Supposing that P is as described, set P ∗ = P ′ ⊗Ẑp

Q̂p and Q∗ = Q′ ⊗Ẑp
Q̂p. Let I∗ be the

annihilator ideal of P ∗ in the ring Q̂pG and J∗ that of Q∗. Assume, further, that I and J

are the respective annihilators of AQ and BQ in QG ⊂ Q̂pG. Also, let α : QG → QG be the
ring isomorphism such that α(g) = g−1 for all g ∈ G. If x ∈ I, then x = 1

my, where m ∈ Z

and y ∈ ZG ∩ I. Because A is torsion-free, y annihilates P , and so α(y) must annihilate
P ′. As a result, α(x) ∈ I∗. We have thus shown that α(I) ⊂ I∗. Moreover, by a similar
argument, α(J) ⊂ J∗. Since AQ and BQ are simple, nonisomorphic QG-modules, we have
I + J = QG. Hence I∗ + J∗ = Q̂pG. As Extn

Q̂pG
(Q∗, P ∗) inherits a Q̂pG-module structure

from Q∗ and P ∗, it follows that Extn
Q̂pG

(Q∗, P ∗) = 0 for n ≥ 0. Therefore, by Lemma 2.3,

Extn
ẐpG

(Q′, P ∗) = 0 for n ≥ 0.

In the final step of the proof, we argue that Extn
ẐpG

(Q′, P ′) is torsion for n ≥ 0, yielding

that ExtnZG(P,Q) is torsion by Lemma 2.8. The former assertion will follow from the long
exact Ext-sequence if we can prove that Extn

ẐpG
(Q′, P ∗/P ′) is torsion for n ≥ 0. To establish

this, we apply Corollary 2.5 to obtain that

Extn
ẐpG

(Q′, P ∗/P ′) ∼= Hn(G,HomẐp
(Q′, P ∗/P ′))

for n ≥ 0. It follows from the classification of finitely generated modules over a principal
ideal domain that every torsion Ẑp-module quotient of Q′ is finite. From this observation we
infer that HomẐp

(Q′, P ∗/P ′) must be torsion. Therefore, Extn
ẐpG

(Q′, P ∗/P ′) is torsion for

n ≥ 0, thus completing the argument.
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3 Cohomology of π-minimax groups

The goal of this section is to prove Theorem A. We begin by reminding the reader of three
fundamental properties of the Fitting subgroup of a solvable minimax group; proofs of these
may be found in [11, p. 123].

Proposition 3.1. Let G be a solvable minimax group and F = Fitt(G). Then the following
three statements hold.

(i) The subgroup F is nilpotent.

(ii) The quotient G/F is virtually abelian.

(iii) If G is virtually torsion-free, then G/F is finitely generated.

Next we examine solvable minimax groups G for which there is a rationally irreducible
ZG-module. The properties that we establish for such groups are gleaned from the proofs
in [11] of parts (ii) and (iii) of the above proposition. For the convenience of the reader,
however, we furnish all the details of the arguments.

Lemma 3.2. Let G be a solvable minimax group and A a rationally irreducible ZG-module.
Then G has a nilpotent normal subgroup N such that N ⊂ CG(AQ) and G/N is a virtually
abelian group. Moreover, if G is virtually torsion-free, then G/N is finitely generated.

Proof. Let F = Fitt(G) and N = F ∩ CG(AQ). Since G/F is virtually abelian, there is a
normal subgroup M of G such that [G : M ] is finite and M ′ ⊂ F . There is a well-known
theorem of A. Malcev [11, Theorem 1.23] that states that every solvable irreducible linear
group is virtually abelian. Hence G/CG(AQ) is virtually abelian. This means that G has
a normal subgroup P with finite index such that P ′ ⊂ CG(AQ). Thus (M ∩ P )′ ⊂ N and
[G : M ∩ P ] is finite, implying that G/N is virtually abelian.

Finally, we consider the case where G is virtually torsion-free. To see that G/N is finitely
generated in this case, notice first that G/F is polycyclic by virtue of Proposition 3.1. Next
let P̄ be the image of P in G/CG(AQ). By [16, 8.1.3(i)], AQ is completely reducible as a QP̄ -
module. For each simple QP̄ -submodule S of AQ, S ∼= QP̄ /IS , where IS is a maximal ideal
in QP̄ . Further, the ring QP̄ /IS is a field whose multiplicative group contains an isomorphic
copy of P/CG(S), namely, the subgroup {x+IS | x ∈ P̄}. However, the multiplicative group
of a field that is a finite extension of Q is the direct product of a free abelian group with a
finite cyclic group (see [6, Theorem 1.27]). Since P/CG(S) has finite torsion-free rank, this
means that P/CG(S) must be finitely generated and therefore polycyclic. As a result, P̄ is
polycyclic. Consequently, G/N , too, is polycyclic, which completes the proof.

For our cohomology results, we require the following property of the integral homology
of a π-minimax group. This result is undoubtedly well known and quite straightforward to
establish. Nevertheless, for the sake of completeness, we include a proof.

Proposition 3.3. If G is a nilpotent π-minimax group, then HnG is π-minimax for n ≥ 0.

Proof. We proceed by induction on the nilpotency class of G. Suppose first that G is abelian.
Let T = τ(G) and consider the Lyndon-Hochschild-Serre (LHS) spectral sequence in homol-
ogy associated to the group extension 1 → T → G → Q → 1. Since Q is torsion-free, its
integral homology groups are exterior powers of G, rendering them π-minimax. The group
T is the direct sum of finitely many quasicyclic groups and finite groups. Furthermore,
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since integral homology commutes with direct limits, the integral homology groups of a π-
minimax quasicyclic group are π-minimax. Therefore, HqT is π-minimax for q ≥ 0. Hence
Hp(Q,HqT ) = HpQ⊗HqT is π-minimax for p, q ≥ 0, so that the conclusion follows.

Suppose that G is nonabelian. Let Z = Z(G) and consider the LHS spectral sequence
associated to the group extension 1 → Z → G → R → 1. By the inductive hypothesis, the
integral homology groups of both R and Z are π-minimax. Invoking the universal coefficient
theorem as well as the closure of the class of π-minimax abelian groups under both tensor
and torsion products, we obtain that Hp(R,HqZ) is π-minimax for p, q ≥ 0. Hence HnG is
π-minimax for n ≥ 0.

Next we establish a key proposition en route to Theorem A. This proposition will also
serve as the basis for Theorem C in § 4, our second near-supplement result.

Proposition 3.4. Let G be a π-minimax group and A a ZG-module whose underlying abelian
group is minimax. Suppose further that A does not have any nontrivial ZG-module sections
that are torsion-free and π-minimax as abelian groups. Then Hn(G,AQ) = 0 for all n ≥ 0.

Proof. If the underlying abelian group of A is torsion, then the conclusion is trivially true.
Hence we assume that A is not torsion. In this case, A has a series of submodules of finite
length in which each factor is rationally irreducible. Thus, without any real loss of generality,
we can assume that A is rationally irreducible. By virtue of Lemma 3.2, G must then have a
nilpotent normal subgroup N such that N ⊂ CG(AQ) and G/N is virtually abelian. Let G0

be a normal subgroup of G with finite index such that N < G0 and Q0 = G0/N is abelian.
Our plan is to show thatHn(G0, AQ) = 0 for n ≥ 0; it will then follow thatHn(G,AQ) = 0

for n ≥ 0. To investigate the groups Hn(G0, AQ), we will employ the LHS spectral sequence
for the extension 1 → N → G0 → Q0 → 1. Invoking the universal coefficient theorem, we
conclude that Hq(N,AQ) ∼= Hom(HqN,AQ) for q ≥ 0. Thus

Hp(Q0, H
q(N,AQ)) ∼= Hp(Q0,Hom(HqN,AQ)) ∼= ExtpZQ0

(HqN,AQ)

for p, q ≥ 0, where the second isomorphism follows from Corollary 2.5. According to
Proposition 3.3, HqN is π-minimax. Moreover, in view of Lemma 3.5(ii) below, A has no
nontrivial torsion-freeZG0-module sections that are π-minimax as abelian groups. Therefore,
by Lemmas 2.2 and 2.3, ExtpZQ0

(HqN,AQ) = 0. Hence Hn(G0, AQ) = 0 for n ≥ 0, thus
proving the proposition.

It remains to establish

Lemma 3.5. Let G be a group and K a G-operator group.
(i) If M !N < K and N/M is torsion-free and π-minimax, then, for any g1, · · · , gr ∈ G,

the group

r⋂

i=1

Ngi

/
r⋂

i=1

Mgi

is also torsion-free and π-minimax.

(ii) If H < G with [G : H ] < ∞ and K has an H-invariant section that is torsion-free
and π-minimax, then K also has a G-invariant section with the same two properties.
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Proof. First we prove statement (i). The torsion-free part is obvious, so we focus only on
the π-minimax conclusion. We proceed by induction on r, the case r = 1 being immediate.
Assume that r > 1. Let P =

⋂r−1
i=1 Ngi andQ =

⋂r−1
i=1 Mgi . Since P ∩Ngr/P ∩Mgr embeds

in Ngr/Mgr , the former quotient is π-minimax. Similarly, from the fact that P/Q is π-
minimax, we infer that P ∩Mgr/Q ∩Mgr is π-minimax. Consequently, P ∩Ngr/Q ∩Mgr

is π-minimax. This completes the proof of (i).
To establish (ii), assume that M !N < K such that M and N are H-invariant. Suppose

further that N/M is torsion-free and π-minimax. Let g1, · · · , gr be a complete list of right
coset representatives of H in G. Then

⋂r
i=1 M

gi and
⋂r

i=1 N
gi are G-invariant subgroups of

K. The conclusion follows, then, from assertion (i).

In proving Theorem A, we will adduce an argument very similar to the one above for
Proposition 3.4. The pivotal step in the proof will be to establish that ExtpZQ(HqN,A) is
torsion, where N is a torsion-free π-minimax nilpotent group, Q a finitely generated abelian
group, and A a ZQ-module without any nontrivial ZQ-sections that are π-minimax and
torsion-free as abelian groups. As we shall see, this can be accomplished with the aid of
Proposition A. First, however, it will be necessary to show that HqN belongs to a special
class of modules, defined below.

Definition. Assume that G is a group. Let C(G,π) be the smallest class of ZG-modules
with the following two properties.

(i) The class C(G,π) contains every ZG-module whose additive group is π-minimax and
torsion-free.

(ii) The class C(G,π) is closed under forming ZG-module quotients as well as extensions.

As an immediate consequence of the definition, we have that C(G,π) is also subgroup-
closed and therefore section-closed. This can be proved very easily by inducting on the
number of closure operations from (ii) required to construct a module in C(G,π); the details
are left to the reader.

Lemma 3.6. For any group G, the class C(G,π) is closed under forming ZG-module sec-
tions.

Below we establish another closure property of C(G,π).

Lemma 3.7. Assume that G is a group. Suppose that B is a ZG-module whose additive
group is torsion-free and π-minimax. If A is a ZG-module in C(G,π), then A ⊗ B lies in
C(G,π), where A⊗B is viewed as a ZG-module under the diagonal action.

Proof. First we make the following three observations concerning B.
(i) If M is a ZG-module whose additive group is torsion-free and π-minimax, then M ⊗ B
is π-minimax and torsion-free.
(ii) If M is a ZG-module and M ′ is a ZG-module quotient of M , then M ′⊗B is a ZG-module
quotient of M ⊗B.
(iii) If M , M ′, and M ′′ are ZG-modules such that M is an extension of M ′ by M ′′, then
M ⊗B is a ZG-module extension of M ′ ⊗B by M ′′ ⊗B.
From these three properties it follows that A ⊗ B belongs to C(G,π) by induction on the
number of closure operations required to construct A from ZG-modules that are torsion-
free and π-minimax. Statement (i) establishes the base case, and (ii) and (iii) permit the
execution of the inductive step.
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In the following proposition, we furnish an alternative characterization of the modules in
C(G,π).

Proposition 3.8. Let G be a group. A ZG-module A belongs to the class C(G,π) if and
only if it has a ZG-module series

0 = A0 ⊂ A1 ⊂ · · · ⊂ Ar = A

such that, for each i = 1, · · · , r, Ai/Ai−1 is a quotient of some ZG-module Mi whose additive
group is π-minimax and torsion-free.

Proof. Let B be the class of all ZG-modules with such a series. Clearly, B ⊂ C(G,π).
Moreover, the class B is plainly closed under forming extensions and contains every ZG-
module whose additive group is π-minimax and torsion-free. We claim that it is also closed
under forming quotients. To show this, let A be a ZG-module with a series as described in
the proposition. Take Ā to be a quotient of A. Then Ā has a series

0 = Ā0 ⊂ Ā1 ⊂ · · · ⊂ Ār = Ā

of submodules such that Āi/Āi−1 is a quotient of Ai/Ai−1 for 1 ≤ i ≤ r. Thus Ā belongs to
B. HenceB is indeed closed under forming quotients. It follows, then, that B = C(G,π).

Combining the above observation with Proposition A gives rise to the following property
of the Ext-functor applied to modules in C(G,π).

Corollary 3.9. Let G be a finitely generated abelian group. Assume that B is a ZG-module
whose additive group is torsion-free and minimax. Suppose further that there are no non-
trivial ZG-module sections of B that are torsion-free and π-minimax as abelian groups. If A
is a ZG-module in C(G,π), then ExtnZG(A,B) is torsion for n ≥ 0.

Proof. By Proposition 3.8, there is a series of submodules

0 = A0 ⊂ A1 ⊂ · · · ⊂ Ar = A

such that, for each i = 1, · · · , r, Ai/Ai−1 is a quotient of some ZG-module Mi whose ad-
ditive group is π-minimax and torsion-free. In view of the hypothesis regarding B, the
modules B and Mi cannot share any rationally irreducible sections. Thus, by Proposition A,
ExtnZG(Ai/Ai−1, B) is torsion for 1 ≤ i ≤ r and n ≥ 0. As a consequence, ExtnZG(A,B) is
torsion for n ≥ 0.

Our purpose in defining the class C(G,π) and enunciating Corollary 3.9 is to apply the
corollary to the integral homology of a nilpotent normal subgroup of a torsion-free π-minimax
group in place of the module A. To this end, we require the following property.

Lemma 3.10. Assume that G is a group. Let N be a normal subgroup of G that is nilpotent,
π-minimax, and torsion-free. Then, for each n ≥ 0, the ZG-module HnN lies in the class
C(G,π).

Proof. We proceed by induction on the nilpotency class of N . If N is abelian, then HnN
is torsion-free and π-minimax for n ≥ 0, yielding the conclusion immediately. Assume that
the nilpotency class of N exceeds one. In this case, set Z = Z(N) and consider the LHS
homology spectral sequence associated to the extension 1 → Z → N → N/Z → 1. In this
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spectral sequence, E2
pq = Hp(N/Z,HqZ) = Hp(N/Z)⊗HqZ for p, q ≥ 0. By the inductive

hypothesis, Hp(N/Z) lies in C(G,π). Therefore, by Lemma 3.7, E2
pq belongs to C(G,π).

Since the differentials in the spectral sequence are ZG-module homomorphisms, E∞
pq can be

regarded as a ZG-module section of E2
pq. Thus E

∞
pq belongs to C(G,π). Moreover, HnN has

a series of submodules whose factors are isomorphic to the modules E∞
pq for p+ q = n. The

conclusion follows, then, from the closure of C(G,π) with respect to extensions.

We now finally have everything in place to prove Theorem A.

Theorem A. Let G be a virtually torsion-free π-minimax group. Assume that A is a ZG-
module whose underlying abelian group is torsion-free and minimax. Suppose further that
there are no nontrivial ZG-module sections of A that are torsion-free and π-minimax as
abelian groups. Then Hn(G,A) is torsion for n ≥ 0.

Proof. As in the proof of Proposition A, it suffices to consider the case where A is rationally
irreducible. This assumption allows us to apply Lemma 3.2, obtaining a nilpotent normal
subgroup N of G such that N ⊂ CG(A) and G/N is a finitely generated virtually abelian
group. Let G0 be a torsion-free normal subgroup of G such that G/G0 is finite and G0/N0

is abelian, where N0 = N ∩ G0. The conclusion of the theorem will then follow if we can
show that Hn(G0, A) is torsion for n ≥ 0. Furthermore, the latter assertion can be deduced
from Proposition 3.4 and the long exact cohomology sequence if we manage to prove that
Hn(G0, AQ/A) is torsion for n ≥ 0.

Setting Ã = AQ/A and Q0 = G0/N0, we will employ the LHS spectral sequence for the
group extension 1 → N0 → G0 → Q0 → 1 to study Hn(G0, Ã). Invoking the universal
coefficient theorem as well as Corollary 2.5, we deduce that

Hp(Q0, H
q(N0, Ã)) ∼= Hp(Q0,Hom(HqN0, Ã)) ∼= ExtpZQ0

(HqN0, Ã)

for p, q ≥ 0. In view of Lemma 3.5(ii), A has no nontrivial ZG0-module sections whose
underlying abelian groups are torsion-free and π-minimax. Thus, by Lemma 3.10 and Corol-
lary 3.9, ExtpZQ0

(HqN0, A) is torsion for p, q ≥ 0. It follows, then, from Lemma 2.2 that

ExtpZQ0
(HqN0, Ã) is torsion for p, q ≥ 0. Therefore, Hn(G0, Ã) is torsion for n ≥ 0, thus

yielding the conclusion.

4 Near and Hirsch-length supplements

In this section, we prove our two theorems regarding the existence of near supplements and
Hirsch-length supplements. In addition to Theorem A, we will appeal to the following similar
result of Robinson.

Proposition 4.1. (Robinson [15, Theorem 2.1]) Let G be a solvable minimax group and A
a ZG-module that is both torsion and minimax qua abelian group. If spec(A) and spec(G)
are disjoint, then Hn(G,A) is torsion for all n ≥ 0.

Having stated this property, we are ready to proceed with the proof of our main near-
supplement theorem.

Theorem B. Let G be a solvable minimax group. Assume that K is a normal subgroup
of G such that G/K is π-minimax and virtually torsion-free. Then there is a π-minimax
subgroup X of G such that [G : KX ] is finite.

12



Proof. Set Q = G/K. The result is trivial if K is π-minimax, so we assume that it is not.
It can be deduced by induction on m(K) that K has a G-invariant series

1 = K0 < K1 < · · · < Kr = K

such that, for each i = 1, · · · , r, the following two statements hold:

(i) Ki/Ki−1 is abelian;
(ii) every G-invariant subgroup of Ki/Ki−1 is either finite or cofinite.

We will prove the theorem by inducting on the length r of such a series. Suppose that r = 1;
that is, K is abelian, and every G-invariant subgroup of K is either finite or cofinite. First
we treat the case where K is torsion. Let Kπ be the π-torsion part of K. Then K/Kπ is a
π′-group. Therefore, by Proposition 4.1, H2(Q,K/Kπ) is torsion. According to Proposition
1.1, this means that there is a subgroup X of G containing Kπ such that X ∩K/Kπ is finite
and [G : KX ] is finite. Then X is π-minimax, yielding the conclusion. Next assume that K
is not torsion. It follows that the torsion subgroup of K must be finite. Hence, without real
loss of generality, we can assume that K is torsion-free. Since K is not π-minimax, none
of its infinite G-invariant sections are π-minimax. Therefore, we can apply Theorem A to
the ZG-module K and conclude that H2(Q,K) is torsion. As a result, G must possess a
subgroup X such that X ∩K is finite and [G : KX ] is finite. Since X is plainly π-minimax,
this completes the argument for the case that r = 1.

Suppose now that r > 1, and set L = Kr−1. By the base case of our induction, G has
a subgroup Y containing L such that Y/L is π-minimax and [G : KY ] is finite. Applying
the inductive hypothesis to L inside Y , we obtain a π-minimax subgroup X < Y such that
[Y : LX ] is finite. It follows, then, that [G : KX ] is finite, thus completing the proof.

Below we describe an example that demonstrates that the hypothesis that G/K is virtu-
ally torsion-free cannot be removed from Theorem B.

Example 4.2. Assume that p and q are primes. Define an action of C∞ = 〈t〉 on Z[1/pq]
by t · x = px for x ∈ Z[1/pq]. Let G = Z[1/pq] ! 〈t〉 and K = Z[1/p]. Then K ! G, and
G/K is {q}-minimax but not virtually torsion-free. Moreover, K has no {q}-minimax near
supplement. To see this, suppose that X is a near supplement to K. Then K ∩ X += 1;
otherwise X would contain a quasicyclic subgroup. Since K ∩ X ! KX , it follows that
K ∩X = K. Thus X cannot be {q}-minimax. Notice, however, that K has a {q}-minimax
Hirsch-length supplement, namely, 〈t〉.

The above example suggests that a normal subgroup of a solvable minimax group whose
associated quotient is π-minimax might at least have a π-minimax Hirsch-length supplement,
if not a near supplement. In Theorem C below, we prove that this is indeed always the case.
In addition, we observe that, if the quotient happens to be finitely generated, then any
Hirsch-length supplement is necessarily a near supplement. This is due to the fact that, in
a finitely generated solvable minimax group, every subgroup with the same Hirsch length as
the group must have finite index (Lemma 4.4).

Theorem C. Let G be a solvable minimax group. Assume that K is a normal subgroup
of G such that G/K is π-minimax. Then there is a π-minimax subgroup X of G such that
h(KX) = h(G). Furthermore, if G/K is finitely generated, then [G : KX ] is finite.
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Before proceeding with the proof of Theorem C, we need to establish the following prop-
erty of Hirsch lengths of subgroups.

Lemma 4.3. Let G be a virtually solvable group with finite torsion-free rank and K a normal
subgroup of G. If X < Y < G and h(X) = h(Y ), then h(KX) = h(KY ).

Proof. The result follows from the following chain of relations.

h(KX) = h(K) + h(X)− h(K ∩X) ≥ h(K) + h(Y )− h(K ∩ Y ) = h(KY ).

Proof of Theorem C. Set Q = G/K. As in the proof of Theorem B, we suppose that K
is not π-minimax and employ a G-invariant series

1 = K0 < K1 < · · · < Kr = K

with properties (i) and (ii). Again we induct on r. Assume that r = 1. The case where K
is torsion is handled exactly as in the proof of Theorem B. Suppose that K is not torsion.
Instead of Theorem A as before, we appeal here to Proposition 3.4, which allows us to
conclude that H2(Q,KQ) = 0. Hence we have a commutative diagram

1 −−−−→ K −−−−→ G −−−−→ Q −−−−→ 1
%

%
∥∥∥

1 −−−−→ KQ −−−−→ Ḡ −−−−→ Q −−−−→ 1

with exact rows such that the bottom extension splits. Let X̄ be a complement to KQ in Ḡ,
and take X < G to be the inverse image of X̄. Then h(X ∩K) = 0 and h(X) = h(Q). Thus
h(KX) = h(K) + h(X) = h(G). This completes the proof of the base case.

Assume that r > 1, and set L = Kr−1. By the base case of our induction, G has a
subgroup Y containing L such that Y/L is π-minimax and h(KY ) = h(G). Applying the
inductive hypothesis to L inside Y , we obtain a π-minimax subgroup X < Y such that
h(LX) = h(Y ). From Lemma 4.3 we infer, then, that h(KX) = h(G). In conclusion, we
observe that, if G/K is finitely generated, then [G : KX ] is finite. This assertion follows
from Lemma 4.4 below.

The succeeding lemma is surely known to experts on solvable minimax groups. However,
since no mention of it appears in the literature, we provide a proof.

Lemma 4.4. Let G be a finitely generated solvable minimax group. If H < G and h(H) =
h(G), then [G : H ] is finite.

Proof. The proof is by induction on m(G). If m(G) = 0, then the conclusion follows im-
mediately. Assume that m(G) > 0. Let A be an infinite abelian subgroup with m(A) as
small as possible subject to the condition that [G : NG(A)] is finite. Without any real loss
of generality, we may replace G by NG(A) and H by H ∩NG(A), rendering A normal in G.
In this case, we have

h(AH/A) = h(H)− h(H ∩ A) ≥ h(G)− h(A) = h(G/A),
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implying that h(AH/A) = h(G/A). Hence, by the inductive hypothesis, AH has finite index
in G.

At this juncture, we distinguish the case of A being torsion from that where A is not
torsion. First we suppose that A is torsion. Because G is finitely generated, AH is also
finitely generated. Thus there is a finite subset F of A such that 〈H ∪F〉 = AH . Since A is
a Černikov group, it has a characteristic finite subgroup F containing F . Then FH = AH ,
so that [AH : H ] is finite. Hence [G : H ] is finite.

Next we treat the case that A is not torsion. Since H ∩ A is normal in AH , our choice
of A ensures that H ∩ A is either finite or has finite index in A. If H ∩ A is finite, then
h(H) = h(G/A) < h(G), a contradiction. Therefore, H ∩A has finite index in A. It follows,
then, that [AH : H ] is finite. Thus [G : H ] is finite.

We conclude this section by applying Theorem C to obtain a new result on the homological
dimension of solvable groups. It is conjectured in [4] that, if k is a field and G a solvable
group, then hdk(G) is either infinite or equal to the Hirsch length of G. This is established
by U. Stammbach [17] if k has characteristic zero and proved in [4] for arbitrary fields in
the abelian-by-polycyclic case. We refer the reader to [4] for background information on this
problem, as well as to [3] for the basic facts about homological dimension. Here we employ
Theorem C to establish the following generalization of the abelian-by-polycyclic case.

Proposition 4.5. Let p be a prime and k a field of characteristic p. Suppose that G is an
extension of an abelian group by a {p}′-minimax group. If G has finite homological dimension
over k, then hdk(G) = h(G).

Proof. That G has finite homological dimension over k yields that G has finite Hirsch length.
In addition, it implies that G has no k-torsion, meaning that any finite element order in G is
invertible in k. Let T = τ(G). Appealing to the LHS spectral sequence, we will argue that
hdk(G/T ) = hdk(G). Since hdk(T ) = 0, we deduce right away that hdk(G/T ) ≥ hdk(G).
To verify the reverse inequality, set n = hdk(G/T ) and let M be a right k[G/T ]-module
such that Hn(G/T,M) += 0. Since Hn(G,M) = Hn(G/T,M), it follows that hdk(G) ≥ n.
Since hdk(G/T ) = hdk(G), we may, without any real loss of generality, assume that G is
torsion-free. As observed in [3, Proposition 6.14], there is a finitely generated subgroup of G
with the same homological dimension over k as G. In addition, there is a finitely generated
subgroup with the same Hirsch length as G. This means that we can find a finitely generated
subgroup enjoying both of these properties. Consequently, it suffices to consider the case
where G is finitely generated and therefore minimax.

Invoking Theorem C, and replacing G by a subgroup of finite index if necessary, we may
assume that G has a {p}′-minimax subgroup X and an abelian normal subgroup A such that
AX = G. The action of X on A by conjugation allows us to construct a semidirect product
A ! X . Moreover, there is a surjection φ : A ! X → G, where B = Kerφ is isomorphic
to A ∩ X . We claim that, if hdk(A !X) = h(A ! X), then hdk(G) = h(G). To establish
this claim, assume that hdk(A!X) = h(A!X). From the LHS spectral sequence we know
that hdk(A ! X) ≤ hdk(B) + hdk(G). Hence hdk(G) ≥ h(A ! X) − h(B) = h(G). Also,
hdk(G) ≤ h(G) by [3, Theorem 7.11]. Therefore, the above claim holds; in other words, we
do not really lose any generality in supposing that G = A!X .

The argument advanced by Stammbach [17] for fields of characteristic zero also serves
to show that hdk(X) = h(X) (see [4, Lemma I.9]). Let m be the product of all the primes
in spec(A). Then Ã = AZ[1/m] is isomorphic to Z[1/m]r, where r = h(A). Regarding Ã
multiplicatively, let θ be the automorphism of Ã defined by θ(x) = xm. Set K = Ã ! 〈θ〉.
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The action of X on A induces an action of X on Ã. Now define an action of X on K
by employing the action of X on Ã and allowing X to centralize θ. Using this action,
form the semidirect product G̃ = K ! X . As an ascending HNN extension of Zr, K is
constructible and thus an inverse duality group (see [2, Theorem 9]). By [3, Theorem 9.4],
it follows that K has type FP and Hn(K, kK) is k-free. Hence, in view of [3, Theorem 5.5],
hdk(G̃) = hdk(K) + hdk(X). Moreover, according to [4, Proposition I.11], hdk(K) = h(K).
In addition, since G̃ can be viewed as an ascending HNN extension of G, the Mayer-Vietoris
sequence yields that hdk(G̃) ≤ hdk(G) + 1. We may thus argue as follows.

hdk(G) ≥ hdk(G̃)− 1 = h(K) + h(X)− 1 = h(A) + h(X) = h(G).

As remarked above, the reverse inequality is already known to hold; hence hdk(G) = h(G).

5 Near complements

In this section, we consider the same situation as in Theorem B; that is, we suppose that G is
a solvable minimax group and K!G such that G/K is π-minimax and virtually torsion-free.
Here our goal is to determine circumstances under which Theorem B can be strengthened
to yield a near complement, rather than just a π-minimax near supplement. In order to
ensure this, it will be necessary to impose two quite stringent conditions on K. First, we will
assume that K is Noetherian as a G-operator group; in other words, K satisfies the maximal
condition on G-invariant subgroups. Second, we will require that K is, in some sense, the
“antithesis” of a torsion-free π-minimax group.

Before we concern ourselves with the second hypothesis, we point out that the Noetherian
property, as well as the condition that the quotient is virtually torsion-free, applies to any
normal subgroup in a solvable minimax group that satisfies the maximal condition on normal
subgroups. Moreover, solvable minimax groups with the latter attribute are ubiquitous,
especially in geometric group theory. In particular, every constructible solvable group enjoys
this property. Recall that the class of constructible groups is the smallest class containing the
trivial group that is closed under forming finite extensions, generalized free products in which
both factors as well as the amalgamated subgroup are constructible, and HNN extensions
in which the base group and associated subgroups are constructible. Furthermore, as shown
in [2], the class of constructible solvable groups is the smallest class of groups that is closed
with respect to forming extensions by finite solvable groups and ascending HNN extensions
with base group in the class. As well as being of interest to geometers, constructible solvable
groups are important in homological algebra since the torsion-free constructible groups are
precisely those solvable groups that have type FP (see [9]).

Now we turn our attention to the second hypothesis that we will require for our near-
complement result, namely, that K fails to be a torsion-free π-minimax group in some drastic
fashion. In order to impart a more precise form to this idea, we introduce the following class.

Definition. The class Xπ is the class of all groups G such that every π-minimax quotient
of G is torsion.

To illustrate this definition we consider some examples. Notice that every torsion group
belongs to Xπ, whereas all π-minimax groups that are not torsion fall outside Xπ. Another
elementary observation is that a torsion-free abelian group of rank one is a member of Xπ if
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and only if it is not π-minimax. From this example we can see that the class Xπ fails to be
closed under taking subgroups.

Although Xπ is not subgroup-closed, the class enjoys the four closure properties described
below in Lemma 5.1. Since the proofs of these are straightforward, we leave them to the
reader.

Lemma 5.1. (i) If G belongs to Xπ, then so does every subgroup of finite index in G.
(ii) The class Xπ is closed under forming quotients and extensions.
(iii) Let G be a group. If {Nα : α ∈ I} is a family of normal subgroups of G such that each
Nα lies in Xπ, then the join of the Nα also belongs to Xπ.

Statements (ii) and (iii) in Lemma 5.1 make Xπ a radical class in the sense used in [12, §1.3].
Employing the terminology from [12, §1.3], we define the Xπ-radical of a group G, denoted
ρπ(G), to be the join of all the normal Xπ-subgroups of G. In studying the properties of
Xπ and the Xπ-radical, we will draw upon the wealth of information about radical classes
contained in [12, §1.3].

Our definition of the class Xπ is inspired by the notion of an upper-finite group from [13,
§10.4]. To shed light on the connection, consider the special case π = ∅. The class X∅ is
the class of groups all of whose polycyclic quotients are finite. Using the fact that solvable
minimax groups are torsion-by-nilpotent-by-polycyclic, it follows that a solvable minimax
group is an X∅-group if and only if it is upper-finite in the sense employed in [13, §10.4];
that is, every finitely generated quotient is finite. Hence the X∅-radical of a solvable minimax
group coincides with the upper-finite radical from [13, §10.4].

The result on near complements that we will prove in this section is stated below.

Theorem D. Let G be a solvable minimax group and K !G. Assume that K is a member
of Xπ and K is Noetherian as a G-operator group. Suppose further that G/K is π-minimax
and virtually torsion-free. Then there exists a near complement to K in G.

Throughout our discussion, we will make use of the following elementary property of Noethe-
rian groups with operators that are solvable and minimax.

Lemma 5.2. Assume that G is a group and N a Noetherian G-operator group. If N is
solvable and minimax, then τ(N) is finite.

The proof of Lemma 5.2 is very easy and therefore left to the reader.
The first step towards proving Theorem D is to establish that the property of belonging

to Xπ is inherited by submodules of certain Noetherian modules that lie in Xπ.

Lemma 5.3. Let G be an abelian group and A a Noetherian G-module that is minimax as
an abelian group. If the underlying abelian group of A is in the class Xπ, then the same is
true for every submodule of A.

Proof. We argue by induction on h(A). For h(A) = 0, the conclusion is trivially true.
Assume that h(A) ≥ 1. First we show that every rationally irreducible submodule of A lies
in Xπ. Suppose that there is a rationally irreducible submodule B outside the class Xπ. Set
Ā = A/B. By the inductive hypothesis, every ZG-module section of Ā belongs to Xπ. On
the other hand, B has no infinite ZG-module sections that lie in Xπ. Therefore, by Lemma
2.2, Ext1QG(Ā

Q, BQ) = 0, implying that BQ is a direct summand in AQ. According to Lemma
2.3, this means that B has an infinite section in Xπ, yielding a contradiction. It follows, then,
that every rationally irreducible submodule of A belongs to Xπ.
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To complete the proof, we let B be an arbitrary ZG-submodule of A. If B is finite,
then the conclusion follows immediately; hence we assume that B is infinite. Let C be a
rationally irreducible submodule of B. We have that C belongs to Xπ by what was proved
above. Moreover, B/C lies in Xπ by virtue of the inductive hypothesis. Therefore, B is a
member of Xπ.

We wish to discern inheritance properties similar to Lemma 5.3 for normal subgroups of
solvable minimax groups. In order to accomplish this, we require the notion of a nilpotent
action.

Definition. Assume that G is a group and N a G-operator group. We define the lower
central G-series

· · · < γG
3 N < γG

2 N < γG
1 N

of N as follows: γG
1 N = N ; γG

i N = 〈a(g · b)a−1b−1 | a ∈ N, b ∈ γG
i−1N, g ∈ G〉 for i > 1.

We say that the action of G on N is nilpotent if there is a nonnegative integer c such that
γG
c+1N = 1. The smallest such integer c is called the nilpotency class of the action.

In studying nilpotent actions, the following well-known property is exceedingly useful.

Proposition 5.4. Assume that G is a group and N a G-operator group. Then, for each
i ≥ 1, there is an epimorphism

θi : Gab ⊗ · · ·⊗Gab︸ ︷︷ ︸
i−1

⊗(N/γG
2 N) → γG

i N/γG
i+1N.

The above epimorphism can be employed to prove the lemma below.

Lemma 5.5. Let G be a group such that Gab has finite torsion-free rank. Assume that N
is a G-operator group upon which G acts nilpotently. If N belongs to Xπ, then γG

i (N) is in
Xπ for all i ≥ 1.

Proof. The conclusion follows immediately from Proposition 5.4 and Lemma 5.6 below.

Lemma 5.6. Let A and B be abelian groups. If A belongs to Xπ and B has finite torsion-free
rank, then A⊗B is a member of Xπ.

Proof. Choose a free abelian subgroup C of B such that B/C is torsion. Then C ∼= Zn,
where n = h(B), and so A⊗ C ∼= A⊕ · · ·⊕A︸ ︷︷ ︸

n

. The class Xπ is closed under extensions and

quotients; hence every quotient of A⊗C is in Xπ . Also, as a torsion group, A⊗B/C belongs
to Xπ . It follows, then, from the exact sequence A ⊗ C → A ⊗ B → A ⊗ B/C → 0 that
A⊗B lies in Xπ.

Lemma 5.5 allows us to establish the following two inheritance properties for solvable
minimax Xπ-groups. The second of these, Lemma 5.8, will play an essential role in the proof
of Theorem D.
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Lemma 5.7. Let M , N , and P be nilpotent normal subgroups of a group G such that
M < N < P and the following three conditions hold.

(i) The quotient G/P is abelian.
(ii) The group Pab has finite torsion-free rank.
(iii) The subgroup N is Noetherian as a G-operator group.

If N belongs to Xπ, then M does too.

Proof. Our proof is by induction on the nilpotency class of the action of P on N . If P acts
trivially, then we can deduce the conclusion from Lemma 5.3, regarding N and M as G/P -
modules. Assume that the nilpotency class c of the action exceeds one, and let A = γP

c (N).
Then A is a Xπ-group by Lemma 5.5. Consider the chain

M/M ∩ A < N/A < P/A,

the second term of which is in Xπ. The action of P/A on N/A is nilpotent of class c − 1.
Consequently, the inductive hypothesis yields that M/M ∩ A is in Xπ. Next we look at the
groups M ∩ A and A. Treating these groups as G/P -modules, it follows from Lemma 5.3
that M ∩ A belongs to Xπ. Therefore, M is in Xπ, as desired.

Lemma 5.8. Let G be a solvable minimax group. Suppose that M and N are normal
subgroups of G such that M < N and N is Noetherian as a G-operator group. If N is in
Xπ, then so is M .

Proof. As a virtually torsion-free solvable minimax group,N can be expressed as an extension
of a nilpotent group by a polycyclic one. Since N belongs to the class Xπ, this means that
N must be virtually nilpotent. By passing to a G-invariant subgroup of finite index, we can
assume that N is nilpotent. Therefore, the conclusion follows immediately by applying the
above lemma to the chain M < N < Fitt(G).

Armed with the above lemma, we can proceed with the proof of Theorem D.

Proof of Theorem D. The proof proceeds by induction on the length of the derived series
ofK. First suppose thatK is abelian. Invoking Theorem B, we obtain a π-minimax subgroup
Y such that KY has finite index in G. In [18] it is shown that a Noetherian G-operator
group is also Noetherian with respect to any subgroup of finite index in G. Therefore, no
significant loss of generality will result from assuming that G = KY . This renders K ∩ Y
normal in G. It follows, then, from Lemma 5.8 that K∩Y must be in the class Xπ. However,
K∩Y is π-minimax, which means that it must be finite. Since G/K is virtually torsion-free,
Y is residually finite. Thus Y has a subgroup X of finite index such that X ∩K = 1. The
subgroup X , then, can serve as the near complement that we seek.

Next assume that the derived length of K is greater than one. By the abelian case, G
contains a subgroup S such that S ∩K = K ′ and KS has finite index in G. According to
Lemma 5.8, K ′ belongs to Xπ. Hence we can apply the inductive hypothesis to K ′ inside of
S to obtain X < S such that K ′ ∩X = 1 and K ′X has finite index in S. Then X fulfills our
requirements.

In view of the observations made in this section’s second paragraph, Theorem D has the
following important special case.
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Corollary 5.9. Let G be a solvable minimax group that satisfies the maximal condition
on normal subgroups. Assume that K is a normal Xπ-subgroup of G such that G/K is
π-minimax. Then K has a near complement in G.

In addition to the assumption that G/K is π-minimax, Theorem D requires three hy-
potheses: (1) G/K is virtually torsion-free; (2) K is Noetherian; (3) K belongs to Xπ. It is
very easy to demonstrate that each of these three conditions is indispensable. To accomplish
this, we present three examples in which no near complement is present; in each, one of the
three hypotheses is violated, while the other two hold.

Example 5.10. Let p be a prime and Γ the group consisting of all matrices of the form




1 ∗ ∗
0 † ∗
0 0 1



 ,

where the entries ∗ above the diagonal are chosen from the ring Z[1/p] and the diagonal
entry † is an integer power of p. Let A be the central subgroup generated by




1 0 1
0 1 0
0 0 1



 .

Let G = Γ/A and K be the central subgroup of G generated by the image of




1 0 p−1

0 1 0
0 0 1



 .

The group G is a finitely generated solvable minimax group and K ∼= Cp. If π = {p}, then
G/K is π-minimax, yet K lacks a near complement. Notice that K satisfies conditions (2)
and (3), but G/K fails to fulfill (1).

Example 5.11. Let p be a prime and G the nilpotent minimax group consisting of all
matrices of the form 


1 ∗ †
0 1 ∗
0 0 1



 ,

where the entries ∗ are integers and the entry † is from the ring Z[1/p]. Let K = Z(G); that
is, K consists of all the matrices in G whose ∗ entries are 0. For π = ∅, G/K is π-minimax,
and the extension 1 → K → G → G/K → 1 satisfies conditions (1) and (3), but not (2). In
addition, there is no near complement to K in G.

Remark. The group G in Example 5.11 is not finitely generated. It would be interesting
to discover whether there is a finitely generated example with the same characteristics.

Example 5.12. Let G be the group of 3x3 upper unitriangular matrices with integer entries.
Set K = Z(G). For π = ∅, G/K is π-minimax; also, the extension 1 → K → G → G/K → 1
satisfies conditions (1) and (2), but not (3). Finally, we observe that K does not have a near
complement.
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One particular normal subgroup K of a solvable minimax group G that often satisfies
the hypotheses of Theorem D is the subgroup ρπ(G). In order to show this, we require the
following observation.

Proposition 5.13. Let G be a solvable group such that τ(G) is finite. If every subnormal
abelian subgroup of G is π-minimax, then G must be π-minimax.

In [11, §6.1] Robinson provides his own proof of R. Baer’s theorem [1] that a solvable group is
π-minimax if and only if all its abelian subgroups are π-minimax. The argument advanced by
Robinson for the case where the torsion radical is finite can be invoked to prove Proposition
5.13.

Proposition 5.13 allows us to establish the following lemma and its corollary.

Lemma 5.14. Let G be a solvable minimax group. If G has no nontrivial subnormal Xπ-
subgroups, then G is π-minimax.

Proof. Suppose that G is not π-minimax. We will show that G must contain a nontrivial
subnormal Xπ-subgroup, proving the lemma. If G is not residually finite, then its torsion
radical can serve as the desired subgroup. Assume that G is residually finite. By Proposition
5.13, G must have a subnormal abelian subgroup A that is not π-minimax. Let B be a
subgroup of A with the smallest possible Hirsch length such that A/B is π-minimax. Then
B is a nontrivial group in Xπ, and B is subnormal in G.

Corollary 5.15. If G is a solvable minimax group, then G/ρπ(G) is a virtually torsion-free
π-minimax group.

Proof. The Xπ-radical of G/ρπ(G) is trivial. Hence G/ρπ(G) has no nontrivial subnormal
Xπ-subgroups. Therefore, it is π-minimax by Lemma 5.14. In addition, its torsion radical is
trivial, making it virtually torsion-free.

In light of Corollary 5.15, we can state the following corollary to Theorem D.

Corollary 5.16. Let G be a solvable minimax group such that ρπ(G) is Noetherian as a
G-operator group. Then ρπ(G) has a near complement in G.

We conclude this section by observing that Corollary 5.16, and a fortiori Theorem D,
cannot be strengthened to deliver a full complement to K.

Example 5.17. Assume that p is an odd prime. Let Q be a free abelian group of rank 2. Let
A = Z[1/p] and define an action of Q on A by having both generators act via multiplication
by p. This makes A into a Noetherian ZQ-module. We have H2(Q,A) ∼= H0(Q,A) by
Poincaré duality. Hence, since p += 2, H2(Q,A) += 0. Therefore, there is at least one nonsplit
extension ofA byQ. In this extension, A is the X∅-radical and fails to have a full complement.
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