Emerging Fibers and Amplifiers for Next Generation Communications and Laser Applications

David Richardson

Optoelectronics Research Centre
Southampton University
United Kingdom
djr@orc.soton.ac.uk

Acknowledgements (People)

Southampton

Saurabh Jain

Yongmin Jung

Qionqyue Kang

Eelong Lim

Zhihong Li

Eric Numkam

Marco Petrovich

Periklis Petropoulos

Francesco Poletti

Victor Rancano

Jayanta Sahu

Radan Slavik

David Payne

Natalie Wheeler

John Wooler +.....

Dean Giles lan Giles

Beril Inan Maxim Kuschnerov Vincent Sleiffer

+....

Haoshou Chen Ton Koonen Chigo Okonkwo Roy van Uden Huug de Waardt

Brian Corbett
Andrew Ellis
Fatima Gunning
Peter O'Brien
Naoise MacSuibhne
Richard Winfield

+...

Brian Kelly John O'Carroll Richard Phelan

+...

Routes to Higher Capacity

Contender Fiber Solutions

Multi Core Fiber (MCF)

Few Mode Fiber (FMF)

Coupled Core (CC)

Photonic Band Gap Fiber (PBGF)

Few Mode Fiber

MDM over 10km TMF with MIMO DSP

- (3 modes/2 polarisations)
- Phase plate/bulk optic excitation
- MIMO correction of mode coupling effects
- Offline processing (computationally intensive)

R Ryf et al., OFC 2011 PDPB10 (A. Li et al., OFC 2011, PDPB8)

MIMO Processing

- Linear properties of system characterised by 6x6 impulse response matrix
- Need to use an N-tap DSP filter to retrieve data where N determined by the impulse response spread.
- Need to reduce fiber DGD to reduce N and complexity of processing.
- MDL/MDG ideally also needs to be small

Low DGD 3-Mode Fibre

Property	Unit	Value	
Spool length	m	30000	
Distributed mode coupling LP ₀₁ to LP ₁₁	dB	-25	
DGD between LP ₁₁ and LP ₀₁	ps/m	-0.076/- <i>0.081</i>	
Dispersion LP ₀₁	ps/(nm·km)	20.0/19.8	
Dispersion slope LP ₀₁	ps/(nm ² ·km)	0.065/0.067	
Effective area LP ₀₁	μm^2	97/ <mark>95</mark>	
Dispersion LP ₁₁	ps/(nm·km)	20.0	
Dispersion slope LP ₁₁	ps/(nm ² ·km)	0.065	
Effective area LP ₁₁	μm^2	96	
Attenuation OTDR LP ₀₁	dB/km	0.198	
Attenuation OTDR LP ₁₁	dB/km	0.191	
PMD LP ₀₁	ps/√km	0.022	

- Parabolic profile to minimise DGD
- Excellent fibre uniformity
- Low loss
- Very low intrinsic mode coupling
- Low DGD obtained (of both signs)
- Low DGD 6-mode fibre now developed

DGD Compensation

Length	M	30000	10000	30000
Distributed mode coupling	dB	-26		-26
DGD LP ₁₁ - LP ₀₁	ps	1800	44	-1400

By concatenating lengths of fiber of different signs of DGD significant further levels of DGD reduction can be obtained as determined by S2 measurements (and ultimately systems experiments).

FM-EDFA Gain Control through Pumping

The overlap integral between the signal and pump intensity plays a critical role in defining the modal gain

$$\begin{split} & \eta_{pj,si} = \int_{0}^{2\pi} \int_{0}^{a} r dr d\phi \, \Gamma_{p,j} \left(r, \phi \right) \Gamma_{s,i} \left(r, \phi \right) \\ & \frac{dn_{2}(r, \phi, z)}{dt} = \sum_{i=1}^{k} \frac{P_{k}(z) i_{k}(r, \phi) \sigma_{ak}}{h v_{k}} n_{1}(r, \phi, z) - \sum_{i=1}^{k} \frac{P_{k}(z) i_{k}(r, \phi) \sigma_{ek}}{h v_{k}} n_{1}(r, \phi, z) - \frac{n_{2}(r, \phi, z)}{\tau} \\ & \frac{dP_{k}(z)}{dz} = u_{k} \sigma_{ek} \left[P_{k}(z) + 2h \, v_{k} \Delta \, v_{k} \right] \int_{0}^{2\pi} \int_{0}^{a} i_{k}(r, \phi) n_{2}(r, \phi, z) r dr d \, \phi - u_{k} \sigma_{ak} \, P_{k}(z) \int_{0}^{2\pi} \int_{0}^{a} i_{k}(r, \phi) n_{1}(r, \phi, z) r dr d \, \phi - u_{k} \alpha P_{k}(z) \end{split}$$

- Higher gain observed for LP₀₁ when LP_{01,p} pump mode is used.
- Pumping in LP_{21,p} gives higher gain for LP

 _{11,s}

Light FM-EDFA Gain Control by Fiber Design

Pumping with centrally distributed fields – preferentially amplifies LP₀₁ mode

LP₁₁ mode has the maximum overlap with the doped region. The thickness of the doped strip essentially determines the relative gain between the guided modes

Simplified amplifier design since just LP₀₁ pump required for optimum ring design

Gain Equalised 6-Mode EDFA

- Ring-doped fiber
- Bidirectional 980nm pumping
- Pump mode control through phase plate launch
- Gain flatness of <2.5dB across the C-band

73.7 Tbit/s amplified FMF system

- 96 (WDM) x 3 (SDM) x 256Gbit/s (PDM-16QAM)
- Inline FMF-EDFA, 119km
- Low DGD fiber + partial DGD compensation
- Phase plate based Mux-DeMux

73.7 Tbit/s amplified FMF system

- TS-based DSP
- 20% FEC overhead total transmission rate = 55.7 Tbit/s
- Total distance 119 km (84km+35 km)
- Distance limited by ~10 dB Mux/De-Mux loss

480 km MDM 576-Gb/s 8QAM Transmission

- 192 X3 Modes x 5WDM
- 32 Gbaud PDM-8PSK
- Low DGD fiber
- Ring doped EDFA
- ~480 km Error free with FEC
- >1000km with QPSK

V. Sleiffer et al. PDP 6 IPC (2013).

Possible Upgrade Scenarios

First MDM Field Experiment

First MDM Field Experiment

- 1 x 112 Gb/s DP-QPSK, 2 x 192 Gb/s DP-8QAM, different transmitters (lasers) running at the same wavelength
- Hybrid transmission in operation with live network
- 112-Gb/s DP-QPSK over 1,245 km, 192-Gb/s DP-8QAM over 220 km

Even More Radical Solutions: Hollow Core PBGFs

Periodic lattice of holes

Optical bandgap covering a well defined wavelength region

Hollow core

Modes in a low-index core are supported at frequencies within the bandgap

Key Attractions

- Ultralow nonlinearity
- Potential for ultralow loss
- Minimum latency

Managing Mode Size and Modality

- Loss of FM decreases with increasing core size
- Number of supported modes though increases steadily
- Surface mode control more challenging for large cores

Surface Mode Control

- SM control essential for low loss, wide bandwidth, "good" polarisation and dispersion properties
- We are progressing the work towards their complete elimination

• 2 SM groups, 4+ SMs in total

- Only 1 SM!
- Wider SM free bandwidth

N. Wheeler et al. OFC 2012, Los Angeles, PDP5A.2

Low loss wide BW 19-cell HC-PBGF

First Low Latency Measurements

Direct comparison with standard NZ-DSF

- $n_{G} \sim 1.003$
- 1.46x faster propagation in PBGF than in SMF

1.33 x faster propagation 1.54ms/km lower latency

F. Poletti et al. Nature Photonics, 7, pp279-284 (2013).

30 Tbit/s Low Latency Transmission in 250m HC-PBGF

57.6 Tbit/s 96(WDM) x 6(MDM) in PBGF

- Feasibility of MDM in HC-PBGF demonstrated
- High DGD and MDL need to be accommodated

Loss Limits in PBGFs

Confirming Origin of Loss in PBGF

Low Loss mid-IR PBGF

Surface Roughness Scattering Index Mutching Gel 03 06 04 02 0-02-04-06-08 -1 Fibre 23Jan 9.8 Noise Arbitany interests of a Lens 0.2 100 160 120

Fokoua et al. Optics Express, 20(19), 20980-20991, (2012)

Ultimate PBGF: Loss Prediction

Predicted loss and bandwidth of realistic, optimised HC-PBGFs using the scattering loss model appropriately calibrated :

Light The TDFA for Broadband Gain at 2µm

- 1560nm diode pumps
- More than 35dB small signal gain at the peak operating wavelength of 1900nm
- 100mW saturated output power, >40% conversion efficiency
- <5dB external
- >300nm BW now demonstrated (1730nm-2050nm)

First demonstration of 2000nm (amplified) transmission in a HC-PBGF

First WDM Experiments at 2000nm

- All component technologies required for 200nm transmission now exist
- First WDM experiments demonstrated, albeit over modest fiber lengths
- Prospects for low loss fibers around 2000nm?

Radiation Hardness

J. Olantera et al. TWEPP 2013.

High Power TDFLs

- Cladding pumped power amplifier
- More than 100kW peak power pulse at 2008nm
- >10 W Average power
- ns/ps/fs operation possible with different seeds
- Excellent source for conversion to mid-IR

2 micron pumped Mid-IR SC

A. Heidt et al. Optics Express (2013).

Conclusions

- Tremendous technical progress in a very short period of time across all candidate approaches and all aspects of the increasing capacity per fibre problem. Much fundamental work still though required.
- The potential cost advantages and practicality of any SDM approach is yet to be proven (and much justified scepticism abounds).
- More critical assessment of prospects for real time DSP required.
- Early attempts at networking underway. More work on ROADMs and study of network opportunities/functionality benefits needed.
- More focussed adaptation for specific telecommunication requirements beyond long haul needed exploiting in particular the increased spatial channel packing densities achievable.
- Significant new components and measurement techniques developed. With broad applications in many other fields (and likely on much shorter timescales).

Fiber Bundles

Exploiting Space

A question of reducing volume

SMF BUNDLE

BUNDLE OF THINNER FIBRES

Cost similar to that of laying many fibre cables

Excessive volume

Significant saving in volume/increased spatial density

Microbending of the thinner fibres an issue

MULTI-ELEMENT FIBRES

Rigidity/strength increased by including a common jacket

Reduced Microbending

No restrictions on the outer diameter

No specialised interfacing components

Multi Element Fiber (MEF)

Non-compact and Compact 3-MEF

- MEFs drawn in up to 10km lengths with negligible additional loss as opposed to single core preform
- First transmission experiments successfully undertaken

S Jain et al. to be presented ECOC, 2013

Exploiting SpaceA route to lower cost amplification

- Active fibre elements cladding-pumped, providing gain in each doped core
- Pump delivery through one fibre element
- Pump coupler effectively produced in the fibre draw
- Allows use of low cost, broad-stripe pump diodes
- Previously commercialised in context of high power fibre lasers (SPI Lasers Ltd)

Amplified MEF Transmission Line

- Transmission fibre and amplifier concepts validated
- Compatibility with installed fibers shown
- Both 3 & 7 element components fabricated

Light

New Modelling Capabilities

Fokoua et al. Opt. Lett., 38(9), 1382-1384

Fabricating PBGF

Loss Reduction in PBGFs

Measuring Surface Roughness

- Sample was analysed using a commercial optical surface profiler
- PSD along the axis of fibre on a line on surface of core was computed

Splicing PBGF- PBGF

- Strong Mechanical bonding
- Loss < 0.15 dB
- Low deformation (Cave-in depth <5µm)
- Further Loss and deformation optimization in process

Reducing DMG in a 3-Mode EDFA

For offset pump launch conditions almost equal gain between the LP₀₁ and LP₁₁ modes is observed

146(WDM) x 3(MDM) over 10x50km

DM = Dichroic Mirror FMF = Few-Mode Fiber I/Q Mod= IQ Modulator

LO = Local Oscillator

PD = Photodiode

PP = Phase Plate

PS = Plate Splitter

Pol. Mux = Polarization Multiplexer

Tx = Transmitter

WSS = Wavelength Selective Switch

- 19 Gbaud QPSK
- Low DGD fiber
- Ring doped EDFA
- ~1000 km with 16 WDM

E. Ip et al. OFC PDP5A.2 (2013).

Conclusions

- Tremendous technical progress in a very short period of time across all candidate approaches and all aspects of the increasing capacity per fibre problem. Much fundamental work still though required.
- The potential cost advantages and practicality of any SDM approach is yet to be proven (and much justified scepticism abounds).
- More critical assessment of prospects for real time DSP required.
- Early attempts at networking underway. More work on ROADMs needed and study of network opportunities/functionality benefits undertaken
- More focussed adaptation for specific telecommunication requirements beyond long haul needed exploiting in particular the increased spatial channel packing densities achievable.
- Significant new components and measurement techniques developed. With broad applications in many other fields (and likely on much shorter timescales).