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Abstract—In this paper, an approach of estimating signal
parameters via rotational invariance technique (ESPRIT) is
proposed for two-dimensional (2-D) localization of incoherently
distributed (ID) sources in large-scale/massive multiple-input
multiple-output (MIMO) systems. The traditional ESPRIT-b ased
methods are valid only for one-dimensional (1-D) localization
of the ID sources. By contrast, in the proposed approach the
signal subspace is constructed for estimating the nominal azimuth
and elevation direction-of-arrivals and the angular spreads. The
proposed estimator enjoys closed-form expressions and hence it
bypasses the searching over the entire feasible field. Therefore,
it imposes significantly lower computational complexity than the
conventional 2-D estimation approaches. Our analysis shows that
the estimation performance of the proposed approach improves
when the large-scale/massive MIMO systems are employed. The
approximate Cramér-Rao bound of the proposed estimator for
the 2-D localization is also derived. Numerical results demon-
strate that albeit the proposed estimation method is comparable
with the traditional 2-D estimators in terms of performance, it
benefits from a remarkably lower computational complexity.

Index Terms—Large-scale/massive multiple-input multiple-
output (LS-MIMO/massive MIMO), very large arrays, two-
dimensional (2-D) localization, direction-of-arrival (DOA), angu-
lar spread.

I. I NTRODUCTION

Multiple-input multiple-output (MIMO) techniques repre-
sent a family of ground-breaking advances in wireless com-
munications during the past two decades. This is because
they are capable of providing more degrees of freedom to
significantly improve the system’s data rate and link reliability
[1]. Recently, the massive MIMO, which is also known as the
large-scale MIMO, has been attracting increasing attentions
owing to its unprecedented potential of high spectral efficiency
[2]-[8]. In massive MIMO systems, the base station (BS) is
equipped with a hundred or a few hundred antennas, and
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serves tens of user terminals (UTs) simultaneously. When the
angular spreads are not wide enough, the performance of these
systems will degrade significantly, and hence a beamforming
approach is proposed for achieving directional antenna gain
[9]. Additionally, instead of the one-dimensional linear array,
the antenna arrays of the massive MIMO systems are expected
to be implemented in more than one dimension because of
the constraint concerning the array aperture. Consequently,
the beamforming may be required to operate in two di-
mensions which correspond to the azimuth and elevation
directions [2], some examples include the three-dimensional
beamforming approaches of [10], [11]. The performance of the
beamforming-based systems closely relies on the accuracy of
the estimated angular parameters, i.e., the location parameters.
For example,0.1◦ and 0.04◦ estimation errors cause 20
dB and 3 dB reductions of the output signal-to-noise ratio
(SNR), respectively [12], [13], and the influence of estimation
error becomes significant when the number of the antennas
increases [14]. Therefore, as opposed to the one-dimensional
(1-D) localization problem where only the azimuth angular
parameters need to be estimated, in this paper we focus on the
problem of two-dimensional (2-D) localization of distributed
sources in the context of the massive MIMO systems, where
both the azimuth and elevation angular parameters have to be
estimated.

The localization of point sources, i.e., the direction-of-
arrival (DOA) estimation, has been of interest to the signal
processing community for decades [15]. When the signal of
each source emits from a single DOA and the DOAs of all the
sources can be distinguished, the sources are assumed to be
point sources, and this case corresponds to the line-of-sight
transmission scenario [16]. When the signal of each source
emits from an angular region, the sources are assumed to be
distributed sources, and this case corresponds to the multipath
transmission scenario [17]. Obviously, the distributed sources
model is more appropriate for cellular wireless systems, where
signals are usually transmitted via multipath.

The distributed sources can be categorized into coherently
distributed (CD) sources and incoherently distributed (ID)
sources [18], which are valid for slowly time-varying channels
and rapidly time-varying channels, respectively. In cellular
mobile communication systems, rapidly time-varying channels
are typically more appropriate to characterize the realistic cir-
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cumstances. Additionally, the classical localization approaches
for point sources have been successfully generalized to the
scenario of the CD sources [16], [18]-[20]. However, the
researches on the localization of the ID sources are less
adequate [21]-[41]. For example, [21] is entirely limited to the
1-D localization scenario, [22] is only suitable for the single-
source localization, and the performance of [23] depends on
the accuracy of the initial estimates of location parameters.
Therefore, the localization of the ID sources needs to be
investigated more extensively. Furthermore, the localization
approaches for ID sources can be categorized into para-
metric approaches and non-parametric approaches. The non-
parametric approaches, such as the beamforming approach and
the Capon spectrum approach in [24], are shown to perform
worse than the parametric ones. Hence, we concentrate on the
parametric approaches for ID sources in this paper.

Although most of the traditional parametric approaches
are proposed for 1-D localization of the ID sources, some
of them can be extended to the 2-D scenario. Among the
existing approaches for 2-D localization of the ID sources,the
maximum likelihood (ML) estimator of [25] is optimal, while
the approximate ML estimator of [26] exhibits suboptimal
performance with lower complexity. However, in these ML-
based estimators, the 2-D nominal DOAs and angular spreads
of all the UTs are estimated by searching exhaustively over
the feasible field. The prohibitive complexity makes these esti-
mators infeasible in large-scale systems. Another approximate
ML estimator reduces the searching dimension by using the
simplified signal model proposed in [27], but this estimatoris
limited to the single-source assumption [28]. For the sake of
reducing the computational complexity, the least-squares(LS)
criterion based estimators are proposed by using the covariance
matrix matching technique in [25], [29]-[35]. Nevertheless,
these estimators are either restricted to the single-source case
[29]-[35] or too complicated due to the same search dimension
as faced by the approximate ML estimator [25].

On the other hand, the subspace based approaches and
the beamforming approaches for localization are of reduced
complexity compared with the ML-based approaches and
the LS-based approaches, though they are less attractive in
performance. Similar to the philosophy of the multiple signal
classification method [42], in the subspace based approaches,
the signal parameters are estimated by exploiting the fact that
the columns of the noise-free covariance matrix of the received
signals are orthogonal to those of the pseudonoise subspace
[18], [37]-[40]. Additionally, by employing the minimum
variance distortionless response beamforming for localization
of the ID sources, the generalized Capon estimator is derived
[39]. In these approaches, although the 2-D nominal DOAs
and angular spreads of only a single UT need to be estimated
by searching, their complexity is still very high.

The estimation of signal parameters via rotational invari-
ance technique (ESPRIT) [43]-[46] is also a subspace based
approach, and has been employed for the 1-D localization of
the ID sources in [19]. However, the method proposed in [19]
cannot be extended to 2-D localization owing to the mutual
coupling of the 2-D angular parameters. Another ESPRIT
based approach [41] decouples the estimation of the 2-D

nominal DOAs by changing the projection of the incident
signals. However, in [41] the nominal azimuth DOA still has
to be estimated with searching, and the estimation of the
angular spreads is not considered. In addition, the approaches
proposed in [19], [41] depend on the assumption that the
distance between adjacent antennas is much shorter than the
wavelength.

In this paper, an ESPRIT-based approach is proposed for
2-D localization of multiple ID sources in the massive MIMO
systems employing very large uniform rectangular arrays
(URAs). We reveal that the array response matrix is linearly
related to the signal subspace. After dividing the URA into
three subarrays, the array response matrices of the three
subarrays are also shown to be linearly related with each other.
Relying on these linear relations, the 2-D nominal DOAs and
angular spreads are estimated by the signal subspace. To be
more specific, the main contributions of this paper are listed
as follows.

1) As opposed to that of the existing works [19], [41], the
distance between adjacent antennas is not constrained. In
addition, the 2-D angular parameters are decoupled by
the proposed algorithm and estimated without searching.
These two issues have not been investigated in the existing
ESPRIT-based approaches, and the latter is particularly
crucial to 2-D localization.

2) The impact of the number of the BS antennas on the
performance of the proposed approach is analyzed in the
context of the massive MIMO systems. It is proved that the
estimated signal subspace tends to be in the same subspace
as the array response matrix when the number of the BS
antennas increases. Therefore, the estimation performance
improves when the number of the BS antennas increases,
which is particularly beneficial for the massive MIMO
systems.

3) The approximate Cramér-Rao bound (CRB) for the esti-
mation of the 2-D angular parameters is derived, whereas
the known CRB is only valid for the estimation of the 1-D
angular parameters.

4) It is shown that the proposed approach is of signifi-
cantly lower complexity than both the LS based covariance
matching approaches and the subspace based approaches.
This is because the proposed estimator has closed-form
expressions. This advantage is particularly attractive inthe
massive MIMO systems, because the potentially prohibitive
computational complexity is one of the major challenges
faced by the massive MIMO systems.

The rest of this paper is organized as follows. In Section II,
the system model and the major assumptions are given. In sec-
tion III, we present the proposed ESPRIT-based approach. In
Section IV, the analysis of the proposed approach is provided.
More specifically, the impact of the number of the BS antennas
on the performance is analyzed, and the approximate CRB for
the 2-D estimation is derived. In addition, the computational
complexity of the proposed approach is compared with that of
other well-known approaches. Numerical results are given in
Section V, and the conclusions are drawn in Section VI.

Notations: Lower-case (upper-case) boldface symbols de-
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Fig. 1. Array geometry of the URA considered. The direction of the incident
path is projected onto the array plane. The angle from the x-axis to the
projected line is the azimuth DOA,θk,j(t), and the angle from the z-axis
to the incident path is the elevation DOA,φk,j(t). The range of the two
parameters are0 ≤ θk,j(t) < π and0 ≤ φk,j(t) < π/2.

note vectors (matrices);IK represents theK × K identity
matrix, and0M×K represents anM ×K zero matrix;diag(·)
is a diagonal matrix and the values in the brackets are the
diagonal elements;(·)∗, (·)T , (·)H , (·)†, andE{·} denote the
conjugate, the transpose, the conjugate transpose, the pseu-
doinverse, and the expectation, respectively;[·]j,k, tr(·), and
||·||F represent the(j, k)th entry, the trace, and the Frobenius
norm of a matrix, respectively;⊙ is the Hadamard product
operator;[·]j is thejth element of a vector;i is the imaginary
unit; andδ(·) is the Kronecker delta function.

II. SYSTEM MODEL

Consider a URA withM = MxMy antennas, whereMx

andMy are the numbers of antennas in the x-direction and
the y-direction, respectively, as shown in Fig. 1.

The transmitted signals of all the UTs are in the same
frequency band. In the presence of scattering, the received
signal at the antenna array is given by [35]

x(t) =

K
∑

k=1

sk(t)

Nk
∑

j=1

γk,j(t)a(θk,j(t), φk,j(t))+n(t) ∈ C
M×1,

(1)
whereK is the number of the UTs,sk(t) is the complex-
valued signal transmitted by thekth UT, andNk is the number
of multipaths of thekth UT; t = 1, 2, · · · , T is the sampling
time, whereT is the number of received signal snapshots;
γk,j(t), θk,j(t), andφk,j(t) are the complex-valued path gain,
the real-valued azimuth DOA, and the real-valued elevation
DOA of the jth path from thekth UT, respectively, which
satisfy 0 ≤ θk,j(t) < π and 0 ≤ φk,j(t) < π/2 as shown
in Fig. 1; andn(t) ∈ CM×1 is the complex-valued additive
noise. It should be noted that the ranges of the DOAs are the
localization ranges of the array, which means that sources out
of these ranges cannot be localized by the array. The array
manifold,a(θk,j(t), φk,j(t)) ∈ C

M×1, is the response of the
array corresponding to the azimuth and elevation DOAs of

θk,j(t) andφk,j(t). With respect to the antenna at the origin
of the axes, themth element ofa(θk,j(t), φk,j(t)) is defined
as [47]

[a(θk,j(t), φk,j(t))]m = exp
(

iu sin(φk,j(t))
[

(mx − 1)

× cos(θk,j(t)) + (my − 1) sin(θk,j(t))
]

)

,

m = (my − 1)Mx +mx, mx = 1, 2, · · · ,Mx,

my = 1, 2, · · · ,My, (2)

where u = 2πd/λ, d is the distance between two ad-
jacent antennas,λ is the wavelength. We can see that
[a(θk,j(t), φk,j(t))]m corresponds to the response of the
(mx,my)th antenna element in the coordinate system shown
in Fig. 1. The azimuth and elevation DOAs can be expressed
as [35]

θk,j(t) = θ̄k + θ̃k,j(t), (3)

φk,j(t) = φ̄k + φ̃k,j(t), (4)

where θ̄k and φ̄k are the real-valued nominal azimuth DOA
and the real-valued nominal elevation DOA for thekth UT,
and they are the means ofθk,j(t) and φk,j(t), respectively;
θ̃k,j(t) and φ̃k,j(t) are the corresponding real-valued random
angular deviations with zero mean and standard deviations
σθk and σφk

, which are referred to as the angular spreads.
We emphasize that the task of localization is to estimate the
2-D nominal DOAs, θ̄k, φ̄k, and the 2-D angular spreads,
σθk , σφk

, k = 1, 2, · · · ,K, with the aid of the received
signal snapshots,x(t), t = 1, 2, · · · , T . Because the signals
of theK UTs are transmitted at the same frequency band and
the same time, the received snapshot signals from one UT
cannot be extracted fromx(t), t = 1, 2, · · · , T , regardless of
whether the transmitted signals are pilots or data symbols1. As
a result, the 2-D angular parameters of theK UTs can only
be estimated jointly.

In this paper, the following initial assumptions are consid-
ered.
1) The angular deviations,̃θk,j(t) and φ̃k,j(t), k =
1, 2, · · · ,K, j = 1, 2, · · · , Nk, t = 1, 2, · · · , T , are tempo-
rally independent and identically distributed (i.i.d.) Gaussian
random variables with covariances

E

{

θ̃k,j(t)θ̃k̃,j̃(t̃)
}

= σ2
θk
δ(k − k̃)δ(j − j̃)δ(t− t̃), (5)

and

E

{

φ̃k,j(t)φ̃k̃,j̃(t̃)
}

= σ2
φk
δ(k − k̃)δ(j − j̃)δ(t− t̃), (6)

respectively, where the angular spreads,σθk andσφk
, are far

less than one.
2) The path gains,γk,j(t), k = 1, 2, · · · ,K, j = 1, 2, · · · , Nk,
t = 1, 2, · · · , T , are temporally i.i.d. complex-valued zero-
mean random variables, whose covariance is

E

{

γk,j(t)γ
∗

k̃,j̃
(t̃)
}

=
σ2
γk

Nk
δ(k − k̃)δ(j − j̃)δ(t− t̃). (7)

1When the UTs transmit orthogonal pilots, the BS can correlate the received
signals with the known pilots of one UT to extract the signal of that UT.
Then, the BS only obtains a rank-1 covariance matrix which isnot capable
of performing the 2-D localization of the UT.
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Note that if the path gain factors of different paths are
uncorrelated, the sources are said to be ID [18].
3) The noise,n(t), t = 1, 2, · · · , T are composed of tempo-
rally and spatially i.i.d. complex-valued circularly symmetric
zero-mean Gaussian variables, whose covariance matrix is
given by

E
{

n(t)nH(t̃)
}

= σ2
nIMδ(t− t̃). (8)

4) The transmitted signals,sk(t), k = 1, 2, · · · ,K, t =
1, 2, · · · , T , are modeled as deterministic ones with constant
absolute values, and we denote

Sk = |sk(t)|2 (9)

as the transmitted signal power of thekth UT.
5) The angular deviations, the path gains, the noise, and the
transmitted signals are uncorrelated from each other.
6) The array is calibrated, which means the response of the
array is known. Hence, the array manifold for any 2-D DOAs,
cf. (2), is knowna priori. The number of the BS antennasM
is much larger than the number of the UTsK.
7) The number of multipathsNk, ∀k, is large.

With these assumptions and using the central limit theorem,
it can be verified that the received signal vectorx(t) in (1)
is a zero-mean circularly symmetric complex-valued Gaussian
vector [22], [25], [30], [48].

III. T HE ESPRIT-BASED APPROACH

The existing subspace based and covariance matching ap-
proaches are complicated for the 2-D localization in the
massive MIMO systems due to the exhausted multidimen-
sional search for estimating the angular parameters. Although
the traditional 1-D ESPRIT-based approach avoids searching
over the parameter space [19], the angular parameters are
mutually coupled when this approach is employed in the 2-D
localization straightforwardly. The existing 2-D ESPRIT-based
approach decouples the angular parameters, but the azimuth
nominal DOA is still estimated with searching, and the angular
spreads are not estimated [41]. Hence, in this section, the
expression of the signal subspace is first derived, which is the
foundation of the ESPRIT-based approaches. Then, the signal
subspace based ESPRIT approach is proposed for estimating
the 2-D angular parameters without searching.

A. The Signal Subspace

It can be seen that the array manifolda(θk,j(t), φk,j(t)) in
(2) is a function of the azimuth and elevation DOAs. With
the first order Taylor series expansion ofa(θk,j(t), φk,j(t))
around the nominal DOAs,̄θk, φ̄k, it can be approximated as

a(θk,j(t), φk,j(t)) = a(θ̄k + θ̃k,j(t), φ̄k + φ̃k,j(t))

≈ a(θ̄k, φ̄k) +
∂a(θ̄k, φ̄k)

∂θ̄k
θ̃k,j(t)

+
∂a(θ̄k, φ̄k)

∂φ̄k
φ̃k,j(t), (10)

where the remainder of the series is omitted. It is assumed that
the standard deviations of̃θk,j(t) and φ̃k,j(t), i.e., σθk and
σφk

, are sufficiently small. Thus, the approximation is almost

true. Then, the received signal given by (1) can be rewritten
as

x(t) ≈
K
∑

k=1

(

a(θ̄k, φ̄k)ck,1(t) +
∂a(θ̄k, φ̄k)

∂θ̄k
ck,2(t)

+
∂a(θ̄k, φ̄k)

∂φ̄k
ck,3(t)

)

+ n(t) ∈ C
M×1, (11)

where

ck,1(t) = sk(t)

Nk
∑

j=1

γk,j(t),

ck,2(t) = sk(t)

Nk
∑

j=1

γk,j(t)θ̃k,j(t),

and

ck,3(t) = sk(t)

Nk
∑

j=1

γk,j(t)φ̃k,j(t).

As a result, ifn(t) is not taken into account, the received
signal is linearly related to the array manifolda(θ̄k, φ̄k) and
its partial derivatives. Therefore, it can be concisely expressed
as

x(t) ≈ Ac(t) + n(t), (12)

where

A =

[

a(θ̄1, φ̄1), a(θ̄2, φ̄2), · · · , a(θ̄K , φ̄K),

∂a(θ̄1, φ̄1)

∂θ̄1
,
∂a(θ̄2, φ̄2)

∂θ̄2
, · · · , ∂a(θ̄K , φ̄K)

∂θ̄K
,

∂a(θ̄1, φ̄1)

∂φ̄1
,
∂a(θ̄2, φ̄2)

∂φ̄2
, · · · , ∂a(θ̄K , φ̄K)

∂φ̄K

]

∈ C
M×3K(13)

denotes the array response matrix of the URA, and

c(t) = [c1,1(t), c2,1(t), · · · , cK,1(t), c1,2(t), c2,2(t), · · · ,
cK,2(t), c1,3(t), c2,3(t), · · · , cK,3(t)]

T ∈ C
3K×1.

It should be noted thata(θ̄k, φ̄k) is obtained by changing the
DOAs, θk,j(t), φk,j(t), in (2) to the nominal DOAs,̄θk, φ̄k.
We can see thatA is only determined by the nominal DOAs,
θ̄k, φ̄k, k = 1, 2, · · · ,K. Thus, these nominal DOAs might be
obtained fromA.

Based on the properties ofθ̃k,j(t), φ̃k,j(t), γk,j(t), andsk(t)
that are given in (5), (6), (7), and (9), respectively, and the
assumption that the transmitted signals, the path gains, and
the angular deviations are uncorrelated from each other, the
variances ofck,1(t), ck,2(t), andck,3(t) are obtained as

E
{

ck,1(t)c
∗
k,1(t)

}

= Skσ
2
γk
, (14)

E
{

ck,2(t)c
∗
k,2(t)

}

= Skσ
2
γk
σ2
θk , (15)

and

E
{

ck,3(t)c
∗
k,3(t)

}

= Skσ
2
γk
σ2
φk
, (16)

respectively. Additionally, the covariance is

E

{

ck,l(t)c
∗

k̃,l̃
(t)
}

= 0, ∀k 6= k̃, or l 6= l̃. (17)
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Therefore, the covariance matrix ofc(t) is

Λc = E
{

c(t)cH(t)
}

∈ R
3K×3K , (18)

which is a diagonal matrix with [Λc]k,k = Skσ
2
γk

,
[Λc]K+k,K+k = [Λc]k,kσ

2
θk

, [Λc]2K+k,2K+k = [Λc]k,kσ
2
φk

,
k = 1, 2, · · · ,K. Therefore, the angular spreads,σθk , σφk

, k =
1, 2, · · · ,K, can be obtained fromΛc.

From (12), we can see thatA andΛc might be obtained
from the covariance matrix ofx(t). Since the signal and the
noise are uncorrelated from each other, and satisfy (8) and
(18), the covariance matrix of the received signalx(t) given
by (12) is thus expressed as

Rx = E
{

x(t)xH (t)
}

≈ AΛcA
H + σ2

nIM ∈ C
M×M . (19)

It can be seen thatRx is a normal matrix, i.e.,RxR
H
x

=
R

H
x
Rx. BecauseAΛcA

H is positive semi-definite andσ2
n >

0, Rx is positive definite. Thus, the eigenvalue-decomposition
(EVD) of Rx is also the singular value decomposition ofRx.
Let A be a full rank matrix. Then, the largest3K eigenvalues
of Rx are larger thanσ2

n, and the otherM − 3K eigenvalues
of Rx approximately equalσ2

n. In the next section, we will
prove that for the massive MIMO systemsA is indeed a full
rank matrix. Hence, the EVD ofRx can be written as

Rx ≈ [Es,En]

[

Σs 03K×(M−3K)

0(M−3K)×3K σ2
nIM−3K

]

[Es,En]
H

= EsΣsE
H
s + σ2

nEnE
H
n , (20)

whereEs ∈ CM×3K andEn ∈ CM×(M−3K) are composed
of the eigenvectors ofRx, andΣs ∈ R3K×3K is a diagonal
matrix comprising the largest3K eigenvalues ofRx. It can
be seen that[Es,En] ∈ CM×M is a unitary matrix, which
satisfies

IM = [Es,En][Es,En]
H = EsE

H
s +EnE

H
n ,

which means that

EnE
H
n = IM −EsE

H
s . (21)

Hence, substituting (21) into (20) yields

Rx ≈ EsΣ̃sE
H
s + σ2

nIM , (22)

whereΣ̃s = Σs − σ2
nI3K ∈ R

3K×3K . Then, from (19) and
(22), we obtain

AΛcA
H ≈ EsΣ̃sE

H
s . (23)

It is known that the diagonal elements ofΣs are larger than
σ2
n, which meansΣ̃s has full rank. Hence, according to the

definition of subspace,Es and A are approximately in the
same subspace, i.e.,

A ≈ EsT, (24)

where T ∈ C3K×3K is a full rank matrix. Additionally,
Es andEn are termed as the signal subspace and the noise
subspace, respectively. It is obvious that the signal subspace
can be obtained from the received signal snapshotsx(t), t =
1, 2, · · · , T , andA is linearly related to the signal subspace.
Hence, the linear relation in (24) will be used for estimating
the nominal DOAs, and the estimation approach will be given
in the next subsection.

x
xM

y

yM

Subarray 1

Subarray 3

Subarray 2

Fig. 2. Subarrays of the URA considered. Subarray 2 is the shift of Subarray
1 in the x-direction with distanced, and Subarray 3 is the shift of Subarray
1 in the y-direction with distanced.

B. The Proposed Estimator

Similar to the practice in the general ESPRIT methods, the
antenna array is divided into several subarrays in the proposed
estimator as well. Then, the linear relations between the array
response matrices of the subarrays can be tactfully constructed
for estimating angular parameters. For the estimation of both
the elevation and azimuth nominal DOAs, which are coupled
in the array manifold, the array has to be divided into at least
three subarrays to decouple the 2-D nominal DOAs. This is
because obtaining the 2-D nominal DOAs needs at least two
different functions of them, which can only be derived from
at least two different linear relations between the subarrays,
and at least three subarrays are needed to obtain the two linear
relations. Although the URA can be divided into more than
three subarrays, the computational complexity of estimation
increases when the number of the subarrays increases, which
constitutes one of the main challenges in the context of the
massive MIMO systems. In addition, only one antenna is not
used with the three-subarray division, which is rather small in
comparison with the total number of antennasM . Therefore,
the URA is divided into three subarrays, as shown in Fig.
2. Thus, the proposed approach uses almost all of the BS
antennas with low computational complexity.

In order to obtain the linear relations between the array
response matrices of the subarrays, these array response ma-
trices need to be derived. From (13), it can be seen that
the array response matrixA is constructed by the array
manifold a(θ̄k, φ̄k) and its partial derivatives. Similarly, the
array response matrix of each subarray is also constructed by
the array manifold of the subarray and its partial derivatives.
Hence, the array manifold of each subarray and its partial
derivatives will be derived first. The array manifold of the
lth subarray corresponding to the nominal DOAsθ̄k, φ̄k, cf.
(13), is denoted asal(θ̄k, φ̄k) ∈ CM̃×1, l = 1, 2, 3, where
M̃ = (Mx − 1)(My − 1). Note thatal(θ̄k, φ̄k) is obtained
by selecting the elements ofa(θ̄k, φ̄k) that correspond to the
lth subarray and keeping these selected elements in the same
order as ina(θ̄k, φ̄k). In other words,al(θ̄k, φ̄k) can be written
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as
al(θ̄k, φ̄k) = Jla(θ̄k, φ̄k), (25)

whereJl ∈ RM̃×M is the selection matrix that assigns the
elements ofa(θ̄k, φ̄k) to the lth subarray, and is defined as

[Jl]m̃,ñ =

{

1, ñ = m̃+ ⌊ m̃−1
Mx−1⌋+ dl, m̃ = 1, 2, · · · , M̃ ,

0, otherwise,

in whichd1 = 0, d2 = 1, andd3 = Mx. In the above equation,
the floor operator makes⌊ m̃−1

Mx−1⌋ = n, ∀n = 0, 1, · · · ,My−2
whenm̃ = n(Mx−1)+1, n(Mx−1)+2, · · · , (n+1)(Mx−1).
It can be seen that for thẽmth row of Jl, only the (̃m +
⌊ m̃−1
Mx−1⌋+ dl)th entry is one, and the other entries are zeros.

Thus,Jl assigns the (̃m+⌊ m̃−1
Mx−1⌋+dl)th entry ofa(θ̄k, φ̄k) to

them̃th entry ofal(θ̄k, φ̄k), and this coincides with the relation
between the subarrays and the URA. From the definition of
al(θ̄k, φ̄k), it can be found that the array manifolds of different
subarrays are linearly related as

aq(θ̄k, φ̄k) = Fq(θ̄k, φ̄k)a1(θ̄k, φ̄k), (26)

whereq = 2, 3, and

F2(θ̄k, φ̄k) = exp(iu sin(φ̄k) cos(θ̄k)), (27)

F3(θ̄k, φ̄k) = exp(iu sin(φ̄k) sin(θ̄k)). (28)

Note thatF2(θ̄k, φ̄k) andF3(θ̄k, φ̄k) are two different func-
tions of the 2-D nominal DOAs,̄θk, φ̄k, and can be exploited
to estimate these nominal DOAs. After computing the partial
derivatives ofaq(θ̄k, φ̄k), we can see that they are related to
a1(θ̄k, φ̄k) and its partial derivatives as

∂aq(θ̄k, φ̄k)

∂θ
= Fq(θ̄k, φ̄k)

∂a1(θ̄k, φ̄k)

∂θ

+
∂Fq(θ̄k, φ̄k)

∂θ
a1(θ̄k, φ̄k), (29)

and

∂aq(θ̄k, φ̄k)

∂φ
= Fq(θ̄k, φ̄k)

∂a1(θ̄k, φ̄k)

∂φ

+
∂Fq(θ̄k, φ̄k)

∂φ
a1(θ̄k, φ̄k). (30)

In the existing ESPRIT-based approaches [19], [41], the partial
derivatives,∂Fq(θ̄k, φ̄k)/∂θ and∂Fq(θ̄k, φ̄k)/∂φ, are approx-
imated as zero, which is based on the assumption that the
distance between adjacent antennasd is much shorter than the
wavelengthλ. In fact, d might not satisfy this assumption.
These partial derivatives in (29) and (30) do not vanish.
Therefore, this restriction ond is not needed in our derivation.

By replacing a(θ̄k, φ̄k), ∂a(θ̄k, φ̄k)/∂θ̄k, and
∂a(θ̄k, φ̄k)/∂φ̄k in (13) with al(θ̄k, φ̄k), ∂al(θ̄k, φ̄k)/∂θ̄k,
and∂al(θ̄k, φ̄k)/∂φ̄k, respectively, the array response matrix
of the lth subarray is expressed as

Al =

[

al(θ̄1, φ̄1), al(θ̄2, φ̄2), · · · , al(θ̄K , φ̄K),

∂al(θ̄1, φ̄1)

∂θ̄1
,
∂al(θ̄2, φ̄2)

∂θ̄2
, · · · , ∂al(θ̄K , φ̄K)

∂θ̄K
,

∂al(θ̄1, φ̄1)

∂φ̄1
,
∂al(θ̄2, φ̄2)

∂φ̄2
, · · · , ∂al(θ̄K , φ̄K)

∂φ̄K

]

∈ C
M̃×3K .(31)

Then, from (26) and (29)-(31), we can see that the array
response matrices of the subarrays are linearly related as

Aq = A1Φq,1, (32)

where

Φq,1 =





Λq,1 Λq,2 Λq,3

0K×K Λq,1 0K×K

0K×K 0K×K Λq,1



 ∈ C
3K×3K , (33)

Λq,1 = diag
(

Fq(θ̄1, φ̄1), Fq(θ̄2, φ̄2), · · · , Fq(θ̄K , φ̄K)
)

∈ C
K×K ,

Λq,2 = diag

(

∂Fq(θ̄1, φ̄1)

∂θ̄1
,
∂Fq(θ̄2, φ̄2)

∂θ̄2
, · · · , ∂Fq(θ̄K , φ̄K)

∂θ̄K

)

∈ C
K×K ,

and

Λq,3 = diag

(

∂Fq(θ̄1, φ̄1)

∂φ̄1
,
∂Fq(θ̄2, φ̄2)

∂φ̄2
, · · · , ∂Fq(θ̄K , φ̄K)

∂φ̄K

)

∈ C
K×K .

From (27), (28), and (33), we know that the diagonal elements
of Φq,1 are functions of the 2-D nominal DOAs and can be
expressed as

[Φ2,1]k+(l−1)K,k+(l−1)K = exp(iu sin(φ̄k) cos(θ̄k)), (34)

[Φ3,1]k+(l−1)K,k+(l−1)K = exp(iu sin(φ̄k) sin(θ̄k)), (35)

wherel = 1, 2, 3. Hence, the diagonal elements ofΦq,1 will
be used for estimating the nominal DOAs.

On the other hand, the array response matrixAl of the lth
subarray is also linearly related to the signal subspaceEs. By
substituting (25) into (31), the array response matrix of the lth
subarray is expressed as

Al = JlA (36)

≈ JlEsT (37)

= ElT, l = 1, 2, 3, (38)

where (37) is derived by substituting (24) into (36), and

El , JlEs ∈ C
M̃×3K , l = 1, 2, 3, (39)

are termed as the selected signal subspaces. It can be seen that
the array response matrixAl of the lth subarray, cf. (36), and
the selected signal subspaceEl of the lth subarray, cf. (39),
are selected in the same way. Because the signal subspace
Es and the array response matrixA are linearly related, cf.
(24), we discover that the selected signal subspaceEl and
the array response matrixAl of the lth subarray are linearly
related. Therefore, it is proved thatEl, l = 1, 2, 3, are linearly
related with each other in a similar way toAl in (32), which
is exploited to obtain the diagonal elements ofΦ2,1 andΦ3,1.
These diagonal elements are different functions of the 2-D
nominal DOAs, cf. (33).

Because only the selected signal subspaceEl can be ob-
tained from the received signal snapshots,Al in (32) needs
to be written as the linear transformation ofEl for obtaining
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the diagonal elements ofΦ2,1 andΦ3,1. Combining (32) and
(38), we get

A1 ≈ E1T, (40)

A1Φ2,1 ≈ E2T, (41)

and
A1Φ3,1 ≈ E3T. (42)

Note thatA1 is linearly related to all the selected signal
subspaces. Substituting (40) into (41) and (42) yields

E1Ψ1 ≈ E2, (43)

and
E1Ψ2 ≈ E3, (44)

where
Ψ1 = TΦ2,1T

−1 ∈ C
3K×3K , (45)

and
Ψ2 = TΦ3,1T

−1 ∈ C
3K×3K . (46)

Obviously, the diagonal elements ofΦ2,1 and Φ3,1 are the
eigenvalues ofΨ1 andΨ2, respectively, which is becauseΦ2,1

andΦ3,1 are upper triangular matrices. Therefore, in order to
estimate the diagonal elements ofΦ2,1 andΦ3,1, Ψ1 andΨ2

need to be estimated from the selected signal subspacesEl, l =
1, 2, 3. According to (43) and (44), they can be obtained by
employing the well-known total least-squares (TLS) criterion
[45]. First, compute the EVD as

[E1,E2]
H [E1,E2] = ExΛxE

H
x ∈ C

6K×6K , (47)

[E1,E3]
H [E1,E3] = EyΛyE

H
y ∈ C

6K×6K , (48)

where the columns ofEx ∈ C6K×6K andEy ∈ C6K×6K are
the eigenvectors of the left-hand side matrices of (47) and (48),
respectively, while the diagonal elements ofΛx ∈ C

6K×6K

andΛy ∈ C6K×6K are their respective eigenvalues, which are
placed in descending order from the upper left corner. Then,
Ex andEy are partitioned as

Ex =

[

Ex11 Ex12

Ex21 Ex22

]

, Ey =

[

Ey11 Ey12

Ey21 Ey22

]

, (49)

where Exab ∈ C
3K×3K ,Eyab ∈ C

3K×3K , a, b = 1, 2.
Finally, Ψ1 andΨ2 can be estimated as

Ψ̂1 = −Ex12E
−1
x22 ∈ C

3K×3K , (50)

Ψ̂2 = −Ey12E
−1
y22 ∈ C

3K×3K , (51)

and we havêΨ1 ≈ Ψ1, Ψ̂2 ≈ Ψ2.
For estimating the nominal DOAs, we calculate the EVD

of Ψ̂1 andΨ̂2 as

Ψ̂1 = T1Λ1T
−1
1 , (52)

Ψ̂2 = T2Λ2T
−1
2 , (53)

whereT1 ∈ C3K×3K andT2 ∈ C3K×3K are composed of the
eigenvectors of̂Ψ1 andΨ̂2, respectively, whileΛ1 ∈ C3K×3K

and Λ2 ∈ C3K×3K are diagonal matrices whose diagonal
elements are the corresponding eigenvalues, which are placed
in descending order from the upper left corner. From the
previous analysis, the diagonal elements ofΛ1 and Λ2 can

be taken as the estimates of the diagonal elements ofΦ2,1

andΦ3,1. However, the diagonal elements ofΛ1 andΛ2 are
in different order compared with the diagonal elements ofΦ2,1

andΦ3,1, which means the diagonal elements ofΛ1 andΛ2

are mismatched. Therefore, these elements should be matched
before the nominal DOAs are estimated.

From the definition ofΦq,1 given in (33), we can see that
Φ2,1Φ3,1 ∈ C3K×3K and Φ2,1Φ

−1
3,1 ∈ C3K×3K are also

upper triangular matrices, and their diagonal elements sat-
isfy [Φ2,1Φ3,1]p,p = [Φ2,1]p,p[Φ3,1]p,p and [Φ2,1Φ

−1
3,1]p,p =

[Φ2,1]p,p/[Φ3,1]p,p, p = 1, 2, · · · , 3K, respectively. In addi-
tion, according to (45) and (46), we have

Ψ̂3 = Ψ̂1Ψ̂2 ≈ TΦ2,1Φ3,1T
−1 ∈ C

3K×3K , (54)

Ψ̂4 = Ψ̂1Ψ̂
−1
2 ≈ TΦ2,1Φ

−1
3,1T

−1 ∈ C
3K×3K . (55)

Therefore, the eigenvalues of̂Ψ3 are approximately the diag-
onal elements ofΦ2,1Φ3,1. In addition, denote the EVD of
Ψ3 as

Ψ̂3 = T3Λ3T
−1
3 , (56)

whereT3 ∈ C3K×3K is composed of the eigenvectors ofΨ3,
and Λ3 ∈ C3K×3K is a diagonal matrix composed of the
eigenvalues ofΨ3. From (54) and (56), we have

Λ3 = T
−1
3 Ψ̂3T3 ≈ T

−1
3 TΦ2,1Φ3,1T

−1
T3, (57)

in which the diagonal elements ofΦ2,1Φ3,1 approximately
formulate the diagonal elements ofΛ3. Similarly, denote

Ψ̃4 = T
−1
3 Ψ̂4T3 ∈ C

3K×3K . (58)

Substituting (55) into (58) yields

Ψ̃4 ≈ T
−1
3 TΦ2,1Φ

−1
3,1T

−1
T3. (59)

Comparing (57) and (59), we know that the diagonal elements
of Φ2,1Φ

−1
3,1 approximately formulate the diagonal elements

of Ψ̃4 in the same manner as formulating the diagonal
elements ofΛ3 with the diagonal elements ofΦ2,1Φ3,1. More
specifically, if [Λ3]p,p ≈ [Φ2,1]cp,cp [Φ3,1]cp,cp , ∀p, where
cp ∈ {1, 2, · · · , 3K} and it varies withp. Then, we have
[Ψ̃4]p,p ≈ [Φ2,1]cp,cp/[Φ3,1]cp,cp . These facts can be exploited
to match the diagonal elements ofΛ1 andΛ2. A matching
algorithm is proposed as follows.

Algorithm 1: Matching of the Eigenvalues

Step 1) Calculate the EVD of̂Ψ1 andΨ̂2 using (52) and (53).
Step 2) Calculate the EVD of̂Ψ3 as (56). CalculateΨ̃4 as

(58). Setp = 0.
Step 3)p← p+ 1.

• Calculate the productβp,p̃,1 = [Λ1]p,p[Λ2]p̃,p̃ and
the quotientβp,p̃,2 = [Λ1]p,p/[Λ2]p̃,p̃, wherep̃ =
1, 2, · · · , 3K.

• Match βp,p̃,1 and [Λ3]p′,p′ , βp,p̃,2 and
[Ψ̃4]p′,p′ , p′ = 1, 2, · · · , 3K, according to
the LS criterion, i.e., find the corresponding
relation between Λ1 and Λ2 based on
(xp, yp) = argminp̃,p′ µp,p̃,p′ , where µp,p̃,p′ =

|βp,p̃,1 − [Λ3]p′,p′ |2 +
∣

∣

∣
βp,p̃,2 − [Ψ̃4]p′,p′

∣

∣

∣

2

.



8

• Set[Λ̃2]p,p = [Λ2]xp,xp
, whereΛ̃2 ∈ C3K×3K is

a diagonal matrix.

Step 4) Repeat Step 3 untilp = 3K.
Step 5) Sort the diagonal elements ofΛ1 in descending

order, and thepth largest element ofΛ1 is given
by λ1,p = [Λ1]zp,zp , p = 1, 2, · · · , 3K, where
zp ∈ {1, 2, · · · , 3K} represents the position of the
pth largest element ofΛ1 and can be obtained by
sorting the diagonal elements ofΛ1. Additionally,
the diagonal elements of̃Λ2 are sorted according to
zp, p = 1, 2, · · · , 3K, and thepth sorted element is
given byλ2,p = [Λ̃2]zp,zp , p = 1, 2, · · · , 3K.

Remark 1: In the second item of Step 3, for a givenp,
all the combinations of̃p and p′ are used for calculating
µp,p̃,p′ , and the combination of̃p and p′ that corresponds
to the minimum of µp,p̃,p′ is assigned to(xp, yp). Since
any two UTs are distinguished by at least one of the 2-D
nominal DOAs, if two diagonal elements ofΛ3 are of the
same value, the corresponding two diagonal elements ofΨ̃4

will not be of the same value. Similarly, if two elements
in βp,p̃,1, p, p̃ = 1, 2, · · · , 3K, are of the same value, the
corresponding two elements inβp,p̃,2, p, p̃ = 1, 2, · · · , 3K,
will not be of the same value. Hence, the elements can be
matched without ambiguity. Meanwhile, the above matching
algorithm is presented in this way for clarity. Actually, itcan
be simplified. In Step 3, the calculations of the already selected
diagonal elements ofΛ2, Λ3, andΨ̃4 can be omitted in the
subsequent iterations.

From the matching algorithm, we can see that
λ1,p, λ2,p, p = 1, 2, · · · , 3K, are the estimates of
the diagonal elements ofΦq,1, q = 2, 3, given by
(33), though these two groups of elements may be
different in order. Without loss of generality, we
can denote λ1,3(k−1)+l and λ2,3(k−1)+l, l = 1, 2, 3
as the estimates of [Φ2,1]k+(l−1)K,k+(l−1)K and
[Φ3,1]k+(l−1)K,k+(l−1)K , l = 1, 2, 3, respectively. According
to the expressions of the diagonal elements ofΦ2,1 andΦ3,1

given in (34) and (35), we have

λ1,3(k−1)+l ≈ exp(iu sin(φ̄k) cos(θ̄k)), (60)

λ2,3(k−1)+l ≈ exp(iu sin(φ̄k) sin(θ̄k)), (61)

wherel = 1, 2, 3. Then, the estimates of the nominal DOAs,
θ̄k and φ̄k, can be expressed as

ˆ̄θk =
1

3

3
∑

l=1

arctan

(

ln
(

λ2,3(k−1)+l

)

ln
(

λ1,3(k−1)+l

)

)

, (62)

ˆ̄φk =
1

3

3
∑

l=1

arcsin





1

u

√

√

√

√−
2
∑

a=1

(

ln
(

λa,3(k−1)+l

))2



 , (63)

wherek = 1, 2, · · · ,K.
From (19), we see thatΛc can be estimated as

Λ̂c = Â
†(Rx − σ̂2

nIM )
(

Â
H
)†

∈ C
3K×3K , (64)

where σ̂2
n is the estimate of the variance of the noise, and it

is the average of the smallestM − 3K eigenvalues ofRx.
In addition, Â ∈ CM×3K is the estimate ofA, and it may

be obtained by replacing the nominal DOAs inA with the
estimated nominal DOAs. From the definition ofΛc in (18),
the angular spreads,σθk andσφk

, can be estimated as

σ̂θk =

√

[Λ̂c]K+k,K+k

[Λ̂c]k,k
, (65)

σ̂φk
=

√

[Λ̂c]2K+k,2K+k

[Λ̂c]k,k
, (66)

wherek = 1, 2, · · · ,K. It is obvious that the accuracy of the
estimated angular spreads depends on the estimated nominal
DOAs.

In practice, the covariance matrixRx may be estimated as

R̂x =
1

T

T
∑

t=1

x(t)xH (t) ∈ C
M×M . (67)

For clarity, the proposed estimation approach is summarized
as follows.

Algorithm 2: Estimation of the Nominal DOAs and the Angu-
lar Spreads

Step 1) Calculate the sample covariance matrix,R̂x, accord-
ing to (67).

Step 2) Calculate the EVD of̂Rx according to (20), and find
Es that corresponds to the largest3K eigenvalues.

Step 3) Calculate the selected matrices,El, l = 1, 2, 3, ac-
cording to (39); and estimate the transform matrices,
Ψ1 and Ψ2, based on the TLS criterion, which
entails performing the EVD according to (47) and
(48), partitioning the matrices according to (49), and
calculating the transform matrices according to (50)
and (51).

Step 4) Match the eigenvalues using Algorithm 1.
Step 5) Estimate the nominal DOAs with (62) and (63), the di-

agonal matrixΛ̂c with (64), and the angular spreads
with (65) and (66).

Remark 2:As opposed to traditional approaches, such as
the existing subspace-based, the LS-based covariance match-
ing, the ML-based approaches, and the existing 2-D ESPRIT-
based approach, where the searching of angular parameters
is typically inevitable, the proposed estimator dispenseswith
the complicated searching due to its closed-form expression.
Therefore, the proposed approach imposes significantly lower
computational complexity.

In the next section, the computational complexity and per-
formance analyses of the proposed approach will be provided.

IV. A NALYSIS OF THE PROPOSEDAPPROACH

In this section, the impact of the number of the BS antennas
M on the rank ofA and on the performance of the pro-
posed estimator is investigated. Then, the approximate CRB
concerning the covariances of the estimation errors is derived
to measure the performance of the proposed estimator from
another perspective. Finally, the computational complexity of
the proposed approach is analyzed, and is compared with that
of the existing approaches. It is shown that the estimation
performance improves asM increases, and the proposed
approach is of much lower complexity.
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A. The Impact of the Number of the BS Antennas

Note that the covariance matrixRx can only be estimated
with the aid of the sample covariance matrix̂Rx. According
to (12) and (67), we have

R̂x ≈ AR̂cA
H + R̂n, (68)

where

R̂c =
1

T

T
∑

t=1

c(t)cH (t) ∈ C
3K×3K , (69)

and

R̂n =
1

T

T
∑

t=1

(

Ac(t)nH(t) + n(t)cH(t)AH + n(t)nH(t)
)

∈ C
M×M (70)

are the estimates ofΛc andσ2
nIM invoked in (19), respectively.

BecauseR̂x is a normal positive semi-definite matrix, its
EVD is similar to the EVD ofRx characterized in (20), and
is given by

R̂x = ÊsΣ̂sÊ
H
s + ÊnΣ̂nÊ

H
n , (71)

where Ês ∈ CM×3K and Ên ∈ CM×(M−3K) are com-
posed of the eigenvectors of̂Rx, while Σ̂s ∈ R3K×3K and
Σ̂n ∈ R(M−3K)×(M−3K) are diagonal matrices with their
diagonal elements being the eigenvalues ofR̂x. The diagonal
elements ofΣ̂s are the largest3K eigenvalues ofR̂x, and
Ês is the estimate of the signal subspaceEs. Because the
number of received signal snapshotsT is finite, R̂c and R̂n

are random matrices, and their eigenvalues are also random
variables. Consequently,̂Es andA might not be in the same
subspace as in (24), albeit the linear relationship is crucial
to the estimation performance. A proposition is given below
to show the impact ofM on the relation betweenA and Ês

subject to finiteT .
Proposition 1: As the number of the BS antennasM →∞,

A approximates to a full rank matrix, and̂Es tends almost
surely to be in the same subspace asA.

Proof: Please see Appendix A.
Remark 3:From the above analysis, we know that when

the number of the BS antennasM grows without bound,A
approximates to a full rank matrix, and the estimation accuracy
of Ês improves almost surely. Therefore, the performance of
the proposed estimator subject to finiteT becomes better and
better when the number of the BS antennasM increases.

B. Approximate CRB of the Proposed Estimator

For the proposed estimator, the approximate CRB con-
cerning the covariance matrix of the error of the estimated
signal parameter vectoru, whose specific form is defined in
Appendix B, is given as follows.

C =
(

Ju,u − Ju,vJ
−1
v,vJ

T
u,v

)−1 ∈ R
4K×4K , (72)

which means

E
{

(û− u)(û− u)T
}

≥ C. (73)

A detailed derivation of (72) and the definitions of the vari-
ables used in (72) and (73) can be found in Appendix B.

Remark 4:The derived approximate CRB plays a very
important role for measuring the quality of the proposed
estimator. It provides us with a measure of the spread of the
error. In the simulation results of Section V, we will plot the
approximate CRB as a reference to see how well the proposed
estimator works.

C. Complexity Analysis

In this paper, the notationO(n) means that complexity of
the arithmetic is linear inn ∈ R+ [49, p. 5]. The number
of snapshotsT is fixed, and the complexities of various
algorithms considered are compared in the asymptotic sense
asM →∞.

The complexities of Step 1, Step 2, and Step 3 in Algorithm
2 are O(M2T ), O(M3), and O(MK2), respectively, and
the total complexities of other steps in Algorithm 2 are
O(K3). SinceM is far larger thanK, the complexity of the
proposed approach is roughly characterized asO(M3+M2T+
MK2)→ O(M3) asM →∞.

Amongst the existing estimators, there is only a covari-
ance matching estimator (COMET) [35] proposed for the
2-D localization of the ID sources. Although the known
subspace based approaches [37], [40], the generalized Capon
beamforming approach [39] and the ML approach [25] are
proposed for the 1-D localization of the ID sources, they can
be modified for the corresponding 2-D localization. In contrast
to the proposed estimator, these approaches search over allthe
possible combinations of the nominal DOAs and the angular
spreads to obtain the estimates. Therefore, their computational
complexity is unbearable for the massive MIMO systems.

For the COMET approach [35], the parameter estimation
criterion is

argmin
u

′

tr





(

K
∑

k=1

ŝkBk + σ̂2
nIM − R̂x

)2


 , (74)

where Bk ∈ CM×M (defined in (98)) is a function of
ũk = [θ̄k, φ̄k, σθk , σφk

]T ∈ R4×1, k = 1, 2, · · · ,K, and
u
′ = [ũT

1 , ũ
T
2 , · · · , ũT

K ]T ∈ R4K×1. When the calculations of
ŝk,Bk, k = 1, 2, · · · ,K, and of σ̂n are ignored, the compu-
tational complexity of this approach isO(D1M

3 +M2T )→
O(D1M

3) asM →∞, whereD1 is the search dimension for
estimating the nominal DOAs and the angular spreads of all
the UTs.

When the subspace based approach of [40] is modified for
the 2-D localization, the estimation criterion is given as

argmin
ũ

∣

∣

∣

∣

∣

∣R̂
−1
x

B

∣

∣

∣

∣

∣

∣

2

F
, (75)

whereB ∈ CM×M (defined by omitting the subscriptk of
Bk) is a function ofũ = [θ̄, φ̄, σθ, σφ]

T ∈ R4×1. By searching
theK local minima, the angular parameters of all theK UTs
can be estimated. Hence, the computational complexity of this
approach isO(D2M

3 + M2T ) → O(D2M
3) as M → ∞,

whereD2 is the search dimension for estimating the nominal
DOAs and the angular spreads of a single UT. It is obvious
thatD1 = DK

2 , which implies thatD1 ≫ D2.
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TABLE I
COMPUTATIONAL COMPLEXITY COMPARISON OFLOCALIZATION

APPROACHES

COMET [35] O(D1M3)
Subspace estimator [40] O(D2M3)
DISPARE [37] O(D2M3)
The proposed estimator O(M3)

* D1 ≫ D2 ≫ 1.

The dispersed signal parametric estimation (DISPARE)
approach advocated in [37] is based on subspace fitting.
When this approach is modified for the 2-D localization, the
estimation criterion becomes

argmin
ũ

∣

∣

∣

∣

∣

∣Ê
H
n B

∣

∣

∣

∣

∣

∣

2

F
, (76)

where ũ is defined below (75),̂En ∈ C
M×Nn corresponds

to the pseudonoise subspace, andNn ≈ M − 3K → O(M)
is the dimension of this subspace asM → ∞. Hence, the
computational complexity of this approach is alsoO(D2M

3+
M2T )→ O(D2M

3) asM →∞.
For the sake of clarity, the computational complexities of

all these approaches are summarized in Table I. It can be
easily seen that the complexity of the proposed approach is
significantly lower than that of other approaches.

V. NUMERICAL RESULTS

In this section, we provide numerical results to illustrate
the performance of the proposed approach, of the subspace
based approach [40], and of the DISPARE [37]. Additionally,
the approximate CRB of the proposed estimator is also cal-
culated for comparison. In particular, the dimension of the
pseudosignal space is chosen as the number of eigenvalues
that collectively contain 95% of the sum of the eigenvalues
in the DISPARE approach. The COMET approach of [35] is
not considered in our simulations because of its prohibitive
computational complexity.

The simulation parameters of the first three simulations as
shown in Fig. 3, Fig. 4, and Fig. 5 are given as follows. The
number of the UTs isK = 2, the number of multipaths is
Nk = 50, k = 1, 2, and the transformed distance between
any two adjacent antennas, cf. the sentence below (2), isu =
π radians. The nominal azimuth DOAs of the two UTs are
θ̄1 = 10◦, θ̄2 = 50◦, and the corresponding nominal elevation
DOAs areφ̄1 = 30◦, φ̄2 = 40◦. The azimuth angular spreads
are σθk = 1◦, k = 1, 2, and the elevation angular spreads
are σφk

= 1◦, k = 1, 2. The path gain variances areσ2
γk

=
1, k = 1, 2, and the noise variance isσ2

n = 1. The transmitted
signals,sk(t), k = 1, 2, are BPSK modulated. It can be seen
that the average received SNR from each UT isSk, whereSk

is the transmitted signal power. The number of snapshots is
T = 500. For [40] and [37], the search range of the nominal
azimuth DOAs are set as[θ̄k − 1◦, θ̄k + 1◦], k = 1, 2, the
search range of the nominal elevation DOAs are set as[φ̄k −
1◦, φ̄k + 1◦], k = 1, 2, and the search range of the angular
spreads is set as[0.2◦, 2◦]. The values out of these ranges need
not to be searched because the minima can only be achieved
in these search ranges. In addition, the search step size of the

nominal DOAs and the angular spreads is0.2◦. The number
of simulation trials is200. The metric of root mean square
error (RMSE) is evaluated for the estimates of various source
parameters.

Given the number of snapshotsT = 500, a rough estimate
of the delay required for obtaining these snapshots in a typical
scenario is also presented here. We consider a Long Term
Evolution (LTE) uplink system, which operates at2 GHz, the
channel bandwidth is2.5 MHz, and the sampling rate is3.84
MHz [50]. In order to obtain uncorrelated snapshots in (1),
the delay is approximately500/3.84× 10−6 ≈ 1.3× 10−4 s.
When the distance between one UT and the BS is1 km, and
the speed of the UT is134 m/s (this may be the scenario of
high speed railway user, and is the worst scenario for obtaining
temporarily uncorrelated snapshots), the maximum change of
the nominal azimuth DOA after sampling theT snapshots is
134× 1.3× 10−4/103/π× 180 ≈ 0.001◦, where103 m is the
distance between one UT and the BS. When the speed of the
UT is slower than134 m/s, the delay is acceptable and the
proposed approach is applicable in practice.

Subject to these simulation parameters, the complexities
of the estimation approaches considered can be compared
explicitly. The search dimensions areD1 = (11 × 10)4 =
1.4641 × 108, D2 = (11 × 10)2 = 1.21 × 104, where
11 is calculated from the search of the nominal DOA, i.e.,
(1◦−(−1◦))/0.2◦+1, and10 is calculated from the search of
the angular spread, i.e.,(2◦−0.2◦)/0.2◦+1. WhenM = 100,
the complexities of the COMET and the DISPARE are roughly
computed asO(1.4641×1014+5.0×106) = O(1.4641×1014)
andO(1.21×1010+5.0×106) = O(1.21×1010), respectively,
while the computational complexity of the proposed approach
is roughlyO(1.0×106+5.0×106+4.0×102) = O(6.0×106),
whereO(5.0×106) is the complexity of calculating the sample
covariance matrixR̂x in (67). Hence, the complexity of the
proposed approach is lower than0.1% of the complexities
of the existing approaches. Obviously, in terms of imple-
mentation, these existing approaches are significantly more
complicated than the proposed method in the context of the
massive MIMO systems. In Fig. 3, the base 10 logarithms
of the computational complexities in big O notation versus
the number of the BS antennasM for these three approaches
are shown. We can see that the complexity of the proposed
approach is significantly lower than that of other approaches.
In addition, the complexity of the proposed approach for
M = 100 is close to that of the DISPARE withM = 9, and is
even significantly lower than that of the COMET withM = 9.
Therefore, in certain configurations, employing the proposed
approach in the massive MIMO systems does not even impose
a higher complexity than employing these benchmark search-
based approaches in traditional small-scale MIMO systems.

In the second test as shown in Fig. 4, the average received
SNR from each UT is10 dB, which meansSk = 0.2, k = 1, 2.
The numbers of the BS antennas in the x-direction and the
y-direction satisfyMx = My =

√
M . The RMSEs of the esti-

mated nominal DOAs and angular spreads versus the number
of the BS antennasM are plotted in Fig. 4. It can be observed
that the RMSEs of these estimated parameters of the proposed
approach decrease rapidly asM increases, while the RMSEs
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Fig. 4. Comparison of “RMSEs versus the number of the BS antennas
M ”, for the estimates of the angular parameters of two sourceswhen using
different estimation methods, and the average received SNRfrom each UT
is 10 dB. (a), (b), (c), and (d) correspond to the estimation of thenominal
azimuth DOA, the nominal elevation DOA, the azimuth angularspread, and
the elevation angular spread, respectively.

of these estimated parameters of the subspace based approach
and the DISPARE are almost invariant because they have
achieved their best performance whenM is not so large. These
results coincide with our analysis of the impact of the number
of the BS antennasM on the estimation performance. More
specifically, for the proposed approach, asM increases, the
estimated signal subspace tends to be in the same subspace as
the array response matrixA. Thus, the estimation performance
improves. In addition, it is easy to observe that whenM = 144
the RMSEs of the estimated azimuth and elevation DOAs of
the proposed approach are close to those of [40] and [37],
while the RMSEs of the estimated angular spreads of the
proposed approach are superior to those of the latter.

In the third test as shown in Fig. 5, the numbers of the BS
antennas in the x-direction and the y-direction areMx = 10
andMy = 10, respectively, and henceM = 100. The RMSEs
of the estimated nominal DOAs and angular spreads versus the
average received SNR from each UT are depicted in Fig. 5.
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Fig. 5. Comparison of “RMSEs versus average received SNR from each UT”
for the estimates of the angular parameters of two sources when using different
estimation methods, and the number of the BS antennas isM = 100. (a),
(b), (c), and (d) correspond to the estimation of the nominalazimuth DOA,
the nominal elevation DOA, the azimuth angular spread, and the elevation
angular spread, respectively.

It can be seen that the RMSEs of the proposed approach also
decrease rapidly when the SNR increases, while the RMSEs of
other approaches decrease slowly. These results demonstrate
that the performance of the proposed estimator is deteriorated
when the power of the received noise is high, and the effect
of increasing the SNR is similar to the effect of increasing
the number of the BS antennas, as compared with Fig. 4.
Therefore, the proposed approach can potentially trade for
good performance in low SNR scenarios by employing a large
number of the BS antennas. In other words, for the massive
MIMO systems the transmitted power can be significantly
reduced due to an unprecedented high number of the BS
antennas.

In the fourth example as shown in Fig. 6, some of the
parameters are changed for evaluating the performance of
these approaches with the increased number of the UTs. The
number of the UTs is modified asK = 5, and the number
of multipaths isNk = 50, k = 1, 2, · · · , 5. The nominal
azimuth DOAs of the five UTs arēθ1 = 10◦, θ̄2 = 50◦,
θ̄3 = 130◦, θ̄4 = 110◦, θ̄5 = 30◦, and the corresponding
nominal elevation DOAs arēφ1 = 30◦, φ̄2 = 40◦, φ̄3 = 70◦,
φ̄4 = 80◦, φ̄5 = 50◦. The numbers of the BS antennas
in the x-direction and the y-direction areMx = 10 and
My = 10, respectively. The average received SNR from each
UT is 30 dB. In this simulation, the search step size of the
nominal DOAs and the angular spreads is0.01◦, and the
search range of the angular spreads is set as[0.01◦, 1◦]. The
azimuth angular spreads of these UTs are the same as the
elevation angular spreads, and vary with each data point in Fig.
6. The RMSEs of the estimated nominal DOAs and angular
spreads versus the angular spread, are plotted in Fig. 6. It is
observed that the RMSEs of the proposed approach achieve
their minima when the angular spread is in the middle of the
range. When the angular spreads are small, the expectations
of the diagonal elements of̂Rc that is formulated in (68) are
small. Thus, the impact of the noise becomes the dominant
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Fig. 6. RMSEs versus angular spread concerning the estimates of the angular
parameters of five sources, while the number of the BS antennas isM = 100,
and the average received SNR from each UT is30 dB. (a), (b), (c), and
(d) correspond to the estimation of the nominal azimuth DOA,the nominal
elevation DOA, the azimuth angular spread, and the elevation angular spread,
respectively.

factor. When the angular spreads are large, the remainder
of the Taylor series in (10) cannot be omitted. Thus, the
estimation performance degrades. However, the performance
of [40] and [37] are mainly dominated by the remainder of
the Taylor series rather than by the noise. This is because the
Taylor series approximation of [40] and [37] is different from
that of the proposed approach, and the former imposes less
impacts on the estimation performance. Hence, the proposed
approach is best suitable for localization of multiple UTs when
the angular spreads of these UTs remain in the modest region.

In the fifth test as shown in Fig. 7, some of the parameters
are changed for evaluating the performance of these ap-
proaches when the number of the UTs increases. The nominal
azimuth DOAs, the nominal elevation DOAs, and the number
of the BS antennas are the same as in the third example.
The average received SNR from each UT is10 dB. The
azimuth angular spreads areσθk = 1◦, k = 1, 2, · · · , 5, and
the elevation angular spreads areσφk

= 1◦, k = 1, 2, · · · , 5.
The RMSEs of the estimated nominal DOAs and the angular
spreads offered by the proposed approach and the approaches
in [40] and [37] versus the number of the UTs, are plotted in
Fig. 7. It is observed that the RMSEs of the proposed approach
increase as the number of the UTs increases. This is because
the increase of the number of the UTs causes the sum of the
remainder of the Taylor series in (10) increases. As a result, the
performance of the proposed approach degrades as the number
of the UTs increases. In contrast, the RMSEs of [40] and [37]
increase slowly as the number of the UTs increases. This is
because the nominal DOAs of the UTs are only estimated by
searching around the true values in these approaches, which
is based on the assumption that the coarse estimates of the
nominal DOAs have been obtained.

In the sixth test as shown in Fig. 8, the simulation param-
eters are the same as those in the third test, except that the
average received SNR is10 dB. The RMSEs of the estimated
nominal DOAs and of the estimated angular spreads attained
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Fig. 7. RMSEs versus the number of the UTs concerning the estimates of
the angular parameters, while the number of the BS antennas is M = 100,
and the average received SNR from each UT is10 dB. (a), (b), (c), and
(d) correspond to the estimation of the nominal azimuth DOA,the nominal
elevation DOA, the azimuth angular spread, and the elevation angular spread,
respectively.

by the proposed approach and by the approaches of [40] and
[37] versus the number of scatterers, are plotted in Fig. 8.
Note that the number of scatterers is the same as the number of
multipaths. It can be seen that the RMSEs of these approaches
are almost invariant with the number of scatterers. The path
gains are temporally independent. Thus, theT snapshots of the
received signal in (1) are independent of each other as long
as the number of the multipaths is no less than one. Since
the multipaths cannot be distinguished in the received signal,
when the number of the multipaths increases, the number of
independent snapshots remains invariant. Note that the average
received SNR remains constant in the simulation in order to
evaluate the impact of the number of scatterers. From (67), it is
known that the sample covariance matrixR̂x is directly related
to the number of independent snapshotsT and the estimation
accuracy ofR̂x is crucial to the estimation performance. As
a result, the number of scatterers imposes little impact on the
estimation performance of these approaches.

VI. CONCLUSIONS

In this paper, we have proposed an ESPRIT-based approach
for the 2-D localization of multiple ID sources in the massive
MIMO systems. The proposed approach does not constrain
the distance between adjacent antennas and decouples the 2-
D angular parameters. Therefore, it is feasible for the 2-D
localization. Our analysis has shown that the performance of
the proposed approach improves as the number of the BS
antennas increases, and the computational complexity of the
proposed approach is significantly lower than that of other
approaches. For example, in some representative scenarios
as considered, the complexity of the proposed estimator is
less than 0.1% of that of the existing methods. In addition,
the simulation results have demonstrated that the performance
of the proposed approach is comparable to that of other
approaches in the massive MIMO systems. The extension of
the proposed approach to the scenario where sources having
large angular spreads may be addressed in our future work.
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Fig. 8. RMSEs versus the number of scatterers concerning theestimates of
the angular parameters, while the number of the BS antennas is M = 100,
and the average received SNR from each UT is10 dB. (a), (b), (c), and
(d) correspond to the estimation of the nominal azimuth DOA,the nominal
elevation DOA, the azimuth angular spread, and the elevation angular spread,
respectively.
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APPENDIX A
PROOF OFPROPOSITION1

First, the norms of the column vectors ofA are given for
normalizing the column vectors ofA. By changing the DOAs,
θk,j(t), φk,j(t), in (2) to the nominal DOAs̄θk, φ̄k, a(θ̄k, φ̄k)
is obtained, and we have

[

∂a(θ̄k, φ̄k)

∂θ̄k

]

m

= iu sin(φ̄k)
[

− (mx − 1) sin(θ̄k)

+(my − 1) cos(θ̄k)
]

× [a(θ̄k, φ̄k)]m, (77)
[

∂a(θ̄k, φ̄k)

∂φ̄k

]

m

= iu cos(φ̄k)
[

(mx − 1) cos(θ̄k)

+(my − 1) sin(θ̄k)
]

× [a(θ̄k, φ̄k)]m, (78)

wherem, mx, andmy are defined in (2). From (13), we can
see that there are only three types of column vectors inA, and
the norms of these three kinds of column vectors are given by

rk,1 =

√

aH(θ̄k, φ̄k)a(θ̄k, φ̄k) =
√
M, (79)

rk,2 =

√

(

∂a(θ̄k, φ̄k)

∂θ̄k

)H
∂a(θ̄k, φ̄k)

∂θ̄k
=
√

MM̃r̃k,2,(80)

rk,3 =

√

(

∂a(θ̄k, φ̄k)

∂φ̄k

)H
∂a(θ̄k, φ̄k)

∂φ̄k
=
√

MM̃r̃k,3,(81)

where r̃k,2 and r̃k,3, k = 1, 2, · · · ,K, do not tend to infinity
or zero asM →∞. Hence, the norms of the firstK columns
of A are proportional to

√
M , and the norms of the last2K

columns ofA tend to be proportional toM asM →∞.

For measuring the angles between the column vectors of
A, the normalized inner products of these column vectors are
derived. From (13), there are only five kinds of inner products
for the column vectors ofA, and they are given by

tk,k′,1 = a
H(θ̄k, φ̄k)a(θ̄k′ , φ̄k′ ), (82)

tk,k′,2 = a
H(θ̄k, φ̄k)

∂a(θ̄k′ , φ̄k′ )

∂θ̄k′

, (83)

tk,k′,3 =

(

∂a(θ̄k, φ̄k)

∂θ̄k

)H
∂a(θ̄k′ , φ̄k′)

∂θ̄k′

, (84)

tk,k,1 = a
H(θ̄k, φ̄k)

∂a(θ̄k, φ̄k)

∂θ̄k
= Mt̃k,k,1vk, (85)

and

tk,k,2 =

(

∂a(θ̄k, φ̄k)

∂θ̄k

)H
∂a(θ̄k, φ̄k)

∂φ̄k
= MM̃t̃k,k,2,(86)

where k = 1, 2, · · · ,K, k′ = 1, 2, · · · ,K, k′ 6=
k, vk = g1,kMx + g2,kMy + g3,k; tk,k′,1, tk,k′,2, tk,k′,3,
t̃k,k,1, t̃k,k,2, g1,k, g2,k, and g3,k do not tend to infinity
as M → ∞. It should be noted that the inner prod-
uct a

H(θ̄k, φ̄k)(∂a(θ̄k′ , φ̄k′ )/∂φ̄k′) is similar to (83); the
inner products(∂aH(θ̄k, φ̄k)/∂φ̄k)(∂a(θ̄k′ , φ̄k′ )/∂φ̄k′) and
(∂aH(θ̄k, φ̄k)/∂θ̄k)(∂a(θ̄k′ , φ̄k′ )/∂φ̄k′) are similar to (84);
and the inner productaH(θ̄k, φ̄k)(∂a(θ̄k, φ̄k)/∂φ̄k) is similar
to (85).

It can be found that when the inner products of the column
vectors ofA in (82)-(84) are normalized by the norms in (79)-
(81), these normalized inner products tend to zero whenM →
∞. Thus, the column vectors,a(θ̄k, φ̄k), ∂a(θ̄k, φ̄k)/∂θ̄k, and
∂a(θ̄k, φ̄k)/∂φ̄k, tend to be orthogonal to any such column
vector with differentk. On the other hand, it can be easily
found that the column vectors,a(θ̄k, φ̄k), ∂a(θ̄k, φ̄k)/∂θ̄k, and
∂a(θ̄k, φ̄k)/∂φ̄k, are linearly independent. Therefore, the rank
of A tends to3K asM →∞. Then, the column vectors ofA
can be orthonormalized by employing the QR decomposition
as

A = ÃTA, (87)

where Ã ∈ CM×3K satisfiesÃH
Ã = I3K , and TA ∈

C3K×3K is an upper triangular matrix. It is easy to find that
TA tends to be a full rank matrix whenM → ∞, which
means the condition number ofTA does not tend to infinity
whenM →∞. Then,AR̂cA

H in (68) can be written as

AR̂cA
H = Ã

(

TAR̂cT
H
A

)

Ã
H . (88)

It can be seen thatAR̂cA
H has at most3K nonzero eigen-

values, which are also the eigenvalues ofTAR̂cT
H
A . Since

R̂c is normal, i.e.,R̂cR̂
H
c = R̂

H
c R̂c, the EVD of this matrix

can be written aŝRc = UsΛsU
H
s , whereUs ∈ C3K×3K

is composed of the eigenvectors of̂Rc, and is a unitary
matrix; Λs ∈ R3K×3K is a diagonal matrix composed of
the eigenvalues of̂Rc. Then, we haveR̂c = SS

H , where
S = UsΛ

1/2
s ∈ C

3K×3K . BecauseR̂c is a random matrix,S
is also a random matrix. Then, the trace ofAR̂cA

H can be
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expressed as

tr
(

AR̂cA
H
)

= ||AS||2F =

3K
∑

p=1

wp

(

M
∑

m=1

|[A]m,p|2
)

+

3K
∑

p2 6=p1

p2=1

3K
∑

p1=1

yp1,p2

(

M
∑

m=1

[A]m,p1
[A]∗m,p2

)

, (89)

wherewp =
∑3K

p′=1 |[S]p,p′ |2 , yp1,p2
=
∑3K

p′=1[S]p1,p′ [S]∗p2,p′ .
According to the norms of the column vectors ofA in (79)-
(81), we know that

M
∑

m=1

|[A]m,p|2 =







M, p ∈ P1

MM̃r̃2p−K,2, p ∈ P2

MM̃r̃2p−2K,3, p ∈ P3,

where P1 = {1, 2, · · · ,K},P2 = {K + 1,K +
2, · · · , 2K},P3 = {2K + 1, 2K + 2, · · · , 3K}. Meanwhile,
due to the inner products of the column vectors ofA in (82)-
(86), we know that

M
∑

m=1

[A]m,p1
[A]∗m,p2

=























tp1,p2,1, p1, p2 ∈ P1, p1 6= p2
tp1,p2−K,2, p1 ∈ P1, p2 ∈ P2, p1 6= p2 −K
tp1−K,p2−K,3, p1, p2 ∈ P2, p1 6= p2
Mt̃p1,p1,1vp1

, p1 ∈ P1, p2 = p1 +K

MM̃t̃p1−K,p1−K,2, p1 ∈ P2, p2 = p1 +K.

According to the statement below (86),
∑M

m=1[A]m,p1
[A]∗m,p2

for any other combination ofp1 andp2 is similar to one of the
results above. As a result, the trace in (89) can be re-expressed
as

tr
(

AR̂cA
H
)

= M
(

M̃as +Mxbs +Mycs + ds

)

, (90)

where as is a linear function ofr̃2p−K,2, r̃2p−K,3, and the
variables that are similar tõtp1−K,p1−K,2 (these variables have
similar expressions);bs andcs are linear functions of variables
like t̃p1,p1,1; ds is a linear function of variables likẽtp1,p1,1,
tp1,p2,1, tp1,p2−K,2, and tp1−K,p2−K,3. It can be seen that
as, bs, cs, andds are random variables. In addition, it is not
difficult to verify that the means and variances of these random
variables do not tend to infinity andas tends to be a positive
number asM →∞.

On the other hand, according to the norms of the column
vectors ofA, the trace ofR̂n can be expressed as

tr
(

R̂n

)

= M (Mxan +Mybn + c̃n) . (91)

Similarly, it can be verified that the means and variances of
an, bn, and c̃n do not tend to infinity whenM →∞.

From (68), we have

tr
(

R̂x

)

= tr
(

AR̂cA
H
)

+ tr
(

R̂n

)

. (92)

BecauseR̂x is a positive semi-definite matrix, the eigenvalue
of R̂x can be expressed as

λxm = ξsmtr
(

AR̂cA
H
)

+ ξnmtr
(

R̂n

)

,

wherem = 1, 2, · · · ,M , 0 ≤ ξsm ≤ 1, 0 ≤ ξnm ≤ 1, and
∑M

m=1 ξsm =
∑M

m=1 ξnm = 1. BecauseAR̂cA
H is a positive

semi-definite matrix, and has at most3K nonzero eigenval-
ues, we haveξsnp

≥ 0, where np ∈ {1, 2, · · · ,M}, p =
1, 2, · · · , 3K, are different values, andξsm′ = 0 for m′ ∈
{1, 2, · · · ,M},m′ 6= np. It can be seen that the eigenvectors
that correspond to the eigenvaluesλxnp

, p = 1, 2, · · · , 3K, are
in the column space ofA, and the other eigenvectors are in
the null space ofA.

Since the condition number ofTA does not tend to infinity
whenM →∞, ξsnp

does not tend to zero asM →∞. Then,
from (90) and (91), we have

λxnp

λxm′

=
ξsnp

tr
(

AR̂cA
H
)

+ ξnnp
tr
(

R̂n

)

ξnm′tr
(

R̂n

) (93)

a.s.→ ∞, as M →∞, m′ 6= np, (94)

where
a.s.→ denotes the almost sure convergence. Note thatξsm′

vanishes in (93) becauseξsm′ = 0 for m′ 6= np. It can be
seen thatλxnp

, p = 1, 2, · · · , 3K, tend almost surely to be
the largest3K eigenvalues of̂Rx, which means the columns
of Ês tend almost surely to be in the column space ofA as
M → ∞. Therefore, we have proved that̂Es tends almost
surely to be in the same subspace asA whenM →∞.

APPENDIX B
DERIVATION OF THE APPROXIMATE CRB

First, the array manifold, cf. (2), forθk,j(t) andφk,j(t) is
approximated by

[a(θk,j(t), φk,j(t)]m ≈ exp
(

iu sin(φ̄k)
[

(mx − 1) cos(θ̄k)

+(my − 1) sin(θ̄k)
])

× exp
(

iuφ̃k,j(t) cos(φ̄k)

×
[

(mx − 1) cos(θ̄k) + (my − 1) sin(θ̄k)
]

)

× exp
(

iuθ̃k,j(t)

× sin(φ̄k)
[

−(mx − 1) sin(θ̄k) + (my − 1) cos(θ̄k)
]

)

, (95)

wherem,mx,my are defined in (2). This approximation is
similar to that in [35]. The Taylor series expansion of (95) is
different from that given in (10). According to (1) and (95),
the covariance matrixRx given by (19) can be reformulated
as

Rx ≈
K
∑

k=1

σ2
kΞk + σ2

nIM , (96)

whereσ2
k = Skσ

2
γk

. It can be easily found thatΞk can be
written as

Ξk =
(

a(θ̄k, φ̄k)a
H(θ̄k, φ̄k)

)

⊙Bk = DkBkD
H
k , (97)

whereDk = diag(a(θ̄k, φ̄k)) ∈ CM×M , and each entry of
Bk ∈ RM×M equals

[Bk]m,n = exp
(

−
(

σ2
φk

cos2(φ̄k)
[

δx cos(θ̄k) + δy sin(θ̄k)
]2

+σ2
θk

sin2(φ̄k)
[

−δx sin(θ̄k) + δy cos(θ̄k)
]2 )× 1

2
u2
)

.(98)

At the end of Section II, it is already verified that the
received signalx(t) in (1) is a zero-mean circularly symmetric
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complex-valued Gaussian vector. Then, the Fisher information
matrix (FIM) can be used to derive the CRB. Because the
received signal is approximated with the aid of (95), we can
only derive the approximate FIM and the approximate CRB.
Let us defineu = [uT

θ̄
,uT

φ̄
,uT

σθ
,uT

σφ
]T ∈ R4K×1, v =

[σ2
1 , σ

2
2 , · · · , σ2

K , σ2
n]

T ∈ R(K+1)×1, and ξ = [uT ,vT ]T ∈
R(5K+1)×1, whereuθ̄ = [θ̄1, θ̄2, · · · , θ̄K ]T ∈ RK×1, uφ̄ =
[φ̄1, φ̄2, · · · , φ̄K ]T ∈ RK×1, uσθ

= [σθ1 , σθ2 , · · · , σθK ]T ∈
RK×1, and uσφ

= [σφ1
, σφ2

, · · · , σφK
]T ∈ RK×1, the

approximate (finite-sample) FIMJξ,ξ ∈ R(5K+1)×(5K+1) is
then expressed as [51, p. 525]

[Jξ,ξ]q,q′ = T tr

(

R
−1
x

∂Rx

∂[ξ]q
R

−1
x

∂Rx

∂[ξ]q′

)

, (99)

whereq = 1, 2, · · · , 5K +1, q′ = 1, 2, · · · , 5K +1, andT is
the number of received signal snapshots. From (96) and (97),
the following partial derivatives may be obtained, which are

∂Rx

∂θ̄k
≈ σ2

k

(

Dθ̄kDkBkD
H
k −DkBkD

H
k Dθ̄k

+Dk(Bk ⊙Bθ̄k
)DH

k

)

,

∂Rx

∂φ̄k
≈ σ2

k

(

Dφ̄k
DkBkD

H
k −DkBkD

H
k Dφ̄k

+Dk(Bk ⊙Bφ̄k
)DH

k

)

,

∂Rx

∂σθk

≈ σ2
k

(

Dk(Bk ⊙Bσθ,k)D
H
k

)

,

∂Rx

∂σφk

≈ σ2
k

(

Dk(Bk ⊙Bσφ,k)D
H
k

)

,

∂Rx

∂σ2
k

≈ DkBkD
H
k ,

and
∂Rx

∂σ2
n

≈ IM ,

whereDθ̄k ∈ CM×M , Dφ̄k
∈ CM×M , Bθ̄k ∈ CM×M , Bφ̄k

∈
CM×M , Bσθ,k ∈ CM×M , andBσφ,k ∈ CM×M are defined
as

[Dθ̄k ]m,m = iu sin(φ̄k)[−(mx − 1) sin(θ̄k)

+(my − 1) cos(θ̄k)],

[Dφ̄k
]
m,m

= iu cos(φ̄k)[(mx − 1) cos(θ̄k)

+(my − 1) sin(θ̄k)],

[Bθ̄k ]m,n
= −1

2
u2
[

− σ2
φk

cos2(φ̄k) + σ2
θk sin

2(φ̄k)
]

×
[

(δ2x − δ2y) sin(2θ̄k)− 2δxδy cos(2θ̄k)
]

,

[Bφ̄k
]
m,n

= −1

2
u2 sin(2φ̄k)

(

− σ2
φk

[

δx cos(θ̄k) + δy sin(θ̄k)
]2

+σ2
θk

[

−δx sin(θ̄k) + δy cos(θ̄k)
]2 )

,

[Bσθ,k]m,n = −u2σθk sin
2(φ̄k)

[

−δx sin(θ̄k) + δy cos(θ̄k)
]2

,

and

[Bσφ,k]m,n
= −u2σφk

cos2(φ̄k)
[

δx cos(θ̄k) + δy sin(θ̄k)
]2

,

respectively. Note thatDθ̄k ,Dφ̄k
are diagonal matrices. Sim-

ilar to (99), Ju,u ∈ R4K×4K , Ju,v ∈ R4K×(K+1), and

Jv,v ∈ R(K+1)×(K+1) can be defined, and they are related
to Jξ,ξ as

Jξ,ξ =

[

Ju,u Ju,v

J
T
u,v Jv,v

]

. (100)

Then, by the simple block matrix inversion lemma [52], the
approximate CRB concerning the covariance matrix of the
estimation error of the angular parameter vectoru is obtained
as (72) and (73).
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