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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF PHYSICAL SCIENCES AND ENGINEERING

Physics & Astronomy

Doctor of Philosophy

Z ′ PHENOMENOLOGY IN T T̄ AND ITS ASYMMETRIES AT THE LHC

by Ken A V Mimasu

This thesis presents a collection of studies considering Z ′ physics in the tt̄ final state at

the Large Hadron Collider (LHC), focusing largely on its charge and spin asymmetry ob-

servables. The analyses employ parton level simulations in the presence of the tree-level

backgrounds and realistic reconstruction efficiency estimates. A number of extra U(1)

models are studied, including various common benchmark models currently considered

at the LHC as well as models more suited to tt̄ searches from composite Higgs scenarios

and extra dimensions. The studies address the ability of tt̄, with its asymmetries, to dis-

tinguish models from the Standard Model background and one another, both on its own

and as a complementary channel to other, more traditional final states with the view

to a complete characterisation of the Z ′ couplings. Scenarios with two quasi-degenerate

resonances are also considered where tt̄ asymmetries can identify their presence when

cross section observables cannot resolve the two peaks.

mailto:k.mimasu@soton.ac.uk




Contents

Declaration of Authorship xiii

Acknowledgements xv

Nomenclature xvii

1 Introduction: The Standard Model and beyond 1

1.1 Gauge structure and matter content . . . . . . . . . . . . . . . . . . . . . 3

1.2 Quantum Chromodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Electroweak theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Electroweak symmetry breaking . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Fermion interactions, masses and mixing . . . . . . . . . . . . . . . . . . . 9

1.6 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.7 Beyond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 The top quark 15

2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Reconstructing a top decay . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 The tt̄ channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Asymmetries at colliders . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.1 Charge asymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.2 Spin asymmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 Reconstructing tt̄ observables . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Z ′ physics and asymmetries 29

3.1 Extra gauge bosons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.1 Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.2 Anomalies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.3 Couplings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1.4 Indirect constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.5 Direct searches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.6 Z ′ → tt̄ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Asymmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.1 Charge asymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.2 Spin asymmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Z ′ benchmarks in tt̄ 45

4.1 Benchmark models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

v



vi CONTENTS

4.1.1 E6 model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1.2 Generalised left-right symmetric models . . . . . . . . . . . . . . . 47

4.1.3 Generalised SSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1.4 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Calculation of observables . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3.1 E6-type models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3.2 Generalised models . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3.3 Significance and luminosity analysis . . . . . . . . . . . . . . . . . 55

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 tt̄ as a complementary channel 65

5.1 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.1.1 The minimal Z ′ model . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.1.2 Structure of the chiral couplings . . . . . . . . . . . . . . . . . . . 67

5.1.3 Benchmark models . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2 Calculation and variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2.1 Extracting Z ′ couplings . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2.2 Efficiencies and uncertainties . . . . . . . . . . . . . . . . . . . . . 71

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3.1 Exclusion limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3.2 Event rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3.3 Asymmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3.4 Distinguishing benchmarks . . . . . . . . . . . . . . . . . . . . . . 80

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6 Multiple Z ′s from a composite Higgs model 85

6.1 Compositeness from strong dynamics . . . . . . . . . . . . . . . . . . . . . 86

6.1.1 Technicolour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.1.2 The Higgs boson as a pNGB . . . . . . . . . . . . . . . . . . . . . 87

6.2 The minimal 4D composite Higgs model . . . . . . . . . . . . . . . . . . . 89

6.3 Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.3.1 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.3.2 Asymmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.4.1 Parameter scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.4.2 Benchmark studies . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7 Uncovering multiple Z ′s in a model of extra dimensions 107

7.1 Populating the bulk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.1.1 Orbifold compactification . . . . . . . . . . . . . . . . . . . . . . . 111

7.1.2 KK parity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.1.3 Localising fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.2.1 Radiative mass corrections and mixing . . . . . . . . . . . . . . . . 115

7.2.2 Off-diagonal widths . . . . . . . . . . . . . . . . . . . . . . . . . . 117



CONTENTS vii

7.2.3 LHC limits on R−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.3.1 Invariant mass and asymmetry spectra . . . . . . . . . . . . . . . . 120

7.3.2 Degeneracy versus a single resonance . . . . . . . . . . . . . . . . . 125

7.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8 Conclusions and outlook 129

A Z ′ helicity amplitude calculation 135

B 4DCHM Benchmark points 139

C Fermionic contribution to the KK vector boson self energy 141

References 145





List of Figures

2.1 Feynman diagram for the decay of a top quark. . . . . . . . . . . . . . . . 17

2.2 Feynman diagrams for leading order tt̄ production via QCD. . . . . . . . . 19

2.3 Gluon-gluon and quark anti-quark parton luminosities at the LHC. . . . . 19

2.4 Schematic diagrams depicting the kinematics of a qq̄ → tt̄ event at the
LHC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1 Triangle diagram mediating the axial U(1) anomaly. . . . . . . . . . . . . 34

3.2 Latest Z ′ mass exclusions in the tt̄ final state from ATLAS and CMS . . . 40

4.1 Invariant mass distributions for E6-type models for MZ′=1.7 TeV for the
LHC at 14(8) TeV and 100(15) fb−1 of integrated luminosity. . . . . . . . 54

4.2 Invariant mass distributions for generalised models with MZ′=1.7 TeV
for the LHC at 14(8) TeV and 100(15) fb−1 of integrated luminosity. . . . 55

4.3 ALL binned in Mtt̄ for E6-type models with MZ′=1.7 and 2 TeV for the
LHC at 14 TeV assuming 100 fb−1 of integrated luminosity. . . . . . . . . 58

4.4 ALL distributions binned in Mtt̄ for generalised models with MZ′=1.7 and
2 TeV for the LHC at 14 TeV assuming 100 fb−1 of integrated luminosity. 59

4.5 AL binned in Mtt for generalised models with MZ′=1.7 (upper) and 2
(lower) TeV for the LHC at 14 TeV assuming 100 fb−1 of integrated
luminosity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.6 ARFB binned in Mtt for generalised models with MZ′=1.7 and 2 TeV for
the LHC at 14 TeV assuming 100 fb−1 of integrated luminosity. . . . . . . 61

5.1 Z ′ exclusions from CMS data in the di-leptonic channel. . . . . . . . . . . 74

5.2 Total event rates (signal plus background) including reconstruction effi-
ciency on peak, for MZ′ = 2.5 TeV in tt̄, bb̄ and e+e−. . . . . . . . . . . . 75

5.3 ARFB on peak |Mff̄−MZ′ | < 100 GeV, forMZ′ = 2.5 TeV for Z ′ → e+e−,
bb̄ and tt̄ in the (g′1, g̃) plane. . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.4 Significance of ARFB with respect to the SM prediction on peak for MZ′ =
2.5 TeV in the tt̄ bb̄ and e+e− final states. . . . . . . . . . . . . . . . . . . 78

5.5 AL on peak, |Mff̄ −MZ′ | < 100 GeV, for MZ′ = 2.5 TeV for Z ′ → τ+τ−,
bb̄ and tt̄ in the (g′1, g̃) plane. . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.6 Significance of AL with respect to the SM prediction on peak for MZ′ =
2.5 TeV in the tt̄ bb̄ and τ+τ− final states. . . . . . . . . . . . . . . . . . . 79

5.7 On-peak AL values with relative errors for MZ′ = 2.5 TeV in different
combinations of final states. . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.1 Pictorial ‘Moose diagram’ representation of the symmetries of the 4D
composite Higgs model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.2 Comparison of the ARFB and A∗FB incarnations of the charge asymmetry. 94

ix



x LIST OF FIGURES

6.3 Scatter plot of parameter scan in the mT1/ΓZ2 plane . . . . . . . . . . . . 96

6.4 Scatter plot of scanned points showing the dimensional significance in the
mT1/mB1 plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.5 Cross section and asymmetries as a function of the tt̄ invariant mass for
the f =0.8 TeV, g∗ =2.5 benchmark at the 14 TeV LHC with 300 fb−1. . 101

6.6 Cross section and asymmetries as a function of the tt̄ invariant mass for
the f = 1 TeV, g∗ =2 benchmark at the 14 TeV LHC with 300 fb−1. . . . 102

6.7 Cross section and asymmetries as a function of the tt̄ invariant mass for
the f =1.2 TeV, g∗ =1.8 benchmark at the 14 TeV LHC with 300 fb−1. . 103

6.8 Cross section and asymmetries as a function of the tt̄ invariant mass for
the f =1.2 TeV, g∗ =1.8 (green) benchmark at the 14 TeV LHC with 300
fb−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.9 Cross section and asymmetries as a function of the tt̄ invariant mass for
the f =1.2 TeV, g∗ =1.8 (magenta) benchmark at the 14 TeV LHC with
300 fb−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.10 Cross section and asymmetries as a function of the tt̄ invariant mass for
the f =1.2 TeV, g∗ =1.8 (yellow) benchmark at the 14 TeV LHC with
300 fb−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.1 CMS exclusion plots from the tt̄ and di-jet resonance searches at
√
s =7

and 8 TeV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.2 The tt̄ invariant mass (Mtt) distribution of the cross section for the AADD
model with R−1 = 3 TeV. . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.3 The tt̄ invariant mass (Mtt) distribution of the AL and A∗FB asymmetries
for the AADD model with R−1 = 3 TeV in the “unimixed” scenario. . . . 122

7.4 The tt̄ invariant mass (Mtt) distribution of the AL and A∗FB asymmetries
for the AADD model with R−1 = 3 TeV in the SM-like mixing scenario. . 123

7.5 Differential distributions in Mtt̄ for σ, AL and A∗FB comparing the SM-
like mixed AADD with and without off-diagonal width contributions to
the unmixed case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.6 Differential distributions in Mtt̄ for σ, AL and A∗FB for the LHC at 14
TeV, with 100 fb−1 of integrated luminosity. . . . . . . . . . . . . . . . . . 124

7.7 Differential distributions in Mtt̄ for σ, AL and A∗FB comparing the AADD
with three selected scan points modelling a single resonance with random
couplings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.8 Scatter plots showing predicted values of AL and A∗FB for AADD with
R−1 = 3 TeV at the LHC, compared to two sets of scanned points. . . . . 127



List of Tables

1.1 Table collecting the SM gauge, matter and Higgs representations along
with their gauge quantum numbers and electric charges . . . . . . . . . . 11

4.1 Benchmark Z ′ model parameters and couplings. . . . . . . . . . . . . . . . 49

4.2 Summary of integrated ALL values around the Z ′ peak for E6-type models
with MZ′=1.7 and 2 TeV at the LHC at 14 and 8 TeV assuming 100 and
15 fb−1 of integrated luminosity respectively. . . . . . . . . . . . . . . . . 58

4.3 Summary of integrated ALL values around the Z ′ peak for the generalised
models with MZ′=1.7 and 2 TeV at the LHC at 14 and 8 TeV assuming
100 and 15 fb−1 of integrated luminosity respectively. . . . . . . . . . . . 59

4.4 Summary of integrated AL values around the Z ′ peak for the generalised
models with MZ′=1.7 and 2 TeV at the LHC at 14 and 8 TeV assuming
100 and 15 fb−1 of integrated luminosity respectively. . . . . . . . . . . . 60

4.5 Summary of integrated ARFB values around the Z ′ peak for generalised
models with MZ′=1.7 and 2 TeV at the LHC at 14 and 8 TeV assuming
100 and 15 fb−1 of integrated luminosity respectively. . . . . . . . . . . . 61

4.6 Significance of ALL, AL and ARFB in each of the Z ′ benchmarks for the
LHC at 14 TeV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.7 Required integrated luminosity at the LHC at 14 TeV to “distinguish”
Z ′ models from the SM background and among themselves using spin
asymmetries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.8 Required integrated luminosity at the LHC at 14 TeV to “distinguish”
Z ′ models from the SM background and among themselves using charge
asymmetries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.1 Table summarising the vector and axial vector couplings of the SM fermions
plus the neutrino flavour eigenstates. . . . . . . . . . . . . . . . . . . . . . 68

5.2 Maximum g′1 allowed at 95% CL for Z ′ benchmarks . . . . . . . . . . . . 74

5.3 Significance for AL for the LHC at 14 TeV for 100 fb−1 and MZ′ = 2.5
TeV for the common benchmark points in the τ, t, b final states. . . . . . . 81

6.1 Extra particle content of the 4DCHM with respect to the SM. . . . . . . . 90

B.1 Table of the masses and widths of the neutral gauge resonances limited
to Z2 and Z3 for the lettered benchmarks of [118] . . . . . . . . . . . . . . 139

B.2 Table of the masses and widths of the neutral gauge resonances limited
to Z2 and Z3 for the coloured benchmarks of [118]. . . . . . . . . . . . . . 139

B.3 Table of the couplings of the up and down quark to the neutral sector
limited to Z,Z2 and Z3 for the benchmarks of [118]. . . . . . . . . . . . . 140

xi



xii LIST OF TABLES

B.4 Table of the couplings of the top quark to the neutral sector limited to
Z,Z2 and Z3 for the lettered benchmarks of [118]. . . . . . . . . . . . . . 140

B.5 Table of the couplings of the top quark to the neutral sector limited to
Z,Z2 and Z3 for the benchmarks of [118]. . . . . . . . . . . . . . . . . . . 140



Declaration of Authorship

I, Ken A V Mimasu , declare that the thesis entitled Z ′ phenomenology in tt̄ and its

asymmetries at the LHC and the work presented in the thesis are both my own, and

have been generated by me as the result of my own original research. I confirm that:

• this work was done wholly or mainly while in candidature for a research degree at

this University;

• where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated;

• where I have consulted the published work of others, this is always clearly at-

tributed;

• where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work;

• I have acknowledged all main sources of help;

• where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself;

• parts of this work have been published as: [1], [2], [3] and [4]

Signed:.......................................................................................................................

Date:..........................................................................................................................

xiii

mailto:k.mimasu@soton.ac.uk




Acknowledgements

Firstly, I would like to thank my supervisor, Stefano Moretti, for his guidance and

encouragement and with whom it has been a pleasure to learn under and collaborate.

My experience over the past few years has been immeasurably enhanced by the colleagues

who shared the journey; I am fortunate to have been in such good company both inside

and outside of the office. Specifically, thanks to: Diego Becciolini for sharing your physics

knowledge, the great music recommendations and the silly memes; Matthew Brown for

being the ultimate sounding board, our daily discussions (mostly about physics) were

beyond invaluable; James Callaghan for raising my pool and poker games and for all the

good times in the process; James Lyon for always patiently explaining things to me and

especially for being my Python guru; Luca Marzola for your role as the office’s Italian

language supervisor and my series-watching buddy; Ben Samways for having been on

the journey with me since the beginning, my belly and I particularly loved our time

at CERN; Patrik Svantesson, our many conversations, both serious and not-so-serious,

were much appreciated.

I am also very grateful toward the people I have collaborated with, many of whom gave

me a good deal of help and also for those who contributed to the many fruitful discussions

that undoubtedly improved the work we produced. To name a few: Elena Accomando,

Daniele Barducci, Lorenzo Basso, Sasha Belyaev and Giacomo Cacciapaglia.

Finally, I would like to thank my family and friends for everything up until now and

beyond, the love and support I have received all of my life could not have been any

better. The list is by no means exhaustive and thanks go out to all of the other students

in the group and others outside of SHEP who made my PhD life an enjoyable one, with

special mention going to Hugh, Tasha, Jordan and Delphine.

xv





Nomenclature

SM Standard Model

BSM Beyond the Standard Model

GWS Glashow–Weinberg–Salam

QED Quantum Electrodynamics

QCD Quantum Chromodynamics

GUT Grand Unified Theory

KK Kaluza–Klein

SSM Sequential Standard Model

LR Left-Right symmetric

B-L Baryon minus Lepton number

TC Technicolour

4DCHM Four-Dimensional Composite Higgs Model

(A)ADD (Antoniadis–)Arkani-Hamed–Dvali–Dimopoulos

UED Universal Extra Dimensions

VEV Vacuum-Expectation-Value

(p)NGB (pseudo) Nambu–Goldstone Boson

PDF Parton Density Function

pp proton proton

pp̄ proton anti-proton

gg gluon gluon

qq̄ quark anti-quark

CM Centre of Mass

LO Leading Order

LL Leading Logarithm

DY Drell–Yan

BR Branching Ratio

FCNC Flavour Changing Neutral Current

EWPT Electroweak Precision Test

NWA Narrow Width Approximation

MP Planck Mass

xvii





Chapter 1

Introduction: The Standard

Model and beyond

The work in this thesis aims to connect the phenomenology of two major aspects of

physics beyond the Standard Model (SM). Firstly, the ubiquitous Z ′, arising in a mul-

titude of different new physics scenarios as a consequence of the minimal continuous

symmetry group U(1), so often a relic of extending the symmetries of the SM. This

neutral vector particle, resembling a heavy version of the Z–boson, is one of the primary

discovery candidates at the LHC, owing to its widespread occurrence in new theories

and relatively simple resonant signal in collider experiments. The second aspect is that

of top quark physics and specifically the top anti-top or tt̄ channel at the LHC. The

very large mass of the top quark and its associated radiative contribution to the Higgs

mass in the SM is strong motivation behind its likely important role in the mechanism

of Electroweak Symmetry Breaking (EWSB). Naturally generating the large top mass

while protecting the mass of the Higgs against radiative corrections often leads to the-

ories where the top has a major role and is strongly coupled to new sectors. It is no

coincidence that tt̄ production is one of the major cross sections at the LHC, which is

often termed a “top factory”.

Not only is the tt̄ channel one of the primary areas in collider searches for physics beyond

the SM, the short lifetime of the top quark ensures that it decays before hadronisation,

allowing new asymmetry observables to be defined in terms of its decay products to

extract the spin information of the parent top. These observables display unique de-

pendences on the chiral couplings of resonant signals such as Z ′s and could provide new

information on such an object should it be discovered at the LHC. Thus, a variety of Z ′

scenarios will be tested, focusing of asymmetries in the tt̄ final state. The aim will be

to discuss the ability of tt̄ to distinguish models from the SM background and amongst

themselves both on its own and in conjunction with other channels. The unique coupling

dependence of the asymmetry observables will be exploited to this end for a number of

1
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standard benchmarks as well as models more suited to tt̄ searches through enhanced

third generation quark couplings or suppressed leptonic couplings. A new way of iden-

tifying the presence of multiple, quasi-degenerate resonant physics will also be shown

using asymmetries in a scenario where the mass resolution of the search channels cannot

determine the presence of two peaks. Ultimately, the goal of this work is to motivate

a full use of this final state and its asymmetries to characterise as much as possible

the couplings of Z ′s, should they be observed at the LHC, with a particular focus on

asymmetries and what they can offer over simpler cross section based observables.

Beginning with introductions to the SM, top quark physics and Z ′s in the context of

asymmetries in Chapters 2 and 3, the thesis will then follow into a number of studies.

The first step, in Chapter 4, is to consider the most common Z ′ benchmark scenarios

searched for at the LHC in di-lepton final states as a yardstick with which to compare tt̄

and its ability to observe and distinguish them. Next, Chapter 5 examines the use of tt̄

in conjunction with a number of other final states and their asymmetries to determine its

utility as a complementary channel in disentangling variants of a minimal U(1) extension

of the SM. Chapter 6 moves to the investigation of a general composite Higgs model

where the new physics couples most strongly to the third generation quarks and involves

a number of Z ′s. Finally, in Chapter 7, a novel method of using asymmetries to identify

quasi-degenerate resonances is demonstrated using a realistic implementation of a model

of extra dimensions which simultaneously possesses enhanced quark and suppressed

leptonic couplings. Chapter 8 presents the final conclusions and outlook.

The SM of particle physics represents the cutting edge in our understanding of the ele-

mentary particles in our universe and their interactions via three of the four fundamental

forces: the strong force, the weak force and electromagnetism. It is the culmination of

theoretical progress from the classical to the quantum level resulting in a quantum field

theory which consistently describes the dynamics of the sub atomic world that has,

so far, stood the test of time since its formalisation in the mid 1970s. The Glashow-

Weinberg-Salam (GWS) Lagrangian [5] along with Quantum Chromodynamics (QCD)

encapsulates all of these properties and interactions with only 17 free parameters in ad-

dition to the strong coupling1, a testament to the reductionist principles of theoretical

physics. This chapter presents a brief overview of the principles of gauge symmetry

and spontaneous symmetry breaking and how they are realised in the SM. Some con-

siderations on why theories beyond the SM are needed are discussed, particularly in the

context of the Higgs and the top quark.

1A further parameter associated with strong CP exists in principle, but is assumed to be zero and
not discussed in detail in this thesis. Furthermore, the SM does not incorporate the, now experimentally
established, fact that neutrinos have a mass which would further increase the number of parameters by
7 or 9 depending on the, as yet unknown, Dirac or Majorana nature of neutrinos.
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1.1 Gauge structure and matter content

The key principle behind the simplicity of the SM is that of gauge symmetry. From a

physical and mathematical perspective, it has always been vital to recognise and exploit

the presence of symmetries in order to describe the behaviour of interacting systems.

Classically, these result in conservation laws for the currents associated to a particular

global symmetry of a Lagrangian. Noether’s theorem elucidated this notion by which

translational symmetry in time and space, for example, lead to the conservation of en-

ergy and momentum respectively. Local or gauge symmetries, however, are a property

attached to each point in space-time that require the presence of a new interaction with

a force carrier to ensure they are preserved. The simple example of a local phase trans-

formation illustrates this for a Lagrangian density describing a free, massless fermion

field

LDirac = iψ̄ /∂ψ. (1.1)

The usual Feynman slashed notation denotes the contraction of a Lorentz four-vector

with the gamma matrices defined below. These are constructed to realise the spin-1
2 ,

spinor representations of the Lorentz group in which fermions live, ensuring that the

quantity ψ̄γµψ also transforms as four-vector. A common basis in which to express

these spinor-space matrices is the so-called Weyl basis where:

γµ =

(
0 σµ

σ̄µ 0

)
,

σµ = (I, ~σ); σ̄µ = (I,−~σ),

(1.2)

with ~σ representing the three-vector of Pauli matrices. The objects form a Clifford

algebra characterised by an anti-commutation relation,

{γµ, γν} = −2gµν , (1.3)

where gµν is the usual Minkowski metric. Equation 1.1 is manifestly invariant under a

global phase shift ψ → eiαψ. However, in order to preserve the symmetry under a local

phase transformation α → α(x), one should introduce a connection or gauge field, Aµ,

with specific transformation properties under U = eiα(x) coupling to the matter field

with strength e as:

LU(1) =
1

4
FµνFµν + iψ̄ /Dψ, (1.4)

Dµ = ∂µ + ieAµ, (1.5)

Fµν ≡ −
i

e
[Dµ, Dν ] = ∂µAν − ∂νAµ, (1.6)

Aµ → −
i

e
UDµU

† = Aµ −
1

e
∂µα (1.7)
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where a minimal coupling has been introduced via the covariant derivative, Dµ, and also

the kinetic term for the vector field via the field strength tensor, Fµν . The subscript

U(1) alludes to the fact that this particular transformation is associated to the Lie group

of that name. While seemingly arbitrary, quantisation of this theory is the basis for the

description of the electromagnetic interaction or Quantum Electrodynamics (QED). The

Noether current of this symmetry, Jµ = ψ̄γµψ, is associated to the conservation of electric

charge and couples directly to the gauge field which we identify as the photon. The gauge

symmetry governing this theory “protects” it and ensures consistent predictivity upon

quantisation. If the gauge coupling, e, is considered small, perturbation theory is a good

way of calculating observables.

The SM consists of the combination of three such symmetries whose specific properties

associate them to a particular group structure. This combined structure can be sum-

marised as an SU(3)C×SU(2)L×U(1)Y gauge group, where C, L and Y denote colour,

left-handed weak isospin and hypercharge respectively. The gauge interactions of the

SM are thus characterised according to this group construct and the representations in

which the fermionic matter fields transform under each gauge group. The matter fields,

quarks and leptons, come in three generations differing only by the increasing mass of

the particle. The final ingredient, which will be introduced later, is the Higgs boson,

responsible for generating masses in a gauge invariant way.

1.2 Quantum Chromodynamics

QCD refers to the SU(3)C component of the gauge group and is responsible for the strong

interaction between quarks, which live in the dimension 3 fundamental representation –

hence the labels “red”, “green” and “blue” to denote their charge. The eight generators

of the group give rise to eight gluons that mediate the force. The Lagrangian for this

theory can be written in two terms, one describing the gluons and the other, the quarks.

L = −1

4
Gµνa Gaµν +

∑
quarks

iψ̄ /Dψ, (1.8)

where Gµνa denotes the non-Abelian field strength tensor for the gluon fields, Aaµ, and

the covariant derivative, Dµ, incorporates the interactions of quarks with the gluons

necessitated by the requirement of SU(3) gauge invariance. All of this can be seen as a

generalisation of Equations 1.4–1.7 to a non-Abelian group.

Gaµν = ∂µA
a
ν − ∂νAaµ + gsf

a
bcA

b
µA

c
ν , (1.9)

Dµ = ∂µ + igs ~Aµ, (1.10)

~Aµ → −
i

g
UDa

µU
† = ~Aµ −

1

g
∂µ~α− fabcαaAbµT c. (1.11)
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The gauge transformation U = ei~α is now parameterised by a set of “angles”, αa, as

~α = αaT
a where the T a are the SU(3) generators. Each gluon is equally associated with

a generator as ~Aµ = TaA
a
µ, whose non-Abelian nature defines a set of structure constants

via [T a, T b] = ifabc T
c, modifying the gauge transformation properties of the gluons with

respect to the Abelian case in Section 1.1. This property of SU(3) is what leads to

the three and four-point self-interactions of the gluons, which arise from expanding the

gluon field strength term to recover a normal Abelian gauge-kinetic term plus said self-

interactions. The interaction of the gluons with the quarks is vector-like (meaning it

treats right- and left-handed chiral components equally) and flavour blind, conserving

charge (C) and parity (P) symmetries separately.

In the massless limit the theory possesses a global symmetry in which the right and

left-handed chiral components of the N flavours of quarks can be independently rotated

among themselves. This is known as an SU(N)L × SU(N)R chiral symmetry. This

symmetry is dynamically broken to SU(N)V by non perturbative effects which, in short,

cause the quark bilinear operator, q†LqR, to develop a non-zero vacuum expectation value

(VEV). The V denotes “vectorial”, meaning that the action is now only invariant under

transformations which rotate left and right-handed components identically. Pseudoscalar

meson multiplets arise as the Nambu-Goldstone bosons associated to the N2− 1 broken

axial (treating left and right oppositely) generators of the symmetry group. These

mesons are, in fact, pseudo Nambu-Goldstone bosons (pNGB) since the chiral symmetry

is also explicitly broken by quark mass terms of the form mq q
†
LqR, giving these objects a

relatively small mass compared to other mesons of similar quark content. The mass terms

are generated by the spontaneous breaking of Electroweak (EW) symmetry discussed

in the next section. We now know of the existence of 6 types of quarks named the up,

down, charm, strange, bottom and top in order of increasing mass. The approximate

chiral symmetry tends to be restricted to N = 3 with the u, d, s triplets giving rise to

the famous “eightfold way” meson spectrum of the pions, kaons and etas.

Working in the perturbative regime, it can be shown that radiative (loop) corrections

to the two and three-point correlation functions and subsequent renormalisation of the

QCD gauge coupling, gs, introduces a scale dependence, or running, such that the theory

becomes non perturbative at energies below a GeV. Conversely, as one increases the

energy the strong coupling becomes gradually weaker. This is known as asymptotic

freedom or infra-red slavery and is observed to lead to quark confinement, whereby

quarks cannot be observed as a free particle due to a potential between interacting

coloured objects which grows linearly with separation (i.e. decreasing scale). This

has also been shown with lattice QCD computations. Consequently, quarks or gluons

produced at collider experiments, rather than travelling freely, cause hadronisation and

are seen as jets of mesons and/or baryons. In other words, the large energy density of

the increasing potential promotes the pair creation of quarks, which bind into colour

singlet states.
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1.3 Electroweak theory

The remaining SU(2)L × U(1)Y factor of the SM gauge structure describes the unified

electromagnetic and weak nuclear forces in an elegant formalism summarised by the

GWS Lagrangian. The gauge structure itself does not present anything new compared

to QCD in that SU(2) is also a non-Abelian group whose structure constants are the

totally antisymmetric epsilon tensor, εijk. The hypercharge U(1) is no different from

the symmetry under a local phase change of QED with a different charge, Y . The gauge

sector now describes four gauge fields and the covariant derivative for this sector can

then be written as in the case of QCD with new gauge couplings g and g′ as:

Lgauge = −1

4
Wµν
i W i

µν −
1

4
BµνBµν , (1.12)

Dµ = ∂µ + ig ~Wµ + ig′
Y

2
Bµ. (1.13)

As a non abelian gauge field W i
µν has the same structure as the QCD field strength tensor

Gaµν , while the hypercharge field strength tensor corresponds to the QED-like Abelian

one, Bµν = ∂µBν − ∂νBµ. A distinguishing feature of the Electroweak interaction

with respect to QCD is that the interaction is chiral. This means that the left and

right-handed components of matter fermions transform in different representations of

SU(2)L. As suggested by the subscript, right-handed fermions are singlets under the

gauge groups meaning they transform in the trivial representation while left-handed

ones transform in the fundamental as doublets. The 3 generators can be represented by

the Pauli matrices, Ti = 1
2σi, which act on doublets of left-handed up and down-type

quarks, (u, d)L, (c, s)L and (t, b)L and also charged leptons and their neutrino, (νe, e)L,

(νµ, µ)L and (ντ , τ)L.

What further separates this sector from a theory like QCD is the fact that the weak

nuclear force is short-range. First observed in radioactive beta decay, it appeared to be

a four point interaction between an up quark, a down quark, a lepton and a neutrino.

This is explained by the fact that the gauge fields themselves are massive and their

propagation leads to a force described by a Yukawa potential ∝ exp(−Mr), with M the

mass of the force carrier. This implies that Electroweak symmetry must somehow be

broken since explicit mass terms for gauge fields, ∼M2AµA
µ, not originating from any

mechanism in particular manifestly break gauge invariance. In fact, naive fermion mass

terms also break gauge invariance in a chiral theory. Thus, a mechanism is needed to

generate the observed masses of the SM fields.
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1.4 Electroweak symmetry breaking

The SM describes the spontaneous breaking of the symmetry by a complex, scalar

SU(2)L doublet, φ, with hypercharge 1. The mechanism is attributed to a number of

people and is known in its most politically correct form as the Anderson-Brout-Englert-

Guralnik-Hagen-Higgs-Kibble-’t Hooft mechanism (ABEGHHK’tH for short). Writing

all of the allowed gauge invariant terms of mass dimension 4 describes the dynamics

of this field with the Lagrangian composed of the covariant kinetic term and a general

potential, V :

LHiggs = (Dµφ)†(Dµφ)− V (φ); φ =

(
φ+

φ0

)
, (1.14)

V (φ) = −µ2φ†φ+
λ

2
(φ†φ)2. (1.15)

with λ and µ real, along with some additional terms describing a Yukawa interaction

with matter fields:

LY ukawa = {Y d
ijQ̄

i
L φd

j
R + Y u

ij Q̄
i
L φ̃ u

j
R + Y e

ijL̄
i
L φ̃ e

j
R} + h.c. (1.16)

where Q and L denote quark and lepton SU(2)L doublets, d, u and e indicate down-type

quarks, up-type quarks and charged leptons respectively and the Yukawa couplings,Y f
ij

are a set of matrices over generational indices i, j. The conjugate field φ̃ = iσ2φ
∗ has

also been introduced. These Yukawa couplings account for 9 of the free parameters of

the SM.

The Higgs field allows for the presence of mass-like terms for both gauge bosons and

fermions that were formerly forbidden by gauge symmetry. Mass terms are then gen-

erated by allowing the Higgs field to develop a non-zero vacuum-expectation-value, dic-

tated by the minimisation of the potential described in Equation 1.14,

Φ†Φ = v2, (1.17)

v2 =
µ2

λ
; µ2, λ > 0. (1.18)

A simple way to express the minimised field is in so-called unitary gauge. Since only

the modulus squared of the Higgs field is constrained by Equation 1.17, a simple choice

is to set the value of one of the four real components to v. Provided the other three

components satisfy
∑
ϕ2
i = 0, we are free to choose any value for them, including zero.

Rotating around this invariant space lead to equivalent solutions to the Higgs’ equation

of motion while oscillations about the “radial” direction around v correspond to the
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physical, scalar degree of freedom of the Higgs boson, h(x).

Φ =

(
0

v + 1√
2
h(x)

)
. (1.19)

This gauge choice hides the presence of the unphysical Goldstone modes associated

with the broken generators of SU(2)L × U(1)Y . Expanding the gauge interactions and

potential using Φ leads to a canonical kinetic term for the boson h with mass 2λv2 along

with several self-coupling terms, a set of interactions between h and the EW gauge

bosons and, most importantly, their mass terms:

LEWSB =
1

2
(∂h)2 − λv2h2 − λv√

2
h3 − λ

8
h4 +

1

4

(
v + 1√

2
h
)2

×
(

2g2W+
µ W

µ
− +

(
BµW

3
µ

)( g2 −gg′
−gg′ g′2

)(
Bµ

W 3
µ

))
.

(1.20)

A basis rotation for the charged currents, W1,2, has been made defining the W bosons,√
2W± = W1 ± iW2, with mass MW = 1√

2
gv. The neutral current sector is then

diagonalised by moving to the basis (Z,A) using a rotation by the Weinberg angle θW ,

which – when related to the gauge couplings by Y g′ = g tan θW – allows one to identify

the two mass eigenstates of the photon and Z boson with masses of zero and MW
cos θW

.

The particular combination of the two diagonal generators T 3 and Y that makes up the

massless mode is precisely that which annihilates the vacuum, vi, implying that a gauge

transformation in this direction leaves it invariant. The other orthogonal combinations

which do not respect this correspond to the broken directions, continuously transforming

the ground state among degenerate vacua. Although the gauge symmetry is said to have

been spontaneously broken, it having been hidden is a better description of what has

happened given that the theory is still technically gauge invariant, just not manifestly

so.

It is commonly said that the massive EW gauge bosons have “eaten” the Goldstone

modes corresponding to the three broken generators in going from SU(2)L × U(1)Y →
U(1)EM . The now massive gauge bosons have accrued a longitudinal (zero helicity)

polarisation, for which ∂µAµ 6= 0, with which the Goldstone degrees of freedom can

be shown to mix [6]. The Goldstone equivalence theorem is a statement of this corre-

spondence between the Goldstone bosons of a spontaneously broken gauge theory and

the longitudinal polarisations of the gauge fields, V , stipulating that in the high energy

limit, E �MV , amplitudes involving the latter in external legs are equivalent to those

which they are replaced by the Goldstone modes themselves.

The masses of the W and Z bosons have been measured to be 80.385±0.015 and

91.1876±0.0021 GeV [7] respectively, fixing the value of the Weinberg angle. Measure-

ment of the Fermi constant, GF , associated with the effective description of the weak

interaction can then fix the value of the Higgs VEV to 246 GeV. The Higgs mass, on
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the other hand, is a free parameter of the theory. In fact, one can adequately describe

the mechanism of mass generation with an effective chiral Lagrangian in the decoupling

limit of the dynamical Higgs field i.e. taking mH →∞. However, in this limit problems

arise when considering vector boson scattering at high energies. For example, the am-

plitude for the process W+W− →W+W− shows an undersirable quadratic dependence

on
√
s, the centre-of-mass (CM) energy, arising from the logitudinal components of the

scattered particles. This implies a violation of unitarity at a scale around Λ =1.2 TeV

and is linked to the non-renormalizability of the effective theory, which describes only

the Goldstone bosons. Unitarity is restored by bringing the Higgs back into the picture

through its interactions with the vector bosons and also places an upper bound on the

Higgs mass of around 800 GeV [8].

1.5 Fermion interactions, masses and mixing

Considering the couplings with fermionic currents, we can now identify the electromag-

netic coupling, e = g sin θW , as the coupling of the photon with an electromagnetic

current of charge Q = T3 + Y/2, where T3 = ±1
2 is the eigenvalue of the corresponding

SU(2)L generator. The charged currents couple with strength g to the left-handed SU(2)

doublets in the weak basis, L, while the Z couples to a chiral current with couplings gL

and gR

L± = i
g√
2
W±

µ ψ̄
iγµPLψ

j , (1.21)

L0 = ieQAµψ̄γ
µψ − i e

sin 2θW
Zµψ̄γ

µ (PLgL + PRgR)ψ, (1.22)

gL = T3 −Q sin2 θW ,

gR = Q sin2 θW .
(1.23)

The fields W±
µ = T 1W1± iT 2W2 are associated with the correct combination of SU(2)L

generators as defined in the previous section. The chiral projection operators PL,R =
1
2(1±γ5) have been introduced here to single out left and right-handed Weyl components

of the Dirac spinors. Here, a new matrix,

γ5 =

(
I 0

0 −I

)
, (1.24)

in the Weyl basis, is defined which anti-commutes with the other γ-matrices of Equa-

tion 1.2, is Hermitian and squares to one, allowing for the convenient definition of the

projectors. The chiral nature of the EW interaction means that it explicitly violates

parity, as opposed to QCD.

The same spontaneous breaking is responsible for fermion masses via the Yukawa terms

described in Equation 1.16, with the Higgs field expanded around its VEV. Again, the
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Yukawa matrices are generically non-diagonal and must be diagonalised to obtain the

mass eigenstates of the theory. The change of basis occurs in 3 dimensional flavour space

and can be written as a separate unitary transformation on each of the the up, down

and charged lepton triplets

fαL → (Uf )αi f
i
L ; fαR → (V f )αi f

i
R ; f = u, d, e (1.25)

such that the mass matrices, Mf , are defined in the Yukawa terms as

LY ukawa = {Md
αβ d̄

α
L d

β
R +Mu

αβ ū
α
Lu

β
R +M e

αβ ē
α
Le

β
R} + h.c. (1.26)

Mf
αβ = v(Uf†)iαY

f
ij (V

f )jβ = δαβm
f
α (1.27)

This basis change propagates to the quark charged current interaction, making it non-

diagonal and described by the so-called Cabbibo-Kobayashi-Maskawa (CKM) matrix,

Vαβ:

L± = i
g√
2
VαβW

+
µ ū

α
Lγ

µdβL + h.c. (1.28)

Vαβ = (Uu†)i,α(Ud)iβ. (1.29)

The CKM matrix describes the mixing of quarks via the charged current interaction in

the mass basis. Although it is a complex 3 by 3 matrix, unitarity reduces the number of

degrees of freedom from 18 to 9. Furthermore, each quark field can be freely redefined

up to a phase, although an overall phase factor applied to all cannot be observed. This

reduces the degrees of freedom by a further 5, characterising quark mixing by 4 real

parameters. These are typically expressed by three mixing angles, θi and one complex

phase δCP that characterises CP-violation in the charged-current interactions. The

neutral current interaction, being diagonal in flavour space, is unaffected by this rotation

and therefore is CP-conserving. Note that all of the above remains in the assumption

of massless neutrinos. Neutrino oscillations observed in appearance and disappearance

experiments provide experimental evidence for non-zero neutrino masses making of the

most fundamental goals of extending the SM to incorporate neutrino masses in some

way. This will also lead to an equivalent mixing in the leptonic sector described by the

so-called Pontecorvo–Maki–Nakagawa–Sakata (PMNS) matrix.

1.6 State of the art

We can thus summarise the Standard Model as a renormalisable gauge theory with 18

free, continuous parameters listed as:

• 1 strong coupling constant αs = g2
s

4π

• 9 Yukawa couplings Yij
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SM rep. QEM SU(3)C SU(2)L U(1)Y

Gauge sector

Ga 0 8 – –

W± ±1 – T1± iT2 –

Z,A 0 – T3 Y

Fermion sector (3 generations)

(uL, dL) (+2
3 , −1

3) 3 2 1
3

uR +2
3 3 1 +2

3

dR −1
3 3 1 −1

3

(νeL, eL) ( 0, −1 ) 1 2 −1

eR −1 1 1 −2

Scalar sector

(φ+, φ0) ( 1, 0 ) 1 2 1

Table 1.1: Table collecting the SM gauge bosons and matter representations
along with the Higgs field detailing their gauge quantum numbers and electric
charges. The neutral gauge bosons Z,A are schematically denoted to belong
to both SU(2)L and U(1)Y being an admixture of the diagonal components of
both of these. The physical Higgs boson, h ⊂ φ0, is contained in the neutral
component of the complex scalar doublet and can be chosen as its real part.

• 4 quark mixing parameters θi, δCP

• 4 EW parameters mH , g, g
′, v or preferred combination thereof

The matter content can be classified according to its Lorentz transformation properties

and quantum numbers under the three gauge groups, in addition to the force carriers

associated to each one, as shown in Table 1.1.

The last 30 years of experimental particle physics have largely been devoted to precision

measurements of these parameters in order to test the theory. So far, it can be said that

the data agree extremely well with the SM hypothesis. However, one of the main missing

ingredients until very recently was that, although being the main ingredient in the

mechanism of EWSB, the Higgs boson itself had not been discovered and was beginning

to be constrained by Large Electron-Positron collider (LEP) and Tevatron data. This

milestone was finally reached in July of 2012 when the Large Hadron Collider (LHC)

collaborations announced the discovery of a resonant signal, first in the γγ channel

and subsequently in all of the measurable channels into which a Higgs could possibly

decay [9]. The mass of the particle in question has been measured to be between 125

and 126 GeV [10]. With this discovery, the “missing ingredient” of the SM seems to

have been discovered, although it remains to be seen whether its properties line up with

those postulated by the SM. It goes without saying that the precise measurement of

the production rates of this Higgs-like object in different channels and its branching
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fractions to its decay modes is an essential test of the SM and could provide insight into

physics beyond our current paradigm. One reason for this is that the couplings entering

both the primary production mode (gluon-gluon fusion dominated by top loops) and

discovery decay channel (γγ predominantly via both W and top loops) arise radiatively,

meaning that new, high scale physics could enter in these loops and modify the rates.

Many extensions of the SM (Supersymmetry, or SUSY, being the most widely quoted

example) also postulate the presence of more than one Higgs-like scalar field that could

share the burden of mass generation. In this case, couplings to the rest of the SM

particles could be shared in some way between the observed resonance and some, as yet

unobserved, particles. So far, with data from the two low-energy stages of the LHC (7

and 8 TeV), there have not been any truly significant deviations from the properties

predicted by the SM, bearing in mind that we are at the very beginning of a “precision

Higgs” era of particle physics.

1.7 Beyond

The success of the SM is beyond doubt in that it can account for an enormous amount

of experimental observations in a vast array of different sectors. The recent discovery of

a resonant object in the Higgs-like channels with angular distributions seeming to favour

that of a CP-even scalar [11] further solidifies the status of the SM as the state of the

art theory of fundamental interactions. That said, there are a number of reasons why it

is also widely accepted that the SM is, thankfully, not the final word in the theoretical

paradigm of particle physics. The very first, most glaring fact is that a consistent

formulation of gravity at the quantum level has yet to be discovered, not least since it

acts on a scale far removed from energies associated with the other forces, namely the

Planck scale MP ' 1019GeV. The SM only does the quarters of the job in accounting

for three out of the four known fundamental forces. A number of other reservations

arise from more aesthetical grounds in the form of arguments about hierarchies of scales

and “naturalness” while others are supported by experimental observations. Many of

the issues can be linked to the free parameters of the SM since, by definition, the model

itself does not explain why they take the particular values they do.

One such aspect of the free parameters is linked to the hierarchy in the masses of

known fermions. It was already alluded to that the very small neutrino masses are not

included in the standard formalism, even though their necessity has been determined

experimentally. However, even without their inclusion, there is already a difference of

six orders of magnitude between the top quark mass and that of the electron. This

translates directly to a hierarchy in the Yukawa parameters. If one were to naively add

neutrino masses assuming they arise from the same mechanism, said hierarchy would

grow to 12 orders of magnitude. Such large differences between professed fundamental

parameters of a theory do not sit well with most theoreticians and most people would
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find it preferable to find a deeper reason for the range of scales spanned by the fermion

mass spectrum.

Yet more potential discomfort with the SM can be associated to the Higgs boson and

its self coupling, λ. While it is essentially a free parameter at our scales, it is subject

to radiative corrections and therefore has an intrinsic scale dependence as discussed for

the strong coupling in Section 1.2. One of the requirements of the Higgs mechanism is

the positivity of this quantity, which ensures the mexican hat or wine bottle shape of

the potential that allows for the development of a nonzero VEV. Furthermore, if the

the coupling runs negative at some scale, µ, it may imply the existence of another, en-

ergetically favourable vacuum, rendering our present state unstable. From this stability

bound, one can derive a lower limit on the Higgs mass by requiring that the lifetime

of our current vacuum state tunnelling into the lower vacuum be longer than the age

of the universe. One may also ask for λ(µ) not to become too large since the Higgs

mass is defined in terms of it (Equation 1.18) and, given the fact that these calculations

are performed perturbatively, we would like the interaction to also remain perturbative.

In the limit µ → ∞, the only solution satisfying this is λ =0. If, on the other hand,

one assumes that some new physics appears at a higher scale, Λ, requiring λ(Λ) ≤ 1

translates to a maximum Higgs mass. Since we would not expect the value of mH to be

greater than Λ, an upper “triviality” bound on the Higgs mass of around 1 TeV can be

obtained.

In principle, none of this presents any problems since it so happens that the mass of the

observed resonance as well as the values of the parameters that contribute most to the

running of λ, mtop and αS , appear to take values which may not violate either of the sta-

bility or triviality conditions up to MP , bearing in mind that the theoretical uncertainty

on such a statement is non negligible. However, calculating radiative corrections to the

Higgs mass itself using a cutoff regularisation scheme, or the Higgs’ two point correlation

function as opposed to the four point one, reveals a quadratic sensitivity to the assumed

cutoff. The dominant contributions come from top quark loops, EW gauge bosons, and

the Higgs self couplings. Since we associate this cutoff to the scale at which new physics

appears, Λ, one would hope that it is not too far off. Otherwise, renormalising the quan-

tity by setting the bare mass to cancel the potentially large contributions to restore a

Higgs mass around the EW scale becomes increasingly fune-tuned to higher and higher

orders of magnitude as we increase Λ. This questions the naturalness of the theory,

which admits a fundamental scalar whose mass is not protected by any symmetry in the

way that gauge boson and fermion masses are protected by gauge and chiral symmetries

respectively. This “protection” is manifest in the observation that setting, for example,

the fermion mass to zero increases the symmetry of the Lagrangian by restoring exact

chiral symmetry [12]. Consequently, the radiative corrections to the fermion mass are

proportional to the mass itself and therefore vanish in this limit.
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The so-called hierarchy problem in the SM can be expressed through the vast differ-

ence in the EW and Planck scales, between which the SM does not predict anything

until gravitational interactions become important. Assuming MP as our cutoff requires

a vast fine-tuning of mH to 30 orders of magnitude to prevent the Higgs mass from

being pulled up to the high scale. In order to avoid these issues, theories beyond the

Standard Model (BSM) can invoke the presence of new particles that interact with the

Higgs in a way that cancels the quadratic divergences. Other possibilities include pos-

tulating the Higgs as not a fundamental but a composite state arising as a pNGB of a

dynamically broken symmetry at a higher scale, thus providing a low cutoff for the SM.

Alternatively, the Higgs can also occur as a dilaton of a higher conformal field theory.

The presence of extra dimensions can also serve to dilute relative strengths of forces.

Allowing gravity to propagate in the bulk, for example, can explain why gravity appears

so weak in our 4-dimensional world, potentially reconciling the EW and Planck scales.

Some phenomenology of examples of the two latter types of models will be presented in

this thesis.

Although the topic is somewhat further removed from the collider-oriented discussions

of this work, one should at least mention that the validity of the SM is also questioned by

cosmological observations. From a fundamental point of view, the dominance of matter

over anti-matter in the observable universe cannot be explained by the SM. Furthermore,

concrete astronomical data regarding galaxy rotation curves, velocity dispersions and

gravitational lensing, to name a few, predict that visible matter can only account for

15% of the total matter content of the universe. In the standard model of cosmology,

ΛCDM, the additional mass is termed dark matter as is not accounted for by the SM.

Further still, another 70% of the mass-energy of the universe, termed dark energy, which

is necessitated by the observations that the expansion of the universe is accelerating,

also remains unexplained. It is plausible that some or all of these observations can be

accounted for in a particle physics context.



Chapter 2

The top quark

The top quark, aside from the recently discovered Higgs candidate discussed in Chapter 1

is the heaviest and most recently discovered fundamental particle in the context of the

Standard Model. Its existence was suspected since the observation of the bottom quark

in 1977. The fact that the SM was capable of describing a great deal of observations by

grouping quarks into weak iso-doublets, in addition to an elegant three family structure

to mimic the lepton sector suggested that an “up” type quark was yet to be discovered.

Its large mass was hinted at by precision EW fits made with LEP data and it was

finally discovered at the Tevatron in 1995 [13]. While it was certainly unexpected that

it would be so much heavier than the rest of the quarks, the discovery of the top quark

spawned a new branch of particle physics which can now be counted amongst the most

active sectors in the field today. On the one hand, its very large mass is the main

culprit in the mysterious fermion mass hierarchy while on the other, the very same

property makes it comparatively much closer to the EW scale and thus the mechanism

behind mass generation. The most accurate measurement of the top quark mass to

date, summarised in the recent LHC combination [14], which also uses the previously

published Tevatron combination [15], quotes a value of 173.3±1.4 GeV, combining both

statistical and systematic uncertainties. This sub-percent precision is a testament to

the fact that we are in an era of precision top physics where many quantities are being

measured with accuracies that are beginning to supersede the theoretical precision of

higher order QCD calculations involving the top.

This chapter summarises the main features of the top quark and the motivations for

searching for new physics in its production and decay. Experimental considerations

on how tops decay and are reconstructed at collider experiments are reviewed. The tt̄

channel is then discussed, defining the charge and spin asymmetry observables considered

in this work.

15
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2.1 Motivation

As mentioned, one of the main motivations for studying the top quark is the fact that,

since its mass is so large, it must be strongly coupled to the EW symmetry breaking

sector, namely the Higgs boson in the SM. In light of the recent discovery of a Higgs-

like resonance at the LHC, the importance of pinning down the properties of the top

quark as well as investigating possibilities of new physics connected to it is clear. As

discussed in Section 1.7, the top quark is not only the main contributor to the quadratic

divergence in the radiative corrections to the Higgs mass, it also plays an important role

in its production and decay at collider experiments. The primary production channel

is via gluon-gluon fusion to which the top loop is the main contributor, while the top

also provides the largest fermionic loop contribution to one of the key investigation

channels at the LHC, the decay to two photons, h→ γγ. Both of these are mediated by

the large Yukawa coupling of the top quark, for which the SM does not offer a natural

explanation. As a consequence, the top is often an important part of BSM scenarios that

seek to connect the large top mass with an alternative or more fundamental mechanism

for EW symmetry breaking.

Finally, one of the key features of the top quark with respect to the work presented here

is its extremely short lifetime due to its large decay width, Γt. The fact that Γt ∼ 1.3

GeV is so much higher than the typical hadronisation scale of quarks, ΛQCD, means that

it decays almost immediately after it has been produced and most importantly, before

hadronisation. This allows the top quark to pass on information to its decay products,

something that lighter quarks cannot do before the hadronisation process washes out

their partonic features. Naturally, this means that the top quark is a very different object

from other quarks whose collider signatures are all characterised by single, hadronic jets,

albeit with potentially discernible characteristics in the case of b- and c-jets. Although

the top will be visible through the reconstruction of its decay products, an undoubtedly

more difficult task than reconstructing a single hadronic jet, the rewards lie in the

extra information that has been preserved in these daughter particles, allowing for the

determination of the spin, charge and parity of the parent top. Thus the top is the

closest one can get to observing a free quark, something which one can take advantage

of by defining other observables, discussed later, which cannot be defined for lighter

quarks and, indeed, all non-decaying objects. From both a theoretical and experimental

point of view, it is fair to say that, in the top quark, we have an important player in the

field of modern particle physics through the LHC era and beyond.

2.2 Reconstructing a top decay

When a top quark is produced at a collider experiment, it decays via the EW charged

current interaction W±µ t̄Lγ
µbL of Equation 1.21, since the CKM element Vtb ∼ 1. The
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process is then t→ bX where the two-body system, X, is the pair of leptonic or hadronic

decay products of the virtual W boson. Thus a decaying top will yield a jet associated

with a b-quark along with either a charged lepton and missing energy from the neutrino

or a pair of light quark jets as depicted in Figure 2.1. The leptonic mode allows for a

t

b

W+

l+(q̄′)

νl(q)

(Vqq′)

Figure 2.1: Feynman diagram for the leptonic(hadronic) decay of a top quark.
In this case, q and q′ denote a first or second generation up and down type
quark respectively, and the decay rate is proportional to the corresponding
CKM element |Vqq′ |2.

simple identification of the top charge with the drawback of missing energy. The hadronic

mode does not have any missing energy but suffers from a poorer energy resolution in

reconstructing jets compared to leptons. Furthermore, the absence of any leptons in

the signature leads to more difficulty in distinguishing this mode from the large QCD

background present at hadron colliders. It is clear that the task of reconstructing a top

quark will be a relatively involved process using potentially all layers of the detector from

the tracker through to the muon detector. This will have an impact on the efficiency

with which events containing top quarks can be accurately identified and reconstructed.

There are a number of important factors that should be elaborated on in more detail.

b-tagging

Mesons produced in the hadronisation of a b-quark have characteristic lifetimes which

mean that they decay within the detector as opposed to light quark hadrons which have

much longer lifetimes. Because of this, b-jets tend to originate at a displaced point with

respect to the production vertex of the quark itself. This information combined with

several other, more subtle, kinematical considerations and possibly also requiring the

presence of a lepton arising from the semi-leptonic decay of a b-hadron can be combined

into some algorithm which allows for the differentiation of b-jets from light quark and

gluon initiated jets. A variety of algorithms are used, none of which are foolproof

but nonetheless perform well in separating these objects, with the exception of charm

quark jets, which sometimes also lead to similar signatures. b-tagging is an important

component of not only top physics but various other major analyses performed the CMS

and ATLAS collaborations such as Higgs searches and supersymmetry. As such, it is

important to have a good understanding of the efficiencies and mis-tagging rates of these

algorithms and to tailor them to suit the analysis at hand [16].
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Neutrino momenta

The leptonic decay of a top quark presents both advantages and inconveniences in the

sense that, even though two out of the three possible daughter leptons (e, µ) are much

cleaner objects which can be reconstructed efficiently and accurately, the associated

neutrino does not interact with the detector at all. The decay involving τs is treated

separately since it is, in itself, a decaying object. The only information that may sug-

gest the presence of a neutrino is the fact that net momentum in the plane transverse to

the beam direction should be conserved and may not appear so if a neutrino has been

produced. This statement is only true at parton level and is partially spoiled by a combi-

nation of initial state radiation and Parton Density Function (PDF) effects. Nonetheless,

to a good approximation, the component of missing transverse momentum, /pT , can be

equated to the actual pT of invisible objects in an event. In the case of a decaying

top, the single neutrino momentum can be determined in principle by assuming that it

originates, together with the lepton, from the decay of a W -boson i.e. (pν + pl)
2 'M2

W .

This leads to a quadratic equation in the unknown longitudinal (z) component of the

neutrino four-momentum, which is the same as its energy since it is effectively massless

(p2
ν ' 0). The subsequently two-fold degeneracy can be resolved by assuming that the

three daughter particles arose from the decay of a top such that (pν + pl + pb)
2 ' m2

t .

2.3 The tt̄ channel

Having highlighted the fact that the top quark is one of the most important particles

investigated at current generation of collider experiments, it is relevant to briefly discuss

how it is produced and observed. The multi-TeV energies of the two most recent hadron

colliders (LHC and Tevatron) have been ideal for producing tops either in pairs or on

their own associated with either a lighter quark or a W boson. Since the top quark

essentially cannot be found in the proton, the single top modes will always involve

at least one weak interaction, while the pair production occurs purely via QCD and is

dominated by gluon-gluon fusion. Figure 2.2 depicts the Feynman diagrams for tree-level

QCD production of the tt̄ final state. The PDF for the gluon initial state is dominant

over that of a quark and anti-quark at the LHC at lower partonic momentum fractions.

This can be illustrated by considering the parton luminosities, L, of the two initial states

as a function of partonic centre-of-mass (CM) energy,
√
ŝ. These are defined as [17]:

Lij ≡
τ

ŝ

dLij
dτ

=
τ/ŝ

1 + δij

∫ 1

τ
dx [fai (x,Q2)f bj (τ/x,Q2) + faj (x,Q2)f bi (τ/x,Q2)]/x, (2.1)

where fhp (x,Q2) is the PDF, representing the probability of finding a parton, p, carrying

a fraction, x, of the momentum of a hadron h defined at a factorisation scale, Q, and

τ is the ratio of the collider and partonic CM energies. They are constructed to have
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Figure 2.2: Feynman diagrams for leading order tt̄ production via QCD. The
main production mode is via the three gluon initiated diagram with an addi-
tional s-channel gluon mediated qq̄ initial state.
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Figure 2.3: Parton luminosities as defined in Equation 2.1 for the gluon-gluon
(red) and quark-antiquark (blue) as a function of partonic CM energy,

√
ŝ, for

the LHC at 8 (dashed) and 14 (solid) TeV. The CTEQ6L1 leading order PDF
sets were used at a factorisation scale Q =

√
s.

the dimensions of a cross section and provide an idea of the relative importance of

different initial states while capturing the behaviour of certain typical (s-channel) cross

sections that fall off with ŝ. Figure 2.3 compares the gluon-gluon luminosity to the

quark-antiquark one using the CTEQ6L1 [18] PDF sets, clearly showing that for a large

part of the lower energies, the gluons dominate with the cross-over occurring around

1–2 TeV. This corresponds well with the tt̄ threshold and reinforces the fact that the

production cross-section for tt̄ is larger than that of single top production. Therefore,

pair production the optimum way to produce large top quark samples at the LHC. In

fact, the LHC has often been labeled as a “top factory” due to the large tt̄ event rate

expected at its design energy of 14 TeV. For this reason, the tt̄ invariant mass distribution

is a promising place in which to look for new physics in the search for potential resonant

objects or deviations from SM predictions. This will be one of the main observables

presented in the Z ′ studies presented in the later chapters and is essentially a counting

exercise where events are binned according to their invariant mass, Mtt̄.
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In addition to being important for SM tests and BSM searches in its own right, the

tt̄ channel is also an important background to many other analyses, whose signatures

the top decay products could mimic. It is therefore important that the theoretical

uncertainties on top pair production be well under control. Thanks to the large top

quark mass, the top pair threshold is an energy at which perturbative QCD calculations

can be trusted and the determination of integrated and differential top quark observables

to higher and higher orders at hadron colliders is an active field. This is particularly

relevant since QCD is a strongly interacting theory. As an example, the multiplicative

k-factor associated with going from tree-level to next-to-leading order (NLO) inclusive

tt̄ production at the LHC is of order 100%. Various higher order QCD [19] and pure

or mixed EW [20] NLO (α3
S , α

2
SαEW ) corrections have been calculated in the past 30

years and the latest calculations for this process are at Next-to-Next-to-Leading Order

(NNLO) in αS and also incorporate the resummation of some large logarithms. This

is a procedure by which logarithmic terms, L, that are determined to be large in the

perturbative loop calculations are included by an exponentiation of the perturbative

series taking αSL as a new expansion parameter. In this way, partial higher order

terms determined to be dominant are included to all orders in the hope that they better

approximate reality and reduce theoretical uncertainties such as the sensitivity to the

factorisation and/or renormalisation scale. To quote a recent result, the inclusive tt̄

production cross section at the LHC with centre-of-mass energy,
√
s = 14 TeV, calculated

to NNLO and resumming Next-to-Next-to-Leading Logarithms (NNLL) is 953.6 pb with

a total uncertainty of about 4% [21]. Thus a nominal integrated luminosity of 100 fb−1

at the high energy run of the LHC should produce around one hundred million tt̄ events.

On the experimental side, measurements of the tt̄ production rates have been made at

both low energy stages with the LHC combination for 7 TeV determined to be 173.3±10.1

pb while a number of uncombined measurements have been made in different channels

by both the CMS and ATLAS collaborations for the 8 TeV run quoting a rate of 220-

240 pb with uncertainties around 15% [22]. These can be compared with the predictions

in [21] of 172 and 246 pb for the two energy stages, showing overall consistency between

theory and experiment. The recent progression to a full NNLO calculation means that

the degree of theoretical uncertainty has decreased compared to the most recent LHC

measurements. Such progress is always important to maintain as experimental uncer-

tainties continue to decrease with increasing statistics and a better understanding of

detector systematics.

The tt̄ system can, like for the single top decay, be characterised by the decay mode

of the two W bosons with three possibilities termed fully hadronic, semi-leptonic and

di-leptonic. Decays including τ leptons are often considered apart since they are also

unstable objects. Their branching fractions are 45.7%, 43.8% (30% of which are τ ’s)

and 10.5% (56% of which contain τ ’s) respectively [23]. The reconstruction of these

events involves some additional complications compared to the single case. Firstly, the
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di-leptonic channel now includes two neutrinos, meaning that even with the constraints

discussed in the previous section, the system is under-constrained since now the number

of unknowns has grown to four (the three momentum components of one neutrino and

the longitudinal component of the other). Reasonable solutions can be determined by

a combination of analytical and numerical methods including fits to simulated neutrino

spectra [24], paying the price of larger systematic uncertainties and poorer mass resolu-

tions. One the other side, the presence of two leptons and a minimum of two jets, two

of which should fulfil b-tagging requirements, makes this a very clear signature, unpol-

luted by a large amount of hadronic activity. The fully hadronic channel represents the

opposite case where one is faced with a large jet multiplicity and the additional combi-

natoric issue of which light quark jet to associate with which W boson. Typically the

semi-leptonic channel is favoured for the majority of analyses as a compromise between

the two where the neutrino momentum ambiguity is soluble and there are not too many

light jets.

2.4 Asymmetries at colliders

The most basic measurements that one can perform at collider experiments involve mea-

suring rates by counting events. Selecting reconstructed events that meet certain require-

ments related to particle content and kinematics then enables you to test hypotheses

which may predict deviations from SM expectations. Naturally, a good understanding

of the detectors environments, backgrounds and theoretical predictions is required in

order to quantify the uncertainties involved in making a particular measurement. Pure

statistical uncertainties aside, these can vary from uncertainties in object reconstruction

stemming from detector limitations or intrinsic uncertainties on collider parameters such

as the beam luminosity on the experimental side to Monte Carlo (MC) systematics or

scale and PDF uncertainties on the theoretical side. Much of this depends on the type

of objects being sought out and the information needed to construct the observable in

question.

Beyond counting experiments, asymmetries are a class of observables designed to reduce

errors by taking a ratio of events rather than an absolute number. It is clear that

taking ratios of quantities measured in a similar way can reduce the dependence on

common factors and hence the systematics associated with these. The dependence on

the luminosity, L, for example, drops out since number of events are related to cross

sections, σ, by N ∝ Lσ. This is beneficial as the luminosity uncertainty, limited by

our understanding of the collider beam itself rather than detector effects, will not affect

the uncertainty in an asymmetry. Furthermore, such observables also are typically not

dependent on the normalisation of background fits to data. Often, these observables

provide different information from cross section measurements and can be useful to both

test the predictions of the SM and also have the potential to investigate the properties of
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new physics. Asymmetries are defined taking a total number of events, NT , and defining

a criteria by which to divide them into two categories, NA and NB. The observable is

then constructed as:

A =
NA −NB

NA +NB
. (2.2)

From here, one can then define the statistical uncertainty on an asymmetry observable

starting from the statistical uncertainty on the cross sections that given rise to NA and

NB observed events assuming they obey Poisson statistics. For sufficiently large N , the

events will be distributed according to a Gaussian with mean N and standard deviation,

or error,
√
N giving

δσ =
δN

L =

√
σ

L , (2.3)

δA =

√
1−A2

Lσ . (2.4)

This measure will be used throughout this thesis. Naturally, both uncertainties scale

inversely with increasing integrated luminosity. Furthermore, δA has a nonlinear depen-

dence on the A, as opposed to a cross section measurement, and scales as a function of σ

in the same way as its relative error ∼ δσ/σ. The work discussed in this thesis focuses on

two types of asymmetries commonly considered at collider experiments, termed charge

and spin. The focus will remain on the tt̄ channel although such observables can be

measured in other final states.

2.4.1 Charge asymmetry

Charge or spatial asymmetry in collider physics is a measure of the symmetry of a

particular process under charge conjugation. For an interaction which preserves CP , this

translates into an asymmetry in the angular (spatial) dependence of the matrix element

for the production of a two-body final state. At a hadron collider, for example, defining

a polar angle, θ, as the angle between a final state particle and one of the incoming

partons in the CM frame, variables that are function of this angle can be constructed

to probe the asymmetry of the distribution of said angle. Such an asymmetry can

only be generated from a charge asymmetric initial state such as qq̄, as opposed to, for

example, the gg initial state. In QCD, the asymmetry for the tt̄ final state is generated

dominantly at NLO via the interference of leading order qq̄ → tt̄ (see Figure 2.2) with the

corresponding box diagram as well as by the interference between initial and final state

gluon radiation [25]. As will be discussed later, the fact that QCD is a purely vector-like

interaction means that the asymmetry cannot be generated at tree-level. There is also a

subleading contribution from EW processes, both at tree- and loop-level from the chiral

(parity violating) Z and/or W couplings as well as a very small effect similar to the
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QCD contribution arising in QED. Charge asymmetry is one of the most well known

asymmetry observables and has been used since the advent of collider experiments. The

issue of defining the observable depends on the collider setup and relies on the ability

to define an absolute reference direction as will be discussed by comparing the cases of

the Tevatron and the LHC.

Tevatron

The Tevatron, being a pp̄ collider, is an ideal place to measure spatial asymmetries

since the polar angle in the collider frame can more or less be identified with that of

the CM frame modulo PDF effects. Statistically, both incoming partons will be valence

quarks and an absolute preferred direction can be unambiguously defined. The forward-

backward asymmetry AFB, arguably the simplest way to define the charge asymmetry,

splits the fiducial region of the detector into two hemispheres and compares the number

of (anti-)tops detected in either side.

AFB =
Nt(t̄)(y > 0)−Nt(t̄)(y < 0)

Nt(t̄)(y > 0) +Nt(t̄)(y < 0)
, (2.5)

where y is the rapidity of the observed (anti-)top and Nt(t̄) denotes the number of (anti-

)top quarks observed in the forward (y > 0) or backward (y < 0) direction. The rapidity

is defined in terms of the observed quark four-momentum as follows:

y = ln

(
E + pz
E − pz

)
, (2.6)

where E and pz denote the energy and z-momentum of the quark and the z-direction

coincides with the beam axis. For this observable, the SM prediction is of order 5%,

and, interestingly, both the CDF and D∅ collaborations report a deviation [26] from this

expectation. This has generated a good deal of discussion and, so far, it appears difficult

to reconcile the deviation of the AFB measurement with the apparent consistency of

production cross section measurements with the SM prediction.

LHC

The definition of a charge asymmetry at the LHC, however, is somewhat more involved.

First, the C -symmetric di-gluon initial state dominates for a significant amount of the

invariant mass range for tt̄ final states, until the parton luminosities for qq̄ become

dominant, matching that of gg at around 1–2 TeV and remaining significant from there

on, as shown in Figure 2.3. This large zero contribution dilutes the predicted SM

asymmetry down to ∼ 1%. Secondly, even when the contribution from initial state

quarks becomes important, the fact that the pp initial state itself is also C -invariant
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necessitates a redefinition of the measured quantity. In this case, no preferred direction

can be defined because the incoming quark will generally be a valence quark, while the

antiquark must come from the sea, making it equally likely that the quark came from

either proton. However, one can exploit the fact that the incoming quark will statistically

carry a larger momentum fraction than the anti-quark, resulting in a correlation between

the boost of the tt̄ frame and the direction of the incoming quark. Thus, specifying the

polar angle as the angle between the incoming quark and the outgoing top quark, for

example, one would expect the top rapidity distribution in the lab frame to be different

from the anti-top one. This is illustrated in Figure 2.4 where the two possibilities for the

direction of the incoming quark are depicted for a given event producing the tt̄ system

in a fixed axis in the CM frame.

a)

q q̄

t

t̄

θ ytt̄
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q̄ q
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Figure 2.4: Schematic diagrams depicting the kinematics of a qq̄ → tt̄ event
at the LHC where the quark came from a) the left or b) the right side proton.
The left column shows the process in CM frame while the right hand column
represents the observable polar angles of the top after boosting to the lab frame.

It is clear that these two configurations correspond to the partonic process characterised

by two opposite angles, θ and θ′ = π − θ. Assuming that the tt̄ system will be boosted

in the direction of the incoming quark, the left hand side sketches the resulting angles

θ
(′)
t of the top quark in the lab frame. Possibility a) leads to an increase in the top

rapidity and a corresponding decrease in that of the anti-top, while possibility b) does

the opposite. Therefore, a degree of angular asymmetry in the partonic matrix element,

i.e. M(qq̄ → tt̄; θ) 6=M(qq̄ → tt̄; θ′), will lead to different rapidity distributions for the

top and anti-top.

The asymmetry can then be measured by exploiting this fact and a number of methods

are employed at the LHC. One possibility is to restrict the rapidity range over which

the top quarks are selected [27] and comparing the number of tops and anti-tops in



Chapter 2 The top quark 25

that region. Alternatively, one can construct variables that are function of the absolute

rapidity difference of the top and anti-top, ∆y = |yt| − |yt̄|, which is sensitive to the

CM polar angle and independent of the tt̄ frame boost. Several incarnations of this

observable are used throughout this work and they will be defined as they are used. An

important final point to make concerning these observables at the LHC is that it is also

possible to enforce certain kinematic selections that attempt to reduce the gluon-gluon

initiated tt̄ events which serve only to dilute the measured value of charge asymmetry. A

simple choice is to recognise that, as opposed to the qq̄ initial state, the two momentum

fractions of the two initial state gluons should be more similar, leadings to lower boosts.

Choosing events that are more boosted [28] can help to reduce the dilution effect of

gluon initiated processes.

2.4.2 Spin asymmetries

As discussed before, one of the interesting features of the top quark is the fact that

it decays before hadronising and passes charge and spin information onto its decay

products. Specifically, the angular distributions of the decay products of the top quark

depend on the its initial polarisation. This can be defined in different bases, a popular

choice being the helicity basis, where the spin of the top is quantised in its direction

of motion. The helicity eigenstates are related to chirality states and are equivalent to

them in the massless limit. Calculating the polarised matrix element for the top decay

diagram shown in Figure 2.1, gives

M
(
t(λt)→ b f f̄

)
= 2g4|Vff̄ |2pb · pf

(
pf̄ · (pt −mt λtη3)

)
S
(
pf · pf̄

)
(2.7)

where S(Q) is the W propagator function carrying momentum, Q, and ηi is a spin four-

vector for a top quark of momentum pt as commonly used to project out polarisation

states in a Lorentz covariant way [24, 29]. They form an orthonormal basis, ηi ·ηj = δij ,

and obey ηi · ~pt = 0. The third of these, η3, is used to obtain the component in the

direction p̂t.

S(Q) =
1

(Q2 −M2
W )2 +MWΓ2

W

(2.8)

ηµ3 =


(
|~pt|
mt
, Emt p̂t

)
(
0, δij

)
if |~pt| = 0

(2.9)

Equation 2.7 clearly shows that the polarisation state of the decaying top, λt = ±1, in

this basis will determine relative angles between decay products. Performing the full

phase space integration shows that the differential decay width of the top with respect
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to the angle of one of its decay products goes as:

1

Γt

dΓ

d cos θi
∝ (1 + Pκi cos θi), (2.10)

a result commonly cited in the literature (see, for example [30, 31, 32, 33]). Here, the

angle θi, refers to the angle of the decay product with the spin quantisation axis while

κi is a kinematical factor termed “spin analysing power” which depends on the decay

product in question. For charged leptons, for example, κ = 1, while for the b-quark

it is reduced to 0.4. In the case of tt̄, there are many decay products and correlations

between angles of decay products coming from each particle that may also be useful

to consider. It is important to note that, experimentally, the polarisation is measured

together with the spin analysing power of the given channel. Extracting the true value

of P relies on making assumptions on the κ’s, typically by using those predicted by the

SM. This assumes that no new physics effects such as modifications of the tbW vertex are

significantly altering the top decay process. The double angular differential distribution

of a pair of fermions coming from the tt̄ decay can similarly be written as [31, 34, 35]:

1

σ

dσ

d cos θtd cos θt̄
∝ (1 + Ptκt cos θt + Pt̄κt̄ cos θt̄ + Cκt̄κt cos θt cos θt̄) (2.11)

where the angles are again relative to the spin axis with subscripts t and t̄ specifying

the parent particle and C is a real coefficient. The κt(t̄)s denote the spin analysing

power of the given final state particle coming from each decay. Both of these angular

properties can be translated to asymmetries measured at colliders which provide useful

information on the net polarisation and correlations in a sample of top quark events.

All of the observables used in this work are constructed at the level of the partonic tops,

before decay and can be defined directly in terms of the helicities of the outgoing tt̄ pair.

However, measuring these coefficients experimentally would eventually require analysing

their decay products. The spin information can also be extracted by considering non

angular distributions such as their energy fractions and pT distributions.

The two observables considered are the so called top polarisation or single spin asymme-

try, AL, and the spin correlation or double spin asymmetry, ALL. The former observable

measures the net polarisation of the top (or anti-top) quark in a sample by comparing

the number of positive and negative helicities, while summing over the helicity of the

other.

AL =
N(−,−) +N(−,+)−N(+,+)−N(+,−)

N(−,−) +N(−,+) +N(+,+) +N(+,−)
(2.12)

where the N(λt, λt̄) denotes the number of events observed with arguments, ±, referring

to the helicities of the top and anti-top respectively. The spin correlation, on the other

hand, compares tt̄ events where the top and anti-top have like helicities to those with
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unlike helicities:

ALL =
N(+,+) +N(−,−)−N(+,−)−N(−,+)

N(+,+) +N(−,−) +N(+,−) +N(−,+)
. (2.13)

Both observables are extracted from fits to the angular distributions of the reconstructed

decay products and correspond to the P and C coefficients of Equations 2.12 and 2.13.

We will see in the next chapter that these asymmetries are sensitive to the presence

of new resonant physics in the tt̄ channel and are therefore particularly useful in the

context of Z ′ physics.

2.5 Reconstructing tt̄ observables

It is clear that the tt̄ channel offers a wide choice of observables that are sensitive to

new physics, particularly in the way of asymmetries. As mentioned, one of the primary

complications of such analyses is the difficulty in reconstructing the six-body final state

that results from the pair production of tops. Ideally, one would perform a full chain of

event generation, showering and hadronisation, culminating in a detector simulation to

get an accurate representation of the reconstruction process for observables of interest.

The associated efficiencies will depend on the information required for the observable

and the particular decay channel of the tt̄ system. That is to say that, depending on

what methods are used to extract a potential signal, the fraction of the number of events

observed compared to the true number of tt̄ pairs produced may differ. Since the studies

presented in this thesis are limited to be at parton level, without subsequent decay of

the tops, it was necessary to employ reasonable estimates of reconstruction efficiencies

such that the predictions for the observables at the LHC correspond better to the reality

of a detector environment. These are estimated in a conservative manner by gauging

the efficiencies of the primary requirements of each observable in each decay channel

and using a net efficiency weighted by the associated branching fraction.

The common experimental requirement between the asymmetry observables of interest

and also the invariant mass distribution is a full reconstruction of the tt̄ system. The

only extra information needed for the asymmetries is the angular distributions of the

decay products of one or two the tops when extracting the top spin observables. In the

case of resonant physics, being able to represent the asymmetries in a binned way, like

the cross section, would certainly be beneficial to extract the most information possible,

given the striking lineshape of a resonant object. An important consideration for the

analysis of new physics at several TeV is the likely boosted nature of the final states

which will have an impact on the reconstruction process. As the scale for new physics

is pushed up by ever increasing collider limits, particularly in the context of resonant

objects in tt̄, more and more energetic final states will be produced. As a result the

decay products of the tops, back to back in its rest frame, will tend to become more
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collimated as this frame is boosted with respect to the lab frame. This means that many

traditionally reliable measurements such as b-tagging, invariant mass reconstruction and

lepton isolation become hampered and must be adjusted. A variety of pruning and

jet substructure methods are applied at the LHC [36] and quote efficiencies of about

30-40% to tag a hadronic top and a number of analyses have used such methods in

recent resonance searches [37, 38], showing that including the boosted methods increases

sensitivity to higher tt̄ masses. The weighted efficiencies are quoted to be around 5 or

6% from each of the fully hadronic and semi-leptonic channels. As yet there are no

asymmetry measurements nor analyses in the di-lepton channel using these techniques.

Therefore, a total 10% efficiency is chosen as a conservative estimate to reconstruct high

mass tt̄ events. It is fair to say that the validation of boosted top reconstructions is a

work in progress at the LHC and it is consequently difficult to estimate the efficacy of

the varying methods used to apply to the parton level results presented in this work.

It is therefore clear that, although not discussed further in this thesis, a validation of

the forthcoming results including top decay, parton showering and detector effects is

necessary.

Charge asymmetry measurements can be made in any of the three tt̄ decay channels

and a reconstruction of the top four momenta, after potential top-tagging using boosted

methods, is sufficient to obtain the quantity and nothing extra is needed beyond sufficient

statistics to represent them as a function of Mtt̄. It is true, however, that determination

of the top quark charge may be less precise in the case of a fully hadronic tt̄ system.

This can be done by looking at the average charge of tracks coming from a b-jet. For the

studies presented later, the same reconstruction efficiency estimate of 10% is used for

this observable as for the differential cross section. Spin asymmetries are more compli-

cated to measure due to the need for reconstructing the angular distributions of decay

products. What is clear is that the boosted systems will inhibit the measurement of such

quantities as the collimation of the decay products approaches the angular resolution

of the calorimeters. At this stage, a lack of experimental analyses makes it difficult to

estimate how well they can be measured at high pT . The top polarisation, has been

discussed in this context and several potential solutions have been proposed, moving

away from the requirement of fully reconstructing the decay products [33, 39]. Mea-

surement of the spin correlation requires angular information from the decay products

of both tops and should be even more difficult to reconstruct. Different reconstruction

efficiencies were assumed in different studies showing the trend of becoming increasingly

conservative as the importance of this issue became clearer. In fact, it may altogether

be more realistic not to rely on being able to present the asymmetries in an observable,

such as Mtt̄, that requires the full reconstruction of the tt̄ system.
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Z ′ physics and asymmetries

The term “Z ′” most generally refers to any observed neutral resonance in a fermion–anti-

fermion mass spectrum beyond those of the SM. Such a generic definition means that

these objects are often present in many BSM scenarios, arising for a variety of reasons.

Since the spin of a resonance cannot be determined simply by looking at the signal in

the invariant mass spectrum, from an experimental point of view, scalar, vector and

tensor objects all qualify for the title. However, a “true” Z ′ is typically considered to be

a force carrier associated with a new gauge symmetry. While this somewhat reduces the

possibilities for its origins, it remains true that such objects are ubiquitous in the model

landscape of SM extensions are are amongst the most prevalent ingredients of theories

which seek to extend the symmetries of nature. This, combined with the fact that they

are simple objects with recognisable signatures in relatively simple discovery channels

means that Z ′ searches have always been high on the agenda of collider analyses. In

lieu of any direct observation, this leads to ever increasing limits on their masses and

couplings.

The di-lepton final state (e, µ) is the one in which such objects are most easily and com-

monly looked for thanks to its good mass resolution and relatively low backgrounds. In

this case it is typically assumed that, at hadron colliders, the boson is produced via the

Drell-Yan (DY) process, pp(p̄) → (γ, Z, Z ′) → `+`−, in which a quark-antiquark pair

from the protons annihilate into the object of interest which subsequently decays into the

pair of charged leptons. Theoretical uncertainties for processes involving Z ′s at hadron

colliders are well under control, see, e.g., [40], including those associated to SM higher

order effects, both from the QCD [41] and EW [42] sectors. Evidently, certain models

which posses exotic sectors beyond the Z ′ may induce additional radiative corrections

to the production and decay processes and also directly affect the partial widths to SM

particles. Several phenomenological studies on how to measure Z ′ properties and cou-

plings to SM particles in the DY channel have been performed, see [43, 44, 45, 46, 47, 48]

for general studies and [49, 50, 51, 52, 53, 54, 55, 56] for more recent, model specific

studies. The focus of this thesis is the consideration of the tt̄ channel as an alternative

29
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place to investigate such objects. The motivations for this are twofold and have mostly

been covered in the previous two chapters. Theoretically, the top quark is likely to be

strongly coupled to physics connected with the dynamics of EWSB and the Higgs. It

is therefore natural to expect that new TeV scale resonant objects might preferentially

appear in top final states. From an experimental perspective, the tt̄ channel is an impor-

tant part of the LHC physics programme thanks to the large amount of expected events

in which to look for resonances. Additionally, it offers new observables not available to

non-decaying final states such as spin asymmetries, based on the kinematic behaviour

of the daughter particles. These can, in principle, provide extra handles to extract Z ′

properties such as their couplings, something which is discussed later in Section 3.2.

This chapter introduces some of the potential origins of Z ′s along with certain theoreti-

cal and experimental constraints on models that predict these particles. The discussion

is then moved into the context of tt̄ and asymmetries and how they can be used to probe

Z ′ signatures and complement more traditional channels and observables.

3.1 Extra gauge bosons

The principle of enlarging symmetries is, of course, an attractive option for extending

physics beyond the current paradigm. One of the principle motivations for Z ′s comes

from enlarging the gauge group of the theory such that the fundamental group contains

the SM SU(3)×SU(2)×U(1) structure, GSM , thus unifying the three fundamental gauge

interactions. This was first considered using SU(5) by Georgi and Glashow [57], as it

is the minimal Lie group containing GSM and has since been developed into a plethora

of Grand Unified Theory (GUT) scenarios involving larger groups such as SO(10) [58]

and E6 [59]. In these scenarios, the matter content of the SM is embedded into larger,

irreducible representations of the parent group which is then broken down to the SM.

In many cases, one is left with additional U(1) factors that result in Z ′s. Gauge group

extensions are therefore one of the most common ingredients in BSM theories that

often lead to U(1) factors which can serve certain purposes such as acting as a medi-

ator for Supersymmetry breaking [60] or connecting the SM to a hidden sector [61].

Of course, neutral gauge bosons can also arise from non-Abelian gauge extensions as

those associated with diagonal generators, as in the case of the Z boson and photon for

SU(2)L×U(1)Y . The Z ′s will generally be accompanied by other charged gauge bosons

which are not the focus of this thesis. Some of these examples are taken as benchmark

models in future chapters and will be described in more detail in Chapter 4.

A quite different possibility is to extend space-time symmetry itself by postulating the

presence of extra, compact spatial dimensions. Although such notions were conceived

almost a century ago by Kaluza and Klein, it took until the advent of String theory to

place them on a sound theoretical footing. These models have had a resurgence in the

last 25 years since the proposal of large extra dimensions [62, 63] as a mechanism to
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soften the hierarchy between the EW and Planck scales by allowing gravity to propagate

in the bulk. When particles are allowed to “feel” the bulk, towers of Kaluza-Klein (KK)

excitations of these fields are predicted upon reducing the model down to our four

dimensions. The excitations have masses linked to the compactification radius of the

extra dimensions, whose pattern is dictated by the geometry of the compactified space.

The extra space is required to be compactified since we observe ourselves to only exist

in three spatial dimensions.

As an example, consider the case of a massless, Abelian vector boson field, Aµ(x) →
AM (x, y), being promoted to also live in a single extra dimension. The coordinates, x,

refer to our usual four dimensional space-time with a new direction introduced as y and

the Lorentz index now has five componenents, M = 0, 1, 2, 3, 5. The action is trivially

extended to include the fifth coordinate:

S5 = −
∫
d4x dy

1

4
FMNFMN ,

FMN = ∂MAN − ∂NAM .
(3.1)

The vector field now contains five degrees of freedom and it can be shown that a gauge

choice can always be made where A5 = 0 [64]. The feature of compactification lies

in having periodic boundary conditions on the extra direction. The symmetry y =

y + 2πnR, for an integer, n, would correspond to the simplest case of compactifying on

a circle of radius R. KK decomposition amounts to expanding the higher dimensional

fields into modes on the compact space, each with a coefficient which is a field in four

dimensions. In the case of a circle compactification the field can be expanded in Fourier

modes.

AM (x, y) = A
(0)
M +

∞∑
n=1

A
(n)
M (x)ei

ny
R + h.c., (3.2)

with the zero mode, A(0), independent of y and the A
(n)
M a tower of n complex, vector

fields depending only on the four dimensional coordinates. A subtle element of this

process, which globally violates five dimensional Lorentz invariance, is that it is no

longer generically true that A5 can be “gauged away”, i.e. set to zero by an appropriate

gauge transformation. However, it is still possible to choose a gauge in which the field

does not depend on y and hence only has a zero mode [64]. Interactions between the

gauge field and A5 are now present as a consequence although they are not explicitly

included. Putting this expansion into the five dimensional action and integrating over

the fifth coordinate yields:

S4 = −2πR

∫
d4x

1

4

(
F (0)
µν

)2
− 1

2
(∂µA5)2 +

∞∑
n=1

[
1

2

∣∣∣F (n)
µν

∣∣∣2 − n2

R2

∣∣∣A(n)
µ

∣∣∣2]+ · · · . (3.3)

The result of this expansion is that one re-obtains a four dimensional action for the
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zero modes along with the infinite tower of KK modes which have now acquired a mass,
n
R , in the last term of Equation 3.3, arising from the derivatives with respect to the

fifth direction in FMN . The A5 mode is an additional scalar field only present at the

zero level, its higher level counterparts having been “eaten” by the corresponding vector

bosons, analogously to the Goldstone Bosons in EWSB. This chapter is concerned with

the vector fields and hence will not discuss these scalar modes further. As such, a space-

time symmetry in higher dimensions has been translated into an internal one in the

decomposed theory in that conservation of momentum in the fifth dimension has now

been reduced to conservation of KK number, n, in four dimensions, adding a whole tower

of extra U(1)’s. Considering the canonical dimension of the fields, one will see that the

gauge coupling in this theory has mass dimension −1
2 , implying non-renormalisability.

One should rescale the fields into a canonical form via a volume factor of
√

2πR. In

particular, notice that the KK modes should be scaled by an extra
√

2 to obtain the

same kinetic term as the zero mode. Further, the gauge coupling in 4D will also be

rescaled by this factor when considering gauge interactions.

3.1.1 Mixing

Adding extra neutral vectors to the SM means that the mass basis of the set of fields that

share the same quantum numbers can, in general, differ. The Z ′(s) will mix with the

Bµ and W 3
µ of hypercharge and weak isospin to form a new set of eigenstates to identify

with the photon, Z and the new gauge field(s). This can proceed via two mechanisms,

termed mass and kinetic mixing.

One way that mass mixing can occur is if the new gauge bosons acquire a mass from the

spontaneous breaking of the extra U(1) by the VEV of an electrically neutral component

of a new scalar multiplet which is not a singlet of the EW group. This will ensure

that the remaining unbroken direction corresponds to the correct admixture of T3 and

hypercharge to maintain the zero mass of the photon. Conversely, if the usual Higgs

doublet is also charged under the new U(1), its VEV will also contribute to the Z ′

mass. In either case, the neutral boson mass matrix of Equation 1.20 is extended to

incorporate the new fields and can be diagonalised in the same way as before. The fact

that the photon should remain massless means one can simply deal with the mixing in

the basis of the Z boson and any mixing incurred will affect only the properties of the

Z. The precise amount of mixing will depend on the representations of any new scalar

multiplets under the EW group, their charges under the new U(1) and also the charge

of the SM Higgs boson under the new gauge group. In this case the tree-level properties

of the Z boson such as its mass, width and couplings, will differ from SM predictions.

It is important to mention that one of the key predictions of the SM is the relationship

between the W and Z masses which can, in principle, be spoiled by such mechanisms.

The ratio MW /MZ = cos θW is preserved if the set of scalar fields that contribute to
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the gauge boson masses all transform like SU(2)L doublets (or, trivially, are uncharged

under the group) [46].

Gauge kinetic mixing is a possibility that is unique to U(1) extensions of the SM, lying in

the fact that the field strength tensor for an Abelian vector field, Fµν , is gauge invariant

on its own. This means that mixed kinetic terms ∼ FµνF ′µν between new U(1) fields

and the hypercharge gauge boson (or amongst one another if there is more than one new

group) are not forbidden. Even if such terms are not present in the bare Lagrangian,

they can be induced at higher orders. In this situation, the Z ′ incurs a component of

hypercharge in its couplings.

3.1.2 Anomalies

One of the most fundamental constraints of any new physics involving new gauge bosons

is the requirement that there be no gauge anomalies present. Anomalies describe in-

stances when a classically conserved current of a theory associated with a particular

symmetry is found to no longer be conserved in the presence of radiative corrections

upon quantisation. The most common example of such a breakdown is associated with

the so-called axial or chiral anomaly which mediates the pion decay into two photons.

All gauge theories posses a global U(1) symmetry under a phase shift related to the

conservation of charge. The conservation of the associated vector current, Jµ = ψ̄γµψ,

is a statement of the Ward identity of QED [65] (Equation 3.4). The same theory also

possesses a similar global symmetry under the transformation shown in Equation 3.5,

associated with the axial current, J5
µ = ψ̄γµγ5ψ. The current is conserved in the massless

limit and even in the massive case, yields an associated identity:

ψ → eiαψ : ∂µJµ = 0, (3.4)

ψ → eiαγ5ψ : ∂µJ5
µ = 2mψψ̄γ5.ψ (3.5)

When considering quantum corrections to the axial vertex between a gauge boson and

a pair of fermions, it can be shown that the axial Ward identity is violated by a sub-

diagram shown in Figure 3.1, corresponding to a piece of the correction [66]. This

diagram, involving a closed triangular loop of fermions with one axial current interac-

tion vertex, is contained in higher order diagrams with two external fermions. Although

this “VVA” (vector-vector-axial) diagram is not the only one which contributes to the

violation of the axial Ward identity, if this one is made to cancel, all others will also

cancel. While this is not an issue for global symmetries, the preservation of the axial

identity is important in chiral gauge theories like the SM as its violation would com-

promise their renormalisability. Remarkably, the exact matter content of the SM with

quarks appearing in three colour copies from QCD satisfies the requirements of axial

anomaly cancellation. These can be expressed as sums over charges of fermions con-

tributing to the set of potentially anomalous triangle diagrams involving combinations
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�µ�5

Figure 3.1: Feynman diagram depicting the “triangle” piece of the contribution
to the axial vertex correction that violates the chiral anomaly. The dotted vertex
corresponds to a coupling between the gauge boson and the axial current, Jµ5
while the undotted ones denote a vector coupling to Jµ

of external SM gauge fields, recalling that generators of non-Abelian groups are traceless.

Specifically, since the anomaly originates from the presence of a single axial coupling,

left-handed and right-handed fermions contribute with opposite sign.

Since the interactions of a new U(1) gauge boson can be chiral, a set of new triangle dia-

grams are now potentially finite, and requiring these to vanish constrains the possibilities

for fermionic charge assignments under the symmetry. These have external leg combi-

nations involving two SU(2)L fields or gluons with the Z ′ along with all possibilities

involving the hypercharge boson and the Z ′. The conditions are as follows:∑
QiY

2
i = 0;

∑
Q2
iYi = 0,∑

Q3
i = 0;

∑
Qi = 0,∑

SU(2)

Qi = 0;
∑
SU(3)

Qi,= 0
(3.6)

where the labels SU(2) and SU(3) correspond to only summing over the EW doublets

and colour triplets respectively. These conditions are extremely restrictive, so much so,

that no other charges aside from a linear combination of Y and T 3 are allowed without

introducing new fermions [47]. The most minimal matter that can be included are SM

singlets such as the right-handed neutrino, which is often not considered an “exotic”

fermion since it is required to give neutrinos a Dirac mass. Fermions that are vector-like

with respect to GSM would also not contribute to the SM anomalies and are often added

to satisfy the new conditions.

3.1.3 Couplings

The most general way in which one can parameterise a new neutral current interac-

tion is via the chiral couplings to left- and right-handed fermion components, gL,R or

alternatively in the vector-axial basis, gV,A. These bases are related by gL = gV + gA,

gR = gV − gA. The Lagrangian term describing the interaction between a Z ′ and a
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fermion, f , is then simply

Lint = iZ ′µ f̄ γ
µ
(
PL g

f
L + PR g

f
R

)
f (3.7)

≡ iZ ′µ f̄ γµ
(
gfV − γ5gfA

)
f (3.8)

where the projectors PL,R = 1
2(1±γ5) select the chiral components of the Dirac spinors,

f . An overall gauge coupling constant, g′, is often factored out but is chosen here to be

absorbed in the definition of the chiral couplings. Predictions for a given observable or

production and decay rate can then be written in terms of the set of relevant couplings

and the Z ′ mass and width, MZ′ and ΓZ′ , for the model of choice.

If one only includes interactions with SM matter, there are in principle 21 (24 if one

includes right-handed neutrinos) free couplings corresponding to gL,R for the three gen-

erations of quarks and leptons. Often, assumptions are made to reduce the number of

parameters such as making the couplings generation universal and also requiring fields

belonging to the same SM representation to have the same coupling to the Z ′. The

first assumption reduces the parameters by a factor of three and is relevant in that

non-universal couplings can lead to Flavour-Changing Neutral Currents (FCNC) when

moving from the weak basis to the mass basis for fermions. The latter assumption is

a gauge invariance requirement for an extra U(1) but can, in general, not hold for Z ′s

arising from more complex gauge structures. The most minimal, model independent

parametrisation, excluding right-handed neutrinos, therefore consists of 5 independent

couplings to the left-handed lepton and quark doublets and the right-handed leptons and

up and down type quarks eL, qL, eR, uR and dR. The models considered in subsequent

chapters will adhere to most, if not all of the minimal assumptions.

3.1.4 Indirect constraints

Being one of the simpler objects that one can parameterise as well as having poten-

tial mixing effects with the Z boson, Z ′s are constrained by a large number of indirect

measurements before even considering direct searches at collider experiments. Most of

the important constraints come from EW precision tests (EWPTs) which have virtually

unanimously confirmed the SM to a great degree of accuracy. These can involve mea-

surements of neutral current contributions to processes at various colliders including the

Large Electron-Positron (LEP) collider, the Stanford Linear Collider (SLC), Tevatron

and now the LHC as well as low energy experiments.

The Z-pole measurements of the four collaborations during the first LEP run and the

SLAC Large Detector (SLD) experiment at the SLC measured a host of observables

related to the Z boson to extremely high precision, thus being sensitive to very small

deviations from SM predictions incurred by mixing effects with a Z ′. Observables include

the determination of properties of the Z such as its mass, width and total production
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cross section, a number of partial widths to different leptonic and hadronic final states

and ratios thereof as well as a host of asymmetries and line shapes. SLD also had the

benefit of having a largely polarised electron beam, allowing for a number of additional

measurements. These will place limits on a combination of the Z ′ mass and its mixing

with the Z. The second LEP run increased the CM energy above the Z peak, scanning

from 140 to 209 GeV. These measurements were more sensitive to direct Z ′ production

and interference effects, allowing limits to be placed independently of the Z−Z ′ mixing.

Other precisely measured quantities such as the top and W masses can also be affected

by radiative corrections involving new neutral vectors.

Other low energy experiments are additionally sensitive to non-mixing effects such as Z ′

contributions to effective leptonic, hadronic and mixed four fermion operators below the

Z-pole, setting limits on the scale (mass) and couplings of new neutral current processes.

These ranged from Atomic Parity Violation measurements which observe the effective

interaction strength between atomic electrons and quarks in their nucleus, to neutrino

deep inelastic scattering experiments at the NuTeV experiment at Fermilab or Moller-

scattering (e−e− → e−e−) cross section measurements. Potential Z ′ contributions to

these observables can be quantified in a low energy effective description.

One typically performs model dependent fits to a large set of observables affected by the

Z ′s to obtain bounds of the form MZ′/gZ′ > X TeV which tends to reside on the range

[1 − 10] TeV for familiar benchmarks [67] in the case of measurements not sensitive to

the mixing. Alternatively, one can directly constrain a combination of mass and mixing

for a specific model when including Z-pole measurements which typically result in very

strong bounds on the mixing and limit Z ′ masses up to ∼ 1 TeV [48].

Another potential source of constraints come from flavour physics considerations, mea-

suring rates of meson mixing or rare decays and transitions such as K0 − K̄0 mixing

or µ(b) → e(s)γ. However, all of these effects rely on family non-universality of the

Z ′ couplings. This is because, as mentioned in the previous section, if the couplings

are non-diagonal with respect to fermion generations, the rotation from the weak ba-

sis to the mass basis effected by the CKM matrix shown in Section 1.5 as well as the

equivalent PMNS matrix in the lepton sector will lead to FCNC interactions which can

mediate these kinds of processes, sometimes at tree-level, that are GIM suppressed in

the SM. GIM refers to the Glashow-Iliopoulos-Maiali mechanism which explained the

weak charged current mixing in quarks as coming from a rotation between the basis of

two doublets (u, c) and (d, s) that guarantees the flavour diagonality of neutral current

interactions. Consequently, the rare FCNC processes in the SM are suppressed by loop

factors and mass differences between quark generations [68]. Measurements of these pro-

cesses are precise enough to strongly constrain non-universal Z ′ interactions in the first

two generations [46] while third generation non-universality is less strongly constrained.

This is another compelling reason to consider couplings to the top and fits well with the
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notion that new physics is more likely to be coupled in a unique way to third generation

fermions.

3.1.5 Direct searches

More than twenty years into the post-LEP era of hadron colliders, it is no surprise that

the strongest limits on Z ′ models come from direct searches at the Tevatron and now

the LHC. Once the capacity to reach a certain CM energy is attained, the observation

of the Breit-Wigner resonance peak from direct production and decay becomes possible.

Hadron colliders are perfect machines for this purpose since the composite nature of the

(anti-)protons allows for the scanning of a wide range of energies in the hopes that a

resonance might be observed. The unpolarised production matrix element for a massive

fermion pair via light (assumed massless) quark annihilation into neutral vectors with

CM energy,
√
ŝ, is

M̃2
qq̄ =

∫
dθ|M(qq̄ → ff̄)|2

=
πŝ2

12

∑
i,j

Dij

1 + δij
Cqij

[
Cfij
(
2 + β2

)
+ 2Mf

ij

(
1− β2

)]
;

(3.9)

Cxij = xiLx
j
L + xiRx

j
R, (3.10)

Mx
ij = xiLx

j
R + xiRx

j
L, (3.11)

where the indices i, j label the vectors bosons in the model i.e. the photon, the Z and

any Z ′s present. Here the polar angle, θ, defined as that between the quark and the

fermion momenta, has been integrated over. The chiral couplings to the initial and final

states are labeled qiL,R and f iL,R respectively and the β =

√
1− 4m2

f

ŝ factor accounts for

the kinematical dependence on the final state mass mf tending to one in the massless

limit. The parity symmetric and mixed coupling combinations, Cf,qij and Mf,q
ij , elucidate

the coupling structure. The propagator function, Dij , describes a generic interference

term between the propagators of two particles of masses and widths denoted by m and

Γ, reproducing the Breit-Wigner form for i = j.

Dij =
(ŝ−m2

i )(ŝ−m2
j ) +mimjΓiΓj(

(ŝ−m2
i )

2 +m2
iΓ

2
i

)(
(ŝ−m2

j )
2 +m2

jΓ
2
j

) (3.12)

The familiar g2
L + g2

R coupling dependence of these neutral current cross sections is

apparent with the β factor also making manifest the mass-suppressed, chirality flipping

component mixing the left and right-handed couplings.

The best observable to search for these signals, then, is the invariant mass distribution

since the propagator functions depend exactly on this boost invariant quantity, M2
ff̄

=

ŝ = (pf + pf̄ )2. To translate the matrix element of Equation 3.9 into a differential cross
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section at a hadron collider with CM energy, s, requires the integral over the two-body

phase space, convolution with the PDFs in a similar way to Section 2.3 a sum over initial

states to give

dσ

d
√
ŝ

=
β

16πŝ
3
2

∑
q

aqq̄(ŝ, Q)|M̃2
qq̄|

aqq̄(ŝ, Q) =

∫
dy
[
faq (x1, Q)f bq̄ (x2, Q) + faq̄ (x1, Q)f bq (x2, Q)

] (3.13)

where the functions f are as defined in Equation 2.1 for the collision of hadrons a and b.

y is the rapidity of the qq̄ system and is related to the two partonic momentum fractions

x1,2 by

y =
1

2
ln

(
x1

x2

)
⇒ x1,2 =

√
τe±y (3.14)

and τ relates the partonic and collider CM energies and is equivalent to x1x2. Thus, in

this particular case the PDF convolution can be expressed as a multiplicative factor that

is a function of ŝ and the factorisation scale, Q. This is not generically possible for other

differential cross sections such as those involving non Lorentz invariant quantities such

as lab frame angles, for example. One can then test for signatures resembling these kinds

of objects in various final states by superimposing this signal rate over a background

prediction and comparing the observed events to the signal and background hypotheses.

For the reasons discussed earlier, the strongest limits on minimal Z ′ resonances come

from the di-lepton (e, µ) final state at the LHC and Tevatron experiments, where the

high invariant mass tail in the EW DY background is modelled by MC and normalised to

the data in a lower mass region where it is assumed that no signal events occur. Often,

the Narrow Width Approximation (NWA) is made where the resonance is assumed to

be narrow enough such that the propagator is assumed to be a Dirac delta function

centred at the resonance mass. This removes one degree of freedom in the phase space

integral and allows the signal to be modelled by a Breit-Wigner shape with an area

corresponding to the NWA cross section, taking into account the falling off of the PDFs.

It should be stressed that this approximation neglects potential interference between the

signal and the background. Although specific signal selections and analyses may differ

slightly, most resonance searches in this channel proceed in this way.

Given the assumed signal shape, a binned likelihood analysis determines the likelihood

of a particular signal hypothesis against the background only hypothesis in a chosen

invariant mass window as a function of the resonance mass being searched for. Since no

deviations from the background have been observed, the likelihoods can be interpreted

as exclusions which place lower limits on the masses of Z ′ in this channel. Limits from

the Tevatron reach masses of order 1 TeV [69] while the latest LHC limits [70] surpass

2 TeV, depending on the model, attaining close to 3 TeV for the Sequential SM (SSM)
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benchmark (where a Z ′ with the same couplings as the Z is assumed). While this is

certainly beginning to place relatively strong constraints on the minimal benchmark

models, the approximations made in order to perform relatively model independent

analyses mean that these results should be interpreted with caution. The searches

neglect any potential exotic decay modes which would affect the Z ′ width as well as

ignore potential interference effects, both of which would have an effect on the mass limit.

The effect of these assumptions is discussed in [56, 71], showing that certain kinematical

cuts can be made to reduce the interference and finite width effects, although ultimately

retaining a degree of model dependency at the percent level.

Resonance searches are also performed in other final states such as di-jets, τ+τ−, bb̄

and, of course, tt̄ with lower mass reaches due to the overwhelming QCD background

in di-jets and bb̄ as well as the more involved reconstruction process in decaying τ ’s

and tops or tagging b-jets. Such searches tend to be more useful to probe non minimal

models which involve coloured resonances or have enhanced couplings to quarks (or

suppressed leptonic couplings) or third generation fermions. The latter assumption may

be a reasonable one considering that many BSM models are concerned with EWSB and

mass generation as mentioned in Sections 1.7 and 2.1. Recent work has been done to

use ratios of cross sections in different third generation final states as a distinguishing

feature of Z ′ benchmarks [72]. The di-jet mass spectrum is also sensitive to many other

types of resonances that can also decay into qg or gg as well as non resonant t-channel

physics not considered in this work.

3.1.6 Z ′ → tt̄

The topic of this thesis is to consider the tt̄ final state as a complementary channel for

discovering and/or investigating the couplings of potential Z ′ signals. While the com-

plicated reconstruction process discussed in Section 2.2 means that there is a statistical

and systematic disadvantage to performing resonance analyses in this channel, the abil-

ity to define new asymmetry observables as well as the theoretical motivation for physics

strongly coupled to third generation fermions makes Z ′ → tt̄ an interesting prospect.

One of the primary systematic effects of the reconstruction process is a loss of mass

resolution, making it more difficult to see clear Breit-Wigner peaks in the invariant

mass distributions. The main difference in this context between tt̄ and the traditional

di-lepton channel, aside from the fact that the top decays, is that the background comes

dominantly from QCD as shown in the diagrams of Figure 2.2. Figure 2.3 suggests that

the gluon and quark contributions will contribute similarly to the production at CM

energies of order TeV. However, although a Z ′ signal will be mediated by the qq̄ initial

state, the fact that the gluon is a colour octet forbids interference with a colour singlet

object in the s-channel. This can readily be seen by the fact that Feynman rule for

the gluon-quark-quark vertex comes with an associated SU(3)C generator, T aij . The
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Figure 3.2: Latest Z ′ mass exclusions in the tt̄ final state from an ATLAS (left)
and CMS (right) analysis with 14.3 and 19.6 fb−1 of integrated luminosity of√
s = 8 TeV, LHC data. The plotted reference models are the narrow width

topcolor lepto-phobic Z ′ and a SSM Z ′ respectively. A multiplicative k-factor
of 1.3 has been applied on the LO model prediction to approximately account
for NLO QCD corrections.

interference between the two s-channels modes of a gluon and a colour neutral Z ′, which

comes with a δij factor in colour space will vanish due the subsequent fermionic trace over

the colour indices thanks to the traceless property of the generators. Therefore the only

interference effect that can occur are, as with the di-lepton case, with the neutral EW

sector which is very subdominant in this case. A number of searches have been performed

for resonant physics in this channel [37, 38, 73, 74, 75] yielding limits of order 1.5–2

TeV for specific benchmarks usually chosen for their enhanced top couplings relative to

leptons. Figure 3.2 shows a selection of the latest exclusion plots from the ATLAS and

CMS collaborations on a lepto-phobic “topcolor” [76] Z ′ – a common benchmark in tt̄

resonance searches – and an SSM Z ′ respectively. Both analyses are tailored to account

for high-mass events where the tops can be highly boosted and have collimated decay

products, with a specific selection category for these types of events.

3.2 Asymmetries

In order to determine the sensitivity of asymmetry observables to the presence of a

Z ′, it is instructive to calculate their dependence on its couplings as was done for the

differential cross section in Equation 3.13. This will demonstrate the unique dependence

on the couplings of the charge and spin asymmetry observables and motivate their use as

an extra handle on the Z ′ couplings. Since all of the observables are normalised by the

total cross section, the coupling dependence of interest is contained in the numerators

of the asymmetry definitions. This is shown for each of the three asymmetries defined

in Section 2.4.
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3.2.1 Charge asymmetry

The coupling structure of the charge asymmetry can immediately be deduced by retain-

ing the angular dependence of the matrix element shown in Equation 3.9.

|M(qq̄ → ff̄)|2 =
ŝ2

6

∑
i,j

Dij

1 + δij

[
Cqij

(
Cfij
(
1 + β2 cos2 θ

)
+Mf

ij(1− β2)
)

+ 2AqijA
f
ijβ cos θ

]
,

(3.15)

Axij = xiLx
j
L − xiRx

j
R, (3.16)

where the coupling factors, Cxij and Mx
ij , and polar angle, θ, are those defined in Equa-

tion 3.9. Here, a new, parity asymmetric coupling combination, Axij , appears. Although

both additional terms integrate to zero over the angular range {0, π}, the final one is

asymmetric in this region and is therefore the sole contributor to the charge asymmetry.

Any observable attempting to extract this quantity from a neutral current interaction

is measuring the parity asymmetric coupling combination

AFB ∝ χij ≡ AqijA
f
ij =

(
qiLq

j
L − qiRq

j
R

)(
f iLf

j
L − f iRf

j
R

)
. (3.17)

In terms of the pure Z ′ contribution, i = j = Z ′, the sign of this observable is sensitive

to the relative chirality of the Z ′ couplings in both the initial and final states (q2
L −

q2
R)(f2

L−f2
R) simultaneously, as opposed to the cross section which depends on the sums

of squares of the chiral couplings as seen in Equation 3.9, setting i = j = Z ′. Although,

as pointed out in Section 2.4, the PDF effects in hadron collider measurements prevent

this quantity to be measured directly, some diluted version of χij is ultimately the target

in all charge asymmetry observables from neutral current exchange. The observable

therefore provides a handle on the couplings not present in cross section measurements,

albeit obfuscated somewhat by the fact that both initial and final state couplings can

lead to a change in sign of χij .

One of the main issues with attempts to explain the Tevatron Att̄FB anomaly mentioned

in Section 2.4.1, from a BSM perspective is the need to remain consistent with the

measured cross section in the same kinematic region. The structure of this Aij coefficient

compared to the Cij coefficients dictating the cross section shows that, in general, one

will always obtain effects in both the cross section and charge asymmetry for a pure

BSM contribution, i = j, while interference terms have the potential to affect AFB

more than the cross section, depending on the couplings. In particular, they motivate

the explanation of the anomaly with a wide axigluon scenario [77], which is a colour

octet, axial-vector counterpart of the gluon. In this case, the purely axial (giL = −giR)

couplings will maximise charge asymmetry effects and minimise cross section in the

interference contribution, i.e. Cxij = 0 and Axij 6= 0 for i and j denoting the gluon and

axigluon respectively. If the resonance is sufficiently wide or weakly coupled to suppress
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a large i = j contribution, the dominant contributions could arise from interference

and potentially explain the anomaly while remaining consistent with the measured cross

section. For the same reason, non-coloured resonances are ruled out as an explanation

since their lack of interference with QCD means they can only generate a deviation in

charge asymmetry along with an equal, if not more significant deviation in the cross

section.

In addition to defining asymmetries, the angular distributions of decay products can

also shed light on the spin of an observed resonance [55]. The cos θ term in the matrix

element of Equation 3.15, which generates the charge asymmetry, can also differentiate

a spin-1 or 2 resonance from a scalar one, which cannot have this kind of dependence.

Furthermore, spin-2 resonances can also have a cos4 θ term, allowing one to potentially

distinguish their angular distributions from the others.

3.2.2 Spin asymmetries

Since the spin asymmetries defined in Section 2.4 are constructed in terms of the helicity

of the final state fermions, it is necessary to calculate the polarised matrix elements of Z ′

production and decay in order to determine the coupling structure of the numerator of

AL. These were calculated using helicity amplitude methods outlined in [78] and cross-

checked with results from [79]. The details of the calculation can be found in Appendix A

and decompose the Feynman amplitude into products of helicity eigenspinors in which

the amplitudes for different processes, up to a phase, can be written in terms of the

helicities of the incoming and outgoing fermions. The initial state quarks are, again,

assumed to be massless. Out of the sixteen possible combinations, only eight are non-

zero, given by:

A(+,−,±,±) =∓ ŝ

2
sin θ

√
1− β2qR(fL + fR),

A(−,+,±,±) =∓ ŝ

2
sin θ

√
1− β2qL(fL + fR),

A(+,−,±,∓) =
ŝ

2
(1± cos θ)qR(fL(1∓ β) + fR(1± β)),

A(−,+,±,∓) =
ŝ

2
(1∓ cos θ)qL(fL(1∓ β) + fR(1± β)),

(3.18)

where the arguments of the amplitudes correspond to the eigenvalues of the initial and

final state spinors under the helicity operator ordered as A(hq, hq̄, hf , hf̄ ). Here, only the

pure Z ′ contribution is shown to elucidate the coupling dependence, with the propagator

factors dropped for simplicity. The mass suppressed spin flipping amplitudes, where the

final state fermions have the same helicity, are apparent. Averaging over the initial state

polarisations, the four polarised matrix elements for Z ′ production and decay into heavy
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fermions, are

|M(±,±)|2 =
ŝ2

48

(
1− β2

) (
q2
L + q2

R

)
(fL + fR)2 sin2 θ,

|M(±,∓)|2 =
ŝ2

48

((
q2
L + q2

R

)
(1 + cos2 θ)∓ 2(q2

L − q2
R) cos θ)

)
× ((1∓ β)fL + (1± β)fR)2,

(3.19)

from which we can express the numerator of the two spin asymmetries according to Sec-

tion 2.4

MALL = |M(+,+)|2 + |M(−,−)|2 − |M(−,+)|2 − |M(+,−)|2

= − ŝ
2

12

[
2
(
q2
L − q2

R

) (
f2
L − f2

R

)
β cos θ +

(
q2
L + q2

R

)
×( (

β2 + cos2 θ
) (
f2
L + f2

R

)
+ 2

(
1− β2

)
cos2 θfLfR

)]
,

(3.20)

MAL = |M(−,+)|2 − |M(+,−)|2

=
ŝ2

12

[ (
q2
L + q2

R

) (
f2
L − f2

R

) (
1 + cos2 θ

)
+ 2

(
q2
L − q2

R

) (
f2
L + f2

R

)
cos θ

]
.

(3.21)

In the spin correlation amplitude, MALL , we recognise similar coupling structures to

the total cross section. Since, in the case of a Z ′, MALL is essentially measuring the

relative size of the helicity flipping amplitudes, the limit β → 1 should recover the regular

production matrix element of Equation 3.9. This is indeed the case although, due to the

choice of sign in defining the asymmetry, |MALL |2(β→1) = −|M(qq̄ → ff̄)|2(i=j). As for

the spin polarisation,MAL , a new combination of coupling coefficients appears which is

a mix of the parity symmetric and antisymmetric coefficients, A and C. Integrating the

two matrix elements over the polar angle illustrates how the asymmetry observables will

depend on the couplings after phase space integration and therefore to which coupling

combination the observable at collider experiments should be sensitive

ALL ∝
(
q2
L + q2

R

) (
2fLfR

(
β2 − 1

)
−
(
f2
L + f2

R

) (
2β2 + 1

) )
, (3.22)

AL ∝ β
(
q2
L + q2

R

) (
f2
L − f2

R

)
. (3.23)

The mix of parity symmetric and asymmetric coefficients present in the AL coupling

dependence is an extremely interesting one as its removes the asymmetric dependence on

the couplings to the initial state, which causes the obfuscation of the coupling dependence

of AFB pointed out in Section 3.2.1. The spin polarisation observable is therefore directly

sensitive to the relative chirality of the Z ′ couplings to the final state, a unique feature

among asymmetry observables at hadron colliders. These can readily be generalised to

the many resonance case to take into account the EW background or models with more

than one Z ′ in terms of the three coupling combinations defined in Equations 3.10, 3.11
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and 3.16 to give

ALL ∝ −Cqij
( (

2β2 + 1
)
Cfij −

(
β2 − 1

)
Mf
ij

)
, (3.24)

AL ∝ βCqijA
f
ij , (3.25)

AFB ∝ AqijA
f
ij , (3.26)

σ ∝ Cqij
( (
β2 + 2

)
Cfij −

(
β2 − 1

)
Mf
ij

)
, (3.27)

where the coupling dependences of the cross section, σ, and charge asymmetry, AFB,

have been included for comparison.

Having introduced the features of new physics involving Z ′s and the particular coupling

structures that are accessible via cross section, charge and spin asymmetry observables,

the remainder of this thesis will go on to apply this knowledge to a number of different

models. Specifically, since one can define all of these observables in the tt̄ channel, the

focus of the work will be to investigate the use that can be made of such asymmetries to

distinguish models either on their own, or to serve as a complement to other channels

in profiling and extracting the couplings of any new observed resonances.
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Z ′ benchmarks in tt̄

In order to analyse the scope of tt̄ asymmetries in the context of Z ′ physics, it is logical

to begin by looking at a set of popular benchmark models used in current LHC analyses.

Since these models are used as examples in the di-lepton analyses, it is instructive to

compare the reach of the tt̄ channel compared to the former, as well as to ascertain

any potential advantages that the new asymmetry observables may offer in discovering

or distinguishing the differing coupling structures between these models. In this first

study, the set of previously defined asymmetry observables, along with the differential

cross section, are considered to assess the LHC’s ability (at all of its planned energy

and luminosity stages) to profile a Z ′ boson mediating tt̄ production by adopting several

realisations of the recalled sequential (GSM ), left-right symmetric (GLR) and E6 based Z ′

models (specifically, the same as those in [56]). The first section will review and expand

on the motivations and generalised parameterisations of the benchmark model classes

touched upon in Chapter 3. Section 4.2 describes the tools used for the calculations as

well as the specific incarnations of the asymmetry observables used. Section 4.3 reports

and comments on the results, covering the differential distributions and discriminating

power of the observables with Section 4.4 presenting the conclusions and outlook. The

following work has previously been published in [1].

4.1 Benchmark models

While a brief overview of the benchmark Z ′ models is presented here, the reader is

directed to the original publication as well as those henceforth referred to for further

details. All of the following models respect the minimal assumptions on Z ′ couplings

outlined in Section 3.1.3 of universal couplings across fermion generations, negligible

Z−Z ′ mixing and equal charges for each SM representation, consistent with the presence

of a U(1)′ enlarging GSM . Potential kinetic mixing with the hypercharge gauge boson

is also neglected. Of the set of five independent couplings (neglecting right-handed

45
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neutrinos), eL, qL, eR, uR and dR, only the quark couplings, qL, uR and dR, will be

relevant in constructing the observables considered this work1. The coupling conventions

used to discuss the benchmarks follow those of [56] where the gauge coupling, g′, is

explicitly factored out of the interactions.

4.1.1 E6 model

This class of models describes phenomenological, GUT inspired implementations of addi-

tional U(1)′ factors that occur when decomposing GUT groups down to the GSM . These

are motivated by heterotic string theory, whose ten dimensional supersymmetric vacua

can lead to theories which come from E8 × E8 gauge groups [49]. In particular, the E6

and SO(10) subgroups are the two most commonly considered. In general, the number

of neutral gauge bosons present in a gauge theory is equal to its rank [44], the number of

mutually commuting generators – also known as the Cartan subalgebra. In other words,

these are the generators which can be simultaneously diagonalised, in accord with the

definition of neutral gauge bosons as the subset of gauge bosons associated to diagonal

generators. As mentioned in Section 3.1, SU(5) is the smallest group containing GSM
and, being of rank 4, leaves no room for additional vector bosons. This is because, in

addition to T 3
L and Y , SU(3) also has 2 generators in its Cartan subalgebra [80]. E6 and

SO(10), on the other hand, are of ranks 6 and 5 respectively and can be decomposed as

E6 → SO(10)× U(1)ψ,

SO(10)→ SU(5)× U(1)χ → GSM × U(1)χ.
(4.1)

The groups can be spontaneously broken in a similar way to EW theory or by more

involved higher order effects, the details of which are beyond the scope of this work.

The extra Abelian factors, usually termed ψ and χ, predict two new Z ′s with fermionic

interactions based on the specific embedding of the SM matter into irreducible repre-

sentations of E6 and subsequently SO(10) and SU(5). Each generation of fermions can

be unified into the 27 dimensional, fundamental representation of E6. The fermions

remain in a complete (including right-handed neutrinos), dimension 16 spinorial repre-

sentation of SO(10) under which the left and right-handed fields have U(1)ψ charges of

±1
2 [49]. This means that the Z ′ couplings will be family universal, with the complete E6

representation ensuring freedom from gauge anomalies. Generally, using complete rep-

resentations is conducive to the construction of anomaly-free gauge theories. Intuitively,

the tracelessness of Lie group generators hints at this feature. From the beginning, the

SM fields are embedded together with exotic matter content such as additional colour

triplet quarks and additional Higgses. Typically, phenomenological studies of the Z ′

sector tend to decouple the exotic fields, assuming that some general linear combination

1Of course, the leptonic couplings do enter indirectly via the Z′ widths
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of the generators Tχ and Tψ survives down to the TeV scale,

T ′ = Tχ cos θ + Tψ sin θ, (4.2)

with fermionic couplings matching the particular admixture. A set of benchmark values

for θ make up the set of E6 GUT inspired Z ′’s, χ, ψ, η, I,N, S, five of which couple to

up type quarks and are considered in this study. The relevant couplings are summarised

in Table 4.1. The gauge coupling is chosen to match the GUT normalised hypercharge

coupling, g′, of the SM [56], not to be confused with the hypercharge gauge coupling

defined in Section 1.3. This is a factor
√

5
3 that is imposed on the hypercharge generator

of SU(5) in order to satisfy the correct Lie group normalisation conventions of GSM , i.e.

Tr[T aT b] = δab.

4.1.2 Generalised left-right symmetric models

Left-right symmetric models are also well motivated from a string theory perspective [81,

82], as they can arise from an alternative breaking of SO(10). The decomposition of the

enlarged product group, neglecting SU(3)C , can be expressed as

SU(2)L × SU(2)R × U(1)B−L → SU(2)L × U(1)Y . (4.3)

The new isospin group acts analogously on the right-handed fields, which become isodou-

blets, restoring parity symmetry which is maximally violated by the EW interaction

(since the weak isospin gauge bosons act uniquely on left-handed fields). SU(2)R there-

fore introduces 3 new, right-handed copies of the SU(2)L gauge bosons, one of which

will be a neutral state associated to T 3
R. B and L refer to baryon and lepton number,

associated with the conserved quantities arising from the global U(1) invariance of the

SM under independent transformations of the lepton and quark fields. The combination

U(1)B−L can be gauged non-anomalously if one includes right-handed neutrinos. Gaug-

ing this particular quantity forbids baryon and lepton violating operators that could

contribute to proton decay. Furthermore, the B-L charge, TB−L = (B − L)/2 com-

bined with the third component of right-handed isospin conveniently leads to correct

hypercharge assignments required for the definition of electric charge in Section 1.5:

Q = T 3
L + T 3

R + TB−L = T 3
L +

Y

2
. (4.4)
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One then obtains the combination of the T 3
R and TB−L in terms of the SU(2)L and

SU(2)R gauge couplings, gL and gR, by requiring that the orthogonal combination re-

produces U(1)Y

TLR = αLRT
3
R −

1

αLR
TB−L,

αLR =

√
g2
R

g2
L

cot2 θW − 1.

(4.5)

Assuming exact left-right symmetry, one can set gR = gL, to fully specify the interactions

of this Z ′. Generalising to a continuous parametrisation, GLR, the additional gauge

boson is, instead, assumed to be an arbitrary mixture of the T 3
R and TB−L, coupling

with g′TGLR, for

TGLR = T 3
R cosφ+ TB−L sinφ. (4.6)

The true TLR is recovered by a choice of parameters, φ = 0.128π and g′ = 0.595.

In addition to this benchmark (LR), the three points examined correspond to purely

right-handed (R) and B-L (BL) resonances along with the orthogonal hypercharge (Y )

combination.

Often, the right-handed neutrinos are made massive when the symmetry is broken and

can contribute to a see-saw mechanism, generating the suppressed left-handed neutrino

masses. Again, the particular symmetry breaking mechanisms are well documented in

the literature and also often require extended Higgs sectors.

4.1.3 Generalised SSM

The SSM generalisation begins with the assumption that, as in the SM, the Z ′ couples

to a combination of T 3
L and electric charge, Q. The true SSM has identical couplings

to the Z-boson, QZ = T 3
L − Q sin2 θW , and is a common benchmark choice for BSM

searches, albeit not particularly well motivated. Similarly to GLR, this class is defined

as a generalisation of the Z coupling mixing, such that

TGSM = T 3
L cosα+Q sinα, (4.7)

so that the Z ′ coupling to fermions is g′TGSM . The parameters which match the SSM

can be found to be α = −0.072π and g′ = 0.76. The model treats g′ as fixed, freely

varying α. Three points are typically chosen corresponding to the SSM (SM), pure

left-handed isospin, (T3L) and a heavy photon coupling to electric charge (Q) which is

not considered in this work.
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4.1.4 Overview

The benchmark models collected in Table 4.1 express the fermionic couplings in the

vector-axial basis, shown in Equation 3.8.

U(1)′ Parameter guV guA gdV gdA
E6 (g′ = 0.462) θ

U(1)χ 0 0 -0.316 -0.632 0.316
U(1)ψ 0.5π 0 0.408 0 0.408
U(1)η -0.29π 0 -0.516 -0.387 -0.129
U(1)S 0.129π 0 -0.129 -0.581 0.452
U(1)N 0.42π 0 0.316 -0.158 0.474

GLR (g′ = 0.595) φ

U(1)R 0 0.5 -0.5 -0.5 0.5
U(1)B−L 0.5π 0.333 0 0.333 0
U(1)LR -0.128π 0.329 -0.46 -0.591 0.46
U(1)Y 0.25π 0.589 -0.354 -0.118 0.354

GSM (g′ = 0.760) α

U(1)SM -0.072π 0.193 0.5 -0.347 -0.5
U(1)T3L

0 0.5 0.5 -0.5 -0.5
U(1)Q 0.5π 1.333 0 -0.666 0

Table 4.1: Benchmark Z ′ model parameters and couplings, as seen in [56]. The
angles θ, φ, α are defined in the text.

In order to interpret the potential of these coupling configurations with respect to the

observables considered, the coupling dependent coefficients of Equations 3.24–3.27 are

re-expressed in the vector-axial basis as follows

ALL ∝ −
(
qiV q

j
V + qiAq

j
A

)( (
2 + β2

)
f iV f

j
V + 3β2f iAf

j
A

)
, (4.8)

AL ∝ β
(
qiV q

j
V + qiAq

j
A

)(
f iV f

j
A + f iAf

j
V

)
, (4.9)

AFB ∝
(
qiV q

j
A + qiAq

j
V

)(
f iV f

j
A + f iAf

j
V

)
, (4.10)

σ ∝
(
qiV q

j
V + qiAq

j
A

)( (
4− β2

)
f iV f

j
V + β2f iAf

j
A

)
, (4.11)

where q and f are, as before, the initial state quark and the final state fermion couplings

with the indices i, j referring to the neutral resonances taking part in the process and

V,A denote vector and axial respectively. The product of vector and axial couplings is

equivalent, up to an overall factor, to the parity asymmetric combination, Aij , defined

in Equation 3.16. Similarly, the sum of squares of both sets of couplings are equivalent,

also up to an overall factor. It is apparent, therefore, that resonances with purely vector

or axial couplings may not be able to generate these observables on their own. Charge

asymmetry requires this for both the initial and final state, while the spin polarisation

is only sensitive to this feature in the final state couplings. In either case, the observable
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would only be generated via interference with another neutral vector with different

couplings.

The table shows that the E6(GLR(BL)) models share a general feature of the Z ′ having

a purely axial(vector) coupling to up-type quarks. Hence, charge asymmetry can only

be generated via interference with the EW background and is therefore expected to be

very small for these models. Similarly for the spin asymmetries, Equations 4.8 and 4.9

imply that these will only have a non-vanishing ALL (at the Z ′ peak), that could serve as

an extra handle to pin down parameters for these models, while AL is, again, generated

only via interference.

The rest of the models have generic, non-zero vector and axial couplings which will

generate charge asymmetry, ALL and AL. As mentioned in Section 3.2.2, AL has the

extra handle of distinguishing relative sign between the vector and axial couplings which

is equivalent to being sensitive to the relative chirality of the Z ′ couplings, i.e. the size

of gL compared to gR, although not their sign. Looking at the table, one would expect

the GLR and GSM subclasses to therefore have opposite signs in AL, since they couple

to admixtures of a vector current with a right and left-handed current respectively. It is

clear that AL should provide a clear distinguishing feature that would not be anywhere

near as striking in the cross section. For these reasons, the analysis is subdivided into

that of the “E6 type” models which will also include GLR(BL) and “Generalised” models

comprising of the rest.

4.2 Calculation of observables

The code exploited for the study is based on helicity amplitudes, defined through the

HELAS subroutines [83], and built up by means of MadGraph [84]. Initial state quarks

were assumed to be massless while for the (anti-)top state, a mass of mt = 175 GeV was

taken. The latter has been kept on-shell. The PDFs used were CTEQ6L1 [18], with

factorisation/renormalisation scale set to Q = µ = 2mt. VEGAS [85] was used for the

multi-dimensional numerical integrations. The spin asymmetries are calculated at parton

level, in terms of the top and anti-top helicities, while for the charge asymmetry, four

observables were considered, two of which restrict the rapidity range of the event selection

while the other two directly compared the top and anti-top rapidities all of which aim to

observe the different rapidity distributions effected by charge asymmetry, as explained

in Section 3.2.1. The efficacy of the different observables can hence be compared to pick

an optimum choice among the four. In all cases, however, the kinematical restrictions

imposed lead to a loss in statistics which, in retrospect, affects the overall significance of

such observables compared to alternative definitions which make use of the full sample

(see Chapter 6).
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Considering both the inner and outer rapidity regions based on a fixed rapidity cut, ycut,

constructs the so-called “central” (C) and “forward” (F ) asymmetries [27, 86]:

AC =
Nt(|y| < yCcut)−Nt̄(|y| < yCcut)

Nt(|y| < yCcut) +Nt̄(|y| < yCcut)
, (4.12)

AF =
Nt(|y| > yFcut)−Nt̄(|y| > yFcut)

Nt(|y| > yFcut) +Nt̄(|y| > yFcut)
, (4.13)

comparing the number of tops (Nt) and of anti-tops (Nt̄) in that region. Taking y
C(F )
cut →

∞(0), for either observable, i.e. integrating them over the whole rapidity range, will

restore AC(F ) = 0. In this analysis, the value was fixed at yCcut = yFcut = 0.5, chosen by

looking at the top and anti-top rapidity distributions of a number of benchmark models.

The other two observables are a function of the absolute rapidity difference of the top

and anti-top quarks, ∆y = |yt| − |yt̄|, which is sensitive to the CM polar angle and

independent of the tt̄ frame boost. These were implemented based on asymmetry-

enhancing kinematical cuts proposed in [28], acting on the rapidity or on the momentum

along the beam axis (e.g., the z one) of the top–anti-top pair, ytt̄ = 1
2(yt − yt̄) and

pztt̄ = pzt + pzt̄ . Referred to as “rapidity dependent” (RFB) and “one-sided” (OFB)

forward-backward asymmetries respectively, they are defined as

ARFB =
N(∆y > 0)−N(∆y < 0)

N(∆y > 0) +N(∆y < 0)

∣∣∣∣∣
|ytt̄|>|ycuttt̄

, (4.14)

AOFB =
N(∆y > 0)−N(∆y < 0)

N(∆y > 0) +N(∆y < 0)

∣∣∣∣∣
|pz
tt̄
|>pzcut

. (4.15)

Such kinematical cuts are designed to enhance the contributions from the qq̄ initial state

by probing regions of high partonic momentum fraction, x, where the parton luminosity

of interest is more important.

4.3 Results

A selection of results profiling the charge and spin asymmetry distributions of the bench-

mark Z ′ models are presented. The variables described in section 4.2 were computed as

a function of the tt̄ invariant mass within ∆Mtt̄ = |MZ′−Mtt| < 500 GeV and compared

to the tree-level SM predictions2. Z ′ boson masses of 1.7 and 2.0 TeV were taken and

2It has also been shown that the fraction of qq̄ initiated events could be equally enhanced by other
kinematical cuts, such as on the transverse momentum of each top quark [87] as well as on the tt̄
system [88, 89]. However, the latter is not applicable to tree-level studies.
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simulated for the LHC at 7, 8 and 14 TeV. Only results for 8 and 14 TeV CM energy are

presented although the former energy can still be taken as representative for the 7 TeV

run, as the corresponding results are very similar. The benchmarks are characterised by

the couplings of Table 4.1 with their widths calculated at tree-level, only including decays

to SM fermions, compensating for small NLO QCD effects in quark decays by a k-factor

related to the strong coupling, αS , at the Z ′ mass scale of k = 1+1.045αS(MZ′)/π [90].

To be able to quantitatively address the distinguishability among the various models

and the SM background, the statistical error of the predictions was calculated for some

specific integrated luminosities as defined in Equation 2.4. Here, ε corresponds to an

assumed 10% reconstruction efficiency of the tt̄ system, considering all possible decay

tt̄ decay channels informed, at the time, by the projected efficiencies in the technical

design reports [91]. In later work, the reconstruction efficiency estimates were taken to

be more conservative in the view that the boosted topology may introduce difficulties

in traditional reconstruction methods, particularly in the case of spin asymmetries, as

discussed in Section 2.5. The continuous curves on the following plots are the central

values for the given asymmetry, with a statistical error quantified by binning the cross

sections in Mtt for a bin width of 50 GeV compatible with typical experimental resolu-

tions in this quantity. This assumption has also been made more conservative in future

work, guided by recent experimental analyses. A selection of two bin plots integrat-

ing the cross sections over an “on-peak” range (∆Mtt̄ < 100 GeV) and evaluating the

corresponding partially integrated asymmetry are shown. Finally the totally integrated

asymmetries are summarised in the corresponding tables, for both the Mtt window cuts.

Invariant mass distributions of the total cross sections for tt production are also included

for reference, with the statistical error normalised by the bin width.

Although only statistical uncertainties are estimated in this work, systematics may be

important as well [87, 89]. However, although the mass window selection is expected to

milden their actual contribution, their inclusion would require detailed detector simu-

lations which are beyond the scope of this paper. In this respect, it should further be

noted that, by the time the LHC will reach the 14 TeV stage, where the most interest-

ing results are applicable, systematics will be much better understood than at present.

Furthermore, the statistical “significance” of two measurements – in the context of this

parton level study without subsequent top decay – is calculated as follows, relying on

the assumption that they are independent:

s ≡ |A(1)−A(2)|√
δA(1)2 + δA(2)2

. (4.16)

A(1, 2) and δA(1, 2) refer to the observables and standard deviations respectively pre-

dicted by two hypotheses. Equation 4.16 will be used to establish a measure of the

disentanglement power of the LHC for
√
s = 14 TeV with 100 fb−1. It is an adaptation

of a two sample z-test, comparing two independent data sets with known means and
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standard deviations, assumed to be normally distributed. The z score can be converted

to a p-value which corresponds to the probability that the difference between the mea-

surements came from statistical fluctuations and that the two hypotheses are the same.

The standard S/
√
B measure of significance for counting experiments is an example of

such a test in the limit where the signal, S, is much smaller than the background, B.

Finally, given that the statistical error of Equation 2.4 has a 1/
√
L dependence, it is

clear that the significance of a measure, as for Equation 4.16, increases with luminosity.

Inverting Equation 4.16 and solving for L, the required luminosity to distinguish the

models with respect to the irreducible SM background and among themselves can be

determined, defining disentanglement by s ≥ 3.

In the following, the differential distributions for the most significant asymmetries in

each class will be presented and commented upon, i.e. ALL for the E6-type models and

ALL, AL and ARFB for the generalised models. The comparison among the two classes

(and between elements within them) is made at the end, evaluating the significance of

the presented distributions. As a final comment, recent di-lepton searches have now

mostly excluded the masses of the particular benchmarks considered, as can be inferred

from Section 3.1.5 and the references therein. Nevertheless, the main features of the

analysis remain valid at higher masses, albeit without as high significances, as statistics

decrease.

4.3.1 E6-type models

Figure 4.1 presents the invariant mass distributions around the Z ′ peak for this subset of

models with MZ′ =1.7 TeV at both 14 and 8 TeV. These plots show that the various Z ′

bosons would certainly be visible in this channel, especially in the high energy and high

luminosity scenario. The strength of each signal is related only to the coupling strength

and width of the different models, which are also a function of the fermion couplings.

Therefore, one would expect that the visibility in this decay mode would be suppressed

compared to the di-lepton channel only by the impact on reconstruction efficiency and

resolution associated with the six-body decay.

Figure 4.3 profiles ALL in invariant mass for the LHC at 14 TeV and Table 4.2 sum-

marises integrated values for these models at both 14 and 8 TeV. When calculating

statistical uncertainties, an integrated luminosity of 100 and 15 fb−1 is assumed for the

two energies, respectively. The analytical expression in Equation 4.8 shows that the ob-

servable depends on the top couplings in a similar way to the total cross section. This is

reflected in the deviations from the SM shown in the figures, with large effects occurring

on peak whose significances increase when restricting ∆Mtt̄ as shown in Table 4.2. This

more or less parallels the effects seen in the invariant mass distributions. In the limit

of
√
ŝ >> 2mt, ALL depends identically on the vector and axial couplings of the tops

and therefore cannot distinguish between the purely vector and purely axial cases of
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Figure 4.1: Invariant mass distributions for E6-type models for MZ′=1.7 TeV
for the LHC at 14(8) TeV and 100(15) fb−1 of integrated luminosity. Dotted
lines represent statistical uncertainty calculated as described in the text.

GLR(BL) and E6 models. Furthermore, unlike AL, not only is it insensitive to the rela-

tive sign between the couplings but it also tends to one in the high energy limit β → 1.

The insensitivity is reflected by the overlapping of the GLR(BL) and E6(χ) cases, that

differ in having purely vector and axial couplings respectively of different sign but of a

similar magnitude. Such cases are never distinguishable, neither with total cross section

nor ALL measurements.

Aside from these limitations, Figure 4.3 shows clear distinguishability of models from

the SM and between one another based on differences in couplings for the high energy

case except when the up type coupling is too small, as for E6(S). (Table 4.1 implies that

this model would be much better suited to the bb̄ channel). Table 4.2 further improves

on these numbers by comparing integrated values focused around the Z ′ peak which

gives scope for sensitivity to deviations from the SM and limited distinguishability even

at low energy.

4.3.2 Generalised models

In contrast to the E6-type models, the generalised models have non-zero vector and

axial couplings to all quarks meaning that all of the asymmetry observables can be

generated at tree-level, on peak. The gauge coupling of the GLR and GSM classes is also

larger than that of the E6 class. Combined with their consequently higher cross sections
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Figure 4.2: Invariant mass distributions for generalised models with MZ′=1.7
TeV for the LHC at 14(8) TeV and 100(15) fb−1 of integrated luminosity. Dotted
lines represent statistical uncertainty calculated as described in the text.

(proportional to g′4), shown in the invariant mass distributions of Figure 4.2, this set of

models has clear asymmetry signatures at the LHC, even at 8 TeV. Figures 4.4 and 4.5

and Tables 4.3 and 4.4 profile the spin asymmetry variables ALL and AL, showing

large deviations from the SM case for the LHC at 14 TeV. As already noted, the

difference in sign in the AL contributions of the GLR and GSM models allows for the

best distinguishing power over all the models investigated. This is particularly important

for the specific case of the GLR(LR/Y ) and GSM (SM) models that do not appear

distinguishable in the invariant mass distributions nor in the other variables, but do so

in the AL two-bin plots. The spatial asymmetry variables are also clearly visible in these

models and are all rather similar. It was found that ARFB, employing the tt̄ system

rapidity cut offered the best discrimination power3. Figure 4.6 presents the observable

in differential form while its integrated values are found in Table 4.5.

4.3.3 Significance and luminosity analysis

Table 4.6 summarises the significance measures between various models as defined in

Equation 4.16 for ALL, AL and ARFB, for the values given in Tables 4.2 to 4.5. Generally

speaking, AL provides the best overall discrimination power, when the variable is non-

vanishing at the Z ′ peak. Beside preserving the relative sign between the top quark

3This is expected from the fact that the kinematical cut enhances the qq̄ contribution to the initial
state as discussed in Section 4.2
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vector and axial couplings, allowing to distinguish the GSM from the GLR class, it also

has the highest significance when comparing the Z ′ models in these classes with the SM

expectation and among themselves. For the E6-type cases, where AL is too small to be

measured, the other spin variable ALL comes into play. We observe that its significance

is always bigger than the spatial asymmetries, ARFB being the biggest amongst the

latter. As mentioned, this variable can be used to distinguish all the presented models

from the SM background. Regarding the disentanglement among models, we observe

that the narrower mass window and lower Z ′ mass always perform better thanks to the

larger signal over background (S/B) and better statistics respectively. Models with very

large width, such as the GSM ones, deliver a bigger significance in the larger invariant

mass cut.

From these tables it is clear that some models can be distinguished at early stages of

the LHC at
√
s = 14 TeV, i.e., with less than 100 fb−1. At the same time, the question

of what the required luminosity is to discriminate among models also quantifies how

powerful a variable is. Tables 4.7 and 4.8 address the distinguishability of the various

models using the spin and spatial asymmetries with increasing integrated luminosity.

Specifically, they give the required luminosity, when possible, to give a significance

measure of 3. These reinforce the fact that the models can generally be separated using

these observables for reasonable integrated luminosities when the sizes (and signs) of

the relevant couplings differ enough. The spin asymmetries provide the best distinctions

and ARFB performs the best among the spatial asymmetries.

Although certain models remain unresolvable even with full luminosity, 300 fb−1, O(1)

fb−1 of integrated luminosity is already enough to begin disentangling the generalised

models using AL. In particular, the GLR(Y ) and GLR(LR) become distinguishable

at just over 100 fb−1. With ALL, E6-type models start being distinguishable with

O(10) fb−1. O(50) fb−1 is required for full discrimination with ALL, as well as to have

confirmations for the generalised models with the spatial asymmetries, among which

ARFB outperforms all the others requiring less integrated luminosity.

4.4 Conclusions

A phenomenological study of classes of Z ′ models has been carried out in both spin and

spatial asymmetries of tt̄ production as a first look at the potential of this channel to

investigate Z ′ signatures. A selection of observables has been defined and profiled as a

function of the tt̄ invariant mass showing that there is much scope to observe deviations

from the SM and even distinguish between various models, particularly for spin asym-

metries, using a narrow invariant mass range around the Z ′ peak. Further, a measure

of distinguishability between models was quantified and considered the significance of

such differences with respect to the integrated luminosity.
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It is worth noting that, as stated in Section 4.1, the classes of models studied are a

set of benchmarks put forward for experimentalists to set bounds on Z ′ masses which

are best probed in the di-lepton channels. Other models featuring heavy neutral gauge

bosons would be even better suited to the tt̄ channel, such as lepto-phobic/top-phillic Z ′s

occurring in composite/multi-site and extra-dimensional models (see Chapters 6 and 7).

The profiling techniques discussed in this study would be increasingly more applicable

in these top-friendly scenarios. Furthermore, it has been assumed that all other exotic

matter states are decoupled for simplicity while they may have non-negligible effects on

widths and branching ratios that should be considered when moving away from model

independent methods.
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Figure 4.3: ALL binned in Mtt̄ for E6-type models with MZ′=1.7 (upper) and 2
(lower) TeV for the LHC at 14 TeV assuming 100 fb−1 of integrated luminosity.
Rightmost plots show the distribution in two 100 GeV bins either side of the Z ′

peak. Dotted lines and error bars represent statistical uncertainty calculated as
described in the text.

ALL(×10)
√
s = 14 TeV Lint = 100 fb−1 √

s = 8 TeV Lint = 15 fb−1

MZ′ = 1.7 TeV ∆Mtt̄ < 0.5 TeV ∆Mtt̄ < 0.1 TeV ∆Mtt̄ < 0.5 TeV ∆Mtt̄ < 0.1 TeV

SM −3.79± 0.05 −4.54± 0.07 −4.75± 0.39 −5.65± 0.61
E6(χ) −3.88± 0.05 −5.07± 0.06 −4.85± 0.39 −6.35± 0.58
E6(η) −4.17± 0.05 −6.42± 0.06 −5.22± 0.38 −7.85± 0.48
E6(ψ) −4.01± 0.05 −5.79± 0.06 −5.02± 0.33 −7.22± 0.52
E6(N) −3.90± 0.05 −5.21± 0.06 −4.88± 0.39 −6.54± 0.57
E6(S) −3.80± 0.05 −4.62± 0.07 −4.76± 0.39 −5.76± 0.61

GLR(BL) −3.88± 0.05 −5.02± 0.06 −4.86± 0.39 −6.31± 0.57

MZ′ = 2.0 TeV ∆Mtt̄ < 0.5 TeV ∆Mtt̄ < 0.1 TeV ∆Mtt̄ < 0.5 TeV ∆Mtt̄ < 0.1 TeV

SM −4.66± 0.09 −5.17± 0.11 −5.68± 0.84 −6.32± 1.23
E6(χ) −4.77± 0.09 −5.76± 0.11 −5.81± 0.83 −7.03± 1.14
E6(η) −5.13± 0.09 −7.15± 0.10 −6.26± 0.80 −8.44± 0.89
E6(ψ) −4.94± 0.09 −6.54± 0.10 −6.02± 0.82 −7.90± 1.00
E6(N) −4.79± 0.09 −5.92± 0.11 −5.84± 0.83 −7.23± 1.11
E6(S) −4.67± 0.09 −5.27± 0.11 −5.70± 0.84 −6.43± 1.22

GLR(BL) −4.77± 0.09 −5.70± 0.11 −5.82± 0.83 −7.00± 1.13

Table 4.2: Summary of integrated ALL values around the Z ′ peak for E6-type
models with MZ′=1.7 and 2 TeV at the LHC at 14 and 8 TeV assuming 100
and 15 fb−1 of integrated luminosity respectively.
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Figure 4.4: ALL distributions binned in Mtt̄ for generalised models with
MZ′=1.7 (upper) and 2 (lower) TeV for the LHC at 14 TeV assuming 100
fb−1 of integrated luminosity. Rightmost plots show the distribution in two
100 GeV bins either side of the Z ′ peak. Dotted lines and error bars represent
statistical uncertainty calculated as described in the text.

ALL(×10)
√
s = 14 TeV Lint = 100 fb−1 √

s = 8 TeV Lint = 15 fb−1

MZ′ = 1.7 TeV ∆Mtt̄ < 0.5 TeV ∆Mtt̄ < 0.1 TeV ∆Mtt̄ < 0.5 TeV ∆Mtt̄ < 0.1 TeV

SM −3.79± 0.05 −4.54± 0.07 −4.75± 0.39 −5.65± 0.61
GLR(LR) −4.41± 0.05 −6.72± 0.06 −5.48± 0.37 −8.03± 0.45
GLR(R) −4.70± 0.05 −7.18± 0.05 −5.83± 0.36 −8.38± 0.41
GLR(Y ) −4.43± 0.05 −6.68± 0.05 −5.55± 0.37 −8.02± 0.44
GSM (SM) −4.52± 0.05 −6.69± 0.06 −5.64± 0.37 −8.04± 0.45
GSM (T3L) −4.94± 0.04 −7.09± 0.05 −6.12± 0.35 −8.31± 0.41

MZ′ = 2.0 TeV ∆Mtt̄ < 0.5 TeV ∆Mtt̄ < 0.1 TeV ∆Mtt̄ < 0.5 TeV ∆Mtt̄ < 0.1 TeV

SM −4.66± 0.09 −5.17± 0.11 −5.68± 0.84 −6.32± 1.23
GLR(LR) −5.41± 0.08 −7.36± 0.09 −6.53± 0.78 −8.51± 0.85
GLR(R) −5.74± 0.08 −7.75± 0.09 −6.90± 0.75 −8.79± 0.76
GLR(Y ) −5.44± 0.08 −7.32± 0.09 −6.62± 0.77 −8.53± 0.82

GSM (SM) −5.53± 0.08 −7.30± 0.09 −6.69± 0.77 −8.51± 0.86
GSM (T3L) −5.99± 0.08 −7.63± 0.09 −7.16± 0.72 −8.72± 0.78

Table 4.3: Summary of integrated ALL values around the Z ′ peak for the gener-
alised models with MZ′=1.7 and 2 TeV at the LHC at 14 and 8 TeV assuming
100 and 15 fb−1 of integrated luminosity respectively.
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Figure 4.5: AL binned in Mtt for generalised models with MZ′=1.7 (upper)
and 2 (lower) TeV for the LHC at 14 TeV assuming 100 fb−1 of integrated
luminosity. Rightmost plots show the distribution in two 100 GeV bins either
side of the Z ′ peak. Dotted lines and error bars represent statistical uncertainty
calculated as described in the text.

AL(×10)
√
s = 14 TeV Lint = 100 fb−1 √

s = 8 TeV Lint = 15 fb−1

MZ′ = 1.7 TeV ∆Mtt̄ < 0.5 TeV ∆Mtt̄ < 0.1 TeV ∆Mtt̄ < 0.5 TeV ∆Mtt̄ < 0.1 TeV

SM −0.009± 0.044 −0.010± 0.059 −0.017± 0.35 −0.020± 0.53
GLR(LR) −0.971± 0.042 −3.90± 0.05 −1.37± 0.33 −5.36± 0.40
GLR(R) −1.51± 0.04 −4.98± 0.05 −2.14± 0.32 −6.53± 0.37
GLR(Y ) −0.938± 0.042 −3.58± 0.05 −1.40± 0.33 −5.05± 0.38
GSM (SM) 0.802± 0.042 2.71± 0.05 1.16± 0.32 3.79± 0.38
GSM (T3L) 1.90± 0.04 4.80± 0.05 2.70± 0.31 6.36± 0.38

MZ′ = 2.0 TeV ∆Mtt̄ < 0.5 TeV ∆Mtt̄ < 0.1 TeV ∆Mtt̄ < 0.5 TeV ∆Mtt̄ < 0.1 TeV

SM −0.011± 0.088 −0.012± 0.10 −0.020± 0.73 −0.020± 1.04
GLR(LR) −1.38± 0.07 −4.38± 0.08 −1.91± 0.66 −5.81± 0.75
GLR(R) −2.09± 0.07 −5.49± 0.08 −2.91± 0.64 −6.97± 0.69
GLR(Y ) −1.34± 0.07 −4.05± 0.08 −1.99± 0.65 −5.54± 0.71
GSM (SM) 1.12± 0.07 3.01± 0.08 1.59± 0.65 4.07± 0.71
GSM (T3L) 2.55± 0.07 5.21± 0.08 3.53± 0.62 6.74± 0.71

Table 4.4: Summary of integrated AL values around the Z ′ peak for the gener-
alised models with MZ′=1.7 and 2 TeV at the LHC at 14 and 8 TeV assuming
100 and 15 fb−1 of integrated luminosity respectively.
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Figure 4.6: ARFB binned in Mtt for generalised models with MZ′=1.7 (upper)
and 2 (lower) TeV for the LHC at 14 TeV assuming 100 fb−1 of integrated
luminosity. Rightmost plots show the distribution in two 100 GeV bins either
side of the Z ′ peak. Dotted lines and error bars represent statistical uncertainty
calculated as described in the text.

ARFB(×10)
√
s = 14 TeV Lint = 100 fb−1 √

s = 8 TeV Lint = 15 fb−1

MZ′ = 1.7 TeV ∆Mtt̄ < 0.5 TeV ∆Mtt̄ < 0.1 TeV ∆Mtt̄ < 0.5 TeV ∆Mtt̄ < 0.1 TeV

SM 0.008± 0.089 0.010± 0.122 0.018± 0.819 0.02± 1.35
GLR(LR) 0.501± 0.084 2.07± 0.09 0.776± 0.760 3.27± 0.88
GLR(R) 0.873± 0.081 2.89± 0.09 1.34± 0.73 4.24± 0.79
GLR(Y ) 0.523± 0.083 1.99± 0.09 0.807± 0.745 2.96± 0.82
GSM (SM) 0.337± 0.083 1.19± 0.09 0.524± 0.743 1.88± 0.86
GSM (T3L) 1.10± 0.08 2.81± 0.09 1.71± 0.70 4.15± 0.81

MZ′ = 2.0 TeV ∆Mtt̄ < 0.5 TeV ∆Mtt̄ < 0.1 TeV ∆Mtt̄ < 0.5 TeV ∆Mtt̄ < 0.1 TeV

SM 0.010± 0.167 0.011± 0.216 0.02± 1.86 0.03± 2.84
GLR(LR) 0.745± 0.153 2.40± 0.16 1.13± 1.67 3.70± 1.82
GLR(R) 1.26± 0.15 3.26± 0.14 1.90± 1.58 4.67± 1.62
GLR(Y ) 0.768± 0.151 2.27± 0.15 1.17± 1.62 3.30± 1.66
GSM (SM) 0.495± 0.152 1.36± 0.16 0.75± 1.62 2.07± 1.73
GSM (T3L) 1.54± 0.14 3.12± 0.15 2.33± 1.51 4.54± 1.67

Table 4.5: Summary of integrated ARFB values around the Z ′ peak for gener-
alised models with MZ′=1.7 and 2 TeV at the LHC at 14 and 8 TeV assuming
100 and 15 fb−1 of integrated luminosity respectively.
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Chapter 5

tt̄ as a complementary channel

Having considered the most common class of Z ′ benchmarks in the alternative tt̄ chan-

nel, determining that its asymmetries may have a role to play in offering additional

discriminative power, this chapter continues in a similar vein, considering the benefits

of asymmetry variables across different channels. Here, the value of tt̄ as a comple-

ment to di-lepton and other final states in distinguishing Z ′s is directly investigated by

considering a continuous parametrisation of a minimal, B-L Z ′ extension of the SM.

On the same footing as top quarks, τ -leptons are also short lived so that their spin

information is imprinted in their decay product kinematics [90]. Similarly to top quarks,

τ polarisation can be measured by means of its one-prong decays and analyses exist at

the LHC already [92]. Naturally, these observables are also affected by the difficulties

involving the boosted nature of the final state in the high mass regime discussed in

Section 2.5. The case of b-quark final states brings further complications. The displaced

vertex tagging allows for the charge measurement of the b-quark in the jet, which is

needed in the definition of charge asymmetry in b-quark final states, which therefore

seem feasible quantities to deal with. Here the main issue comes from the b-tagging

performances at high pT which are discussed in Section 5.2.2. Nonetheless, one might

hope the tagging efficiency to improve due to upgrades in the micro-vertex detectors

at both ATLAS and CMS for the
√
s = 14 TeV run (see, e.g., [93]). Regarding spin

asymmetries, they can also be defined for b-quarks. If the b-quark hadronises before

decaying, it has also been shown its spin information can be preserved by b-hadrons

(e.g., Λb), albeit with some dilution factors [94]. The subsequent semi-leptonic decays

of the latter may enable spin measurements, as pioneered at LEP [95]. It is not clear

however, by the same argument as for tops and τs, if the same measurement is possible

at the LHC, due to the higher boost of the emerging lepton and the narrower b-jet cone.

Despite being nowadays technically challenging and still uncertain for the very near

future, as better vertex detectors will be available, it is still interesting to study spin

asymmetries for b-quarks in view of if and when such measurements may be available.

They are therefore presented in the spirit of suggested observables.
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It is the purpose of this work to compare the yield of l+l− (l = e/µ, τ), bb̄ and tt̄ final

states produced at the LHC in presence of a Z ′ boson and to assess the machine ability

to profile the latter in both standard kinematic variables as well as charge/spin asymme-

tries, by continuously scanning the parameter space of this one-dimensional class of Z ′

models, defined in terms of the Z ′ coupling and kinetic mixing parameters, over which

benchmark points will be defined along with lines amenable to experimental investiga-

tion. As an aside, since the model requires the presence of right-handed neutrinos for

anomaly cancellation, as stated in Section 4.1.2, the effect of their inclusion on the afore-

mentioned observables and their ability to distinguish benchmarks is also considered. In

doing so, some (but not all) of the standard Z ′ benchmarks from, e.g., [56] and [96],

are borrowed as well as new ones defined. The work contained in this chapter can be

found in [2] and is planned as follows. In the next section, the model is described and

the calculation is outlined, defining the observables to be studied. Section 5.3 reports

and comments on results. Section 5.4 finally presents the conclusions and outlook.

5.1 Framework

An overview of the model studied is presented, with more details available in [97], fixing

conventions and relevant features, as well as the details of the code used and the variables

that have been analysed.

5.1.1 The minimal Z ′ model

The general class of models is the one defined by the so-called non-exotic minimal Z ′

models [2, 45, 54, 97, 98]. Following the conventions of [96], only the relevant parts are

summarised, i.e., the gauge and neutrino sectors, and the reader is referred to the latter

publication for a complete description of the model.

The term “non-exotic minimal Z ′” refers to a description of a U(1)B−L extended gauge

sector including theB-L quantum number, introduced in Section 4.1.2. The most general

covariant derivative for the theory, including potential kinetic mixing effects, is the SM

gauge covariant derivative, as in Chapter 1, extended with the B-L piece:

Dµ ≡ ∂µ + igS ~Gµ + ig ~Wµ + ig′
Y

2
Bµ + i(g̃Y + g′1TB−L)B′µ . (5.1)

Here, ~G and ~W correspond to the gluons and SU(2)L gauge bosons contracted with

their associated generator while the B and B′ fields are the hypercharge and B-L gauge

bosons respectively. g′1 is the new gauge coupling paired with the B-L generator defined

in Section 4.1.2 while g̃ parametrises the degree of kinetic mixing between the B′ and

B fields which, as explained in Section 3.1.1, induces a component of hypercharge in
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its couplings. In this bottom-up description of such models, constraints from gauge

unification at some specific yet arbitrary energy scale, on the extra gauge couplings are

not considered. Therefore, g̃ and g′1 are taken as free parameters. The Z ′ can thus be

pictured as interacting with an effective coupling Y E and an effective charge gE :

gEY
E ≡ g̃Y + g′1TB−L. (5.2)

As any other parameter in the Lagrangian, g̃ and g′1 are running parameters [98, 99],

therefore their values ought to be defined at some scale. It will be shown in Section 5.1.2

that some of the benchmark Z ′ models discussed in the previous chapter (see also,

e.g., [45, 100]) can be recovered by a suitable definition of both g̃ and g′1.

Three right-handed neutrinos are required by the anomaly conditions, and can be used

to naturally implement a type-I seesaw mechanism via Yukawa interactions with the

SM Higgs field and the new singlet Higgs field required to break the U(1)B−L symmetry

and give a mass to the Z ′. A general feature of the seesaw mechanism is that the

mass eigenstates, called “light” (νl) and “heavy” (νh) neutrinos, are Majorana particles,

ψ = ψc, meaning they are their own charge conjugates. Because of this, they only have

axial couplings to the neutral gauge bosons. This can be derived from the properties of

the charge conjugation operator forbidding the vector current for Majorana particles. In

order to investigate the impact of their presence, two opposite scenarios are considered: a

“decoupled” case, with heavy neutrinos much heavier than (half of the) Z ′ mass, thereby

disallowing Z ′ → νhνh decays, and a “very light” case, where the heavy neutrinos are

much lighter than the Z ′ itself (e.g., mνh = 50 GeV, compatible with LEP limits [101]).

All possible intermediate cases will therefore lie somewhere in between.

5.1.2 Structure of the chiral couplings

To study the asymmetries it is important to understand the chiral structure of the

couplings of the Z ′ gauge boson to fermions, determined by the covariant derivative of

Equation 5.1. Due to the mixing between the Z and Z ′ gauge bosons, the couplings of

the Z ′ to fermions are a function of g′1 and g̃. In all generality, such couplings can be

separated into vector and axial components, fV (g′1, g̃) and fA(g′1, g̃), respectively, with

an interaction term expressed as in Equation 3.5 but with the gauge couplings absorbed

into the definitions of the couplings.

Because of universal couplings, the explicit chiral structure of the Z ′ couplings to up-

type quarks, down-type quarks and to charged leptons is independent of the fermion

generation, as are its partial decay widths in the approximation of a massless final state.

As for the two neutrino mass eigenstates, the see-saw mechanism dictates that their

mixing angle from the flavour basis is approximately proportional to the square root of

the ratio of their masses [97]. Since the lower mass scenario assumes their mass to be
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f u d l νL νR

fV
4g′1+5g̃

12
4g′1−g̃

12 −4g′1+3g̃
4 0 0

fA − g̃
4

g̃
4

g̃
4

2g′1+g̃
2 g′1

Table 5.1: Table summarising the vector and axial vector couplings of the
SM fermions plus the neutrino flavour eigenstates in the approximation of no
mass mixing between the Z and Z ′. u, d, l, νL, νR denote up-type quarks, down-
type quarks, charged leptons and the left and right-handed neutrino flavour
eigenstates respectively.

50 GeV, already yielding a mixing angle of order 10−6, they can be well approximated

by the flavour eigenstates. The fermion couplings are summarised in Table 5.1, as taken

from [2], in the limit of no mass mixing with the Z, since the LEP limits mentioned

in Section 3.1.4 constrain this to effectively negligible levels [102]. Expressions for the

partial widths to fermions can also be found in [2].

5.1.3 Benchmark models

From the expressions for the fermion couplings, a set of benchmark models can be

selected for certain values of g̃ and g′. Among these are commonly used benchmarks

introduced in Chapter 4: the “pure” B-L model is defined by the condition g̃ = 0

(implying no kinetic mixing at tree-level between the B-L Z ′, sometimes denoted as

Z ′B−L, and the hypercharge field); the U(1)R model, for which left-handed fermion

charges vanish (recovered here by the condition g̃ = −2g′1) and the SO(10) inspired

U(1)χ model, which is given by g̃ = −4
5 g
′
1 (the only orthogonal U(1) extension of the

SM hypercharge). The χ model will have axial couplings to up-type quarks; the R model

will have equal couplings (in absolute value) to all fermions (|uV | ∼ |uA| ∼ |dV | ∼ |dA| ∼
|lV | ∼ |lA|) while the pure B-L model (for which g̃ = 0) will have uA = dA = lA ≡ 0. In

this framework, the axial couplings to visible fermions are proportional to g̃, and hence

vanish identically only in the pure B-L model.

Regarding the vector couplings, two additional benchmark scenarios can be identified by

requiring some of them to vanish. Analogously to the U(1)χ model, the /B (“B-not”) and

the /L (“L-not”) models are defined for the purposes of this study. These three models

are characterised by the vanishing vectorial coupling to the up-type quarks, down-type

quarks and charged leptons respectively, and are obtained by the following relations:

U(1)χ model: g̃ = −4

5
g′1 → uV ∼ 0 , (5.3)

/B model: g̃ = 4 g′1 → dV ∼ 0 , (5.4)

/L model: g̃ = −4

3
g′1 → lV ∼ 0 . (5.5)
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As dictated by the coupling dependence of asymmetry observables illustrated in Sec-

tion 3.2, these models will have trivial asymmetries, up to small EW interference ef-

fects, in the corresponding final state (the one with negligible vector coupling) and

non-vanishing ones in the other final states. Only the pure B-L model will have trivial

asymmetries in all final states. Finally, the R model will have almost the same val-

ues for the asymmetries in all final states, which should be maximised from the fully

right-handed interaction.

On the scenario line characterised by the relationship between the gauge couplings,

specific values for the latter are chosen to recover the normalisations of the well known

benchmark models, some of which correspond to those described in [56]. Finally, to

recover the SO(10)-inspired U(1)χ point, its gauge couplings have been rescaled by the

usual factor to unify with the GUT normalised hypercharge (
√

3/8 in this case). In the

case of the B-L, /B and /L models, normalisations were chosen in a similar region to the

other benchmarks with respect to the leptonic limits.

5.2 Calculation and variables

The code used for the study is largely the same as in Chapter 4. Initial state quarks

were assumed to be massless while for the top state, mt = 172.9 was taken as the pole

mass. The b-quark was taken to have mass mb = 4.95 GeV. The electron and muons

were taken as massless while the τ mass used was mτ = 1.77 GeV. The PDFs used

were CTEQ6L1 [18], with factorisation/renormalisation scale set to Q = µ = MZ′ .

VEGAS [85] was used for the multi-dimensional numerical integrations. A separate

program was also used for part of the analysis, based on CalcHEP [103], wherein the

model has been independently implemented via the LanHEP module [104] and the Feyn-

Rules [105, 106] package. The model files can be found on the HEPMDB database [107]

and on the FeynRules website [108].

For all final states, f , a cut in the invariant mass window around the Z ′ peak was made

∣∣mff̄ −MZ′
∣∣ < 100 GeV , (5.6)

which enhances the Z ′ peak with respect to the SM background. Regarding the b-quark

final state, this is still not sufficient to isolate the resonance. Consequently, a further

selection was implemented implemented:

pT (b) > 300 GeV . (5.7)
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5.2.1 Extracting Z ′ couplings

The ultimate scope of profiling a Z ′ boson is that of measuring its couplings to fermions.

It is clear that one needs as many independent measurements as possible to profile these

couplings should a resonance be observed. As a brief aside, some comments on using

asymmetries and multiple final state are made in this context. From Section 3.1.3, in

the minimal case, 5 independent Z ′ coupling parameters exist (qL, uR, dR, lL, eR, where

qL and lL identify the quark and lepton doublets, respectively), so that at least 5 inde-

pendent measurements are required. In [50], it is shown that a set of 4 coefficients (cq,

eq; q = u, d) that are functions of the Z ′ couplings can be extracted from 4 observables

related to charge asymmetry and total cross section in the light lepton channel, obtained

by dividing the kinematical domain of the differential cross section. These coefficients

are related to those defined in Section 3.2 for a quark initial state and light lepton fi-

nal state, f = l. cq is proportional to the product of parity symmetric coefficients of

Equation 3.10, CqCe, while eq is proportional to the antisymmetric counterpart related

to charge asymmetry as in Equation 3.16, AqAe, both for the pure Z ′ contribution.

It is observed that a degeneracy exists between the dependence on leptonic and quark

couplings in this analysis, stemming from the minimal assumption of 5 independent pa-

rameters and only 4 independent observables. The leptonic couplings can be rescaled at

will, provided the quark couplings are scaled oppositely. Therefore, additional observ-

ables are required even for the most minimal assumption on the Z ′ couplings. Including

the total Z ′ width does not seem to fix the problem, since it enlarges the set of inde-

pendent parameters to include all fermionic decay modes. Considering different final

states is clearly a viable option. Decaying final states also provide spin observables that,

being based on polarised amplitudes, cannot be obtained from the fully differential cross

section and may provide independent information. Staying with the leptonic final state,

the τ polarisation has a different dependence on the quark and leptonic couplings than

cq, eq. Equation 3.25, for i = j, can be written in the spirit of [50] as a new coefficient,

fq=u,d ∝ (q2
R + q2

L)(e2
R − e2

L) ≡ CqAe, (5.8)

making manifest the aforementioned sensitivity to the handedness of the Z ′ couplings.

These coefficients can, in principle, be extracted from τ polarisation measurements in

a similar way as the cq and eq coefficients are from the differential cross section, i.e.,

by splitting the kinematical domain of AτL in 2 independent regions to then be fitted.

However, it is evident that the same quark-lepton degeneracy exists. In fact, it turns

out not to be linearly independent from the c and e coefficients when uL = dL:

fq=u,d ∝ cq
eu − ed
cu − cd

. (5.9)

Although the τ polarisation does not allow for the extraction of the Z ′ couplings within

the 5 parameter minimal assumption, it could still prove to be a useful quantity to
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measure. First of all, the channel itself would be essential as a test of universality.

Secondly, the polarisation measurement provides an extra set of constraints on the other

coefficients that may improve the quality of a fit to the couplings. The ratios

fu
cu

=
fd
cd
≡ e2

R − e2
L

e2
R + e2

L

(5.10)

should be equal and are independent of the quark couplings and could serve to reduce

some systematics, such as those from PDFs. To break the degeneracy, allowing for a

direct fit of the couplings, one could consider observables in non-leptonic final states,

i.e. top polarisation or charge asymmetry. Any one of the asymmetry observables in an

alternative final state would be sufficient to this end. Furthermore, moving away from

the minimal assumption permitting uL 6= dL (but still requiring universality), as could

occur with Z ′s arising from more general gauge group extensions, restores the linear

independence of one of the τ polarisation coefficients. In this case one still requires the

use of an alternative final state to complete the set of independent observables needed

to fit directly to the 6 (or more) couplings. Finally, as one moves away from minimal

models, it is clear that such observables could be extremely useful to access the couplings

of the most general Z ′.

5.2.2 Efficiencies and uncertainties

To be able to quantitatively address the distinguishability among the various models

and the SM background, a statistical error is associated to each asymmetry observable

as defined in Equation 2.4. Again, in this work only estimate statistical uncertainties

are considered although systematics may also be important [87, 89]. Their inclusion,

however, would require detailed detector simulations which are beyond the scope of

this work. Following the discussion in Section 2.5, for the tt̄ system, the reconstruction

efficiency is taken to be εt = 10% as in [1], considering all possible decay channels, based

on efficiencies quoted by recent experimental papers [91] as well as estimates from MC

studies in previous works [109]. This is used to define the charge asymmetry, while for

the spin polarisation, taking into account the boosted topology as well as the additional

information required from the decay products, a more conservative 5% is assumed.

For the bb̄ system, εb = 10% is taken, based on the 2 b-jet tagging efficiency given in [110],

appropriate for the reconstruction of the invariant mass. For the asymmetry measure-

ments, at least one of these jets’ charges must also be determined. One way this can be

done is the requirement of a prompt, hard lepton originating from the semi-leptonic de-

cay of a b-hadron. The efficiency must therefore be scaled to include a reduction from the

leptonic decay branching ratio (BR) of an admixture of b-hadrons (23% [7]), resulting in

a very low event rate. Alternatively, the single b-tagging efficiency is quoted to be 50%

when summing 1-tag and 2-tags efficiencies at high pT . The study implies that, while
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the 2-tags would yield low rates, the 1-tag alone seems insufficient, given the high rate

of mistags from light flavour jets. However, the additional requirements on a muon from

the b-jet, necessary for potential charge and polarisation asymmetry measurements, can

improve both the tagging and the tagging-over-mistag efficiencies up to intermediate

jet pT [16] while no information is available for very energetic jets. The efficiency of

requiring a single b-tagged jet scaled by the semi-leptonic BR to muons (half of the pre-

viously quoted fraction) is estimated at 5%. This is assigned to the charge asymmetry

observable in the bb̄ channel. Regarding the b-hadron helicity, there is no result currently

available at the LHC and the main information available is from LEP [94, 95] – a very

different collider environment both in energy and hadronic activity – εb = 2% is taken as

an estimate to quantitatively discuss spin observables in this channel. This reflects the

likely difficulty with which this observable might be measured at the LHC, due to all of

the previously discussed issues. The estimate is made hoping that, for the time scales at

which this work could be relevant, the situation will have improved as suggested by the

proposed new generation of micro-vertex detector available for the
√
s = 14 TeV run,

see, e.g., [93]. However, the reader is reminded that these observables are kept mostly

for illustrative purposes and may not be available at the LHC, although the proposed

upgrades for micro-vertex detectors may well help to extract them.

For the l+l− system, a distinction is made between light leptons (e, µ), for which εe,µ =

90% [111], and the τs, for which ετ = 5%. Light leptons will be employed for charge

asymmetries only, whilst τs are used to define the spin asymmetry AL in the leptonic final

state. This latter number is based on a recent ATLAS measurement uses 1-prong decays

of the form τ → ρ±ν(ρ± → π±π0) (25% of tau’s BRs [7]) to measure τ polarisation

from W decays [92]. In this particular decay channel, angular momentum conservation,

coupled with the left-handed charged current interaction, dictates that a left-handed

τ will preferentially decay to a transversely polarised ρ while a right-handed one will

prefer a longitudinal ρ. The relative energy shared between the rho decay products

is then sensitive to the rho polarisation and can therefore be used to measure AτL.

The analysis cites a reconstruction efficiency of 60% and a 20% loss of sensitivity due

to detector effects which would combine for an overall ∼ 10% efficiency. However,

this study is concerned with high mass τ+τ− pairs for which Z ′ analyses exist at the

LHC [112, 113]. The CMS analysis provides signal selection efficiencies for the possible

combinations of hadronic and leptonic τ decays for a Z ′SSM resonance. The proportion

of τ+τ− decays containing at least one hadronic tau decay of the type specified above,

folding in the associated reconstruction efficiency for the highest mass point of 1 TeV

yields 3.1%. This is considerably lower than the analysis on τ polarisation. However it

does appear that the efficiencies increase with Z ′ mass presumably due to the reduction

in backgrounds at higher invariant mass. The estimate of 5% is therefore kept as a

conservative compromise, assuming that selection efficiencies should improve at higher

masses and perhaps also with better statistics. By the same logic as for the tt̄ channel,

the efficiency to reconstruct the invariant mass of the desired decay mode should be
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reduced to account for the additional process of extracting the polarisation information

from the decay products. The overall efficiency used to reconstruct and measure the

polarisation from a high mass τ pair is therefore taken as 2%.

All figures that will be shown in the following are for the LHC at
√
s = 14 TeV assum-

ing 100 fb−1 of integrated luminosity, for a Z ′ mass of 2.5 TeV and decoupled heavy

neutrinos. The mass choice was motivated by the exclusions computed at the time the

work was undertaken. In some cases, observables are evaluated also for “light” heavy

neutrinos of 50 GeV mass to estimate their impact. Values of an observable in the

(g′1, g̃) coupling plane can be compared to SM predictions corresponding to the point

(0, 0). For the signal, the uncertainty for that value is evaluated to confirm visibility

over the background in that channel. Also shown are surface plots of the significance

of the observable with respect to the SM prediction, defined as in Equation 4.16, where

A(1) and A(2) denote the prediction for an observable of two different hypotheses and

δA(i) refers to their statistical uncertainty. In this case, the statistical uncertainty of

the SM prediction is taken to be zero because its very low cross section at such high

invariant masses (especially true for the leptonic final state) would artificially dilute the

significance of asymmetries in that region. As such, the SM prediction is taken as a

reference value only.

5.3 Results

5.3.1 Exclusion limits

Before considering the asymmetry observables, some recent exclusions from direct searches

performed at CMS with ∼ 5 fb−1 [114], are shown. A more in-depth description of the

features pertaining to each possible final state, i.e., BRs and total Z ′ width can be found

in [97]. Notice that ATLAS has also published an equivalent analysis for ∼ 5 fb−1 [115],

but their limits are less tight than the CMS ones. Since this work was completed, the

results used for the limits have been superseded by 8 TeV data.

Figure 5.1 presents some recent 95% (Confidence Level) CL exclusions at the LHC in

the (g′1, g̃) plane (first in [97, 116]), based on the CMS data at
√
s = 7 TeV for the

combination of 4.7(9) fb−1 in the electron(muon) channels. The benchmark trajectories

representing the relationships between g̃ and g′1 as well as the specific points chosen to

match the normalisations in [56], are shown for reference. It can be seen that, for masses

of order 1 TeV, a large part of the parameter space is excluded, becoming more relaxed

as one reaches 2.5 TeV.

Table 5.2 collects the maximum allowed g′1 coupling per given Z ′ boson mass for the

various benchmark models of interest (see Section 5.1.3). Naturally, the /L and U(1)χ

models, having the weakest couplings to leptons, are the least constrained.
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Figure 5.1: Z ′ exclusions from recent CMS data, at
√
s = 7 TeV for the combi-

nation of 4.7 fb−1 in the electron channel and of 4.9 fb−1 in the muon channel.
The dotted black lines refers to the main benchmark models of this analysis (see
Section 5.1.3).

MZ′ (TeV) U(1)R U(1)χ U(1)B−L /L /B

2.5 0.63 > 0.8 0.75 > 0.8 0.13
2.2 0.39 0.81 0.45 0.83 0.08
2.0 0.27 0.58 0.31 0.60 0.06
1.8 0.19 0.40 0.22 0.41 0.04
1.5 0.12 0.24 0.13 0.25 0.03
1.0 0.075 0.14 0.08 0.15 0.02

Table 5.2: Maximum g′1 allowed at 95% CL for the benchmark lines of Sec-
tion 5.1.3.

5.3.2 Event rates

It is instructive at this point to consider the total event rates in each channel. These are

shown in Figure 5.2, including the SM background and interference with the EW sector,

also folding in the effective reconstruction efficiencies decided upon in Section 5.2.2. To

evaluate the total cross sections, the cuts described in Equations 5.6 and 5.7 have been

applied to enhance the signal. These figures highlight the different areas of parameter

space favoured by each final state and relate directly to the magnitude of the statistical

uncertainties in its asymmetries (to be studied below).

The dotted lines also highlight the impact of the light neutrino scenario when the width

is increased, leading to a reduction in events. This reduction can be order 40%, 30%, and

20% when considering pp→ l+l−, pp→ bb̄, and pp→ tt̄, respectively. The fact that νR

couples with g′1, as shown in Table 5.1, is reflected by the deviations from the decoupled
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Figure 5.2: Total event rates includ-
ing reconstruction efficiency on peak
|Mff̄−MZ′ | < 100 GeV, forMZ′ = 2.5
TeV for Z ′ → e+e− (top left), Z ′ → tt̄
(top right) and Z ′ → bb (bottom), in
the (g′1, g̃) plane for two extreme neu-
trino masses, i.e., for decoupled neu-
trinos (solid line) and very light (dot-
ted line), mνh = 50 GeV, heavy neu-
trinos. The benchmark models are the
red dots on each scenario line.

scenario increasing with this coupling. If the presence of light heavy neutrinos lowers

the rate for a particular final state, directly increasing its relative error and therefore the

error of the asymmetries, this will directly influence the central value of the asymmetries.

Given that the SM background is not altered by the presence of heavy neutrinos, the net

effect of a decrease of signal is to increase the relative SM contribution in the samples.

Overall, the values of the asymmetries will therefore be more SM-like, i.e., the central

values will shift towards the value obtained in the SM. Obviously, this can happen only

when the signal-to-background ratio is altered; in the case of leptons, where the SM

contribution is negligible, the shift of the central values of the asymmetries is negligible.

As previously observed, the total rate when leptons are considered is above the fb level for

most of the parameter space. The SM contribution is 0.03 fb, some orders of magnitude

below the signal whether or not light heavy neutrinos are considered. For the heavy

quarks, instead, the SM background is of the same order of the signal, as the former

is largely due to QCD while the latter is (despite being resonant) an EW process.

Comparing Figures 5.1 and 5.2, it is clear that the shape of the current exclusion limits

is driven by the BR of the Z ′ boson into charged leptons: the limits are weaker where the

rates are smaller, i.e., in the region between the U(1)χ and the /L scenarios, reiterating the

trend in Table 5.2. It is also clear that searches performed in the top-quark final states

do not improve this behaviour, since σ(pp→ Z ′ → tt̄) is minimised near the U(1)χ line.
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However, the b-quark final state cross sections are maximised here, so it was determined

whether exclusions derived in this final state could improve the overall results. It turns

out that the sensitivity in this channel, for a comparable integrated luminosity, i.e., 5

fb−1 as in the analysis in [117], cannot compete with the much cleaner di-lepton final

state already discussed, that still yields the tighter constraints in the whole parameter

space. It would, however, be interesting to consider this in the light of a more recent bb̄

resonance search from the 8 TeV run [110].

5.3.3 Asymmetries

For a complete profile of the model, the charge and spin asymmetry observables are

studied at the Z ′ peak. Performing a scan over the gauge couplings, the integrated

values of asymmetries are presented in the (g′1, g̃) plane for all three final states (Z ′ →
l+l−, tt̄, bb̄). The SM prediction for each observable can then be found at the point (0,0).

The observables were computed using the code described in Section 5.2 implementing the

cuts in Equations 5.6–5.7 and folding in the relevant reconstruction efficiencies discussed

in Section 5.2.2 in order to determine the statistical uncertainties plotted underneath

(always for 100 fb−1 of integrated luminosity). There is a distinction between the light

leptons l = e, µ, to be used in evaluating ARFB, and τs, essential to measuring AL in

the leptonic sector. Results for ARFB and AL are shown as representatives for charge

and spin variables, respectively. The spin polarisation, ALL, is not shown because of its

capabilities in the top final state only, since in the massless limit, β → 1, the asymmetry

becomes maximal. Furthermore, ALL predictions for the top final state are not discussed

given that the aim of this work is to compare predictions in different final states to assess

their complementarity in distinguishing models.

Charge asymmetry: ARFB

Figure 5.3 shows the rapidity dependent forward-backward asymmetry along with its

statistical uncertainty in the chosen three final states. In this case, the electron and muon

final states can be used and possibly combined to reduce the statistical uncertainty

further. One can clearly see the asymmetry vanishing in each final state along the

scenario line corresponding to a zero value of one of the chiral couplings (vector or

axial), as described in Section 5.1.3.

The magnitude of the statistical uncertainties matches the total cross section plots in

Figure 5.2 in accordance with Equation 2.4 and, outside of the cases near the trajectories

where a particular final state has vanishing asymmetries, the uncertainties can be as low

as 20% in the case of the top final state. In the leptonic final state, the uncertainties

are comparatively smaller, apart from the large spike at the SM point due to the lack

of cross section. Finally, the bb̄ final state still appears to perform similarly to tt̄ with
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Figure 5.3: ARFB on peak, |Mff̄ −
MZ′ | < 100 GeV, for MZ′ = 2.5 TeV
for Z ′ → e+e−, bb̄ and tt̄ in the (g′1,
g̃) plane. Statistical uncertainties are
shown in the lower subplots assuming
100 fb−1 of integrated luminosity. The
benchmark models are highlighted as
(green) dots on the (dotted) scenario
lines.

slighty larger uncertainties overall but comparable relative uncertainties in the optimum

regions. The sensitivity to the relative sign of the couplings in the final state is blurred

due to the dependence on the product of the initial and final state couplings, as discussed

in Section 3.2. In fact, the dominance of the up quark in the proton means that the

observable is positive definite, since, for universal couplings the observable on peak is

proportional to (Au)2.

The overall assessment of the visibility of the Z ′ boson suffers from larger uncertainties

(compared to AL, as will be seen later). The significance measure for each channel with

respect to the SM prediction is shown in Figure 5.4, where also the coloured plane indi-

cates the final state which offers the highest significance for each pair of coupling values.

An integrated luminosity of 100 fb−1 is enough to gain a sensitivity equal or greater

than 3 almost everywhere. The dominance of the leptonic final state is remarkable, this

final state being sufficient to cover most of the parameter space. This is due to the

large positive value of this asymmetry for the SM, while in this model the leptonic final

state yields a smaller, sometimes negative value for ARFB in most of the parameter

space. It is peculiar that, for large negative values of g̃, where also AlRFB is large, the

already small errors are not sufficiently small to allow one to distinguish the Z ′ boson

from the SM. Nonetheless, a good discrimination power is provided in this corner by

the combination of top and bottom quark final states, albeit with smaller significances

due to larger uncertainties from poorer reconstruction efficiencies. This reinforces the

complementarity of the various channels to cover the parameter space.
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Figure 5.4: Significance of ARFB with respect to the SM prediction on peak,
|Mff̄ −MZ′ | < 100 GeV, for MZ′ = 2.5 TeV for Z ′ → e+e− (red), bb̄ (blue)
and tt̄ (green) in the (g′1, g̃) plane at the LHC at 14 TeV both for decoupled
heavy neutrinos (left) and for heavy neutrinos of 50 GeV (right). The coloured
projection denotes the final state which offers the most significance for each pair
of coupling values. We assume here a luminosity of 100 fb−1.

The effect of introducing the heavy neutrinos is to reduce significances across the board,

which results in a slight enlargement of the grey area in which a 3σ significance cannot

be obtained in any final state. The reason for this is twofold, although driven by a single

cause: the reduction of the signal rates in the considered final state. First, as discussed

at the end of Section 5.3.2, the central value of the asymmetry is shifted towards SM

values due to a reduced signal-over-SM ratio of events. This does not affect the lepton

final state, whose significance is reduced due to the smaller total rates giving larger

errors, which naively reduce the significance.

Polarisation asymmetry: AL

Figure 5.5 shows the spin polarisation asymmetry along with its statistical uncertainty in

the usual three final states. Recall that in the case of the leptonic final state labelled ee,

the measure would be obtained from the τ final state with the discussed reconstruction

efficiency of 5%. Once again and even more clearly than for ARFB, one can see the

asymmetry vanishing in each final state where expected. The change in sign of the

asymmetry at different points in parameter space corresponds to a change in relative

sign of the vector and axial couplings of the Z ′ boson (or alternatively, the handedness

of the coupling) to the final state as discussed in Section 4.1.4. This is most pronounced

in the di-lepton case because of the comparatively low SM background, which dilutes

the asymmetry in the other final states.

The behaviours of the statistical uncertainties do not greatly differ from those in the

ARFB plots as they are largely determined by the cross section values, although they

are about a factor of two smaller, making this variable the one with the greatest dis-

crimination power. The exception to this lies in the lepton sector where, since the EW
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Figure 5.5: AL on peak |Mff̄−MZ′ | <
100 GeV, for MZ′ = 2.5 TeV for Z ′ →
e+e−, bb̄ and tt̄ in the g′1, g̃ plane at
the LHC at 14 TeV. Statistical uncer-
tainties are shown in the lower sub-
plots assuming 100 fb−1 of integrated
luminosity. The benchmark models
are highlighted as (green) dots on the
(dotted) scenario lines.

background is so low, when the couplings become fully chiral like on the U(1)R line, for

example, the asymmetry also becomes close to maximal. Considering the dependence

of the statistical uncertainty on the value of an asymmetry given in Equation 2.4, the

more maximal the asymmetry is, the closer to zero the statistical uncertainty becomes.

This leads to extremely high significances as they are defined in this work, as seen in

Figure 5.6, where the values in the lepton sector have had to be capped in order to

better represent the information.
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Figure 5.6: Significance of AL with respect to the SM prediction on peak
|Mff̄ −MZ′ | < 100 GeV, for MZ′ = 2.5 TeV for Z ′ → e+e− (red), bb̄ (blue)
and tt̄ (green) in the (g′1, g̃) plane at the LHC at 14 TeV both for decoupled
heavy neutrinos (left) and for heavy neutrinos of 50 GeV (right). The coloured
projection denotes the final state which offers the most significance for each pair
of coupling values. We assume here a luminosity of 100 fb−1.
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Overall this gives an indication that all channels could be useful in probing the full

parameter space of such a Z ′ model in complementing one another by having different

areas where the sensitivity is best. Significances in excess of 3 appear over almost all

of the (g′1, g̃) plane. Although leptons almost always provide the best significance, due

to the large negative SM value as compared to the large positive signal values over the

majority of the parameter space, in the ares between /L and U(1)χ where the two are

similar for the lepton final state, bb̄ and tt̄ come into play and provide coverage. The top

mode also provides better visibility in the two lower corners of low g′1 and large absolute

value of g̃, a peculiar area of parameter space where the Z ′ interaction is dominated by

the kinetic mixing term. Figure 5.5 confirms that in these areas, the top polarisation

has a large deviation from the SM prediction and also corresponds to areas in which the

contribution to the cross section is maximised and, therefore, the uncertainties reduced.

Again, having coupled heavy neutrinos results in an overall reduction of the signal

significance with respect to the SM and in a slight enlargement of the grey area in which

a significance of 3 cannot be obtained in any final state. However, comparing Figures

5.4 and 5.6, it is clear that these grey areas overlap only in the region where both gauge

couplings g′1 and g̃ are small, showing a great complementarity of observables and final

states.

5.3.4 Distinguishing benchmarks

So far, how well the asymmetry produced by a Z ′ boson in this model can be dis-

tinguished from the SM background has been investigated. One would also like to

disentangle different combinations of gauge couplings, in turn leading to their absolute

measurement. Although the full analysis and especially this last part are beyond the

scope of this work, the first point can be addressed here.

Figure 5.7 shows that all benchmark models can well be discriminated with 100 fb−1 of

data if one assumes the availability of all final states in AL. In particular models that

are degenerate in one final state (such as B-L and χ in the case of top quarks) are well

separated either using leptons or, eventually, b-quarks. The last frame, displaying the t-

versus b-quark case, clearly shows the impact of including heavy neutrinos: represented

by dashed crosses, the asymmetries with light νh are closer to the SM values and have

larger errors.

Table 5.3 collects the significance of each benchmark point with respect to any other

when AL is measured in each of the final states, would the measure in b-quark final state

be available, both for decoupled neutrinos (upper triangle) and for mνh = 50 GeV (lower

triangle). Most of the models are quite distinguishable from one another just by looking

at τs, that generally deliver higher discrimination power due to the smaller errors. The

only exception is the separation between /L and B-L, both with vanishing asymmetries

in the lepton final state. Here, the supplementary information from the top final state
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Figure 5.7: On-peak AL values with
relative errors for MZ′ = 2.5 TeV in
different combinations of final states,
for the selected benchmark models in
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AL /B R /L B-L χ
50 \ dec τ t b τ t b τ t b τ t b τ t b

/B – 2.5 4.3 3.5 2.0 1.7 3.4 2.8 4.1 0 5.6 4.1 2.0
R 2.5 3.7 3.3 – 3.8 2.6 0.3 4.9 8.4 3.7 7.1 8.4 1.0
/L 2.0 0.7 2.9 3.8 2.9 0.4 – 0 5.7 3.5 2.8 5.7 0.8

B-L 2.8 4.0 0 4.9 7.6 3.4 0 4.5 2.9 – 3.5 0 2.0
χ 5.6 3.9 1.8 7.1 7.5 1.5 2.8 4.5 1.1 3.5 0 1.9 –

Table 5.3: Significance for AL for the LHC at 14 TeV for 100 fb−1 and MZ′ = 2.5
TeV for the common benchmark points in the τ, t, b final states. Upper triangle
for decoupled heavy neutrinos and lower triangle for mνh=50 GeV.

already proves to be sufficient to discriminate among all the models. If the inclusion

of tops already helps to disentangle the models, it is clear that, were it available, the

measure in b-quarks would be of great help to fully distinguish them: the discrimination

power is always above 4 in at least one final state, with the b-quarks being especially

relevant to discriminate between /L and /B.

Regarding the inclusion of heavy neutrinos, their impact is that of reducing the absolute

value of the asymmetry and to increase its statistical error. τs are not affected by their

presence and therefore show the same significance. Additionally, the absolute values

of the asymmetries for B-L and /B are not affected by heavy neutrinos, given that the

former has vanishing asymmetries everywhere and that the latter has negligible BRs
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into them. Therefore, their disentanglement from any other model can only get worse,

due to the reduced central values of the latter. The same is true also for χ when tops are

considered, given that its asymmetries in this final state are vanishing. When instead

models with finite values of the polarisation asymmetry in a specific final state are

compared (i.e., R and /L using tops and R, /L and χ using b’s), the discrimination power

therein gets enhanced when considering coupled heavy neutrinos. The central values

change differently and the various models considered here are better separated, despite

the slightly larger statistical errors.

5.4 Conclusions

In summary, the feasibility of profiling a Z ′ boson, possibly discovered at the 14 TeV

LHC, thanks to the exploitation of the decays of the new gauge boson into τ+τ−, tt̄ and

bb̄ states has been analysed, with respect to the time-honoured studies of DY channels

only (i.e., decays into e+e− and µ+µ− final states). In fact, the former signatures afford

one with the possibility of not only defining standard charge asymmetries, the only ones

accessible in the latter, but also spin ones. Their measure is certainly feasible for τ and

top-quark final states, while, at this moment in time, the b-quark final state may prove

difficult, if at all possible, to analyse due to experimental limitations in reconstruction,

as well as to the highly boosted kinematics. Further, based on a dedicated parton level

simulation, including some selection criteria and realistic detector efficiencies, it has been

argued that in this approach neither DY nor any of the above new channels can be used

alone to fully probe all the parameter space. Rather, one way to make this possible

is to combine two or more of these channels, with the inclusion of spin observables, as

the aforementioned final states show different sensitivity to the observables previously

studied. The spin polarisation was determined to offer a better discrimination power

compared to the charge asymmetry but this effect may be offset by the more involved

reconstruction process of the former observable contributing to more uncertainty in an

experimental analysis. The presence of light extra states (the heavy neutrinos) can alter

the observables under study, and their impact might be resolved.

Ultimately, the goal of profiling an observed resonance would be to measure all the

parameters of its fermionic interactions. In the minimal case, as discussed in section

2, there are 5 independent couplings. Following Ref. [50], at least one more linearly

independent observable is required than those available in the light lepton sector, where

some degeneracy still occurs. Considering multiple final states and their spin asymme-

tries could provide the necessary measurements to extract the fermionic couplings in

this minimal case, that become essential when testing the universality of couplings or

when considering models with more general coupling structures. Finally, our continuous

scanning of the parameter space highlighted regions where leptonic final states are not
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the most sensitive ones, hence where alternative final states would prove to be more

effective.





Chapter 6

Multiple Z ′s from a composite

Higgs model

Moving away from standard benchmark Z ′ scenarios, which tend to be optimally searched

for in the di-lepton channel, this chapter presents a study, taken from [118], of the pro-

duction of top-antitop pairs at the LHC as a testbed for discovering heavy Z ′ bosons

belonging to a composite Higgs model. In these scenarios, such new vector states can

be sizeably coupled to the third generation quarks of the SM. Again, their possible

appearance in cross section as well as (charge and spin) asymmetry distributions is con-

sidered. The calculations are performed in the minimal four-dimensional formulation

of such a scenario, namely the 4-Dimensional Composite Higgs Model (4DCHM) [119],

which predicts a considerable exotic sector including five new Z ′s. The scope of DY in

accessing the gauge sector of the 4DCHM is only confined to large machine energies and

luminosities [118], which further motivates tt̄ searches, as one of the main decay modes.

A brief overview of composite Higgs scenarios from strong dynamics will be presented,

with a summary of the main features of the 4DCHM in Section 6.1, including some

discussion of experimental constraints on such models. A description of the calculations

and variables is given in Section 6.3.1. Section 6.4 comments on the parameter scan per-

formed for a number of benchmarks previously considered in [118] and discusses their

tt̄ phenomenology. Particular attention will be paid to the case of nearly degenerate

resonances, highlighting the conditions under which these are separable in the asymme-

try observables, especially when they are not in the cross section. The impact of the

resonances’ intrinsic width on the event rates and various distributions is also discussed,

as well as the importance of their exotic heavy quark decay channels. It will be shown

that the 14 TeV stage of the LHC will enable one to detect two such states, assuming

standard detector performance and machine luminosity. A mapping of the discovery

potential of the LHC of these new gauge bosons is given. Section 6.5 summarises the

conclusions and outlook.
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6.1 Compositeness from strong dynamics

The main motivations for models of compositeness lie in the unique features of QCD

and dynamical symmetry breaking. The properties of QCD allow for the dynamical

generation of a scale, ΛQCD, at which the strong coupling becomes infinite. Interestingly,

this scale seems to naturally appear independently of the cutoff scale, e.g. MP , and initial

(perturbative) value from which the coupling is run down [120]. Furthermore, another

scale, fπ, is also introduced in the mechanism of chiral symmetry breaking discussed in

Section 1.2, associated with the pions – the NGBs of this broken symmetry. Both of

these scales are linked to the strong dynamics of the QCD sector. Speaking loosely, the

former mainly originates from the Yang-Mills self-interactions, while the other from the

matter interactions.

6.1.1 Technicolour

It is therefore not unreasonable to hope that the unexplained EW scale (∼ v) may be

generated by the dynamics of a strongly interacting gauge theory with its own, funda-

mental scale, Λ′, analogous to ΛQCD. This new interaction, often called “Technicolour”

(TC) [121], can then be used by the appropriate choices of gauge group and exotic “tech-

nifermion” matter to generate the EW scale by running from some high energy assumed

to be related to a GUT or string theory. EWSB can then occur if one assumes that the

EW group is a gauged subgroup of the chiral group of the TC sector. More precisely,

the strong TC interactions dynamically break their own chiral group, leading to a set

of NGBs which are eaten by the gauge fields of the EW group to give them a mass of

order f ∼ v, the pion constant of the TC theory. Thus the longitudinal components

of the EW gauge bosons correspond, in the high energy limit, to composite NGBs, as

opposed to the case of the Higgs mechanism where they are fundamental scalar degrees

of freedom. This is, in fact analogous to the pions from chiral symmetry breaking in

QCD which, in the absence of the Higgs mechanism, would still break EW symmetry

and lead to O(30 MeV) masses for the EW gauge bosons [122].

Additionally, like the K, η, ρ and other colour singlet bound states in QCD, a host of

new techi-meson and techni-baryon states are expected to exist. The phenomenology of

TC models is diverse and offers many possibilities although it is generally true that they

tend not to predict a light scalar state like the one observed at the LHC, assuming it does

have the properties of a SM Higgs. In fact, TC is often called a Higgsless theory since a

CP-even scalar meson is not needed for EWSB. Many approximate features are deduced

from rescaling QCD properties and above the validity of the effective composite sector

Lagrangian, only non perturbative calculations are viable. The models are also generally

confronted with relatively strong constraints from EWPTs and require an extended

gauge sector to generate fermion masses. Thus, although minimal TC realisations are
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disfavoured, the idea that new strong dynamics might be behind EWSB remains an

attractive one by virtue of the absence of fundamental scalar fields whose masses are

not protected by any symmetry. The topcolour [76] model, used as a benchmark in the

tt̄ resonance exclusion plots from the LHC shown in Section 3.1.6, is an example of such

a high scale strong interaction in which the Higgs arises as a strongly bound tt̄ state.

6.1.2 The Higgs boson as a pNGB

The important difference between TC models and the effective realisation considered

in this work is the existence of the Higgs boson as a pNGB of a dynamically broken

global symmetry of a new strong sector. This property makes the field naturally light

in the same way that the pions are naturally lighter than the rest of the QCD hadronic

spectrum. Little Higgs models [123] are an example of constructions of the Higgs boson

as a pNGB using a non linear sigma model description of the Goldstone modes arising

from the spontaneous breaking of a global symmetry. A general pNGB can be described

in this way by parametrising the broken degrees of freedom by a field:

U = ~fexp

(
i
~π

f

)
, (6.1)

where the constant vector ~f describes the symmetry breaking alignment that breaks

a subset of the generators, ta, of the global symmetry group. The fields ~π are each

associated to a broken generator as ~π = πata, and transform with a linear shift under

the gauge transformation parameters in these directions.

U → Uei~α,

~π → ~π + ~α.
(6.2)

This is analogous to a Higgs mechanism where the Higgs mass has been taken to infinity,

thereby decoupling the physical Higgs mode. The kinetic term for the U field, expanded

in terms of the πas lead to massless Goldstones with typical derivative interactions,

ensured by the requirement that the action be invariant under the shift symmetry:

|∂µU |2 ' |∂µ~π|2 +
1

f2
|∂µ~π|2|~π|2 + · · · . (6.3)

Such interactions are non-renormalisable by definition. The cut-off, Λf , of the theory

is determined to be the point at which the irrelevant operators become relevant, i.e.

when the theory becomes non perturbative. A one-loop computation of the wavefunction

renormalisation enforces Λf . 4πf [124]. The purpose of these descriptions are therefore

to soften the hierarchy problem up to this scale, above which new physics must still

appear, often associated with a new strong sector.
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Specific choices of global symmetries can then be partially gauged to obtain gauge inter-

actions with the pNGBs which do not incur mass corrections with divergences quadrat-

ically sensitive to a cutoff [124]. Typically, these involve the presence of more than one

scalar multiplet breaking a global symmetry group which is partly gauged. An example

of this would be a global SU(3)× SU(3) broken to SU(2)× SU(2) by a pair of U fields

in the fundamental representation. If one of the SU(3) factors is promoted to a gauge

group, the gauge interactions break the product to the vectorial subgroup SU(3)V with

half of the NGBs eaten by the gauge fields of the broken directions. The remaining

NGBs from the broken axial SU(3) can have radiatively generated mass terms that

are therefore naturally suppressed and also protected from quadratic divergences by the

underlying symmetry.

The interactions of the pNGBs are then characterised by the underlying global and

gauge symmetries. One can generate the desired quartic potential radiatively by further

enlarging the gauge structure as well as protect top-induced mass corrections by the

introduction of heavy top partners [124]. These kinds of models can be constructed to

embed the SM EW gauge group and always predict an extended gauge sector. One

common realisation is via dimensional deconstruction [125] where a product of partially

gauged global symmetries, e.g. (SU(3)L × SU(3)R)n, are connected by a set of “sigma”

fields transforming as bi-doublets of the SU(3)L × SU(3)R factors forming what is

known as a “moose” model. Although beyond the scope of this thesis, many realisations

of the former exist and have interesting connections with models of extra dimensions.

Each “site” can be viewed as a point on a discretised extra direction, whose geometry

is dictated by the f constants of the sigma fields between individual sites.

A common choice of global symmetry breaking in these models is SO(5)/SO(4). This

particular structure is the minimal choice required to obtain the four degrees of freedom

needed for the complex Higgs doublet with the additional merit that it transforms in

the fundamental of the residual SO(4). The benefit of this feature is that, looking

back at Equation 1.15, SO(4) is an accidental symmetry of the Higgs potential. If one

decomposes φ†φ in terms of the individual components of the complex Higgs doublet:

φ =

(
ϕ0 + iϕ1

ϕ2 + iϕ3

)
,

φ†φ =
3∑
i=0

ϕ2
i ,

(6.4)

the quantity is manifestly invariant under the aforementioned SO(4) transformation.

This is connected to chiral symmetry in that SO(4) is locally isomorphic to SU(2) ×
SU(2). One can therefore re-express this symmetry of the Higgs potential as an SU(2)L×
SU(2)R invariant Lagrangian in which the Higgs field transforms as a bidoublet, H →
LHR†. EWSB preserves the diagonal (vectorial) subgroup of this global symmetry,
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SU(2)V . This is manifest when writing the Higgs field in the aforementioned form:

H =(φ̃, φ),

〈H〉 =
v√
2

(
1 0

0 1

)
,

(6.5)

where v is the usual Higgs VEV φ, while φ̃ are defined as in Equation 1.14 and Section 1.4

respectively. The remnant invariance is under the vectorial transformation H → V HV †.

In the absence of hypercharge, this would dictate that the W and Z have the same mass.

Turning on hypercharge then modifies the relation to include cos θW , elucidating the

particular relationship between the two eigenstates as feature of an underlying, weakly

broken global symmetry. A connection can be made to the statement in Section 3.1 that

this mass ratio is preserved as long as new scalars breaking extra U(1)s are EW doublets

(or singlets). Having this residual global symmetry in the pNGB Higgs sector will

therefore help to realise EWSB consistent with the observed EW boson mass spectrum.

6.2 The minimal 4D composite Higgs model

The model considered in this work is a general effective description of these types of

models, developed in [119, 126], where a minimal amount of exotic fields are considered to

realise a composite Higgs boson as a pNGB of a global symmetry group G spontaneously

broken down to H. It is designed to be a 2-site deconstruction of a 5D theory proposed

in [127] with, as defined above, a symmetry breaking scale, f . The global symmetry

breaking structure of the physical scalar sector is based on the SO(5)/SO(4) coset.

Additional fields include fermionic partners to third generation quarks and gauge fields

which describe vector bound states of the strongly interacting sector. The decomposition

and global/gauge structure is shown schematically in Figure 6.1 taken from [119].

The idea of partial compositeness [126, 128] is combined with this description to outline

a mechanism by which hierarchical fermion masses can be obtained by generating masses

for the third generation quarks. In few words, the Ultra-Violet (UV) physics is assumed

to induce linear couplings between SM fermions and fermionic composite operators with

matching quantum numbers that lead to mass mixing between these two. The full

scaling dimension of the operator then determines the relevance of the coupling with

a given fermion and thus the degree of mixing between the two and ultimately its

mass. The fermionic partners are only included for third generation quarks in order

to generate top and bottom masses. These are chosen to live in 5 dimensional, vector

representations of SO(5) and a pair of these is added for each of the top and bottom

in order to radiatively generate the desired EWSB potential for the composite Higgs.

The new gauge fields are used to describe low lying vector excitations of the composite

states. A detailed description of the model as well as other phenomenological analyses
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Ω1

gρ, ρ

SO(5)⊗ U(1)X

SO(4)⊗ U(1)X

Φ2

SO(5)⊗ U(1)X

g0, A0

SU(2)L ⊗ U(1)Y

Explicit breaking
of global symmetry

Composite sector
SO(5)/SO(4)

Figure 6.1: Pictorial ‘Moose diagram’ representation of the symmetries of the
4D composite Higgs model. White circles denote global symmetries while shaded
circles correspond to gauge symmetries.

can be found in [118, 119, 129, 130]; the main features will be summarised in this section,

beginning with a summary of the exotic particle spectrum in Table 6.1.

Neutral Gauge Bosons Z1,...5

Charged Gauge Bosons W±1,.3
Charge +2/3 quarks T1,...8

Charge −1/3 quarks B1,...8

Charge +5/3 quarks T̃1,2

Charge −4/3 quarks B̃1,2

Table 6.1: Extra particle content of the 4DCHM with respect to the SM. An
increasing number in the label of a particle corresponds to a larger mass of the
particle itself.

The important sector for the purposes of this study is that of the neutral gauge bosons

and how they arise in conjunction with the Higgs field as a consequence of the particular

global group structure of the two sites. The structure of the model is shown pictorially

in Figure 6.1. For the reasons described in the previous section, the Higgs degrees of

freedom are described as Goldstone bosons arising from the breaking of SO(5) to SO(4),

with an extra, unbroken global U(1) symmetry whose presence will be explained later.

The general global group SO(5) × U(1)X is denoted by G. The four scalar degrees of

freedom are embedded in the sigma field associated to this breaking, Φ. These can be

written in a way that makes manifest the transformation properties of the Higgs field,

φ, under the unbroken SO(4). Following Equation 6.1, the specific symmetry breaking

alignment and Goldstone modes are:

~f = (0 0 0 0 f)T ; ~π =

(
04 φ

φT 0

)
. (6.6)

It is clear that φ is a four component object that will transform as a vector under the

remnant SO(4).

In order to obtain vector resonances, another chiral product group, GL×GR, is invoked

and the diagonal subgroup of GR and G, gauged. With reference to Figure 6.1, the fields

and gauge couplings associated to gauging SO(5) are g (henceforth g∗) and ρ while the

subscript, X refers to the U(1)X group. Another non-linear sigma field, Ω parametrises
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the breaking of the chiral group to its vectorial subgroup GL × GR → GV , yielding

the necessary amount of Goldstone modes to be absorbed by the gauge fields, giving

them a mass of order fg∗. The gauging procedure can be expressed by considering the

covariant derivatives acting on the two sigma fields responsible for breaking the two

global symmetries thereby ‘linking’ the two sites

DµΩ = ∂µ − iΩρµ + iAµΩ,

DµΦ = ∂µ + iρµΦ.
(6.7)

Where an unphysical ‘gauge field’ is assigned to GL as should be treated as a classical

source for the chiral current. Counting the 10 broken generators of SO(5) along with

the U(1), one therefore expects 11 new, massive gauge bosons which are comprised of 5

neutral and 3 charged states. This is analogous to the way in which the appearance of the

ρ mesons can be described by fundamental gauge multiplets of SU(2) in QCD since they

are higher spin excitations of the pions, which are triplets of the remnant SU(2) post

chiral symmetry breaking. The intention of including these additional SO(5) × U(1)X

resonances is to account for the lowest lying new composite states that may be accessible

at the LHC.

The remaining 4 Goldstone bosons, transforming adequately as a vector of the remnant

SO(4) are identified with the SM Higgs field. The SM gauge group is then obtained by

partially gauging the SU(2)L×U(1)Y subgroup of the remnant SO(4) × U(1)X with the

correct hypercharge obtained as a combination of T 3
R and X and EWSB subsequently

occurring as in the SM. The model recovers the massless photon but predicts mixings

between the 5 extra neutral gauge states and the Z and hence modifications to Z ob-

servables with respect to the SM. In particular, the new resonances have non universal

couplings to third generation fermions due to their partial compositeness. Detailed lead-

ing order expressions for the masses and couplings of these resonances are summarised

in [3]. Of these, the chiral top couplings of the Z ′s at leading order i.e. purely due to

the elementary-composite mixing before EWSB, GL,RZi , are collected here for reference.

gLZ0
(t) =

e

sωcω
(
1

2
− 2

3
s2
ω), gRZ0

(t) =
e

sωcω
(−2

3
s2
ω),

gLZ1
(t) ∼ 0, gRZ1

(t) ∼ 0,

gLZ2
(t) =

e

6cω

sψ
cψ

1

(1 + FL)
(1−

c2
ψ

s2
ψ

FL), gRZ2
(t) =

2e

3cω

sψ
cψ

1

(1 + FR)
(1−

c2
ψ

s2
ψ

FR),

gLZ3
(t) = − e

2sω

sθ
cθ

1

(1 + FL)
(1− c2

θ

s2
θ

FL), gRZ3
(t) ∼ 0,

gLZ4
(t) = gRZ4

(t) = 0, gLZ5
(t) ∼ gRZ5

(t) ∼ 0,

(6.8)

where the mixing angle, ψ, is defined by tanψ = sψ/cψ =
√

2g′/g∗ and sω and cω

compactly refer to the sine and cosine of the Weinberg angle. The parameters FL,R

are functions of the effective mass parameters of the composite fermionic sector and its
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mixing with the SM third generation fermions which can be found in [3] and are not

important for the purposes of this work. An important feature of this model is that

three of the five resonances are approximately inert with respect to the top quark. The

Z4 is completely inert to all orders While the Z1 and Z5 receive some interactions with

tops at order ξ = v/f . However, the Z1 is completely inert with respect to the light

quarks and so is not expected to be produced significantly at a hadron collider. The Z5

simply has ξ suppressed couplings compared to Z2, 3 and therefore, only two new states

are realistically expected to be observable in this channel at the LHC.

The 20 new fermionic states are vector-like with respect to the SM and couple directly to

the new resonances. The phenomenology of the new gauge bosons is largely influenced

by whether or not the mass scale of the fermions is low enough compared to the gauge

boson masses such that the decay channel of the latter into the former opens. This

divides the analysis of the parameter space into two regimes, as described in [118], both

of which will be considered in the context of tt̄ phenomenology. The case in which

the vector quark decay channels are closed, resulting in narrower resonances, is studied

through benchmarks (b), (d) and (f) defined in Tabs. 20 and 21 of [118]. The opposite

case of wide Z ′s is characterised by the coloured benchmarks (green, magenta, yellow)

as given in Tabs. 19 and 22 of [118]. These were initially defined to be studied in the

di-lepton channel and have been adapted by this study. A set of tables detailing the

masses, widths and couplings to the SM quark sector of the Z and the two Z ′s of interest

(labelled Z2 and Z3) is included in Appendix B.

The model has a total of 13 free parameters, of which f and g∗ are considered to be the

most important, describing the extra gauge sector and the global symmetry breaking

scale. The benchmarks are therefore characterised by specific values of the two while a

scan was performed in [3] over the remaining parameters. This was needed to identify

points consistent with the various physical constraints imposed by the electromagnetic

coupling, the Z mass, the Fermi constant, the top and bottom masses and the Higgs

VEV: e,MZ , GF ,mt,mb, v. The Higgs mass was required to lie within the range dictated

by the ATLAS and CMS [9] results of 2012: 124 GeV ≤ mH ≤ 126 GeV. A tolerance

level was also set on the predicted top and bottom masses of 170 GeV ≤ mt ≤ 175 GeV

and 3 GeV ≤ mb ≤ 6 GeV respectively. The W−tb̄, Ztt̄ and Zbb̄ couplings were also

required to be consistent with data [131]. In scanning the 4DCHM parameter space, it

was also ensured that the additional gauge boson masses considered were not in conflict

with current LHC direct searches for heavy gauge bosons, specifically with the data

reported in [114, 132]. The reference masses for the analysis were kept of order 2 TeV

or larger mostly due to EWPT considerations discussed in [118] and references therein.

The final important constraints taken into account were those of direct searches for the

exotic vector-like quarks which, being coloured objects, can be pair produced via QCD

processes and observed through their subsequent decay into third generation SM quarks

and associated bosons (W,Z, h). These searches [133] in the different assumed decay
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channels for the heavy quarks typically exclude masses of order 600 GeV and were also

taken into account.

6.3 Calculation

In this section, the details of the calculations performed, i.e., the tools used and the

kinematical variables analysed, are summarised.

6.3.1 Tools

An implementation of the model exists in the the LanHEP/CalcHEP environment

[103, 104, 134] and was used for the spectrum generation and is described in more

detail in [118]. The code exploited for the study of the asymmetries is, as in the last two

chapters, defined through the HELAS subroutines [83], and built up by means of Mad-

Graph [84]. It was used to compute the tt̄ invariant mass distributions and asymmetries

of the various benchmarks. Initial state quarks were assumed to be massless whereas for

the final state top (anti-)quarks the particular mt values predicted by the benchmark

was used. The CTEQ6L1 [18] PDFs were used, with factorisation/renormalisation scale

set to Q = µ ∼ MZ2,3 with VEGAS [85] exploited for multi-dimensional phase space

integrations.

6.3.2 Asymmetries

The asymmetries considered in this work are largely the same as in previous chapters

with the exception of the charge asymmetry. That is, the spin polarisation and cor-

relation asymmetries are implemented as defined in Equations 2.12 and 2.13 while a

new observable A∗FB is utilised to measure the charge asymmetry. This stems from the

reasoning in Section 4.2, suggesting that the previously used observables, which either

performed kinematical cuts or compared the number of tops and antitops within a lim-

ited rapidity window, do not benefit from significances which outweigh the associated

reduction in statistics. As such, a variable which uses the full sample is taken, defin-

ing the reference z-direction – from which the angular distribution of the tt̄ system is

measured – on an event-by-event basis, as the direction of the tt̄ boost, ytt̄ [32]:

A∗FB =
N(cos θ∗ > 0)−N(cos θ∗ < 0)

N(cos θ∗ > 0) +N(cos θ∗ < 0)
. (6.9)

The angle θ∗ is taken as the polar angle in the tt̄ rest frame from this reference z

axis. This allows exploits the correlation of the true quark direction and ytt̄ without

losing any events, at the price of lower central values for the observable. The lower
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Figure 6.2: Comparison of the ARFB (left) and A∗FB (right) incarnations of the
charge asymmetry for a benchmark point with f = 1.1 TeV and g∗ = 1.8 at
the 14 TeV LHC with 300 fb−1. Grey(Pink) shading represents the statistical
error on the 4DCHM(SM) rates, in black(red) solid lines. The legend labels
also indicate the value of the fiducial cross section for each observable, folding
in an assumed 10% reconstruction efficiency, which is then used to compute the
binned theoretical significance measure shown in each subplot.

central values arise from a larger contamination from gg initiated tt̄ events, which will

be distributed around a zero net tt̄ rapidity, smeared by PDFs. The events with low ytt̄

are therefore more likely to contain these events. The importance of the two competing

effects, statistics against central value, was considered by comparing this observable to

the ARFB incarnation, determined to be the best performer in Chapters 4 and 5. The

statistical significance gained in A∗FB was found to outweigh the gg dilution avoided in

making the rapidity cuts in ARFB. An example of this behaviour is shown in Figure 6.2.

The key comparison can be made at the level of the theoretical significance, which is

higher in the case of A∗FB, even though it has twice as low a central value. This can be

understood by comparing the fiducial cross sections of the two observables, where the

rapidity cut reduces that of ARFB by a factor ∼ 5. The non-linear dependence of the

uncertainty on an asymmetry means that a factor 2 in value is outweighed by a factor 5

in the cross section in terms of the theoretical significance. Therefore A∗FB will be used

as the charge asymmetry observable of choice for the remainder of this thesis.

6.4 Results

This section is divided into two parts. Firstly, results of the scan over the 4DCHM

parameter space, described in Section 6.2 and in more detail in [3], are presented. These

were interpreted in the context of potential resonant signals in tt̄ where at least one

Z ′ → tt̄ signal may be established, assuming
√
s = 7, 8 and 14 TeV at the LHC. Sec-

ondly, the aforementioned benchmarks are profiled in tt̄ cross section and asymmetry

observables. As in the previous chapters, the limitations of this work as a parton level

study require the estimation of reconstruction efficiencies associated with each of the
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observables. Following the discussion in Section 2.5 and the estimates in Chapter 5,

the cross section and charge asymmetry observables are assigned a 10% efficiency, while

the spin observables are assigned 5%, to take into account the additional information

required to correlate the kinematical properties of the boosted top decay products to

the observables. The distributions presented assume a mass resolution of 100 GeV,

consistent with experimental results in boosted resonance searches [37, 38, 74].

6.4.1 Parameter scan

In order to determine the parameter space of the 4DCHM where at least one Z ′ → tt̄

signal can be established, the scan over the fermionic parameters of the model was

performed, as described in [118], for various choices of the model scale f and gauge

coupling constant g∗. As stressed in [118, 3], these two parameters completely determine

the neutral (and charged) gauge boson mass spectrum. The tt̄ cross section for each

allowed scan point was computed with the use of both MadGraph and CalcHEP for the

LHC at 7, 8 and 14 TeV in presence of the following selection cut:

MZ2 +MZ3

2
− 3

ΓZ2 + ΓZ3

2
< Mtt̄ <

MZ2 +MZ3

2
+ 3

ΓZ2 + ΓZ3

2
(6.10)

for the lightest Z ′ bosons where Mtt̄ is the invariant mass of the tt̄ final state1.

The signal S is defined as the difference between the total cross section T (= S + B) in

the full 4DCHM (including the SM) and the SM background only, B, so that interference

effects in the qq̄ channel between the Z ′s and γ, Z are taken in account in the former,

and the dimensional significance σ has been defined as S/
√
B (with unit

√
fb). The

actual significance measure can be recovered by multiplying by
√
εL, where ε = 10%

is the estimated selection efficiency for the tt̄ final state, as discussed in the previous

section and L = 5, 20 and 300 fb−1 (for
√
s = 7, 8 and 14 TeV, respectively) for the

integrated collider luminosity.

Figure 6.3 presents the results of the scans for three choices of model scale, f , and

coupling constant, g∗, in terms of scatter plots in the mT1/ΓZ2 plane (results for ΓZ3 are

very similar), with the corresponding dimensional significance σ, for the 8 and 14 TeV

stages. mT1 denotes the lightest top partner mass and therefore at which point the decay

channel of the Z ′ into these heavy objects is open. In some cases the latter is negative,

owing to the fact that, for very large widths, the selection cuts in Equation 6.10 sample

large interference effects which are not positive definite. Results of the scan for the 7

TeV stage of the LHC are not presented since the resulting dimensional significances are

rather similar to the ones for the 8 TeV stage with statistical significances smaller by a

factor of 2 or so.

1Due to large Z′ widths in certain region of the parameters space lower(upper) bounds on the selection
cut have been imposed to be the maximum(minimum) between the ones of Equation 6.10 and 2mt(

√
s).
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Figure 6.3: Scatter plot of param-
eter scan in the mT1/ΓZ2 plane for
the choice of f = 0.8 TeV and
g∗ = 2.5 (top), f = 1 TeV and
g∗ = 2 (middle) plus f = 1.2 TeV
and g∗ = 1.8 (bottom). We show
in the lower frames the relative di-
mensional significance for

√
s = 8

(purple/dark) and 14 (cyan/light)
TeV.

One can see the clear relationship between the mass scale of the heavy third generation

partners and the visibility of the resonances in that, once their Z ′ decay channel becomes

kinematically accessible, the widths grow substantially and prevent any significant de-

viations from the SM background. More importantly, the significances are negative in

this region, an artefact of the inclusion of non positive-definite interference effects in

the signal definition. They simply report that the parameter point with extremely wide

Z ′s predicts a deficit with respect to the SM for said interference effects, which grow

with the resonance width. These are left negative to differentiate the narrow and ex-

tremely wide regimes. The off peak effects of such widths of order the gauge boson

masses themselves have consequences down to very low invariant masses, perhaps even

near the tt̄ threshold. These may not only already be constrainable with current LHC

data but would certainly require analyses with background estimates beyond leading

order to have a more precise prediction of the overall shape and normalisation of the

invariant mass spectrum. Without this, it is difficult to make meaningful statements

about these deficits in the production cross section over a large Mtt̄ range and, as such,

no physical meaning is associated to their negative significances. It is evident that the

intended resonant analyses become difficult beyond the limit in which the Z ′s are narrow

and cannot decay into the heavy fermions. This is further emphasised by Figure 6.4,

collecting all scanned points, where the correlation of the dimensional significance with

mB1 – the lightest bottom partner mass – is also shown. The reliance of the significance
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of the Z ′ signal on a narrow resonance hypothesis is evident.
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Figure 6.4: Scatter plot of scanned points showing the dimensional significance
in the mT1/mB1 plane in the colour bar. The points represent the low mass cut,
singling out Z2 and Z3, for the LHC at 8 TeV (left) and 14 TeV (right).

6.4.2 Benchmark studies

In this subsection, the scope of the tt̄ final state in profiling Z ′ bosons of the 4DCHM

for the case of the LHC at 14 TeV in energy and 300 fb−1 in luminosity is considered

as the results in the previous subsection clearly highlighted a limited scope in this re-

spect at lower values of
√
s and L. Moreover, the parameter scan has shifted the focus

primarily on cases where the resonances remain narrow, although the effects of allow-

ing them to become very wide will be shown later via the coloured benchmarks. The

illustrative measure of “theoretical significance” of an asymmetry prediction, defined in

Equation 4.16, is used as in the previous studies. The observables considered here are

the invariant mass distributions of the top-antitop pair, Mtt̄, which will be sampled in

terms of the cross section as well as the asymmetries metioned in Section 6.3.1. As

discussed therein, A∗FB was chosen as the charge asymmetry observable as it provided

better significances than the cut based observables.

Figures 6.5, 6.6 and 6.7 show the differential values of the cross section (σ) and three

asymmetries (AL, ALL and A∗FB) as a function of Mtt̄, with each figure referring to the

following three benchmarks of [118], respectively: (b) f = 0.8 TeV and g∗ = 2.5; (c)

f = 1 TeV and g∗ = 2; (f) f = 1.2 TeV and g∗ = 1.8. Recall that the mass scale of

the two lightest (and nearly degenerate in mass) gauge boson resonances, Z2 and Z3, is

given by Mlightest = fg∗ and notice that the heaviest one, Z5, has a mass between 600

GeV and 1 TeV above such a value, depending on the benchmark. Furthermore, the

mass difference between MZ2 and MZ3 is at most 60 GeV or so.

These points in parameter space correspond to the case of small Z ′ widths, i.e., where the

threshold for the gauge boson decays in pairs of heavy fermions has not been reached.
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Therefore, one may hope to resolve the individual Z2, Z3 and Z5 peaks in the cross

section already. Unfortunately, this is not the case. For a start, one should note that

the invariant mass resolution of tt̄ pairs is realistically of order 100 GeV or so (somewhat

better for semileptonic decay channels and somewhat worse for fully hadronic/leptonic

ones) so that it is not generally possible to separate the Z2 and Z3 peaks (they do

however cluster together in what looks like a single wider resonance). The (isolated) Z5

peaks never emerges over the background. These two points are made explicit for all

benchmarks by the two top frames in Figures 6.5, 6.6 and 6.7. The left frames show the

differential cross sections binned over (artificially) narrow Mtt̄ bins, of 5 GeV, whereas

the right ones use a much larger (and more realistic) 100 GeV resolution. Despite this, in

most cases, a significance S/
√
B larger than 5 can be achieved after an event sample of

L = 300 fb−1 has been collected for signal (S) and background (B), i.e., for benchmarks

(c) and (f). For benchmark (b), instead, the significance is only above 3.

Under these circumstances, where a detection either cannot be established with enough

significance or cannot resolve the nearby resonances, the ability to exploit the three

asymmetries is crucial. In fact, all of these complement the scope of the cross section,

as in all cases they offer a similar level of theoretical significance for the signal, so their

contributions can be combined to increase significance (where needed), albeit for the

case of Z2 and Z3 only, not Z5. Furthermore, among the asymmetries, AL is unique in

offering the chance to separate (in presence of resolution and efficiency estimates) Z2

and Z3, as the two objects contribute to the asymmetry in opposite directions, unlike the

case of ALL and A∗FB, which predict an excess in the same direction, so that the result is

here indistinguishable from the case of a lone wider resonance. This is exemplified in last

three rows of Figures 6.5, 6.6 and 6.7. Referring to Section 3.2, the distinguishability is

owed to the sensitivity of AL and A∗FB to the relative handedness of the Z ′ couplings.

For the latter observable, however, this sensitivity extends to both the initial and final

state which does not give it the same distinguishing power as AL. This is particularly

relevant if one notices that it appears a generic feature of this model from the tables in

Appendix B that the Z2 and Z3 have predominantly right- and left-handed top couplings,

respectively.

As illustrated in [118], if one allows for the heavy fermion masses to be lighter than half

the mass of the Z ′ states, their widths grow substantially. The aforementioned coloured

benchmarks are representative of this phenomenological situation. They are modifica-

tions of the f = 1.2 TeV and g∗ = 1.8 point. The corresponding cross section and

asymmetry distributions are found in Figures 6.8, 6.9 and 6.10. With a growing width,

the ability to resolve the presence of the Z2 and Z3 resonances degrades substantially

and, with it, the discriminative power of AL between the two nearby peaks. This is not

surprising, as in this case the effects induced by the two gauge bosons, Z2 and Z3, which

are opposite in sign, start overlapping in invariant mass hence cancelling each other. In

contrast, for the cross section and ALL as well as A∗FB this is not the case, so that these
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observables are more robust in comparison. Altogether the Z2 and Z3 signals should

remain accessible so long as their widths are less than O(10%) of their masses, see the

first two coloured benchmarks (green and magenta). For the other one (yellow), the case

in which the masses and widths are comparable, which is also when the Mtt̄ resolution

is actually less than ΓZ′ , any discovery power vanishes.

6.5 Conclusions

In this chapter, it has been emphasised that the tt̄ final state can be an efficient LHC

probe of the neutral gauge sector of the 4DCHM that represents a complete framework

for the physics of a composite Higgs boson as a pNGB and incorporates the mechanism

of partial compositeness. The latter implies that, alongside the SM gauge bosons, only

the third generation quarks (unlike the first two and all leptons) of the SM are mixed

with their composite counterparts, so that the pp(qq̄)→ Z ′ → tt̄ process emerges as an

obvious discovery channel.

It is shown that such a model can enable the detection of two of the three accessible

(i.e., sufficiently coupled to the initial quarks) Z ′ bosons of the 4DCHM already by data

taken at 7 and 8 TeV, albeit in limited regions of parameter space, i.e., those with the

smallest possible Z ′ masses, yet compatible with all current experimental data. Once the

CERN machine will reach the 14 TeV stage, detection will be guaranteed essentially up

to the kinematical limit of the machine itself, so long that the Z ′ boson of the 4DCHM

are sufficiently narrow, i.e., with widths being at most 10% of the masses.

Other than discovering such possible new states, the LHC (at maximal energy and

luminosity) could afford, under the same width conditions, the possibility of profiling

the Z ′ couplings, thanks to the fact that one can use tt̄ samples to define charge and

spin asymmetries, which are particularly sensitive to the chiral couplings of the new

gauge bosons. Furthermore, these observables, unlike the cross section, once mapped

in invariant mass, also enable one to separate the two resonances, Z2 and Z3, that the

4DCHM predicts to be very close in mass, in fact closer than the standard mass resolution

afforded by top-antitop pairs. This feature of asymmetries presents an additional benefit

compared to the last two studies, which only considered single Z ′ models. One could

exploit the cancellation effect observed in AL but not in A∗FB to deduce the presence of

nearly degenerate resonances without relying on the appearance of their distributions

in Mtt̄ by correlating the two observed asymmetries and comparing to predictions from

single resonances as will be shown in the next chapter.

These conclusions have been reached including both tree-level EW and QCD back-

grounds (the latter dominated by pp(gg) → tt̄), including interference effects (where

applicable, i.e., in the pp(qq̄) → tt̄ subprocess), through a parton level simulation, in
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presence of realistic detector resolution and statistical error estimates. In this connec-

tion, before closing, it should be acknowledged that systematic uncertainties, requiring

a more involved study beyond parton level, have been neglected [87, 89]. However, this

is not expected to undermine the main results.
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Figure 6.5: Cross section and asymmetries as a function of the tt̄ invariant mass
for the f =0.8 TeV, g∗ =2.5 benchmark at the 14 TeV LHC with 300 fb−1. The
left column shows the fully differential observable. Right plots (upper frames)
include estimates of statistical uncertainty assuming a realistic 100 GeV mass
resolution and also display (lower frames) the theoretical significance assuming
a 10(5)% reconstruction efficiency for the cross section and A∗FB (ALL and
AL). Grey(Pink) shading represents the (statistical) error on the 4DCHM(SM)
rates, in black(red) solid lines. Masses and widths of the gauge bosons are
M [Γ]Z2,Z3 = 2048[61] GeV, 2068[98] GeV.
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Figure 6.6: Cross section and asymmetries as a function of the tt̄ invariant mass
for the f = 1 TeV, g∗ =2 benchmark at the 14 TeV LHC with 300 fb−1. The
left column shows the fully differential observable. Right plots (upper frames)
include estimates of statistical uncertainty assuming a realistic 100 GeV mass
resolution and also display (lower frames) the theoretical significance assuming
a 10(5)% reconstruction efficiency for the cross section and A∗FB (ALL and
AL). Grey(Pink) shading represents the (statistical) error on the 4DCHM(SM)
rates, in black(red) solid lines. Masses and widths of the gauge bosons are
M [Γ]Z2,Z3 = 2066[39] GeV, 2111[52] GeV.
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Figure 6.7: Cross section and asymmetries as a function of the tt̄ invariant mass
for the f =1.2 TeV, g∗ =1.8 benchmark at the 14 TeV LHC with 300 fb−1. The
left column shows the fully differential observable. Right plots (upper frames)
include estimates of statistical uncertainty assuming a realistic 100 GeV mass
resolution and also display (lower frames) the theoretical significance assuming
a 10(5)% reconstruction efficiency for the cross section and A∗FB (ALL and
AL). Grey(Pink) shading represents the (statistical) error on the 4DCHM(SM)
rates, in black(red) solid lines. Masses and widths of the gauge bosons are
M [Γ]Z2,Z3 = 2249[32] GeV, 2312[55] GeV.
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Figure 6.8: Cross section and asymmetries as a function of the tt̄ invariant
mass for the f =1.2 TeV, g∗ =1.8 (green) benchmark at the 14 TeV LHC with
300 fb−1. The left column shows the fully differential observable. Right plots
(upper frames) include estimates of statistical uncertainty assuming a realistic
100 GeV mass resolution and also display (lower frames) the theoretical sig-
nificance assuming a 10(5)% reconstruction efficiency for the cross section and
A∗FB (ALL and AL). Grey(Pink) shading represents the (statistical) error on the
4DCHM(SM) rates, in black(red) solid lines. Masses and widths of the gauge
bosons are M [Γ]Z2,Z3 = 2249[48] GeV, 2312[86] GeV.



Chapter 6 Multiple Z ′s from a composite Higgs model 105

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1800  2000  2200  2400  2600  2800  3000  3200

d
σ

/d
M

tt
 (

fb
/5

 G
e

V
)

Mtt (GeV)

SM: σ=275 fb
f=1.2 TeV, g*=1.8 (magenta): σ=35.28 fb

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

d
σ

/d
M

tt
 (

fb
/5

 G
e

V
)

SM: σε=27 fb
f=1.2 TeV, g*=1.8 (magenta): σε=3.53 fb

0
2
4
6
8

10

 2000  2500  3000

S
ig

n
if
.

Mtt (GeV)

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 1800  2000  2200  2400  2600  2800  3000  3200

A
L

Mtt (GeV)

SM: σ=275 fb
f=1.2 TeV, g*=1.8 (magenta): σ=35.28 fb

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

A
L

SM: σε=14 fb
f=1.2 TeV, g*=1.8 (magenta): σε=1.76 fb

0

2

4

 2000  2500  3000

S
ig

n
if
.

Mtt (GeV)

-0.8

-0.75

-0.7

-0.65

-0.6

-0.55

-0.5

-0.45

 1800  2000  2200  2400  2600  2800  3000  3200

A
L
L

Mtt (GeV)

SM: σ=275 fb
f=1.2 TeV, g*=1.8 (magenta): σ=35.28 fb

-0.9

-0.85

-0.8

-0.75

-0.7

-0.65

-0.6

-0.55

-0.5

-0.45

A
L

L

SM: σε=14 fb
f=1.2 TeV, g*=1.8 (magenta): σε=1.76 fb

0

1

2

3

 2000  2500  3000

S
ig

n
if
.

Mtt (GeV)

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 1800  2000  2200  2400  2600  2800  3000  3200

A
* F

B

Mtt (GeV)

SM: σ=285 fb
f=1.2 TeV, g*=1.8 (magenta): σ=35.29 fb

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

A
* F

B

SM: σε=28 fb
f=1.2 TeV, g*=1.8 (magenta): σε=3.53 fb

0

1

2

3

 2000  2500  3000

S
ig

n
if
.

Mtt (GeV)

Figure 6.9: Cross section and asymmetries as a function of the tt̄ invariant mass
for the f =1.2 TeV, g∗ =1.8 (magenta) benchmark at the 14 TeV LHC with
300 fb−1. The left column shows the fully differential observable. Right plots
(upper frames) include estimates of statistical uncertainty assuming a realistic
100 GeV mass resolution and also display (lower frames) the theoretical sig-
nificance assuming a 10(5)% reconstruction efficiency for the cross section and
A∗FB (ALL and AL). Grey(Pink) shading represents the (statistical) error on the
4DCHM(SM) rates, in black(red) solid lines. Masses and widths of the gauge
bosons are M [Γ]Z2,Z3 = 2249[75] GeV, 2312[104] GeV.
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Figure 6.10: Cross section and asymmetries as a function of the tt̄ invariant
mass for the f =1.2 TeV, g∗ =1.8 (yellow) benchmark at the 14 TeV LHC with
300 fb−1. The left column shows the fully differential observable. Right plots
(upper frames) include estimates of statistical uncertainty assuming a realistic
100 GeV mass resolution and also display (lower frames) the theoretical sig-
nificance assuming a 10(5)% reconstruction efficiency for the cross section and
A∗FB (ALL and AL). Grey(Pink) shading represents the (statistical) error on the
4DCHM(SM) rates, in black(red) solid lines. Masses and widths of the gauge
bosons are M [Γ]Z2,Z3 = 2249[1099] GeV, 2312[822] GeV.



Chapter 7

Uncovering multiple Z ′s in a

model of extra dimensions

The last chapter considers a model that was more amenable to tt̄ searches in that it has an

enhanced coupling to third generation quarks which particularly motivates this channel

over the traditional di-lepton one. All of the other previously considered resonances had

large leptonic signals with which tt̄ could rarely compete due to the poor reconstruction

efficiencies but rather complement in providing spin asymmetry observables. A new,

interesting aspect of these observables was revealed in the last chapter regarding multiple

resonances. It was shown that the polarisation asymmetry, AL, elucidated the presence

of two nearby resonances which could not be resolved in the other observables (see

Figure 6.6, for example) when the chiral couplings of the two objects were different

enough. Specifically the two resonances, having predominantly left- and right-handed

couplings, respectively, preferred opposite sign AL values which, given the fact that the

QCD prediction is zero, made for a striking signal. As the width of the resonances

increased, the two contributions began to overlap and actually cancel. This chapter is

based on the observations that such behaviour cannot be reproduced by models of single

resonances thereby providing a possible way to unambiguously identify multiply resonant

new physics using asymmetries. In the minimal scenario of Z ′ couplings outlined in

Section 3.1.3, the coupling dependences of the charge and spin polarisation asymmetries

of Equations 3.25 and 3.26 imply that a single resonance should not be able to generate

AFB without also having a signal in AL . The model studied in the previous chapter

appears to demonstrate how this may be possible with more than one Z ′.

In this final chapter, the correlation between the two asymmetries in tt̄ will be exploited

to identify the presence of quasi-degenerate states in a resonant signal at the LHC. As

an example, a model where the SM EW sector is allowed to propagate in large extra

dimensions of TeV−1 size while the colour sector is localised will be considered. It

will be shown that, assuming current experimental constraints from the 7 and 8 TeV

107
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runs and taking into account the estimated top (anti-top) reconstruction efficiencies,

the 14 TeV upgraded LHC with the planned integrated luminosity L = 100 fb−1 could

access these quasi-degenerate multiple resonances and explore for the first time the

rich phenomenology in the asymmetry observables. The main outcome would be to

have measurable quantities, complementary to the usual total and differential cross

sections, capable of distinguishing a quasi-degenerate, multiply resonant spectrum from

a “standard” single resonance that could present a similar signal in a “bump hunt”.

This would be useful if the degeneracy is more severe than the mass resolution of the

search channel, in this case the di-jet or tt̄ channels.

The existence of large extra dimensions compactified in the TeV range [63], for which the

fundamental string or quantum gravity scale is in turn rather low [62, 135, 136, 137, 138],

is a scenario that is often easily testable at the LHC. The consequences of this in the

context of additional gauge bosons were introduced in Section 3.1, where allowing a gauge

sector to propagate in the bulk led to an infinite tower of KK resonances with masses

occurring in multiples of the compactification scale, R−1. If the gauge symmetry is also

spontaneously broken, the KK gauge bosons will receive an additional mass contribution

analogously to EWSB in the SM. Further, if one dismisses the traditional assumption

that all SM gauge bosons propagate in the same compact space [139, 140, 141] and

instead allows for the more general case whereby the SM gauge structure arises from

branes extended in different compact directions, one realises a scenario that provides an

ideal testbed for the purposes of this study. A general setup in which (quasi-)degenerate

resonances are likely to occur is in such models of extra dimensions with relatively large

compactification scales. Most generally, since the tree-level KK masses of the gauge

bosons are integer multiples1 of R−1, one may expect that the KK EW gauge sector of

such a theory would be near-degenerate since R−1 >> g(g′)v where g(g′) and v denote

the SU(2)L(U(1)Y ) gauge couplings and the SM Higgs VEV, respectively. Later on,

the fact that particles propagating in the bulk in such models generically incur loop-

induced mass splittings that can be important, particularly at high compactification

scales, will be discussed. Allowing the gauge sector to propagate in the bulk typically

results in strong limits on this scale coming from lower mass bounds on KK excitations

from resonance searches or EWPTs depending on the specific localisation of different

parts of the particle spectrum. The consequences of more complex localisations will be

expanded upon in the next section.

Within this construct, a realisation which complies with current stringent bounds from

di-jet and tt̄ events emerging after the 7 and 8 TeV runs is identified which remains

accessible at the 14 TeV stage. This is the one where only the EW gauge bosons can

appear as KK excitations, but not the gluons. In addition, one can localise fermions

1This is true for the case of one extra dimension of compactification radius R, but depends on the
specific compactification volume in the case of more than one extra dimension, although the compactifi-
cation scales still remain the only parameters that define the approximate scale of the KK masses. The
case of one flat extra dimension is assumed here for simplicity.
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between the bulk and our brane in such a way that the production of leptonic final states

is depleted with respect to that of both light and heavy quarks, given that the latter are

notoriously less accessible than the former in the LHC environment. Since the sensitivity

of LHC data is maximal to either processes induced by QCD effects (as opposed to those

due to EW interactions) or to very clean final states involving only leptons (as opposed

to both light and heavy quarks), one is not confronted with the very stringent bounds

that would emerge if gluons (necessarily yielding di-jet and tt̄ final states) propagated

in the large extra dimensions or EW gauge bosons propagating therein could decay in

leptons. Therefore, the investigation of the effects of the extra dimensional propagation

of the EW gauge bosons yielding both light and heavy quarks in the final state remains

viable also in the light of the most recent data.

It is the purpose of this chapter to investigate the case of the neutral EW gauge bosons,

i.e., the U(1)Y and SU(2)L states of the SM, γ and Z, and their KK excitations (or

admixtures thereof), henceforth denoted as γ̃′ and Z̃ ′, respectively, produced from quark-

antiquark scattering at the LHC and yielding tt̄ pairs in the final state. After accounting

for existing lower bounds on the compactification scale from direct searches in di-jet and

tt̄ data samples generated at 7 and 8 TeV, it will be shown that one will be able to

observe at least the first excitation of the EW states at the 14 TeV stage in tt̄ final

states. Further, while the extraction of information on the additional excitations would

be desirable to disentangle the extra dimensional model from alternative new physics

scenarios, the ability of defining both charge and spin asymmetries in tt̄ final states

(unlike the case of di-jets) can potentially disentangle the two states (despite these

appearing degenerate and unresolvable in the invariant mass distribution), consequently

distinguishing this BSM scenario from those involving individual resonances.

The plan of the chapter is as follows. The next section expands on the KK expansion

in the context of a more general SM-like theory, with particular attention paid to the

embedding of chiral fermions. Section 7.2 describes the model that is used as an exam-

ple in more detail, discussing the effects of radiative mass corrections arising from the

compactification procedure on the couplings of new resonances and finally establishing a

scenario that lies outside of current LHC limits. In Section 7.3, the observables studied

are summarised, largely by reference to previous chapters and the findings presented.

Finally, Section 7.4 presents the conclusions.

7.1 Populating the bulk

The mechanism of KK decomposition described in Section 3.1 is readily generalised to

the case of non-Abelian groups and a more complex gauge structure such as that of the

SM. The model which considers the full SM to exist in the bulk is known as Universal

Extra Dimensions (UED) [142] and has some interesting features related to obtaining
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chiral matter in higher dimensions. This section gives a brief overview of how one could

promote a general theory to higher dimensions.

One of the subtleties that exists is that, in the non-Abelian case, the gauge invariance of

the theory is no longer manifest at each KK level. Performing a gauge transformation

as in Section 1.7 on a 5D Abelian gauge field and expanding the gauge transformation

parameter in a Fourier series, one can see that each KK level respects an analogous

transformation rule:

A′M (x, y) = AM (x, y)− 1

g
∂Mα(x, y),

=
∑
n

[
A

(n)
M (x)ei

ny
R + h.c.

]
−
∑
n

[
1

g
∂Mα

(n)(x)ei
ny
R + h.c.

]
,

=
∑
n

A
(n)′
M (x)ei

ny
R .

(7.1)

However, given the more complex transformation property in a non-Abelian theory as in

Equation 1.11, the additional term in the transformation will mix different KK levels in

a non trivial way. The notions of gauge invariance in a non-Abelian theory are complex

and well beyond the scope of this phenomenological analysis of an extra dimensional

model and will therefore not be discussed further.

Assuming that the SM gauge structure can be extended into the bulk in a similar

way to Section 3.1, the gauge bosons should each receive a tower of KK partners with

increasing mass related to the compactification scale. While the case of a scalar particle

is even simpler than a vector boson, some subtleties exist in formulating theories with

chiral matter embedded into higher dimensions. Again, using five dimensions as an

example, a basis of gamma matrices is required that satisfies a 5D version of the Clifford

algebra in Equation 1.3. This can be simply provided by:

ΓM = (γµ,−iγ5),{
ΓM ,ΓN

}
= −2gMN .

(7.2)

A 5D Dirac equation can then be written down as a direct generalisation of Equation 1.1:

L5 = Ψ̄(i∂MΓM −m)Ψ. (7.3)

Here, Ψ must be a Dirac fermion since the 4-spinor is the lowest dimension irreducible

representation of the 5D Lorentz group. The ∂5 operator yields a KK mass component

upon KK decomposition, as in the vector boson case, leading to a zero mode of mass m

and a tower of KK modes with masses m2
n = m2 + n2/R2. The problem lies in the fact

that the zero mode, which should eventually represent a SM field, is a Dirac spinor while

the fundamental matter representations used in the SM are 2 component Weyl spinors

because of its chiral nature. Heuristically, another way of looking at this is that in an

even number of spatial dimensions, a parity transformation is equivalent to a rotation.
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This means that a 5D Lorentz transformation on a Dirac spinor can transform elements

of its left- and right-handed Weyl components into one another such that parity is not

a good discrete symmetry of the action.

7.1.1 Orbifold compactification

The solution to this problem is to modify the compactified space by introduction so-

called “orbifold” boundary conditions. In addition to the periodicity conditions imposed

by the circular geometry, a further identification is made between opposite points on the

circle, y = −y, reducing the space into a line segment of length πR. This can be

represented technically as changing the geometry to the quotient space: S1 → S1/Z2.

Z2 represents the parity transformation y → −y under which the action should still

be symmetric although translational symmetry around the circle has now been globally

broken.

A consequence of this procedure is the introduction of “fixed points” on the orbifold

which map to themselves under the Z2 flip. These would be the end points of the line

segment. The behaviour of these fields at these boundaries must therefore be defined

which subsequently characterises their transformation properties under the y-parity.

Depending on the choice of Dirichlet or Neumann boundary conditions, the fields get

assigned positive or negative parity φ(x,−y) = ±φ(x, y), respectively for scalar or vector

fields. With spinors, the simplest realisation of the Z2 action which admits an invariant

5D kinetic term is ψ(x,−y) = ±γ5ψ(x, y). In the Weyl basis, this dictates that the left-

and right-handed components of this field, as defined by the projection operators PL

and PR introduced in Section 1.5, transform oppositely or each have one of the types of

boundary conditions. Another condition imposed by gauge kinetic terms is that the Aµ

and A5 components defined in Section 3.1 must have opposite parity.

The choice of parity eigenvalue is then reflected in the Fourier components of the de-

composed field. It is more transparent to decompose the field in the trigonometric basis

functions as they are eigenfunctions of the parity transformation. A generic field will

therefore look like:

Φ(x, y) = φ0(x) +
∑
n

φ(n) cos
(ny
R

)
+ φ̃(n) sin

(ny
R

)
. (7.4)

It is clear from the boundary conditions that fields with positive parity will have zero

modes while those with negative parities will not and that a different component of the

KK modes will be selected depending on the parity assignment. Denoting fields with
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parity eigenvalue P = ± as Φ±,

Φ+(x, y) = φ0(x) +
∑
n

φ
(n)
+ cos

(ny
R

)
,

Φ−(x, y) =
∑
n

φ̃
(n)
− sin

(ny
R

)
,

(7.5)

one sees that the orbifold boundary conditions have “projected out” half of the degrees

of freedom. In particular, one of either the gauge field or its scalar fifth component

will not have a zero mode. The previously complex scalar field of Section 3.1 has now

become real. In order to obtain chiral matter, two fields Ψ± are introduced with opposite

transformations under the Z2. Again, half of their states will be projected out, but the

chirality of the zero mode will depend on the choice of eigenvalue, ±γ5:

Ψ+(x, y) = PRΨ0
+(x) +

∑
n

PRψ
(n)
+ cos

(ny
R

)
+ PLχ

(n)
+ sin

(ny
R

)
,

Ψ−(x, y) = PLΨ0
−(x) +

∑
n

PLψ
(n)
− cos

(ny
R

)
+ PRχ

(n)
− sin

(ny
R

)
.

(7.6)

A 5D theory with chiral zero mode fermions can therefore be obtained, with the price

of introducing a vector-like pair of fermions at each KK level.

7.1.2 KK parity

The idea of KK number conservation was touched upon in Section 3.1, being the remnant

U(1) symmetry upon compactification associated to momentum conservation in the fifth

direction. This dictates that any interaction between particles in the decomposed theory

must respect
∑

i ni = 0, where ni is the KK number of each field. For example, it

would constrain KK particles to always be pair produced from a SM zero mode. It was

mentioned, however, that the orbifold boundary conditions globally break translational

symmetry around the extra direction. This is tantamount to a violation of momentum

and thus KK number conservation. This can be seen imagining a particle were travelling

through a boundary of the segment, upon which it would appear to discontinuously

change its momentum and be facing in the opposite direction.

The symmetry that does remain is a new parity about the midpoint of the line segment.

It is related to the fact that, in this geometry, momentum conservation can only be

violated in a specific way and can be expressed as a conservation of KK parity, defined

as (−1)n, such that KK number can only be violated in units of two. Although the

KK number violating interactions are not present at tree-level, that fact that this is no

longer a good symmetry of the theory implies that they can be generated radiatively.

A classic example of this would be the coupling of a second level KK particle to a pair

of SM zero modes that is induced at one-loop level. Another interesting implication of
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this symmetry is that the lightest KK particle is now stable and represents a possible

dark matter candidate.

7.1.3 Localising fields

Given that a model can be extended into a certain number of extra spatial dimensions,

one may also want to restrict certain sectors to not “feel” the extra dimensions. The most

well known example of this is in the Arkani-Hamed–Dvali–Dimopoulos (ADD) model

of extra dimensions [62, 63] where linearised gravity is generalised to five dimensions,

akin to the original KK theory, and coupled to the SM localised on a 3-brane in the

bulk. Most generally the action of a theory can be written in terms of bulk and localised

sectors:

S5 =

∫
d4xdyLbulk + δ(y) (Lbrane + Lint) , (7.7)

where the “int” term specifies interactions between the bulk and localised fields. In the

case of ADD, the Einstein-Hilbert action is used and reduces to a KK theory with massive

gravitons (and additional vectors and scalars for more than 5 dimensions) couplings to

the energy momentum tensor of the SM on the brane. The coupling constant of gravity,

however, is reduced by a volume factor, as discussed in Section 3.1, related to the number

and geometry of the compact space, thereby providing a potential bridge between the

TeV and Planck scales via the extra dimensional volume [143].

Although gravity is not the focus of this work, the same principle can be generalised to

localise different sectors present in a model. The main consequences of this localisation

is that the presence of a brane explicitly violates the translational invariance in the

extra direction. This means that interactions with the localised sector will no longer

conserve KK number and therefore the existence of KK parity is also no longer an issue

outside of interactions contained within the bulk sector. That is to say, in the action

of Equation 7.7, KK parity conservation will only apply within interactions described

by Lbulk while the explicit brane-bulk interactions contained in Lint will be universal

across KK levels. Having a localised sector therefore generally removes the dark matter

candidate present in the UED case. One final consequence of having interactions with a

localised sector is that the volume normalisation factor occurring from the integral over

the compact space, discussed in Section 3.1, implies that the KK modes couple more

strongly to the localised sector than the zero modes do. For gauge interactions with

localised fermions, the factor is
√

2 since only one gauge field is present in the vertex.
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7.2 The Model

A large amount of theoretical and phenomenological literature exists on models which

place the whole SM particle content [142] or sometimes only its gauge sector [140, 141]

in the bulk. The main difference between the two being the delocalisation of fermions

which requires an orbifold compactification, described in Section 7.1.1, in order to obtain

chiral states. These can be seen as extensions of the ADD scenario. The framework for

a model where a selection of the SM gauge structure is allowed to propagate in the bulk

is motivated in [144] and represents a mixture of the two pictures. Given the choice of

localising any combination of the gauge groups and matter representations, a number

of combinations are possible. The study lends itself to the (t, l, l) realisation of [144]

(henceforth AADD), where t, l denote “transverse” and “longitudinal” and refer to the

orientation of the (SU(3)C , SU(2)L, U(1)Y ) gauge groups with respect to the extra

dimension. This implies that the colour sector is localised while the EW one propagates

in the bulk, gaining KK excitations.

In order to realise a model with scales accessible at the LHC, the leptonic sector is

also allowed to propagate in the bulk. The orbifold compactification necessary to ac-

commodate fermions in the bulk preserves KK-parity, suppressing the interactions of

the EW KK resonances with the SM leptonic sector. This is because, as explained in

Section 7.1.2, the KK number violating interactions that would allow a vertex between

a KK Z̃ ′ and a pair of SM leptons is generated radiatively. Moreover, the interaction

is only present from the second KK level and even levels thereon thanks to KK parity.

This simultaneously removes the traditional di-lepton channel from searches for such

resonances and (multi-TeV) limits via the constraints from EWPTs [145, 146] that typ-

ically arise from a fully localised fermion sector. In addition, having kept the quark

sector localised along with the gluons leads to an enhancement of the couplings of the

KK resonances to quarks relative to its SM zero-modes as explained in Section 7.1.3.

Ultimately, the model is one in which EW gauge bosons have KK excitations, γ̃′ and Z̃ ′,

couplings universally to the quark sector with an enhancement of
√

2 to their SM gauge

quantum numbers and with loop-suppressed couplings to the lepton sector which are

neglected here. As far as their interactions with quarks are concerned, these particles

are heavy copies of their SM counterparts. It is assumed that EWSB takes place in the

bulk2 but that these contributions are small compared to the compactification radius as

discussed in the introduction. The assumption of quasi-degeneracy will be elaborated on

in the next section. The tree-level widths of the resonances are therefore used assuming

only contributions from quarks with a small (∼ 3%) k-factor to account for NLO QCD

contributions.

2The general case of bulk and localised scalars breaking a gauge symmetry in the bulk is discussed
in [145], showing that a localised scalar induces mixing between the gauge bosons KK levels while the
bulk scalar lead to KK-diagonal EW mass terms.
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This specific realisation of an extra dimensional model will be used, compatible with

current LHC limits, as an example of the scenario in which asymmetries can be used

to deduce the presence of quasi-degenerate resonances beyond the mass resolution of

the search channel. In this case, although the di-jet channel represents a more sensitive

mode with respect to the signal as shown in Section 7.2.3, the asymmetries of tt̄ turn

out to be essential in identifying the presence of more than one particle. In any case, one

would not expect the mass resolutions of both channels to differ greatly at such high pT

and, further, the large uncertainties associated to jet energy scale are likely to further

compromise the ability to resolve nearby peaks in both invariant mass spectra.

7.2.1 Radiative mass corrections and mixing

A typical feature of “universal” type models of extra dimensions, where some of the SM

matter content is allowed to exist in the bulk, is that KK excitations receive radiative

mass corrections beyond those that occur in a 4D realisation. Considering one extra

dimension for simplicity, these corrections originate from the violation of 5D space-

time symmetries caused by the compactification of the extra direction [147]. 5D loop

contributions which do not break these symmetries will simply contribute to the field

strength renormalisation of the 5D fields. Specifically, a circle compactification violates

Lorentz invariance at long distances and can accommodate loop contributions with non-

zero winding number around the extra dimensional space and yield universal, finite

corrections to the two point function proportional to 1
R2 and independent of KK number.

Furthermore, the orbifold projection induces yet more contributions arising from the

orbifold fixed points which violate translational invariance. Therefore, loop diagrams

where a particle encounters such a boundary and flips its 5D momentum will also induce

logarithmic corrections proportional to the KK mass n
R . The two types of corrections

are termed “bulk” and “orbifold” respectively and contribute only to the 5th component

of the field strength renormalisation factor which, upon KK decomposition of the action,

corresponds to a mass correction to the 4D KK modes.

Consequently, the assumption that the gauge boson excitations at each KK level will

essentially be degenerate with a mass of n
R is not necessarily a good one, depending on

the particular realisation of the model. The indirect importance of such mass splittings

lies in the subsequent modification of the mixing between the neutral gauge bosons γ̃′

and Z̃ ′ which will, in turn, affect the exact coupling structure of the mass eigenstates.

While at leading order, one can assume that the mixing between the hypercharge and T3

gauge bosons, B′ and W ′3, will proceed identically to the SM with EWSB (θ = θW , where

θ is the mass mixing angle between the resonances in AADD and θW is the Weinberg

angle), mass splittings will drive the mixing back towards the pure gauge states. This

would invalidate the assumption that such resonances will couple like “copies” of the

SM γ and Z stated in [144]. The mass matrices of the neutral sector are schematically
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shown for a generic KK level:

Mtree ∼ v2

(
g2 gg′

gg′ g′2

)
+

(
M2
KK 0

0 M2
KK

)
,

⇒ θ = θW ,

(7.8)

Mrad ∼Mtree +

(
δM2

W ′
3

0

0 δM2
B′

)
,

⇒ θ → 0, as |∆M2| � g2(g′2)v2.

(7.9)

Here, the mass matrices are shown at tree-level (tree) and including the radiative correc-

tions (rad) from compactification and localised quarks. MKK represents the KK mass

contributions ∼ n/R and |∆M2| is the mass splitting incurred from the two radiative

contributions, |δM2
W ′

3
− δM2

B′ |. One can see that the mixing will deviate from the EW

angle once the splitting becomes comparable to the EW mass contributions, which can

certainly be the case for large compactification scales. That said, in this case, the gauge

bosons of interest do not interact strongly, which ensures that the splitting effects will

not be too large.

For the UED realisation addressed in [147], the aforementioned corrections to the neutral

gauge sector masses result in a mass splitting of about 6% of the compactification scale,

R. The case of AADD closely resembles UED with regards to the EW sector, the only

difference being that the localisation of quarks makes them couple universally to all KK

modes. Thus the mass corrections to each KK level will resemble those of UED with the

5D quark contribution removed and replaced by a normal 4D SM vacuum polarisation

with enhanced couplings. As shown in [147], fermions do not contribute to the gauge

boson masses via orbifold corrections which are dominant over the bulk corrections for

all KK levels, particularly with increasing R−1 meaning that localising quarks should

not have a big effect on the mass splitting. One would also expect an additional negative

logarithmic contribution from these localised fermions to each gauge boson proportional

to g′2
∑

q Yq and g2
∑

q T (f) respectively, where Y denote hypercharge and T (f) denotes

the trace of the generators Tr[tAtB] in the fundamental representation of SU(2). It was

calculated that the corrections are small compared to those arising from the bulk particle

content and decrease the mass splitting by about 1% (see Appendix C). It is fair to say

that this keeps the model within the quasi-degenerate regime since the mass resolutions

of the tt̄ or di-jet channels are not expected to be much better than 5%. The splitting is,

however, large enough to significantly affect the mixing structure of the KK EW gauge

boson couplings.

Ultimately, in the context of using asymmetries to probe observed resonances in the

tt̄ spectrum, it is evident that having too large mass splittings will first and foremost

reduce the problem to a study of multiple single resonances as opposed to a quasi-

degenerate spectrum. Therefore, the regime to be considered is where the mass splitting
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could be large enough to induce non SM-like mixings (and therefore couplings) while

maintaining a quasi-degeneracy in the first KK level so that the tt̄ mass resolution does

not permit one to fully resolve the two resonances in the cross section. This is chiefly

because this study intends to highlight the possibility of using differential asymmetry

observables to distinguish such a case from a single resonance in a way that is not possible

using a differential cross section analysis. In models with a large enough mass splitting,

regular resonance search methods will be sufficient to recognise the presence of two new

bosons while, if not, an analysis of asymmetries will do so. A number of results for the

illustrative limit of fully degenerate resonances as a “worst case scenario” are presented

while also including some observables for the spectrum with radiative corrections.

7.2.2 Off-diagonal widths

An important point to make is that, while mass splittings will affect the mixing of the KK

resonances, in the exactly degenerate limit, the mixing angle, θ, should not be a physical

parameter around the resonance peak. This is clear since the mixing of two degenerate

states simply amounts to a redistribution of couplings which can only yield differences in

widths coming from (small) top mass effects. With this principle in mind, it was found to

be extremely important to include off-diagonal widths in order to prevent artificial effects

arising as a function of the mixing angle. When multiple resonances have common decay

channels and a mass splitting comparable to their intrinsic decay widths, it may occur

that imaginary parts of one-loop diagrams mixes the two states via their width [148]. In

this case, the propagators must be treated as a matrix with the off-diagonal components

from these loops potentially altering their resonant structure. The size of these effects

is maximised in the degenerate limit and it will be shown later that including these

effectively removes the mixing angle as a physical parameter up to (small) interference

effects with the SM and higher KK gauge bosons. In order to highlight these points,

the phenomenology of the neutral KK resonances is investigated in both extreme cases:

SM-like couplings γ′ and Z ′ (θ = θW ) and maximally “unmixed” gauge states W ′3 and

B′ (θ =0), which turn out to show large differences in the asymmetry observables when

not including the off-diagonal effects. Since the unmixed limit corresponds in a sense

to the restoration of the EW gauge symmetry, one would expect the off-diagonal effects

to vanish in this limit. As such, the phenomenology of the unmixed case corresponds

to the “true” observable while artefacts from not including off-diagonal effects will arise

once the mixing angle is switched on.

7.2.3 LHC limits on R−1

The nature of the model ensures that the new resonances couple in an enhanced manner

to quarks while simultaneously having suppressed couplings to leptons. This dictates
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that the strongest constraints on the model will not come from EWPTs nor traditional

di-lepton resonance searches but rather from di-jet and possibly tt̄ searches. With this

in mind it is instructive to estimate the current limits on the compactification scale,

R−1, using the most recent LHC (CMS) analyses available in the two channels, in order

to use a reasonable value for this parameter in our study. The latest di-jet resonance

search for
√
s =8 TeV and 19.6 fb−1 [149] is used while for tt̄ the most constraining

analysis was found to be the boosted resonance search in the lepton+jets channel at
√
s =7 TeV with full luminosity [38].

Such searches determine limits on the enhancement of the “unfolded” tt̄ production cross

section in the case of the lepton+jet search and σ×BR(Z ′ → jj̄)×A (Acceptance) for

the di-jet search. Both use a “bump hunt” binned analysis, fitting the background plus a

single-resonance signal shape with the cross section as a free parameter. Consequently,

the analysis is rather sensitive to the signal shape. The fact that any interference

effects are a priori neglected in model independent limits means that the limits that

are obtained for this model will be in the approximate case of degenerate resonances

not interfering with the SM gauge bosons, in order to best match the assumed signal

shape. The production rate is computed for the model as a function of R−1 which is

equated with Mγ̃′ ≈MZ̃′ and compared with the CMS data to obtain a qualitative, yet

instructive, limit on the compactification scale. In addition to neglecting the interference

effects, which are indeed small compared to the QCD background, only the first KK level

of resonances was considered when computing the signal cross sections. This is also to

best match the assumed signal shape used in the experimental analyses. The effects

of the higher KK resonances are strongly reduced at high scales (≥2 TeV) due to low

parton luminosities while at the lowest scales (∼1 TeV) the first resonance is enough to

exclude the model. Note that, within these simplifications, the production rates between

the SM-like mixed and unmixed cases do not differ significantly even without including

the aforementioned off-diagonal width effects. For the di-jet analysis, an important

additional contribution will arise from KK W-boson contributions as well as t-channel

exchanges of all possible new gauge bosons. The former will contribute to the signal

cross section while it is argued that the latter will be present as a continuum correction

and would thus be absorbed into the normalisation of the background fit. As such, only

s-channel exchanges of KK gauge bosons are deemed to contribute to the visible signal

cross section. Furthermore, an additional kinematical cut of pseudorapidity separation

between the jets ∆ηjj <1.3 is imposed along with the requirement that both jets be

central (|η| <2.5).

In Figure 7.1, the tt̄ and di-jet production rate in AADD to the limits quoted from CMS

resonance searches in the two channels are compared. The di-jet rates are unsurpris-

ingly large since the resonance couples with a factor
√

2 larger than the SM case leading

to a limit of order 3.1 TeV on R−1. The fact that this analysis was performed on 8

TeV data compared to 7 for tt̄ along with the higher multiplicity of light quark final



Chapter 7 Uncovering multiple Z ′s in a model of extra dimensions 119

states and better reconstruction efficiency suggests that the latter analysis will not be

able to compete in setting such limits. The tt̄ limits are based on particular assumed

widths (1% and 10% of the mass) of the resonances. The previously introduced “Top-

color” [76] benchmark model that is constrained in this analysis has been left on the

figures for comparison. Given that, in this scenario, the tree-level width contributions

come only from quarks and give a contribution of about 5% of the mass, the predictions

are compared to both cases, understanding that the true limit should lie somewhere in

between. It appears that the exclusion is rather sensitive to this assumption since, in

the narrow case, AADD rates are higher than the Topcolor ones while in the wide case

they are lower, which may be a direct consequence of the ∼5% widths. This channel

yields a limit on R−1 of about 1.5-1.7 TeV, which is much lower than the di-jet case at

8 TeV, as expected. Driven by these rough limits, subsequent results are simulated for

a compactification scale of 3 TeV in order to present the phenomenology of the AADD

model.
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Figure 7.1: CMS exclusion plots
from the tt̄ (upper) and di-
jet (lower) resonance searches at√
s =7 and 8 TeV, respectively.

The tt̄ exclusions assume either
narrow or wide (Γγ̃′(Z̃′) = 0.01 and

0.1 ×Mγ̃′(MZ̃′), respectively) sce-
narios compared to the Topcolor
benchmark. AADD signal rates in-
clude statistical uncertainties.

7.3 Results

The numerical results are now presented for the phenomenology of the AADD model

as a benchmark for a quasi-degenerate two-resonance scenario preferentially coupled to
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tt̄. As suggested by Sections 7.2.1 and 7.2.3, a compactification scale of R−1 = 3 TeV

is chosen as the reference point. The code exploited, as in previous chapters, is based

on helicity amplitudes, defined through the HELAS subroutines [83], and built up by

means of MadGraph [84]. Initial state quarks have been taken as massless whereas for

the final state top (anti)quarks, mt = 175 GeV has been taken. The CTEQ6L1 [18]

PDFs were used with factorisation/renormalisation scale set to the compactification

scale, Q = µ = R−1. In each case, the BSM signal including (small) inteference with

the EW zero modes (γ,Z) is laid against the tree-level SM background dominated by

QCD and supplemented by EW production for completeness, all at LO. The focus is on

differential cross section and asymmetry observables binned around the resonance peak

region in invariant mass, |Mtt̄ −R−1| < 500 GeV. The results should not, qualitatively,

be affected by the choice of R−1. First, the results for the exactly degenerate limit will

be shown, highlighting the importance of including off-diagonal effects, before moving

on to the radiatively split spectrum. A comparison of the degenerate AADD model

with generic single Z ′s in the asymmetry observables will be made to underline the fact

that they can be very useful in identifying the presence of quasi degenerate, multiple

resonances when these cannot be resolved in the invariant mass spectrum. Following the

various discussions in Section 2.5 and subsequent chapters, the reconstruction efficiency

of the tt̄ signal is assumed to be 10%. Further, the two asymmetry observables considered

are A∗FB for the charge asymmetry as defined in Section 6.9 and the spin polarisation

AL used throughout this thesis. As in Chapter 6, the reconstruction efficiency estimates

are taken to be 10% and 5% for the two asymmetries respectively.

7.3.1 Invariant mass and asymmetry spectra

Invariant mass profiles in the standard cross section as well as charge and spin asym-

metries for both SM-like “mixed” (θ = θW ) and the pure “unmixed” (θ = 0) case for

the LHC at 14 TeV are shown. The relative contributions of the two resonances to

the aforementioned observables are decomposed to highlight the fact that, while the

invariant mass spectrum views these as a single bump, the asymmetries may allow one

to deduce the presence of multiple states. As discussed in Section 7.2.1, the mixing

parameter, θ, should not be physical in the degenerate limit. This appears to be the

case for the invariant mass spectra in Figure 7.2, where the observable quantity in black

reveals the presence of a single resonance, with both contributions and their interference

adding coherently to form a Breit–Wigner-like peak. The predictions for both mixed

and unmixed cases are rather similar, differing by less than 10%. The signal (S) is,

unsurprisingly, very visible above the Background (B), as indicated by the large sig-

nificances, S/
√
S +B, in the right-hand subplots even after folding the estimated 10%

reconstruction efficiency.
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Figure 7.2: The tt̄ invariant mass (Mtt) distribution of the cross section for the
AADD model with R−1 = 3 TeV. The upper two plots show the case where
the couplings are Z-like and γ-like while the lower two plots show the case
where they are B-like and W3-like. The left column highlights the contributions
from the two resonances and their interference. The right column shows the
observables, incorporating a 10% reconstruction efficiency on the tt̄ system,
statistical uncertainties and mass resolution estimates for the LHC at 14 TeV,
with 100 fb−1 of integrated luminosity. The lower subplots on the right hand
side measure the bin-by-bin significance of the signal in standard deviations.

In contrast, the asymmetries highlight a very different phenomenology. A clear dif-

ference can be noted between the prediction for the unmixed and mixed cases in Fig-

ures 7.3 and 7.4 respectively. This is the unphysical artefact coming from the omission

of off-diagonal width contributions discussed in Section 7.2.1. Figure 7.5 shows that the

inclusion of these effects makes the prediction for the mixed case consistent with that

of the unmixed case, where the off-diagonal terms are zero by construction, restoring

the mixing angle to an unphysical parameter. The predictions for the unmixed case and

the mixed case with off-diagonal widths agree up to small interference effects away from

the peak where the off-diagonal terms become small and the latter begins to agree with

the mixed case without their inclusion. These deviations are more pronounced in the

asymmetries and are likely due to the approximation of only considering off-diagonal

effects in the degenerate first level KK resonances. The unmixed scenario is therefore

taken to represent the “true” observables in this study.

In the upper-left plot of Figure 7.3, a characteristic dip in AL appears as a consequence
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Figure 7.3: The tt̄ invariant mass (Mtt) distribution of the AL and A∗FB asym-
metries for the AADD model with R−1 = 3 TeV where the couplings are B-like
and W3-like (θ = 0). The left column shows each of their contributions individ-
ually compared to the total (in red). The right column shows the observables as
they could be seen at the LHC at 14 TeV, with 100 fb−1 of integrated luminosity,
incorporating a 10(5)% reconstruction efficiency on the tt̄ system for A∗FB(AL)
and statistical uncertainties. The lower subplots on the right hand side measure
the bin-by-bin significance of the signal as defined in Equation 4.16.

of the two superimposed objects having different widths and couplings. The effects from

the wider resonance come in around the edges of the deviation, pushing the value of

the observable towards the preferred one for its set of couplings while, near the centre

of the distribution, the contribution from the narrower resonance pulls it towards the

latter’s preferred value. This effect is not as evident in the case of A∗FB, shown in

the lower left plot of Figure 7.3, owing to the dominant contribution to the process

coming from the up quark initial state. In the limit where only this state contributes,

A∗FB(tt̄) is always positive in such a model with universal fermionic interactions, as can

be inferred from Equation 3.26. In order to give a complete description of asymmetry

effects, in the two left-hand side plots of Figure 7.3, the observables AL and A∗FB are

decomposed into contributions from each individual resonance plotted alongside their

combination compared to the SM, emphasising the competition between them. The

coupling dependence of such observables allows for this special phenomenology and these

observables like to be large since the W ′3 couplings are purely left-handed, maximising the

parity asymmetric coefficient in Equation 3.16. The right-hand side plots of Figure 7.3

display the two observables, AL and A∗FB, with statistical uncertainties at the 14 TeV
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LHC after 100 fb−1 of integrated luminosity folding in a 10(5)% reconstruction efficiency.

The significances in this case are defined as in Equation 4.16 and are lower than those

of the invariant mass distribution. Nonetheless, the signal range is rather wide and an

integrated value of the observable could provide adequate statistical significance to be

observable above the background prediction as will be shown later in Section 7.3.2.

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 2600  2800  3000  3200  3400

A
L

Mtt (GeV)

SM
Z’, γ’

Z’ only
γ’ only

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

A
L

AADD(θ=θW): AL(int) = -0.35
SM: AL(int) = -0.00

0

1

2

 2600  2700  2800  2900  3000  3100  3200  3300  3400

S
ig

n
if
.

Mtt (GeV)

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 2600  2800  3000  3200  3400

A
* F

B

Mtt (GeV)

SM
Z’, γ’

Z’ only
γ’ only

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
A

* F
B

AADD(θ=θW): A
*
FB(int) = 0.22

SM: A
*
FB(int) = 0.00

0

1

2

 2600  2700  2800  2900  3000  3100  3200  3300  3400

S
ig

n
if
.

Mtt (GeV)

Figure 7.4: Identical plots to Figure 7.3 except where the couplings are Z-like
and γ-like (θ = θW ) instead. This corresponds to the unphysical case where
off-diagonal matrix elements have not been considered, resulting in differing
phenomenology occuring with the variation of an unphysical parameter, θ.
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Figure 7.5: Differential distributions in Mtt̄ for σ, AL and A∗FB comparing the
SM-like mixed AADD with and without off-diagonal width contributions to the
unmixed case.

Although the “dip” feature of the AADD scenario is visible in the binned AL figures,

it is about the only thing that suggests a differing phenomenology from that of a single

resonance. Furthermore, the large amount of luminosity required to achieve a more

statistically significant differential analysis of asymmetry observables that could confirm
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the presence of multiple resonances indicates that one may need to rely more on inte-

grated quantities. The next section will show that the phenomenology of this model,

displaying generic features of quasi-degenerate states, will allow it to be statistically

separated from single resonance scenarios using only integrated asymmetries.

Before moving to the integrated analysis, the cross section and asymmetry observables

are also shown for the split spectrum case (MB′=2.98 TeV, MW ′
3
=3.13 TeV), where the

radiative mass corrections have been taken into account as described in Section 7.2.1 and

Appendix C. This drives the mass mixing to zero and brings the model to the edge of the

quasi-degenerate regime. Namely, the splitting – of order 150 GeV – becomes comparable

to the estimated mass resolution and corresponds to about 5% of R−1. However, it seems

from Figure 7.6 that both the invariant mass distribution and the forward-backward

asymmetry still do not resolve two distinct peaks. The spin polarisation asymmetry,

AL, however, clearly distinguishes between the opposing contributions of the two peaks

in an even more striking way than in the degenerate case because the two contributions

no longer have to compete at the same invariant mass. This is reminiscent of the types

of signals seen in the 4DCHM scenarios of Chapter 6. Another consequence of this is

that the integrated value of the observable becomes closer to zero. As will be shown in

the next section, a single resonance does not generate a forward-backward asymmetry

without simultaneously generating a polarisation asymmetry. Thus, the cancellation

in the integrated prediction of AL combined with a nonzero A∗FB will serve as the

distinguishing feature.
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Figure 7.6: Differential distribu-
tions in Mtt̄ for σ, AL and A∗FB for
the LHC at 14 TeV, with 100 fb−1 of
integrated luminosity, incorporating
a 10(5)% reconstruction efficiency
on the tt̄ system for A∗FB(AL) and
statistical uncertainties. The lower
subplots measure the bin-by-bin sig-
nificance of the signal.
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7.3.2 Degeneracy versus a single resonance

Having confirmed that the presence of multiple degenerate resonances alters the phe-

nomenology of asymmetry observables, this feature can be used to distinguish AADD

from models with a single resonance. In order to provide a testbed for this, a set of

“toy” models of a single resonance were created, designed to be indistinguishable from

the degenerate AADD model in a resonance search. This was done by tuning the widths

and the couplings and establishing appropriate parameters such that the invariant mass

distribution of the points matched those of the AADD. In the massless limit, given a

fixed width chosen to resemble the effect of two AADD resonances, the cross section

can be modelled as some coefficient incorporating phase space and PDF convolutions

multiplying the chiral coupling coefficients of Equation 3.10. This was used to fit these

phase space and PDF convolutions for the u and d initial states respectively by consid-

ering σ(pp→ tt̄) and σ(pp→ bb̄) for a set of randomly selected u and d chiral couplings

respectively. For tt̄, the d couplings were set to zero and for bb̄, the u couplings. The

fitted coefficients could then be used to generate a scan over the set of allowed chiral

couplings, while keeping the cross section fixed.

The observables generated are shown in Figure 7.7, which represents a random selection

of 3 points fulfilling these conditions. The minimal assumption of universal couplings

across fermion generations was made in order to simplify the parameter scan, leaving

only the up and down-type chiral couplings uL,R and dL,R as inputs. The other frequent

assumption associated with Z ′s of fixing the charges of each SM representation was ig-

nored, as requiring uL = dL was over-constraining for a toy model, not necessarily meant

to represent a physically motivated scenario coming from any particular gauge group ex-

tension. The distributions confirm that there are many possible combinations for values

of charge and spin asymmetries for seemingly identical resonance cross sections. This

is, of course, not surprising following the discussion of the coupling dependencies in

Section 3.2 which also implie that the two asymmetry observables are correlated due

to their identical dependence on the final state couplings. Note that the observables in

AADD appear to remain distinguishable from any of the lettered benchmarks.

With this in mind, a scan was performed over all possible up and down-type couplings

allowed while keeping the single resonance cross section (65 fb integrated 500 GeV either

side of the resonance) and line-shape (i.e., width) fixed in order to compare and cross-

correlate the two asymmetry observables. In addition, a less constrained parameter

scan was also made over any combination of couplings and a random choice of width

to see whether the separation power of the asymmetries still holds. Here, the chiral

couplings were sampled over an interval {0, 1} while the widths were chosen to be a

random value ≤ 10% of the mass (3 TeV). Both sets of points are shown in Figure 7.8,

where the AADD case is plotted as an ellipse representing the 1σ statistical uncertainties

in the asymmetries. The tree-level SM prediction is included for reference, matching the
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case when the up-type couplings of a single resonance are purely vector-like (uL =

uR). The observables plotted are integrated values of the asymmetry over an invariant

mass of 500 GeV either side of the resonance mass, for the LHC at 14 TeV and 100

fb−1 of integrated luminosity, using statistical uncertainty and reconstruction efficiency

estimates consistent with the rest of this study.

Firstly, it is confirmed that the AADD scenario is distinguishable from the SM back-

ground in either observable. The profiles of the single resonance scan points show a clear

quadratic relationship between the two observables. This can be understood if one as-

sumes that the u-quark initial state dominates the production: AL will be proportional

to the parity asymmetric coupling combination while A∗FB will go as the square of this

quantity as discussed in Section 3.2. In the case where the invariant mass distribution

was constrained to match the AADD rate, the maximum values of AL and A∗FB are

bounded by the maximum absolute value of the couplings. In the unconstrained scan,

with the area covered by the points widens slightly due to the larger possible S/B, AL

becoming unbounded while AFB is limited to be positive and somewhat less than AL.

This, again, follows from the coupling dependence of both observables. The parameter

scans show that the AADD resonances, in the degenerate limit, can be fully disentangled

from any possible single resonance that may produce a similar invariant mass profile in a
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Figure 7.8: Scatter plots showing predicted values of AL and A∗FB for AADD
with R−1 = 3 TeV at the LHC, compared to the two sets of scanned points.
The first represents a scan over random couplings of a single 3 TeV resonance
with a fixed width constrained to match the AADD invariant mass distribution
(Figure 7.7). The second shows a scan where the couplings are randomly chosen
over the ranges {0, 1} and the resonance width is randomly chosen to be ≤ 10%
of the mass. The tree-level SM value is shown for reference and ellipses represent
the 1σ statistical uncertainties assuming a 10(5)% reconstruction efficiency on
the tt̄ system for A∗FB(AL).

bump hunt, within this treatment of reconstruction efficiencies and uncertainties. This

suggests that in the scenario that multiple resonances are observed at the LHC but are

masked by a quasi-degeneracy, one may be able to use the asymmetry observables to tell

that the signal is coming from more than one resonance. Indeed, any signal appearing

as a single peak with asymmetry values outside of the area spanned by the points in

Figure 7.8 will be a “smoking gun” for degenerate multiple-resonance physics.

7.4 Conclusions

A realistic example of a model (denoted as AADD) of two quasi-degenerate resonances

preferentially decaying to tt̄ final states was established where the presence of the two

new particles cannot be distinguished from a generic single resonance scenario in bump

hunt searches. The importance of radiative mass corrections in this model was high-

lighted, in that they induce splittings that bring the model towards the edge of the

quasi-degenerate scenario. However, these were calculated to be about 5% of the com-

pactification scale, R−1, ensure that the splittings remain below the tt̄ and di-jet mass
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resolutions. In the discussion of radiative mass splittings, quasi degeneracy and sub-

sequent mass mixing, the importance of a correct treatment of off-diagonal width con-

tributions in this regime was also stressed. By first considering the degenerate limit

as a “worst case scenario” for these purposes, it was found that the omission of off-

diagonal-widths led to potentially misleading artefacts which made the mass mixing

angle, θ, appear as a physical parameter even though it should not have. The latest

LHC results from di-jet and tt̄ resonance searches were used to obtain rough limits on

the compactification scale from resonance searches at the LHC in order to examine a

viable model.

Having expanded on the properties of asymmetry observables in previous chapters, it

was demonstrated that both charge and spin asymmetries are required to distinguish

this scenario from not only any singly resonant signal which mimics the invariant mass

distribution of the model but also any possible observed narrow resonance in tt̄ searches.

This is owed to the unique features of said asymmetries, that cannot be reproduced in

the presence of only one resonant state decaying to tt̄ pairs. In fact, this analysis can

serve to probe similar models of multiple quasi-degenerate resonances and a prediction

for AL, A
∗
FB from such a model lying outside the possible values for a single resonance

is likely and would signal the presence of multiply resonant physics.

All the results have been obtained at parton level, yet in presence of realistic statistical

uncertainties and reconstruction efficiencies, so they should undergo a certain degree of

scrutiny in presence of tt̄ decays, parton shower and hadronisation. However, the main

conclusions of our work are not expected to change substantially. In addition, the likely

boosted nature of the top final state may suggest the need for alternative techniques

for measuring top polarisation which do not rely on reconstructing the invariant mass

of the top pair. It remains to be seen how the upgraded LHC will be able to deal with

spin measurements in boosted tops, but what is clear is that, should they manage to

measure the quantity with sufficient accuracy, it would shed much light on the coupling

structure and potentially degenerate nature of an observed Z ′.



Chapter 8

Conclusions and outlook

A number of studies of the phenomenology of Z ′s through the tt̄ channel has been pre-

sented with particular emphasis placed on the power of asymmetry observables. The

fact that the top quark, being an unstable object which preserves its charge and spin

information through to its decay products, allows for the definition of spin asymme-

tries makes it a promising candidate for providing additional information on the chiral

couplings of a new observed resonance. This is particularly important given the fact

that the top quark often plays an important role in models of EWSB beyond the SM

Higgs mechanism. This is owed to its large mass and consequent contribution to the

unstable radiative corrections to the Higgs mass which plague to SM in its basic form,

as mentioned in Chapters 1 and 2. Various ways in which a Z ′ can occur in BSM the-

ories were discussed in Chapter 3, underlining their ubiquity in new physics models.

Demonstrating the unique dependences on the Z ′ chiral couplings offered by the addi-

tional asymmetries, the power of these observables is investigated in a variety of BSM

scenarios containing these new neutral vector resonances.

It is clear that the complex, six-body final state yielded by tt̄ production, discussed

in Chapter 2, will contribute to a relatively low reconstruction efficiency compared to

simple, cleaner final states such as the di-lepton one, which are traditionally used to

search for Z ′s. As the scale of new physics is continually pushed up by past and current

collider searches, the additional complications of a boosted system come into play. These

aspects must be taken into account and, although only a limited amount of experimental

analyses are available which consider high energy tops, jet substructure and pruning

methods are available and are being used in a few of these to dedicatedly identify these

objects. In particular, specific methods to extract spin information from the boosted

top decay products also exist. One of the main aspects of these is a move away from

the requirement of a full reconstruction of the tt̄ invariant mass, relying rather on more

accessible properties of the decay products such as their energy fractions or transverse

momentum spectra. This is largely to avoid the angular resolution issues that arise from

highly collimated decay products. It is also interesting to note that the hadronic decay
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modes become more useful since lepton isolation is also one of the primary selection

requirements that suffers from boosted decays. It is fair to say that, given the relatively

early stages of the LHC experiments, this domain is still under development and data

from the upcoming 14 TeV run will shed much light on the scope of these methods as

well as their efficiencies and associated systematic uncertainties. However, it remains

true that any final state in which spin asymmetries can be defined will necessarily involve

decaying objects in order to transmit their spin information. Therefore, such difficulties

can be seen as an irreducible aspect of extracting spin observables.

The reality and importance of these features can be traced in this thesis through the

gradual move with each chapter towards increasingly conservative stances on the esti-

mated reconstruction efficiencies associated to each tt̄ observable. This caution is also

reflected in the assumptions concerning the tt̄ mass resolution, with the eventual pref-

erence of using integrated observables rather than those presented differentially in Mtt̄.

The major source of uncertainty in this regard, identified in Section 2.5, stems from the

fact that the studies presented in this thesis are all performed at parton-level, without

including the subsequent decay and reconstruction of the tops. While it was clearly nec-

essary to make use of the most recent available information from experimental analyses

and other, more complete phenomenological investigations, the ultimate estimates used

remained approximate and – to a degree – subjective. In this sense, the only attitude

permitted is that of conservatism, with the knowledge that the results presented are of

an illustrative nature, and should serve as a motivating basis for more precise analyses.

As such, one of the main aims of subsequent work will be a validation of the observa-

tions presented concerning how much the conclusions are affected by the application of

a full tt̄ decay chain and subsequent detector-level reconstruction. In this regard, there

is nonetheless cause for optimism in that, while it may not be possible to obtain results

for the various asymmetries in the exact form presented in this work, these observables

should nonetheless represent the kind of behaviour one might expect to obtain. Fully

integrated measures of spin observables should be obtainable via the boosted methods

mentioned in Section 2.5. Moreover, although hope for the full reconstruction of Mtt̄ in

such measurements may have to be discarded, it is not unconceivable that – with suffi-

cient statistics – top polarisation could be presented differentially in a less “demanding”

variable such as top pT , which can still display a characteristic resonant shape. These

kind of analyses necessarily require high statistics and are therefore better suited to the

high energy and high luminosity, upcoming LHC run during which the understanding

of systematics associated with b-tagging and jet energy scale, amongst others, will be

better understood.

Within the confines of the parton-level analyses presented here, assuming that the gen-

eral idea of the results will remain, subject to a full simulation, the potential of asymme-

tries in the context of resonant physics has been demonstrated. It is hoped that the idea

of using tt̄ as a useful alternative channel to profile a Z ′ has been conveyed. Firstly, in
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Chapter 4, a direct comparison of the channel was performed by using a set of common

U(1) benchmarks considered in di-lepton analyses. Here, the reconstruction efficiency

issues were clear to see, even though the studies employed the most optimistic assump-

tions regarding these. However, the asymmetries, particularly the spin polarisation,

were confirmed to exhibit new and interesting dependencies on the chiral Z ′ couplings,

hinting at the fact that these could eventually be used to distinguish models that could

not be via cross section measurements. At the same time, the fact that this channel

could only be competitive at best with regards to the di-lepton channel motivated its

use as a complementary final state, rather than a straight discovery mode. This is par-

ticularly true for these types of models that bear no suppression in leptonic couplings

or enhancements to third generation interactions.

This led to the study presented in Chapter 5, where tt̄ was considered in conjunction

with the di-lepton and bb̄ modes as part of an overall strategy of distinguishing variants

of a minimal Z ′ extension of the SM. Here, the possibility that another decaying final

state might provide spin asymmetries, namely τ+τ−, was considered. In addition to the

conclusion that, in many cases, more than one final state may be required to access a

maximum of the model’s parameter space and also separate certain benchmarks, the –

perhaps more interesting – view considering the ultimate extraction of the Z ′ couplings

was discussed. Section 3.1.3 points out that, assuming even the most minimal set of

parameters characterising the fermionic couplings of a single Z ′ leads to 5 independent

quantities. Section 5.2.1 suggests that the e+e− and µ+µ− channels may not be sufficient

to fully disentangle them. Interestingly, although the unique coupling dependence of the

spin polarisation on these couplings was shown in Section 3.2, it was also discovered that

its measurement does not represent a unique piece of information assuming only a single

final state is used. That is to say, assuming universal Z ′ interactions, the measurement

of τ polarisation in addition to a set of 4 observables provided by the light di-lepton

channel is inadequate as a fifth observable. This further motivates the inclusion of tt̄ to

provide complementary information via its cross section or any asymmetry observable.

These can be used to simultaneously break the observed degeneracy in the quark and

leptonic couplings shown in Section 5.2.1 and provide the needed information to fit

the minimal set of parameters (excluding the width). Finally, moving away from the

minimal assumptions towards a more general case of up to 24 free parameters (including

right-handed neutrinos) clearly necessitates the use of as many independent observables

as possible, of which tt̄ and spin asymmetries can provide a good number.

The two studies performed up to this point were investigating models that were not

particularly tailored to tt̄ searches but rather were familiar to the theoretical and exper-

imental community as popular and simple benchmark choices. It was therefore important

to move on to models which lent themselves to tt̄ in order to get a better idea of its use

as a discovery channel and the benefits that asymmetry observables may offer in such

circumstances. To this end, two rather different models were considered in Chapters 6
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and 7 respectively. The first one stemmed from a comprehensive effective description of

the Higgs as a pNGB, also employing the notion of partial compositeness to yield the

large top mass and consequently strong couplings between new physics and third gener-

ation quarks. This 4DCHM is a prime example of the type of BSM scenario for which

tt̄ could be one of the main discovery channels thanks to the presence of 5 neutral reso-

nances, of which it was determined that two were likely accessible via this channel at the

LHC. Having identified regions in the parameter space – consistent with experimental

constraints – where the resonances would be clearly visible in this channel (essentially

when the heavy exotic quark decay modes are kinematically unavailable, leading to rela-

tively narrow Z ′s), a number of benchmarks were investigated in tt̄. The results not only

highlighted their clear visibility in tt̄ but also hinted at the use of AL to distinguish the

two resonances which are often too close in mass to be well separated in the differential

cross section. tt̄ thus presents itself as a primary discovery channel for these models in

regions of parameter space compatible with EWPTs, where the exotic quark states are

too heavy to be excluded by current searches, particularly knowing that the traditional

di-lepton mode is only accessible for very large integrated luminosities [118]. Finally,

the interesting phenomenological behaviour of the two resonances having different chiral

top couplings motivated the next study, which aimed to utilise this as a novel way to

identify quasi-degenerate resonances.

Although the model used in Chapter 7 was of a more unusual nature, its Z ′s did have a

rather different, extra dimensional origin to previously considered scenarios while pro-

viding an ideal testbed for the method investigated therein. The arranged localisation

and delocalisation of the QCD and EW sectors respectively represented one of the many

possibilities offered in the string-inspired, brane-world scenarios. This specific arrange-

ment simultaneously led to loop-suppressed leptonic couplings and significantly enhanced

quark couplings. In these models, one would naively expect a near degeneracy of the

neutral KK EW gauge bosons given the democratic assignment of their KK mass com-

ponent. However, it was discussed that, as the compactification scale of such a model is

increased, motivated largely by the strong bounds from di-jet searches shown to apply to

this realisation, the importance of the radiatively-induced mass splitting also increases.

Although such effects were calculated to be of order 5%, the consequences with regards

to the couplings of the new objects were significant. These considerations motivated

taking the objects to couple as the pure T3 and hypercharge gauge bosons, rather than

the typical heavy “copies” of the Z and photon cited in the literature [144]. The im-

portance, in this context, of off diagonal width effects were also considered and led to

a more consistent formulation of the observables, in which the mixing angle vanished

as a physical parameter in the fully degenerate limit. Using this model as an example

of a scenario consistent with current experimental limits in which the mass splitting is

too small to be effectively resolved in the di-jet and tt̄ search channels, the phenomenol-

ogy of asymmetries was investigated. It revealed an interesting interplay, not dissimilar

to that observed in the previous chapter, between the two resonances. It was further
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shown, using fully integrated observables, that the presence of two resonances could

be deduced by correlating the charge and spin asymmetry observables to demonstrate

that, at least within the assumption of universal quark couplings, the signal predicted

by AADD could not be replicated by a single Z ′, no matter what its couplings were.

Thus, given the observation of a Z ′ in a channel with mediocre mass resolution such as

di-jet or tt̄, a “smoking gun ”for multiply resonant physics was identified using tt̄ charge

and spin asymmetries.

We are currently in the early stages of an extremely exciting time for particle physics,

having just observed a resonance consistent with the SM Higgs and with the high energy

run of the LHC around the corner. It is clear that the tt̄ channel will contribute a large

amount of events to be analysed for evidence of physics beyond the SM. Furthermore,

it is not unconceivable that this may occur in the form of a resonant signal either in

this or other channels, perhaps in multiple ones. As discussed in this thesis, this type

of signature could indicate a plethora of scenarios ranging from gauge group extensions

to extra dimensions, new strong dynamics or any combination thereof - with or without

supersymmetry. This reinforces the importance of characterising the properties of such

an object in order to narrow down the possibilities by determining, for example, if it has

enhanced or suppressed couplings to certain sectors and whether or not these couplings

have a particular chiral structure. It is hoped that this thesis has underlined the fact that

the tt̄ final state, with its asymmetries, can provide an essential window into addressing

such issues and complement other channels in the goal of characterising the properties

of a new resonance.





Appendix A

Z ′ helicity amplitude calculation

The details of the helicity amplitude calculation for the production and decay of a Z ′ of

mass MZ′ and width ΓZ′ are presented, using the methods of [78] and cross checked by

results from [79]. The initial state quarks are assumed to be massless with momenta qi

while the final state fermions have mass mf and momenta pi. The interactions of the Z ′

are parameterised as in Equation 3.7, with qL,R and fL,R denoting the initial and final

state couplings to respectively. The unpolarised amplitude can be written in terms of

two spinor strings corresponding to the initial and final state currents contracted with

the Z ′ propagator in unitary gauge

Gµν(λ, κ, α, β) = −v̄(q2, κ) · [γµ(g′LPL + g′RPR)] · u(q1, λ)

× ū(p2, β) · [γν(gLPL + gRPR)] · v(p1, α),
(A.1)

M(λ, κ, α, β) =
−(ηµν − kµkν

M2
Z′

)Gµν(λ, κ, α, β)

s−M2
Z′ + iΓZ′MZ′

. (A.2)

The helicity arguments, λ, κ, of the Dirac spinors, u, v, label the initial state while α, β

label the final state. The Dirac spinors can be expressed in the Weyl basis, with the

corresponding representation of the Dirac matrices given by

s =

(
sL

sR

)
; s̄ = (s†R, s

†
L); γµ =

(
0 σµ+
σµ− 0

)
; σµ± = (1,±σi). (A.3)

The zero mass of the initial state causes the momentum dependent kµ = (q1 +q2)µ terms

to vanish by the Dirac equation leaving only the term contracted with gµν to compute:

Gµµ(λ, κ, α, β) = ηµν [qRv
†
R(q2, κ) · σν+ · uR(q1, λ) + qLv

†
L(q2, κ) · σν− · uL(q1, λ)]

× [fRu
†
R(p1, α) · σµ+ · vR(p2, β) + fLu

†
L(p1, α) · σµ− · vL(p2, β)].

(A.4)
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Using the Fierz identities given in [78] to remove the Lorentz contractions to give

Gµµ(λ, κ, α, β) =2fRqR[v†R(q2, κ) · uR(q1, λ)u†R(p1, α) · vR(p2, β)

− v†R(q2, κ) · vR(p2, β)u†R(p1, α) · uR(q1, λ)]

+2fLqL[v†L(q2, κ) · uL(q1, λ)u†L(p1, α) · vL(p2, β)

− v†L(q2, κ) · vL(p2, β)u†L(p1, α) · uL(q1, λ)]

+2fRqL[v†L(q2, κ) · vR(p2, β)u†R(p1, α) · uL(q1, λ)]

+2fLqR[v†R(q2, κ) · vL(p2, β)u†L(p1, α) · uR(q1, λ)]

(A.5)

The Weyl spinors can then be expanded in terms of helicity eigenspinors χ±(~p):

χ+(~p) = Nχ

(
|~p|+ pz

px + ipy

)
; χ−(~p) = Nχ

(
−px + ipy

|~p|+ pz

)
;

Nχ =
1√

2|~p|(|~p|+ pz)

(A.6)

which satisfy

~σ · ~p
|~p| χλ(~p) = λχλ(~p) (A.7)

and are related to the chiral Weyl spinors of momentum, ~p, and helicity, λ, by

u(p, λ)R = ωλχλ(~p) = v(p,−λ)R;

u(p, λ)L = ω−λχλ(~p) = −v(p,−λ)L;

ω± =
√
E ± |~p|.

(A.8)

In terms of helicity eigenstates, the amplitude, aside from the propagator denominator,

reads

Gµµ(λ, κ, α, β) =2fRqR

[
ω−κωλωαω−β

((
χ†−κ · χλ

)(
χ†α · χ−β

)
−
(
χ†−κ · χ−β

)(
χ†α · χλ

))]
+2fLqL

[
ωκω−λω−αωβ

((
χ†−κ · χλ

)(
χ†α · χ−β

)
−
(
χ†−κ · χ−β

)(
χ†α · χλ

))]
−2fRqL

[
ωκω−λωαω−β

((
χ†−κ · χ−β

)(
χ†α · χλ

))]
−2fLqR

[
ω−κωλω−αωβ

((
χ†−κ · χ−β

)(
χ†α · χλ

))]
(A.9)
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Substituting momenta in the CM frame for a partonic CM energy, ŝ

q1,2 =
√
ŝ

2 (1, 0, 0,±1)

p1,2 = (EP ,±~P )

~P =
√
E2
P −m2

f (sin θ cosφ, sin θ sinφ, cos θ)

EP =

√
ŝ

2

(A.10)

and computing for explicit helicities gives, up to an azimuthal phase and as in equa-

tion 3.18:

A(+,−,±,±) =∓ ŝ
2 sin θ

√
1− β2qR(fL + fR);

A(−,+,±,±) =∓ ŝ
2 sin θ

√
1− β2qL(fL + fR);

A(+,−,±,∓) = ŝ
2(1± cos θ)qR(fL(1∓ β) + fR(1± β));

A(−,+,±,∓) = ŝ
2(1∓ cos θ)qL(fL(1∓ β) + fR(1± β)).

(A.11)
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4DCHM Benchmark points

The exact numerical values of the masses, widths (limited to the new resonances) and

couplings of the Z,Z2 and Z3 gauge bosons to the light quarks (u, d, c, s) and also to the

top quark in terms of left- and right-handed coefficients defined in [3] for the benchmark

points of [118] adopted in this work are given. The Z5 state is neglected, as it is shown

to be inaccessible in the tt̄ channel. Such values are reported in Tabs. B.1-B.5.

(b)

MZi(GeV) ΓZi(GeV)

Z2 2048 61
Z3 2068 98

(c)

MZi(GeV) ΓZi(GeV)

Z2 2066 39
Z3 2111 52

(f)

MZi(GeV) ΓZi(GeV)

Z2 2249 32
Z3 2312 55

Table B.1: Table of the masses and widths of the neutral gauge resonances
limited to Z2 and Z3 for the benchmarks of [118] with f = 0.8 TeV, g∗ = 2.5
(b), f = 1 TeV, g∗ = 2 (c) and f = 1.2 TeV, g∗ = 1.8 (f).

(green)

MZi(GeV) ΓZi(GeV)

Z2 2249 48
Z3 2312 86

(magenta)

MZi(GeV) ΓZi(GeV)

Z2 2249 75
Z3 2312 104

(yellow)

MZi(GeV) ΓZi(GeV)

Z2 2249 1099
Z3 2312 822

Table B.2: Table of the masses and widths of the neutral gauge resonances lim-
ited to Z2 and Z3 for the coloured benchmark points of [118] in green, magenta
and yellow.
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(b)

gLZi(u, c) gRZi(u, c) gLZi(d, s) gRZi(d, s)

Z 0.256 −0.115 −0.313 0.057
Z2 0.0075 0.048 0.017 −0.024
Z3 −0.086 −0.004 0.084 0.002

(c)

gLZi(u, c) gRZi(u, c) gLZi(d, s) gRZi(d, s)

Z 0.256 −0.115 −0.313 0.057
Z2 0.012 0.061 0.019 −0.031
Z3 -0.110 −0.003 0.109 0.002

(f)

gLZi(u, c) gRZi(u, c) gLZi(d, s) gRZi(d, s)

Z 0.256 −0.115 −0.313 0.057
Z2 0.015 0.069 0.020 −0.034
Z3 −0.125 −0.002 0.123 0.001

Table B.3: Table of the couplings of the up and down quark to the neutral sector
limited to Z,Z2 and Z3 for the benchmarks of [118] with f = 0.8 TeV, g∗ = 2.5
(b), f = 1 TeV, g∗ = 2 (c) and f = 1.2 TeV, g∗ = 1.8 (f). The couplings of the
coloured benchmark points, labelled green, magenta and yellow are identical to
those of (f).

(b)

gLZi(t) gRZi(t)

Z 0.248 −0.123
Z2 −0.108 −0.603
Z3 0.481 0.009

(c)

gLZi(t) gRZi(t)

Z 0.251 −0.120
Z2 −0.091 −0.571
Z3 0.377 0.006

(f)

gLZi(t) gRZi(t)

Z 0.252 −0.118
Z2 −0.106 −0.486
Z3 0.427 0.006

Table B.4: Table of the couplings of the top quark to the neutral sector limited
to Z,Z2 and Z3 for the lettered benchmarks of [118] with f = 0.8 TeV, g∗ = 2.5
(b), f = 1 TeV, g∗ = 2 (c) and f = 1.2 TeV, g∗ = 1.8 (f).

(green)

gLZi(t) gRZi(t)

Z 0.251 −0.117
Z2 −0.143 −0.617
Z3 0.591 0.010

(magenta)

gLZi(t) gRZi(t)

Z 0.251 −0.117
Z2 −0.162 −0.694
Z3 0.666 0.0118

(yellow)

gLZi(t) gRZi(t)

Z 0.248 −0.120
Z2 −0.190 −0.790
Z3 0.795 0.027

Table B.5: Table of the couplings of the top quark to the neutral sector limited
to Z,Z2 and Z3 for the coloured benchmark points of [118] in green, magenta
and yellow.



Appendix C

Fermionic contribution to the KK

vector boson self energy

The calculation of the one-loop contribution to a U(1) gauge boson self-energy contri-

bution from a massive fermion is presented. This was performed to determine the mass

splitting effect of localised quarks on the KK EW gauge bosons of the AADD model

studied in Chapter 7. The interaction was parameterised with generic chiral fermionic

couplings:

iγµ (PL gL + PR gR) , (C.1)

defining PL,R(1∓γ5). The amplitude is comprised of the fermionic trace and propagator

factors integrated over the free momentum, k:

Πµν(p2) =

∫
d4k

(2π)4

Tr
[
γµ (PL gL + PR gR) (/k −mf )γν (PL gL + PR gR) (/p− /k +mf )

]
(k2 −m2

f )((k − p)2 −m2
f )

.

(C.2)

Introducing Feynman parameters [65], the integral takes the simplified form:

Πµν(p2) =

∫ 1

0
dx

∫
d4l

(2π)4

Γµν

(l2 −∆)2 ,

∆ = m2
f − x(1− x)p2 ; l = k − xp,

(C.3)

where the trace evaluates, keeping only even powers of l, to:

Γµν = 2(g2
L + g2

R)
[
gµν

(
1− 2

d

)
l2 − x(1− x)(p2 gµν − 2pµpν)

]
− 4gL gRm

2
f g

µν . (C.4)
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Moving to d = 4 − ε dimensions, a transmutation scale of µε is picked up and the

evaluation of two integrals is required, whose divergent and finite pieces reduce to:

I1 =

∫
ddl

(2π)d
1

(l2 −∆)2 ,

=
i

(4π)2

(
2

ε
− log ∆− γ + log(4π) +O(ε)

)
,

(C.5)

I2 =
1

d

∫
ddl

(2π)d
l2

(l2 −∆)2 ,

=
−i∆

2(4π)2
Γ
(
ε
2 − 1

)(4π

∆

) ε
2

,

(C.6)

(2− ε)I2 = − i∆

(4π)2

(
1− ε

2

)
Γ
(
ε
2 − 1

)(
1 +

ε

2
log

4π

∆
+O(ε2)

)
,

= ∆ I1.

(C.7)

Taking the massless limit first, expanding µε = (1 + ε logµ), the self energy can be

written as:

Πµν
0 (p2, µ) = − 2i

(4π)2
(g2
L + g2

R)

∫ 1

0
dx
(
x(1− x)(p2 gµν − 2pµpν)− gµν∆0

)
×
(

2

ε
− log ∆0 − γ + log(4π) + log µ2

)
,

(C.8)

where ∆0 = −x(1− x)p2. Keeping only divergent and finite terms for ε→ 0:

Πµν
0 (p2, µ) =

4i

(4π)2
(g2
L + g2

R) p2

∫ 1

0
dxx(1− x)

(
gµν − pµpν

p2

)(
log

p2

Λ2
+ log(−x(1− x))

)
.

(C.9)

The modified minimal subtraction (MS) scheme has been anticipated and a cutoff, Λ,

introduced such that:

2

ε
− γ + log(4π) + log µ2 ≡ log Λ2. (C.10)

The Feynman parameter integrals to compute are then:

Ix1 =

∫ 1

0
dxx(1− x) = −1

6
, (C.11)

Ix2 =

∫ 1

0
dxx(1− x) log(−x(1− x)) = −1

6

(
5

3
− iπ

)
, (C.12)

giving:

iΠµν
0 (p2,Λ) =

(g2
L + g2

R)

24π2
p2

(
gµν − pµpν

p2

)(
log

p2

Λ2
+

5

3
− iπ

)
. (C.13)
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In the massive case using the same scheme, ∆0 is replaced with ∆ = p2∆̃ and an extra

chirality-flipped term occurs:

Πµν(p2,mf , µ) = − 2i

(4π)2

∫ 1

0
dx

[
(g2
L + g2

R)
(
x(1− x)(p2 gµν − 2pµpν)− p2gµν∆̃

)
+ 2gLgRm

2
fg
µν

](
2

ε
− log ∆̃− log p2 − γ + log(4π) + log µ2

)
,

→ 2i

(4π)2

∫ 1

0
dx

[
2x(1− x)(g2

L + g2
R)(p2 gµν − pµpν)− (gL − gR)2m2

f g
µν

]

×
(

log
p2

Λ2
+ log ∆̃

)
.

(C.14)

The Feynman integrals to compute are then in terms of ∆̃ = ρ−x(1−x), with ρ =
m2
f

p2 :

Ix3 =

∫ 1

0
dx log (ρ− x(1− x)) ,

= log ρ+ 2− 2u tan−1

(
1

u

)
,

(C.15)

Ix4 =

∫ 1

0
dxx(1− x) log (ρ− x(1− x)) ,

=
1

6
log ρ− 2

3
ρ− 5

18
+

1

3
(2ρ+ 1)u tan−1

(
1

u

)
,

(C.16)

u ≡
√

4ρ− 1, (C.17)

giving:

iΠµν(p2,mf , µ) =
p2

8π2

[(
gµν − pµpν

p2

)
ΠT +

pµpν

p2
ΠL

]
, (C.18)

ΠT = (g2
L + g2

R)fT + ρ gLgRfL,

ΠL = −1

2
fL,

(C.19)

fT (p2,mf ,Λ) =
1

3

(
2 (5ρ+ 1)u tan−1

(
1

u

)
− 10ρ

+ (1− 3ρ) log

(
m2
f

Λ2

)
− 5

3

)
,

(C.20)

fL(p2,mf ,Λ) = 2

(
log

m2
f

Λ2
− 2u tan−1

(
1

u

)
+ 2

)
. (C.21)

The ΠT term will ultimately contribute to the correction to the two point function

annd the contribution to the KK vector boson mass can be calculated for each quark by

inserting the appropriate chiral couplings to the SM quarks times a factor
√

2. Replacing
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the bulk quark contributions of [147] with these corrections gave an overall reduction of

the mass splitting between W ′3 and B′ of around 1% of the compactification scale, R−1.

The cutoff value chosen was 20R−1 keeping to the choices made in [147]. This is about a

15% effect and does not change the fact that the splitting incurred is dominant over the

EW mass contributions and therefore drives the mixing toward the pure SU(2)L and

hypercharge states. The main reason this is so small is because the orbifold corrections

dominate the mass splittings and do not have any contributions from bulk fermions,

who only contribute via the finite bulk terms, whose removal has a negligible effect on

the splitting.
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