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COVERS OF ACTS OVER MONOIDS

by Alexander Bailey

Since they were first defined in the 1950’s, projective covers (the dual of

injective envelopes) have proved to be an important tool in module theory,

and indeed in many other areas of abstract algebra. An attempt to generalise

the concept led to the introduction of covers with respect to other classes

of modules, for example, injective covers, torsion-free covers and flat covers.

The flat cover conjecture (now a Theorem) is of particular importance, it

says that every module over every ring has a flat cover. This has led to

surprising results in cohomological studies of certain categories.

Given a general class of objects X , an X -cover of an object A can be

thought of a the ‘best approximation’ of A by an object from X . In a certain

sense, it behaves like an adjoint to the inclusion functor.

In this thesis we attempt to initiate the study of different types of covers

for the category of acts over a monoid. We give some necessary and sufficient

conditions for the existence of X -covers for a general class X of acts, and

apply these results to specific classes. Some results include, every S-act has

a strongly flat cover if S satisfies Condition (A), every S-act has a torsion

free cover if S is cancellative, and every S-act has a divisible cover if and

only if S has a divisible ideal.

We also consider the important concept of purity for the category of acts.

Giving some new characterisations and results for pure monomorphisms and

pure epimorphisms.
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Introduction

Given a category C, and a subcategory X ⊆ C, an X -cover can be thought

of as the ‘best approximation’ of an object in C by an object from X . In

particular, covers (and their categorical dual, envelopes), have proved to be

an important tool in module theory. This is explained succinctly in the in-

troduction to Göbel and Trlifaj’s book ‘Approximations and Endomorphism

Algebras of Modules’ [30, 31]:

It is a widely accepted fact that the category of all modules over a general

associative ring is too complex to admit classification. Unless the ring is of

finite representation type, we must limit attempts at classification to some

restricted subcategories of modules. The wild character of the category of all

modules, or of one of its subcategories C, is often indicated by the presence

of a realisation theorem, that is, by the fact that any reasonable algebra is

isomorphic to the endomorphism algebra of a module from C. This results

in the existence of pathological direct sum decompositions, and these are

generally viewed as obstacles to classification. Realisation theorems have

thus turned into important indicators of the “non classification theory” of

modules. In order to overcome this problem, the approximation theory of

modules has been developed over the past few decades. The idea here is to

select suitable subcategories C whose modules can be classified, and then

approximate arbitrary modules by those from C. These approximations are

neither unique not factorial in general, but there is a rich supply available

appropriate to the requirements of various particular applications. Thus ap-

proximation theory has developed into an important part of the classification

theory of modules.

It was Bass in 1960 who first characterised (right) perfect rings, that is,

rings whose (right) modules all have projective covers, as the rings which

satisfy the descending chain condition on principal (left) ideals. The classi-

cal concepts of projective covers (and dually injective envelopes) of modules
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2 INTRODUCTION

then led to the introduction of covers with respect to other classes of mod-

ules, for example, injective covers and torsion-free covers. Historically this

area has two branches: the covers and envelopes studied by Enochs for ar-

bitrary modules, and the finite dimensional case of Auslanders school under

the name of minimal right and left approximations. In this thesis, we pri-

marily imitate Enochs’ approach.

In 1963 Enochs showed that over an integral domain every module has

a torsion free cover [21]. In 1981 Enochs also showed that every module has

an injective cover if and only if the ring is Noetherian [25]. In this same

paper he first considered flat covers, showing, for example, that a module

has a flat cover if it has a flat precover and conjecturing that every module

over every (unital, associative) ring has a flat cover. This came to be known

as the flat cover conjecture and much work was done on it over the next two

decades. In 1995, J. Xu showed that commutative Noetherian rings with

finite Krull dimension satisfied the conjecture and he wrote a book on the

problem ‘Flat covers of modules’ [57] increasing the conjecture’s popularity.

In 2001 the conjecture was finally solved independently by Enochs and Bican

& El Bashir and published in a joint paper [8]. The two proofs were quite

different in their approach, one basically a corollary of a set-theoretic result

published by Eklof and Trlifaj and the other a more direct proof with a

model-theoretic flavour.

The flat cover conjecture has since been proved in many other categories

having surprising applications in (co)homology. To summarise, the exis-

tence of flat covers in a category which does not, in general, have enough

projectives, allows us to compute homology, i.e. TorCn(A,B) for right and

left C-modules A and B. Using flat resolutions with successive flat precov-

ers means the lifting property from the precovers give well-defined homology

groups. This whole area has become known as ‘relative homological alge-

bra’ and the existence of flat covers is central to the theory (see [26] and

[27]). Some categories studied in this area include: modules over a sheaf of

rings on a topological space [24], quasi-coherent sheaves over the projective

line [23], quasi-coherent sheaves over a scheme [22], arbitrary Grothendieck

categories [4] and finitely accessible additive categories [19].
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In the same way that rings can be studied by considering their category

of modules, monoids can be studied by considering their category of acts.

Covers of acts over monoids were first studied by J. Isbell in 1971 [34] and J.

Fountain in 1976 [28] who considered projective covers of acts. They gave a

complete characterisation of perfect monoids, that is, those monoids where

all of their acts have projective covers. A very interesting result showing

that like rings, monoids require the descending chain condition on principal

left ideals, but unlike rings, an additional ascending chain condition known

as Condition (A). Then in 2008, J. Renshaw and M. Mahmoudi extended

some of this work to strongly flat and Condition (P ) covers of acts. This

work was built on in [36] and [6]. The definition they used for covers was not

the same as Enochs’ definition of flat cover, but was based on the concept of

a coessential epimorphism. This definition is equivalent to Enochs definition

for the class of projective acts but distinct for flat covers.

It is the purpose of this thesis to initiate the study of Enochs’ definition

of cover for the category of acts over a monoid with the hope of generalising

some of the techniques used in the proof of the flat cover conjecture. Looking

at various classes of covers, e.g. free, projective, strongly flat, torsion free,

divisible, injective, etc. and asking specifically, for which monoids do all

acts have such covers?

In Chapter 1 we cover the preliminary results needed from set theory,

category theory and semigroup theory, and in Chapter 2 we give a summary

of some known and original results surrounding the category of acts over a

monoid. In particular, we give the first proof of the semigroup analogue of

the Bass-Papp Theorem, that every directed colimit of injective S-acts is

injective when S is Noetherian.

In Chapter 3 we bring to the readers attention another definition of

cover, namely a coessential cover of an act. We state some of the results

from the literature and how it relates to the definition of cover in this thesis.

Chapter 4 covers the important concept of purity for acts. In particular

we give some new necessary and sufficient conditions for pure epimorphisms

and pure monomorphisms and discuss how they are connected to the differ-

ent flatness properties of acts.



4 INTRODUCTION

Chapter 5 contains the main results on covers. In particular, we show

that if a class of S-acts X is closed under directed colimits, then an S-

act A has an X -precover if and only if it has an X -cover. We also give a

necessary and sufficient condition for the existence of X -precovers based on

the solution set condition, and a sufficient condition based on the ‘weakly

congruence pure’ property. We then completely characterise covers with the

unique mapping property.

Chapter 6 contains the application of these results to specific classes of

acts. One of the main results is that every S-act has an SF-cover (where

SF is the class of strongly flat acts) if S satisfies Condition (A). We also

construct an example of a monoid that has a proper class of indecomposable

strongly flat acts. Enochs proved in 1963 that over an integral domain, every

module has a torsion free cover, we prove the analogue of this result, that

over a (right) cancellative monoid, every act has a TF -cover (where TF is the

class of torsion free acts). Enochs also proved in 1981 that every R-module

has an injective cover if and only if R is Noetherian. We show that this proof

does not carry over in to the category of acts and give a counter example.

We finally give a necessary and sufficient condition for the existence of D-

covers (where D is the class of divisible acts), showing in particular that

D-covers are monomorphisms rather than epimorphisms.



Chapter 1

Preliminaries

In this Chapter we summarise some of the main definitions and results from

set theory, category theory and semigroup theory. The reader familiar with

these concepts can feel free to skip to Chapter 2.

1.1 Set theory

Set theory is an area of mathematics that is often avoided by most, leaving

the details to the more advanced student, but it plays a prominent role

throughout this thesis and so necessitates at least a basic summary of the

main ideas. The hope of this section is to give an informal overview of the

naive set theory used throughout without getting too bogged down by the

rigours of axiomatic set theory. See [35] for more details.

To avoid such contradictions as Russel’s paradox, we introduce the term

class as a collection of sets. Every set is a class, and a class which is not a

set is called a proper class. Informally, a proper class is ‘too big’ to be a

set.

1.1.1 Zorn’s Lemma

We say that a binary relation ≤ on a set X is a preorder if it is

• (reflexive) x ≤ x for all x ∈ X, and

• (transitive) x ≤ y and y ≤ z implies x ≤ z.

5



6 CHAPTER 1. PRELIMINARIES

A partial order is a preorder that is also

• (antisymmetric) x ≤ y and y ≤ x implies x = y.

A total order is a partial order where every pair of elements is compa-

rable, that is, either x ≤ y or y ≤ x for all x, y ∈ X. We say that (X,≤)

is a partially ordered set (resp. totally ordered set) if ≤ is a partial

(resp. total) order on X.

Given a partially ordered set (X,≤), an element x ∈ X is called maxi-

mal (resp. minimal) if whenever x ≤ y (resp. x ≥ y) for any y ∈ X, then

x = y. An element x ∈ X is called greatest (resp. least) if x ≥ y (resp.

x ≤ y) for all y ∈ X. An element x ∈ X is called an upper bound (resp.

lower bound) of a subset S ⊆ X if x ≥ y (resp. x ≤ y) for all y ∈ S.

We say that two partially ordered sets (X,≤X) and (Y,≤Y ) are order

isomorphic if there exists an order preserving bijection between them, that

is, a bijective function f : X → Y such that x ≤X y if and only if f(x) ≤Y
f(y).

A well-ordered set (X,≤) is a totally ordered set (X,≤) such that

every non-empty subset of X has a least element.

We assume the truth of the following unprovable statement.

Theorem 1.1 (Zorn’s Lemma). Given a partially ordered set (X,≤) with

the property that every (non-empty) totally ordered subset has an upper

bound in X. Then the set X contains a maximal element.

It is well known that Zorn’s Lemma is logically equivalent to the following

two statements and we will have occasion to use all three interchangeably.

Theorem 1.2 (Axiom of Choice). For any indexed family (Xi)i∈I of non-

empty sets there exists an indexed family (xi)i∈I of elements such that xi ∈
Xi for all i ∈ I.

Theorem 1.3 (The Well-Ordering Theorem). Every set can be well-ordered.
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1.1.2 Ordinal Numbers

A set is transitive if every element of S is a subset of S. We define an

ordinal (or ordinal number) to be a transitive set well-ordered by ∈, that

is, we identify an ordinal α = {β | β < α} with the set of all ordinals strictly

smaller than α. We let Ord denote the (proper) class of all ordinals. We

(usually) use the symbols α, β, γ to depict arbitrary ordinal numbers.

We define

α < β if and only if α ∈ β.

By [35, Fact (1.2.1)], the class of all ordinals Ord is well-ordered. Given

any ordinal α we define α+1 = α∪{α} to be the successor of α and we say

that an ordinal number is a successor ordinal if it is the successor of some

ordinal. Every (non-zero) finite number is a successor ordinal. An ordinal

is called a limit ordinal if it is not a successor ordinal. Alternatively, an

ordinal α is a limit ordinal if for all ordinals β < α there exists an ordinal γ

such that β < γ < α. The smallest (non-zero) limit ordinal is ω = N.

Theorem 1.4 ([35, Theorem 1.2.12]). Every well-ordered set is (order) iso-

morphic to a unique ordinal.

The following Theorem is used frequently throughout this thesis:

Theorem 1.5 (Transfinite induction, [35, Theorem 1.2.14]). Given an or-

dinal γ, and a statement P (δ) where δ ∈ Ord, if the following are true

1. Base step: P (0);

2. Successor step: If P (β) is true for β < γ, then P (β + 1) is true;

3. Limit step: If 0 6= β < γ, β is a limit ordinal and P (α) is true for all

α < β, then P (β) is true;

then P (γ) is true.
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1.1.3 Cardinal numbers

We first define what it means for two sets to have the same cardinality

before we define what a cardinal number is. We say two sets have the same

cardinality (or cardinal) if there exists a bijective function between them.

We assume that we can assign to each set X its cardinality, which we denote

|X| such that two sets are assigned the same cardinality if and only if there is

a bijective function between them. Cardinal numbers can be defined using

the Axiom of Choice. We define |X| ≤ |Y | if and only if there exists an

injective function from X to Y .

Theorem 1.6 ([35, Theorem 1.1.13]). If X and Y are sets, then either

|X| ≤ |Y | or |Y | ≤ |X|.

Theorem 1.7 (Cantor-Bernstein-Schröeder, [35, Theorem 1.1.14]). If |X| ≤
|Y | and |Y | ≤ |X| then |X| = |Y |.

Since every set can be well-ordered by Theorem 1.3 and since every well-

ordered set is order isomorphic to a unique ordinal number by Theorem 1.4,

to define the cardinality of a set, it is enough to define the cardinality of

an ordinal number. Firstly, we say that an ordinal α is a cardinal if α is

a limit ordinal and for all ordinals β such that |β| = |α| then α ≤ β. So

given any ordinal number α, we define its cardinality as the least ordinal β

such that |α| = |β| (this exists since Ord is well-ordered). Clearly this is a

cardinal number. We (usually) use the symbols κ, λ, µ to denote arbitrary

cardinal numbers. The first infinite cardinal |ω| is denoted ℵ0. Note that if

X is a finite set then |X| = n for some n ∈ N.

We define the successor of a cardinal κ to be the cardinal number λ such

that λ > κ and there does not exist any cardinal µ such that κ > µ > λ.

Note that for infinite cardinals, the cardinal successor differs from the ordinal

successor.

We now define cardinal arithmetic which we will use frequently through-

out without reference. Given two sets X and Y :

• Addition of cardinals |X| + |Y | is defined to be |X∪̇Y | where X∪̇Y
is the disjoint union.
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• Multiplication of cardinals |X| · |Y | is defined to be |X × Y | where

X × Y is the cartesian product.

• Exponentiation of cardinals |X||Y | is defined to be |XY | where XY

is the set of all functions from Y to X.

Theorem 1.8 ([35, Theorem 3.5]). Given two cardinal numbers κ, λ, if

either cardinal is infinite (and both are non-zero), then κ + λ = κ · λ =

max{κ, λ}.

We will have need to make use of the following Lemma in later results.

Lemma 1.9. Let C be a class of sets and λ a cardinal such that |X| ≤ λ

and |X| = |Y | implies X = Y for all X,Y ∈ C. Then C is a set.

Proof. Let β be an ordinal such that |β| = λ, then for each cardinal µ ≤ λ

there exists α ∈ β+1 such that |α| = µ. Therefore we can define an injective

function C → β + 1 and so |C| ≤ |β + 1|.

1.2 Category theory

Category theoretic methods are used extensively throughout this thesis al-

though they are usually translated explicitly in to the category of acts. In

this section we give some categorical motivation as to why covers are impor-

tant. Namely, we show that covers (and envelopes) are, in a certain sense,

‘weak adjoints’ of the inclusion functor. The definitions and results in this

section can all be found in a standard introduction to category theory, for

example [44].

A category C consists of a class of objects, denoted Ob(C), and for any

pair of objects A,B ∈ Ob(C), a (possibly empty) set Hom(A,B) called the

set of morphisms from A to B such that Hom(A,B) ∩ Hom(C,D) = ∅
if A 6= C or B 6= D. These are often referred to as the hom-sets of C
and the collection of all these sets is denoted Mor(C). We also require

for all objects A,B,C ∈ Ob(C) a composition Hom(B,C)×Hom(A,B) →
Hom(A,C), (g, f) 7→ gf satisfying the following properties:
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1. for every object A ∈ Ob(C), there is an identity morphism idA ∈
Hom(A,A) such that idBf = fidA = f for all f ∈ Hom(A,B).

2. h(gf) = (hg)f for all f ∈ Hom(A,B), g ∈ Hom(B,C) and h ∈
Hom(C,D).

Two examples of categories that will be important later are Mod-R the

category of (right) R-modules over a ring R with R-homomorphisms, and

Act-S the category of (right) S-acts over a monoid S with S-maps.

Given a category C, a subcategory D ⊆ C consists of a subclass of

objects Ob(D) ⊆ Ob(C), and a subclass of hom-sets Mor(D) ⊆ Mor(C) such

that:

1. for all Hom(X,Y ) ∈ Mor(D) we have X,Y ∈ Ob(D)

2. for all f ∈ Hom(Y,Z) ∈ Mor(D), g ∈ Hom(X,Y ) ∈ Mor(D), we have

fg ∈ Hom(X,Z) ∈ Mor(D)

3. for all X ∈ Ob(D), we have 1X ∈ Hom(X,X) ∈ Mor(D).

These conditions ensure that D is also a category.

A subcategory D ⊆ C is full if for all X,Y ∈ Ob(D), f ∈ Hom(X,Y ) ∈
Mor(C) implies f ∈ Hom(X,Y ) ∈ Mor(D).

1.2.1 Types of morphism

Given a category C and two objects X,Y ∈ Ob(C), we say that a morphism

f ∈ Hom(X,Y ) is a monomorphism if it is left cancellable, that is, for

all V ∈ Ob(C), h, k ∈ Hom(V,X), fh = fk implies h = k. We say that

f ∈ Hom(X,Y ) is an epimorphism if it is right cancellable, that is, for

all Z ∈ Ob(C), h, k ∈ Hom(Y, Z), hf = kf implies h = k. A morphism

is a bimorphism if it is both a monomorphism and an epimorphism. We

say that f ∈ Hom(X,Y ) is an isomorphism if there exists g ∈ Hom(Y,X)

such that fg = idY and gf = idX . We say that f ∈ Hom(X,Y ) is an

endomorphism if X = Y .

Lemma 1.10. Let C be a category, and X,Y, Z ∈ Ob(C) with morphisms

f ∈ Hom(X,Y ), g ∈ Hom(Y,Z). Then the following are true:
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1. If gf is a monomorphism then f is a monomorphism.

2. If gf is an epimorphism, then g is an epimorphism.

Proof. 1. If fh = fk, for some V ∈ Ob(C), h, k ∈ Hom(V,X), then

(gf)h = g(fh) = g(fk) = (gf)k, hence h = k and so f is a monomor-

phism.

2. The proof is similar.

Since identity morphisms are clearly bimorphisms we have the following

corollary:

Corollary 1.11. Every isomorphism is a bimorphism.

Conversely, not every bimorphism is an isomorphism and a category is

called balanced if all the bimorphisms are isomorphisms.

Lemma 1.12. Let C be a category, X,Y ∈ Ob(C) and f ∈ Hom(X,Y ),

g ∈ Hom(Y,X). If fg and gf are both isomorphisms then f and g are both

isomorphisms.

Proof. By Corollary 1.11, both fg and gf are bimorphisms. Since fg is an

isomorphism, there exists h ∈ Hom(Y, Y ) such that (fg)h = idY = h(fg).

Therefore gf = g(fgh)f = gf(ghf), and since gf is a monomorphism, we

have idX = (gh)f and since f(gh) = idY , f is an isomorphism. A similar

argument holds for g.

Given a category C and an object X ∈ Ob(C), if there is a property

that X satisfies such that for any other object Y ∈ Ob(C) that satisfes

the same property there is an isomorphism f ∈ Hom(X,Y ), then we say

that X is unique up to isomorphism (with respect to that property) .

Similarly, if for any Y ∈ Ob(C) that satisfies the property, there is only one

isomorphism f ∈ Hom(X,Y ), then we say that X is unique up to unique

isomorphism.

An example of a construction unique up to isomorphism but not unique

up to unique isomorphism is the algebraic closure of a field, i.e. conjugation

of complex numbers.
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1.2.2 Terminal and initial objects

Given a category C, we say that an object X ∈ Ob(C) is a terminal object

if for all A ∈ Ob(C) there exists a unique morphism f ∈ Hom(A,X), that is,

|Hom(A,X)| = 1. Similarly, an object X ∈ Ob(C) is an initial object if for

all A ∈ Ob(C) there exists a unique morphism f ∈ Hom(X,A). An object

X ∈ Ob(C) is a zero object if it is both an initial object and a terminal

object.

An example of a zero object is the zero module in the category of modules

over a ring.

Lemma 1.13. Terminal (initial) objects are unique up to unique isomor-

phism.

Proof. Given a category C, let X and Y be two terminal (initial) objects in

C, then there exist unique morphisms f ∈ Hom(X,Y ) and g ∈ Hom(Y,X),

and since both X and Y each have only one endomorphism, fg = idY and

gf = idX . Therefore both f and g are unique isomorphisms.

We say that an object X ∈ Ob(C) is a weakly terminal object if

for all A ∈ Ob(C), there exists a (not necessarily unique) morphism f ∈
Hom(A,X), that is, Hom(A,X) 6= ∅. Similarly, an object X is a weakly

initial object if for all A ∈ Ob(C) there exists at least one morphism f ∈
Hom(X,A). Slightly adapting terminology from [53], we say that an object is

stable if all of its endomorphisms are isomorphisms. Clearly terminal and

initial objects are both stable, in fact they have only one endomorphism,

the identity morphism. We say that an object is stably weakly terminal

(resp. stably weakly initial) if it is stable and weakly terminal (resp.

weakly initial). Although weakly terminal (weakly initial) objects need not

be unique, we have the following:

Lemma 1.14. Stably weakly terminal (stably weakly initial) objects are

unique up to isomorphism.

Proof. Let C be a category, and X,Y be two stably weakly terminal (stably

weakly initial) objects in Ob(C), then there exist morphisms f ∈ Hom(X,Y )

and g ∈ Hom(Y,X) such that fg and gf are isomorphisms. Hence by Lemma

1.12, f and g are both isomorphisms.
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1.2.3 Slice and coslice categories

Given a category C, and X ∈ Ob(C), we can define a new category (C ↓ X)

called the slice category over X with objects (Y, f) where Y ∈ Ob(C), f ∈
Hom(Y,X), and homomorphisms h : (Y, f)→ (Z, g), where h ∈ Hom(Y,Z)

such that the following diagram commutes

Y Z

X

h

f g

Similarly, we can define (X ↓ C), the coslice category over X with

objects (Y, f) where Y ∈ Ob(C), f ∈ Hom(X,Y ), and homomorphisms

h : (Y, f) → (Z, g), where h ∈ Hom(Y,Z) such that the following diagram

commutes

X

Y Z

gf

h

Given a category C, a subcategory D ⊆ C, and an object X ∈ Ob(C), let

(D ↓ X), the slice subcategory of D over X denote the full subcategory

of (C ↓ X) consisting of objects (Y, f) where Y ∈ Ob(D). Similarly let, (X ↓
D), the coslice subcategory of D over X, denote the full subcategory of

(X ↓ C) consisting of objects (Y, f) where Y ∈ Ob(D).

1.2.4 Functors and adjoints

Given categories C and D, a functor F : C → D, assigns each object

X ∈ Ob(C) to an object F (X) ∈ Ob(D), and assigns each morphism f ∈
Hom(X,Y ) ∈ Mor(C), to a morphism F (f) ∈ Hom(F (X), F (Y )) ∈ Mor(D)

such that the following two properties are satisfied:

1. F (idX) = idF (X) for each X ∈ Ob(C),
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2. F (fg) = F (f)F (g) for allX,Y ∈Ob(C), f ∈Hom(Y,Z), g ∈Hom(X,Y ).

Given any category C, an important functor 1C is the identity functor

which sends every object to itself and every morphism to itself. Given a

subcategory D ⊆ C, the inclusion functor (or forgetful functor) is the

functor from D to C that sends all objects and morphisms to themselves.

Given two functors F : A → B, G : B → C, we can define their compo-

sition GF : A → C in the obvious way, each object X ∈ Ob(A) is assigned

to G(F (X)) ∈ Ob(A) and each morphism f ∈ Hom(X,Y ) ∈ Mor(A) is

assigned to G(F (f)) ∈ Hom(G(F (X)), G(F (Y ))) ∈ Mor(A).

Given two categories C, D and two functors F,G : C → D, we say that

σ : Ob(C)→ Mor(D), X 7→ (F (X)→ G(X)) is a natural transformation

(from F to G) if for any X,Y ∈ Ob(C), f ∈ Hom(X,Y ) the following

diagram commutes

F (X) G(X)

F (Y ) G(Y ).

σ(X)

F (f)

σ(Y )

G(f)

We write σ : F → G and think of it as a ‘morphism of functors’. Fur-

thermore, we say that σ is a natural equivalence if σ(X) ∈ Mor(D) is an

isomorphism for all X ∈ Ob(C). An important natural equivalence 1F is the

identity transformation that sends a functor F to itself, that is, it sends

X to idF (X).

Given three functors F,G,H : C → D and two natural transformations

σ : F → G, µ : G → H, we define the composition µ ◦ σ to be the natural

transformation that sends X ∈ Ob(C) to µ(X) ◦ σ(X).

Given two categories C, D and two functors F : C → D, G : D → C,
we say that F and G are adjoint if there exist two natural transformations

ε : FG→ 1D, η : 1C → GF such that the compositions

F
Fη−−→ FGF

εF−−→ F

G
ηG−−→ GFG

Gε−−→ G
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are the identity transformations 1F and 1G respectively. If F and G are

adjoint then we say that F is left adjoint to G and G is right adjoint to

F . Many important examples of adjoints come from left/right adjoints to

the inclusion functor.

A subcategory is called reflective if the inclusion functor has a left

adjoint which we call the reflector map . We list here a few of the many

examples of reflective subcategories:

Reflective subcategory Reflector map

Any category in itself Identity functor

Unital rings in all rings Adjoin an identity

Abelian groups in groups Quotient by the commutator subgroup

Sheaves in presheaves on a topological

space

Sheafification

Groups in sets Free group on set

Fields in integral domains Field of fractions

Compact spaces in normal Hausdorff

topological spaces

Stone-C̆ech compactification

Groups in inverse semigroups Quotient by minimum group congruence

Abelian groups in commutative

monoids

Grothendieck group construction

It is worth noting that each of these examples gives rise to a universal

property. To be precise, we have the following:

Theorem 1.15. A subcategory D ⊆ C is reflective if and only if for all X ∈
Ob(C), the coslice subcategory (X ↓ D) has an initial object.

Proof. Given the inclusion functor G : D → C, let F : C → D be a functor

left adjoint to G. Then there exist natural transformations ε : FG → 1D

and η : 1C → GF such that εF ◦ Fη = 1F and Gε ◦ ηG = 1G. Then for any

object X ∈ Ob(C), it is clear that (F (X), η(X)) is an initial object in the

coslice subcategory (X ↓ D). That is, for all Y ∈ D, f ∈ Hom(X,Y ), there

exists a unique g : F (X)→ Y such that the following diagram commutes
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X F (X)

Y

η(X)

f
g

Conversely, if every object X ∈ Ob(C) has an initial object (YX , fX) in

the coslice subcategory (X ↓ D), then we can define a function F : C →
D that sends the object X to YX and the morphism h ∈ Hom(X,X ′) ∈
Mor(C) to the unique morphism gh ∈ Hom(YX , YX′) ∈ Mor(D) such that

fX′h = ghfX . Let η be the function that takes an object X ∈ Ob(C) to the

morphism fX ∈ Mor(C), and let ε be the function that takes an object X ∈
Ob(D) to idX ∈ Mor(D). It is clear that F is in fact a functor, and η and ε

are natural transformations from 1C to GF and FG to 1D respectively such

that εF ◦ Fη = 1F and Gε ◦ ηG = 1G, hence F is left adjoint to G.

A subcategory is called coreflective if the inclusion functor has a right

adjoint which we call the coreflector map, and similarly we have:

Theorem 1.16. A subcategory D ⊆ C is coreflective if and only if for all

X ∈ Ob(C), the slice subcategory (D ↓ X) has a terminal object.

Proof. The proof is similar.

An example of a coreflective subcategory is torsion groups in abelian

groups, with the right adjoint being the torsion subgroup.

1.2.5 Covers and envelopes

Let C be a category, X ⊆ C a subcategory and A ∈ Ob(C). We say that

(EA, g) is an X -preenvelope of A if g ∈ Hom(A,EA) such that for all

Y ∈ Ob(X ), f ∈ Hom(A, Y ) there exists h ∈ Hom(EA, Y ) such that the

following diagram

A EA

Y

g

f
h



1.2. CATEGORY THEORY 17

commutes. Additionally, if whenever (Y, f) = (EA, g), h must be an isomor-

phism, then we say that (EA, g) is an X -envelope.

Similarly, we say that (CA, g) is an X -precover of A if g ∈ Hom(CA, A)

such that for all Y ∈ Ob(X ), f ∈ Hom(Y,A) there exists h ∈ Hom(Y,CA)

such that the following diagram

CA A

Y

g

f
h

commutes. Additionally, if whenever (Y, f) = (CA, g), h must be an isomor-

phism, then we say that (CA, g) is an X -cover.

The following Propositions are clear from the definitions.

Proposition 1.17. Given a category C, an object A ∈ Ob(C) and a subcat-

egory X ⊆ C, an X -preenvelope of A is a weakly initial object in the coslice

subcategory of X over A, and X -envelopes are stably weakly initial objects.

Proposition 1.18. Given a category C, an object A ∈ Ob(C) and a subcat-

egory X ⊆ C, an X -precover of A is a weakly terminal object in the slice

subcategory of X over A, and X -covers are stably weakly terminal objects.

Hence by Lemma 1.14, envelopes and covers are unique up to isomor-

phism.

These Propositions therefore give us the following results:

Theorem 1.19. Given a category C and a subcategory X ⊆ C, every A ∈
Ob(C) has an X -envelope if and only if for all A ∈ Ob(C), the coslice sub-

category (X ↓ A) has a stably weakly initial object.

Theorem 1.20. Given a category C and a subcategory X ⊆ C, every A ∈
Ob(C) has an X -cover if and only if for all A ∈ Ob(C), the slice subcategory

(A ↓ X ) has a stably weakly terminal object.

These results indicate why envelopes and covers are important. They say

that every object having an X -envelope (resp. X -cover) is a slightly weaker
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condition than the inclusion functor X ⊆ C having a left (resp. right)

adjoint. They are unique up to isomorphism, however unlike adjoints, they

are not unique up to unique isomorphism.

1.3 Semigroup theory

In this thesis we study the category of acts over a monoid. Therefore some

basic semigroup and monoid theory is required, although not much. In

particular we give only a few definitions and a simple Lemma. For a more

thorough overview, see [33].

A semigroup (S, ·) is a set S with an associative binary operation S ×
S → S, (s, t) 7→ s · t. A monoid (S, ·) is a semigroup (S, ·) with an identity

element 1 ∈ S, such that, 1 · s = s · 1 = s for all s ∈ S. We usually write s · t
as st.

Given any semigroup, we can turn it in to a monoid by adjoining an

identity. There are two different ways to do this. Either adjoin an identity

precisely when it doesn’t already have one, or adjoin an identity even if

it does. Clearly these are equivalent for semigroups that are not already

monoids.

We say that a semigroup is right cancellative (resp. left cancellative)

if for every s, t, c ∈ S, sc = tc (resp. cs = ct) implies s = t. We say that a

semigroup is cancellative if it is both left cancellative and right cancellative.

An example of a cancellative semigroup is the set of natural numbers under

addition.

We say that a semigroup is regular if for all s ∈ S, there exists t ∈ S
such that sts = s and tst = t. We say that a semigroup is inverse if for all

s ∈ S there exists a unique t ∈ S such that sts = s and tst = t.

Given any set X, the set of all functions f : X → X with function com-

position as a binary operation is called the full transformation monoid

of X and denoted T (X). In fact, T (X) is a regular monoid.

Given any set X the set of all partial bijections on X, that is, bijective

functions not everywhere defined, with function composition as a binary
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operation is called the symmetric inverse monoid of X and denoted

I(X). In fact, I(X) is an inverse monoid.

In fact, every semigroup is isomorphic to a subsemigroup of the full

transformation monoid of some set, and every inverse semigroup is isomor-

phic to a subsemigroup of the symmetric inverse monoid of some set. These

are analogous results to Cayley’s Theorem for groups.

Given a semigroup S, an idempotent is an element e ∈ S such that

ee = e, and the set of idempotents is denoted E(S). Every inverse semigroup

comes equipped with a natural partial order, s ≤ t if and only if there exists

e ∈ E(S) such that s = et. For idempotents, this reduces to e ≤ f if and

only if e = ef as if e = df for some d ∈ E(S), then ef = dff = df = e. On

an inverse semigroup S, we can define the minimum group congruence

to be the relation σ = {(s, t) ∈ S × S | es = et for some e ∈ E(S)}.
It straightforward to check that this is indeed a congruence, and it is the

smallest congruence σ such that S/σ is a group, or equivalently S/σ is the

maximum group homomorphic image of S. The natural map σ\ : S →
S/σ is a reflector map from the category of inverse semigroups to the full

subcategory of groups (see [42, Theorem 2.4.2]).

The following Lemma is straightforward and is used later.

Lemma 1.21. Given a monoid S, if xS = S for all x ∈ S then S is a

group.

Proof. We show that every element x ∈ S has a two-sided inverse. In fact,

there exists t ∈ S such that xt = 1 and there exists u ∈ S such that tu = 1.

Therefore u = (xt)u = x(tu) = x and t is a two-sided inverse of x.





Chapter 2

Acts over monoids

In this chapter we give a brief overview of the basic results surrounding

S-acts, most of which can be found in [38], although there are some new

results as well.

2.1 The category of S-acts

There are many similarities between Mod-R the category of (right) modules

over a ring and Act-S the category of (right) acts over a monoid, but there

are also some subtle differences. The first thing to note is that although

Act-S has a terminal object, it does not have an initial object and hence

does not have a zero object and so the category is not additive. This means

we need to be more careful when defining homological concepts such as exact

sequences or even simple concepts like a kernel.

We start by giving a brief outline of the category Act-S.

Let S be a monoid with identity element 1 and let A be a non-empty

set. We say that A is a right S-act if there is an action

A× S → A

(a, s) 7→ as

with the property that for all a ∈ A and s, t ∈ S

a(st) = (as)t and a1 = a.

21
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Given any monoid S, we always have the one element act or the trivial

act denoted ΘS , that is the one element set {a} with the following action

(a, s) 7→ as = a for all s ∈ S. We say that an S-act A has a fixed point if

it contains the one element S-act as a subact.

Given a right S-act A and A′ ⊆ A a non-empty subset of A. We say

that A′ is a subact of A if

a′s ∈ A′ for all a′ ∈ A′, s ∈ S.

Sometimes it is easier to think of acts in a graphical way. Given any

S-act X, there is an associated graph (in fact a decorated digraph) where

the vertices are the elements of X and the directed edges are labelled e ∈ S
between two vertices v1, v2 ∈ X if v1e = v2. For example, if xs = yt then

we would have the following graph.

x

•

y

s t

Note that unlike group actions, the edges may not be reversible and the

graph may not be connected.

Let A, B be two right S-acts. Then a well-defined function f : A → B

is called a homomorphism of right S-acts or just an S-map if

f(as) = f(a)s for all a ∈ A, s ∈ S.

The set of all homomorphisms from A to B is denoted by Hom(A,B). We

say that two right S-acts A and B are isomorphic and write A ∼= B if there

is a bijective S-map between them.

Given any monoid S, the category whose objects are right S-acts and

whose morphisms are homomorphisms of right S-acts is denoted Act-S. It

turns out that (unlike the category of semigroups) this category is balanced

[38, Proposition 6.15], that is the bimorphisms are isomorphisms. Moreover,

the epimorphisms and monomorphisms are precisely the surjective and

injective S-maps respectively.

Similarly we can define the category S-Act of left S-acts with homomor-

phisms between left S-acts in the obvious way. We will be working almost
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exclusively with the category of right S-acts and so unless otherwise stated

an act will always refer to a right S-act.

It is clear that the one element S-act ΘS is the terminal object in Act-S

but we do not always have an initial object, hence the category of acts is a

non-additive category.

2.2 Congruences

Given an S-act A, a right S-congruence on A is an equivalence relation

ρ on A (that is, reflexive, symmetric and transitive) such that xρy implies

xsρys for all x, y ∈ A, s ∈ S. Note, we frequently write xρy to mean

(x, y) ∈ ρ. Similarly we can define a left S-congruence on A. We will be

working almost exclusively with right S-congruences and so unless otherwise

stated a congruence will refer to a right S-congruence and we use the term

two-sided congruence to mean an equivalence relation that is both a left

S-congruence and a right S-congruence.

Given any S-act, there are always two special congruences on A that

we call the universal relation defined A × A and the diagonal rela-

tion defined 1A := {(a, a) : a ∈ A}. These are the greatest and least

elements respectively in the partial ordering (by inclusion) of all congru-

ences/equivalence relations on A.

If ρ is a congruence on A then we use the notation A/ρ to denote the set

of equivalence classes {[a]ρ : a ∈ A}. It is easy to see that A/ρ is an S-act

with the action [a]ρs = [as]ρ. We call the canonical surjection

ρ\ : A→ A/ρ

a 7→ [a]ρ

the natural map with respect to ρ. We usually write aρ to mean [a]ρ.

Given any S-act A, it is clear that A/1A ∼= A and A/(A×A) ∼= ΘS .

Given any S-act A and a set X ⊆ A×A, we write X# (read X sharp) to

denote the congruence generated by X by which we mean the smallest

congruence on A that contains X, or equivalently the intersection of all

congruences on A containing X. We will frequently use the following Lemma

without reference.
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Lemma 2.1. [38, Lemma I.4.37] Let X ⊆ A × A and ρ = X#. Then for

any a, b ∈ A, one has aρb if and only if either a = b or there exist p1, . . . , pn,

q1 . . . , qn ∈ A, w1, . . . , wn ∈ S where, for i = 1, . . . , n, (pi, qi) ∈ X ∪ Xop,

that is, (pi, qi) ∈ X or (qi, pi) ∈ X, such that

a = p1w1, q1w1 = p2w2, q2w2 = p3w3, q3w3 = p4w4, · · · , qnwn = b.

Given an S-map f : A → B between S-acts, we define the kernel of f

to be

ker(f) := {(x, y) ∈ A×A : f(x) = f(y)}.

It is clear that the kernel of f is a congruence on A. Also note that given

any S-act and any congruence ρ on A, ker(ρ\) = ρ.

Theorem 2.2 (Homomorphism Theorem for Acts). [38, Theorem I.4.21]

Let f : A→ B be an S-map and ρ be a congruence on A such that ρ ⊆ ker(f).

Then g : A/ρ → B with g(aρ) := f(a), a ∈ A, is the unique S-map such

that the following diagram

A B

A/ρ

f

ρ\ g

commutes. If ρ = ker(f), then g is injective, and if f is surjective, then g

is surjective.

Proof. Suppose xρ = yρ for x, y ∈ A, then (x, y) ∈ ρ and thus f(x) = f(x′).

Hence g is well-defined. Suppose g(xρ) = g(yρ), then f(x) = f(y) and thus

(x, y) ∈ ker(f). If ρ = ker(f) then xρ = yρ and thus g is injective.

Corollary 2.3. If f : A→ B is an S-map, then im(f) ∼= A/ ker(f).

The following remark will be useful later in the thesis.

Remark 2.4. Let S be a monoid, let A be an S-act and let ρ be a congruence

on A. Let σ be a congruence on A/ρ and let ρ/σ = ker(σ\ρ\). Then clearly

ρ/σ is a congruence on A containing ρ and A/(ρ/σ) = (A/ρ)/σ. Moreover

ρ/σ = ρ if and only if σ = 1F/ρ.
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2.3 Colimits and limits of acts

Limits and especially colimits play a prominent role in this thesis and so

we here draw particular attention to their definition and some of the more

important common constructions for the category of S-acts.

Let I be a (non-empty) set with a preorder (that is, a reflexive and tran-

sitive relation). A direct system is a collection of S-acts (Xi)i∈I together

with S-maps φij : Xi → Xj for all i ≤ j ∈ I such that

1. φii = 1Xi , for all i ∈ I; and

2. φjk ◦ φ
i
j = φik whenever i ≤ j ≤ k.

The colimit of the system (Xi, φ
i
j) is an S-act X together with S-maps

αi : Xi → X such that

1. αj ◦ φij = αi, whenever i ≤ j,

2. If Y is an S-act and βi : Xi → Y are S-maps such that βj ◦ φij = βi

whenever i ≤ j, then there exists a unique S-map ψ : X → Y such

that the diagram

Xi Xj

X

Y

φij

αi αj

βi βjψ

commutes for all i ∈ I.

Dually we can also define a limit where all the arrows in the previous

definitions are reversed, although we do not take the trouble to define them

formally as they play a much less prominent role in this thesis than colimits

do.

We now describe some of the more important examples of limits and

colimits of acts that appear in this thesis.
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2.3.1 Coproducts and products

A coproduct (resp. product) is a colimit (resp. limit) where the indexing

set is an antichain, that is, no two elements are comparable.

Given a collection of S-acts (Ai)i∈I for some non-empty set I, a pair

(C, (fi)i∈I) where C is an S-act and fi ∈ Hom(Ai, C), is called the coprod-

uct of (Ai)i∈I if for all S-acts D and all S-maps gi ∈ Hom(Ai, D) there

exists a unique S-map g : C → D such that gfi = gi for all i ∈ I. For

example, when |I| = 2, the following diagram must commute.

D

A1 C A2
f1

g1

f2

g2g

We often refer to just C as the coproduct and it is denoted
∐
i∈I Ai. It

is shown in [38, Proposition II.1.8] that C is in fact just the disjoint union⋃̇
i∈IAi with the inherited action and fi : Ai → C are the inclusion maps.

We will frequently use this fact without reference.

Similarly, given a collection of S-acts (Ai)i∈I for some non-empty set I,

a pair (P, (pi)i∈I) where P is an S-act and pi ∈ Hom(P,Ai), is called the

product of (Ai)i∈I if for all S-acts Q and all S-maps qi ∈ Hom(Q,Ai) there

exists a unique S-map q : Q → P such that piq = qi for all i ∈ I. For

example, when |I| = 2, the following diagram must commute

Q

A1 P A2.p1

q1

p2

q2q

We often refer to just P as the product and it is denoted
∏
i∈I Ai. It is

shown in [38, Proposition II.1.1] that P is in fact just the cartesian product

with componentwise action and pi : P → Ai are the projection maps pi :

P → Ai, (aj)j∈I 7→ ai.
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Note the difference here with Mod-R (and indeed any additive category)

where finite products and coproducts are the same. Here, disjoint union and

cartesian product are always different, even in the finite case.

2.3.2 Pushouts and pullbacks

A pushout (resp. pullback) is a colimit (resp. limit) with a three-element

indexing set i, j, k ∈ I such that k ≤ i, j (resp. i, j ≤ k) and i and j are not

comparable.

Given three S-acts A1, A2, B and two S-maps fi : B → Ai, a pair

(P, (p1, p2)) where P is an S-act and pi ∈ Hom(Ai, P ) is called the pushout

of (f1, f2) if p1f1 = p2f2 and given any S-act Q and any two S-maps

gi ∈ Hom(Ai, Q) such that g1f1 = g2f2 then there exists a unique S-map

p : P → Q such that ppi = gi, i.e. the following diagram commutes

B A2

A1 P

Q.

f2

f1

p1

p2 g2

g1

p

The proof of the following Lemmas are straightforward.

Lemma 2.5. [38, Proposition II.2.16] Given a pushout as above, P = (A1q
A2)/ρ where ρ = X] is the congruence generated by X = {(f1(b), f2(b)) |
b ∈ B} and pi = ρ\ui where ui : Ai → A1 qA2 are the inclusion maps.

Lemma 2.6. [49, Lemma I.3.6] Given a pushout as above, if f1 is surjective

(resp. injective) then p2 is surjective (resp. injective).

Given three S-acts A1, A2, B and two S-maps fi : Ai → B, a pair

(P, (p1, p2)) where P is an S-act and pi ∈ Hom(P,Ai) is called the pull-

back of (f1, f2) if f1p1 = f2p2 and given any S-act Q and any two S-maps

gi ∈ Hom(Q,Ai) such that f1g1 = f2g2 then there exists a unique S-map

p : Q→ P such that pip = gi, i.e. the following diagram commutes
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P A2

A1 B.

Q

p2

p1

f1

f2
g1

g2

p

The proof of the following Lemmas are straightforward.

Lemma 2.7. [38, Proposition II.2.5] Unlike pushouts, pullbacks do not al-

ways exist but they exist if and only if there exists (a1, a2) ∈ A1 × A2 such

that f1(a1) = f2(a2). In fact, when they do exist P = {(a1, a2) ∈ A1 × A2 |
f1(a1) = f2(a2)} and pi : P → Ai, (a1, a2) 7→ ai.

Lemma 2.8. [49, Lemma I.3.6] Given a pullback as above, if f1 is surjective

(resp. injective) then p2 is surjective (resp. injective).

In a similar way, we can define multiple pushouts (resp. pullbacks) over

an index set bigger than three, although they are not used in this thesis.

2.3.3 Coequalizers and equalizers

A coequalizer (resp. equalizer) is a pushout (resp. pullback) where A1 = A2.

Given two S-actsA,B and two S-maps f1, f2 : A→ B a pair (C, f) where

C is an S-act and f ∈ Hom(B,C) is called a coequalizer if ff1 = ff2 and

for any S-act D and any S-map g ∈ Hom(B,D) such that gf1 = gf2 there

exists a unique S-map ψ : C → D such that ψf = g, i.e. the following

diagram commutes,

A B C

D.

f1

f2

f

g
ψ
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Lemma 2.9. [38, Proposition II.2.21] Given a coequalizer as above, C =

B/ρ where ρ = X] is the congruence generated by X = {(f1(a), f2(a)) | a ∈
A}, and f = ρ\.

Given two S-acts A,B and two S-maps f1, f2 : A → B a pair (E, f)

where E is an S-act and f ∈ Hom(E,A) is called an equalizer if f1f = f2f

and for any S-act D and any S-map g ∈ Hom(D,A) such that f1g = f2g

there exists a unique S-map ψ : D → E such that fψ = g, i.e. the following

diagram commutes,

E A B.

D

f1

f2

f

g
ψ

Lemma 2.10. [38, Proposition II.2.10] Unlike coequalizers, equalizers do

not always exist but they exist if and only if there exists a ∈ A such that

f1(a) = f2(a). In fact, when they do exist, E = {a ∈ A | f1(a) = f2(a)} and

f is the inclusion map.

2.3.4 Directed colimits

If the indexing set I satisfies the property that for all i, j ∈ I there exists

k ∈ I such that k ≥ i, j then we say that I is directed. In this case we call

the colimit a directed colimit.

We say that a class X of S-acts is closed under (directed) colimits

if every direct system of S-acts in X has its (directed) colimit in X as well.

Remark 2.11. A note on terminology: a directed colimit is often referred to

as a direct limit in the literature, however some literature (for example [54])

uses the term direct limit to refer to an arbitrary colimit. To avoid ambiguity

we will not use the phrase direct limit, but instead directed colimit.

A colimit of S-acts always exists and we can describe it in the following

way. Let λi : Xi →
∐
i∈I Xi be the natural inclusion and let ρ = R# be the
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right congruence on
∐
i∈I Xi generated by

R = {
(
λi(xi), λj(φ

i
j(xi))

)
| xi ∈ Xi, i ≤ j ∈ I}.

Then X =
(∐

i∈I Xi

)
/ρ and αi : Xi → X given by αi(xi) = λi(xi)ρ are

such that (X,αi) is the colimit of (Xi, φ
i
j). In addition, if the index set I is

directed then

ρ = {(λi(xi), λj(xj)) | ∃k ≥ i, j such that φik(xi) = φjk(xj)}.

See ([49, Theorem I.3.1 & Theorem I.3.17]) for more details.

In particular, given a direct system (Xi, φ
i
j) with colimit (X,αi), given

any x ∈ X there exists some i ∈ I, xi ∈ Xi such that αi(xi) = x.

Lemma 2.12 ([50, Lemma 3.5 & Corollary 3.6]). Let (Xi, φ
i
j) be a direct

system of S-acts with directed index set and let (X,αi) be the directed colimit.

Then αi(xi) = αj(xj) if and only if φik(xi) = φjk(xj) for some k ≥ i, j.

Consequently αi is a monomorphism if and only if φik is a monomorphism

for all k ≥ i.

Directed colimits play a very prominent role in this thesis and there are

few references to them in the literature for S-acts, so we here prove some of

the more important technical Lemmas which we will use throughout.

Lemma 2.13. Let S be a monoid, let (Xi, φ
i
j) be a direct system of S-acts

with directed index set and let (X,αi) be the directed colimit. Suppose that

Y is an S-act and that βi : Xi → Y are monomorphisms such that βi = βjφ
i
j

for all i ≤ j. Then there exists a unique monomorphism h : X → Y such

that hαi = βi for all i.

Proof. Consider the following commutative diagram

Xi Xj

X

Y

φij

αi αj

βi βj
h
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where h is the unique S-map guaranteed by the directed colimit property.

Suppose that h(x) = h(x′). Then there exists i, j and xi ∈ Xi, xj ∈ Xj such

that x = αi(xi) and x′ = αj(xj). Hence there exists k ≥ i, j and so

βkφ
i
k(xi) = hαkφ

i
k(xi) = hαi(xi) = hαj(xj) = hαkφ

j
k(xj) = βkφ

j
k(xj).

Since βk is a monomorphism then φik(xi) = φjk(xj) and so x = x′ as required.

This next construction is often referred to as the directed union.

Lemma 2.14. Let {Ai : i ∈ I} be a set of S-acts partially ordered by

inclusion, with the property that for any two acts they are both contained in

a larger one, i.e. the index set is directed. Let φij : Ai ↪→ Aj be the inclusion

map whenever Ai ⊆ Aj, so that (Ai, φ
i
j) is a direct system over a directed

index set. Then
⋃
i∈I Ai is isomorphic to the directed colimit of (Ai, φ

i
j).

Proof. Let (X,αi) be the directed colimit of (Ai, φ
i
j), we intend to show that

X is isomorphic to Y :=
⋃
i∈I Ai. Clearly we can define the inclusion map

βi : Ai ↪→ Y so that βi = βjφ
i
j for all i ≤ j, hence by Lemma 2.12 there exists

a monomorphism ψ : X → Y such that ψαi = βi for all i ∈ I. Now given

any a ∈ Y , there must exist some k ∈ I such that a ∈ Ak. Hence ψ(αk(a)) =

βk(a) = a and ψ is an epimorphism and hence an isomorphism.

We now prove a similar Lemma for unions of congruences.

Lemma 2.15. Let S be a monoid, let X be an S-act and let {ρi : i ∈
I} be a set of congruences on X, partially ordered by inclusion, with the

property that the index set is directed and has a minimum element 0. Let

φij : X/ρi → X/ρj be the S-map defined by aρi 7→ aρj whenever ρi ⊆ ρj, so

that (X/ρi, φ
i
j) is a direct system. Let ρ =

⋃
i∈I ρi. Then X/ρ is the directed

colimit of (X/ρi, φ
i
j).

Proof. First note that ρ is transitive since I is directed. Clearly we can

define S-maps αi : X/ρi → X/ρ, aρi 7→ aρ such that αi = αjφ
i
j for all i ≤ j.

Now suppose there exists an S-act Q and S-maps βi : X/ρi → Q such that

βi = βjφ
i
j for all i ≤ j. Define ψ : X/ρ → Q by ψ(aρ) = β0(aρ0). To see
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this is well-defined, let aρ = a′ρ in X/ρ, that is, (a, a′) ∈ ρ so there must

exist some k ∈ I such that (a, a′) ∈ ρk and we get

β0(aρ0) = βkφ
0
k(aρ0) = βk(aρk) = βk(a

′ρk) = βkφ
0
k(a
′ρ0) = β0(a

′ρ0)

so ψ(aρ) = ψ(a′ρ) and ψ is well-defined. It is easy to see that ψ is also

an S-map. Because 0 is the minimum element, we have that β0(aρ0) =

βiφ
0
i (aρ0) = βi(aρi) and so ψαi = βi for all i ∈ I. Finally let ψ′ : X/ρ→ Q

be an S-map such that ψ′αi = βi for all i ∈ I, then ψ′(aρ) = ψ′(α0(aρ0)) =

β0(aρ0) = ψ(aρ), and we are done.

Remark 2.16. In particular, this holds when we have a chain of congruences

ρ1 ⊂ ρ2 ⊂ . . . and ρ =
⋃
i≥1 ρi.

Example 2.17. If S is an inverse monoid, which we consider as a right

S-act, then for any e ≤ f ∈ E(S) it follows that kerλf ⊆ kerλe, where

λe(s) = es. Hence there is a set of right congruences on S partially ordered

by inclusion, where the identity relation kerλ1 is a least element in the

ordering. We can now construct a direct system of S-acts S/ kerλf →
S/ kerλe, s kerλf 7→ s kerλe whose directed colimit, by the previous Lemma,

is S/σ where σ =
⋃
e∈E(S) kerλe, which is easily seen to be the minimum

group congruence on S.

The following Lemma, which says that a finite family of relations can

be lifted from the directed colimit to one of the acts in the direct sys-

tem, has particular importance for finitely presented acts and pure epimor-

phisms/monomorphisms, as will be seen later.

Lemma 2.18. Let S be a monoid, let (Xi, φ
i
j) be a direct system of S-

acts with directed index set I and directed colimit (X,αi). For every family

y1, . . . , yn ∈ X and relations

yjisi = ykiti 1 ≤ i ≤ m and 1 ≤ ji, ki ≤ n

there exists some l ∈ I and x1, . . . , xn ∈ Xl such that αl(xr) = yr for

1 ≤ r ≤ n, and

xjisi = xkiti for all 1 ≤ i ≤ m.
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Proof. Given y1, . . . , yn ∈ X there exists p(1), . . . , p(n) ∈ I and y′r ∈ Xp(r)

such that αp(r)(y
′
r) = yr for all 1 ≤ r ≤ n. So for all 1 ≤ i ≤ m we have

αp(ji)(y
′
jisi) = αp(ji)(y

′
ji)si = αp(ki)(y

′
ki

)ti = αp(ki)(y
′
ki
ti)

and so there exist li ≥ p(ji), p(ki) such that for all 1 ≤ i ≤ m

φ
p(ji)
li

(y′ji)si = φ
p(ji)
li

(y′jisi) = φ
p(ki)
li

(y′kiti) = φ
p(ki)
li

(y′ki)ti.

Let l ≥ l1, . . . , lm. Then there exist φ
p(1)
l (y′1), . . . , φ

p(n)
l (y′n) ∈ Xl such that

αl(φ
m(r)
l (y′r)) = αm(r)(y

′
r) = yr for all 1 ≤ r ≤ n and

φ
p(ji)
l (y′ji)si = φlil

(
φ
p(ji)
li

(y′ji)
)
si = φlil

(
φ
p(ki)
li

(y′ki)
)
ti = φ

p(ki)
l (y′ki)ti

for all 1 ≤ i ≤ m and the result follows.

2.4 Structure of acts

A (non-empty) subset U of an S-act A is called a generating set of A if

every element a ∈ A can be written as a = us for some u ∈ U , s ∈ S and we

write A = US or A = 〈U〉. We say that A is finitely generated if it has a

finite generating set. We call A cyclic if it is generated by one element and

we usually write aS instead of {a}S.

Proposition 2.19. [38, Proposition I.5.17] Given a monoid S and a con-

gruence ρ on S, S/ρ is isomorphic to a cyclic S-act, and moreover every

cyclic S-act is isomorphic to S/ρ for some congruence ρ on S.

Proof. Let A = aS be a cyclic S-act, and define an epimorphism λa : S → A,

s 7→ as. By Corollary 2.3, A ∼= S/ ker(λa). Conversely if ρ is any congruence

on S then the quotient S/ρ is a cyclic S-act with [1]ρ the generating element.

This means we can use congruences as an alternative viewpoint to study

cyclic acts.

We say that an S-act A is decomposable if there exist two subacts

B,C ⊆ A such that A = B ∪ C and B ∩ C = ∅. In this case A = B∪̇C is

called a decomposition of A. Otherwise A is called indecomposable.
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Lemma 2.20. [38, Proposition I.5.8] Every cyclic S-act is indecomposable.

Proof. If aS = B ∪ C, where B,C are subacts then a = a1 ∈ B, say, and

then aS ⊆ B.

An S-act A is said to be locally cyclic if every finitely generated subact

is contained within a cyclic subact. This is equivalent to saying that for all

x, y ∈ A, there exists z ∈ A such that x, y ∈ zS.

Lemma 2.21. [51, Lemma 3.4] Every locally cyclic S-act is indecomposable.

Proof. Let A = B ∪ C be a locally cyclic S-act, the union of two subacts

B,C, then given two elements b ∈ B, c ∈ C, without loss of generality there

exists z ∈ B, such that b, c ∈ zS ⊆ B and so B ∩ C 6= ∅.

Proposition 2.22. An S-act is locally cyclic if and only if it is the directed

colimit of cyclic S-acts.

Proof. Assume A is a locally cyclic S-act, and take {Ai : i ∈ I} to be the

set of cyclic subacts partially ordered by inclusion, since every two cyclic

subacts of A both sit inside a third cyclic subact, I is a directed index set

and we can apply Lemma 2.14 so that the directed colimit of this direct

system is
⋃
i∈I Ai which is clearly equal to A.

Conversely, let (Ai, φ
i
j) be any direct system of cyclic S-acts over a di-

rected index set I, and let (A,αi) be the directed colimit of this system.

Given any x, y ∈ A there exists ai ∈ Ai, aj ∈ Aj such that αi(ai) = x and

αj(aj) = y. Since I is directed there exists some k ∈ I with i, j ≤ k, and

φik(ai) = aks, φ
i
k(aj) = akt for some s, t ∈ S, where ak is the generator for

Ak. Then x, y ∈ αk(ak)S and A is locally cyclic.

Lemma 2.23. [38, Lemma I.5.9] Let Ai ⊆ A, i ∈ I, be indecomposable

subacts of an S-act A such that
⋂
i∈I Ai 6= ∅. Then

⋃
i∈I Ai is an indecom-

posable subact of A.

Proof. Clearly
⋃
i∈I Ai is a subact of A. Assume there exists a decomposition⋃

i∈I Ai = B∪̇C and take x ∈
⋂
i∈I Ai with x ∈ B, say. Then x ∈ Ai ∩B for

all i ∈ I. Since Ai∩(B∪̇C) = (Ai∩B)∪̇(Ai∩C) and Ai is indecomposable, it

follows that Ai∩C = ∅ for all i ∈ I. Thus
⋃
i∈I Ai = B, a contradiction.
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Recall from 2.3.1 that disjoint union is in fact the coproduct in the

category of S-acts so from here onwards on we use q instead of ∪̇.

We now state one of the most fundamental properties of an S-act.

Theorem 2.24. [38, Theorem I.5.10] Every S-act A has a unique decom-

position A ∼=
∐
i∈I Ai into a coproduct of indecomposable subacts Ai.

Proof. Take x ∈ A. Then xS is indecomposable by Lemma 2.20. Now define

Ux :=
⋃
{U ⊆ A : x ∈ U and U indecomposable}

and by Lemma 2.23, it is an indecomposable subact of A. For x, y ∈ A we

get that Ux = Uy or Ux ∩ Uy = ∅. Indeed, z ∈ Ux ∩ Uy implies Ux, Uy ⊆ Uz.
Thus x ∈ Ux ⊆ Uz, y ∈ Uy ⊆ Uz, i.e. Uz ⊆ Ux ∩ Uy. Therefore Ux = Uy =

Uz. Denote by A′ a representative subset of elements x ∈ A with respect

to the equivalence relation ∼ defined by x ∼ y if and only if Ux = Uy.

Then A =
⋃
x∈A′ Ux is the unique decomposition of A into indecomposable

subacts.

Alternatively we can think of this in a graphical way. Given an S-act

A, define a connectedness relation ∼ on A where two elements a, b ∈ A are

connected if there exists a path between a and b in the undirected version

of the directed graph associated to the S-act. Equivalently,

a ∼ b⇔ a = a1s1, a1t1 = a2s2, . . . , antn = b

for some ai ∈ A, si, ti ∈ S, i = 1, . . . , n, as shown in the following digraph

a

a1

•

a2

•

an

b.

s1 t1 s2 t2 tn

Then the ∼-classes are precisely the connected components of the un-

derlying undirected graph associated to the act. Indecomposable then just

means connected (in the underlying undirected graph) and every graph

clearly uniquely decomposes in to its connected components.

It is clear that every cyclic act is locally cyclic and every locally cyclic

act is indecomposable, but the converses are not true. All indecomposable
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S-acts are locally cyclic if and only if all indecomposable S-acts are cyclic if

and only if S is a group [51, Lemma 3.2] and all locally cyclic S-acts are cyclic

if and only if S satisfies Condition (A) (see page 55). By Proposition 2.22

this is also equivalent to the class of cyclic acts being closed under directed

colimits. For an overview of results related to Condition (A) see [6].

2.5 Classes of acts

We now attempt to define analogous classes of acts to the well known classes

in module theory.

2.5.1 Free acts

A set U of generating elements of an S-act A is said to be a basis of A if

every element a ∈ A can be uniquely presented in the form a = us, u ∈ U ,

s ∈ S, i.e. if a = u1s1 = u2s2, then u1 = u2 and s1 = s2.

If an S-act A has a basis U , then it is called a free act. Let Fr denote

the class of all free S-acts. Clearly S considered as an S-act over itself is

free with basis {1}. In fact, as the next result shows, all free acts are just

coproducts of S.

Theorem 2.25. [38, Theorem I.5.13] An S-act F is free if and only if

F ∼=
∐
i∈I S with non-empty set I.

Corollary 2.26. An S-act
∐
i∈I Ai ∈ Fr if and only if Ai ∈ Fr for each

i ∈ I.

2.5.2 Finitely presented acts

An S-act A is called finitely presented if it is the coequalizer K ⇒ F → A,

where F is a finitely generated free S-act and K is a finitely generated S-

act. We have the following useful characterisation given by Normak. For

the sake of completion, we include a slightly more detailed version of this

proof in Appendix A.

Proposition 2.27 (Cf. [45, Proposition 4]). An S-act A is finitely presented

if and only if there exists a finitely generated free S-act F and a finitely

generated congruence ρ on F such that A ∼= F/ρ.
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One of the most important properties of a finitely presented act A is

that Hom(A,−) commutes with directed colimits, or more precisely,

Proposition 2.28. [56, Cf. Proposition 4.2] Let S be a monoid, let (Xi, φ
i
j)

be a direct system of S-acts with directed index set I and directed colimit

(X,αi). Given any finitely presented S-act F and any S-map h : F → X,

there exists some i ∈ I and S-map g : F → Xi such that h = αig.

Proof. Let F = (A×S)/ρ be a finitely presented S-act, whereA = {a1, . . . , an},
ρ = R# and R = {((aji , si), (aki , ti)) | 1 ≤ i ≤ m, 1 ≤ ji, ki ≤ n}. For

simplicity, we can assume that R = Rop by adding in finitely many more

relations. Let yr = h((ar, 1)ρ) for 1 ≤ r ≤ n, so that we have the following

family of relations in X for 1 ≤ i ≤ m,

yjisi = h((aji , 1)ρ)si = h((aji , si)ρ) = h((aki , ti)ρ) = h((aki , 1)ρ)ti = ykiti.

Then by Lemma 2.18 there exists some l ∈ I and x1, . . . , xn ∈ Xl such that

αl(xr) = yr for 1 ≤ r ≤ n and xjisi = xkiti for 1 ≤ i ≤ m. Now define

a function f : A × S → Xl, (ar, s) → xrs, it is clear that this is a well-

defined S-map and αlf = hρ\. Now given any ((ap, s), (aq, t)) ∈ ρ, either

(ap, s) = (aq, t) or there exist (b1, d1), . . . , (bv, dv) and w1, . . . , wv ∈ S such

that (bu, du) ∈ R ∪Rop = R for 1 ≤ u ≤ v and

(ap, s) = b1w1, d1w1 = b2w2, . . . dv−1wv−1 = bvwv, dvwv = (aq, t).

Since (bu, du) ∈ R, (bu, du) = ((ajc(u) , sc(u)), (akc(u) , tc(u))) where c(u) ∈
{1, . . . ,m} for all 1 ≤ u ≤ v. Hence we have,

f((ap, s)) = f(b1w1) = f(b1)w1 = f((ajc(1) , sc(1)))w1 = (xjc(1)sc(1))w1

= (xkc(1)tc(1))w1 = f((akc(1) , tc(1)))w1 = f(d1)w1 = f(d1w1)

= f(b2w2) = · · · = f(dvwv) = f((aq, t))

and so ρ ⊆ ker(f) and by Theorem 2.2 there exists an S-map g : F → Xl

such that gρ\ = f . Therefore (αlg)ρ\ = αl(gρ
\) = αlf = hρ\ but ρ\ is an

epimorphism and so αlg = h.
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Xl

X A× S

F

αl

h ρ\

f

g

2.5.3 Projective acts

An S-act P is called projective if given any epimorphism f : A → B,

whenever there is an S-map g : P → B there exists an S-map h : P → A

such that the following diagram commutes

A B

P.

f

g
h

Let P denote the class of all projective S-acts.

Theorem 2.29. [3, Theorem 4.1.8] An S-act P is projective if and only if

P ∼=
∐
i∈I eiS where for each i ∈ I, ei = e2i is an idempotent.

Corollary 2.30. An S-act
∐
i∈I Pi ∈ P if and only if Pi ∈ P for each i ∈ I.

2.5.4 Flat acts

In ring theory there are several characterisations of flat modules which are

all distinct in Act-S. One of the simplest definitions is that a right module

M over a ring R is flat if the tensor functor M ⊗R − preserves short exact

sequences, or equivalently preserves monomorphisms. This is the definition

we use for a flat S-act.

Let A be a right S-act and B a left S-act. Let ρ = H# be the equivalence

relation on the set A×B generated by

H = {((as, b), (a, sb)) | a ∈ A, b ∈ B, s ∈ S}.
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Then the set (A×B)/ρ of equivalence classes is called the tensor product

of A and B, which will be denoted A⊗SB, or simply A⊗B. For any a ∈ A,

b ∈ B, the equivalence class containing (a, b) is denoted a⊗ b.
Clearly for any a ∈ A, b ∈ B, s ∈ S, we have as⊗ b = a⊗ sb.
A right S-act A is said to be flat if given any monomorphism of left S-

acts f : X → Y , the induced map 1⊗f : A⊗X → A⊗Y , a⊗x 7→ a⊗f(x),

is also a monomorphism. Let F denote the class of all flat S-acts. Similarly,

we define a left S-act B to be flat if −⊗B preserves monomorphisms.

An important characterisation of flat modules is that one needs only

to consider monomorphisms of (finitely generated) left ideals in to the ring.

That is, a module M is flat if and only if M⊗I →M⊗R is a monomorphism

for all (finitely generated) left deals I ⊆ R. However it is not true that

we need only consider inclusions of principal ideals. As a counterexample,

consider the polynomial ring R = K[x, y] over some field K and let M =

xR+yR, then M ⊗Rr →M ⊗R is a monomorphism for all r ∈ R but M is

not a flat R-module [48, Exercise 9.4]. In the category of S-acts these two

definitions are both distinct from flat acts and from one another.

We say that an S-act A is weakly flat if A⊗ I → A⊗S is a monomor-

phism for every left ideal I ⊆ S, and we say that A is principally weakly

flat if A ⊗ Ss → A ⊗ S is a monomorphism for all s ∈ S. Let WF and

PWF denote the class of all weakly flat and principally weakly flat S-acts

respectively. The following result is obvious as tensor products are preserved

under coproducts (see [49, Lemma 4.8]).

Theorem 2.31. An S-act F =
∐
i∈I Fi is flat (resp. weakly flat, principally

weakly flat) if and only if Fi is flat (resp. weakly flat, principally weakly flat).

In 1969 Lazard gave another characterisation of flat modules being ex-

actly those modules which are directed colimits of finitely generated free

modules. In 1971 Stenström showed that the acts which satisfy the same

property are again a distinct class of acts. An S-act A is called strongly

flat if A ⊗ − preserves pullbacks and equalizers, rather than all monomor-

phisms (in fact, it was shown in [13] that equivalently it need only preserve

pullbacks). Let SF denote the class of all strongly flat S-acts. There are

several equivalent definitions of strongly flat acts, but one of the most useful
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is in terms of two ‘interpolation’ conditions:

An S-act A is said to satisfy Condition (P) if whenever xs = yt for

some x, y ∈ A, s, t ∈ S then there exists z ∈ A, u, v ∈ S such that x = zu,

y = zv and us = vt. Let CP denote the class of all S-acts satisfying

Condition (P ).

An S-act A is said to satisfy Condition (E) if whenever xs = xt for

some x ∈ A, s, t ∈ S then there exists z ∈ A, u ∈ S such that x = zu,

us = ut. Let CE denote the class of all S-acts satisfying Condition (E).

z

yx

•

u v

s t

z x •
u

s

t

Condition (P ) Condition (E)

Then in 1971 Stenström proved the following Theorem,

Theorem 2.32. [56, Theorem 5.3] Let S be a monoid. Then the following

are equivalent for an S-act A:

1. A is strongly flat.

2. A satisfies Condition (P ) and Condition (E).

3. A is the directed colimit of finitely generated free S-acts.

Remark 2.33. We give a proof of part of this Theorem in Appendix B.

We then have the following Theorem, which is also easy to prove:

Theorem 2.34. [38, Lemma III.9.5] An S-act F =
∐
i∈I Fi satisfies Con-

dition (P ) (resp. Condition (E)) if and only if each Fi satisfies Condition

(P ) (resp. Condition (E)).

As a Corollary of this, we also have:

Corollary 2.35. An S-act F =
∐
i∈I Fi is strongly flat if and only if each

Fi is strongly flat.
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The following result we be used later.

Lemma 2.36. Let S be a monoid and suppose that X satisfies Condition

(P ) and suppose we have a system of equations

x1s1 = x2t2, x2s2 = x3t3, . . . , xn−1sn−1 = xntn

where xi ∈ X, si, ti ∈ S. Then there exists y ∈ X,ui ∈ S such that xi = yui

for 1 ≤ i ≤ n and uisi = ui+1ti+1 for 1 ≤ i ≤ n− 1.

x1

•

x2

•

xn−1

•

xn

•

· · ·

• •· · ·

• •· · ·

y

s1 t2 s2 sn−1 tn

u1 un

Proof. We prove this by induction on n. Firstly, let n = 2, then our system

is

x1s1 = x2t2

and Condition (P ) means there exists y ∈ X,u1, u2 ∈ S with x1 = yu1, x2 =

yu2 and u1s1 = u2t2 as required.

Now assume that the result is true for i ≤ n and suppose that we have

a system of equations

x1s1 = x2t2, x2s2 = x3t3, . . . , xn−1sn−1 = xntn, xnsn = xn+1tn+1.

By induction there exists y ∈ X,ui ∈ S such that for 1 ≤ i ≤ n we have

xi = yui and for 1 ≤ i ≤ n − 1, uisi = ui+1ti+1. In addition, Condition

(P ) means there exists y′ ∈ X,u′n, v′n ∈ S with xn = y′u′n, xn+1 = y′v′n and

u′nsn = v′ntn+1. But then xn = yun = y′u′n and so there exists z ∈ X, p, q ∈ S
with y = zp, y′ = zq and pun = qu′n. Hence for 1 ≤ i ≤ n it follows

that xi = z(pui) and for 1 ≤ i ≤ n − 1, (pui)si = (pui+1)ti+1. While

xn+1 = z(qv′n) and (pun)sn = qu′nsn = (qv′n)tn+1 as required.
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Corollary 2.37 (Cf. [51, Theorem 3.7]). An S-act that satisfies Condition

(P ) is indecomposable if and only if it is locally cyclic.

Proof. Let X be an indecomposable S-act satisfying Condition (P ). Then

for all x, y ∈ X there exists x1, . . . , xn ∈ X, s1, . . . , sn, t1, . . . , tn ∈ S such

that

x1 = x1s1, x1t1 = x2s2, . . . , xntn = y1

and by Lemma 2.36, there exists z ∈ X, u, v ∈ S such that x = zu, y = zv.

The converse is obvious as every locally cyclic act is indecomposable.

2.5.5 Torsion free acts

We say that an S-act A is torsion free if for any x, y ∈ A and any right

cancellable element c ∈ S, xc = yc implies x = y. Let TF denote the class

of all torsion free S-acts.

If A ∈ TF , then clearly B ∈ TF for every subact B ⊆ A.

Lemma 2.38.
∐
i∈I Ai ∈ TF if and only if Ai ∈ TF for each i ∈ I.

Proof. Let A =
∐
i∈I Ai and suppose Ai, i ∈ I are torsion free S-acts. Let

xc = yc for some x, y ∈ A, where c is a right cancellative element of S. The

equality xc = yc implies x and y are in the same connected component, so

there exists some i ∈ I such that x, y ∈ Ai. Since Ai is torsion free, x = y

and A is torsion free. Conversely each Ai is a subact of A and so if A is

torsion free, each Ai, i ∈ I are torsion free.

2.5.6 Injective acts

An S-act Q is injective if for any monomorphism ι : A ↪→ B and any

homomorphism f : A → Q there exists a homomorphism f̄ : B → Q such

that f = f̄ ι.

A B

Q

ι

f
f̄
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Let I denote the class of all injective S-acts. Since this definition is

unique up to isomorphism, we may assume that ι is an inclusion map and

state the definition in the following form.

Lemma 2.39. [38, Lemma III.1.1] An S-act Q is injective if and only if for

any S-act B, for any subact A ⊆ B, and for any homomorphism f : A→ Q

there exists a homomorphism f̄ : B → Q which extends f , i.e. f̄ |A = f .

A monoid S is called left reversible if for all s, t ∈ S there exists p, q ∈ S
such that sp = tq. Unlike the previous classes, coproducts of injective acts

need not always be injective and we have the following:

Proposition 2.40 ([38, Proposition III.1.13]). Let S be a monoid. All

coproducts of injective S-acts are injective if and only if S is left reversible.

Another important result we will require later is that injectivity is closed

under the taking of retracts. We include the proof for completeness.

Lemma 2.41. [38, Proposition I.7.30] Retracts of injective acts are injec-

tive.

Proof. Let I be an injective S-act, and suppose Z is a retract of I, that is,

there exist S-maps g : I → Z and f : Z → I such that gf = idZ . Given any

monomorphism i : A ↪→ B and h : A → Z, using injectivity of I we obtain

h̄ : B → I such that h̄i = fh, but then gh̄i = gfh = h and Z is injective.

A B

Z I
f

g

h

i

h̄

Two other important results pertaining to injective acts are:

Lemma 2.42. [38, Lemma III.1.7] Every injective act contains a fixed point.

and the Skornjakov-Baer Criterion,
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Theorem 2.43. [38, Theorem III.1.8] Let X be an S-act with a fixed point.

Then X is injective if and only if it is injective with respect to all inclusions

into cyclic right acts.

An S-act is called weakly injective if it is injective with respect to all

inclusions of right ideals in to S. We let WI denote the class of all weakly

injective S-acts.

Similarly an S-act is called principally weakly injective if it is injec-

tive with respect to all inclusions of principal right ideals in to S. Let PWI
denote the class of all principally weakly injective S-acts.

2.5.7 Divisible acts

A right S-act A is called divisible if for all x ∈ A, left cancellable c ∈ S
there exists y ∈ A such that x = yc. Let D denote the class of divisible S-

acts. We now state or prove several basic results about divisible acts which

we will require later in the thesis:

Lemma 2.44. [38, Proposition 2.4]

1.
∐
i∈I Ai ∈ D if and only if Ai ∈ D for each i ∈ I.

2. D is closed under the taking of homomorphic images.

Proposition 2.45. [38, Proposition III.2.2] For a monoid S the following

statements are equivalent:

1. Every S-act is divisible.

2. S is divisible.

3. All left cancellable elements of S are left invertible.

Lemma 2.46. Given an S-act, if it has a divisible subact, then it has a

unique maximal divisible subact.

Proof. Let A be an S-act with a divisible subact. Then consider D =⋃
i∈I Di ⊆ A, the union of all divisible subacts of A. Clearly D is divisible

and contains all divisible subacts.
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2.5.8 Summary

See [38, p217 and p305] for an overview of the following two theorems.

Theorem 2.47. Given a monoid S, the following inclusions are valid and

strict

Fr ⊂ P ⊂ SF ⊂ CP ⊂ F ⊂ WF ⊂ PWF ⊂ TF

Theorem 2.48. Given a monoid S, the following inclusions are valid and

strict

I ⊂ WI ⊂ PWI ⊂ D

There is now a very well established branch of semigroup theory that

attempts to classify monoids by properties of their acts, in particular it

attempts to classify those monoids in which these generally distinct classes

of acts actually coincide. This area is often referred to as the homological

classification of monoids. See [14] for a good summary of this area, and [38]

for a more complete account.

We quote here only a few key results from this area which will be used

later.

Theorem 2.49 ([39, Theorem 2.6]). SF = Fr if and only if S is a group.

Theorem 2.50 ([16, Corollary 2.2]). If S is a right cancellative monoid,

then TF = PWF .

Theorem 2.51 (See Theorem 3.3). SF = P if and only if S is perfect.

Remark 2.52. Perfect monoids are defined on page 54.

2.5.9 Directed colimits of classes of acts

An important fact in module theory, is that every module is the directed

colimit of finitely presented modules (in the language of category theory

this says that Mod-R is a locally finitely presentable category, see [2]).

The following proposition shows us that this is also the case for acts.

Proposition 2.53 ([56, Proposition 4.1]). Every S-act is a directed colimit

of finitely presented S-acts.
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We now consider when some of the classes from the previous section are

closed under (directed) colimits.

Proposition 2.54 ([56, Proposition 5.2]). SF is closed under directed col-

imits.

Since every strongly flat act is a directed colimit of finitely generated free

acts (which are projective) and strongly flat acts are closed under directed

colimits. We easily get that the P is closed under directed colimits if and

only if SF = P, see Theorem 2.51. Therefore,

Proposition 2.55 ([28]). P is closed under directed colimits if and only if

S is perfect.

The following Proposition is not in the literature, although it is not hard

to prove.

Proposition 2.56. CP is closed under directed colimits.

Proof. Let (Xi, φ
i
j) be a direct system of S-acts, with directed indexing

set and Xi ∈ CP for all i ∈ I and let (X,αi) be its directed colimit.

Suppose that xs = yt in X so that there exists xi ∈ Xi, xj ∈ Xj with

x = αi(xi), y = αj(xj). Then since I is directed there exists k ≥ i, j with

φik(xi)s = φjk(xj)t in Xk. Consequently there exists z ∈ Xk, u, v ∈ S with

φik(xi) = zu, φjk(xj) = zv and us = vt. But then x = αi(xi) = αkφ
i
k(xi) =

αk(z)u. In a similar way y = αk(z)v and the result follows.

Proposition 2.57. CE is closed under directed colimits.

Proof. Similar to previous proof.

The proof of the following proposition is based on the fact that directed

colimits of monomorphisms are monomorphisms (see Lemma 2.12).

Proposition 2.58 ([49, Theorem 5.13]). F is closed under directed colimits.

The following Proposition is not in the literature either, but again, it is

straightforward.

Proposition 2.59. TF is closed under directed colimits.
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Proof. Let (Ai, φ
i
j) be a direct system of torsion free S-acts over a directed

index set I with directed colimit (A,αi). Assume xc = yc where c is a

right cancellative element in S and x, y ∈ A. Then there exists xi ∈ Ai

and yj ∈ Aj with x = αi(xi), y = αj(yj). So αi(xi)c = αi(xic) = αj(yjc) =

αj(yj)c and since I is directed, there exists some k ≥ i, j such that φik(xi)c =

φik(xic) = φjk(yjc) = φjk(yj)c. Since Ak is torsion free φik(xi) = φjk(yj) and

x = αkφ
i
k(xi) = αkφ

j
k(yj) = y as required.

We now consider the question, when is the class of injective acts closed

under directed colimits? Before we prove the result, we first recall some

basic results about Noetherian monoids.

Let S be a monoid and A an S-act. We say that A is Noetherian if

every congruence on A is finitely generated, and we say that a monoid S is

Noetherian if it is Noetherian as an S-act over itself.

Lemma 2.60 ([45, Proposition 1]). Let S be a monoid and A an S-act.

Then A is Noetherian if and only if A satisfies the ascending chain condition

on congruences on A.

Lemma 2.61. Every Noetherian S-act is finitely generated.

Proof. Suppose that x1, x2, . . . is an infinite set of generators for X such

that for i ≥ 2, there exists si ∈ S with xisi /∈ xi−1S. Let Xi =
⋃
j≤i xjS and

define the congruence ρi = (Xi×Xi)∪1X on X and note that ρ1 ( ρ2 ( . . .

This contradicts the ascending chain condition as required.

Lemma 2.62 ([45, Proposition 2, Proposition 3, Theorem 3]). Let S be a

monoid.

1. Every subact and every homomorphic image of a Noetherian S-act is

Noetherian.

2. All finitely generated S-acts over a Noetherian monoid are Noetherian

and finitely presented.

In the following result we prove the semigroup analogue of what is some-

times called the Bass-Papp Theorem for modules (ca. 1959), although it

was known earlier to Cartan and Eilenberg (see [18, p.17 Exercise 8]).
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Theorem 2.63. Let S be a Noetherian monoid, then I is closed under

directed colimits.

Proof. Let S be a Noetherian monoid, and (Ai, φ
i
j)i∈I a direct system of

injective S-acts with directed index set I and directed colimit (A,αi). Since

Ai is injective it contains a fixed point, by Lemma 2.42, and so A contains

a fixed point. Let X ⊆ C be a subact of a cyclic S-act and f : X → A

an S-map. By Theorem 2.43, it is enough to show that f can be extended

to C. Since S is Noetherian, by Lemma 2.62, X is Noetherian and hence

finitely generated by Lemma 2.61. Therefore f(X) = 〈a1, . . . , an〉 is a finitely

generated subact of A. Since ai are all elements of the colimit, there exists

m(1), . . . ,m(n) ∈ I, and a′i ∈ Am(i) such that αm(i)(a
′
i) = ai for each 1 ≤

i ≤ n. Since I is directed, there exists some k ∈ I with k ≥ m(1), . . . ,m(n)

and such that bi = φ
m(i)
k (a′i) ∈ Ak. Let B = 〈b1, . . . , bn〉 a finitely generated

subact of Ak. By Lemma 2.62, B is Noetherian and so every congruence on

B is finitely generated. In particular ker(αk|B) = Z# is finitely generated,

where Z ⊆ B×B is a finite set. So given any (x, y) ∈ ker(αk|B), there exists

(p1, q1), . . . , (pm, qm) ∈ Z, s1, . . . , sm ∈ S such that x = p1s1, q1s1 = p2s2,

. . . , qmsm = y. Now, since αk(pj) = αk(qj), for all 1 ≤ j ≤ m, there exists

l(j) ≥ k such that φkl(j)(pj) = φkl(j)(qj). Since I is directed, we can take some

K ∈ I larger than all of the l(j) and we have φkK(pj) = φkK(qj) for all 1 ≤ j ≤
m. Hence φkK(x) = φkK(p1)s1 = φkK(q1)s1 = . . . = φkK(qn)sn = φkK(y) and

so ker(αk|B) ⊆ ker(φkK). Hence D = φkK(B) is a finitely generated subact

of AK and αK |D is a monomorphism. Also, for 1 ≤ i ≤ n, αK(φkK(bis)) =

αk(bis) = αm(i)(a
′
is) = ais ∈ im(f). Conversely given any ais ∈ im(f),

ais = αm(i)(a
′
i)s = αK(φ

m(i)
K (a′i))s ∈ im(α|D) and so im(f) = im(αK |D) ∼=

D. Since AK is injective, α−1K f can be extended to C with some S-map

g : C → AK , and so f can be extended to C with the S-map αKg.

Ai Aj AK

A X C

φij φjk

αi

αj αK

f

g
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Lemma 2.64. D is closed under all (not just directed) colimits.

Proof. Let (Xi, φ
i
j)i∈I be a direct system of divisible S-acts and let (X,αi)

be the colimit. For each x ∈ X and left cancellative c ∈ S there exists

xi ∈ Xi with αi(xi) = x and, since Xi is divisible, there exists di ∈ Xi such

that xi = dic. So x = αi(xi) = αi(dic) = αi(di)c and X is divisible.

An important categorical idea is when can a class of objects be ‘gen-

erated by smaller objects’? One such area that makes use of this idea is

locally presentable and accessible categories which have had much attention

in recent years, see [2]. This idea is especially important with regards to

covers.

For example, if we let F be any class of objects of a Grothendieck cate-

gory G closed under coproducts and directed colimits, then it was shown in

[20, Theorem 3.2] that every object in G has an F-cover if there exists a set

S ⊆ F such that every object in F is a directed colimit of objects from S.

Unfortunately, it is not true that the category of S-acts is a Grothendieck

category and the proof does not carry over, but the natural question still

arises, which classes of S-acts have this property? We show that SF , CP,

CE and D all satisfy this property.

Remark 2.65. Note that, given a cardinality κ, there is only a set (i.e. not

a proper class) of isomorphic representatives of S-acts A for which |A| ≤ κ.

First note that for a fixed cardinality λ ≤ κ, let A be a set with |A| = λ,

then any S-act X with |X| = λ is uniquely defined up to isomorphism by

a function f : A × S → A which encodes the action. There are at most

|AA×S | ≤ κκ|S| such functions for each λ and so the claim follows by Lemma

1.9.

Lemma 2.66. Given a monoid S, there exists a set A ⊆ SF such that every

strongly flat S-act is a directed colimit of S-acts from A.

Proof. Let S be a monoid, and let α := max{|S|,ℵ0}, we intend to show

that every strongly flat S-act is a directed union of strongly flat subacts of

cardinality less than or equal to α and then apply Remark 2.65.. Given any

strongly flat S-act X, by Condition (P ), whenever xs = yt for x, y ∈ X,
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s, t ∈ S, we can find z ∈ X, u, v ∈ S such that x = zu, y = zv, and us = vt.

Also, by Condition (E), whenever x = y we can choose u = v. So by the

axiom of choice we can define a function,

f : X ×X × S × S → X × S × S

(x, y, s, t) 7→


(z, u, v) if xs = yt and x 6= y

(z, u, u) if xs = yt and x = y

(x, s, t) otherwise.

Now given any subset Y ⊆ X with |Y | ≤ α, define

Y1 := Y ∪ {p1f(x, y, s, t) : x, y ∈ Y, s, t ∈ S},

where pi(a1, a2, a3) := ai. Note that Y1 is a subset of X containing Y also

with cardinality at most α as |Y ∪ (Y × Y × S × S)| = α + α2 · |S|2 = α.

Similarly we can define

Yi+1 := Yi ∪ {p1f(x, y, s, t) : x, y ∈ Yi, s, t ∈ S},

for i ≥ 1 where Yi ⊆ Yi+1 and |Yi| ≤ α for all i ∈ N. Let F (Y ) := (
⋃∞
i=1 Yi)S

be the subact of X generated by the union of all these sets, and note that

this has cardinality no greater than α · ℵ0 · |S| = α. We show that F (Y ) is a

strongly flat subact of X by showing that it satisfies Condition (P ) and (E).

Let xs = yt for some x, y ∈ F (Y ), s, t ∈ S, then x ∈ Yi, y ∈ Yj for some

i, j ∈ N and so x, y ∈ Ymax{i,j} and z := p1f(x, y, s, t) ∈ Ymax{i,j}+1 ⊆ F (Y ),

u := p2f(x, y, s, t), v := p3f(x, y, s, t) ∈ S such that x = zu, y = zv and

us = vt so that F (Y ) satisfies Condition (P ). Given xs = xt, for some

x ∈ F (Y ), s, t ∈ S, then x ∈ Yi for some i ∈ N and z := p1f(x, x, s, t) ∈
Yi+1 ⊆ F (Y ), u := p2f(x, x, s, t) such that x = zu and us = ut so that F (Y )

satisfies Condition (E) and is strongly flat.

Now, given any x ∈ X, it is clearly contained in a subset of X of car-

dinality less than or equal to α, for example the singleton set {x}. Hence

X =
⋃
i∈I Fi where Fi are all the strongly flat subacts of X of cardinality

no greater than α. Moreover, this union is directed in that, given any two

strongly flat subacts Fi and Fj of X with cardinality no greater than α,

Fi ∪ Fj still has cardinality no greater than α and F (Fi ∪ Fj) is a strongly

flat subact with cardinality no greater than α containing Fi and Fj .
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This result clearly then holds for CP and CE as well. A similar construc-

tion also holds for divisible S-acts in the obvious way.





Chapter 3

Coessential covers

It is worth noting that there are in fact two different definitions of cover.

This arose from the study of projective covers where the two definitions are

equivalent (see [57, Theorem 1.2.12] for modules, and Theorem 6.6 for acts).

One definition is based on the concept of coessentiality, the other, a categor-

ical definition. But for classes of modules/acts other than projective, these

definitions are often distinct. When flat covers of acts were first considered

by J. Renshaw and M. Mahmoudi, they studied coessential covers, not the

categorical definition. It seems this is not the correct definition for attempt-

ing to extend the flat cover conjecture, although it did open up an interesting

area of research with several papers expanding on their work. It even led to

a new characterisation of Condition (A) based solely on coessential covers

(see [6]).

The aim of this thesis is to study the categorical definition with the

attempt of extending some of the techniques used by Enochs and others

in their work on the flat cover conjecture. But firstly, in this Chapter, we

give a brief overview of some of the known results on coessential covers, and

how they relate to Enochs’ definition of cover, which we will study more

thoroughly in Chapter 5.
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3.1 Projective coessential covers

Recall that projective coessential covers are equivalent to projective covers.

We give a brief overview of the known results for modues and acts.

3.1.1 Projective coessential covers of modules

Let R be a ring, an epimorphism φ : P → M of R-modules is called co-

essential (or superfluous) if ker(φ) + H = P ⇒ H = P for any submodule

H ⊆ P . A module P and an epimorphism φ : P → M is called a (coessen-

tial) projective cover of M if P is projective and φ is coessential.

A ring R is called right perfect if all of its right R-modules have projective

covers. It was H. Bass who first characterised perfect rings in 1960. He

proved the following Theorem:

Theorem 3.1. [7] For any ring R, the following are equivalent:

1. R is (right) perfect.

2. R satisfies the descending chain condition on principal (left) ideals.

3. Every flat (right) R-module is projective.

3.1.2 Projective coessential covers of acts

Bass’ definition of a coessential epimorphism of modules can be generalised

to the act case.

Given a monoid S, an epimorphism φ : P → A of S-acts is called co-

essential if there is no proper subact B of P such that φ|B is an epimor-

phism. An S-act P and an epimorphism φ : P → A is called a (coessential)

projective cover of A if P is projective and φ is coessential.

Projective covers of acts were first considered by Isbell in his 1971 paper

‘Perfect monoids’ [34]. Perfect monoids are defined analgously as the

monoids where all their right acts have projective covers. It was shown that

unlike the characterisation for rings you need an extra ‘ascending condition’

as well.

A submonoid T of a monoid S is called left unitary if whenever ts, t ∈ T
then s ∈ T .
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A monoid S is said to satisfy Condition (D) if every left unitary sub-

monoid of S has a minimal right ideal generated by an idempotent.

A monoid S is said to satisfy Condition (A) if every S-act satisfies the

ascending chain condition on cyclic subacts, or equivlanetly, if every locally

cyclic S-act is cyclic (see [6]).

Theorem 3.2. [34] For any monoid S, the following are equivalent:

1. S is right perfect.

2. S satisfies Conditions (D) and (A).

Fountain then extended this work in his 1976 paper ‘Perfect semigroups’,

by proving Isbell’s conjecture that in the presence of Condition (A), a

monoid satisfies Condition (D) if and only if it satisfies the descending chain

condition on principal left ideals. He also gave an alternative homological

characterisation using strongly flat acts.

Theorem 3.3. [28] For any monoid S, the following are equivalent:

1. S is right perfect.

2. S satisfies the descending chain condition on principal left ideals and

S satisfies Condition (A).

3. Every strongly flat S-act is projective.

In 1996 Kilp gave another characterisation replacing the condition on

the ideals with a property based purely on the monoid.

A monoid S is called left collapsible if for all s, t ∈ S there exists r ∈ S
such that rs = rt. A monoid S is said to satisfy Condition (K) if every

left collapsible submonoid of S contains a left zero.

Theorem 3.4. [37] For any monoid S, the following are equivalent:

1. S is right perfect.

2. S satisfies Conditions (A) and (K).
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3.2 Flat coessential covers

3.2.1 Flat coessential covers of modules

In 2007, A. Amini et. al. studied flat coessential covers of modules [5].

They called a ring ‘generalized perfect’ or G-perfect if every module was

the coessential epimorphic image of a flat module. Then clearly every G-

perfect ring is perfect as every projective cover is a flat coessential cover.

However they showed that not every ring is G-perfect. In fact, the Z-module

Z/nZ does not have a (coessential) flat cover.

Therefore the two definitions of cover are clearly distinct for the class of

flat modules as it was proved in 2001 that every module has a flat cover (in

the Enochs sense).

3.2.2 Flat coessential covers of acts

Renshaw & Mahmoudi first considered flat covers of acts in their 2008 paper

‘On covers of cyclic acts over monoids’. In particular they defined strongly

flat and Condition (P ) covers using the definition of a coessential epimor-

phism. They gave a characterisation of those monoids whose cyclic acts all

have strongly flat and Condition (P ) covers.

A monoid S is called right reversible if for all s, t ∈ S there exists

p, q ∈ S such that ps = qt.

Theorem 3.5. [52, Theorem 3.2] Let S be a monoid. Then every cyclic

S-act has a strongly flat cover if and only if every left unitary submonoid

T of S contains a left collapsible submonoid R such that for all u ∈ T ,

uS ∩R 6= ∅.

Theorem 3.6. [52, Theorem 4.2] Let S be a monoid. Then every cyclic

S-act has a Condition (P ) cover if and only if every left unitary submonoid

T of S contains a right reversible submonoid R such that for all u ∈ T ,

uS ∩R 6= ∅.

In 2010 Khosravi, Ershad & Sedaghatjoo noticed that by simply adding

Condition (A) these results could be extended for acts in general. In fact

they proved that given a class of S-acts X closed under coproducts and
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decompositions (
∐
i∈I Xi ∈ X ⇔ Xi ∈ X for each i ∈ I) if every cyclic S-act

has an X cover and S satsifies Condition (A), then every S-act has an X
cover. They then proved the converse of this result for strongly flat and

Condition (P ). They thus characterised what they called ‘SF-perfect’ and

‘(P)-perfect’ monoids.

A monoid S is called right SF-perfect (resp. (P)-perfect) if every

right S-act has a strongly flat (resp. Condition (P)) cover.

Theorem 3.7. [36, Theorem 2.7] For a monoid S, the following are equiv-

alent:

1. S is right SF-perfect.

2. S satisfies Condition (A) and

every cyclic right S-act has a strongly flat cover.

3. S satisfies Condition (A) and every left unitary submonoid T of S

contains a left collapsible submonoid R such that for all u ∈ T , uS ∩
R 6= ∅.

Theorem 3.8. [36, Theorem 2.8] For a monoid S, the following are equiv-

alent:

1. S is right (P)-perfect.

2. S satisfies Condition (A) and

every cyclic right S-act has a Condition (P) cover.

3. S satisfies Condition (A) and every left unitary submonoid T of S

contains a right reversible submonoid R such that for all u ∈ T , uS ∩
R 6= ∅.

All of these results on strongly flat and Condition (P ) covers are using

the coessential definition of cover. To our knowledge, no one has yet studied

Enochs’ definition of cover for the category acts. This is the aim of this

thesis.





Chapter 4

Purity

Before we study X -covers of acts for different classes of acts X , we first

prove some results around the concept of purity. Purity plays an important

role in the proof of the flat cover conjecture, because purity is intrinsically

connected to flatness. Recall that a short exact sequence of modules is called

pure if after tensoring with any module it is still exact (recall that a module

is flat if after tensoring with any short exact sequence it is still exact). The

relationship between flat modules and pure exact sequences is demonstrated

in the following Theorem,

Theorem 4.1. [41, Theorem 2.4.85] An R module C is flat if and only if

any short exact sequence of R-modules

0→ A ↪→ B � C → 0

is pure.

There are several important characterisations of pure exact sequences of

modules, summarised in the following Theorem,

Theorem 4.2. [41, Theorem 2.4.89] For any short exact sequence of R-

modules ε : 0→ A ↪→ B � C → 0, the following are equivalent:

1. ε is pure exact.

2. If aj ∈ A (1 ≤ j ≤ n), bi ∈ B (1 ≤ i ≤ m) and sij ∈ R (1 ≤ i ≤
m, 1 ≤ j ≤ n) are given such that aj =

∑
i bisij for all j, then there

exist a′i ∈ A (1 ≤ i ≤ m) such that aj =
∑

i a
′
isij for all j.
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3. Given any commutative diagram of R-modules;

Rn Rm

A B

α

σ

β

there exists θ ∈ Hom(Rm, A) such that θσ = α.

(Equivalently, we can replace Rm, Rn with finitely presented modules).

4. For any finitely presented R-module M , any R-homomorphism h :

M → C can be lifted to an R-homomorphism f : M → B.

5. ε is the directed colimit of a direct system of split exact sequences

0→ A→ Bi → Ci → 0 (i ∈ I),

where the Ci’s are finitely presented right R-modules.

Purity was first generalised for S-acts in terms of Definition 2 in the pre-

vious Theorem, the solvability of equations. In 1971, Stenström introduced

the notion of a pure epimorphism B � C of S-acts where every finite system

of equations in C, is solvable in B. He then showed that this was equivalent

to Definition 4 in the previous Theorem [56]. Then in 1980, Normak intro-

ducted the notion of a pure monomorphism. We say that a monomorphism

of S-acts A ↪→ B is pure, or A ⊆ B is a pure subact of B, if every finite

system of equations with constants from A, which is solvable in B, is solv-

able in A. He then showed that this is equivalent to a statement similar to

Definition 3 in the previous Theorem [46]. Later we give characterisations

of pure epimorphisms and pure monomorpihsms in terms of Definition 5 in

the previous Theorem.

For the category of modules, every pure monomorphism gives rise to a

pure epimorphism (its cokernel) and every pure epimorphism gives rise to

a pure monomorphism (its kernel). So we need only talk about pure exact

sequences of modules. Unfortunately, this is not the case for the category

of S-acts, and we need to consider the two definitions separately. This
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distinction is made clear in [1] which has been the basis for some of the

results in this chapter.

Just to confuse things further, there is another definition of pure monomor-

phism (called R-pure in [3]), based on tensors, which has been used especially

in the area of amalgamation for semigroups (see [50]). For S-acts, this is

again distinct from the other definition of pure monomorphism, but Normak

proved in [46, Proposition 2], that an R-pure monomorphism is pure. We

will not mention this definition again, all of our definitions of purity are

based on solvability of equations.

4.1 Pure epimorphisms

Let ψ : X → Y be an S-map between two S-acts X and Y . We say that ψ

is a pure epimorphism if for every family y1, . . . , yn ∈ Y and relations

yjisi = ykiti (1 ≤ i ≤ m)

there exists x1, . . . , xn ∈ X such that ψ(xr) = yr for 1 ≤ r ≤ n, and

xjisi = xkiti for all 1 ≤ i ≤ m.

Note that a pure epimorphism is always an epimorphism, as given any y ∈ Y ,

y1 = y1, there exists x ∈ X such that ψ(x) = y.

Stenström showed that this was equivalent to the following:

Theorem 4.3 ([56, Proposition 4.3]). Let S be a monoid, let X, Y be S-

acts and let ψ : X → Y be an S-map. Then ψ is a pure epimorphism if

and only for every finitely presented S-act M and every S-map f : M → Y

there exists g : M → X such that the following diagram

X Y

M

ψ

fg

commutes.
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Example 4.4. Let S be an inverse monoid and σ the minimum group

congruence on S as in Example 2.17. Then the right S-map S → S/σ is

a pure epimorphism. To see this let y1 = x1σ, . . . , yn = xnσ ∈ S/σ and

suppose we have relations

yjisi = ykiti (1 ≤ i ≤ m).

Then for 1 ≤ i ≤ m we have (xjisi, xkiti) ∈ σ and so there exist ei ∈
E(S), (1 ≤ i ≤ m) such that eixjisi = eixkiti. Now let e = e1 . . . em and

note that for 1 ≤ i ≤ m, exjisi = exkiti and for 1 ≤ l ≤ n, σ\(exl) =

(exl)σ = xlσ = yl as required.

It is clear that if the epimorphism ψ splits with splitting monomorphism

φ : Y → X then φf : M → X is such that ψφf = f and so ψ is pure. The

converse is not in general true. For example, let S = N with multiplication

given by

n.m = max{m,n} for all m,n ∈ S.

Let ΘS = {a} be the 1-element right S-act and note that S → ΘS is a pure

epimorphism by Theorem 4.3. However, as S does not contain a fixed point

then it does not split.

Lemma 2.18 gives us,

Corollary 4.5. Let S be a monoid, let (Xi, φ
i
j) be a direct system of S-acts

with directed index set I and directed colimit (X,αi). Then the natural map∐
i∈I Xi → X is a pure epimorphism.

Suppose that (Xi, φ
i
j) and (Yi, θ

i
j) are direct systems of S-acts and S-

maps and suppose that for each i ∈ I there exists an S-map ψ : Xi → Yi

and suppose (X,βi) and (Y, αi), the directed colimits of these systems are

such that

Xi Yi

X Y

ψi

βi

ψ

αi

Xi Yi

Xj Yj

ψi

φij

ψj

θij
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commute for all i ≤ j ∈ I. Then we shall refer to ψ as the directed

colimit of the ψi (in the language of category theory, this is a directed

colimit in the category of arrows). It is shown in [49] that directed colimits

of (monomorphisms) epimorphisms are (monomorphisms) epimorphisms.

Proposition 4.6. Pure epimorphisms are closed under directed colimits.

Proof. Suppose that (Xi, φ
i
j) and (Yi, θ

i
j) are direct systems and for each

i ∈ I there exists a pure epimorphism ψi : Xi → Yi and suppose (X,βi) and

(Y, αi), the directed colimits of these systems are such that

Xi Yi

X Y

ψi

βi

ψ

αi

Xi Yi

Xj Yj

ψi

φij

ψj

θij

commute for all i ≤ j ∈ I.

Given any finitely presented S-act F and any S-map h : F → Y , by

Proposition 2.28, there exists some i ∈ I, and S-map g : F → Yi such that

h = αig. By the purity of ψi there exists f : F → Xi such that ψif = g,

therefore ψβif = αiψif = αig = h and ψ is pure.

Proposition 4.7. Pure epimorphisms are closed under pullbacks.

Proof. Let S be a monoid, let

A B

C D

φ

α

ψ

β

be a pullback diagram of S-acts and suppose that ψ is a pure epimorphism.

Since ψ is onto, by Lemma 2.8, φ is also onto. Suppose that M is finitely

presented and that f : M → B is an S-map. Then there exists an S-map

g : M → C such that ψg = βf . Since A is a pullback then there exists a
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unique h : M → A such that φh = f and αh = g. Hence φ is also a pure

epimorphism.

Although not every pure epimorphism splits, we can deduce

Theorem 4.8. Pure epimorphisms are precisely the directed colimits of split

epimorphisms.

Proof. Suppose that ψ : X → Y is a pure epimorphism. By Proposition

2.53, Y is a directed colimit of finitely presented acts (Yi, φ
i
j) and so let

αi : Yi → Y be the canonical maps. For each Yi let

Xi Yi

X Y

ψi

βi

ψ

αi

be a pullback diagram so that by Proposition 4.7 ψi is pure. Hence since

Yi is finitely presented then it easily follows that ψi splits. Notice that

Xi = {(yi, x) ∈ Yi ×X | αi(yi) = ψ(x)}, ψi(yi, x) = yi and βi(yi, x) = x and

that since ψ is onto then Xi 6= ∅.
For i ≤ j define θij : Xi → Xj by θij(yi, x) = (φij(yi), x) and notice

that βjθ
i
j = βi and that ψjθ

i
j = φijψi. Suppose now that there exists Z

and γi : Xi → Z with γjθ
i
j = γi for all i ≤ j. Define γ : X → Z by

γ(x) = γi(yi, x) where i and yi are chosen so that αi(yi) = ψ(x). Then

γ is well-defined since if ψ(x) = αj(yj) then there exists k ≥ i, j with

φik(yi) = φjk(yj) and

γi(yi, x) = γkθ
i
k(yi, x) = γk(φ

i
k(yi), x) = γk(φ

j
k(yj), x) = γkθ

j
k(yj , x) = γj(yj , x).

Then γ is an S-map and clearly γβi = γi. Finally, if γ′ : X → Z is such

that γ′βi = γi for all i, then γ′(x) = γ′βi(yi, x) = γi(yi, x) = γ(x) and so γ

is unique. We therefore have that (X,βi) is the directed colimit of (Xi, θ
i
j)

as required.

Conversely, since split epimorphisms are pure then ψ is pure by Propo-

sition 4.6.
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Example 4.9. Let S be as in Example 2.17. Notice that for all e ∈ E(S),

where λe : S → S, s 7→ es, the natural map S → S/ kerλe splits with

splitting map s kerλe 7→ es. Moreover

S S/ ker(λe)

S S/σ

idS

σ\

commutes for all e ∈ E(S) and σ\ is a directed colimit of split epimorphisms.

4.1.1 n-pure epimorphisms

Recall the following important result,

Theorem 4.10. [56, Theorem 5.3] Let A be an S-act. The following prop-

erties are equivalent:

1. A is strongly flat.

2. Every epimorphism B → A is pure.

3. There exists a pure epimorphism F → A where F is free.

4. Every morphism B → A, where B is finitely presented, may be factored

through a finitely generated free system.

In [47], Normak defines an S-map φ : X → Y to be a 1-pure epimor-

phism if for every element y ∈ Y and relations ysi = yti, i = 1, . . . , n there

exists an element x ∈ X such that φ(x) = y and xsi = xti for all i. He

proves

Proposition 4.11 ([47, Proposition 1.17]). Let S be a monoid, let X,Y be

S-acts, and let φ : X → Y be an S-map. Then ψ is 1-pure if and only if for

all cyclic finitely presented S-acts C and every morphism f : C → Y there

exits g : C → X with f = φg.

Proposition 4.12 ([47, Proposition 2.2]). Let S be a monoid. Y satisfies

condition (E) if and only if every epimorphism X → Y is 1-pure.
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As a generalisation, we say that an epimorphism g : B → A of S-acts

is n-pure if for every family of n elements a1, . . . , an ∈ A and every family

of m relations aαisi = aβiti, αi, βi ∈ {1, . . . , n}, i ∈ {1, . . . ,m} there exist

b1, . . . , bn ∈ B such that g(bi) = ai and bαisi = bβiti for all i.

We are interested in the cases n = 1 and n = 2. Clearly pure implies

2-pure implies 1-pure.

Proposition 4.13. Let S be a monoid and let ψ : X → Y be an S-

epimorphism in which X satisfies condition (E). Then Y satisfies condition

(E) if and only if ψ is 1-pure.

Proof. Suppose that ψ is 1-pure and that y ∈ Y, s, t ∈ S are such that ys =

yt in Y . Hence there exists x ∈ X such that ψ(x) = y and xs = xt. Since X

satisfies condition (E) there exists x′ ∈ X,u ∈ S such that x = x′u, us = ut

and so y = ψ(x′)u, us = ut and Y satisfies condition (E).

The converse holds by Proposition 4.12.

Proposition 4.14. Let S be a monoid and let ψ : X → Y be an S-

epimorphism in which X satisfies condition (P ). If ψ is 2-pure then Y

satisfies condition (P ).

Proof. Suppose that ψ is 2-pure and suppose that y1, y2 ∈ Y, s1, s2 ∈ S are

such that y1s1 = y2s2 in Y . Hence there exists x1, x2 ∈ X with ψ(xi) = yi

and x1s1 = x2s2 in X. Since X satisfies condition (P ) then there exists

x3 ∈ X,u1, u2 ∈ S such that x1 = x3u1, x2 = x3u2 and u1s1 = u2s2. Con-

sequently, y1 = ψ(x3)u1, y2 = ψ(x3)u2 and u1s1 = u2s2 and so Y satisfies

condition (P ).

The converse of this last result is false. For example let S = (N,+) and

let ΘS = {a} be the 1-element S-act. Let x = y = a ∈ ΘS , then x0 = y0

and x0 = y1 but there cannot exist x′, y′ ∈ S such that x′ + 0 = y′ + 0 and

x′+ 0 = y′+ 1 and so S → ΘS is not 2-pure, but it is easy to check that ΘS

does satisfy condition (P ).

From Theorem 4.10, Proposition 4.13 and Proposition 4.14 we deduce

Corollary 4.15. Let S be a monoid and let ψ : X → Y be an S-epimorphism

with X strongly flat. The following are equivalent.
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1. Y is strongly flat;

2. ψ is pure;

3. ψ is 2-pure.

Let X be an S-act and ρ a congruence on X. We say that ρ is pure

(resp. 2-pure) if ρ\ is a pure epimorphism (resp. 2-pure epimorphism). As

a corollary to Theorem 4.3 we have

Corollary 4.16. Let S be a monoid, let X be an S-act and let ρ be a

congruence on X. Then ρ is pure if and only if for every family x1 . . . , xn ∈
X and relations

(xjisi, xkiti) ∈ ρ (1 ≤ i ≤ m)

on X there exists y1, . . . , yn ∈ X such that (xi, yi) ∈ ρ and

yjisi = ykiti for all 1 ≤ i ≤ m.

Corollary 4.17. Let ρ be a congruence on a monoid S. Then ρ is pure if

and only if S/ρ is strongly flat.

Example 4.18. It now follows easily from Example 4.4 that if S is an

inverse monoid with minimum group congruence σ then S/σ is a strongly

flat right S-act.

4.1.2 X -pure congruences

Let A be an S-act and let ρ be a congruence on A. We say that ρ is X -

pure if A/ρ ∈ X . So, by Propositions 4.13 and 4.14, Corollary 4.15 and [3,

Corollary 4.1.3 and Theorem 4.1.4] we deduce

Corollary 4.19. Let S be a monoid, let X be an S-act and let ρ be a

congruence on X.

1. If X ∈ CE then ρ is CE-pure if and only if it is 1-pure.

2. If X ∈ CP then ρ is CP-pure if it is 2-pure.

3. If X ∈ SF then ρ is SF-pure if and only if it is pure if and only if it

is 2-pure.
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4. If X ∈ P then ρ is P-pure if and only if ρ\ splits.

We say that a class of S-acts X is closed under chains of X -pure

congruences if given any S-act A, any ordinal β, and any ordinal α ∈ β,

if ρα is an X -pure congruence on A and ρα ⊆ ρα+1 then
⋃
α∈β ρα is also an

X -pure congruence on A. Recall from Remark 2.16 that we can immediately

deduce the important result,

Proposition 4.20. Let S be a monoid and let X be a class of S-acts closed

under directed colimits. Then X is closed under chains of X -pure congru-

ences.

4.2 Pure monomorphisms

Let S be a monoid and A an S-act. We follow the definitions from [32] and

[38, Definition III.6.1]. Consider systems Σ consisting of equations of the

following three forms

xs = xt, xs = yt, xs = a

where s, t ∈ S, b ∈ A and x, y ∈ X where X is a set. We call x and y

variables, s and t coefficients, a a constant and Σ a system of equations

with constants from A. Systems of equations will be written as

Σ = {xsi = yti : si, ti ∈ S, 1 ≤ i ≤ n}.

If we can map the variables of Σ onto a subset of an S-act B such that the

equations turn into equalities in B then any such subset of B is called a

solution of the system Σ in B. In this case Σ is called solvable in B.

A monomorphism A ↪→ B of S-acts is called a pure monomorphism,

or A ⊆ B is called a pure subact of B if every finite system of equations

with constants from A which has a solution in B has a solution in A.

Normak showed this was equivalent to:

Proposition 4.21. [46, Proposition I] Given a monoid S and a monomor-

phism i : A → B of S-acts, then i is pure if and only if for every finitely

presented S-act F , for every S-map g : F → B and for every finite subset
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T ⊆ F such that g(T ) ⊆ im(i), there exists an S-map h : F → A such that

ih|T = g|T .

We extend this slightly,

Theorem 4.22. Let S be a monoid, and i : A ↪→ B a monomorphism of

S-acts. Then the following are equivalent:

1. i : A ↪→ B is a pure monomorphism

2. For every finitely presented S-act F , every finitely generated subact

G ⊆ F , and every commutative diagram

G F

A B

f g

i

there exists an S-map h : F → A such that h|G = f .

3. For every finitely presented S-act F , every finitely generated free S-act

G, and every commutative diagram

G F

A B

m

f g

i

there exists h : F → A such that hm = f .

4. For any two finitely presented S-acts F and G, and every commutative

diagram

G F

A B

m

f g

i
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there exists h : F → A such that hm = f .

Proof. (1) ⇒ (2): Let T be some finite generating set of G, then g(T ) =

if(T ) ⊆ im(i) and so by Proposition 4.21, there exists some h : F → A

such that ih|T = g|T . Then for every x = ts ∈ G for some t ∈ T , s ∈ S,

ih(x) = ih(ts) = ih(t)s = g(t)s = g(ts) = g(x) and so ih|G = g|G = if and

since i is a monomorphism h|G = f .

(2)⇒ (4): Note that m(G) is a finitely generated subact of F and so there

exists an S-map h : F → A such that h|m(G) = f and so hm = f .

(4)⇒ (3): Every finitely generated free S-act is finitely presented.

(3) ⇒ (1): Given any finite subset T ⊆ F , let G = T × S be the free

S-act generated by T , and define m : G → F , (t, s) 7→ ts and f := gm.

Since g(T ) ⊆ im(i), we have for all t ∈ T , there exists at ∈ A such that

g(t) = i(at). Now define f : G → A, (t, s) 7→ ats, this is well-defined as i is

injective. Hence gm((t, s)) = g(ts) = g(t)s = i(at)s = i(ats) = if((t, s)) and

so gm = if . Therefore there exists an S-map h : F → A such that hm = f

and so ih(t) = ihm((t, 1)) = if((t, 1)) = i(at) = g(t) and ih|T = g|T .

Remark 4.23. Clearly split monomorphisms are pure monomorphisms.

We now prove some results about pure monomorphisms. But firstly, we

need a technical Lemma, which is well known in category theory and says

that the arrow category of any locally finitely presentable category is locally

finitely presentable, or more specifically,

Lemma 4.24. Every S-map is a directed colimit of S-maps Ai → Bi, where

Ai, Bi are finitely presented for all i ∈ I.

Proof. This follows by Proposition 2.53 and [1, Example 1.55(1)].

The following three results are adapted from category theoretic results

in [1, Proposition 15] and [2, Proposition 2.30].

Proposition 4.25. Pure monomorphisms are closed under directed colimits.

Proof. Suppose that (Xi, φ
i
j) and (Yi, θ

i
j) are direct systems and for each

i ∈ I there exists a pure monomorphism ψi : Xi → Yi and suppose (X,βi)

and (Y, αi), the directed colimits of these systems are such that
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Xi Yi

X Y

ψi

βi

ψ

αi

Xi Yi

Xj Yj

ψi

φij

ψj

θij

commute for all i ≤ j ∈ I. Now for any two finitely presented S-acts, F and

G and any commutative diagram

G F

X Y

m

f g

ψ

by Proposition 2.28, there exists i, j ∈ I, and fi : G→ Xi, gj : F → Yj such

that βifi = f and αjgj = g. Let k ≥ i, j so that the following diagram

G

X Y

F

Xk Yk

m

φikfi f θjkgjg

ψk

βk αk

ψ

commutes. Since ψk is a pure monomorphism, there exists some hk : F →
Xk such that hkm = φikfi, therefore let h := βkhk and hm = βkhkm =

βkφ
j
kfi = f and ψ is a pure monomorphism.

Theorem 4.26. Pure monomorphisms are precisely the directed colimits of

split monomorphisms.

Proof. Suppose that ψ : X → Y is a pure monomorphism. By Lemma 4.24,

ψ is a directed colimit of ψi : Xi → Yi, where Xi, Yi are finitely presented.

That is, (Xi, φ
i
j) and (Yi, θ

i
j) are direct systems and for each i ∈ I there exists

an S-map ψi : Xi → Yi with Xi, Yi finitely presented, such that (X,βi) and

(Y, αi), the directed colimits of these systems are such that
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Xi Yi

X Y

ψi

βi

ψ

αi

Xi Yi

Xj Yj

ψi

φij

ψj

θij

commute for all i ≤ j ∈ I. Now since ψ is a pure monomorphism, for each

i ∈ I there exists gi : Yi → X such that giψi = βi. Now for each i ∈ I, take

the pushout (Pi, (hi, fi)) so that each hi is a split monomorphism as shown:

Xi Yi

X Pi

X.

ψi

βi fi

hi

gi

idX

Now fjθ
i
jψi = fjψjφ

i
j = hjβjφ

i
j = hjβi for all i ≤ j, so let mi

j : Pi → Pj be

the unique S-maps that make the following diagram

Xi Yi

X Pi

Pj

ψi

βi fi

hi

fjθ
i
j

hj

mi
j

commute. Now let γi : Pi → Y be the unique S-maps such that the following

diagram
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Xi Yi

X Pi

Y

ψi

βi fi

hi

αi

ψ

γi

commutes. It is straightforward to check that (Y, γi) is the directed colimit

of (Pi,m
i
j) and that for i ≤ j the following diagrams

X Pi

X Y

hi

idX

ψ

γi

X Pi

X Pj

hi

idX

hj

mi
j

commute and so ψ is the directed colimit of the split monomorphisms hi.

Conversely, every split monomorphism is a pure monomorphism, and so

the result follows by Proposition 4.25.

Theorem 4.27. Pure monomorphisms are closed under pushouts.

Proof. Firstly, observe that split monomorphisms are closed under pushouts.

In fact, let f : A → B be a split monomorphism with S-map f ′ : B → A

so that f ′f = idA, let g : A → C be any S-map and let (P, (p1, p2)) be the

pushout of (g, f). By Lemma 2.6, p1 is a monomorphism. Since gf ′f = g,

there exists some unique S-map p′1 : P → C such that p′1p1 = idC and so p1

is a split monomorphism.

Now let ψ : X → Y be a pure monomorphism, g : X → C any S-map

and (Q, (h, k)) the pushout of (g, ψ).

X Y

C Q

ψ

g

h

k
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We intend to show that h is a pure monomorphism.

By Theorem 4.26, there exists a direct system (Pi,m
i
j) with directed

colimit (Y, γi) and splitting monomorphisms hi : X → Pi such that for all

i ≤ j, the following diagrams

X Pi

X Y

hi

idX

ψ

γi

X Pi

X Pj

hi

idX

hj

mi
j

commute. Now for each i ∈ I, let (Qi, (h
′
i, gi)) be the pushout of (g, hi)

so that gihi = h′ig and note that h′i are all split monomorphisms. Since

gjm
i
jhi = gjhj = h′jg for all i ≤ j, let δij : Qi → Qj be the unique S-maps

that make the following diagram

X Pi

C Qi

Qj

hi

g gi

h′i

gjm
i
j

h′j

δij

commute. Now since kγihi = kψ = hg, let µi : Qi → Q be the unique

S-maps such that the following diagram

X Pi

C Qi

Q

hi

g gi

h′i

kγi

h

µi

commutes. It is straightforward to check that (Q,µi) is the directed colimit

of (Qi, δ
i
j) and that for i ≤ j the following diagrams
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C Qi

C Q

h′i

idC

h

µi

C Qi

C Qj

h′i

idC

h′j

δij

commute and so h is the directed colimit of the split monomorphisms h′i and

so by Theorem 4.26, is a pure monomorphism.





Chapter 5

Covers of acts

Throughout this chapter S will denote a monoid, and X will refer

to a class of S-acts closed under isomorphisms.

We now define an X -cover of an S-act and prove some general results

about the existence of such covers.

Let A be an S-act. By an X -precover of A we mean an S-map g :

C → A from some C ∈ X such that for every S-map h : X → A, for X ∈ X ,

there exists an S-map f : X → C with h = gf .

C A

X

g

hf

If in addition the X -precover satisfies the condition that each S-map

f : C → C with gf = g is an isomorphism, then we shall call it an X -cover.

We sometimes refer to just C as the X -precover/cover of A.

The definition of a cover is motivated by attempting to find a weaker

version of the right adjoint to the inclusion functor. Recall from Section

1.2.5 that the inclusion functor X ⊆ Act-S has a right adjoint if and only

if for all A ∈ Act-S, there exists a terminal object in the slice subcategory

X ↓ A. In this special case we say that every act has an X -cover with the

77
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unique mapping property and X is called a coreflective subcategory of Act-

S (this is the topic of Section 5.6). However, an X -precover g : C → A is a

weakly terminal object in the slice subcategory X ↓ A, that is, every object

in X ↓ A has a map to g which need not be unique. In the case where every

act has an X -precover, we say that X is a weakly coreflective subcategory of

Act-S. Unlike terminal objects, weakly terminal objects need not be unique

and so X -precovers are not necessarily unique. However X -covers are indeed

unique up to isomorphism (although not unique up to unique isomorphism).

Following the language of Rosický [53], in the case where every act has an

X -cover, we say that X is a stably weakly coreflective subcategory of Act-S.

Therefore X -covers are very natural objects to study.

For that reason, there is a huge amount of literature on covers, especially

for the category of modules over a ring, but also for many other categories.

But the most important result is arguably the proof of the flat cover con-

jecture. This says that every module has a flat cover, which has been gen-

eralised to many other categories, with applications in relative homological

algebra. But there are also results relating to injective covers, torsion free

covers, and various other classes of modules. We intend to imitate some of

the proofs in the category of acts. But before we work with any one class, we

first proof some general results on X -covers for an arbitrary class of S-acts

X . We will then apply these results to specific classes in Chapter 6.

5.1 Preliminary results on X -precovers

Firstly, we show that X -covers are unique up to isomorphism.

Theorem 5.1. If g1 : X1 → A and g2 : X2 → A are both X -covers of A

then there is an isomorphism h : X1 → X2 such that g2h = g1.

Proof. By the X -precover property of g1 there exists m1 ∈ Hom(X2, X1)

such that g1m1 = g2 and similarly there exists m2 ∈ Hom(X1, X2) such

that g2m2 = g1, hence g1m1m2 = g1 and g2m2m1 = g2. Now by the X -

cover property of g2, m1m2 must be an isomorphism, and similarly m2m1

must be an isomorphism. Hence m1 and m2 are both isomorphisms and let

h = m2.
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Alternatively, we could have applied Proposition 1.18 and Lemma 1.14.

The following Lemma is obvious.

Lemma 5.2. An S-act A is an X -cover of itself if and only if A ∈ X .

Remark 5.3. So if we have a monoid S where all of the S-acts X satisfy a

particular property X ∈ X , then every S-act has an X -cover. For example

every act over an inverse monoid is flat [12] and so every act over an inverse

monoid has an F-cover, where F is the class of flat acts.

Recall from [38, Theorem II.3.16] that an S-act G is called a generator

if there exists an S-epimorphism G→ S.

Proposition 5.4. Let S be a monoid and let X be a class of S-acts which

contains a generator G. If g : C → A is an X -precover of A then g is an

epimorphism.

Proof. Let h : G → S be an S-epimorphism. Then there exists an x ∈ G
such that h(x) = 1. For all a ∈ A define the S-map λa : S → A by λa(s) =

as. By the X -precover property there exists an S-map f : G→ C such that

gf = λah. Hence g(f(x)) = a and so im(g) = A and g is epimorphic.

Obviously if every S-act has an epimorphic X -precover, then S has an

epimorphic X -precover, which by definition is then a generator in X , so we

have the following corollary.

Corollary 5.5. Let S be a monoid and X a class of S-acts such that every

S-act has an X -precover. Then every S-act has an epimorphic X -precover

if and only if X contains a generator.

Note that for any class of S-acts containing S then S is a generator in

X and so X -precovers are always epimorphic. In particular this is true for

any class containing Fr.

The following technical Lemma basically says that the preimage of a

decomposable act is decomposable.

Lemma 5.6. Let h : X → A be an homomorphism of S-acts where A =∐
i∈I Ai is a disjoint union of non-empty subacts Ai ⊆ A. Then X =
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∐
j∈J Xj where Xj ⊆ X are disjoint non-empty subacts of X and im(h|Xj ) ⊆

Aj for each j ∈ J ⊆ I. Moreover, if h is an epimorphism, then J = I.

Proof. Let Xi := {x ∈ X | h(x) ∈ Ai} and define J := {i ∈ I | Xi 6= ∅}.
For all xj ∈ Xj , s ∈ S, h(xjs) = h(xj)s ∈ Aj and so xjs ∈ Xj and Xj is

a subact of X. Since Aj are disjoint and h is a well defined S-map, Xj are

disjoint as well and X =
∐
j∈J Xj . Clearly im(h|Xj ) ⊆ Aj for each j ∈ J . If

h is an epimorphism then none of the Xi are empty and so J = I.

Proposition 5.7. Let X be a class of S-acts containing a generator and

g : C → A an X -precover of A, then

1. A is cyclic if C is cyclic;

2. A is locally cyclic if C is locally cyclic; and

3. A is indecomposable if C is indecomposable.

Proof. 1. Let g : C → A be an X -precover of A, C = cS a cyclic S-act

and let a = g(c) ∈ A. By Proposition 5.4, g is an epimorphism so

given any α ∈ A there exists γ = cγ′ ∈ cS = C such that α = g(γ) =

g(cγ′) = g(c)γ′ = aγ′ ∈ aS. So A = aS is cyclic.

2. Let C be locally cyclic, then for all a, b ∈ A, since g is an epimorphism,

there exist x, y ∈ C such that g(x) = a, g(y) = b. Now since C is locally

cyclic, there exists z ∈ C such that x = zs, y = zs′ for some s, s′ ∈ S.

So a = g(zs) = g(z)s, b = g(zs′) = g(z)s′, where g(z) ∈ A and so A is

locally cyclic.

3. Let C = C1 qC2 be a decomposable S-act, then since g is an epimor-

phism by Lemma 5.6, A = A1 qA2 is also decomposable.

Conversely, it is not true that a cyclic act must have a cyclic X -cover:

for the monoid S = (N,+) of natural numbers under addition, in 5.2 we

show that Z is a locally cyclic non-cyclic SF-cover of ΘS .

The following result shows that for well-behaved classes, X -precovers are

closed under coproducts and decompositions.
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Proposition 5.8. Let X satisfy the property that
∐
i∈I Xi ∈ X ⇔ Xi ∈ X

for each i ∈ I. Then each Ai have X -precovers if and only if
∐
i∈I Ai has

an X -precover.

Proof. (⇒) Let gi : Ci → Ai be an X -precover of Ai for each i ∈ I. Then

define g :
∐
i∈I Ci →

∐
i∈I Ai by g|Ci := gi for each i ∈ I. We claim this is

an X -precover of
∐
i∈I Ai. For all X ∈ X with h : X →

∐
i∈I Ai, by Lemma

5.6, there is a subset J ⊆ I such that X =
∐
j∈J Xj and im(h|Xj ) ⊆ Aj for

each j ∈ J . Now by the hypothesis Xj ∈ X so since Cj is an X -precover of

Aj , for each h|Xj ∈ Hom(Xj , Aj), there exists fj ∈ Hom(Xj , Cj) such that

h|Xj = gjfj . So define f :
∐
j∈J Xj →

∐
i∈I Ci by f |Xj := fj for each j ∈ J

and clearly gf = h.

(⇐) Let g : C →
∐
i∈I Ai = A be an X -precover of A. By Lemma 5.6,

C =
∐
j∈J Cj for some J ⊆ I, and define Ci := {c ∈ C | g(c) ∈ Ai}, and

gi := g|Ci . For each Ai, given any S-act X with an S-map h ∈ Hom(X,Ai),

clearly h ∈ Hom(X,A) and so by the X -precover property there exists an

f ∈ Hom(X,C) such that h = gf . In fact g(f(X)) = h(X) ⊆ Ai and so

i ∈ J and f ∈ Hom(X,Ci) and hi = gif . By the hypothesis, Ci ∈ X , hence

gi : Ci → Ai is an X -precover of Ai.

Remark 5.9. Recall, all of the flatness type properties mentioned previ-

ously all satisfy
∐
i∈I Xi ∈ X ⇔ Xi ∈ X for each i ∈ I (see Corollary 2.26,

Corollary 2.30, Corollary 2.35, Theorem 2.34 and Theorem 2.31). So for any

of these classes, if we want to show that all S-acts have X -precovers it is

enough to show that the indecomposable S-acts have X -precovers.

We now show that colimits of X -precovers are X -precovers. To be more

precise

Lemma 5.10. Let S be a monoid, let X be a class of S-acts closed under

colimits and let A be an S-act. Suppose that (Xi, φi,j) is a direct system of

S-acts with Xi ∈ X for each i ∈ I and with colimit (X,αi). Suppose also

that for each i ∈ I fi : Xi → A is an X -precover of A such that for all i ≤ j,
fjφi,j = fi. Then there exists an X -precover f : X → A such that fαi = fi

for all i ∈ I.

Proof. We have a commutative diagram
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Xi Xj

X

A

φij

αi αj

fi fjf

and so there exists a unique S-map f : X → A such that fαi = fi for

all i ∈ I. If F ∈ X and if g : F → A then for each i ∈ I there exists

hi : F → Xi such that fihi = g. Choose any i ∈ I and let h : F → X be

given by h = αihi. Then fh = g as required.

This next result gives us our first necessary condition for the existence

of X -(pre)covers.

Lemma 5.11. An S-act A is an X -precover (X -cover) of the one element

S-act ΘS, if and only if A ∈ X and Hom(X,A) 6= ∅ for all X ∈ X (and

every endomorphism of A is an isomorphism), that is, A is a weakly terminal

object (stably weakly terminal object) in X .

Proof. Let A ∈ X , since ΘS is the terminal object in the category, there

exists an S-map g : A → ΘS that sends everything to one element. Given

any S-act X ∈ X with S-map h : X → ΘS , clearly gf = h for every f ∈
Hom(X,A) as g(f(x)) = h(x) for all x ∈ X. So A is an X -precover if and

only if all the S-acts in X have an S-map f from X to A, and an X -cover

if additionally every endomorphism of A is an isomorphism.

Corollary 5.12. If every S-act has an X -cover then there exists a stably

weakly terminal object X ∈ X .

5.2 Examples of SF-covers

We now give two similar examples of X -covers of the one element S-act ΘS

for the class X = SF of strongly flat acts.
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5.2.1 The one element act over (N,+)

Let S = (N,+) be the monoid of natural numbers (with zero) under addition.

We will now prove that Z is a stably weakly terminal object of SF and hence

an SF-cover of ΘS , the one element S-act.

Lemma 5.13. Z is a strongly flat S-act.

Proof. We show that Z satisfies Conditions (P ) and (E). Let x, y ∈ Z,

m,n ∈ S, and assume x + m = y + n. Then without loss of generality

we can assume n ≥ m and x − y = n − m = u ∈ S. So we have that

x = y+(x−y), y = y+0 and (x−y)+m = (n−m)+m = n = 0+n. Hence

Z satisfies Condition (P ). Now, if we let x ∈ Z, m,n ∈ S and x+m = x+n,

then m = n and x = x+ 0 with 0 +m = 0 + n, so Z satisfies Condition (E)

and is therefore strongly flat.

Lemma 5.14. Z is not cyclic, but is locally cyclic.

Proof. Z being cyclic equates to the integers having a least element. It is

locally cyclic as given any two integers, they are generated by their mini-

mum.

Note that Q is a decomposable S-act, e.g. take the two subacts A = Z
and B = Q \ Z, then Q = A ∪B and A ∩B = ∅. Therefore Q is not locally

cyclic.

Lemma 5.15. N is not an SF-precover of the one element S-act, ΘS.

Proof. Assume there exists a well defined S-map f from Z to N. So we have

f(x+ s) = f(x) + s for all x ∈ Z, s ∈ S. Now by assumption f(0) = n ∈ N
and so n = f(0 − n + n)) = f(0 − n) + n and f(0 − n) = 0 ∈ N. But then

we have a contradiction 0 = f((0 − n − 1) + 1) = f(0 − n − 1) + 1 and

f(0 − n − 1) /∈ N. So by Lemma 5.11 and Lemma 5.13, N cannot be an

SF-precover of ΘS .

From now on let X be a strongly flat S-act.

Lemma 5.16. Define a relation ≤ on X by x ≤ y if and only if there exists

s ∈ S such that x+ s = y. Then (X,≤) is a partial order.
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Proof. 1. For all x ∈ X, x+ 0 = x, so the relation is reflexive.

2. If x ≤ y and y ≤ x then there exists s, t ∈ S such that x+ s = y and

y + t = x, so in particular x+ (s+ t) = x and Condition (E) tells us

there exists u ∈ S such that u+ (s+ t) = u so s+ t = 0 and s = t = 0,

hence x = y and the relation is antisymmetric.

3. For all, x, y, z ∈ X with x ≤ y and y ≤ z we have that there exists

s, t ∈ S such that x + s = y and y + t = z, so clearly x + (s + t) = z

and so x ≤ z and the relation is transitive.

Lemma 5.17. (X,≤) is a total order if and only if X is indecomposable.

Proof. (⇐) Let X be an indecomposable act, since it satisfies Condition (P )

it is locally cyclic by Corollary 2.37 and for all x, y ∈ A there exits z ∈ A,

u, v ∈ S such that x = z + u and y = z + v. Now either u ≤ v or v ≤ u, so

if we assume u ≤ v then v − u ∈ S and x + (v − u) = (z + u) + (v − u) =

z + (u + v − u) = z + v = y and x ≤ y. Similarly whenever v ≤ u we get

y ≤ x. So (X,≤) is totally ordered.

(⇒) We take the contrapositive and let X be a decomposable act, then

X = Y ∪ Z where Y , Z are (non-empty) subacts of X, and Y ∩ Z = ∅.
Let y ∈ Y and z ∈ Z, then yS ⊆ Y , zS ⊆ Z are both subacts of X and

yS ∩ zS = ∅. Hence neither y � z nor z � y and (X,≤) is not a total

order.

Lemma 5.18. If X is cyclic then it is isomorphic to N.

Proof. Let X = S/ρ and since it is strongly flat sρt implies there exists

u ∈ [1]ρ such that u + s = u + t (see [28, Corollary of Result 4]). But this

implies s = t so ρ is the identity relation and X ∼= S.

Lemma 5.19. If X is indecomposable but not cyclic then it is isomorphic

to Z.

Proof. We prove this by defining a function from X to Z and showing it is

a well defined bijective S-map.

Function: Let x ∈ X then for all y ∈ X by Lemma 5.17 either y ≤ x in
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which case x = y + s for some s ∈ S or x ≤ y in which case y = x + t for

some t ∈ S, with y ≤ x and x ≤ y only occuring when y = x. We now define

a function

fx : X → Z

y 7→

−s if y ≤ x

t if x ≤ y.

This is well defined when y = x with fx(y) = 0 and for all other y ∈ X,

by Condition (E), x + t1 = x + t2 implies u + t1 = u + t2 for some u ∈ S
so t1 = t2, and y + s1 = y + s2 implies v + s1 = v + s2 for some v ∈ S so

−s1 = −s2. Hence for all y1, y2 ∈ X, y1 = y2 ⇒ fx(y1) = fx(y2) and the

function is well defined.

S-map: To show fx is an S-map we consider the two cases. Firstly when

y ≤ x: given any t ∈ S we have two options, either s − t ∈ S or t − s ∈ S.

When s−t ∈ S, x = y+s⇒ x = (y+s)+(t−t) = y+(t+s−t) = (y+t)+(s−t)
and y + t ≤ x with fx(y + t) = −(s − t) = −s + t = fx(y) + t. Otherwise

t−s ∈ S, in which case x+(t−s) = (y+s)+(t−s) = y+(s+ t−s) = y+ t

and x ≤ y + t with fx(y + t) = t − s = −s + t = fx(y) + t. Secondly when

x ≤ y, fx(y + s) = fx((x + t) + s) = fx(x + (t + s)) = t + s = fx(y) + s.

Hence for all y ∈ X, s ∈ S, fx(y + s) = fx(y) + s and fx is a well defined

S-map.

Injective: To show injectivity we first observe that −s only equals t when

s = t = 0 hence if y1 ≤ x and fx(y1) = fx(y2) then y2 ≤ x and similarly if

x ≤ y1 and fx(y1) = fx(y2) then x ≤ y2. Again we consider the two cases:

firstly when y1 ≤ x, fx(y1) = fx(y2) = s implies y1 + s = y2 + s and by

Condition (P ) there exists z ∈ A, u, v ∈ S with y1 = z + u, y2 = z + v and

u + s = v + s ⇒ u = v ⇒ y1 = y2. Secondly when x ≤ y1, fx(y1) = fx(y2)

clearly implies y1 = x+ fx(y1) = x+ fx(y2) = y2. Hence for all y1, y2 ∈ X,

fx(y1) = fx(y2)⇒ y1 = y2 and fx is an injective S-map.

Surjective: Since fx is an S-map and fx(y + t) = fx(y) + t, given the

base case fx(x) = 0, by induction N ⊆ im(fx). We now need to show that

−N ⊆ im(fx). Given any yi ∈ X we show there exists yi+1 ∈ X with

yi = yi+1 + 1. Let yi ∈ X and since X is not cyclic we can find z ∈ X with

z /∈ yiS which means, by totality of (X,≤), yi = z + t for some t ≥ 1 and
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t−1 ∈ S. Now let yi+1 = z+(t−1) and yi = z+t = (z+(t−1))+1 = yi+1+1.

Hence given any yi ∈ X we can find yi+1 ∈ X with fx(yi+1) = fx(y) − 1.

So let y0 = x and given fx(y0) = 0, by induction −N ⊆ im(fx). Hence

Z ⊆ im(fx) and fx is surjective.

Corollary 5.20. The only indecomposable strongly flat S-acts are N and Z.

Proposition 5.21. Z is an SF-precover of ΘS.

Proof. Every S-act is a coproduct of indecomposable S-acts by Theorem

2.24, and strongly flat acts decompose into strongly flat acts by Corollary

2.35 which by Corollary 5.20 means every strongly flat S-act is a coproduct

of copies of N and Z, both of which factor through Z in the obvious way.

So send each disjoint copy into Z and clearly the whole coproduct factors

through Z so by Lemma 5.11 it is an SF-precover of ΘS .

Similarly Q, R, C etc are precovers because Z injects into them. But we

now show that Q is not stable and so cannot be the SF-cover of ΘS .

Lemma 5.22. Q is not an SF-cover of ΘS.

Proof. Assume g : Q → ΘS is an SF-cover of ΘS . Z is a proper subact of

Q, with inclusion map i : Z ↪→ Q. Now let f : Q→ Z be the floor function.

For all x ∈ Q, s ∈ S, f(x + s) = bx + sc = bxc + s = f(x) + s, so f is an

S-map. Therefore if is an isomorphism which means the inclusion map i is

an epirmorphism and so Z = Q which is a contradiction.

Q ΘS

Z Q

g

i

f

g

We now show that Z is stable.

Lemma 5.23. Every S-map from Z to Z is an isomorphism.
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Proof. Let f : Z→ Z be an S-map, then f(x+ s) = f(x) + s for all x ∈ Z,

s ∈ S. Now f(0) = z for some z ∈ Z, and so for all x < 0, −x ∈ S and

z = f(0) = f(x + (−x)) = f(x) + (−x) hence f(x) = z + x ∈ Z. Similarly

when x ≥ 0, x ∈ S and so f(x) = f(0 +x) = f(0) +x = z+x. So whenever

f(x1) = f(x2) we have z + x1 = z + x2 ⇒ x1 = x2 and f is injective. Also,

for all y ∈ Z we know f(y − z) = z + (y − z) = y, hence f is surjective and

the map is an isomorphism.

Theorem 5.24. Z is the SF-cover of ΘS.

Proof. By Proposition 5.21, Z is an SF-precover of ΘS . Now given any

S-map f : Z → Z, by Lemma 5.23 f is an isomorphism, so it is also an

SF-cover.

5.2.2 The one element act over (N, ·)

In the last example we characterised all the strongly flat acts up to isomor-

phism before we found the SF-cover of ΘS . Let S = (N, ·) be the monoid

of positive integers under multiplication. We now have a very similar set of

results, except unlike the previous example, there are infinitely many inde-

composable strongly flat acts, but we can show they all inject into Q+ which

is the SF-cover of ΘS .

Lemma 5.25. Q+ := {ab : a, b ∈ N} is a strongly flat S-act.

Proof. Let r, s ∈ Q+, m,n ∈ N. Whenever rm = sn, we have r = s
mn so let

t = s
m ∈ Q

+ and u = n, v = m ∈ N, then r = tu, s = tv and um = vn so Q+

satisfies Condition (P ). Also rm = rn ⇒ m = n, so let t = r, u = m = n

and Condition (E) is also satisfied.

Note that R+ is a decomposable S-act, e.g. take the two subacts A = Q+

and B = R+ \ Q+, then R+ = A ∪ B and A ∩ B = ∅ so R+ is not locally

cyclic.

Lemma 5.26. N is not an SF-precover of ΘS.

Proof. Assume there exists a well defined S-map f from Q+ to N. So we

have f(qm) = f(q)m for all q ∈ Q+, m ∈ S. Now by assumption f(1) =



88 CHAPTER 5. COVERS OF ACTS

n ∈ N and so n = f( 1
nn) = f( 1

n)n and f( 1
n) = 1 ∈ N. But then we have

1 = f( 1
2n2) = f( 1

2n)2 and f( 1
2n) /∈ N which is a contradiction. So by Lemma

5.11 and Lemma 5.25, N cannot be an SF-precover of ΘS .

From now on let X be a strongly flat S-act.

Lemma 5.27. Define a relation ≤ on X by x ≤ y if and only if there exists

t ≤ s ∈ S such that xs = yt. Then (X,≤) is a partial order.

Proof. 1. For all x ∈ X, x1 = x1 and 1 ≤ 1, so the relation is reflexive.

2. If x ≤ y and y ≤ x then there exists t1 ≤ s1 and s2 ≤ t2 in S such that

xs1 = yt1 and xs2 = yt2. By Condition (P ), there exists z ∈ X and

u, v ∈ S such that x = zu, y = zv and us1 = vt1. Since t1 ≤ s1, this

implies u ≤ v. Now (zu)s2 = (zv)t2 and so by Condition (E), there

exists some w ∈ S such that wus2 = wvt2 which implies us2 = vt2.

Again, since s2 ≤ t2, we have v ≤ u which implies u = v. Therefore

x = zu = zv = y and the relation is antisymmetric.

3. For all, x, y, z ∈ X with x ≤ y and y ≤ z we have that there exists

t1 ≤ s1 and t2 ≤ s2 in S such that xs1 = yt1 and ys2 = zt2. Then

xs1s2 = yt1s2 = ys2t1 = zt2t1 = zt1t2 and t1t2 ≤ s1s2 so the relation

is transitive.

Lemma 5.28. (X,≤) is a total order if and only if X is an indecomposable

act.

Proof. (⇐) Let X be an indecomposable act, since it satisfies Condition (P )

it is locally cyclic by Corollary 2.37 and for all x, y ∈ A there exits z ∈ A,

u, v ∈ S such that x = zu and y = zv. Now xv = zuv = zvu = yu and

either u ≤ v in which case x ≤ y or v ≤ u in which case y ≤ x. So (X,≤) is

totally ordered.

(⇒) Assume (X,≤) is a total order. Then given any x, y ∈ X, there exists

s, t ∈ S such that xs = yt, and so x is in the same component as y and X

is indecomposable.

Lemma 5.29. If X is cyclic then it is isomorphic to N.
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Proof. Let X = S/ρ and since it is strongly flat sρt implies there exists

u ∈ [1]ρ such that us = ut (see [28, Corollary of Result 4]). Since u is

positive this implies s = t so ρ is the identity relation and X ∼= S.

Lemma 5.30. If X is indecomposable but not cyclic then it injects in to

Q+.

Proof. We prove this by defining a function from X to Q+ and showing it

is a well defined injective S-map.

Function: Let x ∈ X then for all y ∈ X by Lemma 5.28 either x ≤ y in

which case xs = yt for some t ≤ s ∈ S or y ≤ x in which case xs = yt for

some s ≤ t ∈ S, with y ≤ x and x ≤ y only occurring when y = x. We now

define a function

fx : X → Q+

y 7→ s

t
.

Let xs = yt and xs′ = yt′, then by Condition (P ), there exists some z ∈ X,

and u, v ∈ S such that x = zu, y = zv and us = vt so that s
t = v

u .

Therefore zus′ = zvt′ and by Condition (E) there exists some w ∈ S such

that wus′ = wvt′ and s′

t′ = v
u = s

t and the function is well defined.

S-map: To show fx is an S-map let fx(y) = s
t with xs = yt, and consider

fx(yw) = s′

t′ with xs′ = (yw)t′ for some w ∈ S. By Condition (P ), there

exists some z ∈ X, u, v ∈ S such that x = zu, y = zv and us = vt hence
s
t = v

u . Now zus′ = zvwt′ and by Condition (E) there exists some w′ ∈ S
such that w′us′ = w′vwt′ and s′

t′ = v
uw = s

tw and fx is a well defined S-map.

Injective: To show injectivity let fx(y) = fx(y′) = s
t for some y, y′ ∈ X.

Then xs = yt and xs = y′t, so yt = y′t. By Condition (P ), there exists

some z ∈ X and u, v ∈ S such that y = zu, y′ = zv and ut = vt. Hence

u = v so y = y′ and fx is an injective S-map.

Corollary 5.31. Every indecomposable strongly flat S-act injects in to Q+.

Note that not every non-cyclic indecomposable strongly flat S-act is

isomorphic to Q+. For example the dyadic rationals.

Lemma 5.32. The dyadic rationals,
⋃
n≥0

N
2n , are a strongly flat locally

cyclic non-cyclic S-act not isomorphic to Q+.
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Proof. Let X =
⋃
n≥0

N
2n . Firstly, it is clear that multiplication by N gives

rise to a well-defined S-act structure on X. Assume there exists some x =
a
2m ∈ X such that X = xS then it would not include a

2m+1 ∈ X, so X is not

cyclic. Given any x = a
2m , y = b

2n ∈ X, let z = 1
2m+n , then x, y ∈ zS, so X

is locally cyclic. Given a
2m s = a′

2n t take a′′ = 1
2m+n , u = 2na, v = 2ma′ then

a
2m = 1

2m+n 2na, a′

2n = 1
2m+n 2ma′ and 2nas = 2ma′t so X satisfies Condition

(P ). Condition (E) is satisfied since X is left cancellative, so it is strongly

flat. Assume there exists an S-map f from Q+ to X then f(1) = a
2n for

some a ∈ N, n ≥ 0. Now since f(1) = f( 1
3a3a) = f( 1

3a)3a we have that

f( 1
3a) = 1

3·2n /∈ X so X � Q+.

It is clear from this last Lemma that there are in fact infinitely many

indecomposable strongly flat S-acts, very different from the previous exam-

ple.

Proposition 5.33. Q+ is an SF-precover of ΘS.

Proof. Every S-act is the disjoint union of indecomposable S-acts by Theo-

rem 2.24, and strongly flat acts decompose into strongly flat acts by Corol-

lary 2.35 which by Corollary 5.31 means every strongly flat S-act injects in

to Q+ by taking a map for each disjoint S-act into Q. So by Lemma 5.11,

Q+ is an SF-precover of ΘS .

Similarly R and field extensions etc are precovers as Q injects in to them.

Theorem 5.34. Q+ is the SF-cover of ΘS.

Proof. Since Q+ is indecomposable by Proposition 5.33 it is enough to show

that any S-map f : Q+ → Q+ is an isomorphism. To see this first note

that for all a
b ∈ Q

+, f(ab ) = f(1)ab , in fact, f(ab ) = f(1b )a and so
f(a

b
)

a =

f(1b ) ⇒ f(1) = f(1b )b = f(ab ) ba and so f(ab ) = f(1)ab . Therefore whenever

f(ab ) = f( cd) ⇒ f(1)ab = f(1) cd ⇒
a
b = c

d and f is injective. Additionally,

for all a
b ∈ Q

+, f( a
f(1)b) = f(1) a

f(1)b = a
b and f is also surjective.

In these last two examples, we get an idea of how much harder it is to

study X -covers than it is coessential covers. In particular, we need to be

able to say something about all acts with a certain property rather than
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just studying one act. The examples considered here are for two very simple

monoids and we showed that the one element S-act has an SF-cover by

characterising all strongly flat acts. This is not practical for general monoids.

In the rest of this Chapter we prove some results for general monoids and

classes X which we can then apply to specific monoids and classes of acts in

Chapter 6.

5.3 Precover implies cover

In this section we show that if a class X is closed under directed colimits,

then an S-act A having an X -precover is sufficient for A having an X -cover.

The argument used in this proof is similar to the approach first used in

Enochs’ original paper (see [25, Theorem 3.1] and [57, Theorem 2.2.8]).

Lemma 5.35. Let S be a monoid, X a class of S-acts closed under directed

colimits and k : C → A an X -precover of A. Then there exists an X -precover

k̄ : C̄ → A and a commutative diagram

C̄ A

C

k̄

kg

such that for any X -precover k∗ : C∗ → A and any commutative diagram

C∗ A

C

k∗

k̄h

ker(hg) = ker(g) (i.e. the kernel of g is in some sense maximal).

Proof. Let S be a monoid and k0 : C0 → A be an X -precover of A. Assume,

by way of contradiction, that for all X -precovers k̄ : C̄ → A and S-maps

g : C0 → C̄ with k̄g = k0, there exists an X -precover k∗ : C∗ → A and

an S-map h : C̄ → C∗ with k∗h = k̄ such that ker(hg) 6= ker(h), that is

ker(g) ( ker(hg) as clearly ker(hg) ⊆ ker(g).
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We intend to show, by transfinite induction, that for each ordinal γ,

there is an X -precover (Cγ , kγ) of A and for all β < γ there exist S-maps

gβγ : Cβ → Cγ such that kγg
β
γ = kβ and gβγ gαβ = gαγ with ker(g0β) ( ker(g0γ)

for all α < β < γ.

1. Base step: (C0, k0) satisfies the statement.

2. Successor step: Assume the statement is true for some β < γ, and

let (C̄, k̄) = (Cβ, kβ) and g = g0β then there exists an X -precover

(Cβ+1, kβ+1) := (C∗, k∗) and an S-map gββ+1 := h : Cβ → Cβ+1 with

kβ+1g
β
β+1 = kβ such that ker(g0β) ( ker(gββ+1g

0
β). Now define, gαβ+1 :=

gββ+1g
α
β for all α < β. Then kβ+1g

α
β+1 = kβ+1g

β
β+1g

α
β = kβg

α
β = kα

and gαβ+1g
δ
α = gββ+1g

α
β g

δ
α = gββ+1g

δ
β = gδβ+1 with ker(g0α) ( ker(g0β) (

ker(gββ+1g
0
β) = ker(g0β+1) for all δ < α < β. Thus the statement is true

for β + 1.

3. Limit step: If β < γ is a limit ordinal, assume the statement is true

for all α < β. Let gδδ = idCδ , then (Cα, g
δ
α)α<β is a direct system of

S-acts over the directed index set β. Let (Cβ, g
δ
β)α∈β be the directed

colimit. Then by the colimit property there exists a unique S-map

kβ : Cβ → A such that the following diagram

Cδ Cα

Cβ

A

gδα

gδβ gαβ

kδ kαkβ

commutes. Since X is closed under directed colimits, Cβ ∈ X , and

by Lemma 5.10, (Cβ, kβ) is an X -precover of A. Now g0β = gαβ g
0
α

and so ker(g0α) ⊆ ker(g0β) but ker(g0α) ( ker(g0α+1) ⊆ ker(g0β). So the

statement is true for β.
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Therefore, by Theorem 1.5, the statement is true for any ordinal γ and hence

ker(g01) ( ker(g02) ( · · · ( ker(g0γ) ( C0 × C0

which implies |C0 × C0| ≥ |γ| which is clearly a contradiction.

Given an X -precover k : C → A of A, we say that (C, k) satisfies the

mono-lifting property if for any X -precover k∗ : C∗ → A and any com-

mutative diagram

C∗ A

C

k∗

kh

h must be a monomorphism.

Lemma 5.36. Let S be a monoid, X a class of S-acts closed under directed

colimits. If A has an X -precover, then it has an X -precover with the mono-

lifting property.

Proof. Let (C0, k0) be an X -precover of A, then by Lemma 5.35 there exists

an X -precover (C1, k1) of A and an S-map g01 : C0 → C1 with k1g
0
1 =

k0 such that for any X -precover (C∗, k∗) of A and any S-map h : C1 →
C∗ with k∗h = k1 then ker(hg01) = ker(g01), or equivalently, h|im(g01)

is a

monomorphism. By way of induction, assume that there is an X -precover

kn : Cn → A and an S-map gn−1n : Cn−1 → Cn with kng
n−1
n = kn−1 and

such that for any X -precover k∗ : C∗ → A and any S-map h : Cn → C∗

with k∗h = kn then h|im(gn−1
n ) is a monomorphism.

Then by Lemma 5.35, there exists an X -precover (Cn+1, kn+1) of A and

an S-map gnn+1 : Cn → Cn+1 with kn+1g
n
n+1 = kn and such that for any

X -precover (C∗, k∗) of A and any S-map h : Cn+1 → C∗ with k∗h = kn+1

then h|im(gnn+1)
is a monomorphism.

Now let (Cω, g
n
ω) be the directed colimit of the direct system (Cn, g

n
n+1)n∈N

and let kω : Cω → A be the unique S-map that makes the following diagram
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Cn Cn+1

Cω

A

gnn+1

gnω gn+1
ω

kn kn+1kω

commute. Since X is closed under directed colimits, by Lemma 5.10, (Cω, kω)

is an X -precover of A. We claim that this X -precover has the mono-lifting

property. So let (C∗, k∗) be any X -precover of A and let h : Cω → C∗ be

an S-map with k∗h = kω. Suppose also that h(x) = h(y) for x, y ∈ Cω.

Then there exists m,n ∈ N and xm ∈ Cm, yn ∈ Cn such that gmω (xm) = x

and gnω(yn) = y. Assume without loss of generality that m ≤ n and let

zn = gmn (xm). Then

hgn+1
ω (gnn+1(zn)) = hgnω(zn) = hgnω(yn) = hgn+1

ω (gnn+1(yn)).

But hgn+1
ω : Cn+1 → C∗ and hgn+1

ω |im(gnn+1)
is therefore a monomorphism.

Hence gnn+1(zn) = gnn+1(yn) and so

x = gmω (xm) = gn+1
ω (gnn+1(zn)) = gn+1

ω (gnn+1(yn)) = gnω(yn) = y

as required.

Theorem 5.37. Let S be a monoid, A an S-act and X a class of S-acts

closed under directed colimits. If A has an X -precover then A has an X -

cover.

Proof. By Lemma 5.36, there exists an X -precover (C0, k0) of A with the

mono-lifting property. We show that A has an X -cover.

Assume, by way of contradiction, that A does not have an X -cover. Then

given any X -precover (C̄, k̄) of A with the mono-lifting property, there exists

ḡ : C̄ → C̄ with k̄ḡ = k̄ and such that ḡ is a monomorphism but not an

epimorphism, and so im(ḡ) ( C̄.

We intend to show, by transfinite induction, that for each ordinal γ

there exists an X -precover (Cγ , kγ) of A with the mono-lifting property with
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Cγ ⊆ C0, and for all β < γ there exist S-maps gβγ : Cβ → Cγ with kγg
β
γ = kβ

which are monomorphisms but not epimorphisms such that gβγ gαβ = gαγ and

so im(gαγ ) ( im(gβγ ) for all α < β < γ.

1. Base step: (C0, k0) clearly satisfies the statement.

2. Successor step: Assume the statement is true for some β < γ. Now

let (Cβ+1, kβ+1) := (Cβ, kβ), which clearly satisfies the mono-lifiting

property and Cβ+1 = Cβ ⊆ C0. By the assumption there exists

gββ+1 : Cβ → Cβ+1 with kβ+1g
β
β+1 = kβ which is a monomorphism

but not an epimorphism. For all α < β, define gαβ+1 := gββ+1g
α
β ,

so that kβ+1g
α
β+1 = kβ+1g

β
β+1g

α
β = kβg

α
β = kα and since both gββ+1

and all of the gαβ are monomorphisms but not epimorphisms, then so

are all the gαβ+1. Now gαβ+1g
δ
α = gββ+1g

α
β g

δ
α = gββ+1g

δ
β = gδβ+1 and so

im(gδβ+1) ( im(gαβ+1) for all δ < α < β. Thus the statement is true for

β + 1.

3. Limit step: If β < γ is a limit ordinal, assume the statement is true

for all α < β. Let gδδ = idCδ , then (Cδ, g
δ
α)α<β is a direct system of

S-acts over the directed index set β. Let (Cβ, g
δ
β)δ∈β be the directed

colimit, then by Lemma 2.12, all of the gδβ are monomorphisms. By

the colimit property there exists a unique S-map kβ : Cβ → A such

that the following diagram

Cδ Cα

Cβ

A

gδα

gδβ gαβ

kδ kαkβ

commutes. Since X is closed under directed colimits, by Lemma 5.10,

(Cβ, kβ) is an X -precover of A. Given any X -precover (C∗, k∗) of A

and any S-map h : Cβ → C∗ with k∗h = kβ, then for all α < β, hgαβ are
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monomorphisms and so by Lemma 2.13, h must be a monomorphism

and (Cβ, kβ) satisfies the mono-lifting property. In particular, there is

a monomorphism from Cβ to C0. We now show that each gαβ is not

an epimorphism. This is clear, as if there existed an α < β with gαβ =

gα+1
β gαα+1 an epimorphism, then gαα+1 would also be an epimorphism

which is a contradiction. So the statement is true for β.

Therefore, by Theorem 1.5, the statement is true for any ordinal γ and hence

im(g01) ( im(g02) ( · · · ( im(g0γ) ⊆ C0

which implies |C0| ≥ |γ| which is a contradiction.

5.4 Weak solution set condition

We now give a necessary and sufficient condition for existence of X -precovers.

It is clear that a necessary condition for an S-act A to have an X -precover

is that there exists X ∈ X with Hom(X,A) 6= ∅. This condition is always

satisfied in the category of modules over a ring (or indeed any category with

a zero object), as every Hom-set is always non-empty, but this is not always

the case for S-acts.

Let S be a monoid and let X be a class of S-acts. Borrowing terminology

from Freyd’s Adjoint Functor Theorem [29], we say that X satisfies the

(weak) solution set condition if for all S-acts A there exists a set (rather

than a proper class) SA ⊆ X such that for all (indecomposable) X ∈ X and

all S-maps h : X → A there exists Y ∈ SA, f : X → Y and g : Y → A such

that h = gf .

Theorem 5.38. Let S be a monoid and let X be a class of S-acts such that∐
i∈I Xi ∈ X ⇔ Xi ∈ X for each i ∈ I. Then every S-act has an X -precover

if and only if

1. for every S-act A there exists an X in X such that Hom(X,A) 6= ∅;

2. X satisfies the weak solution set condition;
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Proof. Suppose that X satisfies the given conditions. Let A be an S-act

and let SA = {Ci | i ∈ I} be as given in the weak solution set condition.

Notice that by property (1) SA 6= ∅. Moreover we can assume that for all

Y ∈ SA, Hom(Y,A) 6= ∅ as SA \ {Y ∈ SA | Hom(Y,A) = ∅} will also satisfy

the requirements of the solution set condition.

For each i ∈ I and for each S-map g : Ci → A let Ci,g be an isomorphic

copy of Ci with isomorphism φi,g : Ci,g → Ci (recall that we are assuming

that X is closed under isomorphisms). Let

CA :=
∐
i∈I

g ∈Hom(Ci,A)

Ci,g.

By hypothesis, CA ∈ X and we can define an S-map ḡ : CA → A by

ḡ|Ci,g = gφi,g for each i ∈ I, g ∈ Hom(Ci, A). We claim that (CA, ḡ)

is an X -precover for A. Let X ∈ X and let h : X → A be an S-map.

By the hypothesis X =
∐
j∈J Xj is a coproduct of indecomposable S-acts

with Xj ∈ X for each j ∈ J . Further, by the hypothesis, there exists

Cij ∈ SA, fj : Xj → Cij and gj : Cij → A such that gjfj = h|Xj . Now

ḡ|Cij ,gjφ
−1
ij ,gj

= gj and so both squares and the outer hexagon in the following

diagram

CA A

Cij ,gj

∐
j∈J

Xj = X

Cij Xj
fj

gj

h

φ−1ij ,gj

ḡ

commutes. So define f : X → CA by f |Xj = φ−1ij ,gjfj and note that ḡf = h

as required.

Conversely if A is an S-act with an X -precover CA, then Hom(CA, A) 6= ∅
and on putting SA = {CA} we see that X satisfies the (weak) solution set

condition.

Note from the proof of Theorem 5.38 that we can also deduce
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Theorem 5.39. Let S be a monoid and let X be a class of S-acts such that

Xi ∈ X for each i ∈ I ⇒
∐
i∈I Xi ∈ X . Then every S-act has an X -precover

if and only if

1. for every S-act A there exists an X in X such that Hom(X,A) 6= ∅;

2. X satisfies the solution set condition;

Corollary 5.40. Let S be a monoid and let X be a class of S-acts such that

1.
∐
i∈I Xi ∈ X ⇔ Xi ∈ X for each i ∈ I;

2. for every S-act A there exists an X in X such that Hom(X,A) 6= ∅;

3. there exists a cardinal λ such that for every indecomposable X in X ,

|X| < λ.

Then every S-act has an X -precover.

Proof. By (3) and Remark 2.65 there are only a set C = {Ci : i ∈ I} of

isomorphic representatives of indecomposable S-acts in X . Suppose that A

is an S-act and let SA = C. If X ∈ X is indecomposable and if h : X → A

is an S-map then there exists an isomorphism φ : X → Ci for some Ci ∈ C
and we have an S-map hφ−1 : Ci → A and clearly h = hφ−1φ and so X
satisfies the weak solution set condition.

5.5 Weakly congruence pure

The inspiration for some of the following results comes from [57].

Recall the definitions from Section 4.1.2 of X -pure congruences.

Theorem 5.41. Let S be a monoid, let X be a class of S-acts closed under

chains of X -pure congruences and suppose that A is an S-act such that

ψ : F → A is an X -precover. Then there exists an X -precover φ : G→ A of

A such that there is no non-identity X -pure congruence ρ ⊂ ker(φ) on G.

Proof. First, if there does not exist a non-identity X -pure congruence σ ⊆
ker(ψ) on F then we let G = F and φ = ψ. Otherwise by assumption any
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chain of X -pure congruences on F contained in ker(ψ) has an upper bound

and so by Zorn’s lemma there is a maximum σ say. Let G = F/σ and let

φ : G→ A be the natural map such that φσ\ = ψ. Then it is easy to check

that φ : G → A is an X -precover as if H ∈ X and if f : H → A then there

exists g : H → F such that ψg = f . So σ\g : H → G and φσ\g = ψg = f

and φ : G→ A is an X -precover.

G A

F H

φ

σ\

g

f
ψ

Finally suppose that ρ is an X -pure congruence on G such that ρ ⊂ ker(φ).

Then by Remark 2.4, σ/ρ is an X -pure congruence on F containing σ and

σ/ρ = ker(ρ\σ\) ⊆ ker(ψ). By the maximality of σ it follows that σ = σ/ρ

and so ρ = 1G, a contradiction as required.

Following [9, Lemma 1] we can extend this result as follows.

Proposition 5.42. Let S be a monoid and let X be a class of S-acts. If A

is an S-act such that ψ : F → A is an X -cover then there is no non-identity

X -pure congruence ρ ⊂ kerψ on F .

Proof. Let ρ ⊂ kerψ be an X -pure congruence on F . Then there is an

induced S-map φ : F/ρ → A such that φρ\ = ψ. Since (F,ψ) is a precover

then there exists an S-map θ : F/ρ → F such that ψθ = φ. Hence ψθρ\ =

φρ\ = ψ and so θρ\ is an isomorphism of F . Hence ρ\ is a monomorphism

and so ρ = 1A as required.

AF

F/ρ

φ

ψ

θ ρ\
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Let X be a class of S-acts. Let us say that X is (weakly) congruence

pure if for each cardinal λ there exists a cardinal κ > λ such that for every

(indecomposable) X ∈ X with |X| ≥ κ and every congruence ρ on X with

|X/ρ| ≤ λ there exists a non-identity X -pure congruence σ ⊆ ρ of X.

Theorem 5.43. Let S be a monoid, let X be a class of S-acts such that

1.
∐
i∈I Xi ∈ X ⇔ Xi ∈ X for each i ∈ I;

2. X is closed under chains of X -pure congruences;

3. for every S-act A there exists an X in X such that Hom(X,A) 6= ∅;

4. X is weakly congruence pure.

Then every S-act has an X -precover.

Proof. Let A be an S-act, let λ = max{|A|,ℵ0}, let κ be as given in the

weakly congruence pure condition and let SA be a set of isomorphic rep-

resentatives of S-acts of cardinalities less than κ. Suppose that X is an

indecomposable S-act and that h : X → A is an S-map. If |X| < κ then let

Y ∈ SA be an isomorphic copy of X and let f : X → Y be an isomorphism

and define g : Y → A by g = hf−1 so that h = gf .

Suppose now that |X| ≥ κ. Then |X/ ker(h)| = |im(h)| ≤ λ and so there

exists an X -pure congruence 1X 6= σ ⊆ ker(h) on X with X/σ ∈ X . In fact,

using a combination of Zorn’s lemma and the hypothesis that X is closed

under chains of X -pure congruences, we can assume that σ is maximal with

respect to this property. Now let h̄ : X/σ → A be the unique map such that

σ\h = h̄. Notice that since im(h̄) = im(h) then

|(X/σ)/ ker(h̄)| = |X/ ker(h)| ≤ λ.

Now suppose, by way of contradiction, that 1X/σ 6= ρ ⊆ ker(h̄) is an X -pure

congruence on X/σ so that (X/σ)/ρ ∈ X . Then by Remark 2.4 and since

X ∈ X it follows that σ/ρ is an X -pure congruence on X containing σ and

since ρ ⊆ ker(h̄) it easily follows that σ/ρ ⊆ ker(h). Hence by the maximality

of σ we deduce that σ/ρ = σ and so ρ = 1X/σ. Therefore it follows that

X/σ does not contain a non-identity X -pure congruence contained in ker(h̄)
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and since by Lemma 5.7, X/σ is indecomposable and since X is weakly

congruence pure we deduce that |X/σ| < κ. Consequently it follows that

there exists Y ∈ SA and an isomorphism f̄ : X/σ → Y and so define

f : X → Y by f = f̄σ\ and g : Y → A by g = h̄f̄−1 so that gf = h.

Hence X satisfies the weak solution set condition and the result follows

from Theorem 5.38.

A similar condition to this is considered in [8] and forms the basis of one

of the proofs of the flat cover conjecture.

5.6 Covers with the unique mapping property

An X -(pre)cover g : X → A of an S-act A is said to have the unique

mapping property if whenever there is an S-map h : X ′ → A withX ′ ∈ X ,

there is a unique S-map f : X ′ → X such that h = gf .

Clearly an X -precover with the unique mapping property is an X -cover

with the unique mapping property as the unique identity map is an isomor-

phism.

Note that every act having an X -cover with the unique mapping property

is equivalent to saying that X is a coreflective subcategory of the category

of all S-acts. That is to say, the inclusion functor has a right adjoint. See

Theorem 1.16 or [29, Exercises 3.J and 3.M] for more details and from which

some of the next results are based.

Lemma 5.44. Let S be a monoid and let X be a class of S-acts closed under

all (that is, not just directed) colimits. If an S-act has an X -precover then

it has an X -cover with the unique mapping property.

Proof. If an S-act A has an X -precover, then by Theorem 5.37 it has an

X -cover, say g : C → A. Let f1, f2 be two endomorphisms of C such that

gf1 = gf2 = g, we intend to show that f1 = f2 and so the unique mapping

property holds. Let (h,E) be the coequalizer of f1 and f2 in C, so that by

Lemma 2.9, E = C/ρ where ρ is the smallest congruence generated by the

pairs {(f1(c), f2(c)) : c ∈ C}. Since g(f1(c)) = g(c) = g(f2(c)) it is clear

that ρ ⊆ ker(g). Since X is closed under colimits E ∈ X and by Proposition

5.42, ρ = idC and hence f1 = f2.
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Lemma 5.45. Let S be a monoid and let X be a class of S-acts. If every

S-act has an X -cover with the unique mapping property then X is closed

under all colimits.

Proof. Let (Xi, φ
i
j)i∈I be a direct system of S-acts Xi ∈ X with colimit

(X,αi). Let g : C → X be the X -cover of X so that for each i ∈ I

there exists a unique fi : Xi → C with gfi = αi. Note that if i ≤ j

then gfi = αi = αjφ
i
j = (gfj)φ

i
j = g(fjφ

i
j) and so by the unique mapping

property fi = fjφ
i
j for all i ≤ j. Hence by the colimit property, there exists

a unique S-map f : X → C such that fαi = fi for all i ∈ I. Therefore

αi = gfi = g(fαi) = (gf)αi and since, by the colimit property, there exists

a unique S-map h : X → X with hαi = αi for all i ∈ I, we clearly have

gf = idX . But then g(fg) = (gf)g = g and by the unique mapping property

fg = idC and so X is isomorphic to C ∈ X .

Xi Xj

X

C

φij

αi αj

fi fjf g

Hence by Theorem 5.38 we have the following

Theorem 5.46. Let S be a monoid and X a class of S-acts. Every S-act

has an X -cover with the unique mapping property if and only if

1. X is closed under all colimits.

2. For every S-act A there exists X ∈ X such that Hom(X,A) 6= ∅.

3. X satisfies the solution set condition.

Recall that an S-actG is called a generator if there exists an epimorphism

G→ S.
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Theorem 5.47. Let S be a monoid and let X be a class of S-acts containing

a generator which is closed under all colimits. Then every S-act has an X -

cover with the unique mapping property.

Proof. Let G ∈ X be a generator with S-epimorphism h : G → S. Given

any S-act A, let A×G be the S-act with the action on the right component,

so that we have an S-epimorphism gA : A×G→ A, (a, y) 7→ ah(y). Notice

that A×G is isomorphic to a coproduct of |A| copies of G and so A×G ∈ X .

Consider, up to isomorphism, the set (Xi, gi, fi)i∈I of all S-acts Xi ∈ X and

S-epimorphisms gi : A × G → Xi such that there exist fi : Xi → A with

figi = gA. Notice that (A × G, 1A×G, gA) is one such triple and so I 6= ∅,
and that this is indeed a set since |Xi| ≤ |A × G|. Define an order on this

set (Xi, gi, fi) ≤ (Xj , gj , fj) if and only if there exists φij : Xi → Xj with

φijgi = gj and fjφ
i
j = fi.

A×G

Xi Xj

A

gi gj

φij

fi fj

Notice that since gi is onto then if such a φij exists then it is unique. It is a

straightforward matter to check that this is a partial order, and (Xi, φ
i
j)i∈I

is a direct system. In fact, this order has a least element (X0, 1A×G, gA),

where X0 = A × G and φ0i = gi for all i ∈ I. Let (M,αi) be the colimit of

this system, since each φij is an epimorphism, so are the αi and since X is

closed under colimits, M ∈ X . Since fjφ
i
j = fi for all i ≤ j ∈ I there must

exist some f : M → A such that fαi = fi for all i ∈ I. Since M ∈ X and

α0 is an epimorphism we see that (M,α0, f) is in fact a maximal element in

the ordering.

We claim that f : M → A is an X -precover of A. Given any X ∈ X
with S-map σ : X → A, let gX : X × G → X, (x, y) 7→ xh(y) be an

S-epimorphism. As before, observe that A × G,X × G ∈ X . Define m :

X ×G→ A×G by m(x, y) = (σ(x), y) and consider the pushout diagram
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X ×G A×G

X Q

m

gX q1

q2

Since gX is an epimorphism then, by Lemma 2.6, so is q1 and since X is

closed under colimits then Q ∈ X . By Lemma 2.5, Q = (X q (A × G))/ρ

where ρ = {(m(z), gX(z)) : z ∈ X×G}#. Since gAm = σgX then there exists

a unique ψ : Q→ A such that ψq1 = gA, ψq2 = σ and so by the maximality

of (M,α0, f) there exists an S-map φ : Q→M such that φq1 = α0.

X ×G A×G

X Q

M

A

m

gX q1

q2
α0 gA

σ

ψ

φ

f

It is straightforward to check that fφq2 = σ, and so f : M → A is an

X -precover of A. Since X is closed under colimits, we can apply Lemma

5.44.

So by Corollary 5.5 we get the following result

Corollary 5.48. Let S be a monoid and let X be a class of S-acts. Every

S-act has an epimorphic X -cover with the unique mapping property if and

only if X contains a generator and is closed under colimits.



Chapter 6

Applications to specific

classes

We now apply our results concerning existence of X -covers to specific classes

of S-acts.

6.1 Free covers

Let S be a monoid and f : C → A be an S-epimorphism. Recall from

Chapter 3, we call f coessential if there is no proper subact B of C such

that f |B is onto.

Lemma 6.1. [52, Cf. Theorem 5.7] Let S be a monoid and let A an S-

act. Then g : C → A is a Fr-cover of A if and only if f is a coessential

epimorphism with C ∈ Fr.

Proof. Suppose that g is a Fr-cover of A. Then by Proposition 5.4, g is an

epimorphism. Let B be a subact of C such that g|B is an epimorphism. Then

since C is projective, there exists an S-map h : C → B with (g|B)h = g.

Then we get easily that g = gιh, where ι : B → C is the inclusion map.

Now, by hypothesis, ιh must be an isomorphism which gives B = C.

Conversely let g : C → A be a coessential epimorphism and suppose that

C ∈ Fr. Then g is a Fr-precover since every free S-act is projective. To

prove that it is a Fr-cover, let f : C → C be an S-map with g = gf . Then,

g|im(f) is onto, and so im(f) = C. Thus f is an epimorphism, and since C

105



106 CHAPTER 6. APPLICATIONS TO SPECIFIC CLASSES

is projective, there exists an S-map h : C → C such that fh = 1C . So h is

a monomorphism and gh = (gf)h = g(fh) = g. Thus, g|im(h) is onto, and

hence im(h) = C. Therefore, h is an epimorphism and so an isomorphism.

Hence f is an isomorphism.

Lemma 6.2. Let S be a monoid. Then every S-act has a Fr-precover.

Proof. Let A be an S-act. Take A × S the free S-act generated by A with

the S-map g : A× S → A, (a, s) 7→ as. Then g is an S-epimorphism and so

every free S-act (which is also projective) factors through it.

Theorem 6.3. Given any monoid S, the following are equivalent:

1. Every S-act has an Fr-cover.

2. Every S-act has a (coessential) free cover.

3. The one element S-act ΘS has an Fr-cover.

4. S is a group.

Proof. (1)⇔ (2) by Lemma 6.1.

(1)⇒ (3) is a tautology.

(3) ⇒ (4) If g : C → ΘS is a Fr-cover of ΘS then C = A × S for some set

A. Let a ∈ A and define f : C → C by f(x, s) = (a, s) for x ∈ A. Then

gf = g and so f is an isomorphism. Hence |A| = 1 and so C ∼= S. Now let

x ∈ S and consider h : S → S given by h(s) = xs. Then gh = g and so h

is an isomorphism and hence S = xS for all x ∈ S. Hence S is a group by

Lemma 1.21.

(4) ⇒ (1) By Theorem 2.49, S is a group if and only if every strongly flat

S-act is free. In particular, since by Proposition 2.54, the strongly flat S-

acts are closed under directed colimits, the free S-acts are also closed under

directed colimits and the result follows from Lemma 6.2 and Theorem 5.37.

6.2 Projective covers

Theorem 6.4. Let S be a monoid, then every S-act has a P-precover.
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Proof. The same proof as Lemma 6.2

We now give an example of a P-precover that is not a P-cover.

Example 6.5. Let S = (N,+) be the monoid of natural numbers (with

zero) under addition, and consider the countably generated free S-act N×N
with the following action:

(N× N)× S → N× N

(m,n) + s 7→ (m+ s, n).

We now define a function g : N × N → Z, (m,n) 7→ m − n and we can

see this is an S-map, as g((m,n) + s) = g((m + s, n)) = (m + s) − n =

(m−n) + s = g((m,n)) + s. Also given any z ≥ 0, g((z, 0)) = z and for any

z < 0, g((0,−z)) = z so g is an epimorphism. Since N × N is free it is also

projective. Now given any other projective S-act with an S-map to Z, by

definition of projectivity this factors through N × N since g is epimorphic.

Hence g : N×N→ Z is a P-precover of Z, but it is not a P-cover as there are

an infinite number of S-maps fa : N× N→ N× N, (m,n) 7→ (m+ a, n+ a)

for each a > 0 that complete the following commutative diagram

N× N Z

N× N

g

g
fa

but {(0, 0), . . . , (a− 1, a− 1)} /∈ im(fa) so fa is not even an epimorphism.

Recall from Chapter 3, that an S-act A has a coessential projective

cover if there exists an S-act P ∈ P and an S-epimorphism g : P → A such

that for any subact P ′ ⊆ P , g|P ′ is not an epimorphism. Coessential pro-

jective covers of acts were studied in [34] and [28] and those monoids where

every S-act has a coessential projective cover were characterised. Analo-

gously to rings, these have been named perfect monoids.

Lemma 6.6. ([52, Theorem 5.7]) An S-map g : P → A, with P ∈ P, is a

coessential projective cover of A if and only if it is a P-cover.
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Proof. The same proof as Lemma 6.1.

Corollary 6.7. Every S-act has a P-cover if and only if S is perfect.

It is worth mentioning that one characterisation of perfect monoids is

those monoids where the projective acts are closed under directed colimits,

or equivalently, when all the strongly flat acts are projective (see [28]). This

would mean we could apply Theorems 5.37 and 6.4 to get the same result.

Proposition 6.8. ([38, Proposition 17.24]) If an S-act A is the union of

an infinite, strictly ascending chain of cyclic subacts then A does not have

a projective cover.

Proof. Suppose A =
⋃
n∈N anS and

a1S ⊂ a2S ⊂ · · · ⊂ anS ⊂ · · · ,

where all inclusions are strict, is an ascending chain of cyclic subacts of A and

assume A has a projective cover P with coessential epimorphism f : P → A.

Now P =
∐
i∈I eiS for some idempotents ei ∈ S, i ∈ I by Theorem 2.29.

But if |I| > 1 and f(eiS) ⊆ anS for some n ∈ N then an+1 ∈ im(f |P\eiS)

and so f |P\eiS is still an epimorphism and thus P cannot be a cover of A.

Finally, if |I| = 1 then the image of f lies in one of the subacts anS and

thus f cannot be an epimorphism.

Recall from Example 6.5, that Z =
⋃
i∈N(−i+N) is a union of an infinite

strictly ascending chain of cyclic subacts, so by Proposition 6.8, Z doesn’t

have a projective cover, and so by Lemma 6.6 doesn’t have a P-cover.

6.3 Strongly flat covers

Recall from Theorem 2.54 that SF is closed under directed colimits and

from Corollary 2.35 that
∐
i∈I Xi ∈ SF ⇔ Xi ∈ SF for each i ∈ I. Also

note that S ∈ SF and so for any S-act A, Hom(S,A) 6= ∅. Therefore, by

Proposition 4.20, Theorem 5.43 and Corollaries 4.19 and 5.40 we have the

following results:
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Theorem 6.9. If for each cardinal λ there exists a cardinal κ > λ such that

for every indecomposable X ∈ SF with |X| ≥ κ and every congruence ρ on

X with |X/ρ| ≤ λ there exists a non-identity pure (or 2-pure) congruence

σ ⊆ ρ on X, then every S-act has an SF-cover.

Theorem 6.10. Given a monoid S, if there exists a cardinal λ such that

every indecomposable S-act A ∈ SF satisfies |A| ≤ λ, then every S-act has

an SF-cover.

Monoids embeddable in groups

Lemma 6.11. Let S be a monoid that embeds in a group G. Then every

S-act has an SF-cover.

Proof. We show that every indecomposable strongly flat S-act embeds in G

and so can apply Theorem 6.10. Let X be an indecomposable strongly flat

S-act, then it is locally cyclic by Corollary 2.37. Pick some some x ∈ X,

then for all y ∈ X, there exists z ∈ X, s, t ∈ S such that x = zs and y = zt,

and we can define a function

fx : X → G

y 7→ s−1t.

We first check that this is well-defined. Let x = z′s′ and y = z′t′, then

zs = z′s′ and by Condition (P ) there exists z′′ ∈ X, u, v ∈ S such that

z = z′′u, z′ = z′′v and us = vs′. Then z′′ut = z′′vt′ and by Condition (E)

there exists z′′′ ∈ X, w ∈ S such that z′′ = z′′′w and wut = wvt′, so we have

s−1t = s−1(wu)−1(wu)t = (s−1u−1)w−1(wvt′) = (us)−1vt′ = (vs′)−1vt′ = s′−1t.′

This is clearly an S-map as f(yr) = s−1(tr) = (s−1t)r = f(y)r, and if we

let s−1t = s′−1t′, then

y = z′′ut = z′′u(ss−1)t = z′′(us)(s−1t) = z′′(vs′)(s′−1t′) = z′′vt′ = y′

so f is also injective.
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Condition (A)

Recall that a monoid S is said to satisfy condition (A) if every locally cyclic

right S-act is cyclic.

Proposition 6.12. Let S be a monoid that satisfies condition (A). Then

every S-act has an SF-cover.

Proof. By Corollary 2.37, the indecomposable acts in SF are the locally

cyclic acts but since S satisfies Condition (A) all the locally cyclic acts are

cyclic. If S/ρ is cyclic then clearly |S/ρ| ≤ |S| and the result follows from

Theorem 6.10.

It is well known that not every monoid that satisfies condition (A) is

perfect and so we can then deduce that P-covers are in general different

from SF-covers, and by Theorem 3.7 coessential strongly flat covers are

different from SF-covers.

Weak finite geometric type

We say that a monoid S has weak finite geometric type if for all s ∈ S
there exists k ∈ N such that for all m ∈ S, |{p ∈ S | ps = m}| ≤ k.

The following was suggested to us by Philip Bridge [10]. For a version

involving more general categories see [11].

Proposition 6.13 (Cf. [11, Theorem 5.21]). Let S be a monoid having weak

finite geometric type. Then every S-act has an SF-cover.

Proof. Let X be an indecomposable strongly flat S-act, then by Corollary

2.37, it is locally cyclic and so for all x, y ∈ X there exists z ∈ X, s, t ∈ S
such that x = zs, y = zt.

z

yx

s t

We now fix x ∈ X and consider how many possible y ∈ X could satisfy

these equations. Firstly we take a fixed s ∈ S and consider how many
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possible z ∈ X could satisfy x = zs. By the hypothesis, there exists k ∈ N
such that for any m ∈ S, |{p ∈ S | ps = m}| ≤ k. Let us suppose that there

are at least k + 1 distinct z such that x = zs. That is, x = z1s = z2s =

. . . = zk+1s. Then by Lemma 2.36 there exists w ∈ X, p1, . . . , pk+1 ∈ S such

that p1s = . . . = pk+1s and zi = wpi for each i ∈ {1, . . . , k + 1}.

x

z1 z2 . . . zk zk+1

w

s
s s

s

p1
p2 pk

pk+1

However, by the hypothesis this means at least two pi are equal and hence

at least two zi are equal which is a contradiction. So given some fixed s ∈ S
there are at most k possible z such that x = zs. Hence, there are no more

than ℵ0|S| possible z ∈ X, s ∈ S such that x = zs. Similarly, given a fixed

z ∈ X, there are at most |S| possible t ∈ S such that zt = y and hence there

are no more than ℵ0|S|2 possible elements in X and we apply Theorem

6.10

A finitely generated monoid that satisfies this property is said to have

finite geometric type (see [55]). They are precisely the semigroups with

locally finite Cayley graphs.

Note that setting k = 1 in the weak finite geometric type property is the

definition of a right cancellative monoid. But it is a much larger class of

monoids, for example the bicyclic monoid has finite geometric type. In fact,

let B be the bicyclic monoid and let (s, t) ∈ B. Suppose that (m,n) ∈ B
is fixed and suppose that (p, q) ∈ B is such that (p, q)(s, t) = (m,n). We

count the number of solutions to this equation. Recall that

(p, q)(s, t) = (p− q + max(q, s), t− s+ max(q, s)) = (m,n).

If q ≥ s then (p, q) = (m,n − (t − s)) and there is at most one solution to

the equation. Otherwise (p, q) = (m − s + q, q) where q ranges between 0
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and s − 1. There are therefore at most s + 1 possible values of (p, q) that

satisfy the equation and so B has finite geometric type.

So from [36, Example 2.9, Example 2.10] and [6, Corollary 3.13] and the

previous remarks we can deduce,

Theorem 6.14. For the following classes of monoid every act has an SF-

cover.

1. Monoids having weak finite geometric type;

right cancellative monoids,

the Bicylic monoid,

2. Monoids satisfying Condition (A);

finite monoids,

rectangular bands with a 1 adjoined,

right groups with a 1 adjoined,

right simple semigroups with a 1 adjoined,

the semilattice (N,max),

completely simple and completely 0-simple semigroups with a 1

adjoined.

The previous results rely on us showing that the indecomposable strongly

flat S-acts are bounded in size and hence the class of (isomorphic represen-

tatives of) indecomposable strongly flat S-acts forms a set. We show there

exists a monoid S with a proper class of indecomposable strongly flat acts

by constructing an indecomposable strongly flat act of arbitrarily large car-

dinality.

Counterexample of set of indecomposable SF-acts

We now show that the full transformation monoid of an infinite set does not

have a set of indecomposable strongly flat acts.

Lemma 6.15. Given an infinite set Z, there is a well-defined bijective func-

tion φ : Z × Z → Z.
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Proof. For infinite sets, |Z × Z| = |Z| · |Z| = max{|Z|, |Z|} = |Z|.

An example of such a pairing function for the natural numbers is φ((x, y)) :=
1
2(x+ y)(x+ y + 1) + x. This function, which is due to Cantor, maps a di-

agonal path across the N × N lattice and is well known to be bijective [17,

see p.494]

Example 6.16. We show there exists a monoid with a proper class of (iso-

morphic representatives of) indecomposable strongly flat acts by construct-

ing an indecomposable strongly flat act of arbitrarily large cardinality.

Let Z be an infinite set, let S = T (Z) be the full transformation monoid

of Z and by Lemma 6.15, let φ : Z ×Z → Z be a bijective function.. Given

any cardinal λ > 0, let X be a set with |X| = λ and let ZX = {f : X → Z}
be the set of all functions from X to Z. We can make ZX into an S-act with

the action S × ZX → ZX , (f, g) 7→ fg (note, it is much more convenient to

consider ZX as a left S-act since the action is composition of maps). Given

any f, g ∈ ZX , let h ∈ ZX be defined as h(x) = φ((f(x), g(x)). Then define

u, v ∈ S to be u = p1φ
−1 and v = p2φ

−1, where pi ((a1, a2)) = ai. Therefore

f = uh, g = vh and ZX is locally cyclic (hence indecomposable) and has

cardinality |Z||X| > |X| = λ.

Z Z Z

X

u v

f
h g

We now show ZX is strongly flat. Let f, g ∈ ZX , s, t ∈ S such that

sf = tg. Define h ∈ ZX as before, pick some x ∈ X and define ux, vx ∈ S
by

ux(n) :=

{
u(n) if n ∈ im(h)

f(x) otherwise

vx(n) :=

{
v(n) if n ∈ im(h)

g(x) otherwise.
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Then f = uxh, g = vxh. Therefore suxh = sf = tg = tvxh. To see that

sux(n) = tvx(n) for all n ∈ Z, consider the two cases: it is obvious when

n ∈ im(h), otherwise sux(n) = sf(x) = tg(x) = tvx(n) and so ZX satisfies

Condition (P ).

Z Z Z

X

Z

u v

f
h g

s t

Let f ∈ ZX , s, t ∈ S such that sf = tf . Pick some x ∈ X and define

w ∈ S,

w(n) :=

{
n if n ∈ im(f)

f(x) otherwise.

Then f = wf and sw = tw, so ZX satisfies Condition (E) and is strongly

flat.

The following example which proves that not every S-act has an SF-

cover is essentially due to Kruml [40], my contribution being to translate

the example from the language of varieties to the language of S-acts.

Example 6.17. Let T = 〈a0, a1, a2 · · · | aiaj = aj+1ai for all i ≤ j〉 and

S = T 1, then the one element S-act ΘS does not have an SF-precover.

Proof. We first note that S is left cancellative. In fact, every word w ∈
T has a unique normal form w = aα(1) · · · aα(n) where α(i) ≤ α(i + 1)

for all 1 ≤ i ≤ n − 1, and given any aα(n+1), aβ(n+1), it is easy to see

that waα(n+1) = waβ(n+1) implies α(n + 1) = β(n + 1). Hence every S-

endomorphism h : S → S is injective, as h(s) = h(t) implies h(1)s = h(1)t.

Assume ΘS does have an SF-precover, then by Lemma 5.11, SF contains

a weakly terminal object, say T . By Theorem 2.32, let (T, αi)i∈I be the

directed colimit of finitely generated free S-acts (Ti, φ
i
j)i∈I . Let X be any

set with |X| > max{|I|,ℵ0, |S|}, by Theorem 1.3, put a total order on X and
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let Fin(X) denote the set of all finite subsets of X. We now define a direct

system indexed over Fin(X) partially ordered by inclusion, where every

object SY is isomorphic to S and a map from an n−1 element subset Y into

an n element subset Y ∪{z} is defined to be the endomorphism λai : S → S,

s 7→ ais, where i = |{y ∈ Y | y < z}|. It follows from the presentation of S

that this is indeed a direct system, that is, adding in i then adding in j is the

same as adding in j then adding in i. Let (F, βY )Y ∈Fin(X) be the directed

colimit of this direct system, which by Proposition 2.54, is a strongly flat act.

Therefore, there exists an S-map t : F → T . Now for each singleton {x} ∈
Fin(X), by Proposition 2.28, there exists some i ∈ I and θi ∈ Hom(S{x}, Ti)

such that tβ{x} = αiθi. So by the axiom of choice we can define a function

h : X → Z, x 7→ (i, θi(1)) where Z := {(i, x) ∈ {i} × Ti | i ∈ I} and

|Z| ≤ max{|I|,ℵ0, |S|}. Since |X| > |Z|, h cannot be an injective function

and so there exist x 6= y ∈ X with h(x) = h(y). Since θi is determined

entirely by the image of 1, we have that tβ{x} = αiθi = tβ{y}. Without loss

of generality, assume x < y in X, then β{x,y}λa1 = β{x} and β{x,y}λa0 = β{y}.

Again, by Proposition 2.28, there also exists j ∈ I, θj ∈ Hom(S{x,y}, Tj) such

that tβ{x,y} = αjθj . Therefore we have

αiθi = tβ{x} = tβ{x,y}λa1 = αjθjλa1

⇒ αi (θi(1)) = αj (θjλa1(1))

and so by Lemma 2.12 there exists some k ≥ i, j such that φik (θi(1)) =

φjk (θjλa1(1)) which implies φikθi = φjkθjλa1 . Similarly

αiθi = tβ{y} = tβ{x,y}λa0 = αjθjλa0 = αkφ
j
kθjλa0

⇒ αi (θi(1)) = αk

(
φjkθjλa0(1)

)
which again, implies there exists somem ≥ i, k such that φimθi = φkmφ

j
kθjλa0 =

φjmθjλa0 . Therefore

φjmθjλa1 = φkmφ
j
kθjλa1 = φkmφ

i
kθi = φimθi = φjmθjλa0 .

Since both Tj and Tm are finitely generated free S-acts, and S{x,y} is a cyclic

S-act, it is clear that φjmθj is an endomorphism of S and so a monomorphism.

Therefore λa0 = λa1 which implies a0 = a1 which is a contradiction.
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6.4 Condition (P ) covers

From Theorem 2.56 we have that CP is closed under directed colimits and

from Corollary 2.34 that
∐
i∈I Xi ∈ CP ⇔ Xi ∈ CP for each i ∈ I. Also

note that S ∈ CP and so for any S-act A, Hom(S,A) 6= ∅. Therefore, by

Proposition 4.20, Theorem 5.43 and Corollaries 4.19 and 5.40 we have the

following results:

Theorem 6.18. If for each cardinal λ there exists a cardinal κ > λ such

that for every indecomposable X ∈ CP with |X| ≥ κ and every congruence

ρ on X with |X/ρ| ≤ λ there exists a non-identity 2-pure congruence σ ⊆ ρ
on X, then every S-act has a CP-cover.

Theorem 6.19. Given a monoid S, if there exists a cardinal λ such that

every indecomposable S-act A ∈ CP satisfies |A| ≤ λ, then every S-act has

a CP-cover.

By observing the proofs, it is clear that both Propositions 6.13 and 6.12

in the previous section clearly also hold for S-acts satisfying Condition (P )

and so we also have

Theorem 6.20. For the following classes of monoid every act has a CP-

cover.

1. Monoids having weak finite geometric type;

right cancellative monoids,

the Bicylic monoid,

2. Monoids satisfying Condition (A);

finite monoids,

rectangular bands with a 1 adjoined,

right groups with a 1 adjoined,

right simple semigroups with a 1 adjoined,

the semilattice (N,max),

completely simple and completely 0-simple semigroups with a 1

adjoined.
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Example 6.16 is also an example of a monoid that does not have a set

of indecomposable acts satisfying Condition (P ).

6.5 Condition (E) covers

From Theorem 2.57 we have that CE is closed under directed colimits and

from Corollary 2.34 that
∐
i∈I Xi ∈ CE ⇔ Xi ∈ CE for each i ∈ I. Also

note that S ∈ CE and so for any S-act A, Hom(S,A) 6= ∅. Therefore, by

Proposition 4.20, Theorem 5.43 and Corollaries 4.19 and 5.40 we have the

following results:

Theorem 6.21. If for each cardinal λ there exists a cardinal κ > λ such

that for every indecomposable X ∈ CE with |X| ≥ κ and every congruence

ρ on X with |X/ρ| ≤ λ there exists a non-identity 1-pure congruence σ ⊆ ρ
on X, then every S-act has a CE-cover.

Theorem 6.22. Given a monoid S, if there exists a cardinal λ such that

every indecomposable S-act A ∈ CE satisfies |A| ≤ λ, then every S-act has

a CE-cover.

Example 6.16 is also an example of a monoid that does not have a set

of indecomposable acts satisfying Condition (E).

6.6 Flat covers

From Theorem 2.58 we have that F is closed under directed colimits and

from Corollary 2.31 that
∐
i∈I Xi ∈ F ⇔ Xi ∈ F for each i ∈ I. Also

note that S ∈ F and so for any S-act A, Hom(S,A) 6= ∅. Therefore, by

Proposition 4.20, Theorem 5.43 and Corollaries 4.19 and 5.40 we have the

following results:

Theorem 6.23. Given a monoid S, if F is weakly congruence pure, then

every S-act has a F-cover.

Theorem 6.24. Given a monoid S, if there exists a cardinal λ such that

every indecomposable S-act A ∈ F satisfies |A| ≤ λ, then every S-act has a

F-cover.
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6.7 Torsion free covers

From Theorem 2.59 we have that TF is closed under directed colimits and

from Lemma 2.38 that
∐
i∈I Xi ∈ TF ⇔ Xi ∈ TF for each i ∈ I. Also

note that S ∈ TF and so for any S-act A, Hom(S,A) 6= ∅. Therefore, by

Proposition 4.20, Theorem 5.43 and Corollaries 4.19 and 5.40 we have the

following results:

Theorem 6.25. Given a monoid S, if TF is weakly congruence pure, then

every S-act has a TF -cover.

Theorem 6.26. Given a monoid S, if there exists a cardinal λ such that

every indecomposable S-act A ∈ TF satisfies |A| ≤ λ, then every S-act has

a TF -cover.

In 1963 Enochs proved that over an integral domain, every module has a

torsion free cover [21]. We give a proof of the semigroup analogue of Enochs’

result that over a right cancellative monoid, every right act has a torsion

free cover.

Theorem 6.27. Let S be a right cancellative monoid, then every S-act has

a TF -cover.

Proof. Let A be an indecomposable torsion free S-act. For each xs = x′s ∈
A, s ∈ S, since s is right cancellative, x = x′. Hence for each x ∈ A,

s ∈ S there is no more than one solution to x = ys. Now let x, y ∈ A be

any two elements. Since A is indecomposable there exist x1, . . . , xn ∈ A,

s1, . . . , sn, t1, . . . , tn ∈ S such that x = x1s1, x1t1 = x2s2, . . . , xntn = y, as

shown below.

x

x1

•

x2

•

xn

y

s1 t1 s2 t2 tn

If we can show there is a bound on the number of such paths, then there

is a bound on the number of elements in A. Now, by the previous argument,

there are only |S| possible x1 ∈ A such that x = x1s1 for some s1 ∈ S. In

a similar manner, given x1 there are only |S| possible x1t1 for some t1 ∈ S.
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Continuing in this fashion we see that the number of such paths of length

n ∈ N is bounded by |S|2n, and so |A| ≤ |S|ℵ0 . So by Theorem 6.26 every

S-act has a TF -cover.

Example 6.16 is also an example of a monoid that does not have a set

of indecomposable torsion free acts.

6.8 Principally weakly flat covers

By Theorem 2.50 over a right cancellative monoid, an act is torsion free if

and only if it is principally weakly flat, so we get the following corollary

from the last result.

Corollary 6.28. Every act over a right cancellative monoid has a PWF-

cover.

6.9 Injective covers

In 1981 Enochs proved that every module over a ring has an injective cover

if and only if the ring is Noetherian [25, Theorem 2.1]. The situation for

acts is not so straightforward. In particular if R is a Noetherian ring then

there exists a cardinal λ such that every injective module is the direct sum

of indecomposable injective modules of cardinality less than λ. We give an

example later to show that this is not so for monoids.

It is worth noting that by Lemma 2.42, every injective S-act has a fixed

point and that if an S-act A has an I-precover then there exists C ∈ I such

that Hom(C,A) 6= ∅.
We have the following necessary conditions on S for all S-acts to have

an I-precover.

Lemma 6.29. Let S be a monoid. If every S-act has an I-precover then

1. S is a left reversible monoid.

2. S has a left zero.

Proof.
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1. Let Ai, i ∈ I be any collection of injective S-acts, B =
∐
i∈I Ai their

coproduct, and g : C → B the I-precover of B. For each j ∈ I and

inclusion hj : Aj → B there exists an S-map fj : Aj → C such that

gfj = hj . Hence we can define an S-map f : B → A by f |Aj = fj so

that gf = idB and B is a retract of C. Therefore by Proposition 2.41,

B is an injective S-act and by Proposition 2.40, S is left reversible.

2. Let g : I → S be an I-precover of S. Since I is injective it has a fixed

point z and so g(z) is a left zero in S.

Remark 6.30. In particular if every S-act has an I-precover then there is

a left zero z ∈ S such that for all s ∈ S there exists t ∈ S with st = z.

Obviously both conditions above are satisfied if S contains a (two-sided)

zero.

Notice also that if S contains a left zero z then every S-act contains a

fixed point since if A is a right S-act and a ∈ A then (az)s = az for all

s ∈ S. Consequently all Hom-sets are non-empty.

Lemma 6.31. Let S be a left reversible monoid with a left zero. Then∐
i∈I Ai ∈ I if and only if Ai ∈ I for each i ∈ I.

Proof. Since S is left reversible if each Ai are injective then
∐
i∈I Ai is injec-

tive by Proposition 2.40. Conversely, assume A =
∐
i∈I Ai is injective, and

first notice that since S has a left zero each Ai has a fixed point say zi ∈ Ai.
Given any j ∈ I and monomorphism ι : X → Y and any homomorphism

f : X → Aj , clearly f ∈ Hom(X,A) and so there exists f̄ : Y → A such that

f̄ |X = f . Now let Kj = {y ∈ Y | f̄(y) ∈ Aj} and notice that X ⊆ Kj and

that y ∈ Kj if and only if ys ∈ Kj for all s ∈ S. Now define a new function

h : Y → Aj by

h(y) =

f̄(y) y ∈ Kj

zj otherwise

Since zj is a fixed point, h is a well-defined S-map with h|X = f and so Aj

is injective.

Therefore, by Lemma 6.31, and the fact that when S contains a left

zero, Hom(ΘS , A) 6= ∅ for all S-acts A and ΘS is injective, we can apply
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Corollary 5.40, Proposition 4.20, and Theorems 2.63, 5.37 and 5.43 to have

the following results:

Theorem 6.32. Let S be a monoid, then every S-act has an I-precover

if and only if S is left reversible, has a left zero and I satisfies the weak

solution set condition.

Theorem 6.33. Let S be a left reversible Noetherian monoid with a left

zero. If I is weakly congruence pure then every S-act has an I-cover.

Theorem 6.34. Let S be a left reversible Noetherian monoid with a left

zero. If there is a cardinal λ such that every indecomposable injective S-act

X is such that |X| ≤ λ then every S-act has an I-cover.

We now give a counterexample to the conditions of the previous Theo-

rem.

Example 6.35. Let S = {1, 0} be the trivial group with a zero adjoined.

Given any set X, choose and fix y ∈ X and define an S-action on X by

x · 1 = x and x · 0 = y. Given any x, x′ ∈ X, x · 0 = x′ · 0 and so it is easy

to see that X is an indecomposable S-act. It is clear that the only cyclic

S-acts are the one element S-act ΘS and S itself. Therefore since y is a fixed

point in X, by Theorem 2.43, to show X is an injective S-act it suffices to

show that any S-map f : ΘS → X extends to S. This is straightforward as

the image of f is a fixed point. We can therefore construct arbitrarily large

indecomposable injective S-acts.

Since the monoid given in the previous Example is finite then it is clearly

Noetherian. Hence it is an example of a Noetherian left reversible monoid

with a left zero with arbitrarily large indecomposable injective acts. Con-

sequently, unlike in the ring case, not every monoid satisfies the conditions

given in Theorem 6.34.

6.10 Divisible covers

As mentioned previously, an obvious necessary condition for an S-act A to

have an X -cover is the existence of an S-act C ∈ X such that Hom(C,A) 6=
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∅. It is fairly obvious that if X includes all the free acts then this condition

is always satisfied. We consider here the class of divisible acts where this

condition is not always satisfied and where the covers, when they exist, are

monomorphism rather than epimorphisms.

Recall from Theorem 5.47, that if X is a class of S-acts containing a

generator and closed under colimits, then every S-act has an X -cover. Al-

though by Lemma 2.64, D is closed under colimits, it does not always contain

a generator. In fact we have the following

Lemma 6.36. Let S be a monoid, then the following are equivalent

1. D has a generator.

2. S is divisible.

3. All left cancellative elements of S are left invertible.

4. Every S-act is divisible.

5. Every S-act has an epimorphic D-cover.

Proof. The equivalence of (2), (3) and (4) follows by Proposition 2.45.

(1) ⇒ (2) If G ∈ X is a generator, then there exists an epimorphism

g : G → S. Hence S is the homomorphic image of a divisible S-act and so

is divisible by Lemma 2.44.

(4)⇒ (5) Every S-act is its own epimorphic D-cover.

(5)⇒ (1) The epimorphic D-cover of S is a generator in D.

Recall from Lemma 2.46 that if an S-act A contains a divisible subact,

then it has a unique largest divisible subactDA =
⋃
i∈I Di where {Di | i ∈ I}

is the set of all divisible subacts of A.

Theorem 6.37. Let S be a monoid and A an S-act. Then the following

are equivalent:

1. g : D → A is a D-cover of A.

2. g : D → A is a D-cover of A with the unique mapping property.

3. D = DA is the largest divisible subact of A and g is the inclusion map.
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Proof. Clearly (2)⇒ (1).

(1) ⇒ (2) By Lemmas 5.44 and 2.64, A has a D-cover g′ : D′ → A with

the unique mapping property. By Theorem 5.1, there exists an isomorphism

ψ : D′ → D such that g′ = gψ. Given any X ∈ D with h : X → A,

since D is a D-cover of A, there exists some f : X → D such that gf = h.

Assume there exists another S-map f ′ : X → D such that gf ′ = h. Since

g′(ψ−1f) = gψ(ψ−1f) = gf = h = gf ′ = gψ(ψ−1f ′) = g′(ψ−1f ′), and

g′ : D′ → A has the unique mapping property, then ψ−1f = ψ−1f ′ which

implies f = f ′ and g : D → A also has the unique mapping property.

(3) ⇒ (1) Let X be a divisible S-act, and let h : X → A be an S-map. By

Lemma 2.44, im(h) is a divisible subact of A and so im(h) ⊆ D. Therefore

h : X → D is a well-defined S-map obviously commuting with the inclusion

map. Hence D is a D-precover of A. It is clear that this is also a D-cover as

any map f : D → D commuting with the inclusion map is an automorphism.

(2) ⇒ (3) Let g : D → A be a D-cover of A. The image of g is a divisible

subact of A, and so A has a largest divisible subact DA. Let i : DA → A

be the inclusion map, then by the D-cover property there exists some h :

DA → D such that hg = i, hence im(g) = DA. Since g(hg) = g, by the

unique mapping property, hg = idD and g is a monomorphism.

We therefore have the following result

Theorem 6.38. Let S be a monoid. Then the following are equivalent

1. Every S-act has a D-precover.

2. Every S-act has a D-cover.

3. Every S-act has a divisible subact.

4. S contains a divisible right ideal K.

Proof. (1) and (2) are equivalent by Lemma 5.44.

The equivalence of (2) and (3) is obvious by the last theorem.

If every S-act has a divisible subact then clearly S has a divisible subact,

which is a right ideal. Conversely if K is a divisible subact of S, then

given any S-act X, it has a divisible subact XK. Hence (3) and (4) are

equivalent.
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For example, if S is any monoid with a left zero z, then K = {z} is a

divisible right ideal of S and so every S-act has a D-cover.

Notice that not every S-act has a D-cover. For example, let S = (N,+)

and consider S as an S-act over itself. For every n ∈ S, n + 1 is a left

cancellable element in S, but there does not exist m ∈ S such that n =

m+ (n+ 1). Therefore S does not have have any divisible right ideals.



Chapter 7

Open Problems and Further

Work

We list here a few open problems and suggestions for further work surround-

ing this area.

1. What are the necessary and sufficient conditions on a monoid S for

every S-act to have an SF-cover? (and similarly for other classes of

acts).

2. If Y ⊆ X is a subclass of a class of S-acts, both closed under isomor-

phisms, how does an S-act having a Y-cover relate to an S-act having

an X -cover?

3. What can be said about X -envelopes, the categorical dual notion?

How do these relate to divisible extensions, principally weakly injective

extensions and other known constructions?
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Appendix A

Normak’s Theorem

The following Theorem was first proved by P. Normak, although his original

paper is in Russian and quite difficult to get hold of. I thank Christopher

Hollings for providing a translation of this paper. For completeness sake I

include the proof here, although written in my own style.

Proposition A.1 (Cf. [45, Proposition 4]). An S-act A is finitely presented

if and only if there exists a finitely generated free S-act F and a finitely

generated congruence ρ on F such that A ∼= F/ρ.

Proof. Let A be a finitely presented S-act. Then there exists an exact

sequence

K
α
⇒
β
F

γ→ A

where K is finitely generated and F is finitely generated free. Let k1, . . . , kr

be a set of generators for K and let ρ be the congruence on F generated by

the pairs (α(ki), β(ki)) for i = 1, . . . , r. Then (x, y) ∈ ρ if and only if x = y

or there exists α(ki1), . . . , α(kin), β(ki1), . . . , β(kin) ∈ F , s1, . . . , sn ∈ S with

x = α(ki1)s1 β(ki2)s2 = α(ki3)s3 · · ·β(kin)sn = y

β(ki1)s1 = α(ki2)s2 β(ki3)s3 = α(ki4)s4 · · ·

where i1, . . . , in ∈ {1, . . . , r}. Since γα = γβ,

γ(x) = (γα)(ki1s1) = (γβ)(ki1s1) = (γα)(ki2s2) = · · · = (γβ)(kinsn) = γ(y)

and so ρ ⊆ ker(γ). Hence we can apply Theorem 2.2 to find an S-map

γ′ : F/ρ→ A such that the following diagram
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F A

F/ρ

γ

ρ\ γ′

commutes. Now given any k ∈ K, k = kis for some ki ∈ {k1, . . . , kr},
s ∈ S. So we have

ρ\α(k) = ρ\α(kis) = ρ\α(ki)s = ρ\β(ki)s = ρ\β(kis) = ρ\β(k)

and so ρ\α = ρ\β and by exactness there also exists an S-map ψ : A→ F/ρ

such that the following diagram

F A

F/ρ

γ

ρ\ ψ

commutes. Therefore γ = γ′ρ\ and ρ\ = ψγ so that ρ\ = ψγ′ρ\ and

γ = γ′ψγ. Now γ is an epimorphism (by the uniqueness requirement in

the definition of coequalizers), and clearly ρ\ is an epimorphism so we get

1F/ρ = ψγ′ = γ′ψ and so γ′ and ψ are mutually inverse and A ∼= F/ρ.

Conversely, assume A ∼= F/ρ, where F is finitely generated free and ρ

is generated by pairs (ai, bi), i ∈ R = {1, . . . , r}. Now let K := R × S be

the finitely generated free S-act with r generators and define α : K → F ,

(i, s) 7→ ais and β : K → F , (i, s) 7→ bis. Clearly these are well defined

S-maps. Now for any (i, s) ∈ K we have(
ρ\α
)

(i, s) = ρ\(α(i, s)) = ρ\(ais) = ρ\(bis) = ρ\(β(i, s)) =
(
ρ\β
)

(i, s)

so ρ\α = ρ\β. Now let γα = γβ for some γ : F → A. Now (x, y) ∈ ρ if and

only if x = y or there exists ai1 , . . . , ain , bi1 , . . . , bin ∈ F , s1, . . . , sn ∈ S with

x = ai1s1 bi2s2 = ai3s3 · · · binsn = y

bi1s1 = ai2s2 bi3s3 = ai4s4 · · ·
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where i1, . . . , in ∈ R. Therefore

γ(x) = γ(ai1s1) = (γα) (i1, s1) = (γβ) (ii, s1) = γ(bi1s1)

= γ(ai2s2) = (γα) (i2, s2) = · · · = γ(binsn) = γ(y)

and so ρ ⊆ ker(γ) and we can apply Theorem 2.2 to find a homomorphism

ψ : F/ρ→ A such that the following diagram

F A

F/ρ

γ

ρ\ ψ

commutes. HenceK ⇒ F → F/ρ is exact and A is finitely presented.





Appendix B

Govorov-Lazard Theorem

D. Lazard proved that every flat module is a directed colimit of finitely

generated free modules in his Thesis [43]. Govorov also independently proved

the result. B. Stenström proved the semigroup analogue of this result, that

every strongly flat act is a directed colimit of finitely generated free acts

in his 1971 paper [56]. Towards the end of his proof he claims the rest “is

done exactly as in the additive case”, although I struggled to replicate the

method. For completeness sake, I include my version of the proof, based

somewhat on Stenström’s proof and also on Bulman-Fleming’s proof for the

category of S-posets [15].

Theorem B.1. Every strongly flat act is a directed colimit of finitely gen-

erated free acts.

Proof. For any S-act A, let F := A× N× S be the free S-act generated by

A × N, and let φ : F → A be the epimorphism that sends (a, n, s) to as,

so by Theorem 2.2, there is an isomorphism ρ : F/ ker(φ) → A that sends

(a, n, s) ker(φ) to as. We shall define a set I as follows. An element α ∈ I is

a pair α = (Lα,Kα), where Lα is a finite subset of A×N, and Kα is a finitely

generated congruence on Fα contained in ker(φ), where Fα := Lα×S is the

free subact of F generated by Lα. For α, β ∈ I, we define α ≤ β if Lα ⊆ Lβ
and Kα ⊆ Kβ. Let Aα be the finitely presented S-act Fα/Kα. For α ≤ β,

we have a natural S-map φαβ : Aα → Aβ, (a, n, s)Kα 7→ (a, n, s)Kβ, so we

get a direct system (Aα, φ
α
β).

We now intend to show that I is a directed index set. Given any α,
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β ∈ I, let Lγ := Lα ∪ Lβ and this is a finite subset of A × N containing

Lα and Lβ. Let Zα, Zβ be finite sets of generators for Kα, Kβ respectively,

and define Zγ := Zα ∪ Zβ. Take the congruence generated by Zγ on Fγ ,

the free subact of F generated by Lγ , and call it Kγ . Now the congruence

generated by Zγ on Fγ is clearly contained in the congruence generated by

Zγ on F , which in turn must be contained in ker(φ) as it is, by definition, the

smallest congruence on F containing Zγ . Hence Kγ is a finitely generated

congruence on Fγ contained in ker(φ). So there must exist some γ ∈ I such

that γ = (Lγ ,Kγ), giving α, β ≤ γ and hence I is directed.

Let (X, θα) be the directed colimit of (Aα, φ
α
β). There are natural S-

maps µα : Aα → F/ ker(φ), (a, n, s)Kα 7→ (a, n, s) ker(φ) which commute

with φαβ for all α ≤ β, so by the property of colimits, there exists an S-map

ψ : X → F/ ker(φ) such that ψθα = µα for all α ∈ I. We now intend to

show that ψ is an isomorphism and hence F/ ker(φ) is a directed colimit of

finitely presented S-acts.

Aα Aβ

F/ ker(φ)

A

φαβ

θα θβ

µα µβ
ψ

For all (a, n, s) ker(φ) ∈ F/ ker(φ), Lδ := {(a, n)} is a finite (singleton)

subset of A × N and Fδ := Lδ × S is a free subact of F . Then Kδ := 1Fδ ,

the identity relation on Fδ, and Kδ is a finitely generated congruence on

Fδ contained in ker(φ). Hence, there must exist some δ ∈ I such that δ =

(Lδ,Kδ). Therefore ψ (θδ ((a, n, s)1Fδ)) = µδ ((a, n, s)1Fδ) = (a, n, s) ker(φ)

and ψ is an epimorphism. Now given any x, x′ ∈ X such that ψ(x) =

ψ(x′), there exist α, β ∈ I, (a, n, s)Kα ∈ Aα, (a′, n′, s′)Kβ ∈ Aβ such that

θα ((a, n, s)Kα) = x and θβ ((a′, n′, s′)Kβ) = x′. Now since ψ(x) = ψ(x′) we
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get that

(a, n, s) ker(φ) = θα ((a, n, s)Kα) = ψµα ((a, n, s)Kα) = ψ(x) = ψ(x′)

= ψµβ
(
(a′, n′, s′)Kβ

)
= θβ

(
(a′, n′, s′)Kβ

)
= (a′, n′, s′) ker(φ)

so ((a, n, s), (a′, n′, s′)) ∈ ker(φ). Now let Zα, Zβ be finite generating sets for

Kα, Kβ respectively, and define Zγ := Zα∪Zβ∪{((a, n, s), (a′, n′, s′))} which

is contained within ker(φ). Let Lγ := Lα ∪ Lβ and Kγ be the congruence

generated by Zγ on Fγ , the free subact of F generated by Lγ . Clearly Kγ

is a finitely generated congruence on Fγ and since Zγ ∈ ker(φ), by the same

argument as before, the congruence generated by Zγ on Fγ is contained

within the congruence generated by Zγ on F which is contained within

ker(φ). So there must exist some γ ∈ I such that γ = (Lγ ,Kγ), giving α,

β ≤ γ and (a, n, s)Kγ = (a′, n′, s′)Kγ . Finally, we get that

x = θα((a, n, s)Kα) = θγφ
α
γ ((a, n, s)Kα) = θγ((a, n, s)Kγ)

= θγ((a′, n′, s′)Kγ) = θγφ
β
γ ((a′, n′, s′)Kβ) = θβ((a′, n′, s′)Kβ) = x′

and ψ is a monomorphism and hence an isomorphism. So A is a directed

colimit of finitely presented S-acts as A ∼= F/ ker(φ).

For the next part of the proof we show that when A is strongly flat, the

set I0 := {β ∈ I : Aβ is (finitely generated) free} is cofinal in I (see [54,

Exercise 2.43]), for then A is the directed colimit of the finitely generated

free S-acts {Aβ : β ∈ I0}.
Let α ∈ I, and given the S-map µα : Aα → F/ ker(φ), since F/ ker(φ) ∼=

A is strongly flat and Aα is finitely presented, by Theorem 4.10, there exists

a finitely generated free S-act, which we represent as X × S where X :=

{x1, . . . , xk}, and S-maps mα : Aα → X × S, hα : X × S → F/ ker(φ)

such that hαmα = µα. Let ai = ρhα((xi, 1)) for each xi ∈ X where ρ :

F/ ker(φ) → A, (a, n, s) ker(φ) 7→ as is an isomorphism, and define L :=

{(a1, n1), . . . , (ak, nk)}, where n1, . . . , nm are chosen to be distinct and such

that (ai, ni) /∈ Lα. Note that Lβ := Lα ∪ L is a finite subset of A× N.

Let Fβ := Lβ × S be the free subact of F generated by Lβ and define

λ : Fβ → X × S by λ|Fα := mαK
\
α and λ((ai, ni, s)) := (xi, s) for all

(ai, ni) ∈ L, s ∈ S.
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X × S F/ ker(φ) A

Fβ Aα

hα ψ

λ
mα

µα

Now for each (ai, ni, s) ∈ L× S we have

(hαλ)((ai, ni, s)) = hα((xi, s)) = hα((xi, 1))s = ρ−1ais = (ai, ni, s) ker(φ)

and for each (a, n, s) ∈ Lα × S we have

(hαλ)((a, n, s)) = hα(mα((a, n, s)Kα)) = µα((a, n, s)Kα) = (a, n, s) ker(φ)

so that hαλ = ker(φ)\|Fβ . So if we let x, y ∈ Fβ, then it is clear that

λ(x) = λ(y)⇒ hαλ(x) = hαλ(y)⇒ ker(φ)\(x) = ker(φ)\(y)⇒ (x, y) ∈ ker(φ)

and so ker(λ) ⊆ ker(φ). We now wish to show that ker(λ) is finitely gener-

ated.

Given any (a, n) ∈ Lα, let (x(a,n), s(a,n)) := mα((a, n, 1)Kα), and then

take (a(a,n), n(a,n)) to be the unique pair in L such that a(a,n) = ρhα((x(a,n), 1)).

We can then define Z to be all the pairs ((a, n, 1), (a(a,n), n(a,n), s(a,n))) where

(a, n) ∈ Lα, and note that Z is finite. Now let Zα be a finite generating set

for Kα and define Zβ := Zα ∪ Z. We claim that ker(λ) is equivalent to Kβ,

the congruence generated by Zβ, and hence is finitely generated.

Given any pair in Zβ, it is either in Zα or it is in Z, so we consider two

cases. Firstly, let ((a, n, s), (a′, n′, s′)) ∈ Zα, then (a, n, s)Kα = (a′, n′, s′)Kα

and

K\
α((a, n, s)) = K\

α((a′, n′, s′))

⇒ λ((a, n, s)) = mαK
\
α((a, n, s)) = mαK

\
α((a′, n′, s′)) = λ((a′, n′, s′)).

Secondly, let ((a, n, 1), (a(a,n), n(a,n), s(a,n)) ∈ Z, then

λ((a, n, 1)) = mαK
\
α((a, n, 1)) = (x(a,n), s(a,n)) = λ((a(a,n), n(a,n), s(a,n))).

Therefore, given any pair (pi, qi) ∈ Zβ ∪ Zopβ , λ(pi) = λ(qi). So given any

pair ((a, n, s), (a′, n′, s′)) in Kβ, either (a, n, s) = (a′, n′, s′) in which case
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λ((a, n, s)) = λ((a′, n′, s′)) or

(a, n, s) = p1w1, q1w1 = p2w2, q2w2 = p3w3, · · · qnwn = (a′, n′, s′)

where w1, . . . , wn ∈ S and (pi, qi) ∈ Zβ ∪ Zopβ , so that

λ((a, n, s)) = λ(p1w1) = λ(p1)w1

= λ(q1)w1 = λ(q1w1) = · · · = λ(qnwn) = λ((a′, n′, s′)).

Hence Kβ ⊆ ker(λ). Now we intend to show that ker(λ) ⊆ Kβ.

Let ((a, n, s), (a′, n′, s′)) ∈ ker(λ), since Fβ := Fαq (L×S), without loss

of generality we can consider three cases;

(i) (a, n, s), (a′, n′, s′) ∈ Fα; or

(ii) (a, n, s), (a′, n′, s′) ∈ L× S; or

(iii) (a, n, s) ∈ Fα, (a′, n′, s′) ∈ L× S.

For each case we show that ((a, n, s), (a′, n′, s′)) ∈ Kβ.

(i) Let (a, n, s), (a′, n′, s′) ∈ Fα and λ((a, n, s)) = λ((a′, n′, s′)). Then

λ((a, n, 1))s = λ((a′, n′, 1))s and (x(a,n), s(a,n))s = (x(a′,n′), s(a′,n′))s
′, hence

x(a,n) = x(a′,n′) and s(a,n)s = s(a′,n′)s
′, therefore we also have a(a,n) = a(a′,n′)

and n(a,n) = n(a′,n′). Hence

(a, n, s) =(a, n, 1)s,

(a(a,n), n(a,n), s(a,n))s = (a(a′,n′), n(a′,n′), s(a′,n′))s
′,

(a′, n′, 1)s′ = (a′, n′, s′)

and ((a, n, s), (a′, n′, s′)) ∈ Kβ.

(ii) Let (ai, ni, s), (aj , nj , s
′) ∈ L × S and λ((ai, ni, s)) = λ((aj , nj , s

′)).

Then (xi, s) = (xj , s
′) and ai = ρhα(xi, 1) = ρhα(xj , 1) = aj so ni = nj as

well. Therefore ((ai, ni, s), (aj , nj , s
′)) ∈ Kβ since it is reflexive.

(iii) Let (a, n, s) ∈ Fα, (ai, ni, s
′) ∈ L×S, and λ((a, n, s)) = λ((ai, ni, s

′)).

Then λ((a, n, 1))s = λ((ai, ni, s
′) and (x(a,n), s(a,n))s = (xi, s

′). Therefore

a(a,n) = ρhα(x(a,n), 1) = ρhα(xi, 1) = ai and so n(a,n) = ni. Now,

(a, n, s) =(a, n, 1)s

(a(a,n), n(a,n), s(a,n))s = (ai, ni, s(a,n)s) = (ai, ni, s
′)

and ((a, n, s), (ai, ni, s
′)) ∈ Kβ. Therefore ker(λ) ⊆ Kβ and ker(λ) = Kβ.
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Since Kβ is generated by Z∪Zα it clearly contains Kα which is generated

by Zα, so there must exist some β = (Lβ,Kβ) ∈ I such that α ≤ β. Finally

β ∈ I0, since Aβ := Fβ/Kβ = Fβ/ ker(λ) ∼= X × S, which is free.
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