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INVESTIGATING THE PERFORMANCE OF MULTILEVEL CROSS-
CLASSIFIED AND MULTIPLE MEMBERSHIP LOGISTIC MODELS: WITH
APPLICATIONS TO INTERVIEWER EFFECTS ON NONRESPONSE

Rebecca Vassallo

This thesis focuses on the modelling of interviewer effects on nonresponse
using cross-classified and multiple membership multilevel logistic models, and
investigates the properties of such models under various survey conditions.

The first paper reviews the use of cross-classified and multiple
membership models to account for both interviewer and area effects and for
various wave interviewers. An extension to incorporate both wave interviewer
effects and area effects is presented. The mathematical details, assumptions
and limitations of the models are considered. The different models
conceptualised are then fitted to a dataset. This application extends the focus
of the first paper from simply a methodological one to an applied study with
substantive research questions. The study aims to identify interviewer
characteristics that influence nonresponse behaviour, assess the relative
importance of previous and current wave interviewers on current wave
nonresponse, and explore whether respondents react favourably to
interviewers with similar characteristics.

The second and third papers investigate the properties of cross-
classified and multiple membership multilevel models respectively under
various survey conditions. The second study looks at the effects of different
interviewer case assignment schemes, total sample sizes, group sizes
(interviewer caseload), number of groups (number of interviewers), overall
rates of response, and the variance partitioning coefficient on the properties of
the estimators and the power of the Wald test. The study aims to provide
practical recommendations for future study designs by identifying the smallest

total sample size, interviewer pool, and the most geographically-restrictive and



cost-effective interviewer case allocation required to adequately distinguish
between area and interviewer effects. The third paper includes a sensitivity
analysis which looks at how accurately the Deviance Information Criterion
identifies the best weighting scheme for different true multiple membership
weights, interview allocation profiles, and total sample sizes. This sensitivity
analysis indicates how well the relative importance of the previous and current
wave interviewers can be estimated in multiple membership models under
different survey conditions. Moreover the quality of parameter estimates under
models with correctly specified weights, models with incorrectly specified
weights, and models with weights based on the Deviance Information Criterion

are also investigated.
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l. Introduction

I.1. Research Purpose

The aim of this thesis is to investigate the performance of cross-classified and
multiple membership multilevel logistic models, with applications to

interviewer effects on nonresponse.

.2. Outline of the Thesis

The Introduction chapter outlines the aims and significance of the study and
the rationale behind the choice of the three papers. It also includes a brief
overview of the concept of paradata, interviewer effects on nonresponse and
multilevel modelling. Next, the three papers are presented separately. Each
paper includes an introduction, literature review, data and methodology,
results, and a discussion and conclusion section. The Conclusion chapter
presents an overview of the study findings in the context of previous studies,
and discusses study limitations and suggestions for further work as well as the

implications of the results for survey administration and survey data analysis.

I.3. Aims and Significance of this Study

With a continuous rise in survey nonresponse rates, there is an increase in
studies focusing on interviewer effects on nonresponse which aim to identify
survey management strategies to reduce nonresponse at the design stage or
during data collection. With interviewers playing an important role in gaining
response (Groves & Couper, 1998; Hox & De Leeuw, 2002), such studies
acknowledge the relevance of research in this area to guide policies in survey
administration in order to minimise any negative interviewer effects (Sinibaldi
et al., 2009; Durrant et al., 2010). This study aims to contribute to this body of

literature, with more emphasis placed on the modelling of such data as well as



the investigation of the properties of estimators and the test statistic of such

models under different survey conditions.

The first paper reviews the use of cross-classified multilevel models to
account for both interviewer and area effects in cross-sectional surveys, these
being cross-classified multilevel models. The paper also reviews the use of
both cross-classified and multiple membership multilevel models to account
for current and previous wave interviewers on wave nonresponse in
longitudinal surveys. Multilevel multiple membership multiple classification
(MMMC) models and cross-classified models including three higher-level
classifications are considered to be an extension of these models to
incorporate both the area and the two interviewer effects. The two modelling
possibilities have different underlying assumptions, which are discussed and
used to analyse a dataset. This application highlights possible estimation
problems in the use of these models for realistic data structures, such as when
interviewers work in a very limited number of areas and when only a

percentage of cases experience interviewer changes across subsequent waves.

This paper also has an applied focus, with various substantive questions
being addressed. Often in-depth information on interviewers is lacking in
studies analysing interviewer effects (Hill & Willis, 2001; Watson, 2003;
Nicoletti & Peracchi, 2005), limiting the analyses to random effects or very
limited demographic variables. In this study the rich data available - the Family
and Children Study linked to administrative data and interviewer data from the
NatCen (National Centre for Social Research) 2009 interviewer survey - makes
the exploration of the above-mentioned objectives possible. The study aims to
identify interviewer characteristics that are associated with nonresponse
behaviour, assess the relative importance of previous and current wave
interviewers on current wave nonresponse, and explore whether respondents
react favourably to interviewers with similar characteristics. Results may be
used to inform interviewer selection, training, appraisal and case allocation.
The impact of matching the sampled member and the interviewer on
demographic or socio-economic characteristics on the sample member’s
likelihood of responding is explored. Any significant matching effects may

suggest criteria for successful interviewer changes at later waves.



The second and third papers look at the properties of cross-classified
and multiple membership multilevel models respectively under various survey
conditions. The second study looks at the effects of different interviewer case
assignment schemes, total sample sizes, group sizes, number of groups,
overall rates of response, and variance partitioning coefficient on the
properties of parameter estimators and the power of the Wald test. The
properties of parameter estimators include the covariance of the two variance
estimates, percentage relative bias, the mean squared error, the standard error
and the confidence interval coverage. The study will also provide practical
recommendations for future study designs by identifying the smallest total
sample size, interviewer pool, and the most geographically restrictive and
cost-effective interviewer case allocation required to adequately distinguish
between area and interviewer effects. The third paper includes a sensitivity
analysis which looks at how accurately the Deviance Information Criterion
diagnostic identifies the best weighting scheme for different true multiple
membership weights, proportions of the total sample which experience an
interviewer change, total sample sizes and number of groups for typical values
of overall probability and intra-cluster correlations. This sensitivity analysis will
indicate how well the relative importance of the previous and current wave
interviewers can be estimated in multiple membership models under different
survey conditions. Moreover, the quality of parameter estimates under models
with correctly specified weights, models with incorrectly specified weights, and
models with weights selected on the basis of the Deviance Information
Criterion are also investigated. Methodologically the two simulation papers
highlight the survey conditions under which models perform well for this type
of data structure. However, in spite of the focus on survey nonresponse for
cases from various area sampling units assigned to specific interviewers, the
results on the performance of cross-classified and multiple membership

models can be extended to other applications with similar structures.



.4. Background

.4.1. Paradata

The term paradata was first coined by Mick Couper at the Joint Statistical
Meeting in Dallas (1998), and it initially referred strictly to automated
computer-generated survey process data for CAPlI and CATI systems. Call
record data, keystrokes and other audit trails fall under this initial restrictive
definition of paradata. The analysis of such data was being advocated to assess
the quality of the inputted data and to identify any patterns in contact and
response. Since then, as Kreuter (2010) explains, this term has evolved to
include data which is generated during the survey process - but which is not
part of the survey questionnaire itself - and collected using various methods.
So, for example, interviewer observations of the surrounding area
neighbourhood and audio recordings of doorstep interactions are nowadays
also considered to be paradata, and are seen as information to potentially
improve survey practice. A simple interviewer identification code linking an
interviewer to a specific respondent case is also very important paradata. This
is the main paradata dealt with in this dissertation. The interviewer code allows
for the clustering of cases within interviewers to be correctly accounted for,
and also allows the variation in the outcome measure that is attributable to the
interviewer to be quantified. Other linked data such as administrative data or
data from other surveys, for example interviewer historical response rates and
demographic information or interviewer survey data, are not typically

considered as paradata but simply as auxiliary data (Kreuter, 2010).

.4.2. Interviewer Effects on Nonresponse

The presence of significant interviewer effects on nonresponse has been
confirmed in both cross-sectional (Blom et al., 2010; Durrant & Steele, 2009;
Durrant et al., 2010) and longitudinal surveys (Campanelli & O'Muircheartaigh,
1999; Pickery & Loosveldt, 2002; Pickery et al., 2001; Haunberger, 2010). In
survey data, the non-random allocation of interviewers across areas raises

questions as to whether interviewer effects are simply higher-level effects,



more specifically area effects, on nonresponse. Some studies, ignoring area
effects and accounting only for interviewer effects in a multilevel model, simply
find evidence of significant higher-level effects (Pickery & Loosveldt, 2002;
Haunberger, 2010; Blom et al., 2010). Other studies, such as that carried out
by Durrant et al. (2010), attempt to disentangle interviewer and area effects by
specifying a cross-classified multilevel model for multistage cluster sample
design data. Cross-classified models are multilevel models which allow the
higher-level variance to be segmented into different non-nested cross cutting
levels. These studies generally seem to indicate that interviewer effects are
more important than area effects. In fact, the results in Durrant et al. (2010)
show a highly significant interviewer variance around three times the size of
the primary sampling unit variance, which is only marginally significant. In
typical survey settings, although interviewers may work in more than one
sampling area, these areas will be limited to neighbouring areas. The extent to
which the limited cross-classification between areas and interviewers in real
survey data impacts the accuracy and precision of the estimates obtained from

these studies is not yet known.

The best data for determining the nature of the higher-level random
effect is data coming from an interpenetrated sample design, where each
sampled case is randomly allocated to interviewers irrespective of the area
provenance of the case. Such a design also eliminates the possibility of more
difficult cases systematically being allocated to more experienced and better
performing interviewers at later waves, with the consequence that significant
interviewer effects simply reflect clusters of sampled cases of varying difficulty
as assessed by the field administrators rather than true interviewer-level
clustering. A quasi-randomisation of cases across interviewers was
implemented at the second wave of the British Household Panel Study, where
the sample cases available for assignment for a specific interviewer were
restricted to a geographic pool of two to three primary sampling units. The
randomisation restriction was motivated by field administration capabilities
and survey costs. Campanelli and O'Muircheartaigh (1999) analyse the
significance of area and interviewer random effects on household and
individual nonresponse, refusal and non-contact for data using a cross-

classified multilevel model. The multilevel structure of the data pertains to
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households within a cross-classification of interviewers within primary
sampling units, nested within geographic pools. The authors find no evidence
of random effects at the primary sampling unit and the geographic pool levels,

but they do find some indication of interviewer effects, albeit non-significant.

Some studies have been investigating the relative importance of
interviewers across two waves in longitudinal studies. Pickery et al. (2001)
analyse non-response conditional on contact at the second wave using a
cross-classified logistic model, with the interviewer at the first wave and the
interviewer at the second wave specified as independent effects at the higher
level. The authors find the first wave interviewer variance to be significant,
whilst the random effect for the second wave interviewer is not. This result
might be emphasising the importance of a positive first encounter, suggesting
that the best interviewers within a survey agency may be allocated exclusively
to the first wave of each rotating panel survey. Alternatively, which interviewer
remains significant when both interviewer random effects are included in the
model as independent effects may simply be random, devoid of substantive

meaning.

The recent work by Lynn et al. (2013) suggests using multiple
membership models to investigate the relative importance of distinct
interviewers from different waves. Multiple membership models are multilevel
models which include a higher-level variance for only one classification
structure but allow each case to be associated with more than one higher-level
unit. Each case has a weighted average of the individual higher-level
contributions. In comparison to a cross-classified model, a multiple
membership model does not assume that the effect of an interviewer with a
specific case at a particular wave is distinct and independent of its effect at a
different wave. Alternatively, the multiple membership specification makes a
distinction between cases that are allocated the same interviewer across all the
waves considered and those experiencing an interviewer change. Cases
allocated to the same interviewer across both waves will only be attributed one
interviewer effect which is constant across waves. On the other hand, two
interviewer effects will be associated with cases experiencing interviewer

change. The overall interviewer effects for cases with interviewer change will



simply be a weighted average effect of the two distinct interviewer effects.
Lynn et al. (2013) use the Deviance Information Criterion, a Bayesian measure
of model fit which penalises for model complexity (Spiegelhalter et al., 2002),
to select the best model weights. As yet there has not been any work carried
out to investigate the sensitivity of this measure in identifying the best

multiple membership weights.

Although Lynn et al. (2013) find no significant average difference in the
response probability by interviewer combinations, or even simply by current
interviewers, they find a differential effect in the influence of respondent age
on the respondent’s probability of refusal by interviewer combinations. Their
analysis shows that for cases experiencing interviewer change, the more recent
interviewer has the bigger influence on the propensity to respond. The current
wave interviewer is found to be responsible for 65% of the unexplained random
respondent age slope by interviewer effect, while the previous wave interviewer
is responsible for 35% in the final model. This interpretation is based on the
multiple membership weights included in the final model. However, this
differential effect in the influence of respondent age on the response
probability by interviewer combinations is no longer significant in this final
model, as it is explained away by including fixed effects of interviewer

characteristics, namely interviewer change and interviewer age.

The confirmation of significant interviewer effects on survey nonresponse
itself does not provide any indication of the survey administration strategy
required to reduce nonresponse. Consequently, most studies identifying
significant interviewer effects seek to explain this random variation by
including interviewer-level fixed effects in the model. The fixed effects
considered in previous literature on nonresponse include interviewer continuity,
demographic and socio-economic characteristics, experience, attitudes
towards respondent persuasion, on-the-job skills, and behaviour and
personality traits. The lack of consistent relationships between these
interviewer fixed effects and nonresponse partly reflects the lack of detailed
information on interviewers available in many of these studies (Hansen, 2006;
Haunberger, 2009). Some exceptions are studies such as those by Durrant et al.
(2010), Blom et al. (2010), and Sinibaldi et al. (2009). These contain



information about interviewer attitudes in relation to the effectiveness and
appropriateness of persuasion of reluctant respondents, typical doorstep
behaviour, time organisation and availability, detailed information on
experience, and skills and strategies employed on the job among others. More
detailed information on the relationship between specific interviewer
characteristics and nonresponse will be reviewed in the first paper, which will
also test various hypotheses using the detailed interviewer data available,

including both administrative data and data from an interviewer survey.

.4.3. Multilevel Models

The independent errors assumption in standard regression analysis is often
not valid for social science data. Individual observations which pertain to some
kind of common higher-level grouping - such as school, family,
neighbourhood or work organisation - may have similarities arising from the
common context which give rise to dependency amongst their observations.
Standard analytical techniques cannot be used for clustered data since the
violation of the assumption of independence of observations results in
underestimated standard errors and can therefore result in incorrect inference
(Rasbash, 2006; Snijders et al.,, 1999). Both disaggregated and aggregated
approaches can adjust the standard error estimates to account for the
dependency in the clustered data. While in aggregated methods design
variables are only implicitly accounted for by averaging the effect of other
explanatory variables over the population distribution of these design
variables, in disaggregated methods design variables may be treated as

scientifically relevant and are explicitly incorporated into the model.

Multilevel modelling, which is a disaggregated approach, allows for an
extension of the error term included in standard regression analysis to be able
to adjust for such dependencies. This extension consists of the inclusion of a
residual error term for each classification in the structure. Consequently,
multilevel models allow the variation in the outcome variable to be partitioned
into various sources, these being both individual and group sources. The

percentage variation of the outcome variable explained by fixed effects - which



can be specified at either the individual or the cluster levels - can be obtained
by calculating the decrease in the unexplained individual and cluster variance
after the addition of these fixed effects. Group similarities are considered as
substantively interesting rather than as a model assumption infringement
which needs to be accounted for, thus allowing the exploration of significant
individual and group influences as well as any possible interactions between
these two factors on the individual-level outcome of interest. Despite allowing
for a detailed analysis of contextual effects through the inclusion of a higher-
level random effect and contextual or aggregate fixed effects, multilevel
models include data at the individual level. This helps avoid loss of information
at the individual level, a smaller sample size, and the risk of ecological fallacy
as in aggregated data. Such models do not assume that all contextual effects
are included through observable predictors as in a contextual analysis, and
avoid restricting inference to the groups sampled in the data and the inclusion
of a large number of dummy variables as in a fixed effects model. Multilevel
models also offer more flexibility than other methods to correctly account for

the complex structure of the social world.

Historically, multilevel models were first used in educational research
applications to account for pupils in classes within schools - a purely
hierarchical structure. However, with time multilevel models have been applied
to diverse areas of study - which include organisational, demographic,
biological and geographical data - and more flexible model specifications have
been developed for more complex structures (Goldstein, 2011). The advances
in more flexible models have also been aided by recent developments in
Bayesian computation and efficient and powerful computing (Browne et al.,
2001). Besides purely hierarchical structures, multilevel models can also deal
with data pertaining to two different non-hierarchical classifications (cross-
classified), as well as data where there is one classification but where individual
cases may be associated with more than one higher-level unit (multiple
memberships) (Fielding & Goldstein, 2006). The mathematical details of these
multilevel models for the binary outcome case will be reviewed in the three
thesis papers. The analysis of interviewer effects has become a popular

application of these methods with various data structures conceptualised and a



range of multilevel model specifications employed to model such data (Von

Sanden, 2004), as discussed in the next section.

The focus of this study is on multilevel models with a binary outcome.
The general form of a logistic multilevel model for purely hierarchical data with

two levels is:

. T T
IOglt = BO + leij + uj (I 1)
1 —T[ij
The outcome represents the probability of individual i in cluster j taking on a
value of 1 for the y variable, where y is a dummy variable indicating whether a
person experienced an event or has a particular characteristic. B, represents
the overall intercept in the linear relationship between the log-odds of y and

the predictor variables included in the model X;;, which refers to the mean log-

ij
odds for an individual pertaining to the reference categories of categorical
variables, having a value of 0 on continuous variables and belonging to the
average higher-level group (a group with a value of 0 for the higher-level
random effect u;). The vector B, contains the parameter coefficients for each
explanatory variable in the model when all other predictor variables are
controlled for. These coefficients are also known as the cluster-specific effects
of the explanatory variables, since they represent the effect of a unit increase
in the covariate on the log-odds that the individual has a value of 1 on the

outcome variable y, for a constant value of u; and therefore within the same
higher-level group j. The vector X;; represents the predictor variables which
may be defined at the individual or cluster level (known as contextual effects).
The predictor variables may also include interaction effects or cross-level
interaction effects. The u; represent the random effects for the higher level
classification units, which are assumed to follow a normal distribution with
mean 0 and variances o%. However, estimation and inference procedures are
usually robust to departures from this assumption (Fielding, & Goldstein,
2006, pp.36).
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The model does not include an individual-level residual because the
probability of the individual obtaining a value of 1 on the y variable is being
modelled, rather than the value on a continuous outcome. The Variance
Partitioning Coefficient (VPC) is a measure of the proportion of the total
variance which arises due to cluster differences. For a simple multilevel model
for which the variation between clusters varies at intercept only, the VPC is
equal to the intra-cluster correlation, which represents the correlation of two
response variable values selected at random from a particular cluster. To
calculate the VPC, the individual-level variance can be assumed to be fixed at
3.29 using the threshold specification of a logistic model (Snijders & Bosker,
1999; Goldstein, 2011; Goldstein et al., 2002). Goldstein et al. (2002) explain
that when the outcome variable is truly discrete and cannot be considered as
underlying a continuous outcome (with a value of 1 representing some
threshold in the continuous scale being exceeded), this threshold specification
of a logistic model, which they call the latent variable approach, is not the best
approach for calculating the VPC. Instead, the authors propose using model
linearisation or simulation. However these two methods will not be used in this
study since they do not offer a general summary for all the data, but VPC
values for specific values of X. Moreover, the threshold specification method of
calculating the VPC is widely used in applied studies using multilevel models
for the analysis of discrete binary outcome data (Dundas et al., 2006; Johnell et
al., 2004; Ferede, 2013).

Equation I.1 represents a random intercept model, where the group
differences vary only in terms of the mean intercept. A possible extension to
this model is the inclusion of a random term at the cluster-level for parameter
coefficients, to allow the effect of an explanatory variable X to vary randomly
across clusters. This extension would result in a random coefficient model.
Another extension could be the inclusion of other levels for purely hierarchical
data. Alternative random effects models may also be specified, such as cross-
classified random effects or a multiple membership structure. Ignoring a level
in a multilevel model (Tranmer & Steel, 2001; van den Noortage et al., 2005),
or incorrectly specifying the random effects structure by ignoring a crossed

factor (Luo & Kwow, 2009) or specifying a purely hierarchical model for
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multiple membership data (Chung & Beretvas, 2012), can lead to biased
estimation of the regression coefficients and the standard errors, and
consequently result in wrong inference. It is therefore important to consider
carefully the underlying data structure and to theorise correctly the structure

underlying the data and model it adequately.

.4.4. Multilevel Models for Interviewer Effects

Most survey data is hierarchical in nature, for example due to a multistage
sampling procedure or, in the case of face-to-face and telephone surveys, the
allocation of cases to interviewers. Clustering of nonresponse at the higher
level may reflect various unmeasured factors, including an interviewer’s
demographic characteristics, skills, attitudes, behaviour and personality traits,
or the cultural and socio-economic nature of the sampled area. Various
analytical techniques for the analysis of interviewer effects have been
developed (Von Sanden, 2004). These include the variance decomposition
technique (Hansen et al., 1953), the correlation approach (Hansen et al., 1961),
and the ANOVA linear model approach (Kish, 1962). Multilevel modelling is
essentially a generalisation of these and has become a popular method of
choice in research analysing interviewer effects (Hox & De Leeuw, 2002;
Pickery & Loosveldt, 2002; Durrant & Steele, 2009; Blom et al., 2010; Durrant
et al., 2010; Haunberger, 2010; Lynn et al., 2013). A disaggregated approach
is the preferred method for this application since the area and interviewer
clusters are of scientific interest in the study of nonresponse and may directly
affect the outcome variable. Moreover, a disaggregated approach allows the
impact of the population indicators (design variables) on the outcome variable

survey nonresponse to be quantified.

One of the first applications of multilevel models for the analysis of
interviewer effects goes back to 1985 in a study carried out by Anderson and
Aitken (1985) aimed at measuring the variability in responses on consumer
spending by interviewers. Advantages of multilevel models include their ability
to account for different hierarchical structures of survey data and the

treatment of clustering as an integral aspect of the analysis, rather than being
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seen as a nuisance simply to be accounted for. In particular, multilevel models
allow the investigation of substantive research questions that go beyond the
scope of standard approaches, such as the possibility of analysing the amount
of total variation attributable to interviewer effects. The use of cross-classified
and multiple membership multilevel models to also control for area effects and
the effects of various interviewers has also been attempted (Durrant et al.,
2010; Lynn et al., 2013). These extended multilevel models allow the
estimation of the relative impact of different wave interviewers on current wave
nonresponse and the separation of higher-level effects into interviewer and
area effects. Full mathematical details of these methods, the rationale for their
use, and a discussion of any issues in their implementation will be presented in

the first paper.

1.4.5. Monte Carlo Markov Chain Estimation Method

A range of estimation methods exist to estimate the parameters of multilevel
models. Markov Chain Monte Carlo (MCMC) methods, using diffuse priors and
the quasi-likelihood estimates as starting values (Goldstein & Rasbash, 1996;
Goldstein, 2011), have been shown to produce improved estimates compared
to first-order marginal quasi-likelihood (MQL) and second-order penalized
quasi-likelihood (PQL) in terms of frequentist unbiasedness for multilevel
logistic models (Browne, 1998; Browne & Draper, 2006). Moreover, Bayesian
methods (of which MCMC methods are a sub-type) offer a general and more
flexible approach to model complex data structures than likelihood-based
methods (Browne, 2012). In this study MCMC estimation, with diffuse priors
and the second-order PQL estimates as starting values as implemented in the
MLwiN software, is being used. MLwiN is the most widely used specialist
multilevel software in the UK (Fielding et al., 2006b). It allows large datasets to
be imported and complex model structures to be fitted using both frequentist
likelihood and MCMC estimation methods (Rasbash et al., 2012). MCMC
estimation is being used simply to maximise likelihood for the unknown
variance parameters. It has been shown that using the diffuse priors integrated

in MLwiN gives similar estimates to maximum likelihood estimation (Browne,
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2012, Chapter 6). As shown in Browne and Draper (2006), using the PQL
estimates as starting values allows for a short burn-in period without the
starting values having undue influence on the posterior distribution. The
authors suggest that a burn-in period of 500 iterations should be sufficient.
However, in practise 500 iterations will rarely be sufficient, especially for
models with a sparse cross-classified or multiple membership structure.
Consequently, it is best to attempt different burn-in lengths to identify the
appropriate length of discarded iterations to avoid undue influence from the

starting values (Gelman et al., 2004).
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Il. Interviewer Effects on Nonresponse
Propensity in Longitudinal Surveys: A
Multilevel Modelling Approach (Paper 1)

II.L1. Introduction

I.1.1. Background

The decline in survey response rates, documented by De Leeuw and De Heer
(2002), provides a strong motivation for investigating the causes and factors
influencing nonresponse. Prominent among such studies are those analysing
interviewer effects, which aim to reduce nonresponse at the design stage or
during data collection. In their theoretical framework for household
nonresponse, Groves and Couper (1998) identify five factors that influence the
process of refusal, of which interviewer attributes and the interviewer-
respondent interaction represent two out of only three factors which the survey
agency has some control over. Studies focusing on interviewer effects reflect
the understanding that interviewers play an important role in introducing the
survey concept, engaging the respondent, addressing any queries, and
ultimately gaining response (Groves & Couper, 1998; Hox & De Leeuw, 2002).
They also acknowledge the possible influence the research agency can have in
minimising negative interviewer effects through effective policies and

management strategies (Sinibaldi et al., 2009; Durrant et al., 2010).

While a number of studies have confirmed the presence of significant
interviewer effects on nonresponse in both cross-sectional (Durrant & Steele,
2009; Blom et al., 2010; Durrant et al.,, 2010) and longitudinal surveys
(Campanelli & O'Muircheartaigh, 1999; Pickery et al.,, 2001; Pickery &
Loosveldt, 2002; Haunberger, 2010), there has been little conclusive or
consistent evidence concerning the interviewer attributes associated with
higher response rates. This partly reflects the lack of detailed information on

interviewers available in many of these studies.
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Some attention has been given to the modelling of interviewer effects on
nonresponse in sample surveys. For cross-sectional data, a multilevel
modelling approach has been advocated (Hox & De Leeuw, 2002; Durrant &
Steele, 2009; Blom et al., 2010; Durrant et al., 2010). A complicating factor
when analysing interviewer effects is that interviewers generally work in a
limited geographic area, and to the extent that people from certain areas are
more or less likely to cooperate, significant interviewer effects may simply
indicate area effects. Few studies have attempted to disentangle interviewer
and area effects by specifying a cross-classified multilevel model for
multistage cluster sample design data (Campanelli & O'Muircheartaigh, 1999;
Durrant et al., 2010).

For longitudinal surveys, there are added complexities in the analysis of
interviewer effects on nonresponse. Firstly, the same case may be allocated to
different interviewers at different waves. Secondly, the response outcome for
the same sampled person may vary across waves. Finally, there may be
changes in the sample owing to, for example, changes in the eligibility criteria
or booster samples aimed at restoring the sample representativeness after
attrition. On the other hand, longitudinal data offers the advantage of
obtaining information on both respondents and nonrespondents from previous
waves when analysing cooperation at a later wave, which is often missing for
cross-sectional data. A particular research interest, of importance for effective
longitudinal survey designs, is the optimal interviewer allocation across waves
for the same respondent. This decision must take into consideration the
impact of interviewer change and the relative impact of distinct interviewers

from previous waves on respondent cooperation at later waves.

There is, however, limited research that takes into consideration the
modelling of interviewer effects in longitudinal surveys, taking account of the
additional complexities of such surveys, in particular the influence of
potentially more than one interviewer across waves. Pickery et al. (2001)
propose a multilevel cross-classified logistic model, specifying the effects of
the previous and current interviewers as independent effects at the higher
level. A more recent working paper by Lynn et al. (2013) uses a multilevel

multiple membership model (Goldstein, 2011), where the overall interviewer
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effect is made up of a weighted combination of two wave interviewers. This
model incorporates the effect of distinct interviewers associated with a
particular case across different waves. However, the model does not
differentiate the effect of a particular interviewer across different waves for
cases with interviewer continuity. Consequently, the relative benefits of
different modelling approaches for the analysis of interviewer effects in
longitudinal surveys have not been considered. Also, there has been no study

that included various wave interviewer effects and the area effect in one model.

I.L1.2. Aims and Methods

This paper presents a multilevel modelling framework for the analysis of
interviewer effects on wave nonresponse in longitudinal surveys and considers
in particular two different multilevel modelling approaches: the multilevel
cross-classified and the multiple membership models. The proposed
modelling approach incorporates both interviewer and area effects accounting
for the non-hierarchical structure and potential confounding due to a lack of
an interpenetrated sample design arising from the non-random allocation of

interviewers across areas.

The methods are illustrated using a dataset from the UK Family and
Children Survey, with the focus on nonresponse at a later wave in the life of a
longitudinal study. Both cross-classified and multiple membership
specifications will be considered to account for wave 7 and wave 8
interviewers. The two most complex multilevel logistic models fitted for
modelling nonresponse at wave 8 are a cross-classified multilevel logistic
model with three independent random effects and a multilevel multiple

membership multiple classification (MMMC) model.

In addition to the methodological considerations, the study also makes
some substantive contributions. The study aims to identify interviewer
characteristics that are associated with nonresponse behaviour, with particular
focus on interviewer experience, and personality and skills traits indicators.

The study also considers the relative importance of interviewers across two
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waves. An additional aim of the study is to consider whether respondents react
favourably to interviewers with similar characteristics. This study uses
observational data, and not experimental data, and therefore caution must be
exercised in interpreting results. Causation cannot be inferred wherever a
correlation is identified. Controlling for alternative causes of observed
interviewer effects provides some evidence, but no certainty, for the presence

of causal effects.

The research may have various implications for survey practice and data
analysis. The study provides guidance to survey researchers on how best to
model the relative influence of several interviewers on nonresponse across
waves. The results may inform decisions how best to allocate interviewers
across waves and across cases. For example, to the extent that the first wave
interviewer has the greatest impact on the response at subsequent waves, it
may be best to allocate work from the first waves of various surveys to the best
interviewers within a survey agency. The identification of significant interviewer
socio-demographic characteristics, work history, personality traits and job
attitudes may provide guidelines for more effective interviewer recruitment,
training, appraisal and work allocation. Just as there is some evidence, albeit
weak, that a change for an interviewer of a similar age may be beneficial in
achieving response at a later wave from older sampled members (Lynn et al.,
2013), significant interviewer-respondent matching effects may suggest other

criteria by which to determine successful interviewer changes.

The remainder of the paper is structured as follows. The data section
presents the example dataset that is used to demonstrate the implementation
of the proposed methods. The methodology section outlines the multilevel
modelling approaches proposed and considers their relative benefits. The
application section describes the implementation of the different multilevel
models to the example dataset. It also provides an interpretation of the results
of the final model and reviews non-significant effects. The final section
discusses implications for survey practice and presents recommendations for

future research.
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11.2. Data

11.2.1. Main Data Source

11.2.1.1. General Purpose and Study Design

The example dataset is the longitudinal Family and Children Study (FACS),
which gathers information on the health and socio-economic status of
households with children in the United Kingdom (Lyon et al., 2007). This
dataset is used to assess and illustrate the use of sophisticated multilevel
models to investigate interviewer effects on nonresponse. The FACS benefits
from the availability of rich survey information for both respondents and
nonrespondents from previous waves of the longitudinal study. The FACS
started in 1999 with a narrow focus on low-income families with children and
lone-parent households, was expanded in 2001 to be representative of all
households with children, and continues to this date. The study has a two-
stage sampling design (Department for Work and Pensions, n.d.). First, a
sample of 150 primary sampling units (PSUs) stratified by region and a
rural/urban indicator from a total of 2600 postcode sectors (each representing
3000 households on average) listed in the Child Benefit database were chosen
with probability proportional to the number of child benefit records. Secondly,
a systematic sample of one hundred households with a random start was
chosen within each cluster, resulting in 15,000 households prior to any

reductions arising from address invalidity, opt-outs and screening procedures.

11.2.1.2. Data Structure

For the example analysis the focus is on the nonresponse behaviour at the
later stages of this longitudinal survey, here on the last two waves for which all
relevant information was available. These are wave 7 and wave 8 conducted in
2005 and 2006 respectively. The initial dataset includes the wave 8 cases that
had participated in wave 7. A wave number represents the number of survey
episodes since its inception in 1999. As there are varying initial waves and
numbers of interviews for different cases considered in the dataset,

participation history variables are included as controls in the multilevel models.
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A complete case analysis is carried out. Therefore, cases having missing
values for interviewer variables used in the final model had to be dropped.
Some descriptive statistics, looking at frequency distributions of the response
outcome by potential explanatory variables, have been run for both the full and
restricted dataset. These tables, included in Appendix A, do not show any
differences in the dataset profiles. Similarly to Sinibaldi et al. (2009), unit
nonresponse in the interviewer survey is controlled for by including variables
from the interviewer administrative data available for all interviewers, such as
gender, experience and grade. The final analysis sample, referred to as the
restricted dataset due to the dropped cases with missing interviewer data,
includes 5932 cases pertaining to 307 wave 7 interviewers, 275 wave 8

interviewers, and 150 PSUs.

For the analysis of nonresponse no distinction needs to be made
between the individual and the household level, as the only eligible respondent
is the mother in the household, or the father in the case of a single-male-
parent household. Interviewers are not nested within areas, as one interviewer
may work in more than one primary sampling unit, and cases within one
primary sampling unit may be assigned to more than one interviewer. For wave
8 there are no PSUs in which only one interviewer was allocated work, and
approximately 82% of interviewers were allocated households from at least two
different PSUs. This results in a cross-classification of interviewers by PSUs.
About 68.3% of cases changed their interviewer between waves 7 and 8, such
that 73.1% of wave 8 interviewers had cases associated with different
interviewers across the two waves. Full details of the distribution of the
number of interviewers per area and the number of areas per interviewer are
presented in Appendix L. A change in interviewer allocation may arise because
of a move of the household, changes in the interviewer’s responsibility and
workload, or the possibility that the interviewer may have stopped working for

the survey agency.

Similarly to most other studies, with the exception of some
experimental studies - such as Campanelli and O'Muircheartaigh (1999),
Schnell and Kreuter (2005) and Lynn et al. (2013) - the allocation of cases to

interviewers cannot be guaranteed to be completely random. However,

20



considering the large amount of interviewer variables available for this study, it
is likely that any non-random criteria used to determine work allocation has

been controlled for.

11.2.1.3. Response Variable

Cooperation or refusal with regard to the main face-to-face survey interview is
being investigated. The main outcome of interest is whether or not a person
responded to wave 8, conditioning on response to wave 7. This is to allow
detailed information on both the respondents and the nonrespondents to wave
8 to be obtained from the previous wave. The analysis is conditional on contact
being made with the household, similar to the work by Watson and Wooden
(2006), Blom et al. (2010), and Durrant et al. (2010). Nonresponse may arise
from either non-contact or refusal at a later stage. As shown in various
studies, including the studies by Pickery and Loosveldt (2002) and Durrant and
Steele (2009), the processes and predictors of non-contact and refusal are
different, and therefore a distinction is required. Only 2.6% of cases in wave 8
resulted in non-contacts, compared to 8.5% of cases resulting in refusals or
unproductive interviews. The small number of non-contact cases and the
added model complexity resulting from a distinction between these two
outcomes led to the decision to analyse response conditional on contact.
Moreover, the study of non-contact is more important for cross-sectional

studies than for later waves of longitudinal studies.

The distribution of interviewer-level refusal rates is highly positively
skewed, with 90% of the 335 wave 8 interviewers showing refusal rates of less
than 20%, with a median of 7.7%, an average of 9.5% and a standard deviation
of 9.9%. While 79 interviewers were successful in achieving cooperation for all
of their contacted cases, one interviewer obtained only refusals. On the other
hand, there is less variation for PSU-level refusal rates with a standard
deviation of 5.5%, and the distribution shows closer, though not perfect,
adherence to the normality assumption. The discrepancy between the median
and the mean PSU-level refusal rate is lower than that for the interviewer-level

rates, with values of 8.7% and 9.1% respectively. Four PSUs include only
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cooperating households and the worst outcome pertains to one PSU achieving

only 60% cooperation rate.

11.2.1.4. Household and Area Variables

The only area variables included in the FACS are a region variable and seven
neighbourhood perception variables. The latter variables provide an individual-
based assessment of how prevalent neighbourhood problems are in the area
one lives in. While household-level variables are considered, the main purpose
of their inclusion in the model will be as control variables, in the exploration of
significant interviewer-respondent matching effects or cross-level interactions,
and to offer some control for possible area confounding (to the extent that
contextual effects are area averages of household-level characteristics). The
identification of household- or individual-level predictors of nonresponse,
which generally provide a profile of weighting variables for post-survey
adjustment, is of restricted use within the context of this study’s aims - to
identify strategies which may help reduce refusals. At best, throughout the life
of a longitudinal survey these variables may aid the identification of cases
which are more likely to refuse. The allocation of such difficult cases to
interviewers with the best track record of response rates may have a positive

effect on the overall cooperation rate.

1.2.2. Additional Data Sources

A key advantage of the current study is that detailed information on
interviewers is available from both administrative data on interviewers
collected annually and from a survey of interviewers conducted in 2008, and
both data sources have been linked to the survey data. The only other piece of
work which makes use of this interviewer survey data is the study by Sinibaldi
et al. (2009), which investigates nonresponse for all cross-sectional surveys
conducted by NatCen in the period covering December 2007 to December
2008. Therefore, this is the first use of this data for the analysis of

nonresponse in a longitudinal study.
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11.2.2.1. Participation History Variables

The available participation history information includes a variable specifying
the wave at which each case was first introduced to the sample, and seven
dummy variables (for waves 1-7) indicating whether the case was interviewed
at that particular wave. A variable providing a measure of the number of times

each case was interviewed can be computed from these dummy variables.

11.2.2.2. Interviewer-level Variables

Information on interviewers firstly comes from administrative data collected by
the survey agency NatCen on an annual basis. The administrative data includes
the identification code of the interviewer allocated to each case for all waves,
some demographic information, the interviewer grade as at mid-February
2008, corresponding to the interviewer survey date, and the years of
experience within NatCen as at the beginning of September 2005. Interviewers
are identified by the same identification code across waves, allowing an
indicator of interviewer change between wave 7 and wave 8 to be constructed.
The demographic information is restricted to the gender and age of the
interviewer. Despite the lack of time correspondence between the experience
and grade variables, changes in interviewer experience are constant across
time and therefore this variable still indicates differences in experience
between interviewers at any point in time. A key advantage of the interviewer
administrative data is that the information is available for all interviewers,
regardless of whether they responded to the interviewer survey or not.
Therefore, interviewer administrative variables can be used in the multilevel

models to control for unit-nonresponse to the interviewer survey.

Secondly, the interviewer survey, a postal self-completion survey
administered in May 2008 addressed to all interviewers who had worked for
NatCen at some point since the start of 2006, provides rich data on
interviewing experience, job expectations and appraisal, flexibility in working
hours, personality traits, inter-personal skills, and views on the persuasion of

reluctant sample members. The survey had a comparatively high response rate
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with just over 80% of eligible interviewers completing the interviewer survey
(Sinibaldi et al., 2009).

The survey includes a 15-item personality assessment tool, devised for
the German Socio-Economic Panel Study (Benet-Martinez & John, 1998),
composed of three items for each of the Big Five personality traits. The
interviewer makes a self-assessment for each item on a seven-point scale,
where 1 indicates that the statement does not apply at all to oneself and 7
indicates that the item applies perfectly. This short test has undergone pre-
tests and cross-validations with other reputable personality tools.
Consequently, the composite measure of personality traits used in this paper
follows the data structure validated across various studies, that is, 5 sets of 3
items. Therefore, no factor analysis is carried out, but the items pertaining to
the specific personality trait - as prescribed in the tool documentation - are
aggregated appropriately. Neuroticism refers to the tendency to experience
negative emotions including stress, depression and anger, and the inability to
cope well with difficult situations and to control impulses. Extroversion is
characterised by a willingness to engage with others, take up challenges and
be at the centre of attention. Conscientiousness may be described as a
predisposition for self-discipline, respect for rules and duties, and a
preference for planned rather than spontaneous activities. Agreeableness
relates to a disposition to be compassionate, cooperative and altruistic.
Openness is related to curiosity, appreciation of original and creative work, and

a keen interest in new experiences.

The survey also includes 52 items which relate to skills which may help
interviewers attain contact and cooperation. The International Personality Item
Tool was used to inform the choice of the skills items to be included in this
interviewer survey. Unlike the personality traits, these skills relate to specific
behaviours that can be learnt. Similarly to the personality items, interviewers
assessed themselves on these skills by rating how well each statement applied
to their abilities from a scale of 1 to 7. In a similar manner to the study by
Sinibaldi et al. (2009), only the 35 items related to cooperation are considered
in this analysis. These items have been grouped into ten components - reading

others, connectedness, verbal communication, nonverbal communication,

24



small talk, adaptability, ability to conform, assertiveness, deliberation, and

emotional resilience - using principal component analysis.

Eight items gauge the interviewer’s attitude towards the persuasion of
reluctant respondents on a four-point scale. The items consider the
interviewer’s views on the effectiveness and acceptability of persuasion, the
reliability of answers obtained after persuasion efforts, and the voluntary

nature of su rvey cooperation.

Other items consider the work history of the interviewer. These include
indicators for interviewing work experience with an agency other than NatCen,
non-survey interviewing, other survey interviewing such as marketing or phone
interviewing, work involving interaction with the general public, work involving
cold calling and work requiring persuasion skills. Information about the current
work profile is also included. The survey enquires whether the interviewer is
also occupied by any other non-survey paid job, and also whether this other
job is carried out at fixed times. Time availability for the NatCen work is
considered in detail. Interviewers were asked whether they were unwilling or

unable to do survey work during various time slots of the week.

Five items assess the importance an interviewer places on different
aspects of a job on a three-item scale. The job characteristics considered
include flexibility in working hours and workload, autonomy, financial
remuneration and social interaction. The current NatCen job is appraised
through various items requesting an assessment - on a scale from 1 to 4, from
very satisfied to not satisfied at all - of various specific aspects of the job,
including the job characteristics outlined for the personal job priorities items,
and one overall satisfaction item for the job in general. Another set of job
satisfaction factors are the items considering the level of support provided by
various members of the organisations with leadership positions. The support
from various key figures in the organisation, including the supervisor, team

leader and area manager, is evaluated on a four-point scale.
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11.2.3. Time Discrepancies in Data Sources

It should be noted that in analysing refusal for wave 8 of the FACS (2006), the
interviewer variables obtained from the interviewer survey (2008) represent the
interviewer characteristics approximately two vyears later. However, this
discrepancy is not believed to have a significant impact on the results since
most information from the interviewer survey used here, e.g. information on
behaviours and personality traits, is assumed to be relatively stable over time
(Sinibaldi et al., 2009). The time difference may also be beneficial to the extent
that the actual performance on the job in terms of nonresponse is not directly
driving the answer choice in the interviewer survey. Therefore, for example,
replies to questions on views on respondent persuasion and questions on job
satisfaction will not be directly affected by the interview experiences for which

nonresponse is being analysed.

11.3. Methodology

I1.3.1. Accounting for Area and Multiple Interviewer Effects
across Waves: Cross-classified and Multiple
Membership Models

A complicating factor when analysing interviewer effects is their potential
confounding with areas (PSUs). For many face-to-face surveys an interviewer
will work almost exclusively in a limited geographic area. Therefore, variation
in the probability of refusal by interviewer may simply reflect area differences
in the geographic propensity to cooperate in survey requests. Very few studies
exist that have been able to use an interpenetrated sample design (Campanelli
& O’Muircheartaigh, 1999; Schnell & Kreuter, 2005), where interviewers are
randomly allocated to households, at least within a wider geographic pool of
PSUs, enabling, to some extent, a separation of interviewer and PSU effects. A
fully random allocation of interviewers to households for face-to-face surveys
would be very costly and therefore practically very difficult. As a consequence,

often such potential confounding is ignored in the analysis (Pickery &
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Loosveldt, 2004). However, in some studies, as is the case here, a complete
confounding of interviewers and areas is avoided, since interviewers and areas
are partially interpenetrated (Von Sanden, 2004; Durrant et al.,, 2010). This
means that interviewers are not fully nested within areas, as one interviewer
may work in more than one PSU, and cases in one PSU may be designated to
more than one interviewer. With a data structure showing partial
interpenetration, a multilevel cross-classified model specification which
considers both interviewer and area random terms can allow for a distinction

between interviewer and area effects (Goldstein, 2011, Chapter 12).

The easiest way of accounting for the influence of interviewers in a
longitudinal survey is to consider only the current wave interviewer. However,
as shown in Goldstein (2011, Chapter 13), assigning a case to just one level-2
unit when in actual fact the case has multiple memberships - i.e. it belongs to
more than one higher level unit (in this case interviewers) - will lead to an
underestimation of the higher-level variance. It may be hypothesized that
more than one interviewer, and potentially all interviewers associated with each
case, have an influence on the nonresponse outcome. In this paper two
different ways of specifying the various wave interviewer random effects are
considered. One is to specify these effects as cross-classified (Goldstein,
1994), as was done in the study by Pickery et al. (2001), therefore assuming
that each interviewer has a separate effect for each wave, and that the
interviewer effects for each wave are independent. However, in the context of
(at least some) interviewer continuity across waves, the tenability of this
assumption is questionable. An alternative approach involves the use of a
multilevel multiple membership model (Goldstein, 2011). The only application
of multiple membership models in the analysis of interviewer effects on
nonresponse is the paper by Lynn et al. (2013). The multiple membership
specification takes account of all the distinct interviewers each case was
allocated to across the various waves considered. Multiple membership models
allow the effect of all distinct interviewers associated with a specific case to be
incorporated in the model by attributing a weight to each interviewer effect;
together these sum to a weight of 1, such that the estimated interviewer effect

becomes a weighted average of all interviewers. These weights represent the
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relative effect of each distinct interviewer. For multiple membership models

interviewer effects are not wave specific.

Controlling for both complicating factors simultaneously - i.e. the
confounding of area and interviewer effects and the influence of multiple
interviewers per household across waves - leads to two possible specifications.
Under the assumption of independent interviewer effects, a cross-classified
model with various distinct random effects - one area effect and an interviewer
effect for every wave - is obtained. Under the multiple interviewer membership
assumption, a MMMC model specifying an area random effect cross-classified
with the interviewer multiple membership is obtained. MMMC models allow the
integration of cross-classified and multiple membership random terms

specified at the same higher-level (Browne et al., 2001).

I1.3.2. Model Specifications

Let y;s) denote the dependent binary variable of interest, indicating whether
individual i, interviewed by interviewers j = (j;, ...,j,) in waves k=1,..,n and
living in PSU s, refused to participate at wave n. Contact at wave n and
response at wave n-1 are assumed. The general forms of the two most
comprehensive multilevel logistic model specifications considered to model
nonresponse at a particular wave n are presented below. While both models
include a cross-classified area effect, the first model considers the various
wave interviewers as cross-classified, while the second model considers a

multiple membership for the interviewer allocation.

The general form of the cross-classified multilevel logistic model is:

n
T(js)
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k=1

~ MiGis)
where m5) =Pr(y;s) = 1) is the probability of individual i refusing to participate

at wave n. The parameter B, represents the overall intercept in the linear

relationship between the log-odds of refusal and predictor variables specified
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in the model, X;(s). The vector B; contains the coefficients for the explanatory

variables in the model. The parameters u}l,...,uj’; and v, represent the random

effects for each wave interviewers j,,...,j,, and the individual’s area of
residence respectively, which are assumed to follow a normal distribution with
variances 02;...02, and o%. The model includes an independent random effect
for each wave interviewer considered.

The general form of the MMMC approach - the MMMC multilevel logistic

model - is:

n
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The outcome variable and the fixed effects for the MMMC model have the same
meaning and interpretation as those for the cross-classified model. The MMMC
model includes one overall interviewer random effect y; which, after combining
weights for the same interviewer, is a weighted average of m distinct
interviewers associated with a case in the n waves considered. After combining
weights, cases allocated to the same interviewer across all waves have a weight
of 1 for wave n and a weight of O for all previous waves, while cases
experiencing an interviewer change have at least two non-zero weights
summing to 1. The model formulation and the way the models are set up in
MLwiN requires this combined weight specification for cases associated with
only one higher-level unit (Browne, 2012). These combined weights are
represented by the term wy;, . The number of non-zero weights is thus equal to
the number of distinct interviewers m associated with that particular case.
Therefore each case may have from 1 to n distinct interviewers. Whilst there is
only one common distribution for all interviewer effects from various waves,
each individual has m distinct interviewer effects. In contrast, for the cross-
classified multilevel model there are n unique interviewer effect distributions,
one for each wave considered. The MMMC model also includes an area effect v,
cross-classified with the interviewer effect. Both the interviewer effect y; and
the individual’s area residence effect v, are assumed to follow independent

normal distributions with variances ¢2 and o2.
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The choice of which weights to apply can be empirically or theoretically
based. There are three different justifiable theoretical arguments for the choice
of weights. One possible argument is to allocate weights that are proportional
to the number of waves the interviewer was allocated the specific case,
reflecting the amount of time covered by each interviewer. Alternatively, one
may argue that while the decision to take part in the current wave will be
somewhat influenced by the experience in the prior waves, the current wave
experience has a greater impact - since the current wave interviewer has the
possibility to actively interact and address any hesitancies - and should
therefore be given a greater weight. Another possible argument is that the
current wave response decision is based on the experience at previous waves.
It is plausible that the commitment and engagement obtained, or alternatively,
the frustration and disassociation caused by the previous interviewer, has a
greater impact than the current interviewer persuasion skills. A different
theoretical argument may be valid for different surveys or for different parts of
the longitudinal study. However, for all three options there is still some
arbitrariness in the choice of weights. The weight profile can vary by both the
number of interviewers and the sequence of interviewer changes. Alternatively,
the choice of weights may be guided by an empirical assessment, as proposed
in Goldstein (2011) and advocated in Lynn et al. (2013), using the Deviance
Information Criterion (DIC) value for alternate models including various weight
specifications. The DIC is a Bayesian measure of model fit which penalizes for
model complexity, therefore allowing non-nested models to be compared
(Spiegelhalter et al., 2002). As explained in the paper by Spiegelhalter et al.
(2002), similarly to the Akaike Information Criterion (AlIC) when comparing DIC
values a model with a DIC value of 1-2 points lower than the current best
model should be given consideration, while a model with a DIC value of at least

3 points lower than the current best model definitely has a better fit.

The weighted average of interviewer effects in the multiple membership
model acts to dilute the higher-level effect (Fielding & Goldstein, 2006). For
example, an individual allocated two different interviewers, each with an
interviewer effect one standard deviation above the mean, will have an overall
interviewer effect of one standard deviation above the mean when allocating

equal weights in a multiple membership model. In contrast, in a cross-
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classified model, this individual would have a higher-level effect of two
standard deviations above the mean, with each interviewer contributing equally
to this higher-level effect. The greatest dilution of these effects in the multiple
membership model is observed when allocating equal weights to the higher-
level effects. For models accounting for the previous and current interviewer

effects the between-interviewer variance is equal to (wy ?+ wy ?)of. This

variance is at its lowest value when the interviewers are given equal weights.

The multiple membership model and this between-interviewer variance
calculation are based on the assumption that the random effects for all
interviewers, and pairings of interviewers, are mutually independent (Steele at
al., 2013). In real terms this assumption means that, conditional on the
explanatory variables included in the model, the choice of interviewer
allocation at the previous and current wave is not based on the propensity of
the individual to respond. To the extent that the allocated interviewers are
chosen specifically on the basis of their performance record, and matched with
the case difficulty, a correlation between the two interviewers would be
present. If the most successful interviewers are targeted towards areas with
high nonresponse rates a positive correlation between interviewer effects at
different waves would be present, as households in difficult areas are allocated
a pair of the best interviewers across both waves. Failing to account for this
positive correlation would result in an underestimation of the between-
interviewer variance. On the other hand, if better interviewers are allocated at
the subsequent wave, following a poor outcome at the previous wave, a
specific respondent request for a change in interviewer or to compensate for a
change in interviewer due to interviewer attrition, then a negative correlation
would be expected. Ignoring this negative correlation between the interviewer
effects would result in an overestimation of the between-interviewer variance.
Alternatively, if the choice of a new interviewer lacks strategy, and is simply
based on interviewer availability and area proximity, then no correlation would

be expected.

The Variance Partitioning Coefficient (VPC) is calculated to measure the
proportion of total variance attributable to differences between interviewers.

All the models specified allow the variation between interviewers to vary only
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at the intercept. Consequently, the VPC is equal to the intra-interviewer
correlation, which represents the correlation of two response propensity values
selected at random from a particular interviewer. For any random intercept

model, the intra-interviewer correlation is

__ between interviewer variation __ 0%,

VPC =

(11.3)

P - 2,.2,.2
total variation oy, t0g+oy,

where 6% is the interviewer-level variance and o2, the individual-level variance,
is specified as 3.29 using the threshold specification of a logistic model
(Snijders & Bosker, 1999; Goldstein, 2011; Goldstein et al., 2002).

11.3.3. Model Estimation and Modelling Strategy

Both cross-classified and multiple membership models can be estimated using
Markov Chain Monte Carlo (MCMC) methods, using the quasi-likelihood
estimates as starting values (Goldstein & Rasbash, 1996; Goldstein, 2011), as
implemented in the MLwiN software (Browne, 2004). A forward selection
strategy is used. The first step is the specification of the random effects
structure, excluding any covariates in the model. To better understand the
random terms and to identify whether the more complicated models are an
improvement on simpler models, multilevel models including only one random
effect are fitted first, and then more random terms added until the two most
complicated models are obtained. The DIC diagnostic is used for model
comparison, with a smaller DIC indicating a better fit. Significance testing for
random effects can be based on the Wald test, despite the fact that a Wald test
for random parameters is only approximate since variance estimates do not
have normal sampling distributions under the null hypothesis, even
asymptotically. Since variances cannot be negative, the alternative hypothesis
is one-sided; therefore, one-sided p-values are used (Snijders & Bosker,
1999). Once an appropriate random structure specification is identified,
groups of explanatory variables - participation history, household, area and

interviewer variables - are considered for inclusion in a logical order.
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For the multiple membership specification, the weights corresponding
to the model showing the lowest DIC value without fixed effects are assumed
for all further modelling steps, similar to the strategy used by Lynn et al.
(2013). The procedure of choosing the optimal weight is then repeated once

the final model, including all significant fixed effects, is identified.

11.4. Application

11.4.1. Hypothesised Relationships between Interviewer
Variables and Response

The hypothesised relationship between the available interviewer variables in
the FACS dataset and the response variable will be presented below. Any

literature informing the hypothesised relationship is also highlighted.

11.4.1.1. Interviewer Continuity

The dummy variable indicating a change of interviewer between waves is
expected to have a positive relationship with refusals. Studies considering the
effect of interviewer changes across waves of a longitudinal study using
observational data seem to confirm the common belief in survey
administration that interviewer continuity is conducive to higher contact and
response rates (Schatteman, 2000; Haunberger, 2010; Watson & Wooden,
2006). This common belief is mainly based on tradition rather than rigorous
statistical evidence. This practice has implications both in terms of the optimal

use of resources, particularly interviewers and finance, and on survey quality.

Campanelli and O'Muircheartaigh (2002) argue that in non-experimental
studies of interviewer continuity effects a change in interviewer may reflect
various non-random processes. Consequently, this significant positive
relationship arises due to the combined effect of a whole variety of

administration practices, including random changes or changes arising due to
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interviewer attrition, interviewer field area changes, household moves, the
practice of allocating difficult cases to better performing interviewers and
respondent change requests. Therefore, the results for the interviewer
continuity variable available in this study - analysing data from FACS, a non-

experimental study - should be interpreted with caution.

The recent study by Lynn et al. (2013), which uses experimental data
providing control for both interviewer continuity and respondent and
interviewer age, shows that the effect of interviewer continuity on the
probability of refusal varies by the previous interviewer and respondent
characteristics. While interviewer continuity actually reduces refusal propensity
for respondents less than 60 years of age if the previous interviewer is over 60,
an interviewer change from a young to an old interviewer reduces refusal

propensity for respondents over 60 years of age.

11.4.1.2. Interviewer Demographic Characteristics

No significant main effects are anticipated for the demographic characteristics
of the interviewer. Although some studies find significant effects for
demographic characteristics of interviewers as predictors of nonresponse, the
results across studies are not consistent, and other studies including these
same variables do not corroborate these relationships. For example, Blom et al.
(2010) and Hox and De Leeuw (2002) present significant linear age effects,
with higher response rates for older interviewers. On the other hand, the
significant categorised age variable in the model predicting individual-level
refusal in the study by Campanelli and O'Muircheartaigh (1999) suggests a
quadratic relationship between age and individual-level refusal. These different
results may be reflecting true differences, or may alternatively be explained in
terms of the different interviewer age profiles across the two studies. Whether
these significant terms are truly representing age effects or simply vague
experience measures - as older interviewers tend to have more years of
interviewing experience - cannot be determined with certainty. As Groves and
Couper (1998) explain, these differences across studies may arise due to

interactions between interviewer and respondent characteristics, a possibility
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which will be discussed below, or due to variations across countries and survey
topics. These effects may also simply be reflecting differences in experience,
personality, skills and behaviour between interviewers having different
background characteristics. For example, the higher refusal rates for women
found in the study by Hox and De Leeuw (2002) may simply reflect more
assertive initial approaches by men or longer years of experience for men due
to previously male-dominated interviewing staff. The study by Sinibaldi et al.
(2009) supports the idea that gender differences in response rates represent
differences in other interviewer characteristics which are differential by
interviewer gender. In fact, the authors find a significant bivariate association
between interviewer gender and survey cooperation which is explained away by

including experience and personality traits variables in the model.

11.4.1.3. Interviewer Experience

A negative monotonic relationship between experience and refusal rates is
expected. To the extent that the grade promotions do not occur at the same
time for all interviewers, the results of the effect of the 2008 grade on the
2006 wave 8 refusals may indicate some inconsistencies, although the
anticipated general trend of lower refusal rates for higher grade interviewers
should hold.

The positive influence of the interviewer’s experience on the probability
of a household to respond has been confirmed across various studies (Hansen,
2006; Hox & de Leeuw, 2002; Pickery & Loosveldt, 2002). Other variants of
experience, such as duration in employment on the specific survey considered
(Hansen, 2006), years working with current survey agency (Campanelli et al.,
1997), and pay grade with current survey agency (Durrant et al., 2010) are also
considered in the literature, showing the same relationship as that outlined for
total experience. With experience interviewers gain greater confidence in their
abilities, and acquire and improve relevant skills, particularly the ability to
identify cues about the respondents from their physical appearance, their
neighbourhood and their initial reaction and response to the survey request,

and the ability to tailor one’s approach and behaviour according to these
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respondent cues (Groves et al., 1992). Alternatively, a selection effect, with
better interviewers remaining in the industry and being promoted, may explain

the positive influence of interviewer experience.

One deviation from this general linear relationship finding comes from
the study by Durrant et al. (2010), where while a linear positive relationship
with cooperation is observed in a model including only interviewer experience,
statistical control for interviewer grade changes this relationship to a
curvilinear one, with performance dropping slightly for interviewers with very
long job experience. This study highlights the importance of considering not
only years of experience but also a measure of the position held within the
company. However, including both variables may give rise to a collinearity
problem. To address these issues, in this study, an interaction variable
distinguishing between different experience groups for interviewers holding

the same company position is included in the model.

11.4.1.4. Interviewer Work History

The hypothesis for the relationship between work history variables and
respondent-level refusal rates is generally that interviewers with greater
experience in interviewing and who are in jobs that require skills which are
similar to those necessary for interviewing perform better. One would expect
that persons who only do interviewing work perform better on the job as they
are solely dedicated to this job and consequently have greater practice and are
more likely to commit towards the survey agency response targets. The
possible relationship between time availability and the probability of response
is not clear at this stage and the data analysis will indicate any association. Not
all items assessing the interviewers’ work priorities, if any, are expected to
show any relationship with the outcome variable. The relationship between job
satisfaction and performance is hypothesised to be positive, although the size
effect is expected to be weak. These variables have not been considered in
previous studies, and therefore no evidence of the hypothesised relationships

exists yet.
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11.4.1.5. Interviewer Personality Traits

There may be no significant relationship between the propensity to cooperate
and the allocated interviewer’s personality traits. However, if there is any
personality effect, the following relationships are conceptualised. It is expected
that interviewers scoring high on neuroticism tend to react negatively to
stressful situations at the doorstep and this emotional instability may render
them ineffective in coping with resistance and persuading reluctant
respondents. Extrovert interviewers are expected to engage in communication
with sampled respondents with more energy, enthusiasm and confidence, and
to react positively to reluctance as a social challenge worth pursuing.
Interviewers scoring high on conscientiousness would be expected to be more
hardworking, committed to the external benchmarks of survey quality and
persistent in achieving the desired cooperation. The impact of being agreeable
on an interviewer’s performance is not very clear. While respondents may be
more likely to cooperate with interviewers who appear honest, trustworthy and
sociable, and show understanding of the inconvenience posed, on the other
hand agreeable interviewers may be less likely to pressure anyone into
participating because they are more likely to consider other people’s interests
and compromise. It is hard to conceptualise any relationship between

openness and interviewer performance.

No consistent pattern has yet emerged from the limited available
research on the relationship between the interviewer’s personality traits and
the propensity of the contacted household to refuse. This may either indicate
that the measurement of personality traits may be fraught with error, or that
the personality assessment tools used for the general population are not
adequate for the analysis of interviewers, or simply that fixed personality traits
are not predictive of doorstep interaction success. In this respect, Groves and
Couper (1998) hypothesise that tailoring - the most important determinant of
success - may be an acquired skill which is independent of fixed personality

traits.

Sinibaldi et al. (2009), who utilise the same interviewer survey data as
that used in this study, find higher odds of cooperation for extrovert

interviewers, and lower odds for agreeable interviewers and interviewers open
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to new experiences, significant only at the 10% level, in a multilevel logistic
regression controlling for experience, skill and attitudes towards persuasion.
The authors justify the higher odds for less agreeable interviewers in terms of
their greater reluctance to accept refusals. They also claim that their findings
are congruent with those of Snijkers et al. (1999), which indicate higher
interviewer response rates for interviewers who assess themselves as not being
particularly respondent-oriented and more focused on their task and aims.
However, the analysis in the Snijkers et al. (1999) paper simply indicates
whether response rates vary by the importance interviewers allocate to
different tactics in achieving cooperation. On the other hand, while
acknowledging the unexpected direction of the relationship between
interviewer openness and respondent cooperation, Sinibaldi et al. (2009) did
not put forward any possible explanation for this observed effect.

Consequently, the validity of such results is far from conclusive.

1.4.1.6. Interviewer Attitudes

In line with previous studies, it is expected that interviewers who are
comfortable with and skilled in using persuasion techniques achieve better
response rates. There is evidence in the literature that the interviewers’
confidence in their ability to obtain a response even from difficult cases and
their attitudes towards the persuasion of reluctant respondents may influence
the likelihood of a sampled person agreeing to the survey request. Earlier
studies mainly indicate the relationship between such attitudes and self-
assurance and interviewer-level refusal rates (De Leeuw et al., 1998; Groves &
Couper, 1998; Hox & De Leeuw, 2002). More recent studies consider these
interviewer-level variables in the direct analysis of respondent cooperation.
Durrant et al. (2010) find that households allocated to interviewers who assert
that they are confident in their ability to obtain cooperation, who believe they
can achieve a successful result with cases other interviewers find difficulty
with, and who disagree with the idea that some people can never be convinced
to participate are less likely to refuse. Similarly, Blom et al. (2010) show that
households assigned to interviewers who have a positive attitude towards

respondent persuasion have higher odds of cooperation. Despite clear
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evidence supporting the relationship between response and interviewer
confidence and attitudes on persuasion across various studies, Sinibaldi et al.
(2009), who used data from the same NatCen interviewer survey used in this
analysis, find little evidence of the impact of interviewer attitudes on the
persuasion of reluctant respondents on respondent refusal. While significant
bivariate associations were confirmed for four out of eight persuasion items in
the hypothesised direction, in the multivariate model controlling for weight
variables and respondent, survey and area characteristics, only the item ‘all

can be persuaded’ remains significant.

1.4.1.7. Interviewer Skills

Learnable skills are expected to have a positive effect on cooperation, if any.
There seems to be a discrepancy in the evidence of the influence of interviewer
behaviour and skills on nonresponse, with studies analysing behaviour directly
in the field or the interviewers’ perceptions on the importance of different
approaches and skills showing significant effects (Morton-Williams, 1993;
Snijkers et al., 1999), while studies analysing interviewer self-ratings on fixed
operationalised tools do so to a lesser extent (Hox & De Leeuw, 2002; Sinibaldi
et al., 2009). This may indicate problems with biased self-assessments or very
poor measurement tools which distort results. Sinibaldi et al. (2009) only find
one significant skills set - assertiveness - at the 5% level in the multilevel
logistic regression predicting cooperation controlling for experience, skill and
attitudes. The results indicate a lower probability of cooperation for more

assertive interviewers, which is not the expected direction of the relationship.

11.4.2. Model Specification for the FACS Example Dataset

The methods proposed for the analysis of interviewer effects in a longitudinal
survey are applied to the FACS data. Due to the changing nature of the sample
across waves, and the high number of missing data for previous waves,
reflecting administrative failures in the registration of case allocation to

interviewers, accurate and complete data for the FACS is only available for the
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last two waves. Therefore, the focus is on the last two waves, and models
accounting only for both the interviewer from the current wave - wave 8 - and
the interviewer from the previous wave - wave 7 - are considered. The
respondent area identifier for the FACS dataset is specified at wave 7. The area
effect in this context is considered mainly to be the aggregate effect of
unmeasured socio-economic and cultural determinants of nonresponse across
communities having similar backgrounds. Consequently, a household move
between waves should not bring an immediate change in the ‘area’ effect for
that household.

The two most comprehensive models considered for this dataset are a
cross—classified model with three distinct random effects - one for area, one
for the wave 7 interviewer and one for the wave 8 interviewer - and a MMMC
model specifying an area random effect cross-classified with the interviewer

multiple membership:

Ti(jg ji7s
log (L) = Bo+ B Xy 0+l +ul + v, (14)  and

1-Ti(jg j75)

T(jgjrs)
lOg <M> = BO + BIXi(jgj%S) + wijsujs + Wij7uj7 + Vs, Wij3 + Wij7 =1 (H 5)

1-Ti(jg j7s)

In the MMMC model, the overall interviewer random effect is a weighted
average effect of the two interviewers that each individual is allocated at wave
8 and wave 7. These weights are represented by w;;, and w;; . While cases
allocated to the same interviewer across both waves are given a combined
weight of 1 for w;;, and a weight of O for w;; , cases experiencing an
interviewer change have two non-zero weights (identical for all cases)
summing to 1. Unless otherwise stated, all models are estimated using MCMC
estimation in MLwiN Version 2.20 with default priors, a burn-in length of
5,000 and 500,000 iterations. Different burn-in lengths were attempted to
identify the appropriate length of discarded iterations to avoid undue influence
from the starting values (Gelman et al., 2004). The Brooks-Draper and Raftery-
Lewis diagnostics (Browne, 2012) were checked to determine how long the

chain must be run for accurate point estimates and 95% credible intervals.
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Once an appropriate random structure specification is identified, groups
of explanatory variables are considered for inclusion in the following order:
participation history, household, area and interviewer variables. Potential
predictors are chosen on theoretical grounds and a review of significant
predictors in the literature. The order in which the predictor variables for each
group are added is determined by the significance of each variable in a
separate model (which included the interviewer wave 8 random effect and the
between-waves interviewer change variable) using the Wald test. Once all
variables pertaining to a particular group are included, their significance is
assessed again and variables with a p-value less than 0.05 are retained at
subsequent steps when including variables from other groups irrespective of
their p-value thereafter. For all variable groups, excluding interviewer
variables, the decision of which variables to include in the model is made on
the full dataset (cases with unit nonresponse for the interviewer survey are
included). These variables are then forced in the restricted dataset irrespective
of whether they become non-significant. When there is a discrepancy in
significance at different stages, descriptive statistics for the variables in
question have been run. Similar frequency distributions are obtained in the full
and restricted dataset, suggesting that non-significance results simply from
reduced power. In this analysis the interviewer sex and a grade/experience
variable, predictive of nonresponse in the interviewer survey, are included as
control variables in the models for the restricted dataset irrespective of their

significance.

11.4.3. Exploration of Different Random Effects
Specifications

First, simple multilevel models - including only one random effect at a time -
are explored. From Table 1 it can be seen that all models indicate significant
results for the higher-level random effects. The model including the wave 8
interviewer random effect (Model 3) has the smallest DIC, indicating the best fit,
followed closely by the model with the wave 7 interviewer random effect
(Model 2), and lastly by the model with the area random effect (Model 1).

Higher DIC models correspond to lower effect variance estimates. An important
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observation is that the area variance is around half both interviewer variances.
All three simple hierarchical models show an improvement on the model with

no random effect (Model 0).

Table 11.1: Variance and DIC for the Two-level Models

Model Random Term in the Model Variance (S.E.) DIC

0 None 4197.09
1 PSU 0.122(0.051)** 4178.81
2 Interviewer 7 0.233(0.065)** 4155.98
3 Interviewer 8 0.273(0.077)** 4150.64

** significant at the 1% level

Multilevel cross-classified models including only one of the interviewer
random effects in addition to the area effect are considered next (Table 2,
Models 4 and 5). For both models, the area random variance is no longer
significant, and the variance is reduced to about 40% of the variance estimated
for the 2-level model including only the area effect (Model 4 and Model 5
compared to Model 1). Interestingly, the interviewer variance estimated in a
model cross-classified with area is about 0.9 times the random effect obtained
in a model controlling only for the interviewer random effect (Model 4
compared to Model 2; Model 5 compared to Model 3). This reduction suggests
that although there may be some confounding if the area effect is eliminated,
this is minimal. In fact, the DIC statistics for Models 4 and 5 are only slightly
lower than those obtained for the equivalent Models 2 and 3 controlling only
for the respective interviewer effect, indicating that these cross-classified

models do not offer a noticeable improvement to the simpler 2-level models.

A cross-classified model controlling for both interviewers at wave 7 and
8 but excluding area effects (Table 2, Model 6) yields numerically unstable
results. Stability is reached only once the MCMC chain length is increased to 5
million iterations, at which point both effects are only just about significant.
The variance for each interviewer random effect is reduced to around 0.6 of
the variance observed in the two separate models including only one random

effect (Model 6 compared to Model 2; Model 6 compared to Model 3). For these

42



models, the wave 8 interviewer random effect always has a slightly lower p-
value than that for interviewer 7. Model 6 has a DIC value that is four points
lower than the model including only the wave 8 interviewer random effect
(Model 3). The cross-classified model with all three random effects (Table2,
Model 7) did not converge. The high negative correlation between the two
variance estimates can be observed visually in the diagnostics trajectories
graphs. The chains show very poor mixing. The effective sample sizes obtained
for the area, current interviewer and previous interviewer variance parameters
are 754, 502 and 344 for runs of 500,000 iterations, indicating poor mixing of
the chain. The second order Penalised Quasi-Likelihood estimate could not be
estimated either as the variance and covariances matrix turned negative
definite. Despite attempts to approximate this matrix to the nearest positive
definite matrix convergence could not be achieved, possibly indicating that the
model was incorrectly specified, or that a parameter needed to be excluded.
The same problem is encountered when using first order Marginal Quasi-

Likelihood (MQL) estimates as starting values.

Table 11.2: Variance and DIC for the Cross-classified Models

Model Random Terms in the Model Variance (S.E.) DIC

4 Interviewer 7 & PSU CC 0.210(0.068)**; 4153.77
0.048(0.044)

5 Interviewer 8 & PSU CC 0.247(0.079)*=; 4149.79
0.047(0.044)

6 Interviewer 7 & Interviewer 8 CC 0.139(0.080)*; 4146.27
0.167(0.095)*

7 Interviewer 7, Interviewer 8 & PSU CC did not converge

* significant at the 5% level; ** significant at the 1% level
CC Cross-classification

The instability and substantial reduction in estimates in Model 6 suggest
that the two interviewer random effects are near non-identifiable. As
anticipated, this may indicate that the assumption of independent interviewer
effects is erroneous, resulting in a misspecification of the interviewer-level

structure. The difference in the random effect estimates for the two wave
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interviewers may be simply reflecting interviewer changes between the two
waves, rather than a differential effect of the previous wave interviewer from
the effect of the current wave interviewer on the propensity to refuse in the
current wave. In fact, when a fixed effect for the interviewer change variable is
included in the cross-classified model with the two interviewer random effects,

one of the effects becomes non-significant.

Alternatively, multiple membership models are explored using a range
of weights (Table 3). As described in the methodology section, cases being
allocated to the same interviewer across both waves were given a weight of 1
for the wave 8 interviewer and a weight of 0 for the wave 7 interviewer. The
weights allocated for cases experiencing an interviewer change are specified in
Table 3. The results show that the multiple membership models which give a
weight of at least 0.8 to wave 8 interviewers provide a better model (Models 15
& 16). These results support the hypothesis that the wave 8 interviewer has the
greatest impact on the current wave nonresponse. The next best fitting models
are obtained for a high wave 7 weight (Models 13 & 14); these perform better
than models allocating moderate weights (approaching an equal share) to both
wave interviewers (Models 8, 9 & 10). This would seem to suggest that there is

not much difference between the wave 7 and wave 8 interviewer effects.

The MMMC model (Model 17) with the preferred weight specification -
0.9 and 0.1 for wave 8 and wave 7 respectively - shows only a slight
improvement in the model fit compared to the multiple membership model
that does not account for the area cross-classification (Model 16). However,
the area random effect in this model is not significant. Comparing the DIC
values of Models 16 and 17 to the value of Model 3 suggests that for our
application, the multiple membership models do not provide a substantial
improvement to the simpler 2-level model, only accounting for the current

wave interviewer (wave 8).
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Table 11.3: Weights, Variance and DIC for the Multiple Membership and
MMMC Models

Model Random Terms Wave8, Wave7 Variance (S. E.) DIC

in the Model Weights
8 MIM 0.4, 0.6 0.278(0.086)** 4159.08
9 MIM 0.5, 0.5 0.287(0.087)** 4159.03
10 MIM 0.6,0.4 0.288(0.090)** 4158.75
11 MIM 0.3,0.7 0.272(0.082)** 4158.33
12 MIM 0.7,0.3 0.291(0.090)** 4157.41
13 MIM 0.2,0.8 0.262(0.076)** 4157.38
14 MIM 0.1, 0.9 0.250(0.074)** 4155.85
15 MIM 0.8, 0.2 0.288(0.085)** 4155.36
16 MIM 0.9,0.1 0.282(0.081)** 4153.12
17 MIM & PSU CC 0.9,0.1 0.252(0.084)**; 4151.62

0.049(0.049)

** significant at the 1% level

MIM multiple interviewer membership; CC Cross-classification

In conclusion, for this application, simply controlling for one wave
interviewer may be sufficient. The area random effect is shown across all
models to be negligible once the interviewer random effect is controlled for,
warranting its exclusion from the model. The 2-level models indicate that the
wave 8 interviewer random effect (Model 3) produces a slightly better model fit
than the model with wave 7 interviewer effect (Model 2), and also that it
explains a larger proportion of the total variance. Consequently, the final

model only accounts for the wave 8 interviewer clustering.

11.4.4. Discussion of the Final Model - Random Effects

Table 4 presents estimates of the interviewer wave 8 random effect as groups
of explanatory variables are added to Model 3, for the final dataset of 5932
cases. Also included are the percentage reduction in variance compared to the
initial variance obtained in the null model (a) or compared to the variance
obtained in the preceding model (b), the DIC and the VPC values. The DIC
values indicate a better model fit at each step of the model building exercise,

as more significant fixed effects are included in the model.
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Table 11.4: Estimates of the Interviewer 8 Random Effect Variance as

Groups of Explanatory Variables Are Added

Fixed Effects Variance (S.E.) Percentage Percentage VPC Model
Parameters (no. of Reduction Reduction DIC
parameters) (€)) (b)

None 0.279(0.088)** n/a n/a 7.8 3397.7
Added Interviewer 0.198(0.081)** 29.0 29.0 5.7 3385.6
Change (1)

Added Participation 0.179(0.078)* 6.8 9.6 5.2 3363.6
History (2)

Added 0.158(0.083)* 7.5 11.7 4.6 3336.6

Respondent/Household

Characteristics (12)

Added Interviewer 8 0.105(0.076) 19.0 33.50 3.1 3327.2
Sex &

Grade/Experience (7)

Added Interviewer 8 0.090(0.070) 5.4 14.3 2.7 3316.4
Work History (4)

Added Interviewer 8 0.057(0.057) 11.8 36.7 1.7 3309.8
Personality Trait (3)

Added Interviewer 8 0.044(0.049) 4.7 22.8 1.3 3303.0
Skills (4)

Percentage reduction a - percentage reduction in variance compared to the initial variance 0.279(0.88)

Percentage reduction b — percentage reduction in variance compared to the variance obtained in the
preceding model

The interviewer random effect remains significant until the inclusion of
the interviewer administrative variables: sex and interviewing grade/experience.
The variables included in the model explain all of the interviewer random effect.
This supports the findings by Campanelli and O’Muircheartaigh (1999) who
find interviewer effects to be no longer significant once fixed effects are
controlled for. For the first model, not including any fixed effects, the
interviewer variance accounts for around 7.8% [0.279/(0.279 + 3.29)] of the
total variation in refusal at wave 8. Once variables for interviewer change,
participation history, household-level, interviewer experience and grade, work
history, personality traits and skills are controlled for, the VPC is reduced to
1.3%. Although the interviewer variance also decreases slightly when including
the twelve household-level fixed effects, the more substantial decreases come
from the interviewer-level variables. The reduction in interviewer variance with

the inclusion of household characteristics can be explained in terms of
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systematic differences in the allocation of cases to interviewers. Also, since the
individual-level variance is not allowed to vary, there may be a scaling effect
when introducing new variables in the model. When individual-level variables
are added to a multilevel logistic model the level-one variation cannot
decrease since the residual variance at the individual level is fixed. Instead the
estimates of the other regression coefficients and the intercept correlation will
change by a specific factor (Snijders & Bosker, 1999). The interviewer change
variable and the interviewer grade and experience variable are responsible for
the greatest reduction in the interviewer random effect. Participation history
also reduces the interviewer variance substantially, which may reflect different

work allocations across waves by interviewer.

Before deciding on the final specification of the multilevel model,
multiple membership models with different weight specifications including all
relevant explanatory variables are revisited to evaluate their performance in
comparison to the simpler 2-level model (Table 5). However, no noticeable
differences in the DIC values across the various models are found, implying
that, for this application, a simpler 2-level model is indeed sufficient, even
after the inclusion of explanatory variables. An attempted swap between the
interviewer random effect with an area random effect, while maintaining all

fixed effects, results in a higher DIC value and a non-significant area effect.

Table II.5: Random Effect Estimates for a Two-level and Multiple
Memberships Random Effect Specifications for the Final Choice of Fixed
Effects

Random effect W8, W7 Variance VPC Model
Weights (S.E.) DIC

Wave 8 interviewer 0.044(0.049) 1.3 3303.00

Interviewers multiple ) o 5 4 0.048(0.050) 1.4  3302.94

membership

'rgger;‘g:‘r";iri;m”'“p'e 0.8,0.2 0.046(0.052) 1.4  3303.61

Interviewers multiple 7 4 5 0.041(0.049) 1.2  3303.49

membership
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11.4.5. Discussion of the Final Model - Fixed Effects

Table 6 presents the estimated coefficients of the final multilevel logistic
regression model. The non-significant random effect was retained in the final
model. The removal of this non-significant random effect does not vary the
estimates and the interpretation of results substantially. Below the significant
variables in the model will be discussed with reference to previous findings
and with a clear focus on the possible implications for practice. Alternative
transformations of the variables included in the final model, their results and
interpretations, and the reasons for discarding these alternatives are also

discussed.

11.4.5.1. Significant Participation History and Household-
Level Variables
Participation history variables - a variable indicating the first wave the case was
included in the sample and a variable specifying the number of times the case
was interviewed - are highly significant when included one at a time in the
model. Both variables cannot be retained in the model simultaneously because
of their large correlation with each other. Consequently, the variable obtaining
the lower p-value for the Wald test in a multilevel model including only the
interviewer wave 8 random effect and the interviewer change fixed effect is

retained. Therefore, the variable ‘First Wave’ is included in the final model.

In comparison to cases introduced into the sample in wave 7, cases
introduced to the survey at an earlier wave show a lower propensity to refuse
the survey request. This result is significant for all prior six wave dummy
variables at the 5% level. This indicates that participants who have been in the
sample for a greater number of waves are generally more likely to continue
participating at later waves. This suggests that at successive waves,
participants who remain in the survey constitute a selective population that is
committed to the survey request and is more likely to maintain its commitment
throughout. Similar results were obtained by Nicoletti and Peracchi (2005) who

show that the probabilities of response conditional on contact for the second,
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third and fourth interviews are higher than that for the first interview, and that

this positive influence increases for every additional interview.

The dummy variables for Wave 1, Wave 2, Wave 3 and Wave 4, as well as
the dummy variables for Wave 5 and Wave 6, have similar coefficients which
are not significantly different at the 10% level. Consequently, these two groups
have been collapsed into two dummy variables: Waves 1-4 and Waves 5-6.
This variable transformation still confirms the previous results of a lower
likelihood of refusals for respondents who were included in the sample at an
earlier wave. The results indicate a significant increase in the likelihood of
cooperating in the next survey contact from those having participated in the
survey once or twice and those who participated at least three times before, at
the 1% level. While participants introduced to the survey at Waves 1-4 have
0.41 times the odds of refusing participation at wave 8 when compared to
those introduced at Wave 7, for those initiated at Waves 5-6 the odds are 0.64

times smaller.

The variable discussed above does not indicate the real first wave for all
cases. Cases which have been re-entered at a specific wave have only been
coded at that wave, and therefore, for such cases the true first wave is not
available. However, this amounts to only 160 cases of the full dataset. Due to
these cases, a variable indicating the proportion of waves in which the
respondent cooperated - obtained by dividing the number of successful
interviews out of the number of waves the case was included in the sample,
and which could have provided a way of including information from both
participation history variables - has not been included. Consequently, the
results obtained in this study cannot be compared with those obtained by
Campanelli and O'Muircheartaigh (1999), Watson and Wooden (2006), and
Laurie et al. (1999), which show that partial nonresponse in the previous wave
is associated with higher refusal propensity at a later wave at both the

household and individual level.

As explained previously, the main focus of the paper is on interviewer
effects on nonresponse. Consequently, the results for respondent- and

household-level predictors are reviewed only briefly below.
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Table 11.6: Estimated Coefficients for the Final Multilevel Logistic Model

Analysing Wave 8 Nonresponse

Variable Category B S.E. B/S.E. p-value
{Reference
Category}
Interviewer Change Change 0.409 0.110 3.718 0.000
{Same}
Participation History Variables
First Wave for Wave 1-Wave 4 -0.892 0.145 -6.152 0.000
Respondent
{Wave 7} Wave 5-Wave 6 -0.443 0.163 -2.718
Respondent/Household Variables
Ethnicity {Non-white White -0.524 0.155 -3.381 0.001
& Missing}
Any Vocational or No 0.289 0.144 2.007 0.044
Academic
Qualifications {Yes}
Age of Youngest 0-4 years -0.548 0.170 -3.224 0.004
Child {No dependent  5-10 years -0.441 0.171 -2.579
children &16-18  13.15 years -0.189  0.175 -1.080
year olds}
Heating Problems in  Yes 0.266 0.217 1.226 0.225
the Dwelling {No &
Don't know}
Gender {Female} Male -1.428 0.554 -2.578 0.010
Accommodation Semi-detached house -0.280 0.125 -2.240 0.198
Type {Detached Terraced house -0.264 0.137 -1.927
house} Flat or maisonette - -0.159 0.211 -0.754
purpose built & Other
Flat or maisonette - -0.504 0.523 -0.964
conversion
Household Size Household size 0.086 0.046 1.870 0.056
Interviewer 8 Administrative Variables
Gender {Female} Male 0.094 0.111 0.847 0.391
Grade Experience Grade A (Lowest 1.117 0.278 4.018 0.000
{Grade R; S, 5+ Grade); B
years’ experience; T  Grade C, 0-4 years’ 1.027 0.212 4.844
(Highest grade)} experience
Grade C, 5+ years’ 0.495 1.640 0.234
experience
Grade D, 0-4 years’ 0.812 2.252 0.254
experience
Grade D, 5+ years’ 0.530 1.699 0.252
experience
Grade S, 0-4 years’ 0.701 2.016 0.286
experience
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Interviewer 8 Work History, Time Availability, Attitudes towards Refusal, Work

Priorities, Satisfaction with Job Variables

Interviewing Work Working with another -0.208 0.174 -1.195 0.000
History - Work agency at time of
status with another  survey & Done other
survey agency & survey interviewing
Experience with Worked with another 0.436 0.131 3.328
other (phone, agency prior to
marketing) survey 01/01/06 & Done other
interviewing {Never survey interviewing
worked for another ~ Working with another -0.610 0.296 -2.061
survey agency} agency at time of

survey & Never done

other survey

interviewing

Worked with another 0.241 0.185 1.303

agency prior to

01/01/06 & Never

done other survey

interviewing

Interviewer 8 Personality Traits Variables
Worries a lot 1 2,3 0.582 0.204 2.853 0.002
{Does not apply to 4 0.298  0.220 1.355
me at all)} i

5, 6, 7 (Applies 0.690 0.213 3.239

perfectly to me)

Interviewer 8 Skills Traits Variables

Expresses myself 4 0.342 0.291 1.175 0.011
easily {1 (Does not 5 g 7 (Applies 0.638  0.251 2.542
gpgl}y tomeatall),  perfectly to me)
Can't help but look 1 (Does not apply to -0.28 0.17 -1.709 0.053
upset when me at all), 2
something bad 3,4,5 -0.33 0.14 -2.416

happens {6, 7
(Applies perfectly to
me)}

The odds of non-white sampled persons refusing participation are 1.7
times those of white sampled persons, and this result is significant at the 1%
level in the final model. Any differences between the various non-white
ethnicities are not significant, and therefore, these categories have been
collapsed together. This result is congruent with the analysis carried out by
Campanelli, Sturgis and Purdon (1997), who use the same categorisation for
ethnicity. The odds of male respondents refusing to participate are roughly

75% lower than the odds of a female respondent. No conclusive evidence of the
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effect of gender has been found in the literature. Some studies in the literature
found no relationship between refusal and sex (Watson & Wooden, 2006),
some found higher cooperation (Hox & De Leeuw, 2002), while others found
lower cooperation rates for women (Pickery & Loosveldt, 2002). Therefore, the
relationship between sex and refusal varies by survey topic and country. In this
case, since the study is mainly targeted at the mother figure, single fathers or
male guardians may have a special interest in participating in the survey and

voicing their views.

The odds of respondents with no vocational or academic qualification
refusing are 1.4 times the odds of respondents with some educational
attainments. Further disaggregation of the education variable does not indicate
variations in the probability of refusal between respondents with different
levels of educational attainment. The literature on the relationship between the
respondent’s education level and the likelihood of cooperation is mixed. For
example, while Groves and Couper (1998) find a negative relationship between
education and cooperation described, Watson and Wooden (2006) find a

significant relationship in the opposite direction.

The final model indicates higher rates of refusals for larger households
for the UK FACS. However, this result is only significant at the 10% level in the
final model. This deviates from the study by Haunberger (2010) which included
the same variable in two separate models analysing refusal at wave 2 and wave
3 for the German Child Longitudinal Study, but did not find any significant
effect. The response analysed in Haunberger (2010) is also that for the mother
figure within the household. While in a general household survey, where any
adult within the household can participate in the survey, the likelihood of
response may be expected to be higher, for a survey where the mother figure
(or father figure where the mother figure is missing) is the only eligible
respondent a bigger household may translate into a lower probability of
response due to a greater workload burden. Consequently, the variations in
results may be explained in terms of contextual differences between Germany
and the United Kingdom, specifically in relation to the division of household
duties and childcare arrangements. A categorical transformation of this

continuous variable was attempted, owing to evidence of non-linear effects
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cited in the literature (Watson, 2003). The results suggest that a linear
relationship (on the logistic scale) between household size and refusal
exists, with increasing refusal probabilities for categories showing larger
household sizes. Since the continuous variable obtained a better model fit than
its categorical equivalent, the continuous measure has been retained in the
final model. On closer inspection, the non-linear effects found by Watson
(2003) show higher attrition rates for one-person and larger households. In
fact, the higher refusal rates for single person households have been widely
documented. However, the dataset used in this study does not include
households with only one person, because of the focus of the study on
households with children, eliminating the lower end of the distribution, and the

qguadratic relationship.

Similarly to Watson (2003), households with dependent children are
more likely to cooperate with the survey request, while the number of
dependent children does not significantly predict refusal. Similarly, Nicoletti
and Peracchi (2005) find that the number of children in the household is not
associated with the probability of cooperation given contact, while they
confirm a positive relationship between this variable and contact. On the other
hand, the variable indicating the age of the youngest child shows that the odds
of refusal are lowest for households with younger children, possibly due to the
fact that the eligible respondent may spend more time at home due to caring
duties when younger children are present, and consequently would be more
available for an interviewer. Households with 11 to 15-year-old children,
despite showing lower odds of refusal, are not significantly different in their
refusal probabilities from households with no dependent children or children
aged sixteen years, whilst showing significantly higher odds at the 1% level
compared to households with 0 to 4-year-olds, and significantly higher odds

at the 10% level compared to households with 5 to 10-year-olds.

Some variables included in the final model are not significant, due to the
modelling strategy chosen, as explained in the methodology section. The
identification of heating problems acts as a proxy for household deprivation.
Such acknowledged deprivation seems to increase refusals; however, this is not

significant in the final model at the 10% level. The variable accommodation
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type as a whole is also no longer significant in the final model. However, there
are significant differences between respondents living in semi-detached and
terraced houses compared to those living in detached houses, with

respondents living in detached houses showing higher refusal rates.

11.4.5.2. Significant Interviewer Fixed Effects

The following discussion focuses on the effects of interviewer-level variables

on nonresponse.

11.4.5.2.1. Interviewer Continuity
In agreement with previous observational studies (Schatteman, 2000; Watson &
Wooden, 2006; Haunberger, 2010), an interviewer change between waves is
positively associated with refusal. However, a causal relationship cannot be
inferred as an interviewer change may reflect a respondent move or the
resignation of an interviewer rather than a random allocation (Hill & Willis,
2001).

With the aim of identifying whether the effect of a change of interviewer
depends on the grade, a more complex categorisation for change has been
included for exploratory purposes in a model controlling only for the wave 8
interviewer random effect. This variable distinguishes between cases
experiencing change where the wave 8 interviewer is of the same, higher and
lower grade group as the wave 7 interviewer. The grade groups are A, BCD, RT,
and S, with A being the lowest grade and T the highest. The estimates of these
dummy variables seem to indicate that there are no significant differences
between cases with no change and changes for a higher grade group
interviewer, while cases experiencing a change to an interviewer of the same or
lower grade group are more likely to refuse at the 1% significance level. This
result hints to the possibility of improving the odds of cooperation at the
subsequent wave by purposely changing the interviewer to a substantially

more highly experienced one.
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Additionally, another variant for the interviewer continuity variable has
been constructed. This variable distinguishes between cases experiencing an
interviewer change specifically due to the wave 7 interviewers completely
dropping out of the survey at wave 8 and all other interviewer changes. In a
simple hierarchical model including only the wave 8 interviewer random effect,
the dummy variable for changes arising from interviewer attrition is significant
only at the 10% level, indicating higher refusal rates for cases allocated to a
new interviewer at wave 8 owing to the attrition of their previous interviewer in
comparison to cases with no interviewer changes. However, once the grade and
experience variable for the wave 8 interviewer is included in the model, this
dummy variable is no longer significant. This would seem to indicate that
interviewer changes arising from interviewer attrition do not influence the
sampled person’s propensity to cooperate. This result suggests that the
negative effect of interviewer change on cooperation identified in the final
model may be due to cases where the respondent has moved house and is
therefore more likely to consider the survey to be an inconvenience during a
particularly stressful time for the household, or in situations when the previous
interviewer suggests a change in job allocation due to difficulties encountered

with the specific case.

11.4.5.2.2. Interviewer Grade and Experience
Both interviewer grade and years of experience are highly significant predictors
when included one at a time in the model. While years of experience simply
constitute a consistent measure of exposure in the profession, the grade held
within the organisation is a more subjective construct and may reflect
experience, educational background and skill. In fact, while interviewers with
higher grades are generally more likely to have many years of experience, for a
particular grade there are interviewers with a range of years of experience.
However, both variables are positively correlated and their simultaneous
inclusion would cause problems with collinearity. Consequently, a variable
distinguishing between different years of experience bands for the same grade

has been created. The categorisations reflect differences in refusal rates across
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different experience and grade groups, as well as necessary collapsing of

categories owing to small sample sizes.

All categories of the grade/experience variable show a significantly
higher propensity of refusal compared to the highest grade/experience group
at the 5% level. As hypothesized, interviewers in the lower experience group
for both grades C and D have higher odds of refusal than those interviewers in
the higher experience group for the same grade. The difference between these
groups is, however, only significant for grade C. The positive effect of grade
and experience is a consistent effect confirmed across various studies
(Campanelli et al., 1997; Hox & de Leeuw, 2002; Pickery & Loosveldt, 2002;
Hansen, 2006; Durrant et al., 2010), and may either indicate improved
performance over time and as one moves up in the company hierarchy, or a
selection effect with better interviewers remaining in the industry and being

promoted.

11.4.5.2.3. Interviewer Work History

In the final model, the work history variable shows that terminated work
experience with another survey agency and experience in other types of
interviewing have a negative effect on individual-level cooperation. The
negative effect of work experience in different interviewing modes or research
areas suggests that face-to-face interviewing requires specific tactics and
skills, and that exposure to techniques suitable for other types of interviewing
may hamper performance. The results indicate that interviewers working with
another survey agency at the time of the survey performed better than those
who had previous experience with another survey agency and better than those
with no such experience. This result may indicate that interviewers who
commit most of their paid working hours undertaking interviewing work for
various survey agencies perform best. The explanation for the negative effect
of previous work with other survey agencies is somewhat unclear and more
data on interviewing work history is required to explore this relationship

further. Possibly, job tenure in interviewing work shows commitment and skill
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in one’s work, and consequently interviewers who are no longer working for

other survey agencies may represent less able or less committed interviewers.

Variables indicating whether the interviewer had undertaken any other
type of work - including other (phone or marketing) types of interviewing,
interviewing for another survey agency, and non-interviewing work - are all
significant when included one at a time. Only one of these variables could be
retained in the final model because of the high correlation between these
variables. Those who have never done other types of interviewing are more
likely to have never undertaken interviewing with another survey agency.
Contrary to what might be expected, those who have another job (other than
interviewing) are also more likely to be working with another survey agency.
This could indicate some problems with the interpretation of the question
relating to whether interviewers had another non-interviewing job, and

consequently, for the purposes of this study, this variable is excluded.

When the other two variables are included simultaneously in the model,
the following results are obtained: interviewers who had not undertaken other
survey interviewing obtain significantly lower respondent-level refusal rates
than interviewers who had; and interviewers who had worked with another
survey agency for at least two years, and to a lesser extent (smaller effect size)
those who are currently working for another survey organisation at the time of
the survey, show significantly lower refusal rates than interviewers who had
only ever worked for NatCen. On the other hand, interviewers who had worked
for another survey agency prior to 1st January 2006 do not significantly differ

from those who had only worked for NatCen.

For these two variables, an interaction variable has been created by
summarising the interviewer work history, and this is the variable included in
the final model, discussed above. Due to the low number of interviewers for
some categories of this interaction variable, the distinction between those
currently working for another survey agency at the time of survey and who had
started work with this agency at a later date than 1st January 2006, and those
who were currently working for another survey agency, having worked there at

least since 1st January 2006, is removed.
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11.4.5.2.4. Interviewer Personality Traits and Skills
Personality traits and interviewer skills have been hypothesized to play a role in
explaining interviewer performance (Weinhardt & Kreuter, 2011). In the final
model only individual items, treated as categorical variables, are included. In
considering each personality trait item individually, score categories are
collapsed together in cases where the coefficient of each category is not
significantly different from the other or the number of cases in each category
is too low. The requirement for the groupings is easy interpretation and is

restricted to neighbouring scores only.

Here, only one personality item is retained in the final model. This item
indicates that respondents who are allocated interviewers with a low or high
self-rating of neuroticism in terms of worrying tendencies are more likely to
refuse participation than those respondents allocated to interviewers who
assert that this item does not describe them at all. On the other hand,
interviewers showing a moderate score of 4 are not significantly different to

the reference category at the 5% level.

Two skills items are retained in the final model - ‘can’t help but look
upset when something bad happens’ and ‘express myself easily’. Contrary to
expectations, respondents approached by interviewers rating themselves as
highly capable of expressing themselves with ease (5, 6, 7) are significantly
more likely to refuse than those allocated to interviewers who rated themselves
poorly (1, 2, 3) on this skill, while there is no significant difference for those
interviewers with moderate scores (4). This result possibly indicates that
interviewers who are less complacent about their ability to convey the survey
message, who have greater awareness of the way they portray themselves, and
who make a conscious effort to communicate effectively achieve higher
response rates. Sample cases allocated to interviewers who perceive
themselves as never allowing others to notice they are upset when something
goes wrong are less likely to obtain respondent-level refusals than interviewers
who recognise they are very likely to show such feelings. However, this result
is only significant at the 10% level. On the other hand, interviewers scoring
moderately (3, 4, 5) on this item are significantly less likely to obtain

respondent-level refusals compared to the highly transparent group. This
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result might highlight that interviewers who do not get flustered or defeatist if

a sampled person shows scepticism or hesitancy have more chance of success.

Of substantive interest is the recurrent pattern for personality and skills
items, where interviewers providing moderate answers scored generally better
than those providing extreme values. This may indicate that the most
confident interviewers do not necessarily perform best on the job. It may also
be plausible that while interviewers who are confident in their performance
may have been more likely to tick moderate scores on the traits items in the
interviewer questionnaire, others were more subject to social desirability bias

and tended to overrate their personality disposition and skills for the job.

Besides attempting to include each personality trait item individually,
both as continuous and categorical variables, an alternative method for
including personality traits in the model was attempted. This method is the
same used by Sinibaldi et al. (2009), which consists of taking the mean of the
three traits pertaining to each personality dimension. When each personality
trait is included in a simple hierarchical model controlling only for the wave 8
interviewer random effect and the interviewer change fixed effect, only
‘Extroversion’ - showing lower refusals for more extrovert interviewers - and
‘Openness’ - unexpectedly showing higher refusals for more open interviewers
- are significant as linear effects. These results are very similar to the effects
obtained in the study by Sinibaldi et al. (2009). When the grade/experience
variable is controlled for, neither of these personality traits remain significant,
achieving p-values greater than 0.10. The difference in results for the Sinibaldi
et al. (2009) paper and this study may simply be due to the fact that the
personality of the interviewer plays a more important role in gaining response
in cross-sectional surveys than later waves of a longitudinal survey. As there
may be non-linear effects for these personality traits, with both very low and
very high scores having the same effect on nonresponse, an attempted
alternative specification of these traits is the inclusion of a quadratic term.

However, none of these terms are significant.

Similarly to the personality traits items, the inclusion of skills items both

individually, as continuous and categorical variables, and as composite
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measures was attempted. In this study the 35 of the 52 skills items associated
with the ability to achieve response rather than contact are considered
(Sinibaldi et al., 2009). Creating a composite measure using a principal
component analysis requires the complete interviewer dataset. Then the
component scores and loadings obtained in this analysis of all interviewers can
be applied to the interviewers included in this study. This strategy reflects the
understanding that the underlying dimensions for these traits should be
uncovered for the population of interviewers. However, this data is not
available and the dimension reduction analysis could either to be carried out
on the restricted sample or by using the results obtained by Sinibaldi et al.
(2009). The authors use data from 845 interviewers out of a total of 1198
interviewers who participated in the interviewer survey, making their dataset
more complete than the one available for this analysis for determining the
correlations between different skills items. Consequently, the components and
loadings available in their study are applied in this paper. The authors have run
a principal component analysis, followed by a confirmatory factor analysis

which indicates that the 35 items can be grouped in ten components.

In a 2-level model controlling only for the wave 8 interviewer random
effect and the interviewer change fixed effect the factor ‘Emotional Resilience’
is the only factor reaching significance, showing lower refusal rates for
interviewers with higher scores. However, when the variable grade/experience

is controlled for this variable is no longer significant, not even at the 10% level.

11.4.6. Discussion of the Non-significant Fixed Effects
11.4.6.1. Area Effects

The variables describing the geographical area of the household, such as the
indicator for the UK regions, the London indicator, and various respondent
neighbourhood perception variables are found not to be significant after
controlling for other household-level variables, confirming similar findings in
Durrant et al. (2010). The inclusion of these variables in a model also
controlling for household-level variables and participation history does not

result in any substantial reduction of the interviewer-level variance. This result
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supports the conclusion that, after controlling for household and interviewer

effects, area effects are negligible.

1.4.6.2. Interviewer Effects

The working field area variable, indicating the geographical area within which
the interviewer may be allocated work, is not significant. This provides further
evidence that there are no significant area effects on nonresponse.
Demographic variables such as gender and age are also not significant. The
evidence of demographic interviewer effects in previous literature is mixed.
Variables indicating the importance interviewers allocate to various aspects of

a job, such as monetary compensation and flexibility, are all not significant.

The untransformed items indicating the interviewer attitudes on the
persuasion of reluctant respondents - as considered in the study by Sinibaldi et
al. (2009) - are not predictive of respondent refusal. The effect of attitudes on
respondent persuasion may be more important for cross-sectional surveys,
investigated in the study by Sinibaldi et al. (2009), when sampled members are
being approached to take part for the first time, in comparison to later waves
in a longitudinal study, being investigated in this study, where sampled
members already know the survey and its scope. In the current study, the
inclusion of each persuasion item was attempted individually and then
collectively in a 2-level model controlling only for the wave 8 interviewer
random effect and the interviewer change fixed effect, but none are significant.
In a similar manner to the method used in the study by De Leeuw et al. (1998),
an attitude index is constructed to aggregate the scores across the eight
different items which indicates greater reluctance to use persuasion techniques
and to respect the voluntary nature of the participation request for higher
values. This index also is not significant in the simple hierarchical model.
These results are contrary to various studies showing that an interviewer’s
positive attitude towards the effectiveness and acceptability of respondent
persuasion is conducive towards achieving higher response rates (De Leeuw et
al., 1998; Groves & Couper, 1998; Hox & De Leeuw, 2002). However, the study

by Sinibaldi et al. (2009), which is analysing a larger pool of interviewer from
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the same survey agency considered in this study, finds only weak evidence of
the effect of such attitudes on respondent cooperation: only one item is
significant at the 5% level in the final model, indicating higher respondent-
level cooperation rates for interviewers who believe that with enough effort all

respondents can be convinced to participate.

All variables indicating the interviewer satisfaction rating with various
aspects of the survey agency except one are not significant at any stage in the
multilevel model. The variable enquiring about the overall satisfaction with the
job with the NatCen survey agency is significant at the 10% level in a 2-level
model controlling only for the wave 8 interviewer random effect and the
interviewer change fixed effect. Respondents allocated to interviewers
belonging to the ‘Quite Dissatisfied and Very Dissatisfied’ category show a
significantly higher likelihood of refusal compared to the respondents
interviewed by the ‘Very Satisfied’ interviewer group. However, neither the
‘Quite Dissatisfied’ nor the ‘Neither Satisfied nor Dissatisfied’ group has a
significant effect, despite both having positive coefficients. The notion that
interviewers perform better if they are satisfied with their working conditions
in the agency is understandable. On the other hand, it may be that better
performing interviewers are more satisfied with their work simply because they
are happy with their achievement or because they are given more work and are
better respected for their performance. When this variable is included in a

model controlling for other significant variables, it is no longer significant.

A variable indicating the workload of each interviewer has been created.
When included in a 2-level model controlling only for the wave 8 interviewer
random effect and the interviewer change fixed effect this variable shows a
significant negative association with nonresponse at the 5% level, indicating
lower odds of refusals for cases allocated to interviewers with a greater case
burden. Nicoletti and Buck (2004) find workload to have a highly significant
negative relationship with cooperation, indicating that huge work burdens
negatively affect work quality. Watson and Wooden (2006) attempt both linear
and quadratic specifications of workload to account for both the effect
confirmed by the above-mentioned study and an opposing effect arising from

the management decision specific to their survey of allocating greater
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workload to more experienced interviewers. The authors report a significant
guadratic effect for the contact propensity model with an optimal workload of
124 cases per interviewer and worse contact outcomes for lower and higher
caseloads, but no significant effect is found for response. As both possible
contradictory workload effects may be applicable to the current study, the

inclusion of a quadratic term has been considered, but this is not significant.

Since the dataset is conditional on wave 7 cooperation, this measure of
workload does not account for opt-in cases or booster cases at wave 8. This is
the same restriction to the workload measure considered in the study by
Watson and Wooden (2006). To the extent that panel, opt-in and booster cases
are not distributed in equal proportions across interviewers, particularly
interviewers of different experience bands, the interpretation of the association
between refusals and interviewer workload may be more complex than
apparent. To the extent that new interviewers are mainly allocated more new
cases such as boosters or opt-in cases, the interviewer workload will show
them as having very low workload, and consequently this effect may simply be
masking the lower refusal rates for interviewers holding higher grade positions
within the company and with longer years of experience. In fact, interviewer
workload is highly correlated with grade and experience, with interviewers in
the higher grades and with greater experience generally having a greater
number of cases registered for this restricted definition of workload. When
controlling for the grade/experience variable, this variable becomes barely
significant at the 5% level. To avoid multicollinearity this variable has been

excluded from the model.

Several variables indicating the time availability of interviewers have
been constructed. Separate indexes are composed for those dummies
indicating time slots during which interviewers are otherwise occupied and
those during which they are unwilling to do the interviewing. Several variants
of the time availability and willingness constructs are produced. One variable
simply gives the same weight to any time slot and sums up all those time slots
which the interviewer indicates as inconvenient. Another variable gives a
double weight to weekend slots. Two other variables only consider specific

time slots - one considers weekend (Saturday and Sunday) slots, while another
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considers weekend and evening (6-9 pm) slots. For all these variables, missing
answers for particular time slots are considered as convenient times, and
therefore, not contributing to the index of indisposition for that interviewer. A
transformation of these indexes from continuous to categorical scale is also

attempted.

The only significant time restraint construct in a 2-level model
controlling for the wave 8 interviewer random effect and the interviewer
change fixed effect is the unwillingness index allocating equal weight to each
time slot and categorising scores in 3 groups: 0, 1-10, 11+. This variable
suggests that while interviewers who are unwilling to work during up to ten
time slots obtain worse cooperation rates, very inflexible interviewers with very
limited working hours perform better. Possibly interviewers who, despite being
unavailable during most of the working times, are still allowed to work for the
agency are experienced interviewers who have other work commitments but
are retained within the organisation for their excellent cooperation rates
obtained. A cross-tabulation of the index score categories by interviewer grade
and interviewer experience separately confirms the tendency for higher grade
and higher experienced interviewers to be less available for interviewing work.
The variable is no longer significant in the final model, and is therefore not
included. This indicates that there is no credible evidence that performance on

the job is dependent on the time availability restrictions.

11.4.6.3. Matching Effects

Despite gathering considerable interest, there is very little research on the
influence of matching on response propensity in the literature, mainly due to
data restrictions. The strongest evidence is available in the study by Moorman
et al. (1999), but is restricted to descriptive statistics. This study compares the
cooperation rates for a case-control study of breast cancer for sample
members that were allocated an interviewer of the same ethnicity with those
sample members discordant with their interviewer on ethnicity. For this very
particular research topic matching seems to positively influence cooperation

rates. While Durrant et al. (2010) report some evidence of sex and educational
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matching effects, the overall effect of a variable is not considered, and low

significance levels (10% significance level) are reported.

In this study the inclusion of various matching effects on the full model
is attempted, but none of these are found to be significant. Some attempted
matching effects follow the normal mathematical convention for interactions,
while others are included through dummy variables indicating whether there is
a match between the wave 8 interviewer and the respondent (as specified in
wave 7) on specific criteria. These criteria include sex, age, and respondent
education and interviewer grade/experience. While recognising that the wave 7
respondent and the wave 8 interviewer are time discordant, the decision to
focus on wave 8 interviewer and the relative stability of the ‘mother figure’
respondent across waves justifies this choice. The non-significance of such
terms indicates that there is no evidence of reduced refusals for cases where

the interviewer is similar to the respondent on socio-demographic variables.

A different type of interaction effect is considered in the study by Lynn
et al. (2013), which found some indication of variation in the effect of
interviewer change by respondent age and interviewer age. Interaction effects
for the interviewer change variable and respondent, household or interviewer
characteristics are attempted to identify whether the effect of a change in
interviewer across waves on nonresponse varies by respondent or interviewer
characteristic. In this paper all variables included in the model have been
considered for this interaction effect. The results do not indicate any
differences in the effect of interviewer change between categories of
respondent or interviewer variables. The results on interaction effects are
interpreted within the context of the possibility that the actual variables which
show a significant interaction with interviewer change may not have been
considered, owing to the fact that their main effect is not significant in the

model or to data restrictions.
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I.5. Conclusions

This paper explores cross-classified and multiple membership multilevel
model specifications to account for area and interviewer effects on wave
nonresponse in longitudinal surveys. A cross-classified model is identified as
the appropriate method for distinguishing between area and interviewer effects
in the case of partial interpenetration, otherwise known as cross-classification,
sometimes present in surveys. Cross-classified and multiple membership
specifications are considered to account for the various interviewers allocated
to a particular case across waves. The analysis of wave 8 nonresponse for the
UK Family and Children Survey serves as an example to illustrate the methods

proposed.

The main results from this application are as follows. The final random
effect specification identified for this dataset is a two-level hierarchical model
with a random effect for the current interviewer. Area effects are not significant
after controlling for interviewer and household level effects in a cross-
classified model, supporting findings by Campanelli and O'Muircheartaigh
(1999) and Durrant et al. (2010). The non-significance of the cross-classified
area effect in comparison to the significant area effect in a two-level
hierarchical model either suggests that there is insufficient interpenetration to
correctly disentangle the two random effects, or that area effects are simply
aggregated interviewer effects. To the extent that interviewers work in
restricted geographical areas apparent variations in response rates across
areas may simply represent variations in response rates across interviewers,
with area classifications acting as a rough proxy measure for interviewer
classifications. One would expect that area effects on nonresponse, signifying
variations across communities in privacy and safety concerns, as well as
attitudes towards cooperation, apply mainly to the first interview request. Once
one successful interview has been secured with a particular individual or
household, such concerns would most likely not be of relevance anymore. This
result has been confirmed in the study by Campanelli and O'Muircheartaigh
(1999) which finds no significant area effect on nonresponse, refusal and non-
contact at the second wave of the British Household Panel Study when using

data with a quasi-randomised design.
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Alternatively, the physical, social and cultural spatial divisions related
with nonresponse patterns may not match the PSU classification. The
possibility of a significant area effect for a different area classification cannot
be completely ruled out, raising questions on the validity of the obtained
results in the case of an omitted crossed-factor (Luo & Kwok, 2009). The
unstable estimates obtained from the cross-classified model controlling for
both interviewers at wave 7 and 8 but excluding area effects suggest that the
assumption of independent interviewer effects is erroneous. Alternatively, the

percentage of cases with a change of interviewer was insufficient.

The results for the multiple membership models with various weight
specifications indicates that the best model fit pertains to the model allocating
the highest weight to the current wave interviewer. These findings indicate that
the current wave interviewer seems to have the greatest impact on current
wave nonresponse for later waves of a longitudinal study. They are in contrast
with earlier findings by Pickery and Loosveldt (2002) who report that the first
interviewer has the greatest influence. They investigated, however, interviewer
effects at the beginning of a longitudinal study, analysing wave 1 and 2
interviewers, and used a cross-classified multilevel model specification. For
our example, the multiple membership model does not seem to provide an
improvement on the simpler 2-level hierarchical model accounting only for the

current wave interviewer random effect.

The results from the final model confirm previous findings on the
positive relationship between wave participation and interviewer experience,
grade and continuity variables, highlighting for example the importance of
retaining experienced interviewers within the agency. The non-random nature
of interviewer change in observational studies, however, hinders the
interpretation of the effect of interviewer continuity on response (for an
investigation of this effect using experimental data see Lynn et al., 2013). The
current study also sheds light on the need for further data on the work history
of interviewers, as results indicate that experience in other interviewing modes
and survey areas may be detrimental in obtaining cooperation in face-to-face

interviewing in social surveys.
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This study suggests that for later waves of general household
longitudinal surveys, which are not of a particularly sensitive nature, sampled
members do not seem to base their decision to cooperate on the demographic
characteristics of the interviewer, and neither are they affected by whether they
are discordant with the interviewer on such characteristics. As information on
the ethnicity of interviewers was not available, the benefit of matching
interviewers and households on ethnicity has not been explored here. In high-
crime neighbourhoods, where there may be known frictions between ethnicity
groups, households being contacted by an interviewer of the same ethnicity
may feel less uneasy about safety concerns, and as Moorman et al. (1999)

point out, these may also perceive the survey to be more relevant to their race

group.

The results do not provide much support for the hypothesis that
interviewer personality traits are important predictors of wave nonresponse.
Despite being categorised as skills items, some of these items seem to be
representing very specific personality characteristics rather than learnable
behaviours. Although some of these items are found to be significant, the
overall picture of the personality profile and skills set of the most successful
interviewer in terms of nonresponse is not clear or coherent. The non-
significance of these variables may, however, simply reflect an inadequate
construct of personality and skill, or possibly a conscious decision taken by
some interviewers to answer the questions in a favourable way, leading to
distorted personality and skills assessments. Even if there is a relationship
between a household’s propensity to respond and the interviewer’s personality,
it may be too weak or complex to identify, and may therefore be of limited use
in guiding interviewer recruitment and training. Cross-level interactions for
personality traits have not been explored due to a lack of respondent
personality information, and therefore the possibility of higher response rates
for sampled members approached by interviewers of a similar personality

typology cannot be ruled out.

It is important to remember that this study focuses on nonresponse at a
later wave in the life of a longitudinal study. Results from this study may not

apply for earlier waves. One might expect marked differences in the influence
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of interviewers and areas on nonresponse across various stages of a
longitudinal study. For example, area and interviewers effects on nonresponse
are expected to be greater at initial waves, and if the second wave response is
analysed the relative influence of the first wave interviewer is expected to be

greater than that of previous wave interviewers for subsequent waves.

It is important to consider how the cross-classification present in the
FACS dataset came about. The survey administrators at NatCen explained that
interviewers are allocated work within a geographic pool of a few primary
sampling areas close to their area of residence. Interviewer case allocation is
not random, but based on practical considerations. For example, if the
previous interviewer leaves the agency an alternative interviewer is recruited to
take over the caseload. Therefore, to the extent that interviewers are not
matched to cases on the basis of their performance record or experience and if
there is no substantial interaction effect between the interviewer area of
residence and the area provenance of the cases allocated to a particular
interviewer then minimal confounding in interviewer and area effects is
expected. If these assumptions hold, then the cross-classification observed
can be considered to provide partial interpenetration. However, if these
assumptions do not hold then disentangling interviewer and area effects may

be problematic.
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Ill. The Effect of Sample Size and Level of
Interpenetration on Inference from
Cross-classified Multilevel Logistic
Regression Models (Paper 2)

I1l.1. Introduction

In survey methodology, a particular estimation problem pertains to the
identifiability of area and interviewer variation. In a random experiment an
interpenetrated sample design would be employed, where each sampled case
is allocated randomly to interviewers irrespective of their area. This is
considered the gold standard for separating interviewer effects from area
effects for face-to-face surveys, but is not implemented in practice in survey
designs owing to restrictions in field administration capabilities and survey
costs. A compromise which is achievable in a real survey setting is partial
interpenetration. Partial interpenetration exists where interviewers are not fully
nested within areas, as one interviewer may work in more than one area, and
cases in one area may be designated to more than one interviewer. A cross-
classified multilevel model specification which considers both interviewer and
area random terms has been suggested to distinguish between the two sources
of variation in cases where there is partial interpenetration (Von Sanden, 2004).
However, in circumstances of small sample sizes and low degrees of
interpenetration in the dispersion of interviewers across areas, problems of
biased estimates and low power for significance tests may arise. Some previous
studies (Maas & Hox, 2005; Moineddin et al.,, 2007; Paccagnella, 2011;
Rodriguez & Goldman, 1995; Theall et al., 2010) have looked at the properties
of estimators and the power of significance tests for two-level models.
However, questions regarding how well cross-classified multilevel model
parameters can be estimated under difficult design conditions have not yet

been explored.
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111.2. Study Aims

This study examines the implications of various practical limitations in the
assignment of cases from different areas to interviewers within various
scenarios through a simulation study. The implications are assessed in terms
of the following measures: the percentage relative bias and the standard error
of the area and interviewer variance estimators, the asymptotic Wald 95%
confidence interval coverage, the correlation of the two variance estimators
and the power of significance tests. These different scenarios include different
total sample sizes, group sizes (interviewer caseload), number of groups
(hnumber of interviewers), overall rates of response, and the percentage
variance attributable to area and interviewer effects. Interviewer-area
classifications are restricted to possible interviewer work allocations, and
starting values for the other factors represent realistic values, making the
simulation results relevant to survey practice. The study will also examine the
smallest interviewer pool and the most geographically-restrictive and cost-
effective interviewer case allocation required for acceptable levels of bias and
power for typical survey scenarios. By suggesting minimal sample sizes and
interviewer dispersal patterns to guide survey design and administration, and
by shedding light on the accuracy and precision of the estimates and the
power of their tests of significance in multilevel modelling, this study
contributes to different areas of research: study design and parameter

estimation (Paccagnella, 2011).

Although the factor conditions and the application considered are
specific, and restricted to survey design and the exploration of interviewer
effects on nonresponse, the same problem of identifiability may arise in other
settings. Other survey design applications may consider the variation in the
response to specific binary questionnaire items attributable to interviewers, in
an attempt to quantify any interviewer influence on responses. For some items,
area differences may be well documented, such as for questionnaire items
asking about engagement in anti-social behaviour or views on the acceptability
of various social trends. Other applications with similar design issues can also

be envisaged.
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Here an example of a similar design in a different subject matter,
incorporating higher-level classifications other than areas and interviewers, is
considered briefly. Health studies may be investigating the influence of
community physiotherapists in the rehabilitation of patients having undergone
orthopaedic surgery. While each patient is associated with their respective
physiotherapist, the hospital at which the surgery was undergone must also be
taken into account in evaluating their health outcome. Travelling distances and
monetary restrictions will mean that individual physiotherapists are assigned
home visits to patients within the same local health authority, which matches a
specific hospital. Within practical limitations, with a greater geographical
spread of cases allocated to each physiotherapist, each physiotherapist will be
treating patients from different hospitals, allowing for accurate estimates of
the effect of the post-op services on rehabilitation to be produced. This study
can shed light on the amount of cross-classification between hospitals and
physiotherapists required for adequate estimates. It is important to note that
unless physiotherapists are recruited separately from the national health
system for this study the classification structure of the data may lead to
confounding. Real work allocations may reflect unmeasured population density
or resources limitations, which in turn may be related to the health outcome of

the patient

11l.3. Background

I11.3.1. Two-level Hierarchical Models

The impact of various factors on the quality of model estimates may be
assessed through simulation studies. Various studies have considered the
impact of a number of factors on both fixed and random parameter estimates
in two-level models for continuous outcome variables. Paccagnella (2011)
summarises these results as follows: for a fixed sample size, increasing the
number of clusters - rather than the number of units per cluster - yields more

accurate, that is, less biased, parameter estimates and standard errors.
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Estimates of random parameters are more prone to show non-negligible bias
for small sample sizes than fixed parameter estimates, and more so when the
intra-class correlation coefficient is high. Underestimation of standard errors is
more pronounced for random parameter estimates, though still noticeable for

fixed parameter estimates, especially when the number of groups is small.

Very few studies have explored the properties of estimators for binary
outcome variables. These mainly include the studies by Rodriguez and
Goldman (1995), Paccagnella (2011), Moineddin et al. (2007), and Theall et al.
(2010). Both Moineddin et al. (2007) and Paccagnella (2011) use the NLMIXED
procedure in SAS software to estimate the models, which calculates a
maximisation of an approximated likelihood, integrating over the random
effects. Theall et al. (2010) fit the models using the PROC GLIMMIX procedure
in SAS software with restricted maximum likelihood estimation. Below, the
results from these studies, on the impact of various factors - including the
prevalence of the outcome, sample sizes and intra-cluster correlation (ICC) -
on the point estimates and their standard errors is reviewed. The focus in this
literature review is on binary outcome models. Other studies, mentioned for

comparison purposes, refer to continuous outcome models.

111.3.1.1. Effect of Low Prevalence Outcome

Moineddin et al. (2007) show that scenarios with a very low probability of a
successful outcome, e.g. 0.1 overall probability, compared to scenarios with
moderate probabilities, e.g. 0.34 and 0.45 overall probabilities, show
significantly higher bias for both fixed and random parameter estimates, and
lower rates of model convergence. While the overall effect - considering four
fixed effects, one random intercept and one random slope - of outcome
probability on the Wald 95% confidence interval coverage rate is not significant,
some differences in these rates can be observed for the two random effects
parameters, with the lowest coverage rates obtained for the smallest levels of
outcome prevalence. Similarly, the rate of model convergence was lowest for
an overall probability of 0.1, with practically no difference between the 0.34

and the 0.45 overall probabilities.
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11.3.1.2. Effect of Sample Size

111.3.1.2.1. Effect of Sample Size on Point Estimates
Paccagnella (2011) finds fixed effect coefficients, with the exception of
contextual variables, most especially dichotomous contextual variables, always
to be unbiased even for small sample sizes, with the smallest sample size
considered consisting of 650 cases (10 groups). However, only the random
intercept estimate is consistently underestimated for all sample sizes,
including the largest sample size of 22,750 (350 groups). Bias reductions can
be noticed as the number of groups, and consequently sample size increases
up to 70 groups (4550 cases). Thereafter, any sample increases do not
translate into improvements in the estimates’ accuracy. In contrast, Moineddin
et al. (2007) show that with small group sizes and a small number of groups,
both fixed and random parameter estimates are biased. However, in agreement
with the previous study reviewed, random effects parameter estimates show
the largest biases. For fixed effect parameters bias is reduced to 1% or less for
data with 100 groups of size 30. In the case of random effects estimates,
recorded biases never reach 1% or lower, even for large sample sizes of 100
groups of size 50, at which point they reach up to 4%. Larger biases are
recorded for the random intercept rather than the random slope estimates. For
group sizes of 30 or more, irrespective of the number of groups, the random

intercept and random slope parameters are underestimated.

Maas and Hox (2005) find no significant difference in bias across either
number of groups or group sizes for their main simulation study. In contrast,
in their additional simulation study including data with only 10 groups of size
5, substantial positive bias reaching 25% is recorded for group-level variances.
The authors run this additional simulation to test Snijders and Bosker’s (1999)
statement that ten groups are the minimum adequate number for use in
multilevel models. Maas and Hox (2005) conclude that having such a small
group sample size is insufficient. A possible criticism of this study is that a
larger group size (yielding larger total sample sizes) could have been
considered for a fixed group sample size of 10. These may have provided more

insightful results.
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Theall et al. (2010) explore the influence of small group sizes for
varying numbers of groups on the parameter estimates and their standard
errors for both a continuous and binary outcome. The authors consider twenty
five factor combinations. Scenarios with 90%, 75%, 50%, 25% and 10% of areas
including 1, 2, 3, 4 and 5 individuals are considered. When all 459 areas are
sampled for models including no fixed effects and models including individual
and contextual variables, there are very slight differences in both the fixed and
random parameter point estimates across these scenarios. As the number of
areas is decreased from the total number of areas - 459 areas - to the
minimum number of areas sampled in this simulation - 30 areas, the point-
estimate for the higher-level parameter increases. For the results presented in
the paper, specifically the results for scenarios with 90% of areas having only 2
individuals sampled within them, the greatest increase in the area variance is
observed between 50 groups and 30 groups. This inflation of the variance
estimate for small sample sizes is similar to what is observed in Maas and Hox
(2005) for their small-sample data. Rodriguez and Goldman (1995) also find
some evidence of the influence of cluster size upon the accuracy of point
estimates. The authors find much higher negative bias for the variance
parameter estimate for the family-level (which has a very small cluster size),
corresponding with level two, compared to the community-level,

corresponding with level three.

111.3.1.2.2. Effect of Sample Size on Standard Error Estimates
Moineddin et al. (2007) find that a larger number of groups results in higher
95% confidence interval coverage for both the random intercept parameter and
the random slope parameter, but has no effect for fixed effect parameters. A
larger group size results in significantly lower coverage only for the random
slope parameter. This lower coverage is noticeable for the group size of 30 or
the group size of 50 in comparison to the group size of 5. Coverage is close to
the expected 95% mark for fixed effects parameters, while being lower than
this nominal value for random effects parameters for all simulation conditions.
This result indicates that standard error estimates for the random effects

variance is underestimated. Paccagnella (2011) finds that the coverage rate is
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just below nominal level for the overall intercept when only 30 groups, and
sometimes 50 groups, are included, and at nominal level for all number of
groups (10, 30, 50, 70, 100, 150 and 350 groups) for all level-1 fixed effects
parameters, and for level-2 fixed effects once at least 50 groups are included.
For random effects parameters, data with 70 groups (4550 cases) still shows
coverage rates lower than 92%. While higher number of groups, and
consequently sample sizes, do increase the coverage rate to some extent, the
rate of increase is not sufficient, such that for 350 groups the average

coverage rate across different conditions is around 93%.

Maas and Hox (2005) find similar results when considering a continuous
outcome. Variance parameters always show lower coverage rates - implying
underestimation of the length of the confidence interval - than the fixed
effects parameters, which are generally close to the 95% nominal rate. A highly
significant and substantial increase in the coverage rate across number of
groups is observed for the random effects parameters. The coverage rates for
the random intercept and random slope parameters for 30 groups are 91.1%
and 91.2%, and these are increased to 94% and 94.3% when including 100
groups. For all fixed effects parameters, the coverage rate does not fall below
93.6% for the smallest group size, which is not too far off the nominal 95% rate.
An increase from 5 to 30 in the group size generally seems to increase
coverage, but an increase to 50 does not seem to benefit the coverage
properties of the parameter’s confidence intervals. Also, group size seems to
have a smaller impact on coverage than the number of groups. In their
additional simulation study, Maas and Hox (2005) find that for small sample
sizes the standard error are underestimated for both fixed and random effects
parameters, with coverage rates reaching 90.3% and 69.6% for fixed and

random effect parameters respectively.

Theall et al. (2010) find that standard errors are inflated and confidence
intervals become less precise for samples with a higher percentage of areas of
small group size (n<5). The authors however argue that this trend may simply
reflect the smaller sample sizes for scenarios with a higher number of areas
within which a small group size was sampled. The increase in the standard

errors of both fixed and random parameter estimates with a smaller number of
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groups were more substantial. The authors argue that they cannot
categorically explain this pattern in terms of the smaller sample sizes due to
the lack of a standard error formula for restricted maximum likelihood
estimators. What is definitively concluded is that even with a group number
which is usually considered sufficient in the literature - for example, 100
groups - if the majority of groups have very small group sizes - for example
just 1 or 2 individuals per group - then the higher-level random effects and
any contextual fixed effects may be found insignificant simply because of type
Il errors. This applies even in scenarios with a relatively high ICC. Similarly,
Rodriguez and Goldman (1995) find inflated standard errors for the family-
level (level two) variance estimate. They explain it in terms of the small number

of units within each cluster at this level.

111.3.1.2.3. Effect of Sample Size on Model Convergence
The convergence rate in Moineddin et al. (2007) and Paccagnella (2011)
indicates the percentage of times parameter convergence for a simulated
dataset is not obtained by 1000 and 200 iterations respectively. Moineddin et
al. (2007) find that the rate of model convergence increased for both increases
in group sizes and in the number of groups. Similarly, Paccagnella (2011)
shows that it is only data with only 10 groups that yields serious convergence
problems. For data with 30 groups, non-convergence is only a problem with
the smallest ICC. For all simulation conditions non-convergence is reduced to

zero for data with at least 50 groups.

111.3.1.3. Effect of ICC

111.3.1.3.1. Effect of ICC on Point Estimates
Goldstein (2011) explains that the value of the ICC may also influence the
estimates’ accuracy. In the simulation study by Moineddin et al. (2007), the
overall relative bias differs significantly by ICC values - set as 0.04, 0.17 and
0.38 - only for the random intercept, showing higher bias for lower ICC values.

On the other hand, the random slope estimates and fixed effects estimates for
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data of different ICC values do not show statistically significant bias
differences. Maas and Hox (2005) find that in spite of the fact that the largest
bias corresponds to the scenario showing the smallest sample sizes and the
highest ICC, there are no significant differences in bias across ICC values.
Paccagnella (2011) finds no effect of the ICC value - specified as 0.071, 0.304

and 0.655 - on the relative bias of all estimates.

111.3.1.3.2. Effect of ICC on Standard Error Estimates

In Moineddin et al. (2007), while varying ICC values show no effect on the Wald
95% confidence interval coverage rate for all fixed effect parameters and the
random slope parameter, the random intercept parameter shows a trend of
more accurate coverage rates for higher ICC values. Maas and Hox (2005) find
no significant difference in the coverage rates across the different intra-class
correlations specified: 0.1, 0.2 and 0.3. Similarly, Paccagnella (2011) finds no
consistent effect of the ICC value on the coverage rates. Maas and Hox (2005)
find similar results for the continuous case; coverage rates for the various
parameters remain stable for the different ICC values considered: 0.1, 0.2 and
0.3.

111.3.1.3.3. Effect of ICC on Model Convergence
In Moineddin et al. (2007), convergence problems are most pronounced for
data with group size 5, and this applies for all three simulations conditions
having this group size but varying in the number of groups: 30, 50 and 100.
For simulation conditions specified above the improvement in the rate of
convergence for increasing ICC values is pronounced, more so for data with
the smallest number of groups (30 groups). For the sample including 30
groups of size 5, the convergence rate increases from 56% for an ICC of 0.04
to 68% for an ICC of 0.17, to 75% for an ICC of 0.38. Similarly, the results in
Paccagnella (2011) show non-convergence problems for the simulation
conditions including only 10 groups. This is only substantial for the lowest ICC

of 0.071, showing an 86% convergence rate for a sample size of 650 belonging
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to 10 groups, whereas higher ICC data show non-convergence rates of less

than 1%. In Mass and Hox (2005), models for all data scenarios converged.

I11.3.2. Cross-classified Models

For the case of cross-classified multilevel models, sample-size requirements
and the level of interpenetration required between the two cross-classified
higher level classifications necessary for accurate parameter estimation have
not been considered yet. What is currently available is a software package
which produces power calculations for various sample sizes, data structures
and random effects sizes - MLPowSim (Browne and Golalizadeh, 2009). For
cross-classified models the estimation is carried out in R using the Imer
function, as the authors consider Markov Chain Monte Carlo (MCMCQC)
estimation in MLwiN too inefficient in terms of computational time. The most
flexible template of cross-classified data in MLPowSim enables the user to
specify the total sample size, the number of higher-level groups, the
probabilities of sampled cases pertaining to each higher-level combination,

and the expected variances.

In the MLPowSim manual the example considered in the cross-classified
data section is an educational one, with exam attainment at age sixteen - a
continuous variable - chosen as the outcome variable, where each student is
associated with both a primary and secondary school. For this particular
application, results show that sampling additional cases (students) from new
higher-level groups (schools) results in greater power increases than sampling
additional cases from higher-level groups already included in the sample,
supporting the earlier findings in for the two-level case, as reviewed in
Scherbaum and Ferreter (2009). Also, adding further cases per higher-level
grouping only benefits power calculations up to a threshold number of cases.
Although this software offers a great template for sample size calculations for
specific power requirements, no analysis of estimate accuracy is possible. To
the extent that the percentage variation in nonresponse attributable to
interviewers needs to be estimated accurately, this calculation is particularly

relevant for this field of research and cannot be ignored.
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11l.4. Methodology

This section presents the details of the simulation design. The first section
presents the cross-classified multilevel logistic regression model being fitted
to the simulated data. In the next section, the process by which the data is
generated is explained in detail. The various simulation scenarios and the
design factor values considered are then specified. Next, the stored quantities
from each fitted model are listed and the properties calculated from these
stored quantities - including the rationale for considering each measure and

the equations used for their calculation - are presented.

I11.4.1. Simulation Model

The following model is used:

logit(pi(js)) = T’i(js) = :BO + uj + Vs (IH 1)

where the interviewer-specific residuals u; are distributed N(O, 02) and the

area-specific residuals v, are distributed N(0O, 62). The analysis of the simulated
datasets is carried out, that is, the models are fitted and parameters estimated,
using STATA Version 12 calling MLwiN Version 2.25 through the ‘runmlwin’
command (Leckie & Charlton, 2011). Models are fitted using the Markov Chain
Monte Carlo (MCMC) estimation method with default priors, a burn-in length
of 10,000 and 200,000 iterations. Different burin-in lengths were attempted
for different scenarios to identify the appropriate burn-in length to avoid
undue influence from the starting values (Gelman et al., 2004). The Brooks-
Draper and Raftery-Lewis diagnostics were checked for a selection of scenarios
for different iteration lengths to determine the most time efficient length for
accurate point estimates and 95% credible intervals. Initial values for
parameters are obtained by making use of the second order penalised quasi-
likelihood (PQL) estimation method. Due to the computational power and
efficiency requirements of MCMC estimation, and the large number of models

estimated, the IRIDIS High Performance Computing Facility, and the associated
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support services at the University of Southampton have been required to

complete the model estimation work.

111.4.2. Data Generating Procedure

In this study the focus is on the random parameter estimates, and therefore
only an overall intercept B, is included as a fixed effect. Its regression
coefficient is determined after considering the overall probability of the
outcome for the mean area and the mean interviewer, 11, and substituting it in

the following formula:

T
=log,——. I1I. 2
Bo=loger—.  (llL2)

This value is fixed for all cases. Then a cluster-specific random effect for each
interviewer and area is generated separately from a normal distribution of
mean O and variances o7, and o} respectively. The log-odds of each case, 1;s),
are computed by adding the overall intercept value to the simulated random

effects. These values are then converted to probabilities using the equation:

exp (Mi(js))

DT i3
1+ exp (Mi(js)) )

bigs) =
Values of the dependent variable Y, , a dichotomous outcome - with 0
signifying nonresponse and 1 signifying response to the survey request - for
each case, are generated from a Bernoulli distribution with probability p;js).
For each scenario 1000 datasets are generated using R Version 2.11.1. Ritter et
al. (1996) explain that the standard error of a mean is inversely proportional to
the square root of the number of runs. The chosen number of datasets - 1000
runs - should be sufficient to produce stable estimates of the properties
(presented in Section 4.5) while keeping running time and memory space

requirements manageable.

For scenarios which vary only in the interviewer case allocation the same
set of 1000 cluster-specific random effects is used. So, for a specific overall
probability of response, overall sample size, number of areas and interviewers,

and interviewer and area variances, the same interviewer and area residuals are
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used across scenarios simply varying in terms of the interviewer case allocation
scheme. This strategy underlies the fact that while interviewers are assumed to
come from an infinite population, the allocation of workload from different
areas to specific interviewers is limited to a finite number of possibilities.
Therefore the 1000 simulations represent 1000 samples of a specific number
of interviewers (medium scenario = 240 interviewers) sampled from an infinite
population of interviewers. Then for each of the 1000 samples, all possible

realistic scenarios of interviewer-area combinations are considered.

The procedure used for generating the data for one specific scenario is
presented in Appendix B. The same programming code, with the appropriate
changes to the factor values and allocation schemes, can be used for other

scenarios.

111.4.3. Simulation Scenarios and Factors

To explore the properties of estimators, a simulation experiment is carried
using a factorial design. The simulated scenarios vary in the following factors:
the overall sample size, N, the number of interviewers and areas, N! and N4,
and by consequence the number of cases per interviewer and per area, the
level of cross-classification between interviewer and area allocations, the
higher-level variance, and the overall probability of the outcome variable . In
this particular application relating to sampled cases allocated to an interviewer
and residing within a particular primary sampling area, the higher-level
variance o2 is divided in two parts - the interviewer-level variance o2 and the
area-level variance o%. These variances will be altered one at a time, and also
simultaneously, to explore changes in the estimators’ properties arising from

changes in ICC values.

The choice of the values for the various factors reflects realistic
representations of general household survey scenarios. For some factors three
different values are considered for each factor, representing low, medium and
high scenario values. The medium scenario values are similar to values

observed in available studies, which is used in this study as a realistic starting
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point. In various studies, the same number of primary sampling units is
maintained across waves. Consequently, N4 in this simulation study will not be
altered for a specific N. The initial numbers chosen for N, N2, and N! are based
on the values obtained from this real survey and slightly adapted to obtain
numbers which are easily divisible to obtain balanced designs. The main
design, which will be referred to as the medium scenario design, includes 120
areas consisting of 48 cases per area allocated to 240 interviewers who each
have a workload of 24, totalling 5760 cases, with the area variance ¢2=0.3 and
the interviewer variance ¢2=0.3 and an overall probability 1=0.8. The impact
of different interviewer-area classifications - varying in terms of the number of
areas each interviewer works in (and consequently the number of interviewers
per area) and the overlap in the interviewers working in neighbouring areas -
on the properties of the estimators and test statistic for the medium scenario
factors is analysed. The number of areas each interviewer works in will be
allowed to vary from 1 to 6. Imagining a situation where for a national survey
an interviewer is asked to work in more than 6 primary sampling units is quite

unrealistic, and therefore will not be considered here.

The diagrams below show the area-interviewer allocations for a few
areas. The areas are considered as sequential numbers in a circle, with the
final area - area 120 - neighbouring the first area - area 1. Each box
represents an area and the numbers within each box represent the interviewers
working within that area. Here, the simplest to the most geographically
dispersed example considered are presented in this order. The simplest case -
CASE 1 - is where two interviewers work in each area, with each interviewer
working only in one area. In this case there is no overlap in neighbouring areas
with respect to the interviewers working within them. This in fact represents a
purely hierarchical model, with individuals nested in interviewers which in turn
are nested in areas. For the purpose of estimation, a cross-classified model
can still be fitted to this data since MCMC estimation does not require the data
structure to be perfectly identified, since unlike for the Iterative Generalised
Least Squares (IGLS) which requires the global block diagonal matrix to be
defined the MCMC method simply treats each unique classification structure as

a random additive term (Browne et al., 2001). To check this equivalence in the
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specification a few of the models for CASE 1 allocation schemes were also run
using purely hierarchical 3-level models. The results obtained were equivalent

to those obtained using the cross-classified model.

CASE 1
Area Interviewers
1 1 2
2 3 4
3 5 6
4 7 8
5 9 10
6 11 12 |

Next, an interviewer can work in two areas, with four interviewers
working in each area. Three possible scenarios may exist. The most overlap
occurs for the scenario which allocates the same set of four interviewers to
work in two neighbouring areas (CASE 2A). Alternatively, groups of three
interviewers are repeated in two neighbouring areas with a fourth interviewer
varying in the two areas (CASE 2B). Or finally, pairs of interviewers are always
allocated together, with each particular pair never occurring twice with another
pair (CASE 2C).

CASE 2A

Area Interviewers

1 1 2 3 4

2 1 2 3 4

3 5 6 7 8

4 5 6 7 8

5 9 10 11 12

6 9 10 11 12
CASE 2B

Area Interviewers

1 [240 1 2 3|

2 | 1 2 3 4 |

3 |4 5 6 7|

4 |5 6 7 8|

5 | 8 9 10 11 |

6 |9 10 11 12|
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CASE 2C

Area Interviewers

1 239 240 1 2 |

2 | 1 2 3 4 |

3 |3 4 5 6]

4 |5 6 7 8]

5 |7 8 9 10|

6 e 10 11 12 |

For cases where interviewers work in three areas, each area includes six
different interviewers. The different allocation possibilities for this specification
are depicted below. In the first case there is a group of six interviewers who
always work together, and who do so in three different areas (CASE 3A). In the
next case a group of five interviewers always work together, and for two
instances out of three a group of six interviewers are maintained across
neighbourhoods (CASE 3B). Then, groups of five interviewers are maintained in
two instances out of three (CASE 3C). There are some other overlaps, but with
small groups of interviewers compared to the previous case. CASE 3D and 3E
provide two different possibilities for maximum overlaps of four interviewers.
In CASE 3E there is an overlap of four interviewers in two out of three areas. In
CASE 3F overlaps are restricted to three interviewers across all three areas each
interviewer is working in. Finally, in CASE 3H overlaps are restricted to two
interviewers across all three areas each interviewer is working in. Each pair of
interviewers does not work with another pair more than once, and therefore

there are no other overlaps.

CASE 3A

Area Interviewers

1 1 2 3 4 5 6

2 2 3 4 5 6

3 1 2 3 4 5 6

4 7 8 9 10 11 12
5 7 8 9 10 11 12
6 7 8 9 10 11 12
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CASE 3B

Area Interviewers

1 240 1 2 3 4 5|

2 1 2 3 4 5 6

3 1 2 3 4 5 6

4 |6 7 8 9 10 11

5 7 8 9 10 11 12

6 7 8 9 10 11 12
CASE 3C

Area Interviewers

1 236 237 238 239 240 1

2 237 238 239 240 1 2

3 [1 23 4 5 6]

4 [2 3 4 5 6 7|

5 [3 4 5 6 7 8]

6 |7 8 9 10 11 12
CASE 3D

Area Interviewers

1 237 238 239 240 1 2|

2 237 238 239 240 3 4]

3 1 2 3 4 5 6]

4 1 2 3 4 7 8|

g 5 6 7 8 9 10

6 5 6 7 8 11 12
CASE 3E

Area Interviewers

1 237 238 239 240 1 2|

2 | 239 240 1 2 3 4]

3 |1 2 34 5 6]

4 [34 5 6 7 8]

5 |5 6 7 8 9 10

6 |7 8 9 10 11 12
CASE 3F

Area Interviewers

1 238 239 240 1 2 3|

2 1 2 3 4 5 6|

3 1 2 3 7 8 9

4 4 5 6 7 8 9

5 4 5 6 10 11 12

6 |7 8 9 10 11 12
CASE 3H

Area Interviewers

1 2 3 4 5 6]

2 1 2 7 8 9 10|

3 2 11 12 13 14

4 3 4 7 8 11 12

5 3 4 9 10 13 14

6 5 6 7 8 13 14
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With interviewers working in more areas, less variations of overlap are
considered, and this is simply due to the feasibility of such allocation schemes
in practice. Below are the cases considered when each interviewer works in
four areas, and cases within each area are allocated to eight different
interviewers (CASE 4A, 4B & 40).

CASE 4A

Area Interviewers

1 1 2 3 4 5 6 7 8

2 1 2 3 4 5 6 7 8

3 1 2 3 4 5 6 7 8

4 1 2 3 4 5 6 7 8

5 9 10 11 12 13 14 15 16

6 9 10 11 12 13 14 15 16
CASE 4B

Area Interviewers

1 1 3 4 5 6 7

2 \ 2 3 4 5 6 7 8 9]

3 \ 3 4 5 6 7 8 9 1o|

4 \4 5 6 7 8 9 10 11|

5 \ 9 10 11 12 13 14 15 16‘

6 \10 11 12 13 14 15 16 17\
CASE 4C

Area Interviewers

1 239 240 1 2 3 4 5 6|

2 |1 3 5 6 7 8|

3 |3 4 5 6 7 8 9 10

4 |5 6 7 8 9 10 11 12

5 |7891011121314

6 |910111213141516

Below the allocation schemes where each interviewer works in five areas,

with each area including ten interviewers, are presented (CASE 5A, 5B & 5C).
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CASE 5A

Area Interviewers

1 12 3 4 5 6 7 8 9 10

2 12 3 4 5 6 7 8 9 10

3 12 3 4 5 6 7 8 9 10

4 12 3 4 5 6 7 8 9 10

5 12 3 4 5 6 7 8 9 10

6 11 12 13 14 15 16 17 18 19 20

CASE 5B

Area Interviewers

1 1 3456 7 89 10|

2 ‘234567891011|

3 ‘3456789101112‘

4 ‘456789 10 11 12 13‘

5 ‘56789 10 11 12 13 14‘

6 |11 12 13 14 15 16 17 18 19 20

CASE 5C

Area Interviewers

1 1 2 3 4 5 6 7 8 9 10|

2 13 4 5 6 7 8 9 10 11 12‘

3 ys 6 7 8 9 10 11 12 13 14

4 y7 8 9 10 11 12 13 14 15 16

5 9 10 11 12 13 14 15 16 17 18

6 |11 12 13 14 15 16 17 18 19 20

Finally, the allocation schemes below represent scenarios where each

interviewer works in six areas, with each area having twelve interviewers
working within it (CASE 6A, 6B & 6C).

Area

v hWN

CASE 6A

Interviewers
1 2 3 4 5 6 7 8 9 10 11 12
1 2 3 4 5 6 7 8 9 10 11 12
1 2 3 4 5 6 7 8 9 10 11 12
1 2 3 4 5 6 7 8 9 10 11 12
1 2 3 4 5 6 7 8 9 10 11 12
1 2 3 4 5 6 7 8 9 10 11 12
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CASE 6B

Area Interviewers
1 1 2 4 5 6 7 8 9 10 11 12 |
2 ‘ 2 3 45 6 7 8 9 10 11 12 13 ‘
3 ‘ 3 4 5 6 7 8 9 10 11 12 13 14 \
4 \ 4 5 6 7 8 9 10 11 12 13 14 15 ‘
5 ‘ 5 6 7 8 9 10 11 12 13 14 15 16 ‘
6 ‘ 6 7 8 9 10 11 12 13 14 15 16 17 ‘
CASE 6C
A Interviewers
1/1 2 3 4 5 6 7 8 9 10 11 12 |
2 ‘ 3 4 5 6 7 8 9 10 11 12 13 14 |
3 ‘ 5 6 7 8 9 10 11 12 13 14 15 16
4 ‘ 7 8 9 10 11 12 13 14 15 16 17 18
5 ‘ 9 10 11 12 13 14 15 16 17 18 19 20
6 ‘ 11 12 13 14 15 16 17 18 19 20 21

Due to computer power limitations and dependencies between factors -
such that, for example, for a fixed sample size a change in the number of
clusters (interviewers or areas) also changes the number of cases per cluster
the of the

classifications - it was impossible to consider all factor combinations. Only one

and level cross—-classification between two higher-level
simulation factor at a time is changed, keeping all other factors constant. Any
changes are implemented for a select number of interviewer work allocation
schemes (rather than attempting all schemes for every single factor change),
for efficiency reasons. Table 1 outlines the medium values as well as the other

values considered for each factor in the simulation study.

Table Il1l.1: Factor Values for Medium and Other Scenarios

Factor Medium Other
Number of cases per interviewer 24 48

Number of interviewers 240 30, 60, 120
Overall sample size 5760 1440, 2880
Overall propensity to respond 0.8 0.7, 0.9
Area variance 0.3 0.2,0.4
Interviewer variance 0.3 0.2,0.4
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The analysis for the initial medium scenario design, containing 5760
cases, highlights a need to consider a smaller N. New datasets, amounting to
one half and one fourth of the original medium scenario caseload (2880 cases
from 60 areas allocated to 120 interviewers and 1440 cases from 30 areas
allocated to 60 interviewers) are also generated. For the medium scenario there
are twice as many interviewers as there are areas, N'=2NA. Another alternative
considered is to have an equal number of interviewers and areas, N'=N#, that
is, 120 interviewers for 120 areas for N=5760. For this data structure only six
interviewer-area allocation schemes are considered, varying from the most
geographically restrictive case where one interviewer works only in one area, to
the most sparse where each interviewer works in six areas. In this case,
variations in the amount of overlap in the groups of interviewers allocated to
each area are not attempted, and the allocation schemes always allow the same
group of interviewers to work together in neighbouring areas. These allocation
schemes shown below, denoted as CASEi, where i represents the number of
areas each interviewer works in, are therefore comparable to the allocation

schemes CASEIA outlined above.

CASE 1
Area Interviewers
1 1
2 2
3 3
4 4
5 5
6 6 |
CASE 2
Area Interviewers
1 1 2
2 1 2
3 3 4
4 3 4
5 5 6
6 5 6
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CASE 3

Area Interviewers

1 1 2 3

2 1 2 3

3 1 2 3

4 4 5 6

5 4 5 6

6 4 5 6
CASE 4

Area Interviewers

1 1 2 3 4

2 1 2 3 4

3 1 2 3 4

4 1 2 3 4

5 5 6 7 8

6 5 6 7 8
CASE 5

Area Interviewers

1 1 2 3 4 5

2 1 2 3 4 5

3 1 2 3 4 5

4 1 2 3 4 5

5 1 2 3 4 5

6 6 7 8 9 10 |
CASE 6

Area Interviewers

1 1 2 3 4 5 6

2 1 2 3 4 5 6

3 1 2 3 4 5 6

4 1 2 3 4 5 6

5 1 2 3 4 5 6

6 1 2 3 4 5 6

This paper will not consider the impact of different estimation methods
on the properties of the estimated parameters. Neither is the impact of
different distributional assumptions for the higher-level variances considered.
The focus on the random effects parameters is justified by the fact that
consistently across various studies, looking at 2-level models with either
continuous or binary outcomes, random effects estimates and their respective
standard errors were more inaccurate than fixed effects estimates. Moreover,
the primary aim of this paper is to identify how well the variances of the two
higher-level classifications are estimated for realistic allocation of cases to

interviewers.
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111.4.4. Stored Quantities for each Model

For each simulation, the parameter estimates, the standard errors and the 95%
confidence intervals are obtained. Two confidence intervals are obtained: one
95% confidence interval is obtained using the asymptotic normal distribution;
the other reflects the credible 95% confidence interval obtained from the
MCMC quantiles. The Bayesian interval provides an alternative to the maximum
likelihood confidence interval, which is not reliant on the assumption of a
normal sampling distribution. The variance-covariance matrix of the parameter
estimates is also obtained. For each parameter of each model the effective
sample size, the mean Monte Carlo standard error, the Brooks-Draper
diagnostic, and the lower and upper bound of the Raftery-Lewis diagnostic are
also obtained. For each model the Deviance Information Criterion and the time

taken for the model to be estimated are recorded.

111.4.5. Properties of the Estimators and Test Statistic

The models are assessed in terms of various properties: the correlation of the
two variance estimators, percentage relative bias, the mean squared error, the

standard error, the confidence interval coverage, and the power of tests.

The covariance between the area and interviewer variance estimators is
a quality measure in itself. For easier interpretation the correlation for each

dataset is calculated using the formula

1000 1000 " ")

cov; Ju,a,,
10002c0rn au,a,, 10002 — (111. 4)

i=1 \/van Ju)van o2

‘Good’ estimators are expected to show no substantial correlation. High
negative correlation values will indicate problems with the identifiability of the
two variance parameter estimates. In such cases the model may correctly
estimate the total higher-level variance, which is the sum of the interviewer
and area variances, but incorrectly apportion the variance to the two higher-

level classifications, producing biased estimates for the interviewer and area
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variance parameters. One estimate would be over-estimated, and the other
estimate would be under-estimated, resulting in a negative correlation.
Negative correlation values of -0.1 or higher will be considered problematic.
Browne et al. (2001) make reference to this problem, and refer to it as the co-
linearity of random terms, and identify “poor mixing properties and high

negative cross-chain correlations” (p.14) as good identifiers of this problem.

The percentage relative bias of a parameter is calculated to determine

the accuracy of a parameter estimator using the formula

1000 .
! zei—e 100  (IIL5
* .
1000 £~ 6 (IL.5)

where §; is the parameter estimate, 8 is the true parameter value and i is the

simulation number. The model estimates are expected to always vary slightly
from the true parameter value. Therefore, only percentage relative bias values
above 3% will be considered as substantial. This measure can also be

calculated for the median MCMC credible interval value.

Standard error accuracy is assessed using the coverage method (Maas &
Hox, 2005), where coverage of the true parameter value within the 95% Wald
confidence interval and the 95% credible confidence interval from the MCMC
chains of the parameter estimate for each simulated dataset is recorded
separately. Various authors, including Maas and Hox (2005) and Paccagnella
(2011), explain that there are problems in using the standard approach to
constructing the confidence intervals for random effects components. The
standard approach assumes normality, while variances can only be positive. No
study could be identified which uses the MCMC quantiles as an alternative for
confidence intervals, which is advocated in this paper as a better measure. If
the lower and upper bound of the Wald confidence interval (or the relevant
quantiles of the MCMC chain) are either both less than or both greater than the
true parameter value then the confidence interval does not cover the true
parameter value. For those samples which include the true parameter a value
of 1 on the coverage indicator is assigned, while the other samples are given a
value of 0. To determine the coverage of the 95% confidence intervals the

percentage of the (1000) datasets for which the confidence interval included
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the true parameter value is calculated. The coverage rate is recorded for all

simulation scenarios and compared with the expected rate of 95%.

The mean standard error for the parameter estimators gives an
indication of the precision of the estimates for the various survey conditions. It

is calculated using the following equation:

1000

1 A
M; S.E;(®) (6).

While the accuracy of estimators, estimated by the percentage relative bias
measure, may not vary much across the various scenarios, such that the mean
estimate is not substantially different, there may still be substantial differences

in the standard errors, and therefore in the precision of estimators.

The null hypothesis, specifying the true parameter value to be zero, is
tested for both variance parameters of each simulated dataset by using the
Wald test. This consists of dividing the coefficient estimate by its standard
error and squaring that value. The corresponding p-value for this value is
obtained from a chi-squared distribution. If the p-value is greater than 0.05
then the null hypothesis is not rejected. The proportion of datasets for which
the null hypothesis is not rejected is subtracted from 1 to obtain the power of
the test. The power of a test indicates the probability that the null hypothesis
is correctly rejected. Maas and Hox (2005) explain that basing the testing of
significance for variance parameters using the asymptotic standard error is not
ideal. Such a test is based on normality assumptions. Testing of the null
hypothesis, which specifies the random parameter to be equal to zero, lies on
the boundary of the permissible parameter space, since variances can only be
positive. The validity of standard likelihood theory no longer holds at this
boundary. However, this practice is widely used and justifies its use in this
simulation study. In calculating the power for the variance parameters the p-
values are halved, since variances cannot be negative, and therefore the

alternative hypothesis is one-sided (Snijders & Bosker, 1999).

The procedure for running the models, storing the output quantities and

calculating the properties is specified in Appendix C. The same programming
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code, with the appropriate changes to the factor values and file names, can be

used for other scenarios.

I11.5. Results

To reiterate what has been outlined in the methodology section, the medium
scenario design has the following properties: 120 areas (48 cases/area)
allocated to 240 interviewers (24 cases per interviewer), totalling 5760 cases,
0%=0.3, 64=0.3 and 1r=0.8. Generally one or two factors from the following -
o2 and o2, T, N and the ratio of interviewers to areas (dependent on N' and N#)
- are changed for every new scenario. For every specific set of factor values
different interviewer allocation schemes are specified, giving rise to more
scenarios. For each property, both the factors which seem to have no effect
and those factors which have an impact on the quality of the estimator are
reviewed. General patterns are documented and any possible interactions

between factors highlighted.

The properties for the overall intercept B, showed relatively stable
optimal results across different factor values. Under all simulation scenarios
the test for B, obtains a power of 1. Accurate intercept estimates f, are
obtained even for small N and very geographically-restrictive interviewer
allocation schemes. The highest absolute relative percentage bias for the B,
estimator is less than 0.6%. This slight deviation of the mean estimate from the
true parameter may simply reflect small sample bias rather than any
methodological bias. The Wald coverage rates are close to the 95% nominal
rates across all scenarios. Consequently, the analysis of the impact of various
factor changes for the above-mentioned properties will be restricted to the
random parameters. On the other hand, the standard error of the fixed effect
estimator shows some variation across factors. These patterns will be
discussed further in the relevant results section. The main points are

summarised in bullet points at the end of each section.
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I11.5.1. Power of Test

The power of the Wald test to detect a significant effect can reach extremely
low levels when interviewers are allocated work in only one area. In some
scenarios the power is equal to O for CASE 1 allocation schemes. For CASE 2
allocation schemes the lowest power obtained for the scenarios considered in
this study is 0.67, a major improvement over the power results for CASE 1.
Reduced interviewer overlap for a constant number of areas per interviewer
does not improve the power. Here overlap refers to the extent that the group
of interviewers working in neighbouring areas are the same, such that CASE 2A
has greater overlap than CASE 2C. For the medium scenario design the power
of the Wald test at the 5% significance level is close to the optimal value of 1
for all interviewer case allocation possibilities for both random parameters
(Table 2, Columns 1 & 2). In fact it is only the test for the area random
parameter o2 for the least sparse interviewer allocation (CASE 1) that yields a

power not equal to 1, being 0.91.

For scenarios with smaller N, but keeping constant all other factors,
lower power is obtained for the allocation schemes with the least interviewer
dispersion (number of areas an interviewer works in). For example, for o2 the
power is equal to 0.91 for N=5670, 0.63 for N=2880 and 0.30 for N=1440 for
CASE 1. Therefore, sparser interviewer allocation schemes are required to
obtain similar high levels of power (Table 2, Columns 3-6). For all three
sample sizes the greatest improvement in the power comes from increasing
the number of areas per interviewer from one to two. For the 1440 sample size
scenario a substantial increase in power can also be observed when increasing
the number of areas per interviewers from two to three. However, further
dispersion only yields very small gains, and the sparsest and least overlap
interviewer allocation (CASE 6C) only obtains a power of 0.91 for ¢2 and 0.89

for o2.

97



Table 1I1.2: Power of Wald Test at the 5% Significance Level by Sample Size

and Interviewer Allocation

Sample Size
5760 2880 1440

IA o2 o2 o2 o2 o2 o2

1 0.91 1.00 0.63 0.92 0.30 0.58
2° 1.00 1.00 0.96 0.98 0.77 0.81
2B 1.00 1.00 0.99 0.99 0.78 0.83
2C 1.00 1.00 0.99 1.00 0.79 0.84
3A 1.00 1.00 1.00 1.00 0.91 0.89
3B 1.00 1.00 1.00 1.00 0.85 0.86
3C 1.00 1.00 0.99 0.99 0.85 0.84
3D 1.00 1.00 1.00 0.99 0.86 0.86
3E 1.00 1.00 1.00 0.99 0.85 0.84
3F 1.00 1.00 1.00 1.00 0.87 0.86
3H 1.00 1.00 1.00 1.00 0.87 0.85
4A 1.00 1.00 1.00 1.00 0.88 0.86
4B 1.00 1.00 1.00 1.00 0.88 0.86
4C 1.00 1.00 1.00 1.00 0.89 0.88
5A 1.00 1.00 1.00 1.00 0.91 0.89
5B 1.00 1.00 1.00 1.00 0.89 0.90
5C 1.00 1.00 1.00 1.00 0.91 0.87
6A 1.00 1.00 1.00 1.00 0.92 0.88
6B 1.00 1.00 1.00 1.00 0.91 0.90
6C 1.00 1.00 1.00 1.00 0.91 0.89

Constant factor values: 62=0.3, 62=0.3, 1=0.8, N/=2N4
N!=240 & NA=120 for N=5760; N'=120 & NA=60 for N=2880, N'=60 & NA=30 for N=1440

For NI=NA scenarios a similar pattern for the change in power with
decreasing N is observed. In contrast to N' =2 N? scenarios there is a
substantial improvement in the power values when moving from CASE 3 to
CASE 4 for the N=1440 cases of the N!=NA scenarios. For the N! =2NA
scenarios this further dispersion did not yield a gain in power. Therefore, the
negative influence of small N on the power of the Wald test is greater for

scenarios with an equal number of higher-level units (NI=N4).
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Table 1I1.3: Power of Wald Test at the 95% Confidence Level by Sample Size

and Interviewer Allocation

Overall Probability
0.7 0.8 0.9
IA o2 o2 o2 o2 c2 o2
1 0.96 1.00 0.91 1.00 0.80 0.95
2A 1.00 1.00 1.00 1.00 1.00 0.99
2C 1.00 1.00 1.00 1.00 1.00 0.99
3A-6C 1.00 1.00 1.00 1.00 1.00 1.00

Constant factor values: N=5760, N'=240, NA=120, 62=0.3, 62=0.3, N'=2N4

Table 3 presents scenarios that vary only by the overall probability
(r=0.7, 0.8, 0.9) with other factors kept constant at the medium scenario
values. These results show that for CASE 1 higher overall probabilities result in
lower power for the random parameters o2 and o3 . The power for the
interviewer random parameter o2 only decreases for the highest overall
probability 0.9, whilst the power for the test for the area random parameter ¢3
decreases more rapidly for both overall probabilities 0.8 and 0.9 compared to
the lowest overall probability 0.7. This difference in trend for the power of the
Wald test for the two random parameters may be explained in terms of the
higher N' (240 interviewers) included in the sample compared to the N* (120
areas). High overall probabilities seem to have a greater impact on the power
of tests for random effects parameters which have a smaller number of higher-
level units in the sample. For sparser interviewer allocation schemes there is no

substantial difference in the power of the tests by overall probabilities.

The only difference in power across different values of ¢Z and o3 is
observed for the CASE 1 allocation scheme. For the scenario with smaller area
variance (62=0.2) and medium scenario values for the other factors the power
of the test for the area random parameter for the most geographically
restricted interviewer allocation (1 area per interviewer) is substantially lower at
0.68 than the power for the medium scenario design of 0.91. Increasing the
area variance o2 to 0.4 improves the power for the CASE 1 allocation scheme

from 0.91 to 0.99. On the other hand, for the scenario with smaller interviewer
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variance (62=0.2), but keeping constant all other factors, the power of the test
for the interviewer random parameter for CASE 1 is 1. Again, this difference in
the effect of the variance on the power of the test can be explained by the fact
that N'=2NA in these scenarios. The number of higher-level units mediates the

effect of a lower ICC on the power of the tests for the random parameters.

Interestingly, for a specific area variance value higher power for the test
of the area parameter is obtained when the interviewer variance is of a smaller
effect size for CASE 1. Therefore, the power for 62 when 62=0.2 is 0.82 when
062=0.2 and 0.68 when ¢%2=0.3. The power for o2 when ¢2=0.4 is 0.99 when
62=0.3 and 0.85 when ¢%=0.4. Similarly, the power for 62 when ¢2=0.3 is 0.99
when 62=0.2, 0.91 when 62=0.3 and 0.84 when ¢2=0.4.

Table 1l1.4: Power of Wald Test at the 95% Confidence Level by Sample

Size, Ratio of Interviewers to Areas and Interviewer Allocation

N'=2NA4 N'=NA
Sample Size
5760 2880 1440 5760 2880 1440
Al 62 62 o2 o2 c2 o2 6 o2 c? c2 6: o2

0.91 1.00 0.63 092 0.30 0.58 0.07 0.08 0.01 0.01 0.00 0.00
1.00 1.00 0.96 0.98 0.77 0.81 1.00 1.00 0.97 0.98 0.67 0.68
1.00 1.00 1.00 1.00 0.91 0.89 1.00 1.00 0.99 0.96 0.73 0.64
1.00 1.00 1.00 1.00 0.88 0.86 1.00 1.00 1.00 1.00 0.85 0.85
1.00 1.00 1.00 1.00 0.91 0.89 1.00 1.00 1.00 1.00 0.88 0.88
6 |1.00 1.00 1.00 1.00 0.92 0.88 1.00 1.00 1.00 1.00 0.91 0.88

vl A W IN R

Constant factor values: 62=0.3, 62=0.3, m=0.8

NI'=2N4: N!=240 and NA=120 for N=5760; N!'=120 and N4=60 for N=2880, N'=60 and NA=30
for N=1440; N'=N4: N'=120 and NA=120 for N=5760; N'=60 and NA=60 for N=2880, N'=30
and NA=30 for N=1440

For N'=2N” scenarios, where substantial differences can be noticed for
the power of the tests for the random parameters, the power for the area
parameter o2 is consistently lower than that for the interviewer parameter o2
(Table 4). This difference is substantial for the CASE 1 allocation scheme for
the 5760 and 2880 sample size scenarios and CASE 1-CASE 2 for the 1440

sample size scenario (Columns 1-6). On the other hand, N!'=N# scenarios do
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not show this pattern in the power differences for the two random parameters
(Columns 7-12). This result reflects the importance of having a large number

of higher-level units to obtain good power.

The ratio of interviewers to areas also influences the power for the
random parameters. Scenarios having N' = N4 require more interviewer
dispersion than equivalent N'=2NA scenarios to obtain the same power for the
random parameters. Comparing the scenarios with different interviewers to
area ratios for CASE 2-CASE 6 (interviewer case allocation schemes with at
least two areas per interviewers) for the 5760 sample size scenarios, power is
observed to be constant - with a value of 1 - for all allocation schemes (Table 4,
Columns 1-2, 7-8). For the 2880 sample size scenarios any deviations are
small, with a magnitude of 0.04 or lower (Table 4, Columns 3-4, 9-10). On the
other hand, for the 1440 sample size scenarios power deviations smaller than
0.03 are obtained for allocation schemes CASE 4-CASE 6 (Table 4, Columns 5-
6, 11-12). Four areas per interviewer are required for the scenario including
1440 cases with N'=N4 (30 areas allocated to 30 interviewers, 62=0.3, 62=0.3,
1=0.8), compared to three areas per interviewer for the scenario including
1440 cases with N'"ts=2Nareas (30 areas allocated to 60 interviewers, 62=0.3,
02=0.3, m=0.8), for power to be greater than or equal to 0.85. The greatest
decrease in power for N'=N”# in comparison to N'=2NA scenarios arises for the
CASE 1 allocation scheme. The one area per interviewer allocation scheme with
NI=NA scenarios for all three values of N considered (5760, 2880, 1440 cases)
yield unacceptable power, with the highest power obtained for the largest N of

5760 cases being 0.07 and 0.08 for o2 and o2 respectively.

To summarise, the main points on the power of the Wald test are the

following:

e For the medium scenario design the power is higher than 0.9 for both
random parameters for all case allocation schemes.

e Interviewer dispersion is the factor which shows the greatest impact on
the power. For scenarios with one interviewer per area allocation
scheme power is observed to go down to O for certain scenarios,

whereas the lowest power value observed for two interviewers per area
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allocation schemes is 0.67. There is a threshold, which varies for
different factor value combinations, beyond which further dispersion
does not yield power gains.

Reduced interviewer overlap for a constant number of areas per
interviewer does not improve the power.

A decrease in the sample size results in lower power, especially for the
allocation schemes with the least interviewer dispersion. The effect of
sample size reduction on power is greater for scenarios with an equal
number of higher-level units.

There is some evidence that very high overall probabilities result in
lower power for the least sparse interviewer allocation scheme. The
number of higher-level units as well as interviewer dispersion mediate
the effect of a lower variance on the power of the test for the random
parameter, such that the only difference in power across different
variances is observed for the one area per interviewer allocation for the
area variance parameter.

The power for the area parameter is lower than that for the interviewer
parameter when there is twice the number of interviewers as there are
areas. No difference is observed for scenarios with equal numbers of
interviewers and areas.

Scenarios with equal numbers of interviewers and areas require more
interviewer dispersion than the scenarios with twice the number of

interviewers to areas to obtain the same level of power.

111.5.2. Correlation between Random Parameter Estimators

High negative correlations up to a value of -0.91 between the two random

parameter estimators are obtained for all scenarios when interviewers are

working solely in one area (Table 5, Row 1). For the CASE 2 allocation scheme

the largest negative corr(c;z,a?) obtained is -0.19. This value is observed for

the scenario with the following factor specifications: 5760 cases, 120

interviewers, 120 areas, 02=0.3, 642=0.3, m=0.8. For the medium scenario

design corr(c/fz,a?) is less than -0.1 (the threshold value being considered as
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problematic) for all interviewer case allocation possibilities, except for the
most restrictive interviewer allocation (CASE 1) which is -0.45 (Table 5, Column
1).

For scenarios with smaller N, but keeping constant all other factors, no

substantial increases in corr(c;z,/a:f) can be observed (Table 5, Columns 1-3).

Only a slight decrease in corr(aﬁ,a,,z) for the one area per interviewer allocation

scheme from the 5760 and 2880 sample size scenarios to the 1440 sample
size scenario is observed. For the N!=N4 scenarios with varying N but keeping
other factors constant (02=0.3, ¢%2=0.3, m=0.8), corr(gz,/a;z) decreases from
0.91 to -0.83 to -0.69 for the 5760 cases, 2880 cases and 1440 cases for
CASE 1 (Table 5, Columns 4-6, Row 1). A very small decrease in the negative
correlation is also present for the next interviewer case allocation scheme CASE

2. Thereafter, for more sparse allocation schemes no substantial differences

can be observed for different sample size scenarios in corr(alf,a,f). Therefore,

the effect of N on corr(&z,a?) is mediated by the number of higher-level units,

or an unequal ratio of the two higher-level units, as well as the interviewer

dispersion.

Table 5 shows that corr(gz,;,,z) are higher for N'=N# scenarios than for

N!=2NA scenarios for interviewer case allocation schemes CASE 1-CASE 4. To
obtain a correlation of -0.1 or less for a sample size of 5760 cases, the
scenario NI =2N” requires at least two areas per interviewers, whereas the
scenario N!'=NA requires at least four areas per interviewers. This indicates that
a higher number of clusters yields better estimates than a larger cluster size
for a constant N. An unequal number of clusters for the two classifications
being considered may also help reduce identifiability problems in apportioning

the higher-level variance.
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Table III.5: corr (Ez;r\,z,) by Sample Size, Ratio of Interviewers to Areas and

Interviewer Allocation

N!=2NA NI=NA
Sample Size
1A 5760 2880 1440 5760 2880 1440
1 -0.45 -0.46 -0.40 -0.91 -0.83 -0.69
2 -0.09 -0.11 -0.09 -0.19 -0.17 -0.15
3 -0.03 -0.02 0.04 -0.13 -0.12 -0.11
4 0.01 0.01 0.00 -0.04 -0.04 -0.03
5 0.02 0.02 0.03 -0.02 -0.01 -0.01
6 0.03 0.03 0.03 0.00 0.00 0.01

Constant factor values: 62=0.3, 62=0.3, 1=0.8, N'=2N4
N'=240 and NA=120 for N=5760; N'=120 and NA=60 for N=2880, N!=60 and N2=30 for

N=1440

The increase in corr(gz,/a?) with increasing overall probabilities (11=0.7,
0.8, 0.9) can be observed up to allocation CASE 3A (Table 6). The increase in
corr(gz,?f) from scenarios with t=0.8 to those with T1=0.9 is greater than the
increase from scenarios with 1=0.7 to those with m=0.8, indicating that the
effect of 1t on corr(EE,EZ) is monotonic but not linear. With sparser interviewer

allocation schemes the correlation values are minimal, and mostly positive, and

vary only minimally across scenarios with different overall probabilities Tr.
These results indicate that the effect of the overall probability on corr(EE,EZ) is

almost cancelled out once each interviewer is working in three areas.

Table 111.6: corr (EZ;,Z,) by Overall Probability and Interviewer Allocation

Overall Probability
) 0.7 0.8 0.9
1 -0.43 -0.45 -0.50
2A -0.08 -0.09 -0.12
2C -0.04 -0.05 -0.10
3A -0.01 -0.03 -0.04

Constant factor values: N=5760, N'=240, NA=120, 62=0.3, 62=0.3, NI=2N4
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Table 7 shows the corr(c;z,az) values for different scenarios varying by
interviewer allocation and the variances 6% and o2. The analysis of the pattern
of change in corr(gz,az) for different values of the variances o2 and o2 will be

limited to the negative correlations, that is, CASE 1-CASE 3A interviewer

allocation schemes. The results show that a consistent pattern of change in
corr(gz,};Z) emerges only when the area variance o2 is varied. This is true for
interviewer allocation schemes CASE 1-CASE 3A. For higher values of 62 , and
therefore higher ICC, the negative corr(gz,};Z) decrease in size. No clear trend

can be identified for varying the interviewer variance ¢%. Here the discrepancy

in group sizes, with N'=2N4, suggests that the impact of the ICC (dependent
on the variance) on corr(EZ,/a;Z) is mediated by the number of groups

pertaining to the higher-level classification.

Table IIL.7: corr (aﬁ,alz,) by Area and Interviewer Variance and Interviewer
Allocation

corr(a%, %)
¢2=0.3 62=0.2 ¢2=0.4 62=0.3 62=0.4 ¢2=0.3 62=0.2
¢2=0.3 62=0.2 ¢2=0.4 ¢2=0.4 ¢2=0.3 62=0.2 ¢2=0.3
-0.42 -0.37 -0.27

2A -0.07 -0.09 -0.07 -0.09
2C -0.03 -0.05 -0.03
3A -0.01 -0.02 -0.01

The first corr(&z,;;z) column (highlighted in orange) represents the medium scenario design. The

cells highlighted in red show increases in negative correlations, while cells highlighted in yellow
show decreases in negative correlations, compared with the medium scenario design.
Constant factor values: N=5760, N'=240, NA=120, 02=0.3, 62=0.3, 1=0.8, N'=2N4

Lower negative corr(aj,a,,z) can be noticed for interviewer allocation
schemes which have less overlap for the 2 areas per interviewer allocation
schemes (Table 8). No clear pattern of varying corr(aﬁ,aﬁ) for different levels

of interviewer overlap in interviewer allocation schemes can be noticed for

sparser schemes of three or more areas per interviewer (CASE 3 - CASE 6). This
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result indicates that the impact of interviewer overlap is mediated by the

interviewer dispersion, that is, the number of areas an interviewer works in.

Table 111.8: corr (3%;;,2,) by Different Scenarios

Scenarios

A | A B C D E F G H | J K
2A | -0.09 -0.11 -0.09 -0.12 -0.08 -0.12 -0.07 -0.09 -0.07 -0.09 -0.11

2B | -0.06 -0.07 -0.07

2C | -0.05 -0.06 -0.06 -0.10 -0.04 -0.10 -0.03 -0.05 -0.03 -0.06 -0.08
A-K represent different scenarios as specified below:

B: N=2880, N'=120, NA=60, 62=0.3, 063=0.3, 1=0.8; C: N=1440, N'=60, N4=30, ¢2=0.3,

02=0.3, m=0.8;
D: N=5760, N'=240,N4=120, ¢2=0.3, 62=0.3, 1=0.9; E: N=5760, N'=240, NA=120, 62=0.3,

0%=0.3, m=0.7;
F: N=5760, N'=240,N2=120, ¢2=0.2, 62=0.2, =0.8; G: N=5760, N'=240, NA=120, 62=0.4,

0%=0.4, m=0.8;
H: N=5760, N'=240, NA=120, 0¢2=0.3, 02=0.4, 1=0.8; I. N=5760, N'=240, NA=120, ¢2=0.4,

0%=0.3, m=0.8;
J: N=5760, N'=240,NA=120, 0¢2=0.3, 62=0.2, =0.8; K: N=5760, N'=240,NA=120, 62=0.2,

02=0.3, 1=0.8

To summarise, the main points on the correlation between random

parameter estimators are the following:

e Interviewer dispersion highly influences the correlation between the
two variance estimators. High negative correlations (greater than 0.4
and up to a maximum of 0.91) are obtained for all scenarios when
interviewers are working in only one area. This correlation is reduced
to less than -0.2 once interviewers work in two areas.

e No effect of sample size on correlation is observed for allocation
schemes which allocate interviewers to at least two areas.

e Scenarios with equal numbers of areas and interviewers obtain higher
negative correlations than scenarios with twice the number of
interviewers to areas. This difference may be explained in terms of
improved identifiability of the variance decomposition for scenarios
with higher number of clusters, or alternatively an unequal number of

clusters for the two classifications.
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e The negative correlation increases with increasing overall probabilities.
For allocation schemes with at least three areas per interviewer this
effect is no longer present.

e Higher area variance values result in lower negative correlations for the
more restrictive interviewer allocation schemes. No trend is identified
when varying the interviewer variance. These results suggest that the
number of higher-level units associated with a variance parameter
mediates the effect of the variance on the correlation.

e Lower negative correlation is obtained for the two areas per interviewer
allocation schemes which have less overlap. The effect of interviewer
overlap is no longer present for more dispersed interviewer allocation

schemes.

111.5.3. Percentage Relative Bias of Variance Estimators

In most scenarios with N=5760, the relative percentage bias for the variance
parameters estimators is around 1-3% once interviewers are allocated work in
at least two areas (Table 9, Column 1). The relative percentage bias is much
higher for interviewer allocation schemes which restrict the interviewer to
working in one area (CASE 1). The bias for CASE2-6 fluctuate around within the
range specified above, failing to show any systematic trend in bias reduction
with further dispersion and less interviewer overlap. For N'=2NA scenarios, for
the least geographically sparse interviewer allocation (CASE 1) the area effect is
always under-estimated (negative bias) (Table 9, Columns 1-3, Row 1), whilst
the interviewer effect is over-estimated (positive bias) (Table 9, Columns 4-6,
Row 1). For interviewer case allocation schemes in which interviewers are
working in at least two areas, the area random parameter o2 bias is almost
always greater than the interviewer random parameter o3 bias (Table 9,
Columns 1-6, Rows 2-6). This again confirms the importance of group size for
the accuracy of parameter estimators. A counterintuitive result is the larger
biases for interviewer random parameter ¢4 compared to the area random

parameter o2 obtained for CASE 1 (Table 9, Columns 1-6, Row 1).
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Table 111.9: Relative Percentage Bias by Sample Size, Ratio of Interviewers
to Areas and Interviewer Allocation

N'=2NA N'=NA

oy LH oy o3

Sample Size
IA | 5760 2880 1440 5760 2880 1440 5760 2880 1440 5760 2880 1440

-3.2 -6.7 -5.3 6.8 11.2 198 23 44 125 36 56 11.3
2.0 26 4.8 1.3 19 24 36 40 108 15 50 9.0
2.4 4.2 6.1 0.1 1.2 1.1 16 3.1 105 1.0 4.3 5.3
1.7 3.3 5.0 0 13 18 1.7 15 98 19 42 97
1.7 2.4 7.2 10 15 34 20 26 86 14 49 83

6| 1.1 3.1 7.4 0. 18 24 16 38 103 19 3.0 6.7

U D W N

Constant factor values: 62=0.3, 62=0.3, m=0.8

N'=2NA4: N'=240 and NA=120 for N=5760; N'=120 and NA=60 for N=2880, N'=60 and N2=30
for N=1440; N'=N2: N'=120 and NA=120 for N=5760; N'=60 and NA=60 for N=2880, N!'=30
and NA=30 for N=1440

As expected, greater biases for the ¢Z and o2 estimators are observed
for smaller N, with the scenario including 1440 cases with N'=NA obtaining
biases between 5-13% for all allocation schemes (Table 9, Column 12). The
estimators of the N!'=NA (Table 9, Columns 7-12) scenarios obtain higher
biases than the N'=2N” scenarios (Table 9, Columns 1-6) in most cases for
interviewer allocation schemes CASE2-CASE6. This trend is observable for the
interviewer parameter o2 estimator. This trend is what would be expected due
to the greater number of interviewers in the N'=N2 scenarios compared to the
N'=2NA scenarios. On the other hand, for the area parameter o2 estimator -
where NA=120 in both the N'=NA and N'=2NA scenarios - this pattern is less
consistent for the 5760 and 2880 sample size scenarios. However, for the
1440 total sample size the N!'=N” scenario yields consistently higher biases
than the N' =2 N4 scenarios. These results may support the post-hoc
hypothesis that having an unequal number of clusters (interviewers and areas)
also improves the quality of estimates, albeit not as strongly as increasing the

number of groups in each higher-level classification.

As shown in Tables 10 and 11 there is no clear pattern for the change in
the percentage relative mean bias of the variance parameter estimators by

overall probability Tt and variances 62 and 2.
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Table I11.10: Percentage Relative Bias Mean Estimate by Overall

Probabilities
o’ o2
1A =0.7 mw=0.8 mw=0.9 w=0.7 mw=0.8 w=0.9

1
2A
2C
3A
3E
3H
4A
4C
5A
5C
6A 0.52 .
6C 1.30 1.69

The columns highlighted in orange represent the medium scenario design (N=5760, N'=240,
NA=120, 02=0.3, 62=0.3, 1=0.8, N'=2N4). The cells highlighted in red show increases in the
absolute bias, while cells highlighted in yellow show decreases in absolute bias, compared with
the medium scenario design (orange). The other scenarios maintain the same factors as the
medium scenario design except for the overall probability as specified above in the table header

Table Ill.11: Relative Percentage Bias by Scenarios Varying in the Area and
Interviewer Variances

A: F: G: H: I:
02=0.3, 02=0.2, 0%2=04, 0¢3=0.3, 62=0.4,
02=0.3 02=0.2 ¢2=04 62=0.4 62=0.3
IA | 62 o2 a2 a2 o2
1 | -324 680

2A | 202 132 182 0.58
2C | 242 -0.56

o, O0p O, Oy O, Oy Oy Oy

—0.38 2.74

34 | 235 0.13
3E | 1.78
3H | 1.86
44 | 1.73
4C | 1.29
54 | 1.73
5C | 2.29
6A | 1.08
6C | 1.69

The first two bias columns (highlighted in orange) represent the medium scenario (N=5760,
N'=240, NA=120, 62=0.3, 62=0.3, 1=0.8, N'=2N4). The cells highlighted in red show increases

in the absolute bias, while cells highlighted in yellow show decreases in absolute bias, compared
with the medium scenario design. The other scenarios maintain the same factors as the medium
scenario design except for the area and interviewer variances which are specified above
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In this study the percentage relative bias of the MCMC posterior median
has also been calculated. On the whole, the biases for the posterior mean and
the posterior median show similar trends across factor changes. One particular
difference is the lower bias obtained for the estimators based on the 50%
percentile in comparison to the estimators based on the mean for scenarios
with smaller sample sizes and equal number of interviewers and areas. These

results are included in Appendix D.

To summarise, the main points on the percentage relative bias are the

following:

e In most scenarios N=5760, the relative percentage bias is around 1-2%
once interviewers are allocated work in at least two areas.

¢ High biases are obtained when interviewers work in solely in one area.
Biases are reduced once interviewers are allocated to at least two areas.

e The area random parameter bias is almost always greater than the
interviewer random parameter bias, highlighting the influence of group
size on estimator accuracy.

e Greater biases are observed for smaller sample sizes.

e Scenarios with equal numbers of areas and interviewers generally obtain
higher biases for both variance parameter estimators than scenarios
with twice the number of interviewers to areas. A higher number of
clusters, as well as an unequal number of clusters for the two
classifications, can explain the more accurate result for the latter
scenarios.

e No clear trend for the change in bias by interviewer overlap, interviewer
dispersion beyond two areas per interviewer, overall probability and by

variances is observed.

11.5.4. Wald Confidence Interval Coverage

The Wald confidence interval coverage rates are close to 95% nominal rate -
between 94-96% - in most scenarios. However, there are some cases of under-

coverage as well as very few cases of over-coverage, especially for scenarios
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where each interviewer works only in one area. Under-coverage is observed for
most N!=2NA scenarios when the interviewer is working in only one area (Table
12, Row 1). In these cases the under-coverage is generally more pronounced
for the o2 than the o¢2. This highlights the positive effect of a high number of
higher-level units on the confidence interval coverage. The lowest coverage
rates of 87% and 88% are obtained for the following scenarios respectively:
N=5760, N'=2N4, 62=0.2, 62=0.3, m=0.8, CASE 1 and N=2880 or N=1440,
N'=2N4, 62=0.3, 0%2=0.3, 1=0.8, CASE 1, for the 2.

Table 111.12: Wald 95% Confidence Interval Coverage by Sample Size and

Interviewer Allocation for N'=2NA Scenarios

Sample Size
5760 2880 1440

1A oy on oy on oy on

1 91.4 93.8 90.1 93.6 87.7 91.0
2A 94.5 95.0 92.9 93.5 91.2 91.1
2B 96.0 92.4 94.0 94.1 92.9 91.8
2C 95.1 94.1 93.3 92.8 92.6 91.0
3A 93.8 94.7 92.8 94.3 93.7 92.5
3B 95.0 94.0 94.1 94.3 92.7 92.7
3C 94.6 93.4 94.1 93.8 92.8 89.9
3D 95.9 93.4 93.0 94.1 92.7 91.5
3E 94.6 95.0 93.7 94.4 92.4 91.1
3F 94.8 93.6 95.0 95.6 93.3 92.0
3H 93.9 94.0 94.1 93.1 93.4 91.2
4A 95.2 94.5 94.5 93.0 92.9 91.2
4B 94.4 95.6 94.0 93.5 92.3 91.3
4C 94.1 95.0 94.5 95.5 92.7 92.6
5A 95.2 94.8 94.8 93.6 94.1 92.7
5B 95.2 94.7 94.3 93.8 93.1 93.6
5C 95.5 94.8 94.1 94.9 92.9 91.8
6A 95.1 95.1 93.6 94.6 93.5 91.5
6B 96.0 93.9 93.9 94.0 93.5 92.0
6C 94.9 95.2 94.9 94.5 93.7 92.5

Constant factor values: 62=0.3, 63=0.3, m=0.8, N'=2N4
N'=240 and N2=120 for N=5760;: N'=120 and N2=60 for N=2880, N'=60 and N2=30 for
N=1440

Very high over-coverage, of approximately 100%, is present in all
scenarios where N'=N4 (N=5760 or 2880 or 1440, 62=0.3, ¢2=0.3, m=0.8) and
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where the interviewer is working in one area for both ¢2 and o2 (Table 13, Row
1). Over-coverage only occurs for the first interviewer case allocation scheme,
as for the sparser interviewer case allocation schemes under-coverage of
confidence interval for the random parameters is observed more frequently

(across the various interviewer case allocation schemes) for smaller N.

Slightly lower coverage rates are observed for smaller N in most
scenarios for both o2 and o2 (Table 12 & 13). The differences between the
5760 sample size scenario and the 2880 sample size scenarios are not
substantial, and occasionally slightly higher coverage rates can be observed for
the 2880 sample size scenarios for 62, especially for the N'=N# scenarios. On
the other hand, the 1440 sample size scenarios always obtain lower coverage
rates than the other two larger sample size scenarios. These results indicate
that only the scenarios with the smallest sample size of N=1440 consistently
obtain non-accurate coverage rates across all interviewer case allocation
schemes. However, these rates do not fall below 89% once each interviewer is

allocated work in at least two areas.

Table 111.13: Wald 95% Confidence Interval Coverage by Sample Size and

Interviewer Allocation for N'=NA Scenarios

Sample Size
5760 2880 1440
IA o2 c2 o2 62 ¢’ o
1 99.7 99.7 100 99.9 99.7 99.7
2 96.0 93.4 93.3 94.3 92.0 91.3
3 94.7 93.7 94.9 94.4 92.5 89.2
4 95.4 94.0 93.5 94.3 94.1 93.1
5 95.4 94.2 94.2 95.2 92.5 93.0
6 95.2 94.2 93.1 94.4 93.6 91.8

Constant factor values: 62=0.3, 62=0.3, m=0.8, N'=NA
N'=120 and NA=120 for N=5760; N'=60 and NA=60 for N=2880, N'=30 and N4=30 for

N=1440

In comparing the results of Tables 12 and 13, coverage rates closer to
the 95% nominal rate for the o2 parameter are noticeable for the N!'=2NA

scenarios compared to the N'=NA scenarios for N=5760. This improvement in
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the confidence interval coverage rate with an increase in the number of
interviewers from 120 interviewers to 240 interviewers no longer occurs for

smaller N.

Some factors considered in this study do not seem to influence coverage
rates. There does not seem to be a consistent pattern in the coverage rates by
the overall probability (Table 14) or by the higher-level variances. Neither do
the results show any evidence of extent of interviewer overlap influencing
coverage rates (Table 12 & 14). Unexpectedly, the results do not provide any
evidence that the MCMC credible quantiles perform consistently better than the
intervals based on asymptotic normality. Consequently, the MCMC quantiles
are not presented in the results section, but are included in Appendix E. This
result may reflect the fact that the values for the variances considered in the
simulations are not close enough to zero. Had smaller variances been
considered, possibly an improvement in the confidence interval coverage for
the MCMC credible quantiles in comparison to the Wald confidence interval

may have been observed.

Table 111.14: Wald 95% Confidence Interval Coverage by Overall Probability

and Interviewer Allocation

Sample Size
0.7 0.8 0.9

IA oy s oy s oy o;

1 93.8 95.4 91.4 93.8 91.5 93.7
2A 95.1 93.6 94.5 95.0 94.2 93.1
2C 94.6 95.2 95.1 94.1 94.9 93.0
3A 97.5 95.7 93.8 94.7 94.3 93.2
3E 94.3 93.9 94.6 95.0 94.6 94.3
3H 95.1 95.1 93.9 94.0 94.9 95.0
4A 95.4 94.8 95.2 94.5 94.1 93.7
4C 96.2 94.8 94.1 95.0 95.0 94.7
5A 95.9 94.7 95.2 94.8 94.7 93.9
5C 94.8 94.8 95.5 94.8 94.9 94.5
6A 95.8 94.5 95.1 95.1 94.2 92.8
6C 95.2 94.8 94.9 95.2 93.7 95.0

Constant factor values: N=5760, N'=240, NA=120, 62=0.3, 62=0.3, NI=2N4
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To summarise, the main points on the Wald confidence interval coverage

are the following:

e The confidence interval coverage is close to the nominal 95% for most
scenarios.

e Some cases of under-coverage (lowest observed rate is 87%) and over-
coverage (highest observed rate is 100%) are obtained for scenarios
allocating interviewers to just one area.

e Lower coverage rates across are observed for the scenario with the
smallest sample size of 1440 cases.

e For the interviewer parameter better coverage rates are obtained for the
scenarios including double the number of interviewers to areas in
comparison to scenarios including equal numbers of interviewers and
areas. This result highlights the better coverage properties with a larger
number of clusters.

e There is no consistent pattern in the coverage rates by the overall
probability, the higher-level variances or the extent of interviewer

overlap.

I11.5.5. Standard Errors

The precision of both fixed effect and random effects estimators is affected by
N (Table 15). As expected, reducing the sample size to one fourth of the
original N (from 5760 cases to 1440 cases) seems to approximately double the
standard errors for all estimators. For the N'=2NA scenarios the o2 estimator
obtains higher standard errors than the interviewer variance estimator, thus
highlighting the positive impact of a higher number of clusters on the
precision of the estimator. As expected, there is no substantial difference in

the standard error of the two variance estimators for the N!'=N# scenarios.

Standard errors for the variance estimators decrease with greater
interviewer dispersion up to a certain number of areas per interviewer (Table
15). This threshold varies by N and the ratio of interviewers to areas. For the

NI'=2NA scenarios for N=5760, decreases in standard errors of at least 0.05
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magnitude for greater interviewer dispersion are only present for up to CASE 2,
while for the 2880 and 1440 sample size scenarios a decrease is noticeable up
to CASE 3. The 5760 and 2880 sample size scenarios with N' =N2 show
decreases in standard errors of at least 0.05 in magnitude up to CASE 4, and
up to CASE 5 for the 1440 sample size scenario. The standard errors for the
interviewer variance estimators are consistently higher for the N'=NA scenarios
compared to the NI=2NA scenarios for a specific N and interviewer allocation.
This difference is expected since in the N'=NA scenarios there are only 120
interviewers, compared to the 240 interviewers included in the N! =2 NA
scenarios. The discrepancy in the standard errors for N! = N2 scenarios
compared to the N! =2 N2 scenarios are more pronounced for more
geographically restricted interviewer allocations, indicating that to some extent
interviewer dispersion mediates the effect of the number of higher-level units

on the standard error of the estimator.

Table 111.15: Standard Errors by Sample Size, Interviewer Allocation and
Ratio of Interviewers to Areas

N'=2NA scenarios
Sample Size
5760 2880 1440
Bo o3 o? Bo o’ o’ Bo o’ o’

1| 0.071 0.094 0.085 0.111 0.148 0.143 0.143 0.191 0.184
2] 0.072 0.070 0.063 0.102 0.104 0.094 0.144 0.153 0.134
3| 0.072 0.067 0.060 0.102 0.097 0.087 0.144 0.140 0.123
41 0.072 0.065 0.059 0.102 0.095 0.085 0.144 0.143 0.126
5| 0.072 0.064 0.058 0.102 0.093 0.084 0.145 0.143 0.125
6| 0.072 0.064 0.059 0.102 0.092 0.084 0.145 0.142 0.123

N!'=2NA scenarios
1| 0.080 0.252 0.252 0.114 0.273 0.273 0.165 0.318 0.317
2| 0.080 0.077 0.076 0.114 0.111 0.112 0.164 0.171 0.169
3| 0.081 0.073 0.075 0.116 0.107 0.112 0.165 0.165 0.167
41 0.080 0.067 0.067 0.113 0.096 0.098 0.164 0.153 0.153
5| 0.080 0.065 0.065 0.114 0.095 0.096 0.163 0.147 0.147
6| 0.080 0.064 0.064 0.114 0.095 0.094 0.163 0.147 0.144

Constant factor values: 62=0.3, 62=0.3, m=0.8

NI=2N#4: N'=240 and NA=120 for N=5760; N'=120 and N4=60 for N=2880, N!=60 and N4=30
for N=1440; N'=N4: N!=120 and N2=120 for N=5760; N'=60 and NA=60 for N=2880, N!=30
and NA=30 for N=1440
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Despite N4 always being held constant the standard errors for the o2
estimator are only equal for comparable N'=N4 and N!=2N4 scenarios when
the interviewers are working in at least four areas for the 5760 and the 2880
same size scenarios, and five areas for the 1440 sample size scenario. For
more restrictive interviewer allocations, higher standard errors for the o?
estimator are obtained for N'=NA scenarios compared to N!=2N” scenarios.
Again, this result highlights the possibility that an unequal number of higher-
level units for the two higher-level classifications yields better estimates when

interpenetration is limited.

The intercept estimator standard error is constant for all the interviewer
allocation schemes for constant values of both N! and N2. However, for the
NI=NA scenarios as compared to the N'=2NA scenarios for the same N and for
the same interviewer case allocation scheme, greater standard errors are
observed (e.g. 0.08 compared to 0.072 for the 5760 sample size scenario).
This difference in standard errors is greater for smaller sample size scenarios,
increasing from an average of 0.008 for the 5760 sample size to 0.02 for the
1440 sample size scenario. This result can also be explained in terms of lower

standard errors for scenarios with unequal numbers of higher-level units.

Table 16 shows no evidence of any effect of the extent of interviewer
overlap on the standard errors for either the intercept or the variance
estimators. On the other hand, results in Table 16 show higher standard errors
for all three parameters for higher overall probabilities, with some increase
from 7=0.7 to n=0.8, and a much higher increase from 7=0.8 to #=0.9,

especially for the CASE 1 interviewer case allocation scheme. This non-linear
result is similar to the effect of overall probability on corr(c}z,}\f), which shows

that a greater increase in the correlation between the two estimators is
observed for the extreme end of the probability scale, when increasing the

overall probability from 0.8 to 0.9.
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Table Il1l.16: Standard Errors by Overall Probability and Interviewer

Allocation
Overall Probability
0.7 0.8 0.9

IA| B, o2 o2 P o2  oi P, o2 o

1 0.069 0.087 0.077 0.071 0.094 0.085 0.079 0.112 0.112
2A | 0.069 0.065 0.057 0.072 0.070 0.063 0.080 0.084 0.081
2C | 0.069 0.064 0.056 0.072 0.069 0.062 0.080 0.082 0.081
3A | 0.069 0.062 0.055 0.072 0.067 0.060 0.080 0.079 0.077
3E | 0.069 0.061 0.054 0.072 0.066 0.060 0.080 0.079 0.077
3H| 0.069 0.061 0.054 0.072 0.065 0.059 0.080 0.078 0.077
4A | 0.069 0.060 0.054 0.072 0.065 0.059 0.080 0.077 0.075
4C | 0.069 0.060 0.053 0.072 0.064 0.059 0.080 0.077 0.075
5A | 0.069 0.060 0.053 0.072 0.064 0.058 0.080 0.076 0.075
5C| 0.069 0.059 0.053 0.072 0.064 0.058 0.080 0.077 0.075
6A | 0.069 0.058 0.053 0.072 0.064 0.059 0.080 0.076 0.074
6C | 0.069 0.059 0.053 0.072 0.063 0.058 0.080 0.075 0.074

Constant factor values: N=5760, N'=240, NA=120, 62=0.3, 62=0.3, N'=2N4

Table 17 shows that when the value of the variance changes the

standard error changes in the same direction for the respective variance

estimator as well as the intercept estimator. The unchanged variance does not

experience changes in the estimator standard errors, once interviewers work in

at least two areas. For example, when comparing scenario H (62=0.3, 63=0.4)

to the medium scenario design A (062=0.3, 63=0.3), a slight increase in the

standard errors can be noticed for the intercept estimator while a substantial

increase can be observed in the standard errors of the interviewer variance

estimator. On the other hand, for the area variance estimator an increase is

only noticeable for CASE 1.
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Table 1lIl.17: Standard Errors by Different Scenarios

A: F: G: H: I: J: K:
62=0.3, 62=0.2, 62=0.4, 62=0.3, 62=0.4, 62=0.3, 62=0.2,
62=0.3 62=0.2 62=0.4 62=0.4 62=0.3 62=0.2 62=0.3

IA Bo

1 0.071 0.061 0.080 0.074 0.077 0.068 0.064
2A 0.072 0.062 0.081 0.075 0.078 0.069 0.065
3A 0.072 0.062 0.081 0.075 0.078 0.068 0.065
4A 0.072 0.062 0.081 0.075 0.078 0.068 0.065
5A 0.072 0.062 0.081 0.075 0.078 0.069 0.065
6A 0.072 0.062 0.081 0.075 0.078 0.069 0.065

oy

1 0.094 0.071 0.118 0.105 0.106 0.077 0.079
2A 0.070 0.052 0.088 0.072 0.085 0.067 0.054
3A 0.067 0.050 0.082 0.067 0.081 0.065 0.051
4A 0.065 0.049 0.081 0.066 0.080 0.064 0.049
5A 0.064 0.048 0.080 0.064 0.079 0.063 0.048

6A 0.064 0.048 0.079 0.064 0.078 0.063 0.048

H

1 0.085 0.070 0.101 0.103 0.083 0.062 0.085
2A 0.063 0.051 0.075 0.075 0.064 0.051 0.062
3A 0.060 0.049 0.072 0.071 0.061 0.049 0.059
4A 0.059 0.048 0.071 0.070 0.059 0.048 0.058
5A 0.058 0.047 0.070 0.069 0.059 0.047 0.058
6A 0.059 0.047 0.069 0.068 0.058 0.047 0.057

Scenario A represents the medium scenario design (N=5760, N'=240, NA=120, 0¢2=0.3, 63=0.3,
1=0.8, N'=2N4). The other scenarios maintain the same factors as the medium scenario design
except for the o2 and o2 which are specified above

To summarise, the main points on the standard errors are the following:

e Standard errors increase for both the intercept and the variance
parameter estimators when the total sample size is decreased.

e When the number of areas and interviewers are equal the standard
errors for the area and interviewer variance estimators are the same
when the variances are equal. For scenarios with twice the number of
interviewers to areas, the area parameter estimator has larger standard

errors than the interviewer parameter estimator, when the two variances
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are equal. This result confirms the negative relationship between the
number of higher-level units and the precision of the estimator.

e The standard errors of the variance estimators decrease with greater
interviewer dispersion, up to a threshold number of areas per
interviewer, which varies by sample size and the ratio of interviewers to
areas.

e Higher standard errors are obtained for scenarios with equal numbers of
areas and interviewers compared to scenarios with double the number
of interviewers to areas. This result highlights the increased precision
for scenarios with unequal number of higher-level units for the two
higher-level classifications.

e Interviewer overlap does not seem to affect the size of the standard
errors.

e A higher overall probability results in higher standard errors for all three
parameter estimators.

e With an increase in the value of the variance the standard errors also
increase for the respective variance estimator as well as the intercept

estimator.

111.5.6. Extreme Case Allocations

This paper only considers interviewer allocation schemes which restrict
interviewers to six areas or less. This restriction makes pragmatic sense.
However, just for analytical purposes, for the 2880 sample size and 1440
sample size scenarios extreme case allocation schemes are considered. For
this extreme allocation scheme each case for each interviewer is situated in a
different area. The scenarios with smaller N have been chosen since sample
size and the number of higher-level units has been shown to have the greatest
influence on the quality of the estimators. Therefore, any improvements in the
estimators with further interviewer dispersion should be noticeable for these

scenarios.
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Table 111.18: Properties of the Estimators and Test Statistic by Scenario and

Interviewer Allocation

Bi_as of Coverage Power of Standard Correlation
Estimator of CI Wald Test Errors
N!=2NA Scenarios

o, o0i O, 6. O Os O} on
1A 1440 sample size scenario
6A 7.42 242 935 91.5 0.92 0.88 0.142 0.123 0.034
6B 6.04 097 93.5 92.0 0.91 0.90 0.140 0.122 0.040
6C 6.12 1.09 93.7 92,5 091 0.89 0.140 0.123 0.043
EXTREME 5.88 1.25 91.8 92.1 0.92 0.91 0.137 0.120 0.063

2880 sample size scenario

6A 3.05 1.78 93.6 94.6 1 1 0.092 0.084 0.034
6B 299 136 939 94 1 1 0.092 0.084 0.041
6C 4.27 0.89 94.9 945 1 1 0.093  0.083 0.045
EXTREME 2.85 1.20 94.0 93.8 1 1 0.090 0.082 0.067

N!=NA Scenarios
1440 sample size scenario

6 10.34 6.73 93.6 91.8 0.91 0.88 0.147 0.144 0.007

EXTREME 9.07 8.24 94.0 93.7 0.94 0.94 0.139 0.138 0.053
2880 sample size scenario

6 3.8 299 93.1 944 1 1 0.095 0.094 0.002

EXTREME 3.58 3.93 94.1 94.2 1 1 0.090 0.090 0.052

Constant factor values: 62=0.3, 62=0.3, m=0.8

N'=2N4: N!=240 and NA=120 for N=5760; N!'=120 and N4=60 for N=2880, N'=60 and NA=30
for N=1440; N'=N4: N'=120 and NA=120 for N=5760; N'=60 and NA=60 for N=2880, N'=30
and NA=30 for N=1440

In Table 18, the quality of the estimators for the extreme case can be
compared with those for CASE6. The results do not indicate any dramatic
improvements in the quality of estimators for extreme interviewer case
allocation schemes. This observation confirms previous results discussed in
this paper, which suggest that beyond a limited number of areas to
interviewers, further dispersion does not yield any gains in the quality of the
estimators. For the simulated data considered, for large sample sizes of

around 6000 cases, this threshold is equal to three areas per interviewer.
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111.6. Discussion

As expected, the results show worse quality estimators for smaller N. It is
important to consider that in this study it is not possible to clearly distinguish
between the effects of decreases in N and decreases in N4 and N!, since halving
the N also reduces the number of higher-level units by half. Consequently, the
results of halving the N while keeping the same N4 and N! (by reducing the
cluster sizes) have not been assessed. Bias has been found to increase with
decreases in N, and this increase is consistent for all interviewer case allocation
schemes considered in the study. The greatest increase in bias with smaller N
is observed for CASE 1. Allocating each interviewer cases in two different areas
reduces the effect of smaller N on bias. However, sparser allocation schemes
do not seem to mediate this effect further. The increases in the biases are
particularly pronounced when halving N from 2880 to 1440 for the N'=NA
scenarios. This is similar to the result obtained by Paccagnella (2011) who
shows that the improvements in the estimators’ accuracy with sample
expansions decrease as N increases. Similarly to Moineddin et al. (2007), there
is some evidence in this study of lower coverage rates for smaller N. The
confidence interval coverage rates are slightly lower for the 1440 sample size
scenario compared to the 5760 and 2880 sample size scenarios for all
interviewer case allocation schemes. Power also decreases for smaller total
sample sizes. However, for the 2880 sample size scenarios this decrease can
only be noticed up to two areas per interviewer allocation schemes for the
N!=2NA scenarios and three areas per interviewer allocation schemes for the
N!'=NA scenario. For the 1440 sample size scenarios the power values are
drastically lower compared to the 2880 sample size scenario for all interviewer
case allocation schemes, and even for 6 areas per interviewer allocation
schemes power ranges from 0.89 to 0.92. The opposite trend can be observed
for the correlation between the two random parameter estimators, with the one
area per interviewer allocation scheme showing a decrease in the negative
correlation with decreasing N. This trend is more pronounced in the N'=N4
scenario than the N'=2N2. However, this trend is negligible for both these
scenarios once interviewers are working in at least two areas each. Standard

errors of both the overall intercept and random parameter estimators seem to
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increase monotonically with decreasing N. Interviewer dispersion does not
mediate the effect of decreasing N on standard errors. However, for a constant
N the precision of variance estimators improves with further interviewer

dispersion - up to a limit of 3 areas per interviewer - for N'=2N# scenarios.

The above-mentioned results on the relationship between N and the
various properties show that reductions in N can be mediated to some extent
by interviewer dispersion. However, very small N - 1440 cases - are to be
avoided as even with sparse interviewer allocation schemes they do not achieve
acceptable levels of accuracy, precision and power. On the other hand, large
and medium sized samples, including N!' =2 N4 scenarios, obtain good
estimates once interviewers work in at least three areas. The percentage
relative bias does not fall below 1%, even for the largest sample considered
(5760 cases). Estimators of higher-level parameters obtain bias values of up to
3% even for large N and a large number of higher-level units (240 interviewers,
120 areas). This is similar to the results presented by Moineddin et al. (2007),
where for data with 100 groups of size 50, bias levels for random effects

estimates are all under 4%, but never reach 1% or lower.

The comparison of the N!=2N4 with the N'=N# scenarios indicates that a
higher number of clusters as opposed to a higher cluster size for a constant N
yields better estimates. In this paper, the N does not increase as the number of
groups is increased. Instead, the number of groups is altered for a set N. Lower

negative correlation between the two higher-level random effects, higher
power for the Wald test for o2, lower standards errors for o2 and lower relative

percentage bias for 8\5 are observed for the N'=2N# compared with the N'=NA
scenarios for some of the least sparse interviewer allocation schemes, and
especially for smaller N. The improvement in the accuracy and precision Of(’sz
for the smallest sample size scenario and the higher power for the Wald test
for 62 may be indicating that besides the effect of the number of clusters
(which for the area classification remains unchanged), the ratio of higher
classification units may also affect the quality of estimates with a ratio unequal
to one performing better. This result suggests that a larger N' should be

working within a set N# for best quality estimates.
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These results are consistent with previous simulation studies for two-
level hierarchical models which emphasise the importance of a higher number
of clusters, as opposed to a larger cluster size, for the quality of estimates
from multilevel models. Maas and Hox (2005) find that the coverage rates for
variance parameters only increase with increases in the number of groups, and
show no change for increasing group size. Paccagnella (2011) only documents
a decrease in bias for the variance components estimators with an increase in
the number of groups, despite the fact that both the group size and the
number of groups are included as varying factors in the simulation study. Mok
(1995) looks specifically at comparing the bias for estimators from 2-level
models when simulating data with different designs, comprising different
student (level 1) to school (level 2) ratios for various fixed N. Type a designs
have a ratio of students per school over number of schools greater than 1;
Type b designs have an equal ratio, and Type c designs have a ratio of less
than 1. Mok (1995) concludes that for a fixed N, larger standard errors and
larger mean squared errors are obtained for Type a designs compared to Type
b and c designs for the variance estimator, but she finds no association
between design type and bias for the random intercept estimator. Moineddin et
al. (2007) find that both the group size and the number of groups affect the
accuracy of random parameter estimates. Very small group sizes of 5 give very
high biases. However, for a scenario including 30 groups of size 30 each, an
increase to 50 groups leads to a larger decrease in bias compared to an
increase to a group size of 50. On the other hand, the number of groups is
positively related to the confidence interval coverage rates for both the random
intercept and the random slope parameters, whereas the group size is only
significantly related to the coverage rates for the random slope parameter.
Rodriguez and Goldman (1995) find both higher bias and inflated standard
errors for variances of higher-level classifications with small cluster sizes. In
this study the implications of small group sizes have not been explored since
sampling very small numbers from a sampling area is not common practice
due to survey travelling costs and other administrative expenses. While it is
possible to envisage a few interviewers having a very small caseload in very
remote areas, the majority of interviewers are generally assigned a bigger

caseload.
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In this study lower power of the Wald test for the random parameters
and higher correlation between the two random parameter estimators are
found for higher overall probabilities for some restrictive interviewer case
allocation schemes. Higher standard errors are obtained consistently for all
estimators across all interviewer case allocation schemes for higher overall
probabilities. Moineddin et al. (2007) find that for 2-level models lower
prevalence rates of 0.1 result in higher bias and lower coverage rates
compared to higher overall probabilities. Moineddin et al. (2007) use the
values 0.1, 0.34 and 0.45 for the overall probabilities. In this study the values
0.7, 0.8 and 0.9 are included in the analysis. Both studies suggest that
estimates of lower quality are obtained for extreme values, with Moineddin et
al. (2007) investigating the lower end of the spectrum and this study
investigating the higher end. The overall probability of the outcome variable is
not something the data analyst can easily change through the survey design,
unlike other factors such as N! which are more easily changed. Therefore any
results indicating a negative effect of higher prevalence of the outcome
variable on the quality of the random parameter estimates are more
problematic. However, for the scenarios considered the negative correlation
between the two random parameter estimators is reduced to less than 0.1 once
the interviewers were allocated work in three areas. Moreover, the effect of the
overall probability on this correlation is only observed up to interviewer
allocation 3A. In the case of the effect of the overall probability on the power
of the Wald test, this is restricted to just the most restrictive interviewer case
allocation - CASE 1. Once interviewers work in two areas, no effect of the
overall probability on power is observed. On the other hand, interviewer
dispersion does not mediate the positive effect of higher overall probability on
the standard errors of estimators. Consequently, some of the effects of the
overall probability on the quality of estimates can be avoided during the survey

administration by assigning work to interviewers in at least three areas.

There are mixed results in the literature on the effect of ICC on the
quality of parameter estimates. Random intercept estimators have been shown
to differ significantly by ICC values in Moineddin et al. (2007), showing higher

bias for lower ICC values. Moineddin et al. (2007) also observe a trend of
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higher coverage rates for higher ICC values for the random intercept. On the
other hand, Maas and Hox (2005) and Paccagnella (2011) do not find a
significant effect of the ICC value on the relative bias or the Wald 95%

confidence interval coverage rates for random parameters.

Similarly, in this study the size effect and direction of the effect of ICC

on the quality of the estimates seems to vary for different properties. Higher
ICC values seem to decrease the negative corr(gz,az), although this is no
longer present for higher-level effects with a large number of clusters in the
sample. In fact, lower negative corr(gz,/a?) are observed for higher area

variances g2 up until interviewer allocation CASE 3A, but no consistent change
is observed for higher interviewer variances o2 in scenarios with double the
number of interviewers to areas. Similarly, the ICC is found to have a positive
relationship with the power of the Wald test for the most restrictive interviewer
case allocation, CASE 1, but again for the other higher-level classification with
twice the number of clusters this effect is not observed. In contrast, precision
seems to decrease for higher variances. Similarly to Maas and Hox (2005) and
Paccagnella (2011), in this study no clear pattern for the change in the
percentage relative mean bias of the variance parameter estimators by ICC is
observed. Contrary to the results reported by Moineddin et al. (2007), in this
study no evidence of the effect of ICC on the confidence interval coverage rates
has been found. Similar to the effect of overall probability on the quality of
estimates, these results indicate that generally once each interviewer is
allocated cases in two, and sometimes, three different areas, small ICC values -
which are not under the control of the researcher - will not be detrimental to
the quality of the estimates. It is important to consider that in this study very

small variances are not being investigated.

Interviewer dispersion, which refers to the number of areas each
interviewer works in, only improves the quality of estimates up to a point. The
power of the Wald test at the 5% significance level for the medium scenario
design is close to the optimal value of 1 for all interviewer case allocation
schemes. For scenarios with smaller N, but keeping constant all other factors,

sparser interviewer allocation schemes are required to obtain high power.
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Improvements in power are observed when increasing the number of areas per
interviewer from one to two for N=2880 and N=1440, and from two to three
for N=1440. Further dispersion only yields very small gains. The correlation
between the two parameter estimators is reduced to the chosen threshold of
-0.1 once interviewers are allocated to two areas for N'=2N4 scenarios, and

three areas for NI=N” scenarios. More sparse allocation schemes do not result
in substantially lower corr(aﬁ,a,,z) for the scenarios considered. Decreases in

the relative percentage bias are substantial when comparing the CASE 2 to the
CASE 1 allocation scheme. However, no systematic trend in bias reduction is
observed for CASE 3-CASE 6. Confidence interval coverage rates show
problems of over- and under-coverage for different scenarios with the CASE 1
allocation scheme, but are close to the 95% nominal rate for all other allocation
schemes. Standard errors for the variance estimators decrease with greater
interviewer dispersion up to a certain number of areas per interviewer, which
varies by N and ratio of interviewers to areas. For N'=2N# scenarios substantial
decreases in standard errors are only present up to CASE 2 for N=5760, and
CASE 3 for smaller N. N'=N# scenarios show decreases in standard errors up to
CASE 4 for N=5760 and N=2880, and CASE 5 for N=1440. The results for the
extreme case allocations do not show any dramatic improvements in the
properties compared with CASE 6, confirming that beyond a certain number of
areas to interviewers, very often being equal to three areas per interviewer for

large N, further dispersion does not yield any gains in the properties.

No consistent relationship between bias, confidence interval coverage
rates, standard errors and power of the Wald test with the extent of interviewer

overlap is found. The only impact of interviewer overlap was restricted to the

corr(af,af) values for 2 areas per interviewer allocation schemes, with less

overlap resulting in lower negative corr(aj,crvz). Consequently for the scenarios

considered in this study, once all interviewers work in at least three areas,
there is no benefit in aiming for less interviewer overlap. This result indicates
that complicating interviewer case assignments by sending interviewers farther

away from their area of residence in an attempt to avoid having the same
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interviewers working in the same neighbouring areas is not necessary to obtain

guality estimates.

11l.7. Conclusion

For all the properties considered a trend can be identified - for interviewer case
allocation schemes beyond a certain number of areas each interviewer,
generally 3 areas per interviewer for a medium or large sample size (2880 or
5760 cases), the effect of other factors on the properties observed for more
geographically-restrictive interviewer case allocation schemes cancels out.
Therefore, interviewer dispersion acts as a mediating factor on the effect of
interviewer overlap, the overall sample size N, the ratio of interviewers to areas,
the overall probability 1 and the area variance o2 on the properties of the

estimators and Wald test.
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IV. The Effect of Sample Size and
Interviewer Allocation Profiles in
Longitudinal Samples on Inference from
Multiple Membership Multilevel Logistic
Regression Models (Paper 3)

IV.1. Introduction

Across the waves of a longitudinal survey several interviewers may contact
sample members to participate in a survey. A modelling problem particular to
this kind of data pertains to the inclusion of higher-level random effects for
the various wave interviewers, whilst a substantive problem is the assessment
of the relative importance of previous and current wave interviewers on current
wave nonresponse. If all distinct interviewers from both the current and
previous waves associated with a case influence the current wave response
decision, failing to account for the multiple membership structure will lead to

an underestimation of the interviewer variances (Goldstein, 2011).

One approach to correctly model this data and estimate the interviewer
variance and to identify the relative effect of various wave interviewers for
cases experiencing interviewer change on current wave nonresponse is to use
multiple membership (MM) models (Lynn et al., 2013). Paradata, that includes
the identification codes of the interviewers allocated to each case at each wave,
is required. Such models allow the effect of all distinct interviewers associated
with a case to be incorporated in the model by attributing a weight to each
interviewer effect. These weights represent each interviewer’s relative effect.
The choice of weights is either based on theory or an empirical assessment
using the Deviance Information Criterion (DIC), as proposed in Goldstein (2011)
and advocated in Lynn et al. (2013). The DIC is used to select the best fitting
model among different competing possibly non-nested Bayesian models, with

higher DIC values indicating a poorer model fit (Spiegelhalter et al., 2002).
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Models including various weight specifications are fitted and the weights

corresponding to the model with the lowest DIC are retained.

Fitting these models with various weights to data from the UK Family
and Children Study (Lyon et al., 2007) in the first paper showed no
improvement in comparison to a simple multilevel logistic model that only
included an effect for the current wave interviewer. This result may indicate
that it is only the current wave interviewer who has an impact on current wave
cooperation. The current interviewer’s direct interaction with and influence on
the immediate experience may cancel out any previous wave experience.
Alternatively, this result may be due to a lack of power to detect the MM
structure, either because insufficient cases experienced interviewer change, or
because the higher-level variance is small, or a combination of both factors.
Questions regarding the reliability of the DIC measure for determining the true
MM weights and the properties of estimators and the power of significance
tests for MM models with different weight specifications have not been

explored yet.

IV.2. Study Aims

This study, through simulation studies, assesses the reliability of the DIC to
detect the correct MM weights. A second aim of the study is to investigate the
properties of estimators and test statistics for MM models with different weight
specifications across a range of scenarios. The reliability of the DIC will be
assessed in terms of the percentage of times the models with the correct
model weights correspond to the lowest DIC value. The properties considered
include the percentage relative bias, the standard error, the confidence interval
coverage and the power of significance tests. The properties of the MM models
are investigated when weights are chosen on an a priori theoretical basis and
alternatively when weights are chosen on the basis of the DIC. The different
scenarios considered will vary in terms of the true MM weights (from unequal

weights of 0.9 and 0.1 to equal weights of 0.5 each), the different interviewer
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change profiles and the proportions of cases experiencing interview change.
Different total sample sizes and number of interviewers (groups) are also
considered. Other factors, such as the overall probability and the higher-level

variances will be held constant at a realistic value.

The study will attempt to identify in which scenarios choosing the
weights based on the lowest DIC produces acceptable properties of estimators
and test statistics and the correct weights selection. These properties will be
compared to those for equivalent models including weights based on theory.
Models with theoretically-based weights will include both correct weights and
incorrectly specified weights (with varying degrees of misspecification being
considered). Interviewer allocations for the two waves considered (the current
wave at which nonresponse is being analysed and the previous wave) aim to
represent some of the possible extreme interviewer work allocations and
change profiles. Starting values for the other factors are meant to represent
typical survey values. These scenario specifications aim to make the results

relevant to survey practice.

Although the factor conditions and the application considered are very
specific and restricted to survey design and the exploration of interviewer
effects on nonresponse, the same MM structure and the question of how best
to choose the model weights may arise in other settings. For example, a study
may wish to explore the influence of a pupil’s secondary school on the pupil’s
probability to go on to further education. Pupils who have attended more than
one school during their secondary years of schooling have a MM structure, and
the relative effect of the final and previous school can be assessed using MM
models. The results from this study would have implications for league tables
and funding. Other applications may include studies of neighbourhood effects
on the propensity to seek traditional birth assistants in sub-Saharan Africa,
studies on the influence of religious group affiliation on the likelihood of doing
volunteering work, receipt of unemployment benefits with changing household
membership in longitudinal studies, clinical trials investigating the probability
of rehabilitation after receiving care from a combination of practitioners, and
veterinary studies considering the influence of flock memberships on disease

contagion.
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The simulation results from this paper on the percentage of cases with
multiple memberships required for adequate estimates of the higher-level
variance and the probability of the DIC measure identifying the correct weights
for various data structures will highlight any inference problems arising for MM
models. The performance of the DIC in choosing between competing MM
model weights will suggest whether the substantive interpretation of the
weights based on the DIC can be emphasised. The results will be of particular
importance when using modelling not simply for explanation purposes but
also for prediction. This study will also indicate under which scenarios
choosing weights based on an empirical assessment method compared to
relying on theory yields better estimator properties and power of Wald test.

This study may also inform the design of studies with MM structures.

IV.3. Background

Model selection refers to the process of choosing the best model for the data
being analysed between competing models. Model selection tools allow the
ranking of different competing models, enabling model selection. The
properties of parameter estimators can be sensitive to model specification,
particularly to the omission or misspecification of the higher-level structure
(Chung & Beretvas, 2012; Luo & Kwok, 2009; Meyers & Beretvas, 2006;
Tranmer & Steel, 2001). Consequently, it is important to base model selection
on an empirical assessment method or on strong theory which has been
rigorously tested. When a strong theoretical basis for the model structure is
lacking, model selection has to be solely based on an empirical assessment
method. Consequently, the consistency with which the model selection method
identifies the true model as being the correct model across different
applications, data structures and types of models must be examined. Moreover,
the properties of estimators when the model choice is based on this selection

method also need to be investigated.
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The model selection tool used in this paper is the DIC, a Bayesian model
selection tool which takes into consideration both the goodness-of-fit
(posterior distribution of the deviance) and the complexity of the model
(effective number of parameters), which is particularly appropriate for models
including hierarchical parameters estimated using Markov Chain Monte Carlo
(MCMC) (Spiegelhalter et al.,, 2002). Some studies have analysed the
performance of the DIC for different subject areas and model types, including
spatial models for medical data (Zhu & Carlin, 2000), stochastic volatility
models for financial time series data (Berg et al., 2004), catch-at-age models
for fisheries stock assessment data (Wilberg & Bence, 2008), hierarchical
threshold mixed models for genetic analysis of veterinary data (Kizilkaya &
Tempelman, 2003) and discrete-time population models for ecological data
(Ward, 2008). These studies generally show that the DIC measure performs
well in detecting the true model or similar models which adequately represent
the data. At present there is no literature on the performance of the DIC for

selecting between different MM weights.

There is very limited literature which explores the estimator properties
and power of a significance test for MM models with different data structures.
Browne et al. (2001) look at the properties of estimators for MM models using
a simple simulated education data example. For this example, students’
attainment is the outcome variable. Students are associated with the schools
(higher-level units) they have attended. Only 10% of a total of 3435 students
have attended two schools, whereas the other 90% are only associated with one
higher-level unit. The higher-level variance is set to 0.1, whilst the individual-
level variance is set to 0.6. The authors find that when using MCMC estimation
with diffuse priors the mean point estimate from the posterior distribution has
very low bias, and the interval estimates based on the percentiles of the chains
for the posterior distribution have coverage very close to the nominal 95%
value. The Iterative Generalised Least Squares (IGLS) estimation results fare less
well. A limitation of this study is that the bias and confidence interval coverage
of the estimators in the case of incorrectly specified model weights are not
considered. The authors only consider a case for true MM weights of 0.5 and

0.5 and specify model weights to be the correct weights. In real life scenarios
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the true weights are not known and the model weights may therefore be

subject to misspecification.

Chung and Beretvas (2012) run simulation studies to analyse the impact
of incorrectly specifying a simple two-level model (which only takes account of
the most recent higher-level unit) for MM data for a continuous outcome. This
impact is assessed in terms of the bias for both fixed and random effects
coefficients. Both 2-level models and MM models are fitted for all scenarios
and the biases are compared for the two model specifications. The values for
the following factors are varied: the intra-class correlation, the number of
higher-level units, the cluster size, the percentage of cases with multiple
memberships (change cases) and the number of multiple memberships for the
change cases. Where a substantial bias is observed, for either the 2-level
model or the multiple membership model, an ANOVA test is performed to
identify which of the above-mentioned factors is significantly associated with

the observed bias.

When a MM model is specified no bias is observed for any of the
parameters considered. No substantial difference in the relative percentage
bias for the overall intercept and a level-one fixed effect was observed
between the perfectly nested model and the MM model specification. Biases are
observed for the level-two fixed effects and the two random effects when a
purely nested model is run. A significant negative bias for the level-two fixed
effect was observed for the 2-level model specification ignoring the MM
structure of the data. This bias was higher for a higher proportion of cases
being associated with multiple memberships (higher percentage of students
who changed schools) as well as a higher number of multiple memberships
(mobile children attending three rather than two different schools). These two
factors (degree of mobility across student population and number of schools
attended by mobile students) interact with each other, such that with high
values for both factors a more substantial negative bias is obtained for the
level-two fixed effect. The individual-level variance is overestimated when a
perfectly hierarchical model is specified. A higher percentage of cases with
multiple memberships and a larger number of multiple memberships for the

change cases are found to be associated with larger positive bias. The higher-
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level variance is underestimated when the multilevel structure is wrongly
specified, with a higher percentage of cases experiencing change being

significantly associated with a larger negative bias.

The underestimation of the higher-level variance when the MM structure
of the data is ignored has been documented by Goldstein (2011, Chapter 13).
Chung and Beretvas (2012) argue that the variance not captured in the higher-
level model has to be apportioned to the individual-level variance, which is
overestimated to allow for the correct estimation of the total variance. This is
in fact observed in the simulation study results and documented in other
simulation studies exploring the effect of omitting a level in a multilevel model
(Tranmer & Steel, 2001; van den Noortage et al., 2005).

Some studies using multiple membership models with real data to
investigate substantive questions make some reference to the robustness of
the parameter estimates across different weight specifications. Fielding (2002)
and Fielding and Yang (2005) investigate the influence of multiple teachers or
educational institutions on individual students’ educational achievement. Both
studies base the calculation of weights on the proportion of time spent with
each higher-level unit. Both papers assert that the accuracy of parameter
estimates of MM models is not sensitive to the model weights specifications.
Similarly, Goldstein (2011b), in analysing the influence of multiple applicants
on the grades awarded to research grant applications, finds that the results are
stable across different weighting schemes. These studies do not give any detail
as to the weighting profiles attempted and the estimates obtained.
Consequently, the reported stability across weighting profiles probably reflects
attempted weighting profiles which are close to the correct weights. As the
model weights specified deviate from the correct weights, and the sum of the
square of these model weights deviates from this measure for the correct

weights, the estimated variance will surely be biased.

Chung and Beretvas (2012) highlight the need for further simulation
studies investigating the properties of estimators for misspecified MM models.

This current study addresses this lacuna in the literature, and also investigates
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the performance of the DIC for detecting the correct MM weights - a research

topic which has not been explored yet.

IV.4. Methodology

This section presents the details of the simulation design. The first section
presents the MM multilevel logistic regression model being fitted to the
simulated data. In the next section, the process by which data is generated is
explained in detail. The various simulation scenarios and the design factor
values considered are then specified. Next, the stored quantities from each
fitted model are listed. The formulas used to calculate the properties of the
estimator and test statistic, and the reliability of the DIC from these stored
guantities are then presented. The various models - models including various
different theoretical weights and the models including weights based on the
DIC - for which the above-mentioned measures are calculated are also

specified in this section.

IV.4.1. Simulation Model

The following model is used:
logit (pl]c]p) = BO + Wijpuj'p + Wijcuj'c, Wijp + Wijc =1 (IV 1)

where Pijejp 1S the probability of individual i interviewed by interviewer j; at the
previous wave and interviewer j. at the current wave refusing to participate at
wave n and the interviewer-specific residuals u; for both the current and

previous wave interviewers come from one distribution N(0, o2 ). Cases
experiencing interviewer change have a weighted average effect of the
previous and current wave interviewer effects. The model weights for the

current and previous wave interviewers are represented by the terms w;; and

w;; respectively. Cases with the same change profile are given the same MM
ijp
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weights. Consequently there will only be two possible pair of weights for each
scenario and model weight profiles - one for the interviewer continuity cases
and one for the interviewer change cases. While cases allocated to the same
interviewer across both waves are given a weight of 1 for Wij, and a weight of O
for w;;_, cases experiencing an interviewer change have two non-zero weights
(identical for all cases) summing to 1. The terms w;; and W;; will be used to
refer specifically to the pair of model weights and the pair of true MM weights
for change cases. In total ten model weight profiles will be considered for each
scenario. Nine of these profiles represent different possible theoretically-based

weighting schemes. The other weighting profile is based on the DIC.

For each scenario nine weight profiles are specified, and consequently
nine models are fitted using each simulated dataset. Each model will include
different model weights for the cases experiencing interviewer change, w;.
These weight profiles vary by 0.1, from weights of (0.9, 0.1) to (0.1, 0.9). For
one of these nine weight profiles the model weights w;; are the correct weights,
equal to the true MM weights W;; (the weights used to generate the data), while
the other eight models will have incorrect w;, with varying degrees of
misspecification. These nine weight profiles represent the different possible
theoretically-based weights. After all 9 models are fitted, the model
corresponding with the lowest DIC is chosen. This is repeated for all 1000
simulations for each scenario. The 1000 models (from a total of 9000 models)
with the lowest DIC will include different weighting profiles. Their one common
criterion is that they provide the best fit (determined by the DIC value) for each

particular simulated dataset.

STATA Version 12 calling MLwiN Version 2.25 through the ‘runmlwin’
command (Leckie & Charlton, 2011) is the software used to fit the models to
the simulated data. Models are fitted using the MCMC estimation method with
diffuse priors, a burn-in length of 5,000 and 100,000 iterations. The burn-in
length and number of iterations were chosen by running a sensitivity analysis
for a few scenarios prior to starting the main analysis. The second order
penalised quasi-likelihood (PQL) estimates provide initial values for parameters.

Due to the computational power and efficiency requirements of MCMC
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estimation, and the large number of models estimated, the IRIDIS High
Performance Computing Facility, and the associated support services at the

University of Southampton have been required to complete the work.

IV.4.2. Data Generating Procedure

Since the study is mainly concerned with the properties of the estimator for the
interviewer random parameter only an overall intercept B, is included as a
fixed effect. The regression coefficient for this overall intercept B, is
determined after considering the overall probability of the outcome for the

mean interviewer membership, 11, and substituting it in the following formula:

T
= log, ——. IV.2
Bo=loger—.  (V.2)

This value is constant across all cases. Then an interviewer random effect is
generated from a normal distribution of mean 0 and variance ¢ for each
interviewer included in the analysis. If for example the previous wave includes
100 distinct interviewers and the current wave includes another 20 distinct
interviewers not present in the previous wave, a total of 120 interviewer effects
are generated. The true MM weights Wij, and W;; are specified. As explained
above, cases with no interviewer change will be allocated (1, 0) weights, whilst
cases with interviewer changes are allocated two non-zero weights (Wl-j) which
sum to unity. These non-zero weights are maintained constant across all
change cases. The log-odds of each case, n;;, are computed by adding the

overall intercept value to the weighted average of the simulated random

effects:
T]i]' = BO + Wijpujp + Wijcujc . (IV 3)
These values are then converted to probabilities using the equation:

exp (1)

= IV.4
Pi= 1% exp (1) (V-9
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Values of the dependent variable Y;; for each case, are generated from a
Bernoulli distribution with probability p;; . The dependent variable is a
dichotomous one, with O representing nonresponse and 1 representing
response to the survey request. For each scenario 1000 simulations are
generated using R Version 2.11.1. For each simulated dataset the simulation
model presented in the previous section is run nine separate times, each time

specifying different w;;.

The procedure used for generating the data for one specific scenario is
presented in Appendix F. The same programming code, with the appropriate
changes to the factor values and the change in the code for the interviewer
allocations, can be used for other scenarios. Appendix G presents the different

codes for obtaining the interviewer codes under different change profile types.

IV.4.3. Simulation Scenarios and Factors

The scenarios considered include the following factors: the overall sample size
N, the number of interviewers at the previous and current waves N{) and N, and
by consequence the number of cases per interviewer, the percentage of cases
with interviewer change (percentage change), the interviewer change profile
type, the interviewer variance o2 , the overall probability of the outcome

variable m, and the true MM weights Wi, and W;;_. The following factor values

will be considered typical values and maintained constant across the majority
of scenarios: N=5760, N§,=240, 24 cases per interviewer at the previous wave,
02=0.3, 1=0.8. While maintaining these values, the other factor values will be
altered to assess the effect of different percentage change, change profiles and
W;; on the properties of the estimator and test statistic and the DIC reliability

measure for realistic general household survey scenarios.

Six change profile types will be considered here. Their characteristics
are outlined briefly in Table 1 and described in more detail in the main text.
These profile types aim to represent different plausible, yet extreme,
interviewer allocations, with the intention of covering various possible

interviewer work allocations. It is appreciated that these scenarios do not
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provide an exhaustive overview of all possible allocations. However, they give
some indication of the impact of different change profiles. In the previous wave
all interviewers have 24 cases allocated. This previous wave caseload is

maintained across all scenarios.

In Type A and Type B scenarios the percentage change refers to the
proportion of cases of each previous wave interviewer which are allocated to a
different interviewer in the current wave. The Type A scenarios include the
same pool of interviewers for both waves. At each wave the same interviewers
are present, with the same workload, but each interviewer loses a specific
amount (represented by the percentage change factor) of cases from the
previous wave cases which are allocated to different interviewers in the current
wave. The previous wave interviewer code for the change cases is collected and
re-distributed randomly across change cases in the current wave. The Type B
scenarios include a new pool of interviewers at the current wave to whom
change cases are allocated. Each interviewer in the previous wave has a
particular percentage of cases removed. The new pool of interviewers each
have a caseload equal to the number of cases removed from each previous
wave interviewer. The new interviewers introduced in the current wave are
allocated the change cases randomly. For Type A scenarios the following
percentage changes are considered: 8%, 21%, 33%, 50% and 92%, while for

Type B scenarios the 8% and 50% changes are considered.

In Type C, D, E and F scenarios the percentage change refers to the
proportion of interviewers who drop out of the survey and have all their cases
allocated to other interviewers. The other interviewers maintain all their cases
across both waves. Since it is interviewers that are being dropped the total
caseload (24 cases times the number of dropped interviewers) must be equally
divisible by the remaining interviewers or the newly recruited interviewers.
Consequently, for these scenario types only the 50% change scenario will be

considered.

In Type C scenarios the cases of the interviewers who drop out of the
survey in the current wave are distributed randomly among all the other

interviewers present in the previous wave. The previous wave interviewer code
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for the interviewer continuity cases (no change) is collected and distributed

randomly across change cases in the current wave. Consequently, the retained

interviewers will double their case load in the current wave. On the other hand,

in Type D scenarios newly recruited interviewers are allocated these change

cases randomly in the current wave. In this case all interviewers have a

caseload equivalent to the previous wave caseload,

since the

retained

interviewers are supplemented by a group of new interviewers matching in

number to the group of dropped interviewers. For scenario D the interviewer

codes of the new interviewers, repeated for a number equal to the caseload,

are allocated randomly to the change cases.

Table IV.1: Change Profile Type Characteristics

Type Previous Wave Current Wave Percentage Random
Change
A 240 interviewers, 24 240 previous cases case level
cases/interviewer interviewers, 24 /interviewer
cases/interviewer
B 240 interviewers, 24 240 previous cases case level
cases/interviewer interviewers and 240 /interviewer
new interviewers, 12
cases/interviewer
C 240 interviewers, 24 120 previous number of case level
cases/interviewer interviewers, 48 cases interviewers
each
D 240 interviewers, 24 120 previous number of case level
cases/interviewer interviewers and 120 interviewers
new interviewers, 24
cases each
E 240 interviewers, 24 120 previous number of interviewer
cases/interviewer interviewers, 48 cases interviewers caseload
each level
F 240 interviewers, 24 120 previous number of interviewer
cases/interviewer interviewers and 120 interviewers caseload
new interviewers, 24 level

cases each

For scenarios E and F the intact caseload of a dropped interviewer is

allocated randomly to another interviewer. In Type E scenarios the remaining

interviewers from the previous interviewers take on this extra workload, whilst

for Type F scenarios new interviewers are introduced to take on the added
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workload. The number of interviewers and their respective caseload for change
profile E is the same as for change profile C, while that for F is equivalent to
Type D. The difference between Type C and Type D in comparison to Type E
and F is that while for the former profile types the individual change cases are
distributed randomly for the latter profile types interviewer-specific caseloads

are distributed randomly.

Table 2 lists the change indicator and the interviewer allocations for the
previous and current waves for each case across the six change profile types
for a simple example scenario. This example scenario includes 8 cases
allocated to 4 interviewers with 2 cases each in previous wave with 50% change.
This example has been included to help understand the different interviewer
change profiles. For further details Appendix G, which includes the R codes
used to generate the different interviewer allocations under the different

change profile types, can be consulted.

Table IV.2: Interviewer Case Allocations for the Example Scenario

Case Change Change Previous Current Interviewer Code
No Indicator Indicator Interviewer for Change Profile Type:
Type A and Type C - Code
Type B Type F A B C D E F
1 1 0 1 4 5 1 1 1 1
2 0 0 1 1 1 1 1 1 1
3 0 1 2 2 2 4 5 4 6
4 1 1 2 3 8 1 6 4 6
5 0 1 3 3 3 1 6 1 5
6 1 1 3 2 6 4 5 1 5
7 1 0 4 1 7 4 4 4 4
8 0 0 4 4 4 4 4 4 4

Two different real weight profiles W; are considered, one giving equal
weights, W;;=(0.5, 0.5), and the other giving unequal weights, W;;=(0.9, 0.1),
to change cases. For some Type A scenarios W;=(0.7, 0.3) is also included. In
this study, the unequal weights, W;;=(0.1, 0.9), will not be considered. It is

believed that the trends in the estimator and test statistics properties for

W;=(0.9, 0.1) and W;;=(0.1, 0.9) scenarios across changes in the other factors
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are similar. Moreover, on a conceptual level the previous and current wave

interviewer allocations are interchangeable.

IV.4.4.Properties of the Estimator and Test Statistic and
DIC Reliability Measure

The stored quantities for each model include the parameter estimates, the
standard errors, the 95% confidence intervals based on the asymptotic normal
distribution and the credible 95% confidence interval based on the MCMC
guantiles, the Brooks-Draper diagnostic, the lower and upper bound of the
Raftery-Lewis diagnostic, as well as the DIC. The properties of the estimator
and test statistic and the DIC reliability measure are calculated using the data
from these stored quantities. The properties include the percentage relative
bias, the standard error, the confidence interval coverage and the power of the
Wald test.

The DIC reliability measure is calculated as follows. For each scenario,
1000 simulated datasets are generated. For each of these 1000 datasets 9
models are fitted, each specifying different w; based on theory. For each
simulation run, out of these nine models the model corresponding with the
lowest DIC is selected. From a total of 9000 models run for each scenario the
1000 selected models will have different w;;. The distribution of the wy; for
these chosen models is presented. The proportion of times the model with the
correct model weights (w;;=W;;) is selected represents the reliability of the DIC
measure for selecting the correct model weights. A less strict reliability
measure quantifies the percentage of times the correct model weights or the

adjacent model weights are selected.

The accuracy of a parameter estimator can be assessed by calculating

the percentage relative bias using the formula

1000 A

! Zei_e 100 V.5
*k
1000 £~ 9 (IV.5)
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where §; is the parameter estimate, 6 is the true parameter value and i is the
simulation number. Since some variation from the true parameter value is
expected due to Monte Carlo error only bias values with a minimum absolute
value of 3% will be considered to be truly identifying bias. The confidence
interval coverage (Maas & Hox, 2005) rate is calculated as the number of
simulations for which the true parameter value lies within the 95% Wald
confidence interval. The coverage rate is compared with the expected 95% rate.
The precision of an estimator is assessed by calculating the mean standard

error using the formula

1 1000
— E;(®). v

The power of a test indicates the probability that the null hypothesis is
correctly rejected. Here the Wald test is used to test the null hypothesis,
specifying the true parameter value to be zero. This consists of dividing the
coefficient estimate by its standard error and squaring that value. The
corresponding p-value for this value is obtained from a chi-squared
distribution. If the p-value is greater than 0.05 then the null hypothesis is not
rejected. The proportion of datasets for which the null hypothesis is retained is

subtracted from 1 to obtain the power of a test.

These properties are estimated ten times - nine of which correspond to

the models with w;; based on theory and the other corresponding to the model
with w;; based on the DIC. For each scenario, the values of these measures for
model with the correct weight profile (when w;; and Wij, correspond to W;;_
and Wl-jp) is compared to the models with the other eight incorrect models with

wi; based on theory as well as the model with weights based on the DIC.

The procedure for running the models, storing the output quantities and
calculating the properties is specified in Appendix H. The same programming
code, with the appropriate changes to the factor values and file names, can be

used for other scenarios.
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IV.5. Results

The sections below will present the results for the properties of the estimator
and the power of the Wald test for the random effects parameter and the DIC
reliability measure across various simulation scenarios. The properties for the
model specifying the correct weights, that is w;;j=W;;, will be highlighted in the
tables below. Any trends in the properties of the estimator, the power of the
Wald test and the DIC reliability across variations in the interviewer allocations
and any other factors will be outlined. As a general note the reader is informed
that the results show a lot of interactions between the various factors on the
various properties considered. It is acknowledged that the detailed results
presented below are specific to the particular combinations of factor values
specified. For a summary of general patterns the reader is referred to the

concluding bullet points at the end of each section.

IV.5.1. Percentage Relative Bias

Negligible or low relative percentage bias (of less than 4%) is observed for
models specifying the correct w; across the different scenarios considered, in
agreement with the result in Browne et al. (2001). As expected, models
specifying incorrect w;; are subject to bias. Model weights misspecification has
greater negative consequences for the percentage relative bias of the variance
estimator for scenarios with a higher proportion of interviewer change. This
can be observed in Table 3 which presents the percentage relative bias for
scenarios varying in terms of the percentage change, while holding constant
these factor values: Type A, N=5760, N; =240, 24 cases per interviewer at both
the current and previous wave, W;;=(0.5, 0.5), 02=0.3 and m=0.8. The most
imprecise weighting profiles, so either w;;=(0.9, 0.1) or w;;=(0.1, 0.9), give rise
to an underestimation of the interviewer variance, with the highest recorded
relative percentage bias varying from -5% for the 8% change scenario to -62%
for the 92% change scenario. However, if the correct profile is chosen, w;;=
(0.5, 0.5) for W;;=(0.5, 0.5), there does not seem to be any difference in the

percentage relative bias across the scenarios with different interviewer change
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proportions. In these scenarios accurate estimates are obtained both when
choosing the correct weights or adjacent weights. It is only for the scenario
with 92% interviewer changes that choosing the correct weights w;;= (0.5, 0.5)
results in a substantial improvement in the accuracy of the estimator compared
to the adjacent weights w;;=(0.6, 0.4) or w;;=(0.4, 0.6). This trend of higher
biases for scenarios with higher percentage of cases experiencing interviewer
change is also observed for other Type A (Table 4) and Type B change profile

scenarios (Table 5).

Table IV.3: Relative Percentage Bias for Type A, N=5760, N},=240, 62=0.3,
n=0.8, W;;= (0.5, 0.5) Scenarios with Varying Percentage Change

Interviewer Change

Wij 8% 21% 33% 50% 92%
0.9,0.1 -4.84 -13.27 -21.72 -32.91 -60.92
0.8,0.2 -2.40 -7.41 -12.86 -20.61 -43.81
0.7,0.3 -0.58 -2.87 -5.61 -9.68 -24.37
0.6, 0.4 0.54 0.06 -0.84 -2.01 -7.89
0.5, 0.5 0.91 1.05 0.76 0.76 -1.37
0.4, 0.6 0.52 0.05 -1.02 -1.96 -8.25
0.3,0.7 -0.60 -2.84 -5.92 -9.63 -25.00
0.2,0.8 -2.41 -7.39 -13.28 -20.55 -44.52
0.1, 0.9 -4.87 -13.22 -22.23 -32.84 -61.55
DIC based 1.01 1.11 0.67 0.71 -1.74

Generally, for the W;;=(0.5, 0.5) scenarios symmetry in the distribution

of the absolute values of the biases across the models with different weight
specifications can be observed, with the lowest bias obtained for the model

specifying the correct model weights [w;=(0.5, 0.5)], and the highest biases
obtained for the most unequally distributed and incorrect model weights [w;;=
(0.9, 0.1) or wy;= (0.1, 0.9)]. These results are expected since models with w;;=
(0.9, 0.1) and models with wij = (0.1, 0.9) have the same degree of

misspecification. However, for Type B, Type C and Type E scenarios some
skewness in the distribution of the biases can be observed. Interestingly, one

common feature for these interviewer change type profiles is a discrepancy in
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the number of interviewers and their caseload between the previous and
current waves. In contrast, Type A, Type D and Type F include 240 interviewers

with a caseload of 24 households at both waves wave.

Scenarios with 50% change and W;=(0.9, 0.1) tend to show a mean
relative percentage bias which is positive and close to zero for the model with
the correct weights (w;;=0.9, 0.1), continues to be positive and increases for
more equal w;, then reduces, turns negative and then increases in magnitude
as the model weights get closer to w;;=(0.1, 0.9) (Table 6). The point at which
the bias turns negative varies by change profile type. Though low biases are
observed where the positive bias turns negative, sometimes matching the bias
obtained for the model with the correct weights, the average DIC (presented in
Appendix 1) consistently shows higher values with greater discrepancies

between the w;; and the Wj;.

Table 1V.4: Relative Percentage Bias for Type A, 62=0.3, n=0.8 Scenarios

with Varying Percentage Change, N, N}, and W;;

N=5760; N;,=240 N=2880; N,=120
8% change 50% change 8% change 50% change
W;;
0.5, 0.7, 09, 0.5, 0.7, 09, 05 09 05 09
Wij 05 03 0.1 0.5 0.3 0.1 0.5 0.1 0.5 0.1

0.9,0.1 -4.8 -2.4 13 -329 -16.6 1.2 -26 3.8 -354 -0.1
0.8,0.2 -2.4 -0.7 23 -206 -6.4 8.4 -0.1 49 -231 7.1
0.7,0.3 -0.6 0.4 26 -9.7 09 111 1.8 5.2 -12.1 9.7
0.6,0.4 0.5 0.7 2.2 2.0 3.6 8.0 2.8 4.7 -45 6.5
0.5,0.5 0.9 0.3 1.0 0.8 0.6 -1.1 3.2 3.5, -1.9 -29
0.4, 0.6 05 -09 -10 -20 -7.8 -15.0 2.8 15 -4.7 -17.1
0.3,0.7 -06 -2.7 -36 -96 -199 -313 16 -1.2 -124 -33.7
0.2,0.8 -24 -52 -6.8 -206 -339 -47.7 -04 -45 -234 -50.3

0.1, 0.9 -49 -83 -10.5 -32.8 -47.7 -625 -29 -84 -358 -64.7
DIC
based 1.0 0.7 2.5 0.7 1.2 4.6 3.8 57 -1.6 4.9
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Table IV.5: Relative Percentage for Type B, 62=0.3, n=0.8 Scenarios with
Varying Percentage Change, N, N}, and W;;

N= 5760; N;,=240 N=2880; N;,=120
8% change 50% change 8% change 50% change
W;;

0.5, 0.9, 0.5, 0.9, ' 0.5, 0.9, 0.5, 0.9,
Wij 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1
0.9,0.1 -5.0 0.3 -37.2 1.3 -7.2 0.8 -39.2 -0.9
0.8,0.2 -3.0 1.7 -27.7 11.5 -5.2 2.2 -29.9 7.6
0.7,0.3 -1.2 2.8 -17.1 20.6 -3.3 3.3 -19.6 15.0
0.6, 0.4 0.3 3.6 -7.1 25.9 -1.9 4.1 -9.9 193
0.5, 0.5 1.5 3.9 -0.3 25.0 -0.7 4.5 -3.5 18.6
0.4, 0.6 2.2 3.8 1.0 17.2 -0.0 4.4 -2.7 12.1
0.3,0.7 2.5 3.2 -3.9 3.3 0.2 3.8 -8.0 0.6
0.2,0.8 2.2 2.1 -13.6 -14.5 -0.1 2.7 -18.1 -12.4
0.1, 0.9 1.4 0.5 -26.4 -34.1 -0.9 1.0 -30.8 -28.6
DIC based 1.9 2.2 -1.0 8.4 0.2 3.9 -4.2 8.6

A worrying trend noticeable for the Type B change profile, 8% change,
W;;=(0.9, 0.1) scenarios (Table 4) and the Type F, 50% change, w;;=(0.9, 0.1)
scenarios (Table 6) is that there is some kind of symmetry in the biases for
different weight profiles around w;=(0.5, 0.5) [usually noticeable only for
W; =(0.5, 0.5) since the degree of misspecification is symmetrical around
wl-]-=(0.5, 0.5)]. In this case, the symmetry would be indicating that the model
is identifying w;;=(0.9, 0.1) and w;; =(0.1, 0.9) models as fitting the data
equally well. These results suggest that for unequally distributed real weights
data, in cases of low percentage of multiple memberships or a very restrictive
change profile, there may be insufficient information to correctly apportion the
variance across two waves. The variance for cases with interviewer changes is
(wl-jp2 + wyj.%)oi and both (0.9% + 0.1%)c3 and (0.1% + 0.9%)cg will give the same
estimated variance. For the Type B change profile, 8% change scenario the
mean DIC increases slightly as the weight specification is changed from (0.9,
0.1) to (0.1, 0.9). On the other hand for the Type F, 50% change scenario the
DIC across the various models is relatively stable, but showing a slightly higher
DIC value for the (0.5, 0.5) model compared to models with more unequal

weights. The Brooks-Draper and Raftery-Lewis diagnostics for these models
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do not indicate any convergence problems. A similar pattern, of models with
unequal weights (irrespective of whether the previous or current interviewers
are given the greatest weight) performing better than models with equal

weights, is observed in the first paper.

The comparison in bias between N=5760 and N=2880 scenarios shows
a lot of small fluctuations (Table 4 & Table 5), generally showing non-
substantial differences in the bias across the two sample size scenarios. The
relatively large sample size for the N=2880 scenarios may explain this lack of
effect of N on the estimator bias. Therefore, the result obtained does not

exclude an effect of N on bias for smaller sample sizes.

A lot of variation in bias across different change profile types can be
observed for the models including the most incorrect w;; (Table 6). The
reasons underlying this variation are not quite clear. The most important
observation is that irrespective of the unequal number of interviewers and
caseload across the two waves and the level of restriction in the allocation of
change cases (random allocation or swapping between interviewers) the bias of
the estimator across the different change profile types is relatively stable for

the models including the correct and neighbouring w;;.

A low relative percentage bias is obtained when the w;; choice is based
on the DIC. For any scenario basing the weights selection on the DIC is the
best strategy, as it avoids the possibility of huge biases in the interviewer
variance if weights are gravely misspecificed. Moreover, for equally distributed
real MM weights [W;;=(0.5, 0.5)], for all change profile types except Type F,
getting the weights right on a theoretical basis [wi]-=(0.5, 0.5)] does not offer a
major improvement in terms of the estimator bias compared to choosing the
weights on the basis of the DIC. In contrast, substantially higher biases are
obtained for the models including weights based on the DIC compared to the
models including the correct theoretical weights profile (w;;=0.9, 0.1) for
Wl-]-=(0.9, 0.1). In fact, a clear trend for DIC-based weights is the higher bias
for more unequally distributed W;; for scenarios with a high percentage of
cases with multiple interviewer memberships. Therefore, this trend is not

observed for the 8% change scenarios. However, the absolute value for the
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random effect estimator bias never exceeds 10% for the DIC-based weights
models, in contrast with biases that exceed 60% for models with theoretically-

based misspecified weights for the scenarios considered.

Table 1V.6: Relative Percentage Bias for N=5760, N{,=240, 50% change,
62=0.3, m=0.8 with varying W;; and Change Type Profile

W;;=0.5 0.5

Wij Type A TypeB Type C TypeD Type E Type F

0.9,0.1 -32.9 -37.2 -27.1 -30.8 -17.1 -18.6
0.8, 0.2 -20.6 -27.7 -15.8 -21.6 -9.4 -11.7
0.7,0.3 -9.7 -17.1 -6.5 -11.5 -3.0 -6.1
0.6, 0.4 -2.0 -7.1 -0.6 -2.9 1.0 -2.4
0.5, 0.5 0.8 -0.3 0.5 0.5 1.1 -1.1
0.4, 0.6 -2.0 1.0 -4.4 -2.9 -3.5 -2.4
0.3,0.7 -9.6 -3.9 -14.2 -11.5 -11.7 -6.1
0.2,0.8 -20.6 -13.6 -23.3 -21.6 -20.9 -11.7
0.1, 0.9 -32.8 -26.4 -36.1 -30.8 -29.8 -18.5
DIC based 0.7 -1.0 -0.2 -0.9 -1.0 -6.1

W;=0.9 0.1

Wij Type A TypeB Type C TypeD Type E Type F

0.9,0.1 1.2 1.3 0.6 0.1 1.3 0.5
0.8,0.2 8.4 11.5 8.6 10.4 10.0 9.1
0.7,0.3 11.1 20.6 13.4 19.3 16.4 16.2
0.6,0.4 8.0 25.9 12.8 23.3 17.9 20.9
0.5, 0.5 -1.1 25.0 3.5 18.3 10.6 22.5
0.4, 0.6 -15.0 17.2 -16.4 3.3 -5.7 20.9
0.3,0.7 -31.3 3.3 -39.2 -16.4 -23.4 16.2
0.2,0.8 -47.7 -14.5 -55.6 -33.3 -36.4 9.1
0.1, 0.9 -62.5 -34.1 -65.9 -45.0 -45.2 0.6
DIC based 4.6 8.4 3.8 6.3 4.8 7.1

Here the parameter estimate chosen is the posterior mean. Celeux et al.
(2006) suggest also considering the posterior mode or median. In this study
the posterior median has been saved and its corresponding bias has been
calculated. The biases for the posterior mean and the posterior median are
almost identical and show the same trends with changes in the factors. These

results are included in Appendix J.

150



To summarise, the main points on the relative percentage bias are the

following:

e Negligible or low bias is observed for models specifying the correct
model weights. Consequently, no trend across simulation factor values
in the estimator bias for the models including correct model weights can
be observed.

e Estimators of models with incorrect model weights show non-negligible,
at times extremely high, bias.

e For models with incorrect weights higher biases are observed for
scenarios with a greater percentage of cases experiencing interviewer
change (proportion of cases with multiple memberships).

e As expected scenarios with (0.5, 0.5) real weights data show symmetry
in the absolute biases around the (0.5, 0.5) weights model. Some
skewness is observed for change profile types with unequal numbers of
interviewers and unequal workloads across the two waves.

e For (0.9, 0.1) real weights scenarios including a larger number of cases
with multiple memberships (50% change) the bias is positive, increases
in effect size, then decreases and turns negative with greater
misspecification in the model weights.

e For some scenarios with real multiple membership weights of (0.9, 0.1)
symmetry in the biases is observed across the different models with
different weights. For these scenarios there seems to be insufficient
information for the total variance to be correctly apportioned across the
two waves.

e No effect of halving the total sample size on the bias is noticeable for
the sample sizes considered (N=5760 and N=2880).

e For (0.5, 0.5) real weights data basing the model weights on the DIC
results in equally accurate estimates in comparison to models including
correct theoretically-based weights.

e Across all possible scenarios acceptable levels of bias (less than 10%)
are obtained when the model weight choice is based on the DIC

compared to models with incorrect theoretical weights (up to 60%).
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IV.5.2. Power

The null hypothesis specifies the true interviewer variance value to be zero.
The power is equal to 1 in most scenarios across all w;; specifications, and
therefore less influenced by factor changes in comparison to other properties.
Some exceptions are observed for very badly misspecified w;;, especially for
scenarios with high percentage changes and small N. For scenarios with 50%
change and N=5760 the power is always above 0.90 across different change
profile types, percentage change, W; and w;;. The power of the Wald test
across scenarios varying in terms of the percentage change for Type A,
W;;=(0.5, 0.5) scenarios (Table 7) is stable. It is only for the worst misspecified
w;; models of the 92% change scenario that substantially lower power is
observed, indicating that only very high percentage change values have an
influence on power. For the models with the most erroneous weights, that is
w;;=(0.9, 0.1) or wy;=(0.1, 0.9), the power goes down to 0.87 for 92% change

scenario.

Table IV.7: Power for Type A, 62=0.3, n=0.8 Scenarios with Varying
Percentage Change, N, N}, and w;;

8% 21% 33% 50% 92%
Wij change change change change change
0.9,0.1 1 1 1 1 0.87
0.8,0.2 1 1 1 1 0.96
0.7,0.3 1 1 1 1 0.98
0.6, 0.4 1 1 1 1 0.99
0.5, 0.5 1 1 1 1 0.99
0.4, 0.6 1 1 1 1 0.99
0.3, 0.7 1 1 1 1 0.98
0.2,0.8 1 1 1 1 0.94
0.1, 0.9 1 1 1 1 0.87
DIC based 1 1 1 1 1

As expected, the scenarios with N=2880 (considered for Type A and
Type B change profiles) show some lower values for the power of the Wald test

in comparison to equivalent scenarios with N=5760. Table 8 shows that for
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Type A scenarios a value below 0.90 for the power of the Wald tests is
obtained for scenarios with N=2880, 50% change and W;=(0.9, 0.1) for the
models which have the greatest degree of weights misspecification [w;;=(0.3,
0.7), w;j=(0.2, 0.8) and w;;=(0.1, 0.9) models]. For Type B scenarios low power
is obtained for models with misspecified weights for scenarios with N=2880
and 50% change for both w;;=(0.5, 0.5) and W;;=(0.9, 0.1) scenarios (Table 9).
Therefore, the effect of N is only noticeable for high percentage change values
and noticeable for different W;; for different change profile type scenarios.
Higher power is obtained for Wi =(0.5, 0.5) scenarios in comparison to
w;;=(0.9, 0.1) scenarios for the Type A change profile for N=2880, 50% change
scenarios. The opposite is true for the Type B change profile for N=2880, 50%

change scenarios.

Table 1V.8: Power for Type A, o2=0.3, n=0.8 Scenarios with Varying
Percentage Change, N, Nj, and w;;

N=5760; N, =240 N=2880; N,=120
8% change 50% change 8% change 50% change
W;;
0.5, 0.7, 09, 0.5, 0.7, 09, 0.5 0.9, 0.5, 0.9,

Wij 05 03 01 05 03 0.1 0.5 0.1 0.5 0.1
0.9,0.1 1 1 1 1 1 1 1 1 0.93 1.00
0.8,0.2 1 1 1 1 1 1 1 1 0.96 1.00
0.7,0.3 1 1 1 1 1 1 1 1 0.97 0.99
0.6, 0.4 1 1 1 1 1 1 1 1 0.98 0.99
0.5, 0.5 1 1 1 1 1 1 1 1.00 0.98 0.98
0.4, 0.6 1 1 1 1 1 1 1 1 0.98 0.94
0.3,0.7 1 1 1 1.00 1.00 1.0 1 1 0.98 0.89
0.2,0.8 1 1 1 1.00 1.00 0.98 1 1.00 0.96 0.75
0.1, 0.9 1 1 1 1.00 1.00 0.91 1 1.00 0.94 0.57
DIC
based 1 1 1 1 1 1 1.00 1 0.99 1

A value of 1.00 represents a rounded up value of 1, whereas when a value of 1
indicates that all 1000 scenarios the null hypothesis is rejected
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Table 1V.9: Power for Type B, ¢2=0.3, n=0.8 Scenarios with Varying

Percentage Change, N, Nj, and W;;

N=5760; N|=240

N=2880; N;,=120

8% change 50% change 8% Change 50% Change
W;;

0.5, 0.5, 0.9, ' 0.5, 0.9, 0.5, 0.9,
Wij 0.5 0.5 0.1 0.5 0.1 0.5 0.1
0.9,0.1 1 1 1.00 1 1.00 1.00 0.89 1.00
0.8,0.2 1 1 1.00 1 1.00 1.00 0.90 1.00
0.7,0.3 1 1 1.00 1 1.00 1.00 0.92 1.00
0.6, 0.4 1 1 1.00 1 1.00 1.00 0.92 0.99
0.5, 0.5 1 1 1.00 1 1.00 1.00 0.93 0.99
0.4, 0.6 1 1 1.00 1 1.00 1.00 0.93 0.99
0.3,0.7 1 1 1.00 1 1.00 1.00 0.91 0.97
0.2,0.8 1 1 1.00 1.00 1.00 1.00 0.88 0.93
0.1, 0.9 1 1 0.99 0.99 1.00 1.00 0.83 0.83
DIC based 1 1 1 1 1.00 1.00 0.96 1.00

For the DIC-based weights models the power is greater than 0.95, and

therefore in terms of power basing the weights on the DIC always yields good

results. Since power values for DIC-based weights models are all optimal no

pattern for power across different factors can be identified.
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Table 1V.10: Power for N=5760, N;,=240, 50% change, 62=0.3, m=0.8 with

varying W;; and Change Type Profile

W;;=(0.5, 0.5)
Wij Type A Type B Type C Type D TypeE TypeF
0.9,0.1 1 1.00 1.00 1.00 1 1
0.8,0.2 1 1.00 1 1.00 1 1
0.7,0.3 1 1.00 1 1.00 1 1
0.6, 0.4 1 1.00 1 1.00 1 1
0.5, 0.5 1 1.00 1 1.00 1 1
0.4, 0.6 1 1.00 1 1 1 1
0.3, 0.7 1.00 1.00 1 1 1 1
0.2,0.8 1.00 1.00 1 1 1 1
0.1, 0.9 1.00 0.99 1 1.00 1 1
DIC based 1 1.00 1 1 1 1
w;=(0.9, 0.1)

Wij Type A Type B Type C Type D Type E TypeF
0.9,0.1 1 1 1 1 1 1
0.8,0.2 1 1 1 1 1 1
0.7,0.3 1 1 1 1 1 1
0.6, 0.4 1 1 1 1 1 1
0.5, 0.5 1 1 1 1 1 1
0.4, 0.6 1 1 1.00 1 1 1
0.3, 0.7 1.00 1.00 0.99 1 1 1
0.2,0.8 0.98 1.00 0.98 1.00 1.00 1
0.1, 0.9 0.91 0.98 0.96 0.93 1 1
DIC based 1 1 1 1 1 1

To summarise, the main points on the power of the Wald test are the
following:

e The power is equal to 1 in most scenarios across all model weight

specifications.
Power is less influenced by factor value changes in comparison to the
properties of the variance estimator across all model weight
specifications.
Lower values of power are obtained for very badly misspecified weights
models for scenarios with a high proportion of cases being associated

with multiple memberships and small total sample sizes.
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e The models including weights based on the DIC always obtain optimal

power values (greater than 0.95).

IV.5.3.Confidence Interval Coverage

While most models with correct w;; obtain a confidence interval coverage rate
close to the nominal 95% rate, confirming the result presented by Browne et al.
(2001) for their simulated example, some correctly specified models obtain
slightly lower rates. However, these rates do not fall below 90% for the
scenarios considered. In contrast to Browne et al. (2001) which base the
coverage rate on the 95% credible confidence interval from the MCMC chains,
the results presented in this study are based on the 95% Wald confidence
interval. The 95% credible intervals have also been assessed, but will not be
presented in this paper. Both results are included in Appendix K. The two
measures show similar values and the same trends across factors. However, for
models with the worst w;; for some scenarios obtaining low coverage rates
(especially for scenarios with a high proportion of multiple memberships and
small sample size) the 95% credible interval performs just slightly better than

the 95% Wald confidence interval.

Coverage rates which differ substantially from the nominal value of 95%
are observed for misspecified weights models. With increasing multiple
memberships (percentage change) the confidence interval coverage rate goes
down for misspecified models (Table 11-Table 13). With increasing values of
percentage change for scenarios with a Type A profile, w;;=(0.5, 0.5), and
typical values on other factors the confidence interval coverage for models with
the most incorrect weights [wi]-=(0.1, 0.9) or wL-]-=(O.9, 0.1)] decreases, from
around 92% for the 8% change scenario to 4% for the 92% scenario. Again when
comparing other Type A and Type B scenarios varying in the percentage
change in Tables 12 and 13, keeping constant other factors, it can be noticed
that generally the confidence interval coverage of estimators for scenarios with

a 50% change is lower than that for the 8% change scenarios.
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Table IV.11: Cl coverage for Type A, ¢2=0.3, n=0.8 Scenarios with Varying

Percentage Change

8% 21% 33% 50% 92%

Wi change change change change change
0.9, 0.1 92.1 81.6 71.0 44.1 4.4
0.8,0.2 93.8 88.1 85.7 74.5 33.1
0.7,0.3 94.1 92.0 93.0 88.6 73.1
0.6,0.4 94.3 93.2 94.7 93.5 91.1
0.5, 0.5 94.6 94.2 95.2 94.7 92.7
0.4,0.6 94.4 93.7 94.4 94.4 90.0
0.3,0.7 93.7 91.8 91.9 89.9 72.6
0.2,0.8 93.4 88.3 84.7 73.5 30.6
0.1,0.9 92.1 83.5 70.7 45.1 3.9
DIC

based 94.6 94.0 94.9 94.4 92.1

The effect of sample size (N) on the confidence interval coverage is not
so intuitive. There is some indication that for models with theoretical weights
for scenarios with 50% change the confidence interval coverage is higher for
N=2880 scenarios compared to N=5760 scenarios for misspecified models
and slightly lower for models with correct wy; (Tables 12 & 13). So for example
for the Type B, 50% change, W;=(0.5, 0.5) case coverage rates of 57.6% and
90.9% for the wi]-=(0.9, 0.1) and wi]-=(0.5, 0.5) models are obtained for the
N=2880 scenarios, compared to 34.5% and 94.4% for the N=5760 scenarios
(Table 13). For the 8% change scenarios no trend can be identified, indicating
that the effect of N is only noticeable for data with a high percentage of
multiple memberships. In fact for both change Type A and Type B scenarios
confidence interval coverage rates do not fall below 87.5% for all possible

weights specifications for 8% change.

The symmetry in the properties expected for W;=(0.5, 0.5) scenarios
across the 9 theoretically-based weights models around the Wij=(0-5, 0.5)

model is not observed perfectly for Type B, Type C and Type E scenarios. This
skewness has also been observed for the bias of the estimator for these same
change profile scenarios. Interestingly, the average DIC value across the

different models with different theoretically-based w;; shows perfect symmetry
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for all change profiles types, with the lowest DIC obtained for the w;;=(0.5, 0.5)
model and the highest values (approximately equal) for the w;;=(0.1, 0.9) and
the w;;=(0.9, 0.1) models.

Table 1V.12: Cl coverage for Type A, ¢2=0.3, n=0.8 Scenarios with Varying
Percentage Change, N, Nj, and W;;

N=5760; N;,=240 N=2880; N;,=120
8% change 50% change 8% change 50% change
W;;
05 07, 09, 05, 0.7, 09, 05 09 0.5 0.9
Wij 0.5 0.3 0.1 0.5 0.3 0.1 0.5 0.1 0.5 0.1

0.9,0.1 921 93.7 945 441 791 952 920 964 613 93.7
0.8,0.2 938 944 946 745 904 954 924 964 795 949
0.7,0.3 94.1 950 946 886 94.1 955 93.2 96.5 89.1 95.0
0.6,0.4 943 948 944 935 944 956 936 96.6 923 946
0.5,0.5 946 948 93.7 947 943 946 936 96.4 939 93.0
0.4,0.6 944 944 936 944 90.8 834 938 957 93.7 857
0.3,0.7 93.7 934 924 899 76.2 544 933 949 890 67.7
0.2,0.8 934 923 904 735 454 157 929 929 796 39.2

0.1,0.9 921 894 875 45.1 129 1.7 921 911 608 126
DIC
based 946 948 946 944 939 96.0 938 96.5 933 94.8

In the case of W;j =(0.9, 0.1) scenarios the coverage rates remain
relatively stable or only decrease slightly when specifying the next couple of
weight schemes in comparison to the correct weights. However, for the most
erroneously specified weights [w;=(0.1, 0.9), w;;=(0.2, 0.8) and w;;=(0.3, 0.7)]

much lower coverage rates are observed.

The coverage rates observed for the models with the most incorrect
weights vary across different change profile types and between each wWj; factor
value. However, the models specifying the correct weights and models
specifying adjacent weights show similar confidence interval coverage rates
across different profile types and W;;. For the unequally distributed Wj
scenarios the change profile types including a higher number of total

interviewers (480 interviewers for Type B, and 360 interviewers for Type D and
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Type F) obtain better coverage rates than the change profile types with a total
of 240 distinct interviewers (Type A, Type C and Type E) for the models with

incorrect weights.

Table 1V.13: Cl coverage for Type B, 62=0.3, n=0.8 Scenarios with Varying
Percentage Change, N, Nj, and W;;

N=5760; N;=240 N=2880; N,=120
8% change 50% change 8% change 50% change
W;;
0.5, 0.9, 0.5, 0.9, 0.5, 0.9, 0.5, 0.9,
Wij 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1

0.9,0.1 90.6  94.3 34.5 95.9 90.6  94.9 57.6 92.8
0.8, 0.2 92.5 94.7 60.2 96.1 92.3 95.6 71.8 94.3
0.7,0.3 93.6 95.1 80.4 91.7 93.2 95.4 82.7 94.3
0.6, 0.4 94.1 95.5 91.9 87.0 93.6 95.5 88.8 93.6
0.5, 0.5 94.5 95.3 944 87.9 94.0 95.4 90.9 93.6
0.4, 0.6 94.7 95.5 943 929 94.1 95.7 91.6 93.8
0.3,0.7 94.6 95.1 93.3 95.0 93.9 095.4 90.6 93.7
0.2,0.8 94.8 94.8 86.2 85.2 94.0 95.0 84.9 86.5
0.1, 0.9 94.5 94.6 66.0 50.6 93.7 95.0 72.5 73.0
DIC based 94.4 95.0 92.6 94.8 94.2 95.3 89.2 94.7

The models specifying the correct weights do not offer a substantial
improvement on the confidence interval coverage of the estimator over models
with weights based on the DIC. The only exception to this trend is the scenario
with change profile Type F with W;;=(0.5, 0.5), where the model including
weights based on the DIC has a confidence interval coverage 87.8% compared
to 92.7% for the model with w;;=(0.5, 0.5) (Table 14). However, for this
scenario coverage rates fall to 73% for models including incorrect theoretically-
based weights. Therefore, in the case of the confidence interval coverage,
relying on the DIC to select the model weights is the best strategy to avoid low

coverage rates when the real multiple membership weights are unknown.
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Table IV.14: ClI coverage for N=5760, N,=240, 50% change, ¢5=0.3, m=0.8

with varying W;; and Change Type Profile

W;;=(0.5, 0.5)
Wij Type A Type B Type C Type D Type E TypeF
0.9,0.1 44.1 34.5 57.7 49.3 76.9 73.3
0.8, 0.2 74.5 60.2 79.0 72.4 88.2 85.1
0.7,0.3 88.6 80.4 89.8 87.6 93.0 90.0
0.6, 0.4 93.5 91.9 93.0 93.1 94.8 92.0
0.5, 0.5 94.7 94.4 93.2 93.6 94.7 92.7
0.4, 0.6 94.4 94.3 90.9 92.1 93.2 92.2
0.3, 0.7 89.9 93.3 81.7 86.5 85.1 90.1
0.2,0.8 73.5 86.2 66.1 72.1 73.9 84.9
0.1, 0.9 45.1 66.0 37.3 50.2 54.0 73.3
DIC based 94.4 92.6 92.6 92.2 92.3 87.8
Ww;;=(0.9, 0.1)
Wij Type A Type B Type C Type D Type E TypeF
0.9,0.1 95.2 95.9 94.6 93.8 94.4 94.2
0.8,0.2 95.4 96.1 94.9 94.1 94.4 94.8
0.7,0.3 95.5 91.7 94.4 90.8 92.2 93.0
0.6, 0.4 95.6 87.0 94.4 89.4 92.5 90.8
0.5, 0.5 94.6 87.9 93.6 91.7 93.0 90.0
0.4, 0.6 83.4 92.9 82.8 94.6 89.2 90.8
0.3, 0.7 54.4 95.0 41.7 81.1 69.3 93.2
0.2,0.8 15.7 85.2 6.1 47.5 42.2 94.9
0.1, 0.9 1.7 50.6 0.3 19.1 16.9 94.3
DIC based 96.0 94.8 94.7 93.3 93.9 94.3

To summarise, the main points on the confidence interval coverage are

the following:

Models specifying the correct model weights obtain confidence interval
coverage rates close to the nominal 95% rate, with the lowest rate
obtained for the scenarios considered being higher than 90%.
Consequently, the confidence interval coverage rates for the models
with the correct or neighbouring weights do not vary by simulation
factor.

Extremely low coverage rates (even below 5%) are obtained for models

with very badly misspecified weights.
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The lowest confidence interval coverage rates are observed for scenarios
with a high percentage of cases with multiple memberships.

For models with weights based on theory halving the sample size results
in slightly lower coverage rates for correctly specified models and higher
coverage rates for incorrect weights models. This effect of decreasing
the sample size is only noticeable for data with a high percentage (50%)
of cases with multiple memberships.

As expected, scenarios with (0.5, 0.5) real weights data show symmetry
in the confidence interval coverage around the (0.5, 0.5) weights model.
Some skewness is observed for change profile types with unequal
numbers of interviewers and unequal workloads across the two waves.
Scenarios with (0.9, 0.1) real weights obtain relatively high and stable
coverage rates when specifying the next couple of weight schemes in
comparison to the correct weights. However, much lower coverage rates
are observed for the models including the most erroneously specified
weights.

For scenarios with (0.9, 0.1) real weights the change profile types
including a higher number of total interviewers obtain better coverage
rates for the models with incorrect weights.

The models with weights based on the DIC obtain equally high coverage

rates as models including the correct model weights for most scenarios.

IV.5.4. Standard Error

When comparing the standard error properties of the variance estimator for

models with different w;; a clear pattern is identified. Higher standard errors

for the models specifying equal w;;, irrespective of whether these are the

correct weights, are observed. A trend with an increase in the proportion of

data with multiple memberships can be observed for the standard errors. Table

15 shows that for scenarios with typical factor values and wW;;=(0.5, 0.5), Type

A profiles for models with equal wy;, the standard error decreases for incorrect

wy (wy # W) and increases for correct wy; (w;; =W;) with increasing

proportions of interviewer changes. This trend can also be observed for other
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Type A and Type B scenarios with W;; =(0.5, 0.5) (Tables 16 & 17).

Consequently, the underestimation of incorrectly specified w;; models is

greater for scenarios with a higher percentage of multiple membership cases.

Table IV.15: Standard Error for Type A, N=5760, N;,=240, 62=0.3, n1=0.8,

W;;= (0.5, 0.5) Scenarios with Varying Percentage Change

8% 21% 33% 50% 92%
Wij change change change change change
0.9,0.1 0.054 0.052 0.050 0.048 0.042
0.8,0.2 0.056 0.055 0.054 0.054 0.053
0.7,0.3 0.056 0.057 0.058 0.059 0.064
0.6, 0.4 0.057 0.058 0.060 0.063 0.073
0.5, 0.5 0.057 0.059 0.061 0.064 0.076
0.4, 0.6 0.057 0.058 0.060 0.063 0.073
0.3,0.7 0.056 0.057 0.058 0.059 0.064
0.2,0.8 0.056 0.055 0.054 0.054 0.053
0.1, 0.9 0.054 0.052 0.050 0.048 0.042
DIC
based 0.057 0.059 0.060 0.063 0.075
Table IV.16: Standard Error for Type A, 62=0.3, n=0.8 Scenarios with
Varying Percentage Change, N, N} and W;;
N=5760; N;=240 N=2880; N;,=120
50%
8% change 50% change 8% change change
W;;

0.5, 0.7, 09, 0.5 0.7, 0.9, 0.5, 0.9, 0.5, 0.9
Wij 05 03 01 05 0.3 0.1 05 01 05 0.1
0.9, 0.1 0.054 0.055  0.056 0.048 0.053 0.058 0.080  0.082 0.068 0.084
0.8,0.2 0.056 0.056 0.057 0.054 0.058 0.063 0.081 0.083 0.077 0.090
0.7,0.3 0.056 0.057 0.057 0.059 0.062 0.065 0.082 0.084 0.085 0.094
0.6, 0.4 0.057 0.057 0.057 0.063 0.064 0.066 0.083 0.084 0.090 0.094
0.5, 0.5 0.057 0.057 0.057 0.064 0.064 0.063 ~ 0.083 0.083  0.091 0.091
0.4, 0.6 0.057 0.056 0.056 0.063 0.061 0.058 0.083 0.082 0.090 0.084
0.3,0.7 0.056 0.056 0.055 0.059 0.056 0.052 0.082 0.081 0.084 0.075
0.2,0.8 0.056 0.055 0.054 0.054 0.050 0.045 0.081 0.079 0.077 0.064
0.1, 0.9 0.054 0.053 0.052 0.048 0.043 0.039 0.079 0.077 0.068 0.053
Ezlged 0.057 0.057 0.057 0.063 0.062 0.060 0.083 0.084 0.090 0.087
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For scenarios with a low percentage of cases with multiple memberships
the standard error values across the different models with theoretical weights
are relatively stable. For scenarios with a higher percentage of cases with
multiple memberships the standard error values vary across the different

models with different weights.

Table 1V.17: Standard Error for Type B, 62=0.3, n=0.8 Scenarios with
Varying Percentage Change, N, N}, and W;;

N=5760; N;=240 N=2880; N,=120
8% change 50% change 8% change 50% change
W;;
0.5, 0.5, 0.9, 0.5, 0.9,
Wij 0.5,0.5 09,01 05 09,0.1 0.5 0.1 0.5 0.1

0.9,0.1 0.054 0.056 0.047 0.059 0.077 0.081 0.067 | 0.083
0.8,0.2 0.055 0.057 0.053 0.065 0.079 0.082 0.076 0.090
0.7,0.3 0.056 0.058 0.059 0.070 0.080 0.083 0.085 0.097
0.6,0.4 0.057 0.058 0.065 0.073 0.082 0.084 0.093 0.101
0.5,0.5 0.058 0.059 | 0.068 0.074 = 0.082 0.085  0.098 0.101
0.4, 0.6 0.058 0.059 0.068 0.071 0.083 0.085 0.098 0.098
0.3,0.7 0.058 0.059 0.066 0.066 0.083 0.085 0.094 0.092
0.2,0.8 0.058 0.058 0.061 0.060 0.083 0.084 0.087 0.086

0.1, 0.9 0.058 0.058 0.055 0.053 0.082 0.083 0.079 0.078
DIC
based 0.058 0.057 0.067 0.063 0.082 0.083 0.094 0.090

For Wi]-=(0.9, 0.1) scenarios the models with the correct weights have
standard errors equal to or higher than the model with the worst specified
weights, but lower standard errors than the models with equally distributed wy;.
For Wl-]-=(0.5, 0.5) scenarios the distribution of the standard errors across the
different models with different w;; is symmetrical, with the model specifying
the correct weights having the highest standard errors. Models with
misspecified w;; therefore have smaller standard errors. Some skewness is

observed for change profile Type B. As expected, halving N results in higher

standard errors for all weight profiles (Tables 16 & 17). With increasing values

163



of percentage change and smaller N the standard error difference between the

models with the worst misspecified weights and the correct weights increases.

Table 1V.18: Standard Error for N=5760, N,=240, 50% change, 62=0.3,

m=0.8 with varying W;; and Change Type Profile

W;;=(0.5, 0.5)
Wij Type A Type B Type C Type D Type E Type F
0.9,0.1 0.048 0.047 0.049 0.048 0.052 0.052
0.8, 0.2 0.054 0.053 0.054 0.054 0.056 0.056
0.7,0.3 0.059 0.059 0.059 0.060 0.061 0.060
0.6, 0.4 0.063 0.065 0.064 0.066 0.065 0.063
0.5, 0.5 0.064 0.068 0.066 0.068 0.067 0.064
0.4, 0.6 0.063 0.068 0.066 0.066 0.066 0.063
0.3,0.7 0.059 0.066 0.061 0.060 0.061 0.060
0.2,0.8 0.054 0.061 0.054 0.054 0.055 0.056
0.1, 0.9 0.048 0.055 0.046 0.048 0.049 0.052
DIC based 0.063 0.067 0.065 0.066 0.065 0.060
Ww;=(0.9, 0.1)
Wij Type A Type B Type C Type D Type E Type F
0.9,0.1 0.058 0.059 0.058 0.058 0.059 0.058
0.8,0.2 0.063 0.065 0.064 0.065 0.065 0.064
0.7,0.3 0.065 0.070 0.069 0.071 0.072 0.069
0.6,0.4 0.066 0.073 0.074 0.076 0.078 0.072
0.5, 0.5 0.063 0.074 0.075 0.076 0.080 0.073
0.4, 0.6 0.058 0.071 0.069 0.071 0.072 0.072
0.3,0.7 0.052 0.066 0.054 0.061 0.060 0.069
0.2,0.8 0.045 0.060 0.042 0.050 0.049 0.064
0.1, 0.9 0.039 0.053 0.034 0.043 0.042 0.058
DIC based 0.060 0.063 0.060 0.062 0.061 0.062

Very little difference in the standard errors across different change

profile types for the W;=(0.5, 0.5) scenarios can be observed. In comparison,

the Wl-]-=(0.9, 0.1) scenarios show standard errors which are closer in value to

the standard errors of the models with the correct weights for the change

profiles that include new interviewers in the current wave (Type B, Type D and

Type F) for the models with the worst specified w;;. Scenarios that allocate the

change cases to existing interviewers (Type A, Type C and Type E) obtain
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smaller standard errors for the models with the worst specified w;;. The

improved standard error properties for scenarios including new interviewers at

the current wave may be due to the larger number of higher-level units.

The standard error of the estimator for the models including weights
based on the DIC is approximately equal to the standard error for the models
specifying the correct weights. The standard errors of the models including
DIC-based weights are approximately equal across the different change profile
types and different W;;, higher for a greater proportion of interviewer changes
and higher for smaller N. These results would indicate that an empirical

assessment for the choice of DIC leads to good estimates of the standard error.

To summarise, the main points on the standard errors of the variance

estimator are the following:

e The highest standard errors across models with different weight
specifications are observed for models including equally distributed
weights (irrespective of whether these are the correct weights).

e For (0.5, 0.5) real weights data, with increasing percentages of cases
with multiple memberships the standard error of models with equally
distributed weights decreases when the weights are incorrect and
increases when the weights are correct.

e Larger standard errors are observed for scenarios with smaller total
sample sizes.

e As expected, scenarios with (0.5, 0.5) real weights data show symmetry
in the standard error values around the (0.5, 0.5) weights model. The
correct model obtains the highest standard error.

e For (0.9, 0.1) real weights data the correct model has equal or higher
standard errors than the model with the most incorrect weights but
lower standard errors than the models with equally distributed weights.

e Very little difference in the standard errors across different change
profile types for the (0.5, 0.5) real weights scenarios can be observed.

e For the (0.9, 0.1) real weights scenarios the smaller standard errors for

models with incorrect weights is more pronounced for change profile
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types which maintain the same pool of interviewers across the two
waves (smaller number of higher-level units).

e The standard error for the models including weights based on the DIC is
approximately equal to the standard error for the models specifying the
correct weights.

e Models with weights based on DIC show larger standard errors for
smaller sample sizes and higher percentages of multiple membership

cases.

IV.5.5. DIC Reliability Measure

This section explores the reliability of the DIC in choosing the model with the
correct multiple membership weights w;;. The graph shows the frequency
distribution of the w;; specified for the 1000 models (out of the 9000 models
of each scenario) corresponding with the lowest DIC. The tables show the
proportion of these 1000 models that have the correct w;; and the proportion

which have the correct or adjacent w;; for different scenarios.

First we examine the effect of the proportion of cases with multiple
memberships on the DIC reliability. In Figure 1 it can be noticed that for Type
A, W;;=(0.5, 0.5) scenarios with varying degrees of percentage change with
typical values for the other factors the DIC performs better for scenarios with a
greater proportion of cases experiencing change. This is contrary to the results
obtained for the properties of the variance estimator and the test statistic,
reviewed above, which showed that worse estimator properties and power of
the Wald test is obtained for scenarios with a greater percentage of cases
experiencing interviewer change. The greatest increase in the correct model
weights being selected, of 12.5%, is noticed when increasing the proportion of

cases experiencing interviewer change from 8% to 21%.

For the scenarios included in Figure 1 the highest proportion of times
that the lowest DIC corresponds to the wi]-=(0.5, 0.5) model is obtained for the

scenario including multiple memberships in 92% of cases. This proportion

amounts to only 49.5%, which would suggest that the DIC does not offer a very
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precise measure for choosing the correct w;;. However, if selecting either the
correct weights or the next most precise weights [in the case of W;;=(0.5, 0.5)
this includes wi]-=(0.5, 0.5) or wi]-=(0.4, 0.6) or wl-j=(0.6, 0.4)] is deemed
acceptable, the results are more encouraging. Even for scenarios with 21%
interviewer changes an adequate weighting scheme is selected 75% of the time.
This proportion goes up to 81.7%, 90.3% and 93.4% for the 33%, 50% and 92%
interviewer change scenarios respectively. This trend of higher DIC reliability
for higher multiple membership proportions is also observed for other Type A
and Type B scenarios (Table 20). However, for Type B, Wl-]-=(0.9, 0.1) scenarios
no difference is observed in the DIC reliability across different percentage

change scenarios.

Figure IV.1: Frequency Distribution of the Model Weights for the DIC-
based Weights Models for Type A, N=5760, N;,=240, 62=0.3, 1=0.8, W;;=
(0.5, 0.5) Scenarios with Varying Percentage Change
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Table 1V.19: DIC Reliability Measure for Type A, N=5760, N;,=240, 62=0.3,
n=0.8, W;;= (0.5, 0.5) Scenarios with Varying Percentage Change

Percentage Proportion Correct Proportion Correct/ Adjacent
Change Weights Weights
8% 18.1 55.7
21% 30.6 75.0
33% 35.8 81.7
50% 43.7 90.3
92% 49.5 93.4

Table 1V.20: DIC Reliability Measure for N} =240, 65=0.3, n=0.8 Scenarios
with Varying Profile Change Type, Percentage Change, N, and W;;

. Proportion
R_eal Change Sample Percentage Proportion Correct/
We‘llahts Type Size Change Vc\lg;rﬁi; Adjacent
‘ 9 Weights
[0)
5760 8% 18.1 55.7
A 50% 43.7 90.3
T
03,05 8; 1?2 39&
5760 > ' '
B 50% 32.7 80.5
2880 8% 9.6 28.5
50% 27.0 65.9
5760 8% 57.9 76.0
A 50% 70.2 93.4
2880 so i 6.5
0.9,.0.1 8; 58.0 71.7
5760 > ' '
B 50% 60.8 83.8
2880 8% 49.4 61.6
50% 49.1 65.1
0.7,0.3 A 5760 8% 16.2 49.8
50% 49.8 89.4

For both Type A and Type B scenarios, halving the total sample size, and

by consequence the number of interviewers, while maintaining the same
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multiple membership proportions, results in drastic reductions in the ability of
the DIC measure to correctly identify the correct w;; for the w;=(0.5, 0.5)
scenarios. However, the effect of N on the DIC reliability measure varies by
change profile type and by W;; (Table 20). In the case of the Type A scenarios
with 50% interview changes the models specifying w;;=(0.5, 0.5) correspond to
the lowest DIC 13.8% fewer times for the N=2880 scenario compared to the
N=5760 scenario. This reduction is less, more precisely 5.8%, for the 8%
interviewer changes scenarios. For some reason not obvious to the author,
these reductions are equal to the square root of the sample size ratios, that is

%. For the Type B scenarios this scaling effect is observed for the 8%

1
28803

change scenarios, but for the 50% change the factor is equal to eo -

Halving N for w;; =(0.9, 0.1) scenarios also impacts negatively the
reliability of the DIC to correctly detect the MM weights. This DIC reliability
decrease for smaller N is noticeable to a greater extent for the Type B

scenarios for both percentage change profile types considered. This decrease

1
28807

i For the Type A scenarios some

happens to be equal to the scale of
difference in the DIC reliability is observed for the 50% change scenarios but
not the 8% change ones. The effect of N on the probability of the models with
the correct or adjacent weights corresponding with the lowest DIC is more

pronounced for Type B scenarios than Type A scenarios.

Therefore, a decrease in N has a greater impact when the W;; are equal.
Since the MM weights are usually unknown to the researcher, it is best to base
the assessment of the DIC reliability for particular total sample sizes and
interviewer change profiles on the equal Wy This approach will be a
conservative one for cases with unequal W;. For W;=(0.9, 0.1) scenarios, Type
B profiles seem to affected more than Type A scenarios by a change in N. For
W;=(0.5, 0.5) scenarios Type B profiles are affected differently by a change in
N for different percentage change scenarios, with higher percentage change
scenarios showing a smaller decrease in DIC reliability with decreases in N.

This shows how different scenario factors interact.
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Next the impact of different W;; for scenarios including different
proportions of interviewer changes on the DIC reliability will be considered. If
either the correct weight or adjacent weights are deemed accepted choices,
there is not much discrepancy in the performance of the DIC in detecting the
real MM weights for the scenarios including 50% change. Irrespective of the
value of W;; the DIC value is at its lowest value for the correct model weights or
the next best weights around 90% of times for Type A scenarios and around 80%
for Type B scenarios. The slightly higher proportions for w;;=(0.9, 0.1) may

simply be due to chance.

On the other hand, when the data includes 8% change the DIC reliability
measure varies by W;;. In Type A scenarios the correct multiple membership
weights are detected more frequently (76% of times) for w;=(0.9, 0.1) than
w;=(0.5, 0.5) (55.7%) and w;=0.7, 0.3 (49.8%) scenarios. Similarly, for Type B
scenarios the correct multiple membership weights are detected more
frequently (71.7% of times) for w; =(0.9, 0.1) than w;; =(0.5, 0.5) (39.1%)
scenarios. This higher DIC reliability for the W;=(0.9, 0.1) scenarios may be
due to the boundary effect of this weighting scheme which only has one
possible adjacent weighting scheme, w;;=(0.8, 0.2), since w;=(1, 0) is not

being considered as this simply represents a 2-level model.

If the strictest measure of DIC reliability is considered - equal to the
proportion of times the correct weights correspond to the lowest DIC - a
different result is obtained. In this case a change in the DIC reliability with
different W;; is observed for both the 8% and the 50% change scenarios. No
substantial difference in the results for w;; =(0.5, 0.5) and W; =(0.7, 0.3)
scenarios are observed for Type A scenarios. A substantial increase in the DIC
reliability is observed for the most unequal w;; [W;=(0.9, 0.1)] for both Type A
and Type B scenarios, confirming some kind of threshold effect in the
influence of W;; on the DIC measure performance. Moreover, the increase in the
DIC reliability for more unequal W;; is greater than for the previous DIC
reliability definition. A bigger increase in the DIC reliability for more unequal

W;; can be observed for the 8% change scenarios compared to the 50% scenario.
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This result confirms the earlier finding that for low MM proportions the
influence of W; on DIC reliability is greater.

It is expected that the DIC performs better for situations where one
interviewer is dominant compared to situations where the current and previous
wave interviewers have equal influence since the former situation is closer to a
purely hierarchical structure. For situations with one dominant interviewer the
negative influence of a lack of interviewer change on the DIC’s ability to
identify the correct weights is less than for situations with two interviewers of

equal influence.

Table 1V.21: DIC Reliability Measure for N=5760, N{,=240, 50% change,
62=0.3, n=0.8 Scenarios with Varying Profile Change Type and W

Change Profile Proportion Correct Proportion Correct/

Wi Type Weights Adjacent Weights
A 43.7 90.3

B 32.7 80.5

0.5, C 37.8 84.9
0.5 D 38.4 84.3
E 29.6 72.2

F 32.6 60.2

A 70.2 93.4

B 60.8 83.8

0.9, C 71.2 94.5
0.1 D 62.1 83.4
E 68.8 91.2

F 29.0 36.1

Table 21 compares the DIC reliability values for different change profile
type scenarios with typical values for the other factors. The DIC reliability
varies across comparable scenarios with different change profile types,
performing the best for Type A scenarios and the worst for type F scenarios. In
most cases, when comparing Type A to Type B, Type C to Type D and Type E to
Type F the change profile types that do not include new interviewers in the
current wave (Type A, Type C, Type E) fair better than the other change profile

types. This result is more consistent for Wij=(0.9, 0.1) scenarios. Therefore, to
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the extent that new interviewers are introduced at the current wave to take on
the workload for change cases, the DIC will be less useful as a method of
detecting the correct weights. This result can be explained in terms of the
greater amount of information available on each interviewer to identify
interviewer effects when the same set of interviewers is maintained across both
waves. In practice, it is more likely that the change cases are partly distributed
to interviewers present in the previous wave and partly to newly recruited

interviewers.

To summarise, the main points on the reliability of the DIC to identify the

real weights are the following:

e DIC performs better for scenarios with a greater percentage of cases
with multiple memberships.

e Halving the sample size results in drastic reductions in the reliability of
the DIC. The change factor is dependent on the real weights and the
profile change type.

e The reliability of the DIC varies by real weights, showing better results
for unequally distributed weights data, noticeable to a greater extent for
scenarios with a low percentage of cases with multiple memberships.

e The DIC performs better for change profile types that use the same pool
of interviewers across both waves in comparison to change profile types
that introduce new interviewers at the current wave.

e The DIC does not offer a very precise measure for choosing the exact
correct model weights. However, the results are more encouraging when
both the correct weights and the neighbouring weights are considered

acceptable.

IV.5.6. Limited Pairing Scenarios

The model specification suggests that since there is simply one distribution for
the interviewer random effects the pairings of multiple memberships, and how
mixed the pairings are, is not a factor impacting the properties of the variance

parameter and test statistic for the multiple membership model. This
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deduction will be tested by comparing the results of scenarios where the
change cases are allocated to another interviewer in the current wave randomly
to two scenarios where change cases swap interviewer allocation between
pairings and alternatively groups of four interviews in the current wave. An
example scenario is presented in Table 22, listing the change indicator and the
interviewer allocations for the previous and current waves for the three
different interviewer swapping possibilities, to better help understand the
different change profiles. This example scenario includes 16 cases allocated to

8 interviewers with 2 cases each in previous wave and 50% change.

Table 1V.22: Interviewer Case Allocations for the Example Scenario

Case Change P_Int C_Int P_Int C_Int P_Int C_Int
No Indicator Code Code Code Code Code Code

Random Swapping

Allocation from beixvvzzrr:lpgirs between Groups
Total Int Pool of 4
1 1 1 4 1 2 1 4
2 0 1 1 1 1 1 1
3 0 2 2 2 2 2 2
4 1 2 3 2 1 2 3
5 0 3 3 3 3 3 3
6 1 3 2 3 4 3 2
7 1 4 1 4 3 4 1
8 0 4 4 4 4 4 4
9 0 5 5 5 5 5 5
10 1 5 8 5 6 5 8
11 1 6 5 6 5 6 7
12 0 6 6 6 6 6 6
13 0 7 7 7 7 7 7
14 1 7 6 7 8 7 8
15 1 8 7 8 7 8 7
16 0 8 8 8 8 8 8
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Table 1V.23: Properties of the Estimator and Test Statistic and DIC
Reliability Measure for Type A, 50% change, N=5760, N'=240, w;=(0.5,

0.5), ¢2=0.3 and ©=0.8 scenarios

w;j Relative Cl Power Standard DIC Reliability
Percentage Bias Coverage Error Measure
Random Allocation from Total Pool of Interviewers
0.9, 0.1 -32.91 44.1 1 0.048 0.1
0.8,0.2 -20.61 74.5 1 0.054 0.5
0.7,0.3 -9.68 88.6 1 0.059 4.1
0.6,0.4 -2.01 93.5 1 0.063 23.38
0.5, 0.5 0.76 94.7 1 0.064 43.66
0.4, 0.6 -1.96 94.4 1 0.063 23.28
0.3,0.7 -9.63 89.9 0.999 0.059 4.5
0.2,0.8 -20.55 73.5 0.999 0.054 0.4
0.1, 0.9 -32.84 45.1 0.998 0.048 0.1
DIC 0.71 94.4 1 0.063
Swapping between Pairs
0.9, 0.1 -29.74 51.8 1 0.048
0.8,0.2 -19.57 76.5 1 0.053 0.9
0.7,0.3 -10.17 88.2 1 0.059 6.89
0.6, 0.4 -3.16 93.8 1 0.063 22.68
0.5, 0.5 -0.53 94.8 1 0.064 39.86
0.4, 0.6 -3.19 93.4 1 0.063 22.08
0.3,0.7 -10.21 89 1 0.059 6.29
0.2,0.8 -19.66 77.8 1 0.053 1.0
0.1, 0.9 -29.83 51.9 1 0.048 0.3
DIC -0.67 94.7 1 0.064
Swapping between Groups of 4

0.9,0.1 -33.83 45.5 0.998 0.048 0.1
0.8,0.2 -22.40 71.6 0.997 0.053 0.4
0.7,0.3 -12.05 89.4 0.999 0.059 6.0
0.6,0.4 -4.64 94.1 0.999 0.062 23.5
0.5, 0.5 -1.97 95.4 1 0.064 38.9
0.4, 0.6 -4.75 93.5 1 0.062 24.0
0.3,0.7 -12.24 87.5 1 0.059 6.5
0.2,0.8 -22.63 71.4 1 0.053 0.5
0.1, 0.9 -34.10 44.6 1 0.048 0.1
DIC -0.59 95.2 1 0.063

The Type A, N=5760, N, =240, 24 cases per interviewer at both the
current and previous wave, W;=(0.5, 0.5), 07,=0.3 and n=0.8 factor values are

used to analyse the effect of limited pairings on the properties of the estimator
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and test statistic, and the DIC reliability. The results presented in Table 22
show that while the properties are not affected by the amount of mixing in
interviewer pairings for comparable Type A scenarios, the DIC does perform
slightly better when the cases are switched randomly across all possible
interviewer compared to the two more restrictive scenarios. There is no
difference in the results for the reliability of the DIC between the scenario with

pair swapping and the scenario for groups of four swapping.

In reality the comparison of Type E to Type C and Type F to Type D
change profiles also gives an indication of the impact of limited pairings on the
model and DIC performance on different change profile types. Similar results
to the Type A example presented above are obtained. No evidence of worse
properties for Type E and F compared to Type C and D is found. The DIC
reliability measure performs worse for the change profiles with limited pairings
which allocate a whole caseload of a dropped interviewer to another
interviewer (Type E and Type F) compared to their equivalent scenarios (Type C
and Type D) which distribute cases from dropped interviewers randomly across

all available interviewers.

IV.5.7. Implications of Running 2-Level Models for
Multiple Membership Data

This section will explore the properties of the estimator and test statistic for
multiple membership data run using a simple 2-level model which simply
includes a random effect for the current interviewer. Moreover, the DIC
reliability measure is computed again this time identifying the model with the
lowest DIC from 10 possibilities - the nine multiple membership models and
the 2-level model. The proportion of times the 2-level model will correspond
to the lowest DIC gives a measure of how often multiple membership data can
be wrongly modelled as a simple hierarchical 2-level structure when basing the

model choice on an empirical assessment method (DIC).

In Table 24, for the purely hierarchical models, higher negative bias and
lower confidence interval coverage rates are observed for scenarios with a

higher percentage of cases with multiple memberships. This result is
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consistent with the work by Chung and Beretvas (2012). The authors find
underestimated higher-level variance when modelling multiple membership
data using simple 2-level models. This decrease is more pronounced for

scenarios with a higher proportion of cases experiencing membership change.

Table 1V.24: Properties of the Estimator and Test Statistic and Percentage
Of Simulations which Corresponds with Lowest DIC for the 2-Level
Models

Type % W;; N Bias Cl Power S.E. %
Change Cov. Lowest

DIC
8 0.5,0.5 2880 -5.6 91.0 1.00 0.078 9
8 0.9,0.1 2880 2.0 95.6 1 0.081 9.5
50 0.5,0.5 2880 -47.4 36.6 0.89 0.059 8.5
A 50 0.9,0.1 2880 -10.0 88.4 1.00 0.076 13.5
8 0.5,0.5 5760 -7.9 88.8 1 0.053 8
8 0.9,0.1 5760 -0.4 94.4 1 0.055 11.6
50 0.5,0.5 5760 -45.0 14.3 0.99 0.041 7.6
50 0.9,0.1 5760 -8.8 88.2 1 0.053 14.2
8 0.5,0.5 2880 -9.3 89.3 1.00 0.076 9
8 0.9,0.1 2880 -0.9 94.6 1.00 0.080 10.5
50 0.5,0.5 2880 -47.1 38.0 0.88 0.059 9.9
B 50 0.9,0.1 2880 -8.8 87.9 1.00 0.076 10.8
8 0.5,0.5 5760 -7.3 89.0 1 0.053 8.9
8 0.9,0.1 5760 -1.3 93.6 1 0.055 8.9
50 0.5,0.5 5760 -45.3 14.6 1.00 0.041 9.4
50 0.9,0.1 5760 -8.7 90.0 1 0.053 13.9
C 50 0.5,0.5 5760 -39.3 26.9 1.00 0.043 6.3
50 0.9,0.1 5760 -9.2 88.7 1 0.053 14.7
D 50 0.5,0.5 5760 -38.3 29.4 1.00 0.043 9.6
50 0.9,0.1 5760 -9.4 88.1 1 0.053 13.8
E 50 0.5,0.5 5760 -25.1 60.7 1 0.048 9
50 0.9,0.1 5760 -7.8 89.1 1 0.053 11.9
E 50 0.5,0.5 5760 -25.9 57.8 1 0.047 8.4
50 0.9,0.1 5760 -8.5 89.1 1 0.053 8.9
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The DIC’s ability to detect the MM structure dos not seem to be affected
by the percentage of cases with multiple memberships. Poorer properties are
observed for scenarios with W;; =(0.5, 0.5) compared to W; =(0.9, 0.1)
scenarios. This result makes intuitive sense, as W;;=(0.9, 0.1) data is more
congruent with a 2-level structure (equivalent to W;;=1, 0) than the w;;=(0.5,
0.5) data. By the same logic, the percentage of 2-level models with the lowest
DIC is generally higher for W; =(0.9, 0.1) scenarios than w;; =(0.5, 0.5)
scenarios. When the sample size N is halved (considered for Type A and Type B
scenarios), lower power and surprisingly higher confidence interval coverage
are obtained for 50% change, W;;=(0.5, 0.5) scenarios, as well as consistently
higher standard errors. A change in N does not seem to affect bias or the
percentage of times the lowest DIC is obtained for the 2-level model. Some
variation in the percentage of times the 2-level model corresponds with the

lowest DIC is observed across change profile types.

With the DIC selection method, the 2-level model is selected as the best
fitting model over nine other competing multiple membership models only a
maximum of 15% in the scenarios considered. This result indicates that the DIC
is able to identify that multiple membership models fit multiple membership
data better than 2-level models in the majority of cases for the scenario

considered.

IV.6. Discussion

This paper investigated the properties of the variance estimator and the test
statistic for multiple membership models with different weight specifications.
The different models include all possible theoretically-based weights, with a
one decimal place precision level, and models based on the weights identified
as giving best fit by the DIC measure. Moreover, the reliability of the DIC in
identifying the true multiple membership weights has also been examined.

These measures have been explored for data with different true multiple
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membership weights (W;;), proportion of cases associated with multiple
memberships (percentage change), membership profiles (change profile types)

and total sample size (N).

As expected, the results show optimal properties for models specifying
the correct model weights w;;. These properties generally do not vary across
different factor values for the models including the correct weights w;;. One
exception is the increase in standard errors with smaller N and with higher
proportions of multiple membership cases. In comparison, models with
misspecified w;; obtain less than optimal, and at times alarmingly bad results.
DIC-based weights models obtain good results overall, sometimes reaching
values equivalent to the models including the correct weights. The different
factors interact with each other in a complex way to influence the properties of
the estimator and test statistic, and the DIC reliability. Also, there often seems
to be a threshold beyond which an increase in a specific factor value influences
these measures. This threshold varies for different combinations of simulation
factor values and for the different measures. Though some general trends can
be observed, this study highlights the need for each particular application (with
its particular data structure) to be considered individually, to inform decisions

on either data collection design or inference.

A higher proportion of cases experiencing multiple memberships,
represented by the factor percentage change, generally leads to worse
estimator properties and power of the Wald test for models including incorrect
wyj. Estimator bias is highly sensitive to variation in the percentage change
factor. Drastic bias increases with higher percentage change values are
observed for all percentage change values considered, with a greater increase
observed for the worst specified models. Lower power with higher MM
proportions is only observed from very high percentage change values (92%)
for N=5760 and from medium percentage changes (50%) for N=2880
scenarios for models with misspecified weights (w;j#W;;). Confidence interval
coverage also shows a systematic decrease for the whole spectrum of
percentage change values considered for misspecified w;; models, therefore

resulting in greater underestimation for incorrect models. Standard errors
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show an increase for models with correct weights (w;;=W;;) and a decrease for
models with misspecified weights (w;;#W;;) with percentage change increases.
These patterns observed for the models with theoretical w;; do not apply for
DIC-based models. Variations in percentage change have no impact on the
power of the Wald test, as power is close to 1 for all scenarios, and no
consistent effect on estimator bias and confidence interval coverage for DIC-
based weights models. On the other hand, a clear trend of larger standard
errors with increasing percentage change is observed. This result is similar to
the trend observed for theoretical weights models with correct w;;. The DIC
reliability measure shows a clear trend of better results for data with higher

proportions of MM cases.

Halving N, and consequently the number of interviewers, results in lower
power for the 50% change scenarios (no change is observed for the 8% change
scenarios) for misspecified w;; models, slightly lower Cl coverage for models
with correct wy; and higher Cl coverage for models with incorrect wy; for the 50%
change scenarios and larger standard errors for all models with theoretical
weights. No consistent pattern in the estimator bias across N values is
observed. For the DIC-based weights models no relationship between N and
power, Cl coverage and bias is observed. On the other hand, larger standard
errors for smaller sample size scenarios are obtained for DIC-based w;; models.
Decreases in N also impact negatively the DIC reliability measure. This

relationship is mediated by other factors, including W;; and the profile change

type.

The effect of W; on the properties varies for different factor

combinations. However, some general trends can be identified, though
exceptions to this trend are noticeable for certain scenarios. One common
feature across different change profiles is the general shape of the distribution
of the estimator bias across different theoretical weights models. The bias for

W;;=(0.5, 0.5) scenarios are somewhat symmetrical around the correct model
[(w;=0.5, 0.5)]. W;=(0.9, 0.1) scenarios generally show low positive bias for
the correct model [wi]- =(0.9, 0.1)], which increases in magnitude for

subsequent models and then eventually turns negative and increases for
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models with weights closer to (0.1, 0.9). For the Cl coverage a symmetry
around the w;;=(0.5, 0.5) model is observed for the equally distributed Wy,
while a stable and then decreasing trend from the w;;=(0.9, 0.1) model to the

w;;=(0.1, 0.9) model is observed for the unequally distributed Wj;.

In the case of the power of the Wald test optimal values are obtained for
N=5760 scenarios. Therefore, for large sample sizes no difference across Wj;
scenarios is observed. Smaller sample sizes are considered for Type A and
Type B change profiles. For 50% change, N=2880 scenarios higher power is
obtained for Type A in comparison to lower power for Type B for w;;=(0.5, 0.5)
scenarios. Distinct patterns are present for the size of the standard errors by
different w;;. For W;=(0.9, 0.1) scenarios the w;;=(0.9, 0.1) model has higher
standard errors than the model with the worst specified weights, but lower
standard errors than the w;;=(0.5, 0.5) model. For Ww;;=(0.5, 0.5) scenarios the
distribution across the models with theoretically-based weights is symmetrical,
with the model specifying the w;;=(0.5, 0.5) model having the highest standard
errors. For the DIC-based weights models the results show a clear trend of
higher bias for Ww;;=(0.9, 0.1) scenarios compared to W;;j=(0.5, 0.5) scenarios
for the 50% change scenarios. The higher biases for more unequally distributed
real weights data is not observed for scenarios with a low percentage of cases
with multiple memberships. No change across the W; values for power,
confidence interval coverage and standard errors are observed. The DIC is
better able to detect the model with the correct weights for more unequal W;;
data, and this difference is more pronounced for data with lower percentage

change.

The properties of the estimator and test statistic and the DIC reliability,
as well as their relationship with other factors, vary by change profile type.
Some noticeable general trends are the observation of skewness for the
distribution of bias and Cl coverage for models with theoretically-based
weights for Type B, Type C and Type E. These change profile types vary in their
number of interviewers and caseload across the two waves, unlike the other
change profile types. Higher Cl coverage and less underestimated standard

errors are obtained for w;; =(0.9, 0.1) for the models with misspecified
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theoretically-based weights for the change profiles with a higher number of
interviewers (Type B, Type D, Type F) compared to the other change profiles
(Type A, Type D, Type E). Possibly the influence of a higher number of clusters
on these properties is restricted to the W;;=(0.9, 0.1) scenarios because a
higher level of misspecification is possible for unequally distributed real
weights data, and the influence of the number of clusters is only observed for
very badly misspecified models. The impact of N on power seems to change by
profile type, as outlined above. An important result is that for models including
the correct (and adjacent) theoretical weights and the models including
weights based on DIC there is no substantial difference in the properties of the
estimator and Wald test across different change profile types. The DIC
reliability measure also varies by change profile type, showing the best results
for Type A, and the worst for Type F. On closer inspection, for the Type F
profile the mean DIC values are almost equal for the different models with
theoretical weights. This lower DIC reliability does not result in worse
properties of estimators and test statistics for the model based on the DIC,
expect for a 5% lower confidence coverage rate in comparison to the model
with correct w;; for w;;=(0.5, 0.5).

The study has also investigated the ability of the DIC to distinguish
multiple membership data from purely hierarchical data. The results are
encouraging, showing that the lowest DIC value corresponds to the 2-level
model (ignoring the multiple membership structure) less than 10% of times for
Ww;; =(0.5, 0.5) scenarios, and less than 15% of times for w;; =(0.9, 0.1)
scenarios. Specifying a purely hierarchical model for multiple membership data
results in high bias, low confidence interval coverage, low power of the Wald
test and underestimated standard errors, especially for scenarios with a high
percentage of cases with multiple memberships and with equal real weights
[w;;=(0.5, 0.5)].
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IV.7. Conclusion

The results would suggest that before deciding on the method to choose the
weights the characteristics of the data should be noted. For example, when the
data includes a low percentage of multiple memberships, empirical assessment
methods, such as the DIC, may not suggest the true multiple membership
weights, and it may be better to base the choice of weights on some
theoretical argument if the researcher is particularly interested in the
substantive interpretation of the weights. However, all nine models with the
different theoretical weights obtain good properties of the estimator and test
statistic for scenarios with a low proportion of multiple membership cases.
Therefore, to the extent that the researcher is only interested in the variance
estimate, any reasonable weighting scheme can be applied when only a low
percentage of cases are associated with more than one higher-level unit. What
constitutes a low percentage will change depending on the other factor values,
such as N and the change profile type. One needs to be careful when
interpreting the substantive meaning of the model weights as the frequency
with which the DIC is able to detect the correct model weights can be low.
Rather than speaking of exact proportions for the higher-level influences it
may be best to refer more loosely to the variance apportionment. The
simulation study has also highlighted the effectiveness of the DIC in

distinguishing between purely hierarchical and multiple membership data.

The results show that despite inaccurate multiple membership weights,
models including DIC-based weights result in good estimator properties and
power of the Wald test. To the extent that the multiple membership weights
are not of substantive interest, it may be best to always choose weights based
on the DIC.

When analysing data with a multiple membership structure the true
apportionment of the total variance across the two membership classification
structures will be unknown. The DIC will be used to identify the best fitting
model amongst various models specifying different model weights. The model
weights may be interpreted as the weights signifying the true variance

proportions. If the model with the lowest DIC does not correspond with the
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model which best estimates the relative influence of the multiple memberships
giving a substantive interpretation to the model weights will be erroneous. This
study shows that for certain data structures the DIC fails to identify the true
MM weights (that is, the weights used to simulate the data), but consistently
results in good properties for the variance estimators and the test statistic.
Consequently, it may be best to think of the model weights simply as
parameters which optimise a certain information criterion, which may or may
not represent the true influence apportionment of the two higher-level

classification structures.
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V. Conclusion

This study focuses on the use of cross-classified and multiple membership
multilevel logistic models for the analysis of interviewer effects on wave
nonresponse in longitudinal surveys. Papers 1, 2 and 3 all demonstrate how
cross-classified and multiple membership multilevel logistic models provide a
flex class of models for the analysis of interview effects on nonresponse in
longitudinal surveys. Paper 1 introduces the mathematical details of and the
assumptions underlying these models. A dataset from the UK Family and
Children Study is used to illustrate the proposed methods and to investigate
substantive questions regarding interviewer characteristics which explain the
variation across interviewers in individual-level nonresponse. Paper 2
investigates the properties of estimators and test statistics for cross-classified
multilevel models accounting for area and interviewer effects on nonresponse
for data with varying degrees of interpenetration between the two classification
structures. Paper 3 investigates the properties of estimators and test statistics
for multiple membership multilevel models accounting for distinct interviewers
allocated in the current and previous wave for data with different interviewer
allocation profiles. This section provides a summary of the main findings from
the three papers; in addition, any limitations are highlighted and

recommendations for future work are proposed.

In Paper 1 both cross-classified and multiple membership specifications
are considered to account for the effect of various wave interviewers allocated
to a particular case. The inclusion of the previous and current wave interviewer
effects as independent effects in a cross-classified model - as implemented in
Pickery et al. (2001) - led to unstable results in the Paper 1 application,
suggesting model misspecification. The assumption of independent effects
certainly does not apply for the 32% of cases with interview continuity. For
these cases there may either be a correlated differential effect across waves or
alternatively a single constant effect (suggesting a multiple membership

structure). This problem with specifying two wave interviewer effects as cross-
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classified has also been highlighted by Lynn et al. (2013). In the study by
Pickery et al. (2001) the second wave interviewer becomes non-significant
when both second and first wave interviewer effects are controlled for. They
recognise that the inclusion of both previous and current wave interviewer
effects as independent effects is problematic due to the correlation between
these two random effect terms. However the authors believe that this
correlation does not arise from the partial overlap of the two wave interviewers
(owing to cases with interviewer continuity), since this overlap information is
lacking in the model. Instead they attribute this correlation to the geographical
setup of the survey, with case assignments being stable across waves in terms

of geographical area.

For the Paper 1 application, the multiple membership model does not
provide a better model fit than a 2-level model accounting only for the current
interviewer when measurable interviewer characteristics are not accounted for.
Among competing multiple membership models specifying different weights
for the interviewer change cases - varying from weights of (0.9, 0.1) to weights
of (0.1, 0.9), the model allocating the highest weight of 0.9 to the current wave
interviewer fits best. This suggests that for later waves of a longitudinal study,
the current interviewer has the greatest impact on the response outcome for
the current wave. The interviewer variance estimates for the multiple
membership models with different weight specifications (which range from
0.250 to 0.291) vary slightly from the 2-level model, accounting only for the
wave 8 interviewer (0.278). If the 2-level model is considered to be the true
model, the deviation from this 2-level model estimate obtained from modelling
the data using a multiple membership model ranges from -8.4% to 6.6%.
However the best fitting multiple membership model, including weights of (0.9,
0.1) for change cases, obtains practically the same estimate as the 2-level
model (0.282). Stable variance estimates across different weight specifications
have been documented in other applied studies in different substantive areas
using multiple membership models (Fielding, 2002; Fielding & Yang, 2005;
Goldstein, 2011b). These studies do not indicate what alternative weighting
profiles were considered and the estimates obtained across different models
with different weights. It could be that this reported stability across weighting

profiles is due to the fact that these authors do not consider weighting profiles
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which deviate greatly from the correct weights. In the Paper 1 application the
estimates obtained across all possible weighting profiles (with a precision of
0.1) cannot be said to be stable as the highest and lowest estimate value vary
by around 15%.

The application of multiple membership models to interviewer effects
data is relatively new. The only other research using this model specification
for the analysis of nonresponse is a manuscript by Lynn et al. (2013), which
finds a non-significant random intercept interviewer effect. In the Lynn et al.
(2013) paper a 2-level model accounting for the current interviewer, a 2-level
model accounting for the previous interviewer, a multiple membership model
with equal weights, and a model with only a fixed-effect intercept all obtain
approximately the same DIC value. However the paper does find a differential
random effect in the impact of respondent age on the propensity to refuse
participation by interviewer combination (random slope at the interviewer-level
for respondent age). In spite of limited evidence of the presence of a multiple
membership structure, this model specification for the analysis of interviewer
effects on wave nonresponse should not be discarded. The fitting of this model
to various other datasets analysing nonresponse at various waves is
encouraged to corroborate evidence on the influence of multiple distinct
interviewers from different waves on nonresponse at a particular wave. It
would be interesting to consider whether different results are obtained for
earlier waves in comparison to later waves when the remaining sample includes

people with a high commitment towards the survey.

For the Paper 1 application, the 2-level model accounting for the wave 8
interviewer had a better model fit and accounted for a larger proportion of the
variance in individual nonresponse than the 2-level model accounting for the
wave 7 interviewer. The opposite is true in Pickery and Loosveldt (2001), where
these same model specifications showed that the first wave interviewer had a
stronger influence on wave 2 nonresponse than the second wave interviewer.
Moreover, in a cross-classified model including both interviewer effects the
wave 2 interviewer random effect became non-significant at the 5% level. This
discrepancy in results may be due to the fact that these two studies are looking

at different phases of a longitudinal study.
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A cross-classified model is advocated for distinguishing area and
interviewer effects in the case of partial interpenetration, which is sometimes
present in surveys. Area effects are not significant after controlling for
interviewer and household level effects in a cross-classified model in the Paper
1 application. This result is similar to findings by Campanelli and
O'Muircheartaigh (1999) and Durrant et al. (2010). The results from Paper 2
suggest that limited interpenetration is sufficient to correctly disentangle the
two random effects. Consequently the non-significance of the cross-classified
area effect in comparison to the significant area effect in a 2-level model
suggests that area effects are simply aggregated interviewer effects. Reference
is made to the possibility that the primary sampling unit does not match the
spatial divisions which are related to nonresponse. This area classification is
used in Paper 1 and also in other studies analysing nonresponse for data with
a multistage cluster sample design (Durrant et al., 2010) as well as data from a
quasi-randomised design (Campanelli & O'Muircheartaigh, 1999). Possible
theoretical arguments for area effects on nonresponse include similarities in
socio-economic and cultural characteristics, in the perception of privacy, crime
and safety, as well as in environmental factors such as physical accessibility
and urbanicity across geographic boundaries (Haunberger, 2010). Future
research may investigate the sensitivity of the area parameter estimate to
changes in the area classification system, with different area boundaries

mapping to physical, social and cultural spatial divisions being considered.

The substantive findings from Paper 1 confirm that interviewer
experience, grade and continuity are significant predictors of nonresponse.
The results suggest improved response rates for interviewers who commit
most of their paid working hours to undertaking interviewing work for various
survey agencies, and who have better job tenure and are focused on face-to-
face mode. The study does not provide any clear or coherent evidence of the
role of interviewer attitudes on respondent persuasion, personality traits and
skills on respondent refusal. Similarly no evidence of the benefit of matching
the individual and the interviewer in terms of demographic or socio-economic

characteristics was found.
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The simulations in Paper 2 and Paper 3 offer new insight into the
performance of the advanced multilevel models for realistic survey design
conditions. Paper 2 is the first work investigating these properties for cross-
classified models, and similarly Paper 3 is the first study investigating these
properties for multiple membership models when the true multiple
membership weights are unknown, as would be the case in a real life situation.
The two simulation studies identify trends in the properties of the estimators
and test statistic across changes in simulation factors. Additionally, in the case
of Paper 3, the study also indicates how reliable the DIC is in detecting the real
weights and how this varies for different interviewer allocation schemes. It is
acknowledged that the results from Paper 2 and Paper 3 are restricted to the
factor values chosen and the scenarios considered. The results cannot be
extrapolated to very different survey design conditions with any certainty.
Moreover, a potential restriction of Paper 2 and Paper 3 is the limited number
of scenarios considered in view of the time constraints in running the
simulations. Due to the small number of scenarios considered, significance
tests were not run to identify the factors which are significantly associated with

the properties examined.

Paper 2 indicates that, as expected, purely hierarchical data,
represented by CASE 1 allocation scheme scenarios, is subject to substantial
biases, bigger standard errors, high negative correlations between the two
random parameter estimates, under and over coverage of the Wald confidence
interval, and low power of the Wald test. Limited interviewer dispersion (of
around 3 areas per interviewer for medium or large sample sizes, N=2880 or
N=5760) provides sufficient interpenetration for good properties. Further
dispersion vyields only very small or negligible gains in the properties.
Interviewer dispersion also acts as a mediating factor on the effect of the other
simulation factors (sample size, the ratio of interviewers to areas, the overall
probability, and the variance values) on the properties of the estimators and

test statistic.

Paper 3 shows optimal properties for models specifying the correct or
adjacent model weights, which are relatively stable across different factor

conditions. The only exception is the higher standard errors for scenarios with
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smaller sample sizes. Poor estimator and test statistic properties are obtained
for models including very badly misspecified weights. On the other hand,
models with weights based on the DIC generally obtain good properties which
are similar to the values obtained for the models specifying the correct weights
in most scenarios. The results indicate that the DIC does not offer a very
precise measure for choosing the correct model weights. However, if selecting
either the correct weights or the adjacent weights is deemed acceptable, the
results are more encouraging. Consequently the substantive interpretation of
the weights should be carried out with caution. The paper provides evidence
for the reliability of the DIC to detect a multiple membership structure, in
comparison to a 2-level model accounting only for the current interviewer

which obtains the lowest DIC only a maximum of 15% of times.

The papers provide a good starting point for the analysis of the
performance of these models under different scenarios, but they definitely do
not present a conclusive and comprehensive overview. Further research
investigating different simulation factor values and data structures should be
carried out to corroborate and extend existing evidence on the performance of
these models. One particular area of further research should focus on the
examination of these properties for very small higher-level variances. The
simulations always consider small to medium variance values, and the
simulation papers deliberately focus on variance values which are considered
to correspond to realistic small to medium variance partitioning coefficient
values, signifying substantial higher-level effects. Therefore other studies
investigating the properties of the estimators and test statistic for very small

higher-level variances should be carried out.

The two simulation papers considered the properties of variance
estimators only. The data was generated from models including an overall
intercept and the random effects. No explanatory variables were considered.
Other simulation papers reviewed earlier indicate that the worst estimator and
test statistic properties are observed for the variance estimators. Consequently,
the focus on the random effects is justified, as these parameters are the ones
most susceptible to influence by changes in simulation factors. Moreover,

scenarios achieving acceptable properties for the variance parameters can be
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assumed to also provide acceptable properties for fixed effect parameters. In
future work the inclusion of fixed effects, especially cross-level interaction

effects and contextual effects, should be considered.

Paper 2 considers only scenarios where the interviewers are allocated
cases from different areas randomly and Paper 3 considers only scenarios
where the interviewer effects for the multiple membership structure are
independent and identically distributed. Therefore the results obtained in the
simulations apply only to similar situations for which these assumptions hold.
Situations of non-random allocations and correlated effects are not being

investigated.

This work created the procedure and the R and STATA programming
code - included in the Appendices - that can be used independently of this
research project to investigate the performance of these multilevel logistic
models for existing data structures, or to inform the design of future studies
with similar designs. A future project may focus on creating an online platform,
similar to the MLPowSim tool (Browne & Golalizadeh, 2009), for other users to
be able to specify their data structure and run the simulation for their own

specific application.

A further simulation exercise has been run for this concluding chapter.
The aim of this simulation exercise is to identify how other multilevel model
specifications perform for 2-level data and how reliable the DIC is in detecting
the correct hierarchical structure. One thousand datasets were simulated from
the final random effects specification chosen for Paper 1: the 2-level model
accounting for the wave 8 interviewer with a higher-level variance equal to
0.273 and an overall probability of 0.91. The sample size and the data
structure (the interviewer allocations and area provenance for each individual
case) of the Family and Children Study dataset are used for the simulation.
These datasets were then modelled using the correct model (2-level model
including the wave 8 interviewer random effect) as well as alternative models,
these being multiple membership models with different weights, 2-level model

including the area interviewer random effect, and cross-classified models.
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Table V.1: Frequency Distribution of Models with Lowest DIC

Model Percentage
2-level Model; Interviewer Wave8 42.0
Cross-classified Model; Interviewer Wave 8 & Primary Sampling

Unit 12.4
Multiple Membership Model; Weights (0.9 0.1) 12.3
Multiple Membership Model; Weights (0.8 0.2) 9.8
Cross-classified Model; Interviewer Wave 8 & Interviewer Wave 7 7.6
Multiple Membership Model; Weights (0.7, 0.3) 6.2
Multiple Membership Model; Weights (0.6, 0.4) 3.4
Multiple Membership Model; Weights (0.5, 0.5) 2.0
Multiple Membership Model; Weights (0.1, 0.9) 1.6
Multiple Membership Model; Weights (0.4, 0.6) 1.0
Multiple Membership Model; Weights (0.2, 0.8) 0.9
Multiple Membership Model; Weights (0.3, 0.7) 0.5
2-level Model; Primary Sampling Unit 0.4
Total 100

Table 1 shows the percentage of times the lowest DIC value for the
1000 datasets corresponds to a specific model. Interestingly, the correct model
is only detected 42% of the times. The next two most frequent models with the
lowest DIC values are the multiple membership models attributing weights of
(0.9, 0.1) to the wave 8 and wave 7 interviewers respectively, and the cross-
classified model controlling for the wave 8 interviewer and the primary
sampling unit. Table 2 presents the properties of the interviewer variance
estimator, the power of the Wald test, and the mean DIC for these three
models. The multiple membership model with (0.9, 0.1) weights shows a slight
overestimation of the interviewer variance. On the other hand, the cross-
classified model also controlling for area effects shows a slight
underestimation of the interviewer variance. Similar results are observed in
Paper 1, where the multiple membership model with (0.9, 0.1) weights obtains
a higher estimate, while the cross-classified model obtains a lower estimate,
than the 2-level model. For this final simulation, other than this slight bias
observed for the two misspecified models, the other properties are close to
optimal for all three models. The area effect in the cross-classified model is
non-significant at the 10% significance level and the mean DIC values are very

similar across the three models, as per the results in Paper 1. These results
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support the final conclusion in Paper 1 which stated that it was sufficient to

only control for the wave 8 interviewer effect for this particular dataset.

Table V.22: Properties of the Interviewer Variance Estimator and Test Statistic for
Different Models

Model Wald Cl Power Percentage  Standard Mean
Coverage  Wald Relative Error DIC
Test Bias
2-level Model; 92.0 0.98 -0.45 0.078 3617.9
Interviewer Wave 8
Cross—classified Model; 90.6 0.95 -6.02 0.081 3618.4

Interviewer Wave 8 &

Primary Sampling Unit

Multiple Membership 92.6 0.98 4.93 0.083 3618.2
Model; Weights (0.9 0.1)

Therefore, the results of this final simulation show that the DIC is able
to identify a good model - either the correct model or an alternative model
which is close to the correct model - with a high frequency. This corroborates
evidence from other studies examining the performance of the DIC in
identifying the correct model (Berg et al., 2004; Kizilkaya & Tempelman, 2003;
Ward, 2008; Wilberg & Bence, 2008; Zhu & Carlin, 2000). Moreover, the
alternative models show good properties of the estimator and test statistic. A
possible extension of this analysis would be to simulate from the other
possible true models fitted in Paper 1, including cross-classified models,
multiple membership models, and the 2-level model accounting for the PSU. It
would be interesting to assess frequency with which the DIC identifies the
correct model and the adequacy of the models with next highest frequency of
lowest DIC values. The properties of these alternative models would indicate

their adequacy.

Further research into the optimal random effects specification for the
analysis of interviewer effects on nonresponse in a longitudinal study is

required. Cross-classified models assume that the interviewer effect is wave-
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specific and introduce a separate independent effect for each wave, but fail to
account for the correlation of different wave-interviewer effects when the same
interviewer is maintained across waves. Multiple membership models
incorporate the effect of each distinct interviewer associated with a particular
case, but make no attempt to distinguish between the differential effects of the
same interviewer across waves. An extension which could be attempted in
future entails the inclusion of a covariance term for the cross-classified
random effect specification. However, just as the independence assumption of
the cross-classified model attempted in the first paper was assessed to be
erroneous as it does not take into consideration interviewer continuity cases,
the specification including a covariance term for the two higher-level variances
would not appropriately model the interviewer effects for interviewer change

cases.

At present no model can be identified to allow the specification of two
separate terms - specified as correlated for cases retaining the same
interviewer and as independent for cases experiencing an interviewer change -
for the two different interviewer-wave effects for all cases. Such a model would
enable a distinction between the effects of each interviewer at either wave
while recognising cases with interviewer continuity. Moreover, this model
would allow the relative influence of each wave interviewer for all cases -
identified as one of the aims of this study - to be estimated. Such a model has

been identified as an area of potential new methodological development.
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VI.1. Appendix A - Descriptive Statistics for

Complete and Restricted Datasets

Frequency Distribution of the Response Outcome by Categorical Variables for the Individual-

Level Data
Category Statistic Productive Refusals Total
Interview
Government Office Region (5932 cases)
North East Count 349 28 377
% 92.6% 7.4% 100%
North West & Merseyside Count 635 74 709
% 89.6% 10.4% 100%
Yorkshire & Humber Count 547 44 591
% 92.6% 7.4% 100%
East Midlands Count 470 33 503
% 93.4% 6.6% 100%
West Midlands Count 587 49 636
% 92.3% 7.7% 100%
South West Count 535 47 582
% 91.9% 8.1% 100%
Eastern Count 439 40 479
% 91.6% 8.4% 100%
London Count 403 52 455
% 88.6% 11.4% 100%
South East Count 633 69 702
% 90.2% 9.8% 100%
Wales Count 360 35 395
% 91.1% 8.9% 100%
Scotland Count 473 30 503
% 94.0% 6.0% 100%
Government Office Region (7089 cases)
North East Count 393 34 427
% 92.0% 8.0% 100%
North West & Merseyside Count 690 78 768
% 89.8% 10.2% 100%
Yorkshire & Humber Count 642 49 691
% 92.9% 7.1% 100%
East Midlands Count 555 48 603
% 92.0% 8.0% 100%
West Midlands Count 698 58 756
% 92.3% 7.7% 100%
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South West Count 581 55 636
% 91.4% 8.6% 100%
Eastern Count 526 54 580
% 90.7% 9.3% 100%
London Count 526 72 598
% 88.0% 12.0% 100%
South East Count 875 85 960
% 91.1% 8.9% 100%
Wales Count 386 40 426
% 90.6% 9.4% 100%
Scotland Count 599 45 644
% 93.0% 7.0% 100%
London Indicator (5932 cases)
Not London Count 5028 449 5477
% 91.8% 8.2% 100%
London Count 403 52 455
% 88.6% 11.4% 100%
London Indicator (7089 cases)
Not London Count 5945 546 6491
% 91.6% 8.4% 100%
London Count 526 72 598
% 88.0% 12.0% 100%

How much of a problem are vandalism, graffiti and other deliberate damage to property or

Very big problem/Fairly big problem

Not a very big problem

Not a problem at all/It happens but itis nota

problem/Don't know

vehicles? (5932 cases)

Count
%
Count
%
Count
%

945
92.5%
1747
92.5%
2739
90.7%

77
7.5%
142
7.5%
282
9.3%

1022
100%
1889
100%
3021
100%

How much of a problem are vandalism, graffiti and other deliberate damage to property or

vehicles? (7089 cases)
Very big problem/Fairly big problem Count 1118 91 1209
% 92.5% 7.5% 100%
Not a very big problem Count 2097 186 2283
% 91.9% 8.1% 100%
Not a problem at all/It happens butitisnota  Count 3256 341 3597
problem/Don't know % 90.5% 9.5% 100%
How much of a problem is rubbish or litter lying around?(5932 cases)
Very big problem/Fairly big problem Count 988 89 1077
% 91.7% 8.3% 100%
Not a very big problem Count 1943 158 2101
% 92.5% 7.5% 100%
Not a problem at all/It happens but it is not a Count 2500 254 2754
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problem/Don't know % 90.8% 9.2% 100%
How much of a problem is rubbish or litter lying around?(7089 cases)

Very big problem/Fairly big problem Count 1141 106 1247

% 91.5% 8.5% 100%
Not a very big problem Count 2317 198 2515

% 92.1% 7.9% 100%
Not a problem at all/It happens butitisnota  Count 3013 314 3327
problem/Don't know % 90.6% 9.4% 100%

How much of a problem are teenagers hanging around on the street? (5932 cases)

Very big problem/Fairly big problem Count 1331 107 1438

% 92.6% 7.4% 100%
Not a very big problem Count 1518 120 1638

% 92.7% 7.3% 100%
Not a problem at all/It happens butitisnota  Count 2582 274 2856
problem/Don't know % 90.4% 9.6% 100%

How much of a problem are teenagers hanging around on the street? (7089 cases)

Very big problem/Fairly big problem Count 1567 132 1699

% 92.2% 7.8% 100%
Not a very big problem Count 1794 157 1951

% 92.0% 8.0% 100%
Not a problem at all/It happens butitisnota  Count 3110 329 3439
probIem/Don't know % 90.4% 9.6% 100%

How much of a problem are troublesome neighbours? (5932 cases)

Very big problem/Fairly big problem Count 386 35 421

% 91.7% 8.3% 100%
Not a very big problem Count 682 57 739

% 92.3% 7.7% 100%
Not a problem at all/It happens butitisnota  Count 4363 409 4772
problem/Don't know % 91.4% 8.6% 100%

How much of a problem are troublesome neighbours? (7089 cases)

Very big problem/Fairly big problem Count 469 46 515

% 91.1% 8.9% 100%
Not a very big problem Count 833 71 904

% 92.1% 7.9% 100%
Not a problem at all/It happens but itis nota Count 5169 501 5670
problem/Don't know % 91.2% 8.8% 100%

How much of a problem is people being attacked or harassed because of their skin colour,

Not a very big problem

Not a problem at all/It happens but itis nota

Count
%
Count
%
Count

religion or ethnic origin? (5932 cases)
Very big problem/Fairly big problem

167
89.8%
546
94.1%
4718

19
10.2%
34
5.9%
448

186
100%
580
100%
5166

199



problem/Don't know

%

91.3%

8.7%

100%

How much of a problem is people being attacked or harassed because of their skin colour,

religion or ethnic origin? (7089 cases)

Very big problem/Fairly big problem Count 213 23 236

% 90.3% 9.7% 100%
Not a very big problem Count 648 45 693

% 93.5% 6.5% 100%
Not a problem at all/It happens but itis not a Count 5610 550 6160
problem/Don't know % 91.1% 8.9% 100%

How much of a problem are people being drunk or rowdy in public places? (5932 cases)

Very big problem/Fairly big problem Count 666 56 722

% 92.2% 7.8% 100%
Not a very big problem Count 1207 103 1310

% 92.1% 7.9% 100%
Not a problem at all/It happens butitisnota  Count 3558 342 3900
problem/Don't know % 91.2% 8.8% 100%

How much of a problem are people being drunk or rowdy in public places? (7089 cases)

Very big problem/Fairly big problem Count 789 67 856

% 92.2% 7.8% 100%
Not a very big problem Count 1457 129 1586

% 91.9% 8.1% 100%
Not a problem at all/It happens butitisnota  Count 4225 422 4647
problem/Don't know % 90.9% 9.1% 100%

How much of a problem are people using or dealing drugs? (5932 cases)

Very big problem/Fairly big problem Count 823 67 890

% 92.5% 7.5% 100%
Not a very big problem Count 776 64 840

% 92.4% 7.6% 100%
Not a problem at all/It happens butitisnota  Count 3832 370 4202
probIem/Don't know % 91.2% 8.8% 100%

How much of a problem are people using or dealing drugs? (7089 cases)

Very big problem/Fairly big problem Count 977 86 1063

% 91.9% 8.1% 100%
Not a very big problem Count 924 78 1002

% 92.2% 7.8% 100%
Not a problem at all/It happens butitisnota  Count 4570 454 5024
problem/Don't know % 91.0% 9.0% 100%

Likelihood that purse/wallet is returned to you if found in the street by someone living in your
neighbourhood(5932 cases)

...very likely, quite likely, Count 3052 292 3344
% 91.3% 8.7% 100%
not very likely, Count 1281 109 1390
% 92.2% 7.8% 100%
or not at all likely? Don't Know Count 1098 100 1198
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% 91.7%

8.3%

100%

Likelihood that purse/wallet is returned to you if found in the street by someone living in your

neighbourhood(7089 cases)

...very likely, quite likely, Count 3591 350 3941
% 91.1% 8.9% 100%

not very likely, Count 1542 142 1684
% 91.6% 8.4% 100%

or not at all likely? Don't Know Count 1338 126 1464
% 91.4% 8.6% 100%

Wave 8 Interviewer Grade/ Experience (5932 cases)

A;B Count 354 42 396
% 89.4% 10.6% 100%

C,0-4yrs Count 1919 229 2148
% 89.3% 10.7% 100%

C, 5yrs+ Count 1049 68 1117
% 93.9% 6.1% 100%

D, 0-4 yrs Count 472 52 524
% 90.1% 9.9% 100%

D, 5 yrs+ Count 533 48 581
% 91.7% 8.3% 100%

S,0-4yrs Count 335 30 365
% 91.8% 8.2% 100%

GradeR;S,5yrs+; T Count 769 32 801
% 96.0% 4.0% 100%

Wave 8 Interviewer Grade/ Experience (7089 cases)

A; B Count 553 73 626
% 88.3% 11.7% 100%

C, 0-4 yrs Count 2356 287 2643
% 89.1% 10.9% 100%

C, 5yrs+ Count 1249 78 1327
% 94.1% 5.9% 100%

D, 0-4 yrs Count 509 55 564
% 90.2% 9.8% 100%

D, 5 yrs+ Count 616 54 670
% 91.9% 8.1% 100%

S, 0-4 yrs Count 383 34 417
% 91.8% 8.2% 100%

GradeR; S, 5yrs+; T Count 805 36 841
% 95.7% 4.3% 100%

Wave 8 Interviewer Age (5932 cases)

less than 40 years Count 166 29 195
% 85.1% 14.9% 100%

40-49 years Count 812 85 897
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% 90.5% 9.5% 100%
50-59 years Count 2346 213 2559
% 91.7% 8.3% 100%
60+ years Count 2107 174 2281
% 92.4% 7.6% 100%
Wave 8 Interviewer Age (7089 cases)
less than 40 years Count 265 37 302
% 87.7% 12.3% 100%
40-49 years Count 1607 125 1192
% 89.5% 10.5% 100%
50-59 years Count 2714 249 2963
% 91.6% 8.43% 100%
60+ years Count 2425 206 2631
% 92.2% 7.8% 100%
Age of Youngest Child (5932 cases)
No dependent children & 16-18 year olds Count 551 63 614
% 89.7% 10.3% 100%
0-4 year olds Count 2312 214 2526
% 91.5% 8.5% 100%
5-10 year olds Count 1518 120 1638
% 92.7% 7.3% 100%
11-15 year olds Count 1050 104 1154
% 91.0% 9.0% 100%
Age of Youngest Child (7089 cases)
No dependent children & 16-18 year olds Count 657 79 736
% 89.3% 10.7% 100%
0-4 year olds Count 2741 255 2996
% 91.5% 8.5% 100%
5-10 year olds Count 1793 150 1943
% 92.3% 7.7% 100%
11-15 year olds Count 1280 134 1414
% 90.5% 9.5% 100%
Accommodation Type (5932 cases)
Detached house Count 1176 132 1308
% 89.9% 10.1% 100%
Semi-detached house Count 2204 188 2392
% 92.1% 7.9% 100%
Terraced house Count 1603 138 1741
% 92.1% 7.9% 100%
Flat or maisonette - purpose built & Other Count 397 38 435
% 91.3% 8.7% 100%
Flat or maisonette - conversion Count 51 5 56
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% 91.1% 8.9%  100%
Accommodation Type (7089 cases)

Detached house Count 1441 163 1604
% 89.8% 10.2%  100%
Semi-detached house Count 2575 227 2802
% 91.9% 8.1%  100%
Terraced house Count 1864 166 2030
% 91.8% 8.2%  100%
Flat or maisonette - purpose built & Other Count 509 56 565
% 90.1% 9.9%  100%
Flat or maisonette - conversion Count 82 6 88
% 93.2% 6.8%  100%

Heating Problems in the Dwelling (5932 cases)
Yes Count 5073 474 5547
% 91.5% 8.5%  100%
No & Don't know Count 358 27 385
% 93.0% 7.0%  100%

Heating Problems in the Dwelling (7089 cases)
Yes Count 6042 587 6629
% 91.1% 8.9%  100%
No & Don't know Count 429 31 460
% 93.3% 6.7%  100%

Heating Problems in the Dwelling (5932 cases)
Yes Count 5073 474 5547
% 91.5% 8.5%  100%
No & Don't know Count 358 27 385
% 93.0% 7.0%  100%

Heating Problems in the Dwelling (7089 cases)
Yes Count 6042 587 6629
% 91.1% 8.9%  100%
No & Don't know Count 429 31 460
% 93.3% 6.7%  100%

Respondent Gender (5932 cases)
Same interviewer Count 3794 287 4081
% 93.0% 7.0%  100%
More than one interviewer Count 1637 214 1851
% 88.4% 11.6%  100%
Respondent Gender (7089 cases)

Same interviewer Count 4491 351 4842
% 92.8% 7.2%  100%
More than one interviewer Count 1980 267 2247
% 88.1% 11.9%  100%
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Wave 8 Interviewer Gender (5932 cases)

Male Count 110 4 114
% 96.5% 3.5% 100%
Female Count 5321 497 5818
% 91.5% 8.5%  100%

Wave 8 Interviewer Gender (7089 cases)
Male Count 125 7 132
% 94.7% 53%  100%
Female Count 6346 611 6957
% 91.2% 8.8%  100%

Possession of any Academic or Vocational Qualification (5932 cases)
No Count 621 75 696
% 89.2% 10.8%  100%
Yes Count 4810 426 5236
% 91.9% 8.1%  100%
Possession of any Academic or Vocational Qualification (7089 cases)
No Count 723 89 812
% 89.0% 11.0%  100%
Yes Count 5748 529 6277
% 91.6% 8.4%  100%
Ethnicity (5932 cases)
White Count 5034 432 5466
% 92.1% 7.9%  100%
Non-white and missing Count 397 69 466
% 85.2% 14.8%  100%
Ethnicity (7089 cases)

White Count 5987 534 6521
% 91.8% 8.2%  100%
Non-white and missing Count 484 84 568
% 85.2% 14.8%  100%

First Wave for Respondent (5932 cases)
Wave 1-Wave 4 Count 3955 315 4270
% 92.6% 7.4%  100%
Wave 5-Wave 6 Count 903 90 993
% 90.9% 9.1%  100%
Wave 7 Count 573 96 669
% 85.7% 14.3%  100%

First Wave for Respondent (7089 cases)
Wave 1-Wave 4 Count 4702 392 5094
% 92.3% 7.7%  100%
Wave 5-Wave 6 Count 1070 109 1179
% 90.8% 9.2%  100%
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Wave 7 Count 699 117 816
% 85.7%  14.3%  100%
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VI.2. Appendix B - Data Generation for the Cross-
classified Models

The data generation procedure defined below is specific to the medium
scenario design, which includes 120 areas consisting of 48 cases per area
allocated to 240 interviewers who each have a workload of 24, totalling 5760
cases, with the area variance 62=0.3 and the interviewer variance ¢2=0.3 and
an overall probability T1=0.8.

1. Create the interviewer effects in R and save them in an excel file.

#generate the interviewer random effects for B times and save them in an excel
file

#create a random normal variable 'u’ of size k with mean 0 and standard
deviation equal to the square root of the variance sigmau?2

#B is the number of simulations

#k is the number of interviewers

#sigmau?2 is the interviewer-level variance

sim <- function(B=1000, k=240, sigmau2=0.3)

{

vl<-NULL

for(i in 1:B)

{

u <- rnorm(k,0,sqrt(sigmau2))

vl<-cbind(vl,u)

}

vl

}

data<-as.data.frame(sim())

write.csv(data, file="E:InterviewerEffects.csv")

write.table(data, file="E:InterviewerEffects.txt")

2. Delete the first row and first column from the excel file
‘InterviewerEffects.csv’ before using this file in the next step.

3. Create the area effects in R and save them in an excel file.

#generate the random area effects for B times and save them in an excel file
#B is the number of simulations

#| is the number of areas

#sigmau?2 is the area-level variance
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#create a random normal variable 'u’ of size k with mean 0 and standard
deviation equal to the square root of the variance sigmav2
sim2 <- function(B=1000, |=120, sigmav2=0.3)

{

v2<-NULL

for(i in 1:B)

{

u <- rnorm(l,0,sqrt(sigmav?2))

v2<-cbind(v2,u)

}

v2

}

data<-as.data.frame(sim2())

write.csv(data, file="E:AreaEffects.csv")

write.table(data, file="E:AreaEffects.txt")

4. Delete the first row and first column from the excel file ‘AreaEffects.csv’
before using this file in the next step.

5. Specify the interviewer identification code ‘INTid’ for each sample case
for the CASE1 allocation scheme in an excel file and save it as "E:
InterviewerALLOCATIONcasel.txt".

6. Simulate the dataset in R and save in an excel sheet.

#create a random variable of size n of Os and 1s (as.numeric) which gives an
overall mean of pi

#n is the sample size

#pi is the overall probability of response

myrbin <- function(n, pi)}{as.numeric(runif(n) < pi)}

#simulate B samples from a cross-classified model with Ip = betaO + u + v and
replicate for B times the myrbin function

#work out the regression line Ip by adding to the intercept betaO the error
term for the interviewer v corresponding to the INTid and the error term for the
area u corresponding to the AREAId

#work out the probability of response ppi by calculating exp(lp)/1+exp(lp)
where Ip comes from the previous line

#call myrbin of size k*m (number of interviewers multiplied by the number of
cases per interviewer) with probability equal to ppi to get a sample of 1s and
Os

#the area id AREAId is created by replicating n times the interviewer numbers
(Ltol)

#m is the number of cases per interviewer

#n is the number of cases per area
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sim <- function(B=1000, k=240, I=120, m=24, n=48, beta0 = 1.39,
sigmau2=0.3, sigmav2=0.3)
{
y <- numeric(k*m)
interviewerEFFECT <- numeric(l*n)
areaEFFECT <-numeric(k*m)
AREAid <- rep(1:l,rep(n,k))
INTid <- as.list(read.table("E: InterviewerALLOCATIONcasel.txt", sep="",
header=FALSE))
INTid <- INTid[[1]]
ul<-as.data.frame(read.csv("E:AreaEffects.csv", sep=",", header=FALSE))
vl<-as.data.frame(read.csv ("E:InterviewerEffects.csv", sep=",",
header=FALSE))
for(i in 1:B){
u<-ull,il
v <-vll,i]
Ip <- betaO + rep(u[AREAid] + Vv[INTid])
ppi <- exp(lp) /(1+exp(lp))
y <- cbind(y, myrbin(h=k*m, pi=ppi))
interviewerEFFECT <-cbind(interviewerEFFECT,V)
areakEFFECT<-cbind(areakEFFECT,u)
}
cbind(y[,-1], AREAid, INTid, areaEFFECT[AREAid,-1], interviewerEFFECT[INTid,-
1])
}
data <- as.data.frame(sim())
write.csv(data, file="E:\datasetl.csv")

7. Delete the first column from the excel file ‘datasetl.csv’ before using
this file in the next step.

8. Open STATA. Click on File, Import, Text data created by a spreadsheet,
Browse. Select ‘Comma Separated Values’ for file type and select
‘Datasetl.csv’. Click OK. Save as ‘datasetl.dta’.

9. Run the code below on the STATA datafile ‘datatsetl.dta’. This sorts the
data by the area identification and then by interviewer identification.
This is important for running models in MLwiN. A serial number is
created for each case. A variable cons, which is simply a string of 1s, is
also created.

sort areaid intid
generate serialno=_n
generate cons=1
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set matsize 11000

10. Using the same interviewer effects and area effects additional
simulations are run for the other interviewer allocation schemes
CASE2-CASE®6.
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VI.3. Appendix C - Model Estimation and Properties
Calculations for the Cross-classified Models

The model estimation procedure defined below is specific to the medium
scenario design, which includes 120 areas consisting of 48 cases per area
allocated to 240 interviewers who each have a workload of 24, totalling 5760
cases, with the area variance 62=0.3 and the interviewer variance ¢2=0.3 and
an overall probability T1=0.8.

1. Open a STATA file on my computer and run the following code:

sysdir set PLUS S:\rv1lg09\runmlwin
ssc install runmlwin

ssc install estout

adoupdate runmlwin

2. Go to Start, Programs, Accessories, Remote Desktop Connection. Write
the following ‘blue36.iridis.soton.ac.uk’ and click Connect.

3. Once on ‘blue36’ which is the head node, remote desktop to a compute
node.

4. Open the dataset ‘datasetl.dta’.

5. Run the following code in the STATA dataset (make sure it is open with
STATA12):

sysdir set PLUS S:\rv1lg09\runmlwin
global MLwiN_path C:\Program Files (x86)\MLwiN v2.25\mlwin.exe
set matsize 11000

6. Fit the models in STATA by running the code below. Work is sent in
batches of 100models (10 batches for every scenario). Save the results
in an excel file on the S drive.

local i=1

while "i'<101 {

quietly runmlwin v i’ cons, level3 (intid:cons) level2 (areaid:cons) levell
(serialno:) discrete(distribution(binomial) link(logit) denominator(cons) pql2)
nopause maxiterations(150)
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quietly runmlwin v i’ cons, level3 (intid:cons) level2 (areaid:cons) levell
(serialno:) discrete(distribution(binomial) link(logit) denominator(cons))
mcmc(cc burnin(10000) chain(200000)) initsprevious nopause
estimates store model i’

local i="i"+1

}

estout modell model2 model3 model4 model5 model6 model7 model8

model9 modell0 modelll modell2 modell3 modell4 modell5 modell6

modell7 modell8 modell9 model20 model21 model22 model23 model24
model25 model26 model27 model28 model29 model30 model31 model32
model33 model34 model35 model36 model37 model38 model39 model40
model41 model42 model43 model44 model45 model46 model47 model48
model49 model50 model51 model52 model53 model54 model55 model56
model57 model58 model59 model60 model61 model62 model63 model64
model65 model66 model67 model68 model69 model70 model71 model72
model73 model74 model75 model76 model77 model78 model79 model80
model81 model82 model83 model84 model85 model86 model87 model88
model89 model90 model91 model92 model93 model94 model95 model96
model97 model98 model99 modell00, cells(b se ci_l ci_u ess meanmcse bd
rl2 V[1] V[2] V[3] V[4] quantiles[2] quantiles[5] quantiles[8]) stats(N dic time
burnin chain converged), using "S:\outputl-300datasetl.xls"

ril

7. Delete irrelevant rows from each output excel sheet. Add the following

variable names as the first column. Save file.

bO_b

b0_se
b0_min95
b0_max95
b0O_ess
bO_meanmcse
b0_bd
bO_rll
bO_rl2
bO_varll
bO_varl2
bO_varl3
b0O_varl4
bO_quantile2
bO_quantile5
bO_quantile8
area_b
area_se
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area_min95
area_max95
area_ess

area_meanmcse

area_bd
area_rll
area_rl2
area_var2l
area_var2?2
area_var23
area_var24

area_quantile2
area_quantile5
area_quantile8

int_b

int_se
int_min95
int_max95
int_ess
int_meanmcse
int_bd
int_rll
int_rl2
int_var31l
int_var32
int_var33
int_var34
int_quantile2
int_quantile5
int_quantile8
N

Dic

Time

Burnin

Chain
Converged

8. Transpose rows with columns.

9. Merge the results from the 10 separate batches into one file with all
1000 models. Save excel file as ‘1000models_CASE1.xls’.
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10.0pen STATA. Click on File, Import, Excel Spreadsheet. Choose
‘1000models_CASE1.xls’ from the Browse option. And click on Import
First Row as Variable Names. Click Ok. Save the dataset as
‘1000models_ CASE1.dta’.

11.Run this code in the in the STATA file ‘1000models_ CASE1.dta’ to
obtain the various properties:

gen simulations=1000

#coverage rates based on the Wald test

gen waldClcoverageAREAVAR=1

replace waldClcoverageAREAVAR=0 if area_min95<0.3 & area_max95<0.3
replace waldClcoverageAREAVAR=0 if area_min95>0.3 & area_max95>0.3
egen totalwaldClcoverageAREAVAR=count(waldClcoverageAREAVAR) if
waldClcoverageAREAVAR==

gen waldClcoverageINTVAR=1

replace waldClcoverageINTVAR=0 if int_min95<0.3 & int_max95<0.3
replace waldClcoverageINTVAR=0 if int_min95>0.3 & int_max95>0.3
egen totalwaldClcoverageINTVAR=count(waldClcoverageINTVAR) if
waldClcoverageINTVAR==

gen waldClcoverageINTERCEPT=1

replace waldClcoverageINTERCEPT=0 if b0_min95<1.39 & b0_max95<1.39
replace waldClcoverageINTERCEPT=0 if bO_min95>1.39 & b0_max95>1.39
egen totalwaldClcoverageINTERCEPT=count(waldClcoverageINTERCEPT) if
waldClcoverageINTERCEPT==

#coverage rates based on the MCMC credible intervals

gen mcmcClcoverageAREAVAR=1

replace mcmcClcoverageAREAVAR=0 if area_quantile2<0.3 &
area_quantile8<0.3

replace mcmcClcoverageAREAVAR=0 if area_quantile2>0.3 &
area_quantile8>0.3

egen totalmcmcClcoverageAREAVAR=count(mcmcClcoverageAREAVAR) if
mcmcClcoverageAREAVAR==

gen mcmcClcoverageINTVAR=1

replace mcmcClcoverageINTVAR=0 if int_quantile2<0.3 & int_quantile8<0.3
replace mcmcClcoverageINTVAR=0 if int_quantile2>0.3 & int_quantile8>0.3
egen totalmcmcClcoveragelNTVAR=count(mcmcClcoveragelNTVAR) if
mcmcClcoverageINTVAR==

gen mcmcClcoverageINTERCEPT=1

replace mcmcClcoverageINTERCEPT=0 if bO_quantile2<1.39 &
bO_quantile8<1.39

replace mcmcClcoverageINTERCEPT=0 if bO_quantile2>1.39 &
bO_quantile8>1.39

egen totalmcmcClcoverageINTERCEPT=count(mcmcClcoverageINTERCEPT) if
mcmcClcoverageINTERCEPT==
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#percentage relative biases based on mean and median

egen meanINTERCEPT=mean(b0_b)

gen biasINTERCEPT= (bO_b -1.39)/1.39*100

egen meanbiasINTERCEPT= mean(biasINTERCEPT)

egen meanINTERCEPTquantile5Smcmc=mean(bO_quantile5)

gen biasINTERCEPTquantileSmcmc= (bO_quantile5-1.39)/1.39*100
egen meanbiasINTERCEPTquantileSmcmc =
mean(biasINTERCEPTquantile5mcmc)

egen meanAREAVAR=mean(area_b)

gen biasAREAVAR= (area_b -0.3)/0.3*100

egen meanbiasAREAVAR= mean(biasAREAVAR)

egen meanAREAVARquantileSmcmc=mean(area_quantile5)

gen biasAREAVARquantile5mcmc= (area_quantile5-0.3)/0.3*100

egen meanbiasAREAVARquantileS5mcmc = mean(biasAREAVARquantile5mcmc)

egen meanINTVAR=mean(int_b)

gen biasINTVAR= (meanINTVAR-0.3)/0.3*100

egen meanbiasINTVAR= mean(biasINTVAR)

egen meanINTVARquantileSmcmc=mean(int_quantile5)

gen biasINTVARquantileSmcmc= (int_quantile5-0.3)/0.3*100

egen meanbiasINTVARquantile5mcmc = mean(biasINTVARquantile5mcmc)

#power of the Wald test at the 95% and 99% confidence levels

gen wWaldINTERCEPT=(b0_b/b0_se)A2

gen pvalINTERCEPT=chi2tail(1, waldINTERCEPT)

gen nullHacceptedINTERCEPT95=.

replace nullHacceptedINTERCEPT95=1 if pvalINTERCEPT>0.05

egen TOTALnullHacceptedINTERCEPT95= count(nullHacceptedINTERCEPT95)
gen powerINTERCEPT95=1-(TOTALnullHacceptedINTERCEPT95/ simulations)
gen nullHacceptedINTERCEPT99=.

replace nullHacceptedINTERCEPT99=1 if pvalINTERCEPT>0.01

egen TOTALnullHacceptedINTERCEPT99= count(nullHacceptedINTERCEPT99)
gen powerINTERCEPT99=1-(TOTALnullHacceptedINTERCEPT99/ simulations)

gen waldAREAVAR=(area_b/area_se)A2

gen pvalAREAVAR=][chi2tail(1, waldAREAVAR)]/2

gen nullHacceptedAREAVAR95=.

replace nullHacceptedAREAVAR95=1 if pvalAREAVAR>0.05

egen TOTALnullHacceptedAREAVAR95= count(nullHacceptedAREAVAR95)
gen powerAREAVAR95=1-(TOTALnullHacceptedAREAVAR95/ simulations)
gen nullHacceptedAREAVAR99=.

replace nullHacceptedAREAVAR99=1 if pvalAREAVAR>0.01

egen TOTALnullHacceptedAREAVAR99= count(nullHacceptedAREAVAR99)
gen powerAREAVAR99=1-(TOTALnullHacceptedAREAVAR99/simulations)

gen waldINTVAR=(int_b/int_se)A2

gen pvalINTVAR=[chi2tail(1, waldINTVAR)]/2

gen nullHacceptedINTVAR95=.

replace nullHacceptedINTVAR95=1 if pvalINTVAR>0.05

egen TOTALnullHacceptedINTVAR95= count(nullHacceptedINTVAR95)
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gen powerINTVAR95=1-(TOTALnullHacceptedINTVAR95/ simulations)
gen nullHacceptedINTVAR99=.

replace nullHacceptedINTVAR99=1 if pvalINTVAR>0.01

egen TOTALnullHacceptedINTVAR99= count(nullHacceptedINTVAR99)
gen powerINTVAR99=1-(TOTALnullHacceptedINTVAR99/simulations)

# mean square error
gen mseINTERCEPT=(b0_b -1.39)A2
egen MEANmMseINTERCEPT=mean(mseINTERCEPT)

gen mseAREAVAR=(area_b -0.3)A2
egen MEANmseAREAVAR=mean(mseAREAVAR)

gen mseINTVAR=(int_b -0.3)A2
egen MEANmseINTAVAR=mean(mseINTVAR)

#correlation of the two parameter estimators
egen MEANcovarAREAINT=mean(area_var23)
gen corrAREAINT= area_var23/(sqrt( area_var22)*sqrt( int_var33))
egen MEANcorrAREAINT=mean(corrAREAINT)

#% of times the values obtained for the Brooks-Draper and the Lower and
Upper Bound of the Raftery-Lewis diagnostics are less than the iteration length
specified

gen bdacceptedINTERCEPT=.

replace bdacceptedINTERCEPT =1 if bO_bd<200001

egen TOTALbdacceptedINTERCEPT = count(bdacceptedINTERCEPT)

gen bdacceptedAREAVAR=.
replace bdacceptedAREAVAR =1 if area_bd<200001
egen TOTALbdacceptedAREAVAR = count(bdacceptedAREAVAR)

gen bdacceptedINTVAR=.
replace bdacceptedINTVAR =1 if int_bd<200001
egen TOTALbdacceptedINTVAR = count(bdacceptedINTVAR)

gen rllacceptedINTERCEPT=.
replace rllacceptedINTERCEPT =1 if bO_rl1<200001
egen TOTALrllacceptedINTERCEPT = count(rllacceptedINTERCEPT)

gen rllacceptedAREAVAR=.
replace rllacceptedAREAVAR =1 if area_rl1<200001
egen TOTALrllacceptedAREAVAR = count(rllacceptedAREAVAR)

gen rllacceptedINTVAR=.
replace rllacceptedINTVAR =1 if int_rl1<200001
egen TOTALrllacceptedINTVAR = count(rllacceptedINTVAR)

gen rl2acceptedINTERCEPT=.

replace rl2acceptedINTERCEPT =1 if b0_rl2<200001
egen TOTALrl2acceptedINTERCEPT = count(rl2acceptedINTERCEPT)
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gen rl2acceptedAREAVAR=.
replace rl2acceptedAREAVAR =1 if area_rl2<200001
egen TOTALrl2acceptedAREAVAR = count(rl2acceptedAREAVAR)

gen rl2acceptedINTVAR=.
replace rl2acceptedINTVAR =1 if int_rl2<200001
egen TOTALrl2acceptedINTVAR = count(rl2acceptedINTVAR)

#mean DIC
egen MEANdic=mean(dic)

#mean estimation running time
egen MEANtime=mean(time)

# monte carlo standard errors and respective confidence intervals
egen MEANmeanmcseINTERCEPT=mean(bO_meanmcse)

egen MEANmeanmcseAREA=mean(area_meanmcse)

egen MEANmeanmcselNT=mean(int_meanmcse)

gen MINmceINTERCEPT= bO_b - ( bO_se/sqrt(1000))

gen MAXmcelNTERCEPT= bO_b + ( bO_se/sqrt(1000))
egen meanMAXmceINTERCEPT=mean(MAXmceINTERCEPT)
egen meanMINmceINTERCEPT=mean(MINmcelINTERCEPT)
gen MINmceAREA= area_b - (area_se/sqrt(1000))

gen MAXmceAREA= area_b + (area_se/sqrt(1000))

egen meanMAXmceAREA=mean(MAXmceAREA)

egen meanMINmceAREA=mean(MINmceAREA)

gen MINmceINT= int_b - (int_se/sqrt(1000))
gen MAXmcelNT= int_b + (int_se/sqrt(1000))
egen meanMAXmcelNT=mean(MAXmceINT)
egen meanMINmceINT=mean(MINmceINT)

#standard errors

egen meanINTERCEPTse=mean(b0_se)
egen meanAREAVARse=mean(area_se)
egen meanINTVARse=mean(int_se)
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VI.4. Appendix D - Relative Percentage Bias for
Cross-Classified Models

The percentage relative bias rates based on the mean and the median values
are presented below for the scenarios considered in the main paper. This data
shows that generally the bias values obtained for the two measures are similar.
One particular exception is the improved accuracy of estimators based on the
median for scenarios with equal numbers of areas and interviewers and small
sample sizes. These scenarios are in red text.

Percentage Relative Bias based on the Mean and Median Values for the Area and
Interviewers Variance Estimators

CASE Mean Median Mean Median N NA N 6f 62 II
Area Area Int Int

1 -3.2 -4.9 6.8 4.0 5760 120 240 03 03 08
2a 2.0 -0.1 1.3 -0.2 5760 120 240 03 03 038
2b 2.2 0.1 0.6 -0.8 5760 120 240 03 03 08
2c 2.4 0.3 -0.6 -2.0 5760 120 240 03 03 08
3a 2.4 0.3 0.1 -1.3 5760 120 240 03 03 08
3b 2.0 0.0 0.3 -1.1 5760 120 240 03 03 08
3c 1.2 -0.8 0.8 -0.6 5760 120 240 03 03 08
3d 2.2 0.2 1.0 -0.4 5760 120 240 03 03 08
3e 1.8 -0.2 0.1 -1.2 5760 120 240 03 03 08
3f 2.7 0.7 1.2 -0.1 5760 120 240 03 03 08
3h 1.9 -0.1 -0.7 -2.0 5760 120 240 03 03 08
4a 1.7 -0.2 0.7 -0.6 5760 120 240 03 03 08
4b 1.6 -0.4 0.6 -0.8 5760 120 240 03 03 08
4c 1.3 -0.6 0.6 -0.8 5760 120 240 03 03 08
5a 1.7 -0.2 1.0 -0.4 5760 120 240 03 03 08
5b 2.2 0.3 0.0 -1.3 5760 120 240 03 03 08
5c 2.3 0.4 -0.2 -1.5 5760 120 240 03 03 08
6a 1.1 -0.9 0.7 -0.6 5760 120 240 03 03 08
6b 1.8 -0.1 0.4 -0.9 5760 120 240 03 03 08
6¢ 1.7 -0.2 0.2 -1.1 5760 120 240 03 03 08
1 -6.7 -11.1 11.2 5.9 2880 60 120 03 03 08
2a 2.6 -1.8 1.9 -1.3 2880 60 120 03 03 08
2b 4.2 -0.2 1.3 -1.7 2880 60 120 03 03 08
2c 2.9 -1.3 2.4 -0.5 2880 60 120 03 03 08
3a 4.2 0.0 1.2 -1.6 2880 60 120 03 03 08
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3b
3c
3d
3e
3f
3h
4a
4b
4c
5a
5b
5c
6a
6b
6¢

2a
2b
2c
3a
3b
3c
3d
3e
3f
3h
43
4b
4c
5a
5b
5c
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6b
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2a
2C
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2.6
3.5
3.6
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3.0
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3.8
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3.1
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0.8
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3e
3h
4a
4c
5a
5c
6a
6C

2a
2c
3a
3e
3h
43
4c
5a
5c
6a
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-1.4
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-1.7
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2.9
-0.3
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-0.5
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-0.5

0.3
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-0.2

0.3

6.3
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5a
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120
120
120
120

120
120
120
120
120
120
120
120
120
120
120
120

120
120
120
120
120
120
120
120
120
120
120
120

120
120
120
120
120
120
120
120
120
120
120
120
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0.4
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0.4
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0.3
0.3
0.3
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0.4
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0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
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0.3
0.3
0.3
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0.3
0.3
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0.3
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0.4
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0.4
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0.4
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0.4
0.4
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0.3
0.3
0.3
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0.3
0.3
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0.3

0.2
0.2
0.2
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0.2
0.2
0.2
0.2
0.2

0.8
0.8
0.8
0.8

0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8

0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
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0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
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1 -10.9 -13.4 7.8 5.3 5760 120 240 0.2 03 0.8
2a -0.8 -3.3 1.4 0.0 5760 120 240 02 03 0.8
2c 0.1 -2.3 0.9 -0.5 5760 120 240 02 03 0.8
3a 0.3 -2.1 0.9 -0.5 5760 120 240 0.2 03 0.8
3e -0.2 -2.5 1.0 -0.3 5760 120 240 02 03 0.8
3h -0.5 -2.8 1.1 -0.2 5760 120 240 0.2 03 0.8
4a 0.6 -1.6 0.6 -0.7 5760 120 240 0.2 03 0.8
4c 0.2 -2.1 0.8 -0.5 5760 120 240 0.2 03 0.8
5a 0.2 -2.1 0.5 -0.9 5760 120 240 0.2 03 0.8
5c 0.2 -2.0 -0.2 -1.5 5760 120 240 0.2 03 0.8
6a 1.6 -0.6 -0.2 -1.5 5760 120 240 0.2 03 0.8
6¢C 0.7 -1.5 0.6 -0.7 5760 120 240 0.2 03 0.8
1 2.3 -4.7 3.6 -2.6 5760 120 120 03 03 0.8
2 3.6 1.1 1.5 -1.0 5760 120 120 03 03 0.8
3 1.6 -0.7 1.0 -1.4 5760 120 120 03 03 0.8
4 1.7 -0.3 1.9 -0.2 5760 120 120 03 03 0.8
5 2.0 0.0 14 -0.7 5760 120 120 03 03 0.8
6 1.6 -0.4 1.9 0.0 5760 120 120 03 03 0.8
1 4.4 -7.0 5.6 -4.4 2880 60 60 03 03 038
2 4.0 -0.9 5.0 0.0 2880 60 60 03 03 038
3 3.1 -1.6 4.3 -0.6 2880 60 60 03 03 0.8
4 1.5 -2.7 4.2 0.0 2880 60 60 03 03 0.8
5 2.6 -1.5 4.9 0.8 2880 60 60 03 03 038
6 3.8 -0.3 3.0 -1.0 2880 60 60 03 03 0.8
E 3.6 -0.2 3.9 0.2 2880 60 60 03 03 0.8
1 12.5 -6.5 11.3 -8.7 1440 30 30 03 03 0.8
2 10.8 0.1 9.0 -1.6 1440 30 30 03 03 0.8
3 10.5 0.4 5.3 -5.2 1440 30 30 03 03 0.8
4 9.8 0.6 9.7 0.5 1440 30 30 03 03 0.8
5 8.6 -0.2 8.3 -0.4 1440 30 30 03 03 0.8
6 10.3 1.6 6.7 -1.8 1440 30 30 03 03 0.8
E 9.1 1.0 8.2 0.2 1440 30 30 03 03 0.8
E represents the Extreme area/interviewer allocations
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VL.5. Appendix E - Confidence Interval Coverage
Rates for Cross-Classified Models

The confidence interval coverage rates based on the Wald and the coverage
rates based on the MCMC credible intervals are presented below for the
scenarios considered in the main paper. This data shows that there is lack of
evidence that MCMC quantiles perform better than the Wald asymptotic normal
in terms of the variance estimators coverage properties.

Wald and MCMC Credible Quantiles Confidence Interval Coverage Rates for the
Area and Interviewers Variance Estimators

CASE Wald MCMC Wald MCMC N NA N o2 o2 m

Area Area Int Int
1 91.4 91.8 93.8 93.0 5760 120 240 03 03 0.8
2a 94.5 95.1 95.0 949 5760 120 240 03 03 0.8
2b 96.0 95.7 92.4 92.7 5760 120 240 03 03 0.8
2c 95.1 95.1 94.1 94.3 5760 120 240 03 03 0.8
3a 93.8 94.3 94.7 94.6 5760 120 240 03 03 0.8
3b 95.0 95.1 94.0 94.3 5760 120 240 03 03 0.8
3c 94.6 95.3 93.4 93.4 5760 120 240 03 03 0.8
3d 95.9 95.5 93.4 94.4 5760 120 240 03 03 0.8
3e 94.6 94.9 95.0 94.7 5760 120 240 03 03 0.8
3f 94.8 94.6 93.6 93.7 5760 120 240 03 03 0.8
3h 93.9 94.2 94.0 94,5 5760 120 240 03 03 0.8
4a 95.2 93.8 94.5 95.3 5760 120 240 03 03 0.8
4b 94.4 94.0 95.6 95.7 5760 120 240 03 03 0.8
4c 94.1 94.1 95.0 95.3 5760 120 240 03 03 0.8
5a 95.2 94.1 94.8 94.6 5760 120 240 03 03 0.8
5b 95.2 95.1 94.7 95.6 5760 120 240 03 03 0.8
5c 95.5 95.2 94.8 95.0 5760 120 240 03 03 0.8
6a 95.1 94.6 95.1 95.1 5760 120 240 03 03 0.8
6b 96.0 95.6 93.9 93.6 5760 120 240 03 03 0.8
6¢C 94.9 95.1 95.2 95.0 5760 120 240 03 03 0.8
1 90.1 91.8 93.6 93.0 2880 60 120 03 03 038
2a 92.9 93.2 93.5 93.9 2880 60 120 03 03 038
2b 94.0 93.9 94.1 949 2880 60 120 03 03 038
2c 93.3 93.7 92.8 93.9 2880 60 120 03 03 038
3a 92.8 92.3 94.3 94.5 2880 60 120 03 03 038
3b 94.1 94.1 94.3 94.4 2880 60 120 03 03 038
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3c
3d
3e
3f
3h
4a
4b
4c
5a
5b
5c
6a
6b
6¢

2a
2b
2c
3a
3b
3c
3d
3e
3f
3h
43
4b
4c
5a
5b
5c
6a
6b
6c

2a
2c
3a
3e

94.1
93.0
93.7
95.0
94.1
94.5
94.0
94.5
94.8
94.3
94.1
93.6
93.9
94.9
94.0

87.7
91.2
92.9
92.6
93.7
92.7
92.8
92.7
92.4
93.3
93.4
92.9
92.3
92.7
94.1
93.1
92.9
93.5
93.5
93.7
91.8

91.5
94.2
94.9
94.3
94.6

94.0
94.0
94.1
93.8
94.5
94.3
94.7
93.8
94.7
93.3
93.6
93.3
94.1
94.4
91.4

91.6
92.0
93.4
93.6
94.6
93.4
93.0
93.9
93.7
93.6
93.4
93.3
92.1
92.5
94.7
91.7
93.1
93.4
94.1
94.6
90.0

92.0
94.4
94.4
94.3
94.6

93.8
94.1
94.4
95.6
93.1
93.0
93.5
95.5
93.6
93.8
94.9
94.6
94.0
94.5
93.8

91.0
91.1
91.8
91.0
92.5
92.7
89.9
91.5
91.1
92.0
91.2
91.2
91.3
92.6
92.7
93.6
91.8
91.5
92.0
92.5
92.1

93.7
93.1
93.0
93.2
94.3

94.1
94.5
94.7
94.8
93.7
94.3
93.7
95.8
94.1
94.4
94.7
94.6
94.9
94.4
93.0

91.0
92.9
92.6
92.2
94.3
92.8
90.7
93.0
93.4
92.1
92.6
92.6
93.9
94.3
93.8
94.0
92.8
92.8
93.3
94.3
90.0

94.3
93.9
93.9
93.8
94.9

2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880

1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440

5760
5760
5760
5760
5760

60
60
60
60
60
60
60
60
60
60
60
60
60
60
60

30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30

120
120
120
120
120

120
120
120
120
120
120
120
120
120
120
120
120
120
120
120

60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60

240
240
240
240
240

0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3

0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3

0.3
0.3
0.3
0.3
0.3

0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3

0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3

0.3
0.3
0.3
0.3
0.3

0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8

0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8

0.9
0.9
0.9
0.9
0.9
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3h
4a
4c
5a
5c
6a
6C

2a
2c
3a
3e
3h
43
4c
5a
5c
6a
6C

2a
2c
3a
3e
3h
4a
4c
5a
5c
6a
6C

2a
2c
3a
3e
3h
4a
4c
5a

94.9
94.1
95.0
94.7
94.9
94.2
93.7

93.8
95.1
94.6
97.5
94.3
95.1
95.4
96.2
95.9
94.8
95.8
95.2

91.3
94.3
94.2
94.2
94.1
94.1
95.1
93.5
94.7
93.6
93.6
93.7

94.1
94.3
96.0
95.8
94.4
93.7
95.4
96.3
94.6

94.5
94.0
95.0
95.7
95.7
94.4
93.6

93.8
94.1
94.8
96.8
94.8
95.0
95.3
96.0
95.1
94.1
95.8
94.9

92.4
94.7
93.2
94.8
94.6
94.4
94.3
93.7
95.0
93.9
93.3
93.7

94.0
93.7
95.1
95.3
94.1
94.2
94.7
95.2
94.2

95.0
93.7
94.7
93.9
94.5
92.8
95.0

95.4
93.6
95.2
95.7
93.9
95.1
94.8
94.8
94.7
94.8
94.5
94.8

94.3
93.8
94.6
93.6
93.2
95.6
94.4
93.8
94.0
94.7
93.7
95.2

95.7
94.7
93.7
95.5
95.9
94.0
94.2
94.3
94.7

94.9
93.6
94.2
94.2
94.4
93.2
94.8

93.5
94.3
94.3
95.0
94.6
94.9
94.6
94.9
94.7
95.0
95.0
95.1

93.5
94.1
94.3
93.2
93.4
95.5
94.4
94.4
94.8
95.0
94.2
95.4

95.3
94.5
94.0
95.0
95.9
94.6
93.8
94.6
94.7

5760
5760
5760
5760
5760
5760
5760

5760
5760
5760
5760
5760
5760
5760
5760
5760
5760
5760
5760

5760
5760
5760
5760
5760
5760
5760
5760
5760
5760
5760
5760

5760
5760
5760
5760
5760
5760
5760
5760
5760

120
120
120
120
120
120
120

120
120
120
120
120
120
120
120
120
120
120
120

120
120
120
120
120
120
120
120
120
120
120
120

120
120
120
120
120
120
120
120
120

240
240
240
240
240
240
240

240
240
240
240
240
240
240
240
240
240
240
240

240
240
240
240
240
240
240
240
240
240
240
240

240
240
240
240
240
240
240
240
240

0.3
0.3
0.3
0.3
0.3
0.3
0.3

0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3

0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2

0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4

0.3
0.3
0.3
0.3
0.3
0.3
0.3

0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3

0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2

0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4

0.9
0.9
0.9
0.9
0.9
0.9
0.9

0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7

0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8

0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
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5c
6a
6c

2a
2c
3a
3e
3h
4a
4c
5a
5c
6a
6¢

2a
2c
3a
3e
3h
43
4c
5a
5c
6a
6c

2a
2c
3a
3e
3h
4a
4c
5a
5c
6a
6c

95.1
94.6
95.6

91.6
95.0
93.3
94.4
94.8
94.2
95.8
94.9
94.7
94.1
94.3
95.9

95.4
94.6
95.8
95.2
96.3
96.0
94.6
94.3
95.2
95.3
94.7
95.8

95.2
94.8
95.4
95.4
95.4
93.7
94.8
94.2
94.4
96.0
94.6
95.7

94.3
94.6
94.6

93.3
95.0
94.1
94.6
95.1
95.4
94.6
95.0
94.3
95.0
94.3
95.8

94.9
95.4
95.4
95.8
95.9
95.5
94.2
95.2
95.4
95.5
95.3
95.0

93.9
95.0
94.6
95.5
95.2
93.2
94.5
93.6
94.6
95.5
94.4
95.2

95.4
94.0
95.3

93.9
95.0
93.6
93.7
95.2
94.9
94.3
95.5
94.9
94.1
94.2
94.2

93.9
93.4
94.9
94.9
93.9
94.4
95.0
95.4
94.4
94.0
93.9
94.8

93.5
94.3
93.7
94.0
93.3
92.2
93.2
94.7
94.3
93.2
94.6
94.2

95.2
94.0
95.7

921
94.7
93.8
94.1
94.9
95.5
94.4
94.7
93.9
93.5
95.1
94.7

94.5
94.0
94.1
95.0
94.4
94.3
94.7
95.4
94.7
94.9
93.8
94.5

94.1
94.7
94.0
95.0
93.9
93.9
93.3
94.5
95.2
93.6
95.6
94.4

5760
5760
5760

5760
5760
5760
5760
5760
5760
5760
5760
5760
5760
5760
5760

5760
5760
5760
5760
5760
5760
5760
5760
5760
5760
5760
5760

5760
5760
5760
5760
5760
5760
5760
5760
5760
5760
5760
5760

120
120
120

120
120
120
120
120
120
120
120
120
120
120
120

120
120
120
120
120
120
120
120
120
120
120
120

120
120
120
120
120
120
120
120
120
120
120
120

240
240
240

240
240
240
240
240
240
240
240
240
240
240
240

240
240
240
240
240
240
240
240
240
240
240
240

240
240
240
240
240
240
240
240
240
240
240
240

0.4
0.4
0.4

0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3

0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4

0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3

0.4
0.4
0.4

0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4

0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3

0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2

0.8
0.8
0.8

0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8

0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8

0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
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1 87.0 90.6 94.0 93.9 5760 120 240 02 03 038
2a 92.0 93.0 93.7 94.7 5760 120 240 02 03 038
2c 93.3 93.1 93.9 93.8 5760 120 240 0.2 03 038
3a 94.6 94.9 94.9 94.1 5760 120 240 0.2 03 0.8
3e 93.3 93.9 93.6 92.5 5760 120 240 0.2 03 0.8
3h 93.3 93.8 93.8 94.5 5760 120 240 02 03 0.8
4a 96.1 95.9 95.2 94.8 5760 120 240 0.2 03 0.8
4c 94.6 94.9 95.3 95.9 5760 120 240 02 03 0.8
5a 93.8 94.3 94.5 94.8 5760 120 240 0.2 03 0.8
5c 92.9 94.1 93.3 94.3 5760 120 240 0.2 03 0.8
6a 94.2 94.5 92.5 92.8 5760 120 240 0.2 03 0.8
6¢C 92.5 93.7 93.0 93.7 5760 120 240 0.2 03 0.8
1 99.7 99.7 99.7 99.7 5760 120 120 03 03 0.8
2 96.0 95.0 93.4 95.1 5760 120 120 03 03 0.8
3 94.7 94.8 93.7 94,5 5760 120 120 03 03 0.8
4 95.4 95.0 94.0 94.6 5760 120 120 03 03 0.8
5 95.4 96.2 94.2 94.8 5760 120 120 03 03 0.8
6 95.2 95.3 94.2 94.3 5760 120 120 03 03 0.8
1 100.0 100.0 99.9 100.0 2880 60 60 03 03 0.8
2 93.3 92.6 94.3 94.2 2880 60 60 03 03 0.8
3 94.9 95.4 94.4 93.3 2880 60 60 03 03 0.8
4 93.5 94.1 94.3 94.7 2880 60 60 03 03 0.8
5 94.2 94.9 95.2 94.7 2880 60 60 03 03 0.8
6 93.1 93.6 94.4 94.1 2880 60 60 03 03 0.8
E 94.1 94.5 94.2 94.9 2880 60 60 03 03 0.8
1 99.7 100.0 99.7 100.0 1440 30 30 03 03 0.8
2 92.0 92.8 91.3 93.1 1440 30 30 03 03 0.8
3 92.5 92.2 89.2 91.3 1440 30 30 03 03 0.8
4 94.1 94.8 93.1 93.3 1440 30 30 03 03 0.8
5 92.5 92.8 93.0 92.9 1440 30 30 03 03 0.8
6 93.6 93.9 91.8 92.8 1440 30 30 03 03 0.8
E 94.0 94.1 93.7 92.2 1440 30 30 03 03 0.8
E represents the Extreme area/interviewer allocations
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VI.6. Appendix F - Data Generation for the Multiple
Membership Models

The data generation procedure defined below is specific to the scenario with
these factor specifications: N=5760, N{,=240, 24 cases per interviewer at the
previous wave, 62=0.3, n=0.8 and a Type A change profile.

1. Create the interviewer effects in R and save them in an excel file.
#generate the interviewer random effects for B times and save them in an excel
file
#create a random normal variable 'u' of size k with mean 0 and standard
deviation equal to the square root of the variance sigmau?2
#B is the number of simulations
#k is the number of interviewers
#sigmau?2 is the interviewer-level variance
sim <- function(B=1000, k=240, sigmau2=0.3)

{
z1<-NULL
for(i in 1:B)
{

u <- rnorm(k,0,sqrt(sigmau?2))
z1l<-cbind(z1,u)

}

z1

}

data<-as.data.frame(sim())

write.csv(data, file="E: InterviewerEffects.csv")
write.table(data, file="E:InterviewerEffects.txt")

2. Delete the first row and first column from the excel file
‘InterviewerEffects.csv’ before using this file in the next step.

3. Generate the wave 1 interviewer allocations and save them in an excel
sheet.

sim <- function(k=240, m=24)
{
x1<-NULL
clid <- rep(1l:k,rep(m,k))
x1l<-cbhind(x1,clid)
}
data<-as.data.frame(sim())
write.csv(data, file="E:INTid1l.csv")
write.table(data, file="E:INTid1.txt")
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4. Delete the first row and first column from the excel file ‘INTidW1.csv’
before using this file in the next step.

5. Generate the probability of a case experiencing interviewer change
between wave 1 and wave 2.

#Probability is the ratio of cases experiencing change to the ratio of cases
experiencing interviewer continuity for each interviewer
#m is the number of cases per interviewer at wave 1
#t is the number of cases to be selected from each wave 1 interviewer caseload
for re-allocation to a different interviewer at wave 2
Int.Change <- function(Probability=0.5, k=240, t=12, m=24)
{

Vect.Prob <- rep(Probability, times=m)

Selected.Int.All <-9

Selected.Int <-rep(2, times=m)

for (i in (1:k))

{

while (max(Selected.Int) >= 2)
{
Selected.Int <- rmultinom(1, t, Vect.Prob)
}

Selected.Int.All <- c(Selected.Int.All,Selected.Int)
Selected.Int  <- rep(2, times=m)
}
as.matrix(Selected.Int.All[-1], ncol=1)
}
IntChng <-Int.Change()
data<-as.data.frame(IntChng)
write.csv(data, file="E:IntChng.csv")
write.table(data, file="E:IntChng.txt")

6. Delete the first row and first column from the excel file ‘IntChng.csv’
before using this file in the next step.

7. Generate the wave 2 interviewer allocations and save them in an excel
sheet.
sim2 <- function(k=240, t=12, m=24) {
x3<-NULL
clid <- rep(1l:k,rep(m,k))
IntChng <- as.data.frame(read.csv("E:IntChng.csv", sep=",", header=FALSE))
clid3 <- rep(1:k, rep(t, k))
clid2 <- clid
clid2[IntChng==1] <- sample(clid3, t*k, replace=F)
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x3<-cbind(x3,clid2)

}

data<-as.data.frame(sim2())
write.csv(data, file="E:INTid2.csv")
write.table(data, file="E:INTid2.txt")

8. Delete the first row and first column from the excel file ‘INTid2.csv’
before using this file in the next step.

9. Simulate the dataset in R and save in an excel sheet.
#create a random variable of size n of Os and 1s (as.numeric) which gives an
overall mean of pi
#n is the sample size
#pi is the overall probability of response
myrbin <- function(n, pi){as.numeric(runif(n) < pi)}

# Simulate B samples from a multiple membership model with Ip = betaO +
wl*y; + w2*ujp and replicate for B times the myrbin function

#work out the regression line Ip by adding to the intercept betaO the weighted
error terms of the previous and current wave interviewers corresponding to the
clid and clid2
#w1l and w2 are the model weights
#REALw1 and REALw?2 are the real weights
siml <- function(B=1000, k=240, m=24, beta0 = 1.39, sigmau2=0.3,
wl=0.5, w2=0.5, REALwW1=0.5, REALw2=0.5)
{
y <- numeric(k*m)
interviewerW1EFFECT<- numeric(k*m)
interviewerW2EFFECT <- numeric(k*m)
clid <- as.list(read.csv("E:INTid1l.csv", sep="", header=FALSE))
clid <- clid[[1]]
clid2 <- as.list(read.csv("E:INTid2.csv", sep="", header=FALSE))
clid2 <-clid2 [[1]]
weightl <- rep(wl, m*k)
weight2 <- rep(w2, m*k)
weightl[clid == clid2] <-1
weight2[clid == clid2] <- 0
REALwW1 <- rep(REALwW1, m*k)
REALW?2 <- rep(REALW2, m*k)
REALwl[clid== clid2] <- 1
REALw2[clid == clid2] <- 0
ul<-as.data.frame(read.csv("E: InterviewerEffects.csv",
sep=",", header=FALSE))
for(i in 1:B)
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{
u <-ull,il
Ip <- betaO + (REALw1 * u[clid]) + (REALwW2 *
ulclid2])
ppi <- exp(lp) /(1+exp(lp))
y <- cbind(y, myrbin(h=k*m, pi=ppi))
interviewer1EFFECT <-cbind(interviewer1lEFFECT,u)
interviewer2EFFECT <-cbind(interviewer2EFFECT,u)
}
cbind(y[,-1], clid, clid2, weightl, weight2, REALw1, REALw2,
interviewerlEFFECT][clid,-1], interviewer2EFFECT[clid2,-1])
}
data <- as.data.frame(sim1())
write.csv(data, file="E: dataset_realwl_0.5realw2_0.5-
_modelwl_0.5_modelw2_0.5.csv")

10. Delete the first column from the excel file
‘dataset_realwl_0.5realw2_0.5_modelwl_0.5_modelw2_0.5.csv’ before
using this file in the next step.

11. Open STATA. Click on File, Import, Text data created by a spreadsheet,
Browse. Select ‘Comma Separated Values’ for file type and select
‘dataset_realwl_0.5realw2_0.5_modelw1_0.5_modelw2_0.5.csv’. Click
OK. Save as ‘dataset_realwl_0.5realw2_0.5-
_modelwl_0.5_modelw2_0.5.dta’.

12. Run the code below on the STATA datafile ‘datatsetl.dta’. This changes
the interviewer code for the wave 2 interviewer to 1 for cases with
interviewer continuity, required for MLwiN to run MM models. This sorts
the data by the two interviewer identification classifications. This is
important for running models in MLwiN. A serial humber is created for
each case. A variable cons, which is simply a string of 1s, is also created.

replace clid2=0 if clid==clid2
sort clid clid?2

generate serialno=_n
generate cons=1

set matsize 11000

13.For the same dataset, apply different model weights (not the real
weights). Save the new STATA file with the appropriate name (change
model weights in title). To change the model weights the following code
is run (for this example model weights are specified as 0.9 and 0.1)
replace weight1=0.9 if weight1==0.5
replace weight2=0.1 if weight2==0.5
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VI.7. Appendix G - Procedure for Generating
Interviewer Allocations under Different Change Profile
Types for the Multiple Membership Models

The previous wave 1 interviewer allocations are constant across all profile
types. The code specified in point 3 of Appendix F should be used for all
profile type scenarios. The R code below generates the wave 2 interviewer
allocations. The data generation procedure defined below is specific to the
scenario with these factor specifications: N=5760, N{)=240, 24 cases per

interviewer at the previous wave, 02=0.3, n=0.8.

e Type A

Int.Change <- function(Probability=0.5, Num.Ints=240,
Num.CasesToBeSelectedPerint=12, Num.CasesPerint=24)
{
Vect.Prob <- rep(Probability, times=Num.CasesPeriInt)
Selected.Int.All <-9
Selected.Int <-rep(2, times=Num.CasesPerInt)
for (i in (1:Num.Ints))

{

while (max(Selected.Int) >= 2)
{
Selected.Int <- rmultinom(1, Num.CasesToBeSelectedPerInt, Vect.Prob)
}

Selected.Int.All <- c(Selected.Int.All,Selected.Int)
Selected.Int  <- rep(2, times=Num.CasesPerint)
}
as.matrix(Selected.Int.All[-1], ncol=1)
}
IntChng <-Int.Change()
data<-as.data.frame(IntChng)
write.csv(data, file="E:IntChng.csv")
write.table(data, file="E:IntChng.txt")

sim2 <- function(Num.Ints=240, Num.CasesToBeSelectedPerint=12,
Num.CasesToBeSelectedPerint=24)

{
x3<-NULL
clid <- rep(1:Num.Ints,rep(Num.CasesToBeSelectedPerint,Num.Ints))
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IntChng <- as.data.frame(read.csv("E:IntChng.csv", sep=",", header=FALSE))
clid3 <- rep(1:Num.Ints, rep(Num.CasesToBeSelectedPerint, Num.Ints))

clid2 <- clid

clid2[IntChng==1] <- sample(clid3, Num.CasesToBeSelectedPerint*Num.Ints,
replace=F)

x3<-cbind(x3,clid2)

}

data<-as.data.frame(sim2())

write.csv(data, file="E:CLIDW2.csv")

write.table(data, file="E:CLIDW2.txt")

e TypeB

Int.Change <- function(Probability=0.5, Num.Ints=240,
Num.CasesToBeSelectedPerint=12, Num.CasesPerint=24)
{
Vect.Prob <- rep(Probability, times=Num.CasesPerInt)
Selected.Int.All <-9
Selected.Int <-rep(2, times=Num.CasesPerint)
for (i in (1:Num.Ints))

{

while (max(Selected.Int) >= 2)
{
Selected.Int <- rmultinom(1, Num.CasesToBeSelectedPerInt, Vect.Prob)
}

Selected.Int.All <- c(Selected.Int.All,Selected.Int)
Selected.Int  <- rep(2, times=Num.CasesPerint)
}
as.matrix(Selected.Int.All[-1], ncol=1)
}
IntChng <-Int.Change()
data<-as.data.frame(IntChng)
write.csv(data, file="E:IntChng.csv")
write.table(data, file="E:IntChng.txt")

sim2 <- function(Num.Ints=240, Num.CasesToBeSelectedPerint=12,
Num.CasesToBeSelectedPerint=24)

{

x3<-NULL

clid <- rep(1:Num.Ints,rep(Num.CasesToBeSelectedPerint,Num.Ints))
IntChng <- as.data.frame(read.csv("E:IntChng.csv", sep=",", header=FALSE))
clid3 <- rep(1:Num.Ints, rep(Num.CasesToBeSelectedPerint, Num.Ints))
clid4 <-clid3 + 240

clid2 <- clid
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clid2[IntChng==1] <- sample(clid4, Num.CasesToBeSelectedPerInt*Num.Ints,

replace=F)

x3<-cbind(x3,clid2)

}

data<-as.data.frame(sim2())
write.csv(data, file="E:CLIDW2.csv")
write.table(data, file="E:CLIDW?2.txt")

e TypeC

IntChng<-function(NolntsSelected=Drops, Drops=120, Num.Ints=240,

Num.CasesPerint=24, TotalN=5760)
{
vector<-c(rep(0,Num.ints))
selected<-sample.int(Num.Ints,NolntsSelected)
vector[selected]<-1
vectorFinal<-rep(0,Num.Ints*Num.CasesPerint)
vectorFinalld<-rep(0,Num.Ints*Num.CasesPerInt)
for (i in 1:Num.Ints){
if (vector[i]l==1) {
j<-(i-1)*Num.CasesPerlnt+1
vectorFinal[j:(j+Num.CasesPerInt-1)]<-1
}
Num.Ints<-(i-1)*Num.CasesPerint+1
vectorFinalld[Num.Ints:(Num.Ints+Num.CasesPerlnt-1)]<-i
}
matrixFinal<-cbind(vectorFinalld,vectorFinal)
matrixFinal
} data<-as.data.frame(IntChng())
write.csv(data, file="E:IntChng.csv")

sim2 <- function(Num.Ints=240, Num.CasesPerInt =24)
{
clid <- rep(1:Num.Ints,rep(Num.CasesPerIint,Num.Ints))
fl<-IntChng()
pooll <- fl[which(fl[,2]==0)]
pool2<-pooll[tduplicated(pooll)]
pool <-rep(pool2, (Drops* Num.CasesPerInt)/(Num.Ints-Drops) )
x2<-cbind(fl,clid)
for (j in L:(Num.Ints* Num.CasesPerint)}{
if (x2[j,2]==1}
if (length(pool)<2) {tmp<-pool
x2[j,3]1<-tmp} else{
tmp<-sample(pool,1)
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x2[j,3]<-tmp
pool <- pool[-match(tmp, pool)] }
}
}
x2[order(x2[,11,x2[,3D),]
}
data<-as.data.frame(sim2())
write.csv(data, file="E: CLIDW2.csv")

e TypeD

IntChng<-function(NolntsSelected=Drops, Drops=120, Num.Ints=240,
Num.CasesPerlnt=24, TotalN=5760)
{
vector<-c(rep(0,Num.Ints))
selected<-sample.int(Num.Ints,NolntsSelected)
vector[selected]<-1
vectorFinal<-rep(0,Num.Ints*Num.CasesPerint)
vectorFinalld<-rep(0,Num.Ints*Num.CasesPerInt)
for (i in 1:Num.Ints){
if (vector[i]l==1) {
j<-(i-1)*Num.CasesPerlnt+1
vectorFinal[j:(j+Num.CasesPerInt-1)]<-1
}
Num.Ints<-(i-1)*Num.CasesPerint+1
vectorFinalld[Num.Ints:(Num.Ints+Num.CasesPerInt-1)]<-i
}
matrixFinal<-cbind(vectorFinalld,vectorFinal)
matrixFinal
}
data<-as.data.frame(IntChng())
write.csv(data, file="E:IntChng.csv")

sim2 <- function(Drops=120, Num.Ints=240, Num.CasesPerInt =24)

{

x3<-NULL

clid <- rep(1:Num.Ints,rep(Num.CasesPerint,Num.Ints))

IntChng <- as.data.frame(read.csv("E:IntChng.csv", sep=",", header=FALSE))
clid3 <- rep(1:Drops, rep(Num.CasesPerint, Drops))

clid4 <-clid3 + 240

clid2 <- clid

clid2[IntChng==1] <- sample(clid4, Drops* Num.CasesPeriInt, replace=F)
x3<-chind(x3,clid2)

}

238



data<-as.data.frame(sim2())
write.csv(data, file="E:CLIDW2.csv")

e TypeE

IntChng<-function(NolntsSelected=Drops, Drops=120, Num.Ints=240,
Num.CasesPerint=24, TotalN=5760)
{
vector<-c(rep(0,Num.ints))
selected<-sample.int(Num.Ints,NolntsSelected)
vector[selected]<-1
vectorFinal<-rep(0,Num.Ints*Num.CasesPerint)
vectorFinalld<-rep(0,Num.Ints*Num.CasesPerInt)
for (i in 1:Num.Ints){
if (vector[i]l==1) {
j<-(i-1)*Num.CasesPerlnt+1
vectorFinal[j:(j+Num.CasesPerInt-1)]<-1
}
Num.Ints<-(i-1)*Num.CasesPerint+1
vectorFinalld[Num.Ints:(Num.Ints+Num.CasesPerInt-1)]<-i
}
matrixFinal<-cbind(vectorFinalld,vectorFinal)
matrixFinal
}
data<-as.data.frame(IntChng())
write.csv(data, file="E:IntChng.csv")

sim3 <- function(Num.Ints=240, Num.CasesPerInt =24)
{
clid <- rep(1:Num.Ints,rep(Num.CasesPerint,Num.Ints))
fl<-IntChng()
pooll <- fl[which(fl[,2]==0)]
pool<-pooll[lduplicated(pooll)]
x2<-unique(cbind(f1,clid))
for (j in 1:Num.Ints){
if (x2[j,2]==1}
if (length(pool)<2) {tmp<-pool
x2[j,3]1<-tmp} else{
tmp<-sample(pool,1)
x2[j,3]<-tmp
pool <- pool[-match(tmp, pool)] }
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x2<-x2[order(x2[,1],x2[,3]),]
x2[rep(1:Num.Ints,rep(Num.CasesPerint,Num.Ints)),]
}
data<-as.data.frame(sim3()
write.csv(data, file="E: CLIDW2.csv")

e TypeF

IntChng<-function(NolntsSelected=Drops, Drops=120, Num.Ints=240,
Num.CasesPerlnt=24, TotalN=5760)
{
vector<-c(rep(0,Num.Ints))
selected<-sample.int(Num.Ints,NolntsSelected)
vector[selected]<-1
vectorFinal<-rep(0,Num.Ints*Num.CasesPerint)
vectorFinalld<-rep(0,Num.Ints*Num.CasesPerInt)
for (i in 1:Num.Ints){
if (vector[i]l==1) {
j<-(i-1)*Num.CasesPerlnt+1
vectorFinal[j:(j+Num.CasesPerInt-1)]<-1
}
Num.Ints<-(i-1)*Num.CasesPerint+1
vectorFinalld[Num.Ints:(Num.Ints+Num.CasesPerint-1)]<-i
}
matrixFinal<-cbind(vectorFinalld,vectorFinal)
matrixFinal
}
data<-as.data.frame(IntChng())
write.csv(data, file="E:IntChng.csv")

sim4 <- function(Num.Ints=240, Num.CasesPerint =24)
{
clid <- rep(1:Num.Ints,rep(Num.CasesPerint,Num.Ints))
fl<-IntChng()
pooll <- fl[which(fl[,2]==0)]
pool2<-pooll[tduplicated(pooll)]
pool<-c((Num.Ints+1):(Num.Ints+length(pool2)))
x2<-unique(cbind(fl,clid))
for (j in L:Num.Ints){
if (x2[j,2]==1}
if (length(pool)<2) {tmp<-pool
x2[j,3]1<-tmp} else{
tmp<-sample(pool,1)
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x2[j,3]<-tmp
pool <- pool[-match(tmp, pool)] }
}
}
x2<-x2[order(x2[,1],x2[,3D),]
x2[rep(1:Num.Ints,rep(Num.CasesPerint,Num.Ints)),]
}
data<-as.data.frame(sim4())
write.csv(data, file="E: CLIDW2.csv")
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VL.8. Appendix H - Model Estimation and Properties
Calculations for the Multiple Membership Models

The model estimation procedure defined below is specific to the scenario with
these factor specifications: N=5760, N{,=240, 24 cases per interviewer at the
previous wave, 62=0.3, n=0.8 and a Type A change profile.

1. Open a STATA file on my computer and run the following code:

sysdir set PLUS S:\rv1lg09\runmlwin
ssc install runmlwin

ssc install estout

adoupdate runmlwin

2. Go to Start, Programs, Accessories, Remote Desktop Connection. Write
the following ‘blue36.iridis.soton.ac.uk’ and click Connect.

3. Once on ‘blue36’ which is the head node, remote desktop to purple009
or purple010, which are the compute nodes.

4. Open the dataset ‘dataset_realwl_0.5realw2_0.5-
_modelwl_0.5_modelw2_0.5.dta’ from an S drive file.

5. Run the following code in the STATA dataset (make sure it is open with
STATA12)
sysdir set PLUS S:\rv1lg09\runmlwin
global MLwiN_path C:\Program Files (x86)\MLwiN v2.25\mlwin.exe
set matsize 11000

6. Fit the models in STATA by running the code below. Work is sent in
batches of 100models (10 batches for every scenario). Save the results
in an excel file on the S drive.

local i=1

while "i'<101 {

quietly runmlwin v'i' cons, level2 (clid:cons) levell (serialno:)
discrete(distribution(binomial) link(logit) denominator(cons) pql2) nopause
maxiterations(150)

quietly runmlwin v i’ cons, level2 (clid:cons, mmids(clid-clid2)
mmweights(weightl-weight2)) levell (serialno:) discrete(distribution(binomial)
link(logit) denominator(cons)) mcmc(burnin(5000) chain(100000)) initsprevious
nopause

estimates store model i’
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local i="i"+1

}

estout modell model2 model3 model4 model5 model6 model7 model8
model9 modell0 modelll modell2 modell3 modell4 modell5 modell6
modell7 modell8 modell9 model20 model21 model22 model23 model24
model25 model26 model27 model28 model29 model30 model31 model32
model33 model34 model35 model36 model37 model38 model39 model40
model41l model42 model43 model44 model45 model46 model47 model48
model49 model50 model51 model52 model53 model54 model55 model56
model57 model58 model59 model60 model61 model62 model63 model64
model65 model66 model67 model68 model69 model70 model71 model72
model73 model74 model75 model76 model77 model78 model79 model80
model81 model82 model83 model84 model85 model86 model87 model88
model89 model90 model91 model92 model93 model94 model95 model96
model97 model98 model99 modell00, cells(b se ci_l ci_u ess meanmcse bd rl1
rl2 V[1] V[2] V[3] quantiles[2] quantiles[5] quantiles[8]) stats(N dic time burnin
chain converged), using " S:\ outputl-300_realwl_0.5realw2_0.5-
_modelwl_0.5_modelw2_0.5.xIs"

7. Delete irrelevant rows from each output excel sheet. Add the following
variable names as the first column. Save file.

bO_b
bO_se
b0_min95
b0_max95
bO_ess
bO_meanmcse
b0_bd
bO_rl1
bO_rl2
bO_varll
bO_varl2
bO_varl3
bO_quantile2
bO_quantile5
bO_quantile8
int_b
int_se
int_min95
int_max95
int_ess
int_meanmcse
int_bd
int_rll
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int_rl2
int_var31
int_var32
int_var33
int_quantile2
int_quantile5
int_quantile8
N

Dic

Time

Burnin

Chain
Converged

8. Transpose rows with columns.
9. Merge the results from the 10 separate batches into one file with all
1000 models. Save excel file as ‘1000models_ realwl_0.5realw2_0.5-

_modelwl_0.5_modelw2_0.5.xls’

10.0pen STATA. Click on File, Import, Excel Spreadsheet. Choose

‘1000models_ realwl_0.5realw2_0.5—-_modelwl_0.5_modelw2_0.5.xIs’

from the Browse option. And click on Import First Row as Variable
Names. Click Ok. Save the dataset as ‘1000models_
realwl_0.5realw2_0.5-_modelwl_0.5_modelw2_0.5.dta’.

11.Add these columns to the dataset:
generate realweightwl=0.5
generate realweightw2=0.5
generate weightWl=0.5
generate weightw2=0.5
generate N_changes=2880
generate N_nochanges=2880
generate N_total=5760
generate ChangeRatio=12/24
generate ChangePercentage=12/24*100
generate NoChangeRatio=12/24

12.Run this code in the in the STATA file ‘1000models_

realwl_0.5realw2_0.5-_modelwl_0.5_modelw2_0.5.dta’ to obtain the

various properties:
gen simulations=1000

#coverage rates based on the Wald test
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gen waldClcoverageINTVAR=1

replace waldClcoverageINTVAR=0 if int_min95<0.3 & int_max95<0.3
replace waldClcoverageINTVAR=0 if int_min95>0.3 & int_max95>0.3
egen totalwaldClcoverageINTVAR=count(waldClcoverageINTVAR) if
waldClcoverageINTVAR==1

gen waldClcoverageINTERCEPT=1

replace waldClcoverageINTERCEPT=0 if b0_min95<1.39 & b0_max95<1.39
replace waldClcoverageINTERCEPT=0 if bO_min95>1.39 & b0O_max95>1.39
egen totalwaldClcoverageINTERCEPT=count(waldClcoverageINTERCEPT) if
waldClcoverageINTERCEPT==

#coverage rates based on the MCMC credible intervals

gen mcmcClcoverageINTVAR=1

replace mcmcClcoverageINTVAR=0 if int_quantile2<0.3 & int_quantile8<0.3
replace mcmcClcoverageINTVAR=0 if int_quantile2>0.3 & int_quantile8>0.3
egen totalmcmcClcoverageINTVAR=count(mcmcClcoverageINTVAR) if
mcmcClcoverageINTVAR==1

gen mcmcClcoverageINTERCEPT=1

replace mcmcClcoverageINTERCEPT=0 if bO_quantile2<1.39 &
bO_quantile8<1.39

replace mcmcClcoverageINTERCEPT=0 if bO_quantile2>1.39 &
bO_quantile8>1.39

egen totalmcmcClcoverageINTERCEPT=count(mcmcClcoverageINTERCEPT) if
mcmcClcoverageINTERCEPT==

#percentage relative biases based on mean and median

egen meanINTERCEPT=mean(b0_b)

gen biasINTERCEPT= (b0_b -1.39)/1.39*100

egen meanbiasINTERCEPT= mean(biasINTERCEPT)

egen meanINTERCEPTquantileSmcmc=mean(bO_quantile5)

gen biasINTERCEPTquantile5Smcmc= (b0O_quantile5-1.39)/1.39*100
egen meanbiasINTERCEPTquantileSmcmc =
mean(biasINTERCEPTquantile5mcmc)

egen meanINTVAR=mean(int_b)

gen biasINTVAR= (meanINTVAR-0.3)/0.3*100

egen meanbiasINTVAR= mean(biasINTVAR)

egen meanINTVARquantileSmcmc=mean(int_quantile5)

gen biasINTVARquantile5mcmc= (int_quantile5-0.3)/0.3*100

egen meanbiasINTVARquantile5mcmc = mean(biasINTVARquantile5mcmc)

#power of the Wald test at the 95% and 99% confidence levels
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gen waldINTERCEPT=(b0_b/b0_se)A2

gen pvalINTERCEPT=chi2tail(1, waldINTERCEPT)

gen nullHacceptedINTERCEPT95=.

replace nullHacceptedINTERCEPT95=1 if pvalINTERCEPT>0.05

egen TOTALnullHacceptedINTERCEPT95= count(nullHacceptedINTERCEPT95)
gen powerINTERCEPT95=1-(TOTALnullHacceptedINTERCEPT95/ simulations)

gen nullHacceptedINTERCEPT99=.

replace nullHacceptedINTERCEPT99=1 if pvalINTERCEPT>0.01

egen TOTALnullHacceptedINTERCEPT99= count(nullHacceptedINTERCEPT99)
gen powerINTERCEPT99=1-(TOTALnullHacceptedINTERCEPT99/ simulations)

gen waldINTVAR=(int_b/int_se)A2
gen pvalINTVAR=[chi2tail(1, waldINTVAR)]/2

gen nullHacceptedINTVAR9S5=.

replace nullHacceptedINTVAR95=1 if pvalINTVAR>0.05

egen TOTALnullHacceptedINTVAR95= count(nullHacceptedINTVAR95)
gen powerINTVAR95=1-(TOTALnullHacceptedINTVAR95/ simulations)

gen nullHacceptedINTVAR99=.

replace nullHacceptedINTVAR99=1 if pvalINTVAR>0.01

egen TOTALnullHacceptedINTVAR99= count(nullHacceptedINTVAR99)
gen powerINTVAR99=1-(TOTALnullHacceptedINTVAR99/simulations)

# mean square error
gen mseINTERCEPT=(b0_b -1.39)A2
egen MEANmMseINTERCEPT=mean(mselNTERCEPT)

gen mselNTVAR=(int_b -0.3)A2

egen MEANmMseINTAVAR=mean(mselNTVAR)

#% of times the values obtained for the Brooks-Draper and the Lower and
Upper Bound of the Raftery-Lewis diagnostics are less than the iteration length
specified

gen bdacceptedINTERCEPT=.

replace bdacceptedINTERCEPT =1 if bO_bd<100001

egen TOTALbdacceptedINTERCEPT = count(bdacceptedINTERCEPT)

gen bdacceptedINTVAR=.

replace bdacceptedINTVAR =1 if int_bd<100001

egen TOTALbdacceptedINTVAR = count(bdacceptedINTVAR)

gen rllacceptedINTERCEPT=.

replace rllacceptedINTERCEPT =1 if bO_rl1<100001
egen TOTALrllacceptedINTERCEPT = count(rllacceptedINTERCEPT)
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gen rllacceptedINTVAR=.
replace rllacceptedINTVAR =1 if int_rl1<100001
egen TOTALrllacceptedINTVAR = count(rllacceptedINTVAR)

gen rl2acceptedINTERCEPT=.
replace rl2acceptedINTERCEPT =1 if bO_rl2<100001
egen TOTALrl2acceptedINTERCEPT = count(rl2acceptedINTERCEPT)

gen rl2acceptedINTVAR=.
replace rl2acceptedINTVAR =1 if int_rl2<100001
egen TOTALrl2acceptedINTVAR = count(rl2acceptedINTVAR)

#mean DIC
egen MEANdic=mean(dic)

#mean estimation running time
egen MEANtime=mean(time)

# monte carlo standard errors and respective confidence intervals
egen MEANmeanmcseINTERCEPT=mean(bO_meanmcse)
egen MEANmeanmcselNT=mean(int_meanmcse)

gen MINmceINTERCEPT= b0O_b - ( bO_se/sqrt(1000))

gen MAXmceINTERCEPT= bO_b + ( bO_se/sqrt(1000))
egen meanMAXmceINTERCEPT=mean(MAXmcelINTERCEPT)
egen meanMINmceINTERCEPT=mean(MINmceINTERCEPT)

gen MINmcelINT= int_b - (int_se/sqrt(1000))
gen MAXmcelNT= int_b + (int_se/sqrt(1000))
egen meanMAXmcelNT=mean(MAXmceINT)
egen meanMINmceINT=mean(MINmcelNT)

#standard errors
egen meanINTERCEPTse=mean(b0_se)
egen meanINTVARse=mean(int_se)

18. Once all models with the different weight combinations are fitted, the
file with model weights set as 0.9 0.1 should be opened, and the other
files (with different model weight specifications for the same simulated
dataset) should be appended by clicking on Data, Combine datasets,
Append datasets. Save dataset as ‘9000models_
realwl_0.5realw2_0.5_modelwl_0.5_modelw2_0.5.dta’.

19.Run the following STATA code to the dataset including all 9000 models:
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# bestfit is a measure identifying the weighting scheme distribution for the
1000 models (out of 9000 possible models) obtaining the lowest DIC
egen simulation= seq(), f(1) t(1000)

sort weightW1

egen weightscheme= seq(), f(1) t(9) b(1000)

sort simulation

by simulation: egen minDIC=min(dic)

generate roundminDIC=round(minDIC, 0.001)

generate roundDIC=round(dic, 0.001)

generate bestfit=weightscheme if roundminDIC==roundDIC

tab bestfit if bestfit!=.

#calculate the percentage relative bias, power of the Wald test, standard errors
and confidence interval coverage for the 1000 models out of the total 9000
models which obtain the lowest DIC

egen meanINTVARbestfit=mean(int_b) if bestfit==weightscheme

gen biasINTVARbestfit=(int_b-0.3)/0.3*100 if bestfit==weightscheme

egen meanbiasINTVARDbestfit= mean(biasINTVARDbestfit) if
bestfit==weightscheme

egen simulationsBESTFIT=count(bestfit) if bestfit>0

gen waldClcoverageINTVARbestfit=1 if bestfit==weightscheme

replace waldClcoverageINTVARbestfit=0 if int_min95<0.3 & int_max95<0.3 &
bestfit==weightscheme

replace waldClcoverageINTVARbestfit=0 if int_min95>0.3 & int_max95>0.3 &
bestfit==weightscheme

egen totalwaldClcoverageINTVARbestfit=count(waldClcoverageINTVARDbestfit) if
waldClcoveragelINTVARbestfit==1 & bestfit==weightscheme

gen
totalwaldClcovINTVARbestfitP=totalwaldClcoverageINTVARbestfit/simulationsB
ESTFIT*100

gen nullHacceptedINTVAR9S5bestfit=. if bestfit==weightscheme

replace nullHacceptedINTVAR95bestfit=1 if pvalINTVAR>0.05 &
bestfit==weightscheme

egen TOTALnullHaccINTVAR9S5bestfit= count(nullHacceptedINTVAR9S) if
bestfit==weightscheme

gen powerINTVAR95bestfit=1-
(TOTALnullHaccINTVAR95bestfit/simulationsBESTFIT) if
bestfit==weightscheme

egen meanINTVARsebestfit=mean(int_se) if bestfit==weightscheme
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VI1.9. Appendix | - Mean DIC Values for Multiple

Membership Models

The mean DIC values for scenarios considered in the main paper are presented

below. This measure is calculated for each model weights specification of each

scenario, averaged over the 1000 simulations.

> > > > > > > > > > > > > > > > > >

> > > > > > >

Mean DIC Values across Different Scenarios and Model Weights
Specifications

Change Profile
Type

DIC

2910.7
2909.5
2908.7
2908.2
2908.0
2908.3
2908.8
2909.8
2911.0

2908.9
2909.0
2909.5
2910.4
2911.7
2913.3
2915.2
2917.4
2919.8

2924.7
2920.0
2916.1
2913.4
2912.5
2913.5
2916.2

N

2880
2880
2880
2880
2880
2880
2880
2880
2880

2880
2880
2880
2880
2880
2880
2880
2880
2880

2880
2880
2880
2880
2880
2880
2880

% change
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VI.10. Appendix ] - Relative Percentage Bias for
Multiple Membership Models

The percentage relative bias rates based on the posterior mean and the median

are presented below for the scenarios considered in the main paper. This data

shows that the estimator bias is practically equal for the posterior mean and

median.

Percentage Relative Bias based on the Mean and Median Values for the
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VI.11. Appendix K - Confidence Interval Coverage
Rates for Multiple Membership Models

The confidence interval coverage rates based on the Wald and the coverage
rates based on the MCMC credible intervals are presented below for the
scenarios considered in the main paper. Both measures show similar values
and the same trends across factor changes. However, for some models with
the most incorrect model weights the 95% credible interval performs just
slightly better than the 95% Wald confidence interval, with an advantage of

around 5%.

Wald and MCMC Credible Quantiles Confidence Interval Coverage Rates
for the Interviewer Variance Estimator

Change Wald MCMC N % W;; Wij
Profile Type Change
A 92.0 92.8 2880 8 0.5,0.5 0.9,0.1
A 924 93.3 2880 8 0.5,0.5 0.8,0.2
A 93.2 93.3 2880 8 0.5,0.5 0.7,0.3
A 93.6 93.6 2880 8 0.5,0.5 0.6,04
A 93.6 93.6 2880 8 0.5,0.5 0.5,0.5
A 93.8 93.7 2880 8 0.5,0.5 0.4,0.6
A 93.3 93.9 2880 8 0.5,0.5 0.3,0.7
A 92.9 92.8 2880 8 0.5,0.5 0.2,0.8
A 92.1 92.3 2880 8 0.5,0.5 0.1,0.9
A 96.4 95.6 2880 8 0.9,0.1 0.9,0.1
A 96.4 954 2880 8 0.9,0.1 0.8,0.2
A 96.5 94.9 2880 8 0.9,0.1 0.7,0.3
A 96.6 94.9 2880 8 0.9,0.1 0.6,0.4
A 96.4 94.8 2880 8 0.9,0.1 0.5,0.5
A 95.7 95.1 2880 8 0.9,0.1 0.4,0.6
A 94.9 95.5 2880 8 0.9,0.1 0.3,0.7
A 92.9 94.6 2880 8 0.9,0.1 0.2,0.8
A 91.1 93.6 2880 8 0.9,0.1 0.1,0.9
A 61.3 68.4 2880 50 0.5,0.5 0.9,0.1
A 79.5 82.7 2880 50 0.5,0.5 0.8,0.2
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VI.12. Appendix L - Distribution of Interviewers and

Areas in the FACS Dataset

These tables present the distribution of the number of interviewers per area

and the distribution of the number of areas per interviewer respectively for the

dataset analysed in Paper 1.

Table showing the Distribution of Number of Interviewers per Area

Interviewers

per Area 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Total
Number of

Areas 0O 1 14 13 20 22 25 21 12 12 4 4 1 0 1 150
% Areas 0 07 93 87 133 147 167 140 80 80 27 27 07 00 07 100

Table showing the Distribution of Number of Areas per Interviewer

Areas per Interviewer 1 2 3 4 5 6 7 8 9 10 Total
Number of Interviewers 61 99 72 39 23 27 6 4 3 1 335
% Interviewers 18.2 296 215 116 69 81 1.8 1.2 09 0.3 100
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