Marionette Mass-Spring Model for 3D Gait Biometrics

Gunawan Ariyanto, Mark S. Nixon
School of Electronics and Computer Science
University of Southampton
Southampton UK, SO17 1BJ

ga08r, msn@ecs.soton.ac.uk

Abstract

Though interest in gait biometrics continues to increase,
there have as yet been few approaches which use model-
based algorithms with temporal 3D data. In this paper we
describe a new 3D model-based approach using a mari-
onette and mass-spring model to gait biometrics with 3D
voxel gait dataset. To model the articulated human body, we
use a stick-figure which emulates the marionettes’ motion
and joint structure. The stick-figure has 11 nodes represent-
ing the human joints of head, torso, and lower legs. Each
node is linked with at least one other node by a spring. The
voxel data points in the next frame have a role as attractor
which able to generate forces for each node and then itera-
tively warp the model into the data. This process is repeated
for successive frames for one gait period. The motion kine-
matics extracted from this tracking process are projected
into the sagittal and the frontal plane and used as a gait
feature via the discrete Fourier transform. We use 46 sub-
Jjects where each subject has 4 sample sequences and report
encouraging initial gait classification results.

1. Introduction

Gait biometrics enjoys research interest due to its unique
benefits compared to other biometric modalities. Some of
the benefits are that it is non-invasive, perceivable at a dis-
tance, easy to set up in public area and can be hard to con-
ceal [11]. Gait can also be used in fusion with other biomet-
rics to enhance the overall performance [6].

All methods in gait biometrics generally can be classi-
fied into model-free or model-based approaches [11]. The
model-free approaches heavily depend on the extracted
silhouette and statistical methods whilst model-based ap-
proaches can use a known gait model as prior information.

Most research in gait biometrics has been conducted us-
ing 2D datasets and 2D approaches even tough there are
some unique advantages of using 3D. The 3D gait datasets
can convey more information and are inherently view in-
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variant as we can synthesize any view. Working in 3D can
also bring more consistency regarding the occlusion and
multi-interpretation problems.

In the 3D model-free approaches, Seely [13, 12] cre-
ated the Soton 3D gait dataset and then successfully used
it for view-invariant gait recognition using silhouette anal-
ysis. He employed simple 2D averaged silhouette meth-
ods using view point projection techniques to convert 3D
data into 2D view-invariant data. There were three differ-
ent view-point projections used: side-on, front-on, and top-
down projection. The results showed that using 3D gait data
can lead to high accuracy (99.6%) and the best performance
was achieved by using a combination of projected views
[12].

The 3D model-based approaches can use prior informa-
tion of the human structure to emulate the real human gait.
This model usually is used to tract the object data in order
to recover the body pose and obtain the motion trajectories.
Another 3D recognition study [1] used a 3D model based on
using the match between volumetric cylinders and the voxel
data, by correlation filter and dynamic programming.

There are some general approaches for model-based 3D
human tracking and pose recovery, though not for biomet-
rics purposes. In the early works, Cheung et al. [2] and Mi-
kic et al. [10] presented systems that can track human body
using voxels with acceptable robustneess. Zhang et. al. [15]
created a barrel model and use the PSO pose search algo-
rithm for pose estimation and tracking the 3D voxel data.
Menier et. al. [8] used a stick figure model to fit it into 3D
human point data with E-M algorithm. Some methods also
used an physical analogy. Delamarre et. al. [4] proposed
a method inspired from a physical phenomena using forces
applied on a partially volumetric rigid model using an iter-
ative gradient descent. Luck et. al. [7] also used physical
based method to compute the force and align a volumetric
model into the subsequent voxel data.

In this paper, we develop a novel 3D model-based ap-
proach using marionette and mass-spring model to gait bio-
metrics. Our method combines the use of marionettes’
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structure and motion principles with the physical mass-
spring model for tracking the stick-figure model into the 3D
voxel data. For evaluation, we used the gait dataset from the
Soton multi-biometric tunnel [13, 12].

2. 3D gait dataset and marionette mass-spring
gait model

2.1. Southampton multi-biometric tunnel

The University of Southampton multi-biometric tunnel
provides a constrained environment and is designed for use
in high throughput environments such as airports and for
the collection of large datasets [9]. The tunnel uses eight
synchronised IEEE1394 cameras at 30 fps to capture gait
data as shown in Fig. 1. As a subject walks through, the
data is acquired automatically. Using a visual hull shape
from silhouette reconstruction algorithm, the tunnel is able
to produce the 3D voxel gait data. The shape from silhouette
reconstruction is simply the calculation of the intersection
of projected silhouettes from each camera. Fig. 2 shows a
frame of 3D voxel gait data produced by the tunnel.
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Figure 1. Soton Multi-biometrics Tunnel (from [13])

Figure 2. Sample data acquired from Tunnel after reconstruction
(from [13])

2.2. Marionette spring mass model

We use a marionette mass-spring model as our gait
model. Fig. 3 shows our marionette model with 11 nodes
and their topology. The model topology are represented
with an articulated 3D stick-figure. The human body joints
and segments are modelled with nodes (masses) and springs
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Figure 3. Marionette (from [3]) and marionette mass-spring gait
model.

respectively. From the figure, it is clear that we only con-
sider the head, torso, and lower legs but omit the arms be-
cause the quality of the voxel data for the arms is poor.
We are also not interested in using the arms’ kinematics for
recognition purposes.

As in a marionette, some body nodes of the model can
be moved by application of force. We observe that manipu-
lating the marionette’s string controller is similar to apply-
ing selected forces to the model’s nodes. In our model, the
forces arise from voxel points and the springs. The voxel
points will behave like attractors to warp the model into
the data and the springs will respond so as to maintain the
model’s topology.

From this model, we can extract the motion kinematics
of human gait by tracking the model into the data and then
measuring the rotational angle of each body segment. We
are also potentially able to measure the shoulder and hip
rotation using the two joints position at the arms and hips
respectively.

2.3. Notations and model parameter

Let M = (P, N) be the marionette model with P =
{po,p1,...,p10} and N = {{No}, {N1}, ..., {N1o}} being
respectively the set of nodes and the set of neighbour nodes,
thereby describing topology. The set of voxel data points for
each frame is defined as A = {aq, as, ..., an}.

We use bold symbols to represent vectors such as x. The
unit vector oriented from point p to ¢ is denoted u,, and the
Euclidean distance between them is denoted d(p, q).

The marionette model has a parameter k to define the
spring elasticity and m for mass. In this paper we use the
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same k value for all springs.

2.4. Preprocessing

Preprocessing enables initialization of the marionette
model (to set the initial nodes’ positions). We also use
prior information for the human body anthropometric [14]
as commonly used in biomechanics. The preprocessing
stage can generate robust estimation of the subject height,
heel strikes locations and the centre of hip.

In the preprocessing stage, firstly we seek to process 3D
voxel data sequence to obtain 3D bounding boxes. This in-
formation will be used to estimate the gait period and the
subject’s height. We also seek to extract the heel strikes
location from subject footprint image. The heel strike in-
formation is very important since walking always uses at
least one leg to support the body. The heel strikes can also
be used as constraints in the tracking process later.

2.4.1 3D bounding box

Let the voxels representing a person at frame j be
Vi(x,y,z) and the location of each voxel is v; =
(4,9, 2;). The bounding box is the smallest which en-
closes the connected voxel data. It can be extracted from
values of x (frontal/length), y (sagittal/width), and z (trans-
verse/height) axis for a filled voxel as described in Eqn. 1.

BB, =maxa; —mina; where a€z,y,z2 (D
K2 K2

2.4.2 Gait period estimation

Using the 3D bounding box data, we can determine the
starting and ending frame in one period gait cycle. The heel
strike pose corresponds with the widest bounding box or
the peak of the filtered width of the 3D bounding box sig-
nal. The start frame is that for which a maximum width
bounding box occurs and the end frame is the second next
maximum width.

2.4.3 Subject height estimation

The object height h is derived from the average of the trans-
verse plane bounding box in one gait period (/N frames) as
shown in Eqn. 2.
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2.4.4 Center of hip estimation

We estimate the center of hip COH = (c,, ¢y, c;) by using
the mean of the voxel data and the subject height as de-
scribed in Eq. 3. Where I(x,y, z) is the value/intensity of

the voxel i.e. {0, 1} and h is the subject’s height.
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2.4.5 Footprints extraction and heel strikes detection

We extract the footprint image F(x,y) using a cross-
sectional plane of the voxel data. During the walking cycle,
each heel is in a static position on the ground for around half
gait period. Therefore, we project one or more planes near
the ankle height into the ground plane G7 for each frame
and then accumulate a footprint image F' as described in
Eqn. 4. We use optimal thresholding and morphology to
obtain clean footprint and locate the heel strike positions.

Gl(x,y) = V(z,y,z=0)

F(z,y) = G (,y) 4)

Figure 4. Extracted footprints

3. Tracking system

In order to obtain the gait kinematics from the subjects,
we use a tracking approach using the marionette mass-
spring gait model. The tracking module will warp the model
nodes’ positions each time with new voxel data in the next
frame. The voxel data here works as an attractor that is able
to pull the nodes in the direction of motion of the data. The
pulling mechanism can be seen as an analogy of the string
controller in the marionette system.

3.1. Model initialization

With prior knowledge of the human anthropometric, pre-
processing results and the first frame pose, which is a heel
strike pose, we can initialize the model straight away. The
ankle nodes positions are placed at the footprint locations.
While the knee nodes are interpolated between the hip and
ankle nodes. Fig 5 shows the initialization model nodes im-
posed into the voxel data points.
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Figure 5. Initialization model nodes imposed into the voxel points

3.2. Attractor force

The voxel data points generated from the voxel binary
data with a uniform sampling parameter s < 1. The lower
value of s will generate smaller number of voxel points,
hence will increase the computational speed. Based on our
experiment, 0.01 < s < 0.1 gives a good balance between
resolution and speed.

The voxel data points will generate an attraction force
on each node of the marionette model. Each node in the
model is only affected by a set attractor nearby. To se-
lect the attractor sets for each node we employs a hierar-
chical clustering approach. The first phase is to cluster
body-parts globally using all the voxels. The body parts
consist of head, torso, and the two legs. The head is rep-
resented by a point and the others are represented by body
segments (lines). Each voxel point in A will be assigned to
one of the defined body part clusters AS based on the Eu-
clidean distance from the point to the body part. Therefore,
A= {ASHead, ASTorso, ASR.Legv ASL.Leg}~

The second phase is a local nodes clustering to refine
the results of previous clusters. For each body parts clus-
ter AS, the set of voxel points will be divided into nodes
cluster AP;. Optionally, we can add a dummy node in
the middle of each body segment to increase the accuracy
of correct corresponds between the model node and voxel
points attractors. According to Fig. 3, we have ASg ey =
{APy, APgummys APz, APgummy, APy} where APjymmy
is a cluster for dummy node.

Finally, the attractor force FA applied at a node p; is de-
fined by:

FA, = || — pil| ¥ upu &)

where p; is the mean of points in node cluster AP;.
3.3. Spring force

During the tracking and warping process, the spring will
maintain the model topology by inserting spring forces to
the nodes when the states are changing. Given two nodes
p and ¢ linked by a spring with elasticity constant k& and
resting length [, the spring force applied from p to q E,,
will follow Hooke’s law as:

Epg = E(d(p, q) — lpg) Upq (6)

and the total spring force for a model node p with a set of
its neighbour [V, is defined as follow:

FS, = > E, (7
qEN,
3.4. Updating the model

During the warping process, the model will be iteratively
updated until reaching the stopping criteria. There are three
states in the model that need updating. Those states are:

1. Acceleration a
2. Speed v
3. Position x

The total force affecting a model node p is a summation
of its spring force and attractor force.

F, =FS, +FA, (3)

The acceleration a,, of node p is defined as below:
a, = — ©)]
where m is the mass of the node. The speed is updated with:
vitl = fyvt 4+ dT.att! (10)

where dT is a constant time step, and f is the friction coef-
ficient. Finally, the position of the node is updated with:

x\ Tt =xt + Tyttt (11)

We also need to update the model rest length [ state for
each new frame in order to adapt the model to the new fit-
ted pose. We consider both the original and the new sta-
ble distance length for updating the rest length state. For
two nodes p and g with the rest length [,,, and new distance
d(p, q), the updated rest length is as follow:

lpg = alpg + (1 — a).d(p, q) (12)

where a value is between 0 and 1. Empirically, 0.5 < o <
1 has given reasonably good results.
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3.5. Stability and stopping criteria

The model updating process will be terminated when
their states are considered stable. We define a minimum
threshold 7 for v and a to stop the iterative process.

3.6. Heel strikes and COH constraints

Based on prior knowledge, the centre of hip (COH) and
heel strikes position are static during the iterative warping
process. Therefore, the nodes corresponding to the COH
and ankle at the heel strike will be initialised for each frame
by the data from the preprocessing result. Given the accu-
racy of the preprocessing stage these nodes are not updated
during the warping process.

4. Gait features and classification
4.1. Gait features

Gait features are created by selecting and combining the
kinematics and structural information.

We only use the lower legs motion for the kinematic
feature. We project the legs motion in sagittal and frontal
plane then extract the motion angle of thigh and shin.
The kinematics feature is represented by a set of angles
{0rr,arr, 07, arT,0RS, RS, thetars, aps} where 6,
a, T, and S are sagittal angle, frontal angle, thigh, and shin
respectively.

We extract the gait kinematics features using The Dis-
crete Fourier Transform (DFT). After applying the DFT to
the filtered kinematics data, we will obtain new informa-
tion about the frequency components of the subject’s gait.
These frequency components will be used for classification.
We use a Fast Fourier Transform (FFT) with 64 points. We
are also able to extract the gait structural features such as
height, stride length and footprint direction (which is the
orientation between one footprint and the next).

4.2. Classification
We classify the subject based on two data types:

1. structural features: height, stride length and footprint
direction.

2. kinematics features: the frequency components of the
kinematics angles.

k-NN was used as a classifier with leave one out cross vali-
dation (LOOCYV). Three different values of k& were used: 1,
3, and 5. For the dynamic feature we evaluated three differ-
ent distances functions of the FFT components, i.e Magni-
tude, Magnitude weighted phase and Euclidean.

5. Results and analysis

We used Soton multi-biometric tunnel gait dataset con-
taining 46 different subjects; four recordings of each subject

(a) frame# 1 (b) frame#7 (c) frame# 17 (d) frame# 28
Figure 6. The tracking result from good voxel data

(a) frame# 1

Figure 7. The tracking result from imperfect voxel data

(b) frame# 7  (c) frame# 17 (d) frame# 28

were taken, giving a total of 184 samples.

5.1. Tracking system results

The constant and parameter values used for our test are
k=20,m=1,dI'=0.1,s =0.02, 7, = 0.0001 and 7, =
0.0001. Fig 6 shows the tracking result for sample frames
where the model nodes are imposed into the voxel points.
In this sequence, one gait period consists of 36 frames.

The marionette model can handle occluded and imper-
fect (partly missing) voxel data as swhon in Fig. 7. In this
sequence, it has 29 frames in one gait period.

5.2. Gait recognition analysis

Table 1 shows the classification rate using structural fea-
tures showing that height is the most discriminatory feature.
The best performance of 58.2% was achieved for k=1 with
height and footprint. It is interesting to note that the foot-
print feature can increase recognition capability quite better
than the stride.

Table 2 shows the detail of our classification results using
the kinematic features. The best recognition performance is
achieved by using the agr angle which is the movement of
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Chosen Features k=1 | k=3 | k=5
Height 41.3 | 375 | 375
Stride 7.1 4.4 3.8

Footprint 21.2 | 103 | 152

Height & Stride 429 | 28.0 | 31.0

Height & Footprint | 58.2 | 47.8 | 43.5

Table 1. k-NN classification results (%) for structural features

right thigh in the frontal plane, confirming an earlier study
of the potency of the front view for gait recognition [5]. The
comparison of distance methods shows that the Euclidean
distance is the best.

Chosen Distance Methods ‘
Chosen Features | Mag | Mag-Phase | Eucl
OrT 29.3 19.6 28.3
QRT 25.5 353 52.2
O 37.5 28.3 32.6
arT 25.5 31.5 41.8
Ors 24.5 16.8 24.5
QRS 15.2 19.0 32.1
Ors 21.2 17.9 21.7
ars 19.0 30.4 40.8

Table 2. Correct classification rate (%) for kinematic features with
k=1

Although our best correct classification rate does not yet
equal that achieved by a model-free approach [12], our sys-
tem is directly related to the subject’s gait and not their
clothing or appearance and allows for deeper analysis of
the gait mechanisms and can be related to biomechanical
models of gait.

6. Conclusions and Further Work

We have described a new model-based approach to 3D
gait recognition. This is inherently viewpoint in variant,
a factor that restricts appearance based gait biometrics ap-
proaches. Our new model is warped to fit voxel data of a
3D walking subject. The model is based on a marionette
and mass spring system which represents the arrangement
and interconnection of human vertices. Our initial results
show good fit tracking though a sequence of frames and
that there is varying perspicacity in the measures derived
by this model. The model can handle some occluded and
imperfect voxel data and the results encourage further de-
velopment along these lines. There is also a possibility of
fusing with appearance-based metrics, since the 3D data can
be projected so as to be observed from any viewpoint.
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