
Inverse scattering designs of dispersion-engineered single-mode planar 

waveguides  
Alexander R. May, Francesco Poletti, Michalis N. Zervas

  

Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ 

ABSTRACT  

We use an inverse-scattering (IS) approach to design single-mode waveguides with controlled linear and higher-order 

dispersion. The technique is based on a numerical solution to the Gelfand-Levitan-Marchenko integral equation, for the 

inversion of rational reflection coefficients with arbitrarily large number of leaky poles. We show that common features 

of dispersion-engineered waveguides such as trenches, rings and oscillations in the refractive index profile come 

naturally from the IS algorithm without any a priori assumptions. Increasing the leaky-pole number increases the 

dispersion map granularity and allows design of waveguides with identical low order and differing higher order 

dispersion coefficients. 

Keywords: Inverse-scattering, dispersion-engineered, planar waveguides 

 

1. INTRODUCTION  

 
Since the development of the erbium-doped fiber amplifier (EDFA) there has been increased interest in in-fiber devices 

that provide low loss, high reliability and compatibility with the transmission line. These devices have found a variety of 

applications ranging from signal conditioning in the form of amplification and dispersion control, to network 

management in the form of multiplexing and/or network monitoring
1
. While the control of dispersion in optical fibers is 

often associated with dispersion compensation in optical communications networks
2
 there is also interest in its control 

for the purposes of harnessing nonlinear optical effects. Parametric processes
3
 and supercontinuum generation

4
 rely upon 

tailoring of the dispersion profile of the fiber to enhance energy transfer and thus time has been spent over the last 

several decades to develop technologies to fine control waveguide dispersion
5
.  

 

      Silica-based highly nonlinear fibers (HNLF) feature very low attenuation loss-characteristics and so by using long 

lengths of these fibers a large nonlinear effect can be realized. Small mode effective areas and thereby large nonlinearity 

are produced by increasing the refractive index difference between the core and the cladding which enhances the 

confinement of the light. This may be achieved by utilizing a highly germanium-doped core and a fluorine-doped 

cladding. In addition to creating a small mode effective area, nonlinear processes such as four-wave mixing (FWM) 

require the pump wavelength to coincide with the zero-dispersion wavelength of the fiber. Further control of the 

dispersion slope is advantageous in controlling dispersion and increasing operating bandwidth.  

 

      In principle the wave equations and boundary conditions governing the modal properties of a fiber are analogous to 

the wave function of a particle in a box often considered in quantum mechanics. As such a typical dispersion-engineered 

fiber with a given refractive index distribution can be considered to be a potential distribution with three discrete 

segments – a core and a ring with an index greater than silicon that attracts light and a depressed index trench which acts 

as a barrier. The index and thickness of these regions determines the rate as a function of wavelength at which the mode 

transitions from the core to the ring, and it is this as well as the average refractive index in which the light exists that 

controls the propagation constant and its derivatives and thereby the dispersion properties of the fiber. 

 

      While the dispersion-engineering of fibers is typically approached through a trial and error method and parametric 

study, authors
6,7,8,9,10,11

 have in the past studied the design of planar waveguides as well as fibers from the point of 

view of inverse-scattering (IS). Here the modal properties of the waveguide are specified at the start of the process and 

through the inverse design process the waveguide with these properties is obtained. In this paper, as a starting point to a 

more general analysis with fibers, we describe the dispersion characteristics of IS designed planar waveguides. We begin 

with an overview of IS theory before considering design cases for which exact solutions exist which have previously 



 

 
 

 

been discussed in the literature, before extending this to a set of new cases. We then show that typical dispersion-

engineered waveguide features such as rings and trenches come naturally from this theory. We finally discuss what 

benefits the new extended cases bring to the literature.   

 

2. INVERSE SCATTERING THEORY 

 
      If we consider a planar optical waveguide with a varying refractive index ( )n x surrounded by two cladding layers of 

constant index 2n as shown in Figure 1, it may support TE modes that are assumed to be of the form 
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where z  is the direction of propagation,  is the frequency,  is the propagation constant along the z-axis and 
0k is the 

free-space wave number. The vector wave equations reduce to the form 
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which can be rewritten as a Schrodinger equation 
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with transverse propagation constant k  in the cladding and the potential ( )q x of the form 
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The refractive index profile ( )n x  of an optical waveguide is determined from its transverse reflection coefficient ( )r k  

through the solution of the Gelfand-Levitan-Marchenko (GLM) integral equation
12

 for the unknown kernel ( , )K x t
7
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where | |x t , and  the reflected transient ( )R t is given as

7
, 
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Figure 1. The physical model for electromagnetic reflection from an inhomogeneous planar waveguide 

 

      The reflection coefficient ( )r k is a rational function, of which poles 
pk on the positive imaginary axis correspond to 

guided modes with corresponding residues
pr . As such the integral in the above expression corresponds to the 

continuous spectrum of radiation modes, while the sum to the discrete set of guided modes
7,13

. Once the kernel 

( , )K x t has been obtained, the potential is then derived from the relation
7
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and the refractive index profile in turn from 

 

 2

2 2

0

( )
( )

q x
n x n

k
   (8) 

 

      A general reflection coefficient can be approximated by a rational reflection coefficients
14

 and so we begin our study 

by considering three, five and seven-pole rational reflection coefficients. In particular, previous authors have 

investigated the three pole case using analytic expressions and the complexity of these increases quickly with the 

increase in number of poles. In view of Galois’ proof that 5
th

 and higher-order polynomial equations are insoluble by 

radicals, the semi-analytical numerical technique of Pechenick
15

 provides a welcome alternative. It is also worth noting 

that this is to our knowledge the first time this technique has been applied to wave-guiding structures.  

 

3. WAVEGUIDE DESIGNS 

 

      In this section we describe the inverse scattering designs obtained using three-pole, five-pole and seven-pole rational 

reflection coefficients. We first demonstrate that the IS method of Pechenick
15

 correctly generates the three-pole wide-

core waveguide first considered by Lakshmanasamy and Jordan
6
 while also demonstrating that associated with the three 

pole parameter space (which is limited in domain by the requirement of conservation-of-energy) is a waveguide 

dispersion map. It is shown that this parameter space may be extended further than previously explored to generate 

increasingly dispersive designs. We then move further by considering five-pole and seven-pole rational reflection 

coefficients for which firstly the allowable parameter space is identified computationally using Sturm’s Theorem
16

 

whereby we evaluate the existence of roots of a higher order conservation-of-energy condition than originally introduced 

for the three-pole case in Appendix A of Jordan and Lakshmanasamy
7
 and secondly the dispersion maps are obtained 



 

 
 

 

showing that dispersion can be tailored about a three-pole design point. All waveguides designs are truncated at ten 

microns.  

 

3.1 Three-pole rational reflection coefficients 

 

The waveguide designs associated with the three-pole rational reflection coefficients are of the form 

 

 1 2 3

1 2 3

( )
( )( )( )

k k k
r k

k k k k k k


  
 (9) 
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 As in the existing literature the conjugate symmetric poles 
1k  and 

2k  are representative of the radiation modes and are 

termed ‘leaky poles’, while 
3k  represents a guided mode at a propagation constant of 1

3 1 mk   .  

      In order for a solution to exist, the reflection coefficient must obey a set of conditions
17

 which are satisfied by the 

general form given in (9). Conservation of energy, ( ) 1r k   for all real k , dictates that the parameter space is limited. 

Previous authors
6
,
7
 have identified and considered the allowable region bounded above by the line 

2 0.5c  and to the 

right by the lemniscate of Bernoulli
17

. The allowable region can be extended past these points as is illustrated in Figure 2 

below which shows the dispersion
2D , dispersion slope 

3D  and dispersion curvature 
4D associated with the allowable 

region.  

 

 

Figure 2. The allowable three-pole parameter space showing contours of dispersion, dispersion slope and dispersion curvature 

assuming cladding index 2 1.444n  and design wavelength 1.55 m   

 



 

 
 

 

      It can be seen that leakier poles lead to waveguides with greater dispersion indicated by the movement from red in 

the lower left hand side to green to blue in the lower right hand side. Dispersion slope and a more negative dispersion 

curvature are also found to occur. Two illustrative examples are those obtained for the pole positions in the parameter 

space previously considered by Lakshmanasamy and Jordan
6
 and shown in Figure 3. Here we see that the leakier poles 

in the design associated with the red curve result in features loosely resembling a W-type refractive index profile and 

larger dispersion. On the other hand, designs with small leaky poles such as those depicted by the blue curve more 

closely resemble a step-index design.  

 

Figure 3. Refractive index profiles for the inner and outer limit of the parameter space previously considered by Lakshmanasamy and 

Jordan 6 with 
2 1.444n   and 1.55 m   , and the exact design obtained by Lakshmanasamy and Jordan6 

 

       

 

Figure 4. Waveguide designs for which 2 215 ps/nm/kmD   and 3D varies from 
20.1 ps/nm /km to

20.3 ps/nm /km , assuming 

2 1.444n   and 1.55 m   

 



 

 
 

 

      We also note that designs exist for which the dispersion is a constant, but the dispersion slope and dispersion 

curvature differ. As an example we consider the case for which 
2 215 ps/nm/kmD    but 3D  varies from 

20.1 ps/nm /km  to 20.3 ps/nm /km , while we ignore changes in dispersion curvature 
4D , as shown in Figure 4.  

      We observe that increasing the size of the dispersion slope for a constant value of dispersion causes the refractive 

index to narrow and steepen. It is particularly interesting to note that the design with flattest dispersion slope contains 

significant trench and ring features, as well as oscillations, the area of which result in a flattening of dispersion slope. 

The existence of these additional features varies the rate at which the electric field expands into the cladding with 

increasing wavelength.  

      In order to better understand the significance of the individual leaky pole parameters 
1c and 

2c we investigated the 

significance of leaky pole radius on the designs. For two values of this radius R , we varied the pole parameters and 

obtained Figure 5.  

 

 

Figure 5. The influence of leaky pole radius R on waveguide design, assuming 
2 1.444n   and 1.55 m   

 

Increasing the leaky pole radius does in all cases result in a narrowing and steepening of the design as is seen when 

comparing the filled and dotted curves. However, it is the size of the 1c  parameter that is most influential in developing 

trenches, rings and oscillations.  

       To further investigate the effect of variation in 1c  for constant 2c we plotted Figure 6 which shows that increasing 

1c decreases the period of oscillation from the green curve to the cyan curve.  It is also interesting to note that a more 

oscillatory design is associated with a more distorted reflection response ( )r k as seen in Figure 7.  

 



 

 
 

 

 

Figure 6. The variation in oscillation period with
1c for a fixed

2 0.51c  , assuming 
2 1.444n   and 1.55 m   

 

 

Figure 7. The variation in ( )r k  with
1c for a fixed 2 0.51c   

 

 

3.2 Five-pole and seven-pole rational reflection coefficients 

 

We may proceed further and explore rational reflection coefficients with five poles of the form 
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      As has previously been mentioned, it is possible to calculate the allowable values of 
1 2 1 2, , ,c c d d  that satisfy 

conservation-of-energy and for which solutions to the inverse scattering problem exist. Here we once again choose the 

guided mode pole 
5k to correspond to propagation at 1

5 1 mk   while also choosing the first two poles to be those from 

the previous three-pole design problem, 
1,2 0.85 0.4999k i   . Using Sturm’s Theorem the allowable domain of the 

additional two parameters 
1 2,d d may be found and the dispersion map is shown in Figure 8. 

 

 

  
Figure 8. Waveguide dispersion as a function of additional leaky pole positions for a five-pole case assuming 

1 2( , ) (0.85,0.4999)c c  , 1

5 1 mk   ,
2 1.444n   and 1.55 m   

 

 

      We first notice from Figure 8 that the dispersion of these five-pole designs is limited in magnitude by the size of the 

initial leaky pole parameters 1 2,c c to a value of the order of 2 70 ps/nm/kmD   while at the same time increasing the 

overall allowable domain. If we repeat this procedure but this time assuming 1 2( , ) (2 0.85,2 0.4999)c c     we obtain 

the allowable region and dispersion map given in Figure 9.  

 



 

 
 

 

 

Figure 9. Waveguide dispersion as a function of additional leaky pole positions for a five-pole case assuming 1 2( , ) (2 0.85,2 0.4999)c c     

, 1

5 1 mk   ,
2 1.444n  , 1.55 m   

 

Once again the dispersion has been limited to values of the order found for the initial three pole case of Figure 2. From 

this we deduce that the addition of poles leads to increased granularity in the design process. That is, it is possible to 

range over similar orders of dispersion, dispersion slope and dispersion curvature as you find located at the values of 

1c and 2c in the three-pole cases but with a more gradual change in waveguide design. From a practical point of view we 

can arbitrarily take a three-pole design with waveguide dispersion 2 261 ps/nm/kmD   and dispersion slope 

2

3 0.13 ps/nm /kmD  , find a five-pole design with these very same second and third order characteristics but show that 

the dispersion curvature differs. This is shown in Figure 10.  

 

Table 1. Three, five and seven-pole designs with significantly differing dispersion slope, 

assuming
2 1.444n  , 1.55 m  and

1 22 0.85,  c 2 0.4999c     , 
1 1 2 2 1 1 2 2d ,  d ,  e ,  ec c d d        , 0.01   

 
Design Dispersion 2D  Dispersion slope 3D  Dispersion curvature 4D  

Three-pole 145 ps/nm/km  2 2 ps/7.98 1 m0 nm /k  4 3 ps/1.02 1 m0 nm /k  

Five-pole 132 ps/nm/km  2 2 ps/2.26 1 m0 nm /k  4 3 ps/1.52 1 m0 nm /k  

Seven-pole 120 ps/nm/km  3 2 ps8.48 /nm /km10   4 3 ps/1.12 1 m0 nm /k  

 

 



 

 
 

 

 
Figure 10. Three pole 

1 2( , ) (2.2775,0.52692)c c  and five pole designs 
1 2 1 2( , , , ) (2 0.85,2 0.4999,3.1789,0.22485)c c d d    with identical 

2 261 ps/nm/kmD   , 2

3 0.130 ps/nm /kmD   but differing 4 3

4 4.41 10 ps/nm /kmD    and 4 3

4 4.29 10 ps/nm /kmD   , assuming 

2 1.444n  , 1.55 m   

    

      Of additional interest is the fact that if the pole positions are chosen to all be located in the same neighborhood but 

with displacement  , thus avoiding multiplicity which would void the inverse-scattering technique
17

, then the three-

pole, five-pole and seven-pole cases demonstrate similar values of waveguide dispersion
2D and dispersion curvature 

4D but significant reduction of dispersion slope as shown in Table 1. Associated with this change in dispersion slope is 

an expansion and exaggeration of the core, ring and trench as shown in Figure 11.  

 

 

Figure 11. Three, five and seven-pole designs with significantly differing dispersion slope, 

assuming 2 1.444n  , 1.55 m  and 1 22 0.85,  c 2 0.4999c     , 1 1 2 2 1 1 2 2d ,  d ,  e ,  ec c d d        , 0.01   



 

 
 

 

4. CONCLUSIONS 

 

      In conclusion we have shown that common features of dispersion-engineered waveguides such as trenches, rings and 

oscillations come naturally from inverse scattering theory when the magnitude of leaky poles in increased. In particular, 

while the leaky pole radius does lead to increased core size, trench size and dispersive properties, it is the magnitude of 

the 
1c  parameter near the forbidden region of the three-pole case that introduces and controls the period of oscillation in 

the refractive index profile. Associated with the introduction of oscillations in the refractive index profile is an additional 

peak in the reflection response ( )r k which becomes increasingly accentuated with the 
1c  parameter. We have also 

shown that for the three-pole cases, the allowed parameter space previously used
6
 can be extended to one which has 

previously not been considered for waveguide designs and provides the opportunity for increasingly dispersive designs. 

The addition of further poles to the inverse scattering procedure, which has also not been investigated previously, has 

been shown to increase the granularity in the design process about a three-pole dispersion design point. As such, the 

dispersion obtained from such higher order pole designs is limited by the choice of the initial two poles with 
1c  and 

2c dominating the design process while additional poles add complexity to the refractive index profile. This complexity 

results in differing higher order dispersion.  

      From a design point of view this work has also for the first time to our knowledge shown that the method developed 

by Pechenick
15

 for the solution of inverse scattering problems involved in ionospheric structure determination can also 

be used in the design of waveguides. It is of additional interest that we have also for the first time to our knowledge used 

Sturm’s theorem in the determination of the allowed parameter spaces for higher pole designs. In order to fully utilize 

the increased design complexity and features available from the addition of poles it would be necessary to perform an 

optimization procedure over the parameter space. We had initially investigated finding a closed-form connection 

between the pole positions and waveguide dispersion characteristics without the need for solving the forward problem 

for a true inverse solution to the design problem but this currently remains unsolved. However, we believe that this 

initial study shows promise for the use of inverse scattering in the understanding and/or design of dispersion-engineered 

fibers or waveguides and we plan to extend these designs in further papers.   
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