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1. INTRODUCTION

This article surveys developments in cyclic cohomology that were made possible by the
Cuntz-Quillen theorem on excision in periodic cyclic homology and cohomology.

Periodic cyclic cohomology was introduced by Connes in his ground-breaking article
[3]. It is Morita and homotopy invariant, two properties which it has in common with
topological K-theory. Moreover, it admits a pairing with K-theory similar to that provided
by the Chern character. A very important property of topological K-theory is excision,
that is the existence of an exact sequence of length six associated with an extension of
C∗-algebras. These three properties, together with a normalisation condition, essentially
characterise K-theory and are used in essentially all explicit calculations. It was not known
for a long time if an excision theorem holds in periodic cyclic cohomology. An important
result in this direction was established by Wodzicki [32], who proved that excision holds
for an algebra extension 0 → S → P → Q → 0 in which the ideal S is H-unital (homo-
logically unital). While this was a very important breakthrough, many natural extensions
do not have this property. For example, in the universal extension introduced by Cuntz in
[5]

0→ IA→ QA→ A→ 0,

the ideal IA is not H-unital in general. Here the universal algebra QA = A ∗ A is the
free product of the algebra A by itself, and the map QA → A is the ‘folding map’ which
identifies the two copies ofA. In a remarkable paper [9], Cuntz and Quillen proved the ex-
cision property for their bivariant periodic cyclic homology HP∗(A,B) and for all algebra
extensions. As in other bivariant theories, the connecting homomorphisms in the six-term
exact sequence are given by the composition product with a class in HP1, which can be
regarded as the fundamental class of the extension.

One immediate corollary of the excision theorem is the existence of a bivariant Chern
character from an algebraic version of KK-theory to bivariant periodic cyclic homology
which is compatible with the composition product. A very important example of the power
of this result was provided by Nistor [23] who used it to provide a new proof of the Connes-
Moscovici index theorem for coverings.

The importance of the excision result in the purely algebraic case cannot be overesti-
mated. Moreover, the approach taken by Cuntz and Quillen relies on their new formalism
which provided a unified description of all cyclic-type homology theories and proved to
be a perfect framework to study extensions of these theories to other classes of algebras,
which is the focus of this article. For example, the algebra C∞(M) of smooth functions
on a compact manifold has a natural Fréchet topology, which needs to be incorporated into
the theory.

Another important conceptual problem was posed by Connes’ entire cyclic cohomology.
It was clear from the first construction of periodic cyclic cohomology by Connes in [3] that
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one should expect the existence of infinite dimensional cocycles. From this point of view,
the periodic cyclic cohomology would be suitable for finite dimensional spaces, while
this new cohomology theory would be able to deal with infinite dimensional ones. The
entire cyclic cohomology of a Banach algebraA is constructed using infinite Z/2Z-graded
inhomogeneous cocycles (φ2n)n∈N, where each φ2n is a (2n + 1)-linear functional on
the algebra A and which together satisfy the condition that the radius of convergence of
the series ∑

n

‖φ2n‖
n!

zn

is infinite. Here we have to deal with two pieces of data: the topology on the algebraA and
the growth condition imposed on cocycles. Meyer’s surprising use of bornology allowed
him to create a new type of cyclic theory, the bivariant analytic cyclic cohomology, where
a main datum is a choice of bornology on the algebra rather than a topology. The entire
cyclic cohomology fits very naturally into this context. Bornology, which had been part
of functional analysis for a long time, was never used in the context of cohomology of
topological algebras before Meyer’s work, and most definitely not in any systematic way.

In another development, Puschnigg’s local cyclic cohomology can be defined for Ba-
nach and C∗-algebras and possesses very useful density and continuity properties. We will
discuss both theories in some detail below. Let us also mention that Voigt developed an
equivariant version of the local theory [30][31].

In what follows we shall sketch a few results that illustrate the progress that was made
possible by the Cuntz-Quillen excision theorem and its natural extensions to other con-
texts. We have chosen problems that illustrate both the power of the theory and how it
might be applied to provide interesting insights into problems in noncommutative geome-
try, more broadly understood. The present exposition is of course incomplete, as the work
that resulted from this important theorem is impossible to describe in a short article.

I was privileged to witness, as Daniel Quillen’s DPhil student at Oxford, the long and
difficult development of the formalism of cyclic cohomology, based on non commutative
differential forms, which was later a key ingredient in the Cuntz-Quillen excision theorem.
In his work Dan was driven by a deep desire to arrive at the clearest possible understanding
of a mathematical problem. This is probably best described in his own words, written in
the introduction to his paper [28], dedicated to Grothendieck:

[Grothendieck’s] work has been of immense importance in my own de-
velopment as a mathematician, because the simple powerful concepts and
formalisms he found to understand one area of mathematics have often
turned out to be very fruitful in other contexts. It is clear from the present
paper, with its extensive use of explicit complexes and formulas, that a
true Grothendieck understanding of cyclic cohomology remains a goal
for the future.

This was the motivation driving the development of the Cuntz-Quillen formalism for cyclic
type cohomology theories and I believe that the theory is now very close to attaining this
high ideal.

Daniel Quillen was a great mathematician. He was also a wonderful person, who was
warm, humble, and generous with his time and his ideas. It was a great honour for me to
be able to spend a few years in his company.

2. THE X-COMPLEX

A very important legacy of the work of Cuntz and Quillen is that all cyclic type ho-
mology theories of an algebra A can be defined using a Z/2Z-graded complex associated
with A. This complex, loosely speaking, is constructed using a certain deformation of the
tensor algebra of A. We begin by describing the purely algebraic case; this is covered in
detail in the article by Cuntz in this volume [11] to which we refer for further information.
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LetA be an algebra, with or without unit. First recall that the differential graded algebra
ΩA of noncommutative differential forms associated with A is generated by the elements
of A together with symbols da for each a in A, such that da is linear in a and satisfies
the Leibniz rule d(ab) = (da)b + adb. In degree n ≥ 1, ΩnA = Ã ⊗ A⊗n, where Ã
is the algebra A with a unit adjoined. Thus, in degree n ≥ 1, ΩnA = A⊗n+1 ⊕ A⊗n,
and so elements ofΩnA are linear combinations of differential forms a0da1 . . . dan and
da1 . . . dan, with ai in A. In degree zero we put Ω0A = A. To define the structure of a
differential complex on the graded spaceΩA we introduce two operators

b =

(
b 1− λ
0 −b ′

)
, B =

(
0 0

N 0

)
where the operators b ′, b, λ,N have their usual meaning, cf. [7, p.9].

Let us denote by Ω̂A the infinite direct product Ω̂A =
∏
nΩ

nA. This can be regarded
as the completion of ΩA in the natural adic topology generated by powers of the ideal IA
consisting of the differential forms of degree at least one. The differentials b and B extend
to operators on Ω̂A.

Now for any two algebras A and B one defines bivariant cyclic homology by

HP∗(A,B) = H∗(Hom(Ω̂A, Ω̂B)).

Here Hom denotes the complex of continuous homomorphisms between the two complexes
of differential forms.

While this definition is natural, the X complex of Cuntz and Quillen has better formal
properties. The X-complex X(A) associated with an algebra A is the Z/2Z-graded com-
plex

A
\d

�
b
Ω1A\

where Ω1A\ = Ω1A/[A,Ω1A] = Ω1A/b(Ω2A), and \ : Ω1A → Ω1A\ is the canoni-
cal projection map, compare [7, p. 21] and Cuntz’s article in the present volume.

In order to obtain an interesting homology theory we need to apply the above construc-
tion to the non-unital tensor algebra TA of the algebra A. While it seems at first sight that
this will lead to a huge and unwieldy object, it turns out in fact, thanks to a key result of
Cuntz and Quillen [10, Theorem 5.5], that the resulting complex is a deformation of the
mixed complex (ΩA,b,B). This observation rests on the fact that the tensor algebra of
any algebra A can be identified with the even part of the algebra ΩA equipped with the
Fedosov product

ω ◦ η = ωη− (−1)degωdωdη.

for anyω,η ∈ ΩA.

Proposition 2.1. ([10][7, Thm. 2.29, p. 24]) For any algebra A the X-complex of the
tensor algebra TA of A is isomorphic to a complex of the form

ΩevA
δ

�
β
ΩoddA

where the differentials β and δ can be explicitly determined in terms of the differentials b
and B.

It follows from this result that the periodic cyclic homology introduced above can be
computed as the homology of a bivariant differential complex arising from the X-complex:

HP∗(A,B) = H∗(Hom(X(TA), X(TB)).

An important advantage of this construction is that it allows extensions to other contexts,
as we shall see in what follows. The Cuntz-Quillen excision theorem can now be stated as
follows.
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Theorem 2.2. Let 0 → S → P → Q → 0 be an extension of algebras, and let A be an
algebra. There are two natural six-term exact sequences

HP0(A, S) −−−−→ HP0(A, P) −−−−→ HP0(A,Q)x y
HP1(A,Q) ←−−−− HP1(A, P) ←−−−− HP1(A, S)

and
HP0(S,A) ←−−−− HP0(P,A) ←−−−− HP0(Q,A)y x
HP1(Q,A) −−−−→ HP1(P,A) −−−−→ HP1(S,A).

The horizontal maps in this diagram are induced by the maps in the extension. We shall
outline a construction of the vertical arrows below.

Let us remark here that Nistor showed [24] that the Chern character ch : Kalgi (A) →
HPi(A), for i = 0, 1, mentioned in the introduction, provides a natural transformation from
the six-term exact sequence in lower algebraic K-theory to the six term exact sequence
in periodic cyclic homology. (This is the first of the two sequences above taken with
A = C.). Moreover, he proved that the boundary map HP1(Q) → HP0(S) is compatible,
via the Chern character, with the connecting homomorphism Ind : Kalg1 (Q)→ K0(S), and
provided an interpretation of this in terms of a higher index theorem.

3. TOPOLOGICAL AND BORNOLOGICAL ALGEBRAS

Cyclic type homology groups of an algebra A are computed using chain complexes
involving tensor powers of A, and so, when A is a general locally convex algebra, this
construction will require a choice of a topological tensor product. Among the most fre-
quently used topological tensor products defined on the class of locally convex topological
vector spaces are the projective tensor product ⊗π, the injective tensor product ⊗ε, and
the inductive tensor product ⊗i and a priori each choice leads to a separate cyclic type
homology theory (with further possibilities provided by completions of these products).

The algebra C∞(M) of smooth functions on a compact manifold M, considered as a
topological algebra in its standard seminorm topology, provides an important example of
a Fréchet algebra that is also nuclear. Therefore, there is a unique tensor product which
is compatible, in the sense of Grothendieck [12, I.89], with the algebraic tensor product
C∞(M) ⊗ C∞(M). This topology was used, for example, by Connes in his computation
of the cyclic cohomology of this algebra [3, Ch.II, Theorem 46].

When considering growth conditions on cochains, for instance as required by Connes’
entire cyclic cohomology, the topological approach runs into an immediate difficulty. It
has been well known since Grothendieck’s Problème des Topologies, [12, p. 33] that in
general there is no clear connection between bounded sets in the tensor product of two
spaces, and the tensor products of bounded sets.

A possible circumvention of this problem rests on the properties of bounded sets, and
this approach has been developed with great success by Meyer. We now sketch the main
features.

If X is a set, then a bornology on X is a family B of subsets of X which is closed with
respect to taking subsets and finite unions. Elements of the family B will be called bounded
sets, and a bornological space is a set equipped with a bornology. A base of a bornology
B is a subfamily B0 of B with the property that any element of B is contained in some
element of B0.

It is natural (and consistent with examples) to say that a map f : (X,B) → (Y,B ′) of
bornological spaces is bounded if and only if for any B ∈ B, f(B) ∈ B ′.
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A bornology on a vector space E is said to be compatible with the vector space structure
iff the vector addition E × E → E and multiplication by scalars C × E → E are bounded
maps of bornological spaces.

When the space E is a locally convex topological vector space, then its topology de-
termines a canonical bornology, called the von Neumann bornology, which consists of all
sets S that are absorbed by all neighbourhoods of zero; this means that for every neigh-
bourhood U of zero there exists a positive number t such that S ⊆ tU. More generally,
one can equip the vector space E with a bornology which does not arise from the topology
on E. One consequence of this is that the class of bounded linear maps on E will in general
be different from the class of continuous maps.

From now on, all bornological spaces will be assumed to be vector spaces.
Let us now describe briefly the notion of bornological completion. A bornological

vector space E is called convex if its bornology has a base which consists of convex sets. If
this is the case, we can assume that the base consists of balanced convex sets, which will
be called discs. For a bounded discD in E, let ED denote the vector space generated byD
and equipped with the seminorm given by the gauge of D. When E is a Hausdorff space,
ED is a normed space; when this space is complete, we call the disc D pre-complete. So,
when E is Hausdorff and D pre-complete, ED is a Banach space. The spaces ED form an
inductive system indexed by the directed family of bounded discs and E is the direct limit
of this system.

A complete bornological space is a bornological space E which admits a base consist-
ing of pre-complete discs. A bornological space E is complete iff it is the inductive limit of
an injective inductive system of Banach spaces [18, Theorem A.4]. While every bornolog-
ical space E admits a bornological completion, this is less well behaved than the usual
completion of a uniform space (see [18, Appendix A] for a full discussion).

Finally, we say thatA is a bornological algebra if and only if it is equipped with a vector
space bornology with respect to which the product mapA×A→ A is bounded; of course,
a complete bornological algebra is one that is complete as a bornological vector space.

Proceeding by analogy with the topological tensor product, the bornological tensor
product of two bornological spaces (E1,B1) and (E2,B2) is the algebraic tensor prod-
uct E1 ⊗ E2 equipped with the bornology whose base consists of balanced convex hulls
of sets of the form B1 ⊗ B2, where B1 ∈ B1 and B2 ∈ B2. This is precisely where we
declare that bounded subsets of the tensor product arise from tensor products of bounded
sets. The completed bornological tensor product E1⊗̂E2 is the bornological completion of
E1 ⊗ E2 with respect to this bornology.

It is interesting to trace these constructions in particular examples, and Meyer provides
a thorough discussion of how bornological tensor products of standard topological spaces
relate to their topological counterparts. And so, the completed bornological tensor product
of two Fréchet spaces equipped with the precompact bornology (i.e., the bornology gener-
ated by pre compact sets) is isomorphic to the completed projective tensor product of the
two spaces [18, Theorem 2.29].

For the next example, let us first recall that a locally convex topological vector space
E is an LF-space if there exists an increasing sequence of subspaces En, n ∈ N with the
property that each of the subspaces En is Fréchet in the subspace topology, the union of
all subspaces En equals E and E is equipped with the finest topology so that all inclusion
maps En → E are continuous.

When E1 and E2 are nuclear1 LF-spaces regarded as bornological spaces with the von
Neumann bornology then the completed bornological tensor product E1⊗̂E2 is isomorphic
to the completed inductive tensor product of Grothendieck, see [18, Cor. 2.30, p. 15].

Let us now assume that A is a complete bornological algebra. Then there is a natural
bornology on ΩA whose base is given by balanced convex hulls of the sets SdS . . . dS

1See [12, Chapter 2, Def. 4]
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and dS . . . dS, where S is an element of the bornology on A. Let us denote by ΩanA the
completion of ΩA with respect to this bornology. This is again a Z/2Z-graded complex
with the same differentials b and B, which are now bounded maps. With this in hand,
we define the analytic tensor algebra TA of A to be the even part of the algebra ΩanA,
equipped with the Fedosov product; this algebra fits into the algebra extension

0→ JA→ TA→ A→ 0.

Now the X-complex of the algebra TA is defined using the construction outlined above.

Definition 3.1. The bivariant entire cyclic homology of a pair of bornological algebras A
and B is by definition

HE∗(A,B) = H∗(Hom(X(TA), X(TB)).

where Hom(X(TA), X(TB)) denotes the Z/2Z-graded complex of bounded linear maps
from X(TA) to X(TB). This complex is equipped with the differential [∂,φ] = ∂ ◦ φ −
(−1)degφφ ◦ ∂, where ∂ = b + B [7, p. 57][18, p. 37]. The resulting homology theory is
Z/2Z-graded.

This construction is due to Meyer, who proved that HE is invariant with respect to dif-
ferentiable homotopies whose first derivative is integrable. Moreover, the bivariant entire
cyclic homology satisfies excision in both variables [7, Thm. 5.4][19]. More precisely, we
have the following.

Theorem 3.2. Let 0 → S → P → Q → 0 be an extension of complete bornological
algebras which admits a bounded linear section. Assume further that A is a complete
bornological algebra. Then we have the following natural exact sequences of length six:

(1)

HE0(A, S) −−−−→ HE0(A, P) −−−−→ HE0(A,Q)

d1

x yd1

HE1(A,Q) ←−−−− HE1(A, P) ←−−−− HE1(A, S)

(2)

HE0(S,A) ←−−−− HE0(P,A) ←−−−− HE0(Q,A)

d2

y xd2

HE1(Q,A) −−−−→ HE1(P,A) −−−−→ HE1(S,A).

Meyer also proves that for any Banach algebra A, the bivariant entire cyclic homol-
ogy HE∗(A,C) is the same as the entire cyclic cohomology HE∗(A) of A as defined by
Connes [20, 4.1]. This observation allows one to define the entire cyclic homology ofA by
HE∗(A) = HE∗(C, A).

Another very important property of HE is the existence of the composition product,
which is defined as in the case of bivariant periodic cyclic homology by composition of
linear chain maps. For any three bornological algebras A1, A2 and A3 there is a bilinear
product

HEi(A1, A2)× HEj(A2, A3)→ HEi+j(A1, A3)

given by f · g = g ◦ f. With these properties, the bivariant entire cyclic cohomology
has formal properties similar to those of Kasparov’s bivariant KK-theory. One crucial
difference is that HE is only invariant with respect to homotopies which are ‘sufficiently
smooth’. Puschnigg’s local bivariant cohomology does not have this restriction, as we
shall explain later.
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4. ENTIRE CYCLIC COHOMOLOGY OF SCHATTEN IDEALS

To demonstrate the power of the algebraic formalism created by Meyer’s extension of
results of Cuntz and Quillen to bornological algebras, let us discuss briefly the computation
of the entire cyclic cohomology of Schatten ideals carried out in [2]. It turns out that for
p ≥ 1, Schatten ideals display a remarkable stability with respect to HE.

Theorem 4.1. Let Lp and Lq be two Schatten ideals, 1 ≤ p < q. Then the inclusion
Lp → Lq induces an invertible element in HE0(Lp,Lq). Consequently, the entire cyclic
homology and cohomology of the two algebras are isomorphic:

HEi(Lp) = HEi(Lq); HEi(Lp) = HEi(Lq)

for i = 0, 1.

In the context of algebraic periodic cyclic homology [7] as well as the kk-theory of
Cuntz, this result was first proved by Cuntz [8].

For the proof one needs explicit formulae for the connecting homomorphisms in the
commutative diagrams of Theorem 3.2. The construction outlined here relies on algebraic
properties of bivariant cyclic homology and so works for all types of homology theories
described in this paper. In particular, the same argument gives connecting homomorphisms
in the algebraic excision theorem 2.2.

Let us consider the following extension E of complete bornological algebras

E : 0→ S
i−→ P

p−→ Q→ 0.

We shall assume that this sequence is split, i.e. there exists a bounded linear map s : Q→ P

which is a right inverse for the projection p.
The excision property of bivariant cyclic homology HE∗ implies that there are two long

exact sequences

→HE∗(P, S)→ HE∗(S, S)
δ1−→ HE∗+1(Q, S)→→HE∗(Q,P)→ HE∗(Q,Q)
δ2−→ HE∗+1(Q, S)→ .

Let us denote by 1Q the class in HE0(Q,Q) induced by the identity map on the algebraQ
and,similarly, let 1S denote the class of the identity map on S.

Proposition 4.2. Let δ1 and δ2 denote the connecting homomorphisms in the two long
exact sequences above. Then

δ1(1S) = −δ2(1Q) ∈ HE1(Q, S).

This lemma can be regarded as an analogue of a result of Kassel [14, Lemme 2.2]
concerning his bivariant cyclic cohomology, see also [9][7, Prop. 2.51, p.33].

This result can be used to provide formulae for connecting homomorphisms in the exact
sequences of Theorem 3.2, which uses that the two sequences are natural. In the case of
the sequence (1) in Theorem 3.2, this means that there exists a commutative diagram

HEj(A,Q)× HE0(Q,Q)
m−−−−→ HEj(A,Q)

1⊗δ2

y yd1

HEj(A,Q)× HE1(Q, S)
m−−−−→ HEj+1(A, S)

where m denotes the product map and d1 denotes the connecting homomorphism in the
diagram (1) of Theorem 3.2, for j = 0, 1.

Taking into account the usual sign convention we have that

d1(φ ·ψ) = m(1⊗ δ2)(φ⊗ψ) = m((−1)deg(φ)(φ⊗ δ2(ψ)) = (−1)deg(φ)φ · δ2(ψ)
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for φ ∈ HEj(A,Q) and ψ ∈ HE0(Q,Q). Hence

d1(φ) = d1(φ · 1Q) = (−1)deg(φ)φ · δ2(1Q).

Similarly, we obtain a formula for the connecting homomorphism d2 in the exact sequence
(2). In this case, the naturality of this sequence implies that there exists a commutative
diagram

HE0(S, S)× HEj(S,A)
m−−−−→ HEj(S,A)

δ1⊗1
y yd2

HE1(Q, S)× HEj(S,A)
m−−−−→ HEj+1(Q,A).

Hence, for φ ∈ HE0(S, S) and φ ∈ HEj(S,A) we have

d2(φ ·ψ) = m(δ1 ⊗ 1)(φ⊗ψ) = δ1(φ) ·ψ.

Thus
d2(ψ) = d2(1S ·ψ) = δ1(1S) ·ψ.

This kind of consideration allows one to define a Chern class of the extension E.

Proposition 4.3. Let us denote by ch(E) the class −δ1(1S) = δ2(1Q) of the extension
E. Then the connecting homomorphism d1 in the exact sequence (1) of Theorem 3.2 sends
φ ∈ HEj(A,Q) to (−1)deg(φ)φ · ch(E) ∈ HEj+1(A, S). The connecting homomorphism
d2 in the sequence (2) of Theorem 3.2 sends ψ ∈ HEj(S,A) to ch(E) ·ψ ∈ HEj+1(Q,A).

This implies, as in [14][9], the following.

Corollary 4.4. If the algebra P in the extension E is HE-equivalent to 0, which means that
HE∗(A, P) = HE∗(P,A) = 0 for any bornological algebra A, then ch(E) is an invertible
element in HE1(Q, S).

Proof. Let us put A = S in the sequence (1) and then A = Q in the sequence (2)
of Theorem 3.2. Since the terms containing the algebra P are zero, we see that the
connecting homomorphisms d1 and d2 are now isomorphisms. In particular, there ex-
ists η1 ∈ HE1(S,Q) such that d1(η1) = 1S ∈ HE0(S, S). Similarly, there exists
η2 ∈ HE1(S,Q) such that d2(η2) = 1Q ∈ HE0(Q,Q). But we have just established
that

d1(η1) = η1 · ch(E) = 1S

and that
d2(η2) = ch(E) · η2 = 1Q.

This implies that η1 = η2. Indeed,

η1 = η1 · 1Q = η1 · ch(E) · η2 = 1S · η2 = η2.

Thus η = η1 = η2 ∈ HE1(S,Q) is the inverse of ch(E) ∈ HE1(Q, S). �

To apply these results to computing the entire cyclic cohomology of Schatten classes,
one can adapt a method of Cuntz [8, Satz 6.12][7], who used it to prove an analogous result
in his kk theory and periodic cyclic homology.

Proposition 4.5. Let us assume that for two complete bornological algebrasA and B there
are maps

α : B ↪→ A

β : A⊗A→ B

such that the composition α◦β is identical to the product map onA, whereas β◦ (α⊗α).
is the product on B. Then the element [α] of HE0(B,A) is invertible. This implies that
HE∗(A) ' HE∗(B) and HE∗(B) ' HE∗(A).
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The proof of Theorem 4.1 is concluded by applying these results in the case when
B = Lp and A = Lq, where p ≤ q ≤ 2p. The map α of the previous statements is
obtained from the continuous inclusion Lp → Lq and the map β from the multiplication
map Lq⊗̂Lq → Lp.

5. CONTINUOUS TRACE ALGEBRAS

The computation of the entire cyclic cohomology of Schatten ideals enabled Mathai
and Stevenson to establish that entire and periodic cyclic cohomology are isomorphic on a
large class of algebras [17] defined in the following Theorem.

Theorem 5.1. Let C be the smallest class of Fréchet algebras satisfying the following
properties:

(i) The class C contains C and all Schatten ideals Lp for all p ≥ 1;
(ii) C is closed under smooth homotopy equivalence;

(iii) If in an extension admitting a continuous section, two of the algebras belong to C,
then so does the third.

Then for every algebra A ∈ C, the natural map between continuous periodic homology
and entire cyclic homology induces an isomorphism

(3) HE∗(A) ∼= HP∗(A),

where A is equipped with the precompact bornology.

The proof rests on an observation that the class C ′ of Fréchet algebras (equipped with
the canonical complete bornology) for which the isomorphism (3) holds satisfies the three
conditions stated in the theorem. Indeed, the category C ′ contains C. It also contains the
Schatten ideals, which follows from Theorem 4.1. Since both entire and periodic cyclic
homology are invariant with respect to smooth homotopies, the category C ′ is closed under
smooth homotopy equivalence. Let us then consider an extension of algebras of Fréchet
algebras admitting a continuous section in which two of the algebras belong to the category
C ′. Then applying excision in both theories we will create two exact sequences of length
six connected by natural transfer maps from continuous periodic homology to entire cyclic
homology. By definition of C ′, these maps will be isomorphisms for the two algebras in
our extension that belong to C ′. By the five lemma, the transfer maps corresponding to the
third algebra will also be isomorphisms, and so this algebra will also belong to C ′. This
implies that C ⊆ C ′ and so the isomorphism (3) holds for every algebra in the category C.

An interesting application of this theorem is the computation of entire cyclic homology
for a class of continuous trace C∗-algebras. Let A be a continuous trace C∗-algebra whose
spectrum is a smooth compact manifold M. A key result, due to Dixmier and Duady,
identifies an algebra A of this form with the algebra A = C(M,K(P)) of continuous
sections of a smooth locally trivial bundle K(P) = P ×PU K, where the fibre K is the
algebra of compact operators on a separable Hilbert space, which is an associated bundle
of a principal PU bundle P on M. Here PU denotes the projective unitary group of a
Hilbert space.

As is well known, algebras A of this type are classified, up to isomorphism, by their
Dixmier-Douady invariant δ(P) ∈ H3(M,Z). For every p ≥ 1, such an algebraA contains
a canonical dense, smooth ∗-subalgebra Ap = C∞(M,Lp(P)), which is the algebra of
smooth sections of a canonical sub-bundle Lp(P) = P ×PU Lp of K(P), with fibre Lp

and structure group PU.

Theorem 5.2. LetM be a smooth connected compact manifold equipped with a principal
PU-bundle P → M. Consider the nuclear Fréchet algebra Ap of smooth sections of the
bundle Lp(P) = P ×PU Lp. Then for all p ≥ 1 there are isomorphisms

HE∗(Ap) ∼= HP∗(Ap).
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When this conclusion is combined with the main result of [16] then we have the follow-
ing complete description of the entire cyclic cohomology of the algebras Ap.

Corollary 5.3. [17, Cor. 3.3] The entire cyclic homology HE∗(Ap) is isomorphic to
the twisted de Rham cohomology H∗(M,c(P)) for some closed 3-form on M such that
(1/2πi)c(P) represents the image of the Dixmier-Douady invariant δ(P) in cohomology
with real coefficients.

6. THE LOCAL BIVARIANT CYCLIC COHOMOLOGY

It is worth stressing, thanks to the work of Cuntz and Quillen, that the different types of
cyclic homology theories of an algebra A arise from a complex that is built using various
completions of canonical tensor algebra TA associated with A. In the case of Cuntz’s and
Quillen’s own work, it was the adic completion with respect to powers of the ideal spanned
by differential forms of degree at least one. Meyer’s study of entire cyclic cohomology
used the bornological completion. We now come to another important version of cyclic
type homology: Puschnigg’s local bivariant cohomology.

This theory is developed for the so called Ind-algebras with supports. The first notion
comes from category theory, where for a category C one constructs a category Ind C of
formal inductive limits. In essence, this means considering inductive systems of objects in
C, with morphisms defined using a natural notion of morphism of two inductive systems.
An important reason for doing it in this way is that an inductive limit of of a system of
objects belonging to one category may not necessarily belong to that category; Banach
spaces provide an example. So an Ind-algebra A can be thought of as an inductive system
of algebrasAi from some category C of algebras, where i ∈ I runs through an indexing set
I. Now a support of an Ind-algebra is a family S of non-empty subsets Si of Ai, which is
directed in the sense that for all Si, Sj ∈ S there exists Sk ∈ S such that both Si and Sj are
contained in Sk. We further assume that S contains the multiplicative closure of the sets
Si. Moreover, if all algebras Ai are Fréchet algebras, we assume that the set Si is bounded
in Ai, for all i ∈ I. There is a natural notion of support-preserving maps of Ind-algebras,
which are maps of inductive systems φ : A→ A ′ so that for every i ∈ I, φ(Si) ⊆ S ′i.

An admissible Fréchet algebra is a Fréchet algebraA with the property that there exists
an open neighbourhood U of zero in A such that the multiplicative closure of any compact
subset of U is relatively compact in A. This is equivalent to saying that the family of com-
pact subsets of U provides a system of supports Sc for A. Among examples of admissible
Fréchet algebras are Banach algebras, and many Fréchet algebras that are smooth, dense,
and holomorphically closed subalgebras of Banach algebras.

One needs to extend the formalism of tensor algebras and theX-complex to Ind-algebras,
and this is a main part of Puschnigg’s foundational work. A particular technical point to be
aware of is that a system of supports of an Ind-algebra A creates a system of supports for
the tensor Ind-algebra TIndA. Once we form the analogue of the X complex for algebras
of this type, we will require that any map of complexes preserve the supports. With this
proviso we define the bivariant local cyclic homology of two Ind-algebras (A, SA) and
(B, SB) with supports by

HL∗(A,B) = H∗(Hom(X(TIndA), X(TIndB))).

Remember that in the case of Meyer’s analytic cohomology, we were interested in bounded
maps, which preserve the bornologies of the algebras in question; this clearly is an example
of Puschnigg’s support condition when Meyer’s and Puschnigg’s theories are defined on
the same class of algebras. In fact, Puschnigg proves the following.

Theorem 6.1. [27, Prop. 3.21, Lemma 3.22]
(1) Let A be a Banach algebra. Then its cyclic cohomology with bounded supports is

identical to Connes’ entire cyclic cohomology;
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(2) LetA and B be admissible Fréchet algebras with compact supports. Then local bi-
variant cyclic cohomology with compact supports is the same as Meyer’s analytic
bivariant cohomology defined with respect to the compact bornology.

One advantage of local cyclic cohomology is that it allows a larger class of algebras
as its arguments, and in particular it works for C∗-algebras, and in this case it has the
same formal properties as the KK-theory of Kasparov: it is stable, satisfies excision, and
is invariant with respect to continuous homotopies. The universal property of KK-theory
now guarantees the existence of the Chern character, as in the theorem below. This is
an important conclusion of a long effort to construct the Chern character in cyclic type
cohomology theories.

Theorem 6.2. [25, Theorem 6.3] There exists a natural transformation of bifunctors on
the category of separable C∗-algebras

ch : KK∗(A,B)→ HL∗(A,B)

from Kasparov’s bivariant KK-theory to bivariant local cyclic cohomology, called the bi-
variant Chern-Connes character.

The bivariant Chern character is compatible with long exact sequences (in both vari-
ables) arising from an extension 0 → I → A → B → 0 of separable C∗-algebras with a
completely positive section. It is also compatible with the Kasparov product in KK-theory
and the composition product in HL.

We now give two applications of local cyclic cohomology. The first is to the compu-
tation of the entire cyclic cohomology of the algebra C∞(M) of smooth functions on a
manifold M. To appreciate this result, it is necessary to remark that an important motiva-
tion for the introduction of Connes’ entire cyclic cohomology was that it is the right theory
in the context of infinite dimensional non commutative spaces. So in the case of finite
dimensional spaces, for instance finite dimensional manifolds, the entire cyclic cohomol-
ogy should be the same as the periodic cyclic cohomology, which was devised for finite
dimensional spaces. This simple-to-state problem turned out to be very difficult to solve
and required the whole power of local cyclic cohomology. We have the following.

Theorem 6.3. [25, Theorem 6.2] Let M be a smooth, compact manifold with (possibly
empty) boundary and let C∞(M) be the nuclear admissible Fréchet algebra of smooth
functions onM. Then there are natural isomorphisms

HE∗(C∞(M)) ∼= HP∗(C∞(M)) ∼= H(M,HP∗(C))

HE∗(C∞(M)) ∼= HP∗(C∞(M)) ∼= H∗(M,HP∗(C))

of homology and cohomology groups.

The proof, in outline, goes as follows. Let N be a codimension one submanifold with-
out boundary which does not intersect ∂M, and which has the property that the tangent
bundle of N is trivial. There are two algebras associated with this data: C∞(M,N) is
the algebra of smooth functions on M that vanish on N, and C∞0 (M,N) is the subalgebra
of C∞(M,N) consisting of all smooth functions f on M such that f and all its deriva-
tives vanish on N. It turns out that the inclusion C∞0 (M,N) ↪→ C∞(M,N) is a smooth
homotopy equivalence.

We now set up an induction argument with respect to the dimension of M, aiming
to show that C∞(M) belongs to the class C described in Theorem 5.1 for any smooth
manifold M. So let us assume that this was proved for all manifolds with potentially
nonempty boundary whose dimension is smaller than dimM. Let us choose a Morse
function f : M→ R+ which has finitely many critical points x1, . . . , xk so that no two lie
on the same level surface of f. We assume that 0 is a regular value and that ∂M = f−1(0).
Let t0 = 0 and choose real numbers t1, . . . , tk such that ti−1 < f(xi) < ti, for i =
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1, . . . , k and let Ni = f−1(ti). This leads to the extension of nuclear, admissible Fréchet
algebras

E : 0→ C∞(M,
∐
Ni)→ C∞(M)→ C∞(

∐
Ni)→ 0

which is split by a bounded linear section. By the induction hypothesis, the algebra
C∞(
∐
Ni) belongs to the category C, so it is sufficient to prove that C∞(M,

∐
Ni) ∈ C.

By the first step, there are smooth homotopy equivalences

C∞(M,
∐
Ni) ∼ C∞0 (M,

∐
Ni) ∼=

⊕
C∞0 (f−1([ti, ti+1]), Ni

∐
Ni+1).

Hence the result will follow once it is verified that each of the summands on the right hand
side is an element of C. This is achieved by using a handle decomposition of M which
gives a homotopy equivalence

C∞0 (f−1([ti, ti+1]), Ni
∐
Ni+1) ∼ C∞(Dni × Smi , ∂Dni ×Dmi),

where Dni denotes a disc and Smj is a sphere of the indicated dimension. The algebra on
the right is in turn homotopy equivalent to the algebra

C∞(Dni × Smi , ∂Dni × Smi),

where ni +mi = dimM, ni > 0.We now have an algebra extension

0→ C∞(Dni × Smi , ∂Dni × Smi)→ C∞(Dni × Smi)→ C∞(∂Dni × Smi)→ 0.

The algebra C∞(Dni × Smi) is homotopy equivalent to C∞(Smi), and so is an element
of C by the induction hypothesis. By the same hypothesis, we have that the algebra on the
right is in C, which proves that the algebra on the left is an object of the category C as well.
But this implies that the two algebras on either end of the extension E are objects of the
category C and thus so is C∞(M).

7. THE KADISON-KAPLANSKY CONJECTURE FOR HYPERBOLIC GROUPS

Our second example of an application of the local cyclic theory is to the Kadison-
Kaplansky conjecture. Let Γ be a discrete torsion-free group. Then the conjecture asserts
that there are no non-trivial idempotents in the reduced C∗-algebra C∗r(Γ). This conjec-
ture, long a focus of some really exciting research, is now one of the corollaries of the
Baum-Connes conjecture.

Let D be an elliptic operator acting on the space of sections of a vector bundle over
a smooth compact manifold M without boundary. Then D has a lift to a Γ -equivariant
operator D̃ on a Γ -covering M̃ of M. Kasparov assigns to this data a topological index
Indt(D̃) ∈ Ktop0 (BΓ), an analytic index Inda(D̃) ∈ K0(C∗r(Γ)) and an assembly map

µ : Ktop∗ (BΓ)→ K∗(C
∗
r(Γ))

such that µ(Inda(D̃)) = Inda(D̃).
The Atiyah-Singer index theorem states that the topological and the analytic index are

equal, while the Baum-Connes conjecture extends this statement to a hypothesis that the
assembly map is an isomorphism. We should note that the Baum-Connes conjecture is
stated for a far greater class of groups than the one considered here.

To deduce the Kadison-Kaplansky conjecture for a torsion-free group which satisfies the
Baum-Connes conjecture, let e be an idempotent in C∗r(Γ). Then e determines a class [e] ∈
K0(C

∗
r(Γ) which is the image, via the assembly map, of the topological index Indt(D̃),

where D̃ is a Γ -invariant elliptic operator on the Γ -cover M̃ of the manifold M. Let τ
be the canonical faithful trace on C∗r(Γ). It is well known that it extends to a map τ :

K0(C
∗
r(Γ)) → C. Atiyah’s L2-index theorem then states that trace τ(e) = τ(Inda(D̃)) =

Ind(D), and so is an integer. The integrality of the trace of an arbitrary projection in C∗r(Γ)
is equivalent to the Kadison-Kaplansky conjecture.

Mineyev and Yu [21] proved the Baum-Connes conjecture for hyperbolic groups us-
ing the strategy proposed by Lafforgue [15], which then implies the Kadison-Kaplansky
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conjecture. Essentially at the same time, Puschnigg presented a proof of the Kadison-
Kaplansky conjecture for this class of groups [26]. His proof provides an excellent illus-
tration of the power of cyclic homology when combined with KK-theory, and so it is worth
to recall it in the present context.

Connes and Moscovici [4] proposed a strategy for proving the Baum-Connes conjecture
which relies on the existence of a suitable Chern character with values in periodic cyclic
cohomology. In Puschnigg’s case, this can be stated as follows. Let a(Γ) denote a Banach
algebra completion of the group ring CΓ which is a subalgebra of the reduced C∗-algebra
C∗r(Γ). Then there is the following commutative diagram

K
top
∗ (BΓ)

µ−−−−→ K∗(a(Γ))

ch

y ych
H∗(Γ,C)

µc−−−−→ HL∗(a(Γ)).

Here H∗(Γ,C) denotes the periodised group cohomology of Γ with complex coefficients.
Let us concentrate on the cohomological assembly map µc along the bottom row of the
above diagram.

There is a natural adjoint action of Γ on the complex defining the local cyclic coho-
mology with respect to which it decomposes as a direct sum of subcomplexes, indexed by
conjugacy classes of Γ . The induced action creates a decomposition on cohomology, and
in fact it turns out that HL∗(a(Γ)) is a direct sum of the homogeneous part HL∗(a(Γ)),
corresponding to the identity element, and the inhomogeneous part, indexed by the non-
identity elements of Γ . The first important step in the proof is the fact that µc determines
an isomorphism onto the homogeneous part of HL∗(a(Γ)):

(4) µc : H∗(Γ,C)
∼=−→ HL∗(a(Γ))hom.

Moreover, Puschnigg’s local cyclic cohomology possesses the following important stabil-
ity property. When a(Γ) is a large enough ‘good’ completion of CΓ in C∗r(Γ) in the sense
of Lafforgue [15], then

HL∗(`1(Γ))hom ∼= HL∗(a(L))hom.

In fact this result holds also for crossed products. Moreover, we have the following.

Theorem 7.1. [26, Theorem 3.11] Let Γ be a word hyperbolic group. Then there is an
isomorphism

HL∗(`1(Γ))hom ∼= H∗(Γ,C)

between the homogeneous part of HL∗(`1(Γ)) and the periodised group homologyH∗(Γ,C).

In Kasparov’s approach to the Baum-Connes conjecture one aims at constructing an
element γ which is an idempotent in the ring KKΓ (C,C). The descent homomorphism

jr : KKΓ (C,C)→ KK(C∗r(Γ), C
∗
r(Γ))

maps γ to an element jr(γ), which acts as a projection K∗(C∗r(Γ)) → µ(Ktop∗ (BΓ)) onto
the image of the topological assembly map. It follows that when γ = 1, the assembly map
is an isomorphism and the Baum-Connes conjecture holds for Γ . While in general γ 6= 1,
Puschnigg shows that the existence of the γ element combined with his computation of the
local cyclic homology of `1(Γ) is sufficient to prove the Kadison-Kaplansky conjecture.

Theorem 7.2. [26, Theorem 5.6] Let Γ be a torsion-free discrete group such that
(1) The classifying space BΓ has the homotopy type of a finite simplicial complex;
(2) there exists a sufficiently large good completion a(Γ) of CΓ in C∗r(Γ) which is

stable under holomorphic functional calculus in C∗r(Γ);
(3) there exists a γ-element γ ∈ KKΓ (C,C);
(4) HL∗(`1(Γ))hom ∼= H∗(Γ,C).
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Then the Kadison-Kaplansky conjecture holds for Γ . In particular, the Kadison-Kaplansky
conjecture holds for any torsion-free word hyperbolic group.

The proof proceeds as follows. We select a sufficiently large good completion a(Γ) of
CΓ which is closed under holomorphic functional calculus in C∗r(Γ). The canonical trace
τ on C∗r(Γ) vanishes on the inhomogeneous part of C∗r(Γ) and its restriction to a(Γ) gives
rise to a homogeneous local cyclic cocycle [τ] ∈ HL0(a(Γ))hom. The Chern character is
compatible with the decomposition into homogeneous and inhomogeneous parts and in
particular it transports the inhomogeneous part jr(1 − γ)(K∗(a(Γ)) to the inhomogenous
part of H∗(a(Γ)). This implies that the cocycle [τ] vanishes on ch(jr(1 − γ)(K∗(a(Γ)).
Moreover, using formula (4), the homogeneous component of the Chern character lands in
the image of the homological assembly map. This is crucial, as one can now use the Atiyah-
Singer argument to show that the trace of any idempotent in C∗r(Γ) is an integer, which
implies the Kadison-Kaplansky conjecture. It is important to stress that this argument uses
only the existence of the γ element, and not the veracity of the Baum-Connes conjecture for
Γ . It is the vanishing of the canonical trace on the inhomogeneous part of HL that allows
one to reduce the consideration to the image of the assembly map. Finally, Puschnigg
shows that conditions of this theorem are satisfied by any torsion-free word hyperbolic
group Γ , which concludes his proof of the Kadison-Kaplansky conjecture.

8. THE BAUM-CONNES CONJECTURE FOR p-ADIC GROUPS

In this final section, we would like to present a particular direction in the study of the
Baum-Connes conjecture that has seen interesting developments based on new results in
cyclic cohomology.

In his paper [29], Solleveld studies the category C consisting of thosem-algebras A for
which the Chern character (as defined above) induces an isomorphism

ch⊗ id : K∗(A)⊗ C→ HP∗(A).

Using excision and other formal properties of cyclic type homology theories he proves that
this category is closed under smooth homotopies, contains algebras of the type C∞(X) for
a smooth manifold X, and for every admissible extension of m-algebras, whenever two of
the terms in the extension are in C, then so is the third.

Let us now consider a reductive p-adic group G. If K is a compact open subgroup
of G, then the Schwartz algebra S(G//K) consists of all rapidly decaying K-bi-invariant
functions on G with complex values. The Schwartz algebra S(G) is the direct limit

S(G) = lim→ S(G//K)

equipped with the direct limit topology. We now define the Hecke algebra H(G//K) to
be the subalgebra of the Schwartz algebra S(G//K) consisting of compactly supported
functions. Again, the Hecke algebra H(G) is the direct limit of the algebras H(G//K).
It should be noted that the Hecke algebra is considered in purely algebraic terms, without
reference to topology.

Solleveld proves that the Schwartz algebras S(G//K) are objects of the category C. The
main result of [29] is the following.

Theorem 8.1. Let G be a reductive p-adic group acting on an affine Bruhat-Tits building
X. There is a commutative diagram

KG∗ (X)
µ−−−−→ K∗(C

∗
r(G))

ch

y ych
HP∗(H(G))

µc−−−−→ HP∗(S(G))
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where the top horizontal arrow is the Baum-Connes assembly map, the vertical arrows are
Chern characters, and the bottom horizontal arrows is induced by inclusion. Then µc is
an isomorphism.

The proof of this result relies in part on Lafforgue’s proof of the Baum-Connes con-
jecture for reductive p-adic groups [15], which shows that the map µ is an isomorphism.
The vertical map on the left has been constructed in [1] where it was also proved that it
is an isomorphism upon tensoring with C. Given that the algebras S(G//K) belong to the
category C, the required isomorphism on the right (upon tensoring by C) follows from the
continuity of K-theory and the definition of the Schwartz algebra S(G). Finally, the map
along the bottom edge is not affected by tensoring by C, and so is an isomorphism.
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