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Abstract 19 

 20 

In this study we reconstruct phylogenies for deep sea amphipods from the 21 

North Atlantic in order to test hypotheses about the evolutionary mechanisms driving 22 

speciation in the deep sea.  We sequenced five genes for specimens representing 21 23 

families.  Phylogenetic analyses showed incongruence between the molecular data 24 

and morphological taxonomy, with some morphologically distinct taxa showing close 25 

molecular similarity.  Approximate dating of nodes based on available calibration 26 

suggested adaptation to the deep sea around the Cretaceous-Palaeogene boundary, 27 

with three identified lineages within the deep-sea radiation dating to the Eocene-28 

Oligocene transition.   Two of those lineages contained species currently classified in 29 

multiple families.  We reconstructed ancestral nodes based on the mouthpart 30 

characters that define trophic guilds (also used to establish the current taxonomy), and 31 

show a consistent transition at the earliest node defining the deep-sea lineage, together 32 

with increasing diversification at more recent nodes within the deep-sea lineage.    33 

The data suggest that the divergence of species was adaptive, with successive 34 

diversification from a non-scavenging ancestor to ‘opportunistic’, ‘obligate’ and 35 

‘specialised’ scavengers.  We propose that the North Atlantic species studied provide 36 

a strong case for adaptive evolution promoted by ecological opportunity in the deep 37 

sea. 38 

 39 

Keywords: deep sea; amphipod; invertebrate; adaptation; phylogenetics40 



1. Introduction 41 

  It has been proposed that effectively continuous marine environments with 42 

few obvious geographical barriers should allow broad dispersal and promote panmixia 43 

(reviewed in Palumbi 1994), inhibiting reproductive isolation and speciation (known 44 

as the ‘marine speciation paradox’; Bierne et al. 2003).  There are two main 45 

hypotheses generally put forward to explain the observed patterns of speciation in the 46 

marine environment.  One is that species divergence is the result of ecological 47 

speciation (Puebla 2009) generating adaptive radiations, when multiple lineages 48 

evolve from a single common ancestor at a rapid pace. The other involves 49 

differentiation across geographic barriers which may include oceanographic factors 50 

such as current systems or thermal fronts (though typically less clearly defined than 51 

boundary systems in terrestrial environments).  According to the first idea, relaxed 52 

ecological constraints (abundant resources and reduced competition) may create 53 

ecological opportunity in the colonisation of new habitats resulting in adaptive 54 

divergence (Schluter 1996; Schluter 2000; Puebla 2009).  For example, speciation in 55 

the Pacific rockfish genus (Sebastes) is associated with divergence in habitat depth 56 

and depth-associated morphology, in the absence of geographic barriers (Ingram 57 

2011).   58 

According to the second idea, tectonically-driven changes to ocean basins or 59 

oceanographic factors may generate physical barriers to dispersal in vicariance events 60 

resulting in allopatric or parapatric speciation (reviewed in Palumbi 1994).  Fully 61 

allopatric speciation has been observed across barriers such as the Isthmus of Panama 62 

(e.g. Marko 2002) but such clear examples are relatively rare in the marine 63 

environment. The same mechanisms that generate vicariance may generate ecological 64 

opportunity by releasing habitat that can then be colonised.   65 



Adaptive radiations can be difficult to identify, but should be characterised by 66 

a correlation between phenotype and environment, novel phenotypes providing a 67 

selective advantage (difficult to prove without experimentation), and speciation 68 

should be rapid, with the emergence of multiple species from a recent common 69 

ancestor (see Schluter 2002).  They have been frequently described for terrestrial and 70 

freshwater ecosystems, including well-known cases such as the Galapagos finches 71 

(e.g Schluter & Grant 1984) and cichlids of the African rift lakes (e.g. Seehausen 72 

2006).   73 

In aquatic ecosystems, habitat shifts from marine to freshwater have been 74 

shown to promote species diversification (e.g. Hou et al. 2011).  Adaptive radiations 75 

described for marine systems include reef fish (e.g. Taylor & Hellburg 2005; Puebla 76 

2007) and Antarctic fish species (Clarke & Johnson 1996).  However, habitat shifts 77 

from shallow to deep-sea environments have been less well supported in the literature 78 

(but see Distel et al. 2000).  Historically, deep-sea environments were thought to 79 

harbour reduced species diversity due to harsh environmental conditions (see Hessler 80 

& Sanders 1967).  It was further suggested that rates of evolution were much slower 81 

at depth, leading to the idea that the deep sea was a refuge for ancient relics 82 

(Zenkevitch & Birstein 1960).  More recently however, greater species diversity has 83 

been documented in various groups in the deep sea, including bivalves, gastropods, 84 

polychaetes and isopod crustaceans (reviewed in Wilson & Hessler 1987; Grassle 85 

1989). 86 

Here we examine the phylogeny of deep-sea amphipods in order to investigate 87 

the evolutionary processes driving their speciation in the deep sea.  Amphipods 88 

occupy almost all aquatic environments as well as some subterranean and terrestrial 89 

habitats (Barnard & Karaman 1991).  Despite their widespread distribution, the 90 



relationships among and within the major amphipod taxonomic groups are poorly 91 

resolved, possibly due to the effects of convergent evolution (Englisch et al, 2003; 92 

Macdonald et al, 2005; Hou et al; 2007; Fiser et al, 2008; Ito et al, 2008; Havermans 93 

et al, 2010).  We focus our analysis on amphipods collected at our study sites at the 94 

mid-Atlantic ridge, which can be classified within the superfamily Lysianassoidea 95 

(the taxonomy of which remains controversial, see below).  Lysianassoid amphipods 96 

can be found from the colder waters of the Polar Regions (De Broyer et al., 2004) to 97 

the tropics (Lowry & Stoddart, 2009) and from the intertidal to the deepest ocean 98 

trenches (Jamieson et al., 2010).  Many members of the Lysianassoidea are known to 99 

be epibenthic, and infaunal scavengers and carnivores. They are numerically and 100 

taxonomically the most important group of deep-sea scavengers (Wolff, 1970; Hessler 101 

et al., 1978; Smith, 1985; Thurston, 1990).  102 

There have been numerous studies of the amphipod scavenging fauna in the 103 

deep sea, including biodiversity, distribution, ecology, taxonomy, and respiration and 104 

pressure effects (e.g. Hargrave, 1985; De Broyer, 2004; Premke & Graeve, 2009; 105 

Thurston 1979; 1990).  However, despite the fact that the group contains some of the 106 

most primitive amphipods (Bousfield & Shih, 1994), little attention has been paid to 107 

studies of the molecular phylogeny of this group, and the Amphipoda in general have 108 

a history of taxonomic instability in the higher ranks (Superfamily and higher) to the 109 

extent that that they are generally listed alphabetically (e.g. see Martin & Davis, 110 

2001).  However, a recent study by Havermans et al (2010), looked at the molecular 111 

phylogeny of Antarctic lysianassoids in the families, Lysianassidae and Uristidae, 112 

based on nuclear 28S rRNA and mitochondrial cytochrome oxidase subunit I genes, 113 

and showed that the molecular and morphological taxonomies of these groups are 114 

largely incongruent and did not support the monophyly of several of the currently 115 



proposed genera (including Abyssorchomene, Orchomenella, Pseudorchomene and 116 

Falklandia).   In particular, their study indicated the need for a revision of the higher 117 

level systematics within the Lysianassoidea due to the apparent polyphyly of the 118 

Lysianassidae (Tryphosinae).  119 

 The major problems appear to stem from the use of the mouthpart morphology 120 

in higher level classification.  In scavenging amphipods the mouthparts have evolved 121 

to fill an ecological niche associated with necrophagy in a sparse environment 122 

(Thurston, 1979, Dahl, 1979, De Broyer et al., 2004). For example, species from at 123 

least two groups (Uristidae and Lysiassanidae) have evolved morphology 124 

characteristic of ‘opportunistic’ scavengers with a triturative mandibular molar for 125 

grinding food and shorter foregut (see De Broyer et al., 2004).   It is probable that this 126 

has occurred more than once during the evolution of the Lysianassoidea.  Other 127 

studies of amphipod phylogenetics have also illustrated that morphological and 128 

molecular evolution may become uncoupled during their radiation, giving rise to close 129 

genetic relatives with extreme morphological and ecological divergence (Macdonald 130 

et al., 2005).   131 

In this study we use a multi-locus approach to generate a consensus tree with 132 

strong congruence, and consider the resultant lineage structure in the context of 133 

phenotypic characteristics related to foraging.  We model the evolution of phenotypic 134 

traits along the phylogeny in order to test the hypothesis that phenotype and lineage 135 

structure are correlated.   We assess diversification rate changes among lineages to 136 

test the hypothesis that there was an increased diversification rate in the deep-sea 137 

lineage, as expected in association with adaptive radiations. We estimate node dates 138 

based on published calibration points and test the hypothesis that the amphipods in the 139 

deep-sea environments of the North Atlantic radiated when habitat associated with 140 



foraging opportunity was made available by environmental change associated with 141 

geologic transitions. 142 

 143 

2. Materials and Methods 144 

2.1 Sampling 145 

The majority of specimens (see Table S1) used for this study were collected 146 

using baited (with mackerel) traps at ~2500m depth, during several expeditions to the 147 

Mid-Atlantic Ridge (MAR; Table S2; see Horton et al, 2013 for full sampling details).  148 

This represented an extensive sampling program and involved the screening of 4900 149 

ethanol-preserved specimens from which the included species were identified.  150 

Further samples came from baited traps at the Crozet Islands at 4192m (Cousins et al, 151 

in press) and offshore Angola at 2002m.  Additional material was obtained from the 152 

Museum für Naturkunde in Berlin for 18 outgroup species representing 14 families 153 

(sequencing 1-2 samples per species; Table S1) from a range of habitats including 154 

marine pelagic and benthic, subterranean groundwater and freshwater.  Fourteen 155 

ingroup species represented six families from the superfamily Lysianassoidea and one 156 

from the family Alicellidae (sequencing 1-4 specimens per species; Table S1).  157 

Although baited traps preferentially collect necrophagous amphipods (see Horton et 158 

al. 2013), there was good species representation for the Lysianassoid taxa. 159 

The species Abyssorchomene chevreuxi and A. abyssorum, Orchomenella 160 

gerulicorbis, Paralicella caperesca and Eurythenes gryllus, are thought to have a 161 

cosmopolitan distribution, whereas the remaining eight ingroup species are believed 162 

to be confined to the Atlantic Ocean.   These species include two recently described as 163 

new to science (Hirondellea namarensis, Horton & Thurston 2013; Centromedon zoe, 164 

Horton & Thurston 2011) and a further 5 species as yet undescribed but most 165 



probably also new to science (Cyclocaris sp. nov., Tmetonyx sp. nov., Orchomene aff. 166 

oxystoma, Orchomene aff. pectinata, Paracallisoma sp. 1; see Horton et al. 2013).  167 

We focus on the ingroup of species present in the deep-sea habitat near the mid-168 

Atlantic ridge, and the resolution of higher-level taxonomic groupings is beyond the 169 

scope of this study.  Outgroups were included to provide calibration points and 170 

support for assessing the topology of the ingroup. 171 

 172 

2.2 DNA Extraction and Amplification 173 

 Total genomic DNA was extracted from pereopods or whole organisms using 174 

a phenol-chloroform protocol, and many species were represented by multiple 175 

specimens (see Table S1).  Amplification of the mitochondrial 16S and COI loci, and 176 

the nuclear, 18S and 28S rRNA and Histone 3 loci were carried out using both 177 

published primers and primers designed in this study (based on the comparison of 178 

published sequences in GenBank; Table S3).  The reaction mix (50µl) contained a 179 

final concentration of 0.2mM each dNTP, 1.5mM MgCl2, 0.5µM each primer and 180 

1.25 units of Taq DNA Polymerase (Promeaga GoTaq).  The PCR conditions were as 181 

follows: 2 minutes at 95 °C followed by 35 cycles of 40s at 94 °C, 40s at Ta °C (given 182 

in Table S3) and 40s at 72 °C, and a final extension for 10 minutes at 72 °C.  Purified 183 

products were sequenced in both directions using an ABI DNA sequencer.  All loci 184 

were sequenced for all samples except for a subset which could not be amplified, and 185 

some which were available from the Genbank database (see Table S4 for details and 186 

accession numbers).   187 

 188 

2.3 Phylogenetic Reconstruction 189 



Sequences were aligned using Clustal X (Thompson et al. 1997) after 190 

checking sequence accuracy through the assessment of chromatograms and 191 

comparison of forward and reverse sequences (no errors detected).  As a screen 192 

against the inclusion of pseudogenes in the analyses, coding gene sequences were 193 

translated into amino acids (using MEGA; Tamura et al. 2011) and checked for stop 194 

codons.  Phylogenetic analyses were conducted on separate and combined data sets.  195 

Parsimony and maximum likelihood analyses were carried out using PAUP 4.0b10 196 

(Swofford 2002).  The best evolutionary model was determined using JModeltest 197 

0.1.1 (Posada 2008).  Alignment gaps were treated as missing data.  Heuristic 198 

searches were carried out with random sequence addition (100 replicates) and using 199 

tree bisection reconnection (TBR) branch swapping.  Branch support was estimated 200 

with bootstrap analysis using 1000 replicates.  Partitioned Bremer support was used to 201 

evaluate the contribution of individual data partitions in the combined analysis (Baker 202 

and DeSalle, 1997).  This was done by generating constrained trees in TreeRot V.2 203 

(Sorenson 1999) and analysing them in combination with PAUP 4.0b10. 204 

Bayesian analyses were conducted on the combined dataset using MrBayes 205 

3.1.2 (Ronquist and Huelsenbeck, 2003) with five partitions.  The best-fit model for 206 

each partition was selected using JModeltest 0.1.1 (Posada 2008).  Each Bayesian 207 

analysis was run for ten million generations sampling every 100 generations (every 208 

1000 generations was also tested, with no change in outcome).  The level of 209 

convergence was monitored and the ‘burn-in’ value set accordingly.  The first 25% of 210 

trees (25,000) were discarded and the remaining trees were used to reconstruct a 211 

consensus tree and estimate Bayesian posterior probabilities (BPP).   The strategy is 212 

summarised in Table S5 213 

 214 



2.4 Molecular Dating Analysis 215 

Fossil records of amphipod crustaceans are rare, however several specimens 216 

have been found in Baltic amber, dated late Eocene, c. 35-40 Ma.  These specimens 217 

most resemble the Niphargus species of the subgenus Phaenogammarus (Jazdzewski 218 

and Kulicka 2000; Coleman & Myers 2000), Paeleogammarus, a fossil species of the 219 

Family Crangonyctidae (Jazdzewski and Kulicka 2002; Coleman 2004) and 220 

Stygobromus sp. (Coleman 2006).  We can therefore date the appearance of these 221 

lineages prior to the late Eocene and can use this date for molecular clock calibration.  222 

We used this date as an approximation for the upper boundary of divergence time of 223 

this monophyletic group of species.  The origins of the genus Gammarus is proposed 224 

to have been ~61 Ma (Hou et al. 2011), and this provided a further reference point to 225 

test against dates determined in this analysis (though based on a molecular clock 226 

estimate, and therefore not as robust as the fossil calibrations).   227 

The divergence times were obtained by applying a Bayesian method 228 

implemented in BEAST 1.6.1. We used the relaxed molecular clock model, GTR+ 229 

I+G for the substitution model (for all genes except 16S where HKY+I+G was used 230 

as above), and a normal distribution with SD of 1 as priors on the calibration node to 231 

accommodate for calibration uncertainty. The Markov chain Monte Carlo was run for 232 

50 million generations and sampled every 1,000 generations. Two independent runs 233 

were performed to help assess convergence which was examined using the effective 234 

sample sizes of each parameter (>200) in TRACER v1.4 (Rambaut & Drummond 235 

2004). The last 40 million generations were used to construct the maximum clade 236 

credibility tree and the associated 95% highest posterior density distributions around 237 

the estimated node ages.   238 

 239 

http://www.marinespecies.org/aphia.php?p=taxdetails&id=430454


2.5 Morphological Analyses 240 

We used our consensus phylogeny to examine trait evolution for seven 241 

morphological traits (Table 1).  The traits were chosen based on gut and mandible 242 

morphology (as discussed in De Broyer et al, 2004) to define trophic guilds according 243 

to foraging strategy.   In particular, species were distinguished as non-scavenger, 244 

obligate scavenger, obligate specialist or opportunistic scavenger.  These same traits 245 

are often used in support of the classification of Lysianassoidea.  We used a Bayesian 246 

method implemented in the BayesTraits v 1.0 package (available at 247 

www.evolution.rdg.ac.uk; Pagel et al. 2004) to reconstruct ancestral morphological 248 

character states at selected nodes in the phylogeny.  BayesTraits uses a reversible-249 

jump Markov chain Monte Carlo (MCMC) method to derive posterior probabilities on 250 

the trait values at ancestral nodes (Pagel et al. 2004). BayesMultiState was selected as 251 

the model of evolution, allowing for rapid state changes. We used a hyperprior 252 

approach specifying a gamma prior with its mean and variance seeded from uniform 253 

distributions on the interval 0 to 10. Thus, acceptance rates in the preferred range of 254 

20–40% were achieved as recommended (Pagel et al. 2004).  The average acceptance 255 

rate was 32.4%.   256 

 257 

2.6 Diversification Rate Shifts 258 

 We used the program SymmeTree v1.1 (Chan & Moore 2004) to test the 259 

hypothesis that the branches of our amphipod phylogeny have diversified at 260 

significantly different rates, with respect to a specified node.  The tree analysed 261 

included only a single copy of each known or putative species.  As this tree showed 262 

the same topology as our consensus tree (Figure 1), we undertook the single-tree 263 

analysis in SymmeTree.  We used the random resolution option for resolving 264 

http://www.evolution.rdg.ac.uk/


polytomies (only present in outgroup).  We report results using the taxon-size 265 

sensitive equal-rates Markov random-branching model (TSS-ERM) for the random 266 

resolution of polytomies, as the authors note that this is conservative with respect to 267 

the null hypothesis (no significant diversification rate variation).  The default number 268 

of 100,000 replicates was applied for random resolution and for approximating null 269 

distributions.  Whole-tree rate variation is estimated in the program based on two rate-270 

shift statistics (MΠ and MΣ; Chan & Moore, 2002) and a tree imbalance statistic (B1; 271 

Shao and Sokal, 1990).  To locate the position of diversification rate shifts we 272 

followed default settings and report the significance levels for the two shift statistics, 273 

delta 1 and delta 2 (see Chan & Moore 2004). 274 

 275 

3. Results 276 

3.1 Phylogenetic Reconstruction 277 

 A final combined dataset of 2,442bp (18S – 1141bp, 28S – 345bp, H3 – 278 

242bp, 16S – 354bp and COI - 346bp) was used in the analyses.  Different selection 279 

criterion (Akaike Information Criterion and Bayesian Information Criterion) 280 

identified the same best-fit substitution model: the general time-reversible substitution 281 

model (GTR + I + G) for all partitions except 16S, where it identified the Hasegawa, 282 

Kishino and Yano model (HKY + I +G) as the best-fit model.  A lack of multiple or 283 

ambiguous peaks confirmed that nuclear genes for the individuals included were 284 

homozygous and not compromised by multiple sequences from different isoforms of a 285 

given locus.  Partitioned Bremer analysis provided support for homogeneity amongst 286 

genes in the combined dataset, though not all genes were informative for all nodes 287 

(Figure 1, Figure S2).  Similar topologies were obtained for the separate data sets of 288 

all five genes, and conflicting nodes received low support.  In the combined analyses, 289 



lineages were supported by high bootstrap values (ML analysis) and Bayesian 290 

posterior probabilities (Figure 2; Parsimony showed similar support – data not 291 

shown).  Note that although multiple specimens of a given species are including in the 292 

tree shown, trees including only one representative of each showed the same lineage 293 

structure (e.g. Figure 1). 294 

 The phylogeny supports four main lineages, one representing the outgroup, 295 

and the other three (labelled A, B & C in Figure 2) the deep-sea species.  Within the 296 

deep-sea lineage, genera are all shown to be monophyletic however the parsimony, 297 

maximum likelihood analyses and Bayesian inference all gave clear evidence for 298 

polyphyly for the families Uristidae and Lysianassidae (Figure 2).  In all analyses, 299 

three main lineages consistently received high bootstrap values and Bayesian 300 

posterior probabilities with one of these lineages incorporating species from four 301 

named families, and another incorporating two (Figure 2).  Hirondellea namarensis, 302 

recently described as new to science (see Horton & Thurston 2013) and 303 

Paracallisoma sp. 1 are sister-species to the three well-supported lineages, which is 304 

consistent with the understanding that these genera are more ‘primitive’ scavengers, 305 

based on their morphology, without close relationships to other extant lysianassoid 306 

groups (Lowry & Stoddart 2010).  307 

 308 

3.2 Ancestral State Reconstruction & Molecular Dating Analysis 309 

The ancestral state reconstruction (see Table 1; Figure S1) indicates that five 310 

shifts have occurred: one transition from non-scavenger to opportunistic scavenger; 311 

two independent shifts from opportunistic scavenger to obligate scavenger and one 312 

shift from obligate to ‘specialised’ scavenger in Stephonyx biscayensis (Figure 3).  313 

The transition from non-scavenger to opportunistic scavenger occurred at the most 314 



recent common ancestor (MRCA) to the deep-sea species (node a, Figure 4). Based 315 

on the reference points and our data, this node can be dated to ~60 Ma (95%HPD: 45 316 

– 90 Ma) overlapping the transition to the Palaeogene. The origins of the genus 317 

Gammarus (dated at ~61 Ma (95%HPD: 45 – 83Ma) by Hou et al. 2011) is illustrated 318 

with a black dot in Figure 3 and is dated to 55 - 105 Ma (95 % HPD) in our study. 319 

The shifts from opportunistic to obligate scavenger occur independently twice, 320 

firstly in the root of Lineage C (Figure 2) dated at 40 Ma (95%HPD: 30 – 65 Ma) 321 

(node d, Figure 4) and then again more recently along the branch to Abyssorchomene 322 

and Orchomenella dated at 20 Ma (95%HPD: 15 - 30 Ma) (node e, Figure 4).  The 323 

shift from obligate to ‘specialised’ scavenger in Stephonyx biscayensis can be dated to 324 

33 Ma (95%HPD: 24 – 50 Ma; node c, Figure 4). The fossil evidence for the 325 

Stygobromus, Crangonyx, and Niphargus specimens found in amber dates the origin 326 

of their shared lineage to before 35-40 Ma.  This provides a calibration node at the 327 

base of this lineage (illustrated with a grey dot, Figure 4).    328 

In general, over all traits, lineage A retains the state of the ancestral node 329 

representing the origin of the deep-sea lineage, whereas multiple shifts occur in the 330 

other two lineages and the end node states are mostly derived (see Table 1; Figure 331 

S1).  The radiations of lineages A, B and C (Figure 2) can be dated to approximately 332 

35 Ma (95%HPD: 28 – 55 Ma), 33 Ma (95%HPD: 26 – 50 Ma) and 40 Ma (95%HPD: 333 

30 – 65 Ma) respectively (Figure 4).   334 

 335 

3.4 Diversification Rate Shifts 336 

Among the four tests for significant diversification across the full tree, three 337 

were significant after Bonferonni correction (Ic = 0.008; MΠ = 0.004; MΣ = 0.005) and 338 

one was not (B1 = 0.107).  The results of two likelihood-ratio tests to locate shifts in 339 



diversification identified one node, closest to significance at the 0.05 level, indicated 340 

in Figure 2 by a star, and reflecting the base of the deep-sea lineage  (pΔ1 = 0.066; 341 

pΔ2 = 0.066). 342 

 343 

4. Discussion 344 

4.1 Polyphyly of Scavenging Amphipods 345 

Our phylogeny does not support the current taxonomy within our focal deep 346 

sea ingroup.  Most genera were monophyletic (apart from paraphyly in 347 

Abyssorchomene) however, two families, Uristidae and Lysianassidae, are 348 

polyphyletic, appearing in multiple well-supported lineages (Figure 2).  One of these 349 

lineages contains specimens from four different families (Uristidae, Alicellidae, 350 

Eurytheneidae, Cyclocaridae) as currently classified (lineage C in Figure 2).  Our 351 

focus in this study is on the nature of the radiation of this group of species in the deep-352 

sea environment, and most details about the taxonomy will be published elsewhere.  353 

However, we focus briefly on the positioning of Orchomenella gerulicorbis and 354 

Stephonyx biscayensis as illustrative. 355 

The molecular data suggests that Orchomenella gerulicorbis would be better 356 

placed in a clade alongside Abyssorchomene, and it could perhaps be argued that since 357 

the genus Abyssorchomene is likely a derived group of deep-sea scavengers within the 358 

Orchomenid group, that Abyssorchomene should be placed within the family 359 

Lysianassidae rather than placing Orchomenella within the Family Uristidae.  360 

Havermans et al. (2010) also found a cluster of Orchomenella (Orchomenopsis) 361 

cavimanus and the clade of A. chevreuxi, Abyssorchomene sp. and A. scotianensis, 362 

and suggested similar changes to the higher level taxonomy of that group. 363 



The situation of Stephonyx biscayensis is more problematic.  It has been 364 

classified as Uristidae based, among other characteristics, on the possession of the 7/4 365 

crown arrangement of setae on the Maxilla 1 outer plate and the setose tongue 366 

mandibular molar. The genus does not have the subchelate (or imperfectly subchelate) 367 

gnathopod 1 as defined by Hurley 1963 (see Figure 5), used by Lowry & Stoddart 368 

(1992) as a defining characteristic of the Uristidae.  Lowry & Stoddart (1997) 369 

acknowledge that the assumption that the 7/4 crown arrangement could be used as a 370 

synapomorphy for the Uristidae lineage, is tenuous. This is a concern supported by 371 

our phylogeny, which shows the Uristidae to be polyphyletic, and therefore suggests 372 

homoplasy for this characteristic.  373 

It is possible that the chelate gnathopod 1 of S. biscayensis (Figure 5) is an 374 

adaptation to ‘picking’ carcasses rather than cutting and slicing flesh as practised by 375 

other scavengers, and may indicate a more derived state of this genus from a primitive 376 

scavenging ancestor.  This and the results of the phylogenetic analysis suggest that 377 

Stephonyx would be better placed in a new Family.  However the nature of this level 378 

of classification requires further assessment beyond the scope of this study, in 379 

particular given the presence of four named families in the lineage shared by S. 380 

biscayensis in our phylogeny. 381 

 382 

4.2 Evolution of Trophic Adaptation in the Deep Sea 383 

 The current classification of deep-sea scavenging amphipod species is based 384 

on traits representing trophic adaptations, especially the morphology of the 385 

mouthparts and digestive tract (e.g. Lowry & Stoddart, 1992; 1997; De Broyer et al., 386 

2004; Dahl, 1979).  Centromedon zoe and Tmetonyx sp. 1, (in lineage A, Figure 2) 387 

along with Orchomene aff. oxystoma and O. aff. pectinata (lineage B) are 388 



characteristic of ‘opportunistic’ scavengers, with a triturative mandibular molar for 389 

grinding food and shorter foregut (see De Broyer et al., 2004).  The results of the 390 

Bayestraits analysis show that such traits are likely to have first appeared in the 391 

scavenging ancestor (Table 1; Figures 3 & S1).  This opportunist ancestor then 392 

diverged firstly into a group of genera primarily (but not exclusively) inhabiting deep-393 

sea habitats (Eurythenes, Paralicella, and Cyclocaris,) and then adapted to obligate 394 

necrophagy (lineage C, Figures 2 - 4) with several morphological modifications 395 

(Thurston, 1979, Dahl, 1979, De Broyer et al., 2004).  This occurred at approximately 396 

30 Ma (Figure 4) as discussed below.  The split between lineage A and B occurred 397 

subsequently, and the ancestral characters are retained in lineage one (Centromedon 398 

and Tmetonyx species) but lineage B is shared by both opportunist (Orchomene 399 

complex of genera) and obligate (Abyssorchomene genus) scavengers (Figure 3, Table 400 

1). 401 

The morphological adaptations towards necrophagy in scavenging amphipods 402 

have been reported elsewhere (Thurston, 1979, Dahl, 1979, De Broyer et al., 2004) 403 

and in general the changes include a modification of the mandibular molar (Figure 404 

S1) from subcolumnar with a triturative surface (in opportunistic scavengers) capable 405 

of tearing and grinding tissue, through to a ridge-shaped mandibular molar with 406 

reduced triturative surface in more derived scavengers (e.g Abyssorchomene), and 407 

ultimately, in those species presumed to be obligate necrophages, to a non-triturative 408 

conical flap (e.g. Hirondellea, Eurythenes and Paralicella; De Broyer et al., 2004; 409 

Figure S1).  These adaptations allow larger fragments of food to be passed directly 410 

into the oesophagus, and combined with increased capacity for dilation of the midgut, 411 

mean that these species are capable of ingesting 10 times their body weight in food 412 

(Thurston, 1979). This suggests that deep-sea scavengers have the potential to survive 413 



for long periods of time without feeding, which is an obvious adaptation to life in an 414 

environment where food supply is sparse (Smith & Baldwin, 1982). S. biscayensis is 415 

probably adapted as a ‘specialist’ scavenger and is the only species in this study to 416 

have adapted the ‘pincer’-like chelate gnathopod 1, discussed above (see Figure 5). 417 

Our analyses indicate that traits associated with necrophagy have arisen 418 

independently multiple times during the radiation of Lysianassoidea in the deep sea, 419 

consistent with data presented by Havermans et al. (2010).  The fact that multiple end 420 

character states have arisen, some independently multiple times, suggests that the 421 

deep-sea scavenger species evolved into novel niches as a result of ecological 422 

opportunity.  Adaptive radiations have been seen in freshwater amphipods elsewhere 423 

(Hou et al 2011), and the most extreme example is from Lake Baikal (MacDonald et 424 

al. 2005).  425 

We used a method that assesses whole-tree topology to determine if there is a 426 

signal for rate differentiation within the tree, indicative of an adaptive radiation.  427 

Although not all tests were significant at the 0.05 level, there was evidence in support 428 

of rate differentiation, and the suggestion that this occurred in association with the 429 

deep-sea lineage.  These methods are affected to some extent by taxon sampling, and 430 

our ingroup is not meant to be an inclusive representation of the broader group, 431 

instead focussing on those species found in the North Atlantic near the mid-Atlantic 432 

ridge.  Our outgroup reflects available database sequences to some extent.  However, 433 

the ingroup is if anything under-sampled, which may be expected to make it harder to 434 

identify a signal for lineage differentiation. 435 

    436 

4.3 Deep-Sea Colonisation and Radiations 437 



Our results indicate that the colonisation of the deep-sea environment by a 438 

shallow water ancestor occurred at ~70 Ma at the Cretaceous-Palaeogene boundary 439 

and that the three identified lineages among the deep-sea scavenging species date to 440 

the Eocene-Oligocene boundary.  Accurate dating with such a limited fossil record is 441 

difficult, although when interpreted in the context of geological changes, these 442 

estimated date ranges, though broad, are realistic and a good fit with a study on the 443 

timing of the freshwater diversification of Gammarus sp. (Hou et al. 2011; see Figure 444 

4).  Further, the available fossils place a minimum date on nodes at the same level in 445 

the phylogeny, sometime before the late Eocene.   446 

The Cretaceous-Palaeogene boundary coincides with the timing of the 447 

transition of the North Atlantic from narrow, silled basins to the deep marine trenches 448 

of the modern Atlantic (Norris et al. 2001).  This provided habitat for colonisation in 449 

the deep sea, and likely promoted the adaptations towards necrophagy that define this 450 

lineage.  The Eocene-Oligocene transition was characterised by a climate change from 451 

‘hothouse’ to ‘icehouse’ (Lear et al. 2008).  During this period atmospheric CO2 452 

levels decreased, deep-sea waters cooled (Miller et al, 1987; Zachos et al. 2001) and 453 

primary productivity increased (Lear et al. 2008; Pearson et. al. 2008).  It is suspected 454 

that this cooling during the Palaeogene may have caused extinctions in some taxa and 455 

this has been well documented for deep-sea Foraminifera and Ostracoda (Benson et 456 

al., 1985; Kaiho, 1998).  Our results suggest that this is not the case for deep-sea 457 

Amphipoda for which the Eocene/Oligocene cooling may instead have been 458 

beneficial providing the opportunity for adaptive speciation.   459 

This period is also concurrent with an increased speciation rate in cetaceans, a 460 

radiation that is thought to be driven by the development of the Antarctic circumpolar 461 

current and increased silicate upwelling which may have spurred the evolution of 462 

http://sysbio.oxfordjournals.org/content/58/6/573.full#ref-38


filter-feeders (Steeman et al. 2009).  Increased cetacean diversity and abundance, 463 

along with the increased primary productivity during this time, would increase the 464 

availability of carcasses on which scavenging amphipods could feed, although of 465 

course we have no direct evidence of an association with amphipod diversification. 466 

The hypothesis that habitat shifts promote adaptive speciation via ecological 467 

opportunity is well studied in terrestrial systems. We propose that the deep-sea 468 

Lysianassoidea provide a strong case in support of this hypothesis in the marine 469 

environment.  The development of the deep-sea habitat, coupled with increased 470 

productivity and the availability of novel food resources free from competitive 471 

restraints could have provided this opportunity. 472 

 473 
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Figure Captions 726 

 727 

Figure 1: Strict consensus tree built using PAUP, indicating Bremer Support Indices 728 

for each gene (in order: 18S, 28S, COI, H3, 16S) at each node.  729 

 730 

Figure 2: Bayesian phylogenetic tree with posterior probabilities based on the 731 

combined analysis (18S, 28S, COI, H3, 16S).  The three deep-sea clades are labelled 732 

A, B & C (c.f. Table 1).  Families are labelled: Uristidae, ; Lysiassanidae, ; 733 

Alicellidae, ; Eurytheneidae, ; Cyclocaridae group, ; Scopelocheiridae, ; and 734 

Hirondelleidae, ). Branch nodes show Bayesian posterior probability support 735 

followed by ML bootstrap support (in italics).  A shift in rate diversification is 736 

suggested by the SymmeTree analysis at the node denoted with a star. 737 

 738 

Figure 3: Phylogenetic analysis of scavenger ‘type’ amongst deep-sea Lysiassanoids.  739 

Species were assigned to a trophic guild on the basis of 7 morphological traits.  The 740 

probability of each trophic type occurring at ancestral nodes is indicated with pie 741 

charts at the nodes.  Non-scavengers are shown in black (blue online), opportunistic 742 

scavengers are shown in dark gray (green online), obligate scavengers are shown in 743 

light gray (red online) and specialist in white (purple online).  744 

 745 

Figure 4: Maximum clade credibility diagram inferred from a BEAST dating analysis.  746 

Nodes a-e marked with open circles (red online) are nodes of interest (see explanation 747 

in text), and horizontal bars show 95 % highest posterior density intervals of the 748 

posterior distributions. Node 1 (light gray dot, green online) is used for calibration. 749 



The black dot (yellow online) shows the origin of the Gammarus genus, dated to 750 

~61Ma (Hou et al. 2011).  NG= Neogene; Q = Quaternary.   751 

 752 

Figure 5: Diagram showing the more specialised chelate gnathopod 1 of Stephonyx 753 

arabiensis (reproduced from Diffenthal & Horton, 2007), probably used for picking 754 

carcasses. 755 

756 



Table 1. Maximum probability ancestral character states at nodes (from BayesTraits).   757 
 758 

Trait Diagram Root Deep-sea 
ancestral 

node 

Lineage A Lineage B Lineage C 

Maxilla 1 
inner plate 
setation 
  

1 
(fully 

setose) 

2 
(2 apical 

setae) 

2 2 3 
(>2 apical 

setae) 

Maxilla 1 
outer plate 
tooth 
arrangement 
 

 

1 
(>11 spine 

teeth) 

2 
(7-4 crown) 

2 3 
(6-5 crown) 

4 
(8-3 crown) 

Mandibular 
molar 
 
  

1 
(columnar) 

2 
(coni- 

colaminate) 

2 1&2 2 
 

Gnathopod 1 
 
 
 

 

1 
(sub- 

chelate) 

1 1 1 2 
(para- 

chelate) 

Gnathopod 2 
 

 

1 
(sub- 

chelate) 

2 
(mitten) 

2 2&3 
(C: chelate) 

4 
(minute) 

Coxa 1 
 
 
  

1 
(normal) 

2 
(tapered) 

2 3 
(expanded) 

4 
(vestigal) 

Gut storage 
 
 
  

1 
(normal) 

2 
(elongated) 

2 2 3 
(midgut) 

 759 
For each trait, 1-4 represents progressive change (defined parenthetically). The ‘deep-760 
sea ancestral node’ defines lineages A-C (see figures 1&2). 761 
 762 
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Supplementary material: 
 
Table S1.  Data including depth and location of trapped taxa used in the phylogenetic study (including links to taxon pages on the World 
Register of Marine Species, Appletans et al., 2012).  MAR = mid-Atlantic Ridge. 
 

Family Genus Species  
Number of 
specimens 
sequenced 

Depth, m Locality 

Ingroup taxa:      
Uristidae Hurley, 1963 Tmetonyx sp. nov. 2 2500 MAR 
Uristidae Hurley, 1963 Abyssorchomene  chevreuxi  (Stebbing, 1906) 3 2564 MAR 
Uristidae Hurley, 1963 Abyssorchomene  abyssorum (Stebbing,1888) 1 2500 MAR 

Uristidae Hurley, 1963 Centromedon  zoe (Horton & Thurston 2011) 4 2453-
2564 MAR 

Uristidae Hurley, 1963 Stephonyx  biscayensis (Chevreux, 1908) 2 2564 MAR 
Lysianassidae Dana, 1849 Orchomenella  gerulicorbis (Shulenberger & Barnard, 1976) 1 4192 CROZET 
Lysianassidae Dana, 1849 Orchomene  aff. pectinata 4 2500 MAR 
Lysianassidae Dana, 1849 Orchomene  aff. oxystoma 3 2500 MAR 
Alicellidae Lowry & De Broyer, 2008 Paralicella  caperesca (Schulenberger & Barnard, 1976) 1 4192 CROZET 
Eurytheneidae Stoddart & Lowry, 2004 Eurythenes  gryllus (Lichtenstein, 1822) 2 2453 MAR 
Cyclocaridae Lowry & Stoddart, 2011 Cyclocaris  sp. nov. 1 1975 ANGOLA 
Scopelocheiridae Lowry & Stoddart, 1997 Paracallisoma  sp. nov. 1 2500 MAR 
Hirondelleidae Lowry & Stoddart, 201 Hirondellea  namarensis (Horton & Thurston, 2012) 1 2500 MAR 
Outgroup taxa:      
Vibiliidae Dana, 1852 Vibilia cultripes (Vosseler, 1901) 2  MAR 
Hyperiidae Dana, 1852 Themisto sp. 2  MAR 
Crangonyctidae Bousfield, 1973 Bactrurus brachycaudus (Hubricht & Mackin, 1940) 1   
Crangonyctidae Bousfield, 1973 Crangonyx forbesi (Hubricht & Mackin, 1940) 1   
Crangonyctidae Bousfield, 1973 Stygobromus dentata (Hubricht, 1943)  1   
Crangonyctidae Bousfield, 1973 Stygobromus mackini Hubricht, 1943  1   
Crangonyctidae Bousfield, 1973 Bactrurus  mucronatus (Forbes, 1876) 1   
Crangonyctidae Bousfield, 1973 Bactrurus pseudomucronatus (Koenemann & Holsinger, 2000) 1   
Hyalidae Bulycheva, 1957 Parhyale hawaiiensis(Dana, 1853) 1   

http://www.marinespecies.org/aphia.php?p=taxdetails&id=101658
http://www.marinespecies.org/aphia.php?p=taxdetails&id=102493
http://www.marinespecies.org/aphia.php?p=taxdetails&id=102492
http://www.marinespecies.org/aphia.php?p=taxdetails&id=581944
http://www.marinespecies.org/aphia.php?p=taxdetails&id=102730
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Ampithoidae Stebbing, 1899 Amphithoe  ramondi (Audouin, 1826) 1   
Gammaridae Leach, 1814 Gammarus pulex (Linnaeus, 1758) 1   
Epimeriidae Boeck, 1871 Epimeria grandirostris(Chevreux,1912) 1   
Pariambidae Laubitz, 1993 Pseudoprotella phasma (Montagu, 1804) 1   
Niphargidae Bousfield, 1977 Niphargus fontanus (Bate, 1859) 1   
Stilipedidae Holmes, 1908 Astyra antarctica (Andres, 1997) 1   
Synopiidae Dana, 1853 Syrrhoe psychrophyla (Monod, 1926) 1   
Melphidippidae Stebbing, 1899 Melphidippa antarctica (Schellenberg, 1926)  1   
Liljeborgiidae Stebbing, 1899 Liljeborgia quadridentata (Schellenberg, 1931)  1   
Podoceridae Leach, 1814 Podocerus variegatus (Leach, 1814)  1   
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Table S2: Sample site location and sampling protocol.  Time given is GMT. Duration = deployment time. 
 

Site Station # Latitude Longitude Depth Deployed Time Surfaced Time Duration Trap Type 
MAR NE JC011/098 54°04.08'N 34°09.43'W 2500 09Aug2007 1313 11Aug2007 1215 46: 58 VET/DEMAR 
MAR NE JC011/114 54°02.31'N 34°09.60'W 2453 12Aug2007 1725 13Aug2007 1540 22: 15 VET/DEMAR 
MAR NW JC011/079 53°56.44'N 36°11.56'W 2564 05Aug2007 1951 07Aug2007 1400 42:09 VET/DEMAR 
MAR NW JC037/060 53°58.46’N 36°06.12’W 2340 27Aug2009 2143 30Aug2009 1115 61:32 VET/CORE 
MAR SE JC011/013 49°01.16'N 27°42.29'W 2627 19Jul2007 2322 20Jul2007 1230 13:08 VET/DEMAR 
MAR SE JC037/013 49°02.00’N 27°43.44’W 2501 08Aug2009 2235 10Aug2009 1620 41:45 VET/DEMAR 
MAR SE JC037/018 49°01.20’N 27°42.03’W 2500 10Aug2009 1920 17Aug2009 2108 169:48 VET/DEMAR 
MAR SE JC037/025 49°02.23’N 27°53.66’W 1830 17Aug2009 2311 18Aug2009 1520 16:09 VET/DEMAR 
ANGOLA 56755#2 6.30342°S 10.68768°W 1975 26Oct2005 - - - - ROBIO 
CROZET 15775#24 48°59’S 51°13’E 4192 03Jan2006 0631 04Jan2006 09:25 24:45 FRESP  

 
 
 
 
 
 



Table S3 Primer sequences Ta 
 
Locus Primer Primer sequence 5' - 3' Ta (̊C) Reference 
COI COI2f TTYGAYCCIDYIGGRGGAGGAGATCC 45 Otto & Wilson 2001 
 COIuR TAAACTTCAGGGTGACCAAAAAATCA   
16S 16Sbr CCGGTTTGAACTCAGATCATG 49 France & Kocher 1996 
 16Sar CGCCTGTTTATCAAAAACAT   
18S 18S1f CGATAAGATACCGCCCTA 55 This study 
 18S1r  GTCTCGTTCGTTATCGGA   
H3 HisH3f AAATAGCYCGTACYAAGCAGAC 45 This study 
 HisH3r ATTGAATRTCYTTGGGCATGAT   
28S 28Sftw AGGCGGAATGTTGCGT 50 This study 
  28Srtw CTGAGCGGTTTCACGGTC    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table S4: Sequence data summary; accession numbers for previously published sequences shown in italics.  ‘No amp’ means that the PCR 
reaction did not produce usable product. 
 

Genus Species  16S  COI 18S 28S Histone 3 
Tmetonyx sp. nov. KF430274 KF430247 KF430232 KF430304 KF484703 
Abyssorchomene  chevreuxi   KF430265 KF430238 KF430223 KF430295 KF484694 
Abyssorchomene  abyssorum  KF430266 KF430239 KF430224 KF430296 KF484695 
Centromedon  zoe  KF430263 KF430236 KF430221 KF430293 KF484692 
Stephonyx  biscayensis  KF430264 KF430237 KF430222 KF430294 KF484693 
Orchomenella  gerulicorbis  KF430267 KF430240 KF430225 KF430297 KF484696 
Orchomene  aff. pectinata KF430268 KF430241 KF430226 KF430298 KF484697 
Orchomene  aff. oxystoma KF430269 KF430242 KF430227 KF430299 KF484698 
Paralicella  caperesca  KF430270 KF430243 KF430228 KF430300 KF484699 
Eurythenes  gryllus  KF430273 KF430246 KF430231 KF430303 KF484702 
Cyclocaris  sp. nov. KF430272 KF430245 KF430230 KF430302 KF484701 
Paracallisoma  sp. nov. KF430271 KF430244 KF430229 KF430301 KF484700 
Hirondellea  namarensis  KF430275 KF430248 KF430233 KF430305 KF484704 
Vibilia cultripes  KF430277 No amp KF430235 KF430307 KF484706 
Themisto sp. KF430276 KF430249 KF430234 KF430306 KF484705 
Bactrurus brachycaudus  KF430278 No amp AF202984 KF430308 KF484707 
Crangonyx forbesi  KF430285 KF430256 AF202980 No amp KF484714 
Stygobromus dentata  KF430281 No amp AF419233 KF430311 KF484710 
Stygobromus mackini  KF430287 KF430257 DQ377995 KF430316 KF484716 
Bactrurus  mucronatus  KF430291 KF430261 AF202978 KF430322 KF484722 
Bactrurus pseudomucronatus  KF430292 KF430262 AF202985 KF430323 KF484723 
Parhyale hawaiiensis KF430279 KF430250 AY826957 KF430309 KF484708 
Amphithoe  ramondi  KF430280 KF430251 DQ378024 KF430310 KF484709 
Gammarus pulex  KF430282 KF430253 AF202982 KF430312 KF484711 
Epimeria grandirostris KF430283 KF430254 DQ378007 KF430313 KF484712 



Pseudoprotella phasma  KF430284 KF430255 DQ378041 KF430314 KF484713 
Niphargus fontanus  KF430286 DQ064702 AF202981 KF430315 KF484715 
Astyra antarctica  KF430288 KF430258 DQ377999 KF430317 KF484717 
Syrrhoe psychrophyla  No amp KF430259 DQ378030 KF430318 KF484718 
Melphidippa antarctica  KF430289 No amp DQ377998 KF430319 KF484719 
Liljeborgia quadridentata  KF430290 KF430260 DQ378013 KF430320 KF484720 
Podocerus variegatus  No amp No amp DQ378022 KF430321 KF484721 

 



Table S5:  Substitution models and model parameter prior for each gene in the MrBayes runs. 
 

Gene 
Partition 

Model Rate 
Variation 

Substitution 
Rates 

Nucleotide 
frequencies 

Shape 
parameter 

Proportion 
of 
Invariable 
sites 

Topology Branch lengths 

16S HKY Invgamma Dirichlet 
(1,1,1,1) 

Dirichlet 
(1,1,1,1) 

Uniform 
(0,200) 

Uniform 
(0,1) 

Uniform Unconstrained: 
Exp(10.0) 

COI GTR Invgamma Dirichlet 
(1,1,1,1) 

Dirichlet 
(1,1,1,1) 

Uniform 
(0,200) 

Uniform 
(0,1) 

Uniform Unconstrained: 
Exp(10.0) 

18S GTR Invgamma Dirichlet 
(1,1,1,1) 

Dirichlet 
(1,1,1,1) 

Uniform 
(0,200) 

Uniform 
(0,1) 

Uniform Unconstrained: 
Exp(10.0) 

28S GTR Invgamma Dirichlet 
(1,1,1,1) 

Dirichlet 
(1,1,1,1) 

Uniform 
(0,200) 

Uniform 
(0,1) 

Uniform Unconstrained: 
Exp(10.0) 

H3 GTR Invgamma Dirichlet 
(1,1,1,1) 

Dirichlet 
(1,1,1,1) 

Uniform 
(0,200) 

Uniform 
(0,1) 

Uniform Unconstrained: 
Exp(10.0) 



Figure S1: Bayesian trees and Bayestrait analyses of a) maxilla 1 inner plate setation; b) mandibular molar; c) maxilla 1 outer plate tooth 
arrangement; d) gnathopod 1; e) gnathopod 2; f) coxa 1; g) gut storage.  Pie charts illustrate relative trait probabilities at a given node. 
 







 



Figure S2: MrBayes phylogenies based on single genes showing node support (Bayesian Posterior Probabilities with 10,000 trees sampled). 
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