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UNIVERSITY OF SOUTHAMPTON 

ABSTRACT 
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Doctor of Philosophy 

ACTIVE VIBRATION CONTROL OF DOUBLY-CURVED PANELS 

by Delphine Suzanne Nourzad 

This thesis considers active control of the vibration of doubly-curved panels. Such 

panels are widely used in vehicles such as cars and aircraft, whose vibration is 

becoming more problematic as the weight of these vehicles is reduced to control their 

CO2 emissions. The dynamic properties of doubly-curved panels are first considered 

and an analytic model which includes in-plane inertia is introduced. The results of this 

analytical model are compared with those from numerical modelling. Of particular note 

is the clustering of lower-order modes as the curvature becomes more significant. The 

influence of these changes in dynamics is then studied by simulating the performance of 

a velocity feedback controller using an inertial actuator. The feasibility of implementing 

such an active control system on a car roof panel is then assessed.  

Experiments and simulations are also conducted on a panel, mounted on one side of a 

rigid enclosure, which is curved by pressurising the enclosure. The active control of 

vibration on this panel is then implemented using compensated velocity feedback 

control and novel inertial actuators. It is found that the performance of the feedback 

control initially improves as the curvature increases, since the fundamental natural 

frequency of the panel becomes larger compared with the actuator resonance frequency, 

but then the performance is significantly degraded for higher levels of curvature, since 

the natural frequencies of many of the panel modes cluster together. Finally, the 

integration of a compensator filter in the control system ensures the robustness of the 

system, despite changes in curvature, which makes it a good candidate for future multi-

channel implementations. 
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1. Introduction 

1.1 Motivation 

The fast rate of technological developments over the past century has significantly 

contributed to the increase in mobility in our society. The rapid increase in air and road 

traffic also means that larger populations are becoming more and more exposed to 

transport noise and CO2 emissions. European legislation has been put into place since 

the 1970s in an attempt to reduce the noise of aircraft and road vehicles [1]. New 

upcoming European directives will also address the problem of CO2 emission and air 

pollution. 

In order to comply with these European directives, aircraft and car manufacturers have 

continued to concentrate on improving the fuel efficiency of their vehicles. In the 

aircraft industry, the design of more aerodynamic fuselages and the use of lightweight 

carbon fibre composite panels in the structure allow efficient fuel combustion without 

diminishing the structural strength [2]. In the automotive industry, the most cost 

effective and direct solutions for improving fuel efficiency consist of reducing both the 

engine size and the vehicle mass. 

Both the reduction in engine size and the reduction in vehicle mass contribute to a 

significant increase in the noise transmitted to the interior of the vehicle, particularly at 

low frequencies. Stiff and lightweight shell structures employed in new aircraft and 

automotive designs provide poor acoustic insulation and are radiators of engine, wind 

and road noise. Structural vibrations are responsible for more than 70% of vehicle 

interior noise [3]. Interior noise influences the level of comfort of the passengers as well 

as the occurrence of fatigue or motion sickness [4]. Consequently, the reduction of 

structural vibrations and interior noise in passenger vehicles has become of increasing 

importance in order to achieve both customer satisfaction and reduction in emissions. 

For this purpose, NVH (noise, vibration and harshness) has become an important aspect 

of the behaviour that has been integrated into the design process [5]. 
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The vibrations of the structure can be attenuated via passive and/or active control 

methods. Passive control techniques usually involve the application of mass, damping 

and stiffness treatments to the vibrating surface [6]. Active control of sound and 

vibration relies on the cancellation of disturbances through the generation of excitations 

that are out of phase with respect to those created by the source. The out-of-phase 

excitations are generated by transducers such as loudspeakers and actuators installed on 

the surface of the structure [5] [7] [8]. 

While, in general, the use of passive treatments efficiently attenuates high frequency 

vibrations, they are less successful on the low frequency range without adding 

significant weight to the vehicle. Consequently, with the rising demand for quieter, 

lighter and more fuel efficient vehicles, active structural control may be able to achieve 

more effective and lighter weight solutions than passive vibration control techniques 

[8]. Active control techniques have already been shown to be more efficient than 

passive control at low frequencies in applications such as the control of engine boom in 

cars and propeller noise inside aircraft [9] [10] [11] [12] [13] [14]. 

Although as described below, adaptive feedforward control has previously been used to 

control periodic disturbances, there is a need for feedback control if the disturbance is 

less predictable, such as road noise in cars or jet noise in aircraft. There is also an 

increasing trend for actuators and sensors to be collocated and controlled locally, since 

such a decentralised arrangement can be readily scaled up for very large numbers of 

actuators and sensors and can be robust to the failure of individual units [15].  

This thesis concentrates on the study and implementation of decentralised velocity 

feedback control systems on doubly-curved panels. The outcomes of this research will 

be important to the application of active control systems in the automotive and aircraft 

industries, where curved lightweight shells are the major components of the body 

structure. 

The first part of this thesis provides a study of the free vibrations of shells through the 

analytical and numerical modelling of doubly-curved thin panels with different 

curvatures. Then, simulations of velocity feedback control using electrodynamic proof-

mass actuators are performed on an aluminium homogeneous rectangular panel with 

simply-supported boundary conditions. The curvature of the modelled panel is gradually 

increased in order to investigate the influence of surface deformation on the 
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performance and stability of the control system. This section of the thesis is concluded 

by a case study of active vibration control on a car roof panel subjected to various 

boundary conditions. 

In the second part of the thesis, the effects of increasing curvature on the radiated sound 

power and kinetic energy are investigated experimentally when an aluminium panel is 

part of an enclosure with rigid walled boundary conditions. The practical 

implementation is carried out on a homogeneous aluminium panel clamped on top of a 

rigid-walled Perspex enclosure, first with offline simulations based on measured data, 

and then with real-time experiments of feedback control conducted on the experimental 

set-up. Proof-mass actuators with low natural frequencies have been selected for this 

purpose and paired with a compensation filter and a second-order high-pass filter that 

preserve the stability of the system. The curvature of the panel is altered through the 

pressurisation of the enclosure. The aim of this study is to imitate the deformation of 

sections of an aircraft fuselage caused by pressure loading. 

 

1.2 Research Background and Literature Review 

This section provides a summary of the sources of noise in road vehicles and aircraft, 

along with an overview of past and current applications of active noise and vibration 

control methods in the automotive and aeronautical industries. 

1.2.1 Sources of Noise in a Road Vehicle 

The sources of noise in a road vehicle can be divided into three main categories: (1) 

engine and transmission excitations, (2) road surface noise and (3) aerodynamic or wind 

noise. Engine noise is of a periodic nature and results from inlet and exhaust noise, 

piston crank and combustion-induced noise. The resulting cylinder firing frequency 

depends on the number of cylinders and the engine speed. For example, in [16], this 

frequency can vary from around 7 Hz when the engine is at idle, to around 50 Hz when 

engine speed is around 6000 rpm. Road noise is random and comes from the vibrations 

of the tyres on the road surface. The noise levels are directly influenced by vehicle 
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speed, tyre design and road characteristics. Finally, aerodynamic or wind noise is 

generated by the airflow around and over the vehicle and depends on the speed of travel 

[1] [17]. 

Noise can be transmitted into the passenger compartment through structure-borne or 

airborne paths. In the car body, structural vibrations are generated by the engine, the 

wheels, the chassis and the airflow, and propagate through the entire vehicle. The low 

damping of lightweight car bodies, often made of materials such as carbon steel, 

aluminium and carbon fibre, causes the sound generated by these vibrations to be 

efficiently transmitted to the interior of the car [18]. The vibration of panels and shell 

structures such as the roof of the vehicle results in high levels of structure-borne noise. 

The level of noise transmission via airborne paths depends on the isolation of the cabin 

from the engine compartment and the exterior. The dominant contributors to interior 

noise at low and mid-frequencies are categorised into 3 mechanisms: (1) direct 

transmission, (2) ‘mass law’ transmission and (3) acoustic radiation. Direct transmission 

is caused by the vibration of air through the cabin holes or gaps in door seals leading to 

direct noise radiation into the cabin. This type of transmission mainly contributes to the 

noise level at high frequencies. Mass law transmission is due to the transmission of 

noise from the power unit into the cabin through the walls. Finally, acoustic radiation 

results from the vibration of cabin walls, which can be caused by air turbulence, engine 

operation and/or road-tyre interactions. The first two mechanisms described above are 

airborne, while the third one can be structure-borne or airborne, depending on the 

transmission path [19].  

The contribution of structure-borne and airborne sources to the interior noise spectrum 

of a medium-size saloon car, calculated by Lalor and Bharj for a travelling speed of 100 

km/h, is shown in Figure 1.1 [19]. Since the contribution of wind noise to the interior 

level only becomes important for speeds above 110 km/h, its effect cannot be seen in 

the graphs. The effects of structure-borne noise are highest below 500 Hz and start to 

roll off above this frequency. 
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Figure 1.1 – Spectrum of interior noise levels in a saloon car calculated by Lalor and Bharj [19]. 

The vibrations of the engine and front tyres contribute to the ‘Front’ structure-borne spectrum, 

whereas the vibrations of the rear tyres contribute to the ‘Rear’ structure-borne spectrum. 

The mechanism of noise transmission through the vehicle cabin walls and the 

characteristics of the frequency response have been analysed by Jha and Priede [19] and 

Jha [4]. The dynamic response of a car body expressed in terms of mobility (velocity 

per unit force) shows that structure-borne noise from the engine, the transmission 

system and the road occupies the frequency range up to 400 Hz where a large number of 

resonances appear, while airborne noise dominates above 400 Hz. 

A schematic diagram of the major sources of resonance has been illustrated by Jha and 

can be seen in Figure 1.2 [4]. Up to 10 Hz, the modes correspond to rigid body 

vibrations caused by the suspension and the wheels. The 15-40 Hz content is due to the 

vibrations at the engine mounts being transmitted to the car body and producing 

torsional vibration of the structure. The region of interest for noise and vibration control 

is situated in the 70-200 Hz frequency band, where the car body is being excited by the 

road and the engine’s first harmonics. The first acoustic cavity modes occur in the 80-90 

Hz, 130-140 Hz and 150-160 Hz regions, depending on the specific dimensions of the 

car cabin.  
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Figure 1.2 – Diagram of major sources of resonance in a passenger vehicle [4] 

In the 70-200 Hz frequency range, the car body shell exhibits bending modes, referred 

to by Jha as ‘ring modes’ or ‘circumferential modes’ due to their resemblance to modes 

of vibrations observed in cylindrical shells. One of the main contributors to the bending 

modes in the passenger compartment are the large vibration levels of the roof panel. As 

these low-frequency modes are responsible for the propagation of high levels of noise 

into the passenger cabin, their attenuation is of great importance in NVH-related 

problems in the industry [4].  

1.2.2 Sources of Noise in an Aircraft 

This section is based on the information in references [20] [21] [22] [23] [24]. In an 

aeroplane, the interior cabin noise originates from: (1) the power plant such as the 

propeller or jet propulsion, (2) the turbulent boundary layer over the outer surface or 

airframe of the plane and (3) engine-induced vibrations due to reciprocating, turbofan 

and jet engines and finally (4) running equipment such as air conditioners. 

Aircraft propulsion systems such as propellers and jets are one of the major contributors 

of noise inside the cabin. The near-field noise produced by the propeller is the result of 

the air-volume displacement due to the rotating blades. The propeller noise is mainly of 

deterministic nature and its sound power spectrum is composed of periodic discrete 

frequency peaks corresponding to the blades’ passing frequency and its harmonics, as 

shown in Figure 1.3. Random broadband noise is produced by the turbulent airflow over 
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the surface of the blades, although its contribution is not as important in propeller 

aircraft.  

 

Figure 1.3 – Propeller noise spectrum, displaying the harmonics of the blade passing frequency 

decaying at a constant rate [21]. 

The amount of noise generated by the propellers depends on various factors such as the 

size, shape and number of blades, the speed and direction of rotation and consequently 

the direction and uniformity of air inflow into the propeller. The response of the 

fuselage and sound transmission into the interior are directly influenced by the 

rotational speed and passing frequency of the blades. 

The interior noise and vibration levels in two lightweight propeller aircraft were studied 

by Jha et al. during various tests and the major contributors of noise were assessed [22] 

[23]. As shown in Figure 1.4 taken from [22], the main content of the interior noise 

spectrum during a flight at cruising speed (111 knot, engine speed 2400 rpm), occupies 

the frequency range up to 1 kHz. The noise spectrum mainly consists of harmonics and 

sub-harmonic due to the blade passing frequency and the engine firing frequency. The 

sub-harmonic at ½ the engine firing frequency in the bottom graph of Figure 1.4 is due 

to the uneven firing of the engine cylinders.  
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Figure 1.4 – Interior Noise spectrum of a small propeller aeroplane measured up to 10 kHz (top) 

and 1 kHz (bottom) at the pilot’s head position during flight at cruising speed. The numbers refer 

to the harmonics of the blade passing frequency [22].  

The vibration spectrum is similarly composed of discrete harmonic frequencies 

originating from the engine and propeller rotation. The vibration spectra measurements 

performed at the aircraft floor over the 0-1 kHz frequency range during cruising speed 

also reveal several broadband peaks with the largest situated in the frequency region up 

to 500 Hz and an additional large peak around 700 Hz [22] [23]. The graphs presented 

by Jha et al. are shown in Figure 1.5. The vibration spectra were measured for different 

engine rpms and aircraft speeds in order to understand the occurrence of the resonance 

peak around 700 – 800 Hz. Results indicated that the response at this resonance was not 

influenced by these changes, leading to the conclusion that it was due to the structural 
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properties of the cabin floor. Further measurements performed on the aircraft during 

ground tests displayed similar interior noise and vibration characteristics.  

 

Figure 1.5 – Vibration spectra obtained at the aircraft floor for frequencies up to 1 kHz: (top) 86 

knot and 2000 rpm, (bottom) 113 knot and 2400 rpm. The numbers refer to the harmonics of the 

blade passing frequency [22]. 

Jet noise mainly occurs in aircraft with wing-mounted engines. Jet noise results from the 

mixing of compressed jet exhaust gases and the airflow near the nozzle exit. This 

random broadband excitation mainly contributes to the interior noise during take-off 

and climb. 

Due to the high travelling speed, aerodynamic noise or turbulent boundary layer- 

induced noise significantly contributes to the mid- and high-frequency noise levels 

inside the cabin during flights. The airflow over the outer layer of the fuselage exerts a 

random fluctuating pressure field on the surface which results in the excitation of the 

cabin walls and the radiation of sound into the passenger compartment. The airframe is 
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the main path of sound transmission to the interior of the aircraft. Sources of airframe 

noise taken from [21] are shown in Figure 1.6.  

 

Figure 1.6 – Sources of airframe noise in an aircraft [21] 

During take-off and climb, the turbulent boundary layer causes vibrations in the aircraft 

fuselage which contribute to the interior noise. During landing, the deployment of the 

trailing edge flaps, the leading edge slats and the landing gears significantly increases 

interior cabin noise, due to their interaction with the turbulent flow. Under cruising 

flight conditions, the main wings and tailplane are the main sources of noise due to 

turbulent flow on the airframe. The contribution of aerodynamic noise is dominant for 

frequencies above 400 Hz.  

In addition to the turbulent airflow over and around the aircraft, the engine noise also 

contributes to the structure-borne and airborne excitations. In jet-powered aeroplanes 

where the engine is mounted close to the fuselage and under the wings, the engine noise 

is transmitted via the fuselage to the regions of the cabin that are near the exhaust. In 

turbofan aeroplanes where the engine is directly mounted on the rear of the fuselage, the 

lack of isolation and the coupling with the structure creates a direct transmission path 

leading to the passenger compartment. Due to the different nature of the sources of 

excitation, the sound power spectrum of structure-borne noise can contain both 

deterministic and random broadband components.  
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1.2.3 Active Control of Sound and Vibration 

Passive control techniques, such as added absorption or damping treatments, are 

efficient for attenuating mid and high frequency vibration, in general, but are not as 

successful at low frequencies without a significant increase in weight. The use of active 

structural control solutions, instead or in addition to passive control, may provide a 

more effective and lighter weight solution. Active control of sound and vibration 

consists of the destructive interference between a primary acoustic or structural 

disturbance, and a controllable secondary source, producing excitations that are out of 

phase with respect to the ones created by the primary source [25]. Active control 

strategies can be divided into five groups. In active noise control (ANC), effective noise 

attenuation is achieved by ensuring that in the region of control, the sound field 

produced by the secondary source is close in magnitude but out-of-phase with the 

primary sound field [17]. In active vibration control (AVC), the vibrations of the system 

are attenuated through the modification of the dynamics of the system and its structural 

response, rather than directly cancelling the sound, so that the vibrations that contribute 

to efficient sound radiation from the structure are reduced [26]. The active noise-

vibration (ANVC) technique works similarly to both ANC and AVC in the sense that 

the secondary structural and acoustic sources excite the structure with the aim of 

attenuating the interior sound field. Active structural acoustic control (ASAC) seems to 

offer a better solution than ANC and AVC because both structural vibrations and sound 

transmissions are attenuated [17] [27]. Finally, Active boundary control (ABC) which is 

used in the aircraft industry, consists of the integration of smart trim panels with stiff 

segments in order to reduce the near-field radiations from the trim panels [24].  

For all cases, there exist two main control approaches, feedforward and feedback 

control. The application of feedforward strategies is successful in the attenuation of 

tonal periodic disturbances such as the noise from rotating machinery, aeroplane 

propellers or road vehicles’ engines, where a tachometer signal can be used as 

reference, but is impractical and uneconomical when the primary excitation is composed 

of several uncorrelated sources. For the latter case, feedback control should be used, 

since limited information can be obtained in advance of the random broadband 

excitations, for example, in the case of structure-borne excitation of lightweight and 
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lightly damped panels used in the automotive and aircraft industries. A feedforward 

control system must generally be made adaptive to cope with changes in the 

disturbance. On the other hand, feedback control does not require an independent 

reference signal and adaptive filtering of the error signal, as it uses error sensors to 

obtain real-time information of the system’s behaviour, thus saving large amounts of 

computation time. Feedback control systems are also easily built with analogue circuits 

and integrated into the structure that needs to be controlled [28]. 

The concept of active control has been around since the 1930s. The patent for active 

sound control filed by Lueg in 1936 described a single channel feedforward system 

controlling tonal disturbances such as plane waves moving in a pipe or an acoustic 

source propagating in a 3-dimensional free-field [17] [29]. The diagrams proposed by 

Lueg for each case can be seen in Figure 1.7 [29]. The first single channel analogue 

systems were developed two decades later. Olsen and May proposed a Helmholtz 

resonator sound absorber composed of a microphone, loudspeaker and amplifier that 

acted like a single channel feedback system and reduced the sound pressure near the 

microphone [30]. Three years later, a feedforward control system was designed by 

William Conover for reducing the noise from large mains transformers [31]. However, 

the practical application of active control systems only started in the late 1970s with the 

use of digital signal processing (DSP) techniques and the fast development of adaptive 

digital controllers and micro-circuits [32]. 

 

Figure 1.7 – Diagram proposed by Lueg for the first active control system [29]. 
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Practical implementations of Lueg’s patent have been widely used in the field of active 

control of noise in ducts, such as the design of a broadband active sound control system 

for sound absorption in air-conditioning ducts and ventilation shafts [7]. One of the 

applications of Olson’s and May’s design is in aircraft and automotive industries where 

the sound absorber can be installed in the backrest of the passenger seat in order to 

reduce the low-frequency noise near the passenger’s ears [30] [32]. Balas et al. have 

investigated the application of feedback active control techniques for reducing the 

vibrations of large space structures [33] [34]. Recent advances in active control 

applications to automotive and aircraft industries will be described in Section 1.2.6.   

 

Figure 1.8 – Feedforward control system designed by William Conover for reducing mains 

transformer noise [31]. 

1.2.4 Feedback Control Strategies 

For a linear time-invariant system (LTI), two main active vibration control strategies 

have been established: feedback control and feedforward control. Both active control 

systems are composed of the same main components, namely, a sensor coupled with an 

actuator via an electronic controller. The vibrations of the structure are detected by the 

sensor while the controller and actuator respectively alter the detected signal and affect 

the structural response.  

One of the main criteria in choosing between the two active control strategies depends 

on the availability of a reference signal correlated with the primary disturbance, i.e. a 

direct measurement of the primary excitation. If such a measurement is not available, 

feedback control can be used for attenuating the structural excitations. A block diagram 

of a single-channel feedback control system is shown in Figure 1.9. The response of the 
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system is fed back to the controller and the net difference between the primary 

disturbance and this secondary excitation, which is called the error signal ( )E s , is 

applied to the plant. The ‘plant’ refers to the physical system between the input to the 

secondary source and the output of the error sensor.  

As explained in [17] [26], the output of the mechanical system, as measured by the error 

sensor, can be expressed in terms of Laplace transforms and transfer functions as 

( ) ( ) ( ) ( ),p sE s F s G s F s   (1.1) 

where ( )pF s , ( )G s and ( )sF s are the Laplace transforms of the primary disturbance, the 

plant and the secondary excitation respectively, when the secondary excitation is given 

by 

( ) ( ) ( ),sF s H s E s   (1.2) 

where ( )H s  is the transfer function of the feedback controller. Consequently, the closed 

loop response of the feedback control system can be calculated as  

( ) 1
.

( ) 1 ( ) ( )p

E s

F s H s G s



 

(1.3) 

The closed-loop response function in Equation (1.3) is also referred to as the ‘sensitivity 

function’ and is used for assessing the effectiveness and stability of the controller [17]. 
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Figure 1.9 – Components of a single-channel feedback control system (top) and block diagram 

(bottom) [17] [26] 

For single degree of freedom (SDOF) system consisting of a mass, linear spring and 

viscous damper, as shown in Figure 1.10, based on the system’s equation of motion, the 

plant transfer function ( )G s in the absence of control can be written as 

2

( ) 1
( ) ,

( )p

W s
G s

F s Ms Cs K
 

 
 

(1.4) 

where ( )W s  is the Laplace transform of the displacement response, measured by the 

error sensor, and M , K and C  are the mass, stiffness and damping coefficients of the 

system respectively. 
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Figure 1.10 – Feedback controller implemented to an SDOF  

The controller ( )H s  is assumed to generate a secondary force with components 

proportional to acceleration, velocity and displacement of the mass. Based on this 

assumption, the secondary force can be expressed in the time and Laplace domains 

respectively as  

( ) ( ) ( ) ( )s a v df t g w t g w t g w t    (1.5) 

2( ) ( ) ( ) ( ),s a v dF s g s W s g sW s g W s    (1.6) 

where ag , vg  and dg  are the gain parameters for acceleration, velocity and 

displacement respectively. The transfer function of the controller ( )H s can then be 

written as 

2( )
( ) .

( )

s
a v d

F s
H s g s g s g

W s
     

(1.7) 

Such a controller is referred to as a PID (Proportional Integral Derivative) controller and 

the gain parameters can be adjusted in order to ensure the stability and improve the 

performance of the system.  

In this case, the closed-loop response for the SDOF system can be written as 

 ( ) ( ) ( ) ( ) ,p sW s G s F s F s   (1.8) 

where ( ) ( ) ( )sF s H s W s , so that using Equations (1.4) and (1.7) 
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2

( ) ( ) 1
,

( ) 1 ( ) ( )p

W s G s

F s H s G s M s C s K
 

    
 

(1.9) 

where aM M g   , vC C g   and dK K g    are respectively the effective mass, 

damping and stiffness of the system. The effective mass, damping and stiffness can 

thus, in principle, be independently controlled with the feedback gains ag , vg  and dg , 

although for stability, M  ,C and K   are all required to be positive [26]. Velocity 

feedback control remains the most robust out of the three techniques as it increases the 

damping without bringing any significant change to the mass and stiffness of the 

system. 

The main disadvantage of feedback control lies within the trade-off between stability 

and performance. The stability of the feedback loop is assessed from the poles of the 

sensitivity function defined in Equation (1.3) which are the roots of the characteristic 

equation 

1 ( ) ( ) 0.H s G s   (1.10) 

The real parts of all these poles need to be negative for the system to be stable. The 

stability of the control system can also be assessed using graphical means such as the 

root-locus method and the Nyquist criterion. The root-locus method is the graphical 

representation of the poles of the sensitivity function in the complex plane. For the 

system to be unconditionally stable, the loci curves of the roots should be located in the 

left-hand side or the real-negative part of the graph for all values of feedback gain. The 

Nyquist criterion depends, by contrast, on the polar plot of the open-loop frequency 

response ( ) ( )H j G j   which is called the Nyquist plot. The stability assessment of 

practical control systems is often performed using the Nyquist plot, rather than the root-

locus method, because the factorisation of the sensitivity function in terms of its poles 

and zeros is often difficult, or the pole-zero representation is not available, either due to 

the system model being of very high order or due to existing variability in the system 

[35]. Assuming that the plant and controller are each individually stable, the closed-loop 

response of the system is also stable under the Nyquist criterion, if the Nyquist plot does 

not enclose the point (-1,0) as the frequency is varied from   to  . An example of a 
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Nyquist plot of a stable system, taken from [17], can be found in Figure 1.11. The 

‘control spillover’ circle centred at (-1,0) shown in Figure 1.11 is a region in which the 

response is enhanced rather than reduced by the feedback loop, although the system 

remains stable, as long as the Nyquist plot does not cross the axis at (-1,0). 

 

Figure 1.11 – Nyquist plot of a stable feedback control system with the circle enclosing the limit of 

instability at the point (-1,0) shown in grey [17]. 

Within this ‘control spillover’ circle, 1 ( ) ( ) 1G j H j   , so that the modulus of the 

sensitivity function is greater than unity 

1
1,

1 ( ) ( )G j H j 



 

(1.11) 

indicating enhancement of the disturbance.   

In addition to the definition of the limit of stability for a control system, the relative 

stability of the system can be determined through the definition of stability margins. The 

use of such margins can guarantee that changes in the control system will not 

compromise the system stability, i.e. the Nyquist plot of the system showed that it was 

already very close to the point (-1,0) and therefore, very sensitive to changes in 

feedback loop. Two parameters called the gain margin and phase margin are used for 

ensuring the relative stability of the control system. The gain margin 
marging  corresponds 

to the maximum allowed amplification in the feedback loop before the open-loop 

response crosses the axis at -1, and the phase margin c  refers to the maximum 

additional phase shift allowed for maintaining the system’s stability, before the overall 
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phase shift reaches the critical 180° phase which leads to instability. The gain margin 

can be formulated in dB as  

1020log ( ),margin cg g   (1.12) 

where cg  is the distance between the origin and the point at which the open-loop 

response crosses the real axis. The cg and c  parameters have been indicated in the 

Nyquist plot of Figure 1.12. If the gain and phase margins are set such that the system 

remains stable despite changes in the feedback loop, then the system can be defined as 

robust. The task of setting the appropriate gain and phase margin values can be difficult 

in practical control systems due to the uncertainties arising in the plant caused by 

changes in physical conditions or nonlinearities in the controller [17]. A 6-dB gain 

margin and 30° phase margin are commonly used for ensuring robust stability. A 6-dB 

gain margin corresponds to setting a geometric constraint in the Nyquist plot such that it 

does not intersect a circle of radius ½ centred at (-1,0) at any point on the circle, and 

means that the enhancement in the open-loop response will be no larger than 6 dB at 

any frequency  [35]. 

 

Figure 1.12 – Nyquist plot of the open-loop response of a relatively stable system with the 

parameters gc and φc for gain and phase margin have been indicated [17].  

The stability of a control system may be compromised by different factors. Instability 

may arise at higher levels of control gain due to the contribution of residual modes to 

the overall response of the system. A 180° phase shift is introduced into the response 

causing a change of sign in the response from negative to positive and leading to the 
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enhancement of the error signal [8] [26]. Another reason for instabilities in the system 

can be the presence of time delays in the feedback controller, which appear in the 

system as additional unmodelled phase shifts. Such phase shifts can be limited by 

collocation and duality between the force actuator and velocity sensor so that the plant 

response is proportional to the input mobility of the structure, which is positive real, i.e. 

its real part is positive. A sensor-actuator pair is said to be collocated when they are 

placed in the same position for point actuators, or over the same area of the structure for 

distributed actuators. Duality between an actuator and a sensor occurs when they excite 

a structure and detect the resulting vibrations in the same manner, such that the product 

of the excitation and the detected response is proportional to the input power to the 

system [17] [26] [36] [37].  

Time delays tend to be common in digital implementations of active control due to the 

use of anti-aliasing and reconstruction filters required in the digitisation of the 

controller. They cause the effective mass and damping to be modified and the system to 

become unstable if the damping is reduced to a negative value [26]. The effects of time 

delays on the performance of the feedback loop and the closed-loop frequency response 

have been discussed in further details by Elliott in [35], who noted that the bandwidth 

over which control can be obtained is inversely proportional to the delay, such that 

1
( ) .

6
Bandwidth Hz


  

(1.13) 

In general, feedback control strategies for vibration control (ASAC and AVC) can be 

categorised into: (1) single-input single-output (SISO), (2) fully-coupled multiple-input 

multiple-output (MIMO) and (3) decentralised MIMO systems. A SISO feedback 

control systems consist of a sensor-actuator pair that is designed to reduce the local 

vibration. MIMO systems are composed of arrays of sensor-actuator pairs which can be 

either fully-coupled or independent pairs. These systems are respectively referred to as 

centralised and decentralised feedback control systems [38]. 

1.2.5 Actuators and Sensors for Active Control 

The performance of the control system depends on the number of actuators and sensors 

employed, their position on the structure and their dynamic responses.  
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Actuators can be categorised as semi-active or fully-active. Semi-active transducers, 

such as shape memory alloy actuators, are essentially passive devices, but their 

mechanical properties (mass, stiffness and damping) can be varied in real-time by a 

control signal. The small power required to drive these actuators and the reduced cost of 

such control systems make them an attractive solution for semi-active suspension 

systems in road vehicles [39]. Furthermore, a semi-active transducer can still work in 

passive conditions, should the active system fail to operate. One example of semi-active 

actuators which may be applied to vehicle suspension systems, are dampers filled with 

electrorheological (ER) or magnetorehological (MR) fluids. The viscosity of these smart 

fluids is varied by changes in electric field and magnetic field strengths [40].   

Fully-active actuators require much larger amounts of power than semi-active actuators. 

They operate by producing control forces that destructively interfere with the vibrations 

of the structure and thus attenuate the structure’s response. Fully-active actuators are 

generally divided into two categories: grounded or reactive actuators and space 

realisable actuators. The naming of the first category comes from the fact that these 

actuators need to react against a fixed base or support. An example of such an actuator 

is an electrodynamic shaker. Space realisable actuators generate both passive structural 

(reacting against a support) and active forces (voltage-generated). Some examples of 

this category include point force transducers such as inertial actuators and distributed 

transducers such as electrostrictive and piezoelectric actuators [26] [41]. 

Proof-mass actuators are a type of inertial actuator in which a magnet is suspended and 

supported by a spring and damper. The moving mass and the stiffness of the actuator are 

largely provided by the magnet and the voice coil. When the actuator is driven by a 

voltage or current source, the inertial mass reacts off the surface of the structure (or an 

additional base mass) and the control force is generated at the position of the actuator on 

the structure. This type of actuator will be described in further detail in Chapter 4.  

Piezoelectric actuators can come in the form of PZT (Lead-Zirconate-Titanate) patches 

or PVDF (Polyvinylidene Fluoride) films. They can be used as single strips or as stacks 

depending on the properties of the response of the structure. Due to their shape and 

lightweight, they couple well with the structure and can be easily implemented or 

embedded as distributed actuators on the surface and are widely used in smart 
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structures. Consequently, piezoelectric actuators represent an attractive option for 

satisfying the cost and weight limitations in the automotive and aircraft industries. In 

addition to the transverse control force, these actuators generate line moments along 

their edges allowing a more efficient control of both in-plane and bending vibrations. As 

demonstrated by Elliott et al in [27], the use of these actuators can achieve high levels 

of control similar to those of a decentralised MIMO control system composed of point 

force actuator collocated with error sensors.  

In comparison to point force inertial actuators, however, the use of piezoelectric 

actuators in practical systems can present several significant disadvantages. It is not 

easy to achieve collocation and duality when piezoelectric actuators are used as 

distributed actuators and the stability of these control systems is harder to ensure at 

higher frequencies in comparison to multi-channel point force actuators. Another 

disadvantage of piezoelectric actuators, in comparison to inertial actuators, is their 

requirement for high-voltage amplifiers to generate reactive forces against the surface. 

Additionally, if these voltage levels are too high, the actuators are known to generate 

harmonic distortions that are detrimental to the performance of the control system. The 

length and size of the actuator also has a strong impact on the frequency range over 

which the actuation force is effective, and the fragility and brittleness of these actuators 

puts a significant limit on their size and on the tolerable levels of strain caused by the 

deformations of the structure on which they are implemented (i.e. during aircraft cabin 

pressurisation or when mounted on helicopters struts). Finally, the maintenance of 

control systems equipped with piezoelectric actuators is far more expensive than those 

with inertial actuators [24].  

In order to satisfy the requirements for a cost-effective, robust and easy to implement 

control system, the research work done for this thesis has been based on the use of 

inertial actuators. 

1.2.6 Review of Active Control Applications in Industry 

The use of active control techniques for noise and vibration reduction in the aircraft and 

automotive industry is strongly governed by the cost-effectiveness of the system. Over 

the recent years, the increasing availability of inexpensive sensors and microprocessors 

with suitable specifications for active control system has started to make the practical 
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implementation of such systems in mass-produced vehicles affordable. However, 

factors such as number of channels in the controller and number of actuators and 

sensors distributed on the structure still have a significant impact on the feasibility of 

the implementation of the control system, both in terms of cost and weight addition. 

This section provides a review of some of the active control technologies for noise and 

vibration in road vehicles and aircraft. 

 

Application of active control in road vehicles:  

The rising demand from customers for a quieter and more comfortable ride along with 

the weight reduction and fuel efficiency objectives from car manufacturers have 

increased the popularity and appeal of active control techniques. Structure-borne noise 

caused by the vibrations of the cabin walls, which is known to occur in the low-

frequency region (20-200 Hz), may be more successfully attenuated by active noise and 

vibration control strategies than passive control solutions. Over the past 20 years, 

different experimental studies have demonstrated the practical implementation of active 

noise and vibration control in road vehicles. However, the high cost and complexity of 

such systems has made it difficult up to now for the automotive industry to 

commercialise an affordable vehicle with such integrated control systems [39].  

In addition to the characteristics of the sources of excitation, under 200 Hz, the vehicle 

interior noise is governed by acoustic resonances, structural modes of vibration and the 

structural-acoustic coupling between the two. Depending on the nature of the 

disturbance, different control strategies may be considered to reduce low frequency 

noise and vibration in a road vehicle [42].  

For controlling tonal engine noise, feedforward noise control works most efficiently. 

The reference signal is taken from the engine so that the control system can be adapted 

to changes in the engine speed [8] [10]. Various numerical and experimental studies 

have been conducted to demonstrate the performance of feedforward engine noise 

control in cars. In addition, several OEMs such as Audi and Honda have implemented 

this technology in order to attenuate the noise due to the deactivation of some the engine 
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cylinders for fuel efficiency. This technology has been implemented as part of the 

standard package, in some of these OEMs vehicles which are currently available on the 

market [43] [44] [45]. Recent studies carried out on a cabin mock-up with concrete 

walls by De Oliveira et al. [46] consist of both FEM simulations and experimental 

assessment of engine noise reduction inside the cabin. A picture of the experimental rig 

and a diagram of the cabin mock-up with the locations of the microphones and sources 

indicated is shown in Figure 1.13. The vehicle mock-up was composed of two parts: the 

passenger compartment and the engine compartment which were connected to each 

other via a flexible firewall. The engine noise was transmitted to the cabin through the 

firewall. The primary disturbance was created using a real-time engine simulator and 

both velocity feedback control and adaptive feedforward control were investigated for 

the reduction of engine noise inside the passenger cabin. The results showed that noise 

from engine orders could only be controlled by adaptive feedforward control. However, 

feedback control provided an efficient broadband noise reduction and could be 

potentially used for the attenuation of random road and wind noise [47] [48].  

 

Figure 1.13 – Vibro-acoustic cabin mock-up presented by De Oliveira et al. [46] [47] [48]: (left) 

Picture of experimental rig, source and sensors positions, (right) diagram of the cabin mock-up and 

active control system. 

Feedforward control can also be used to attenuate random broadband road noise. 

However, the large number of sensors required to capture reference signals from the 

different input noise sources and the importance of their positioning makes the 

implementation of such adaptive feedforward control systems too complex and 
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expensive for a commercial application. In this case, feedback control strategies can be 

an attractive replacement for feedforward control, as they require no reference signals. 

The two control strategies may also be combined together in order to optimise the 

reduction of noise in the cabin. The implementation of a combined feedback-

feedforward system in a Honda station wagon has been discussed by Sano et al. in [49]. 

A feedback control was implemented to reduce the booming noise at the front seats. A 

feedforward control system was implemented to prevent enhancements in the noise 

level at the rear seats. A diagram of the system and the positioning of the error sensors, 

reference sensors and the controller are shown in Figure 1.14. 

 

Figure 1.14 – Active noise control system implemented in the Honda station wagon vehicle by Sano 

et al. [49], from top to bottom and left to right: Diagram of the combined feedback-feedforward 

system and positioning of each control system in the vehicle. 

For isolating structural vibrations, either feedback or feedforward control techniques 

can be implemented, depending on whether the source of vibration is periodic or 

random. Adaptive feedforward control can be used for isolating the vibrations of 

rotating machinery such as the engine, and reduce idling and booming noise.  

One of the earliest active vibration control solutions for cars, proposed by Freudenberg, 

consisted of the design of an active engine mount. The transmission of the vibrations 

from the engine to the chassis of the vehicle was attenuated via active damping with an 

electromagnetic actuator [50]. A feedforward control system based on this design was 

implemented by McDonald et al. in a Volkswagen Golf GTI for experimental studies 
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[26]. Nakaji et al. have developed a feedforward active engine mounting system which 

employs electromagnetic actuators, hydraulic mounts and an adaptive filter. The filter 

algorithm allows the adjustment of the control system with respect to different driving 

conditions. The front and rear of the engine of a Nissan sport-utility car was equipped 

with the active engine mounts while passive mounts were left on the sides of the engine. 

The performance of both active and passive mounts was assessed and compared, with 

measurements of engine booming noise and floor structural vibrations taken at the 

driver’s seat location. The implementation of active mounts resulted in a significant 

reduction of transmitted noise (over 10 dB) [51].  

Other designs of active engine mounts using electromagnetic actuators have been 

proposed in [52] [53] [54] [55]. Figure 1.15 taken from [55] shows a low-cost prototype 

for an active engine mount system with an electromagnetic actuator. The outcomes of 

experimental studies revealed about up to 13 dB attenuation in engine-induced 

vibrations. Recent designs of active engine mounts incorporate piezoceramic instead of 

electromagnetic actuators, because of their high-speed response [56] [57]. Among 

OEMs that have implemented active engine mounts in their current vehicle, Audi can be 

cited [58] [59].  

 

Figure 1.15 – Active engine mount system with an electromagnetic actuator. The vibrations 

transmitted from the engine to the chassis are attenuated through the active control of pressure in 

the upper chamber by the actuator [55]. 

Feedback vibration control works best for cases such as the vehicle suspension system 

or the reduction of structural vibrations of the cabin, which are caused by broadband 

random road or wind noise. Passive suspension strategies need to be a trade-off between 

isolating the cabin from external disturbances and ensuring good handling performance, 
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which is hard to achieve with existing conventional spring-damper systems. With the 

use of force-generating actuators, on-board microprocessors and real-time optimisation, 

active suspension systems have experienced growing interest over the years. One of the 

early designs of active suspension comprising a hydraulic actuator was implemented in 

the Lotus 91 F1 racing car and in the Lotus Esprit experimental vehicle in the 1980s 

[60] [61]. The first commercial vehicles fitted with active suspension systems were 

manufactured by Nissan and Toyota [62]. A review of the research conducted on 

different active suspension systems and the corresponding control methods can be found 

in [61]. Recent studies have focused on adaptive feedback suspension systems that take 

into account the non-linear dynamic parameters [63] [64].  

Controlling the structural vibrations of the car body and panels such as the roof can be 

achieved with feedback control and the use of structural sensors and actuators. These 

techniques could replace the currently employed passive methods which consist of 

treating the cabin walls with vibration damping and porous materials.  

Numerical and experimental work on the application of active vibration control to a car 

body can be found in [18] [65]. The actuators and sensors used for these experiments 

were PVDF sheets which were attached on the floor and centre panels of the car body. 

The use of PVDF actuators allowed the generation of distributed control forces on the 

structure. The control algorithm was implemented on a DSP board. The modal control 

approach and state-space formulation of the modal displacements and modal velocities 

were performed for the centre panel of the car. The floor panel of the car was controlled 

with the implementation of proportional feedback control. The frequency range of 

interest was 150 – 600 Hz. The amplitude of the 4 dominant resonance peaks of the 

centre panel was significantly reduced. However, some limitations still exist in the 

definition of the appropriate control bandwidth and the stability of the system may be 

compromised by the spillover of uncontrolled modes. A low-pass analogue filter was 

used in the above studies to overcome the problems caused by modal spillover. 
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Figure 1.16 – Experimental set-up of the car for modal analysis (left), Diagram of the experimental 

set-up for active vibration control, (bottom) positioning of the actuator and sensor on the centre 

panel of the car body [18] [65]. 

Another study conducted by Song et al. has focused on the design and implementation 

of an active vibration control system for reducing the interior noise of the vehicle cabin 

[66]. The effects of structural-acoustic coupling were taken into account by the 

combination of results from experimental modal analysis on a half-scaled model of a 

vehicle and acoustic finite element modelling of the 3-dimensional cavity, in order to 

allow for the identification of the region of the cabin and the dominant modes 

contributing to the interior noise. As a result, the panels corresponding to the front 

window and the cabin floor were identified as the regions with the strongest structural-

acoustic coupling, and the floor panel was selected for the implementation of control. 

Piezoelectric actuators and sensors were positioned on the cabin floor and the interior 

noise levels were measured at the driver and rear seat positions. The controller model 

was defined using the state-space formulation. Although the frequency range for real-

time experiments was initially set between 100 – 300 Hz, the frequency range had to be 

extended in order to include the contribution of a mode located at 505 Hz which caused 
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the system to go unstable. The experimental results showed efficient attenuations in the 

region up to 300 Hz [66]. 

In the long run, active vibration control could be more effective than active noise 

control as it allows the reduction of noise at the source or very close to it. However, in 

automotive applications, in comparison to active noise cancellation technologies, it is at 

much earlier stages, due to issues related to the stability of the control system and issues 

related to the cost of implementation due to the number of actuators required. 

 

Application of active control in aircraft:  

In an aircraft, the control and reduction of interior noise and vibrations caused by the 

different sources described in Section 1.2.2 represent an important challenge. Not only 

can the vibrations of the fuselage or the airframe due to these disturbances affect 

passengers comfort, but also high levels of vibration cause fatigue which can eventually 

lead to structural damage [24]. The combination of passive treatments which are only 

effective at mid and high frequencies, with active noise and vibration control 

technologies that are capable of reducing low frequency noise and vibration, can help in 

achieving efficient reduction in the interior noise levels. The different sources of noise 

and vibration in aerospace vehicles and the active and passive techniques used for their 

attenuation have been extensively reviewed by Gardonio in [24].  

The practical implementation of active noise and vibration control for aerospace 

applications has been a subject of growing interest of recent decades, and these 

technologies are available on several passenger and military aircraft.  

One of the early studies on active noise control of aircraft interior noise has been 

performed by Elliott et al. on a BAE 748 aircraft for the application active noise control 

solutions on open rotor aircraft [13]. The aim of the study was to reduce the interior 

noise due to the propellers. For engines’ speed of 14,200 rpm, the fundamental blade 

passing frequency of the propellers was 88 Hz. Different arrangements of 16 

loudspeakers for the secondary sources and 32 microphones for measuring the error 

signal were tested in the passenger compartment in order to determine the optimal 
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configuration for which the maximum reduction in the interior noise field could be 

achieved. The levels of the loudspeakers signals were adjusted by the adaptive 

feedforward control algorithm in order to minimise the sum of the squares of the error 

signals measured by the microphones. Experiments of active control were performed 

both on the ground when the engines were running at full speed and during flights. The 

fundamental frequency was attenuated by 13 dB for uniform and circumferential 

distributions of the loudspeakers [13]. A similar control system has been made available 

by Saab on Saab 340 aircraft [67]. The control system developed by Saab consists of 24 

secondary sources fitted in the trim panels by the overhead luggage compartment and on 

the floor near the seats, and 48 error microphones distributed throughout the cabin and 

positioned at head heights for both seated and standing aisle configurations. This 

arrangement allowed attenuations in the interior noise at the head level of up to 10 dB 

[67]. 

The reduction of interior noise can also be achieved by active structural acoustic control 

(ASAC) and active vibration control. Examples of investigations of ASAC can be found 

in [68] [69], where piezoceramic actuators have been mounted on the trim panels and 

fuselage in order to attenuate both structural vibration and interior noise levels.   

Among ASAC systems available in passenger aircraft, the Bombardier Q400 can be 

cited in which active structural acoustic control (ASAC) is achieved to reduce the tonal 

propeller-induced noise in the passenger compartment. The control system is a multi-

channel feedforward control system consisting of inertial shakers fitted on the aircraft 

fuselage acting as secondary sources, accelerometers which are positioned on the seat 

rails to measure the reference signals, and microphones fitted behind the aircraft trim 

panels and overhead bins to measure the error signal [70]. The block diagram of the 

control system can be viewed in Figure 1.17.  

The inertial shakers used in this system are Active Tuned Vibration Attenuators 

(ATVAs) manufactured by Ultra-Electronics [70], which consists of a mass-spring 

system with a natural frequency tuned to the dominant frequency of the noise spectrum 

which needs to be controlled. The mass-spring system is composed of a proof mass 

mounted between two springs in a coil and attached to the casing by thin flexible 

supports. The mass is driven by a force generated from an electrical current flowing 

through the coil. A diagram of the ATVA actuator and its mounting position are 
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displayed in Figure 1.17. A minimum of 48 ATVAs were identified for achieving good 

control performance during the measurements [70].  

Figure 1.17 – Block diagram of the control system for reducing the interior noise due to tonal 

propeller noise (top), internal diagram of the ATVA actuator manufactured by Ultra-Electronics 

and the mounting position of the actuator (bottom) [70]. 

The implementation of active structural acoustic control and active vibration control 

techniques have also been widely investigated for helicopters. One of the contributing 

sources of noise to the interior of the cabin is the vibrations of the airframe. 

Experiments of active control have been performed by Petitjean et al. on helicopter 

honeycomb sandwich panel in [71], using both feedback and feedforward control 

techniques. Different arrangements were tested for the actuators and sensors on a square 

honeycomb panel using 8 polyvinylidene fluoride (PVDF) collocated with 8 PZT (lead 

titanate/zirconate) patches, 2 sets of accelerometers where 3 out of 4 were collocated 
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with secondary dynamic shakers, and 3 error microphones located 0.1 m away from the 

panel to measure the noise level. The structure was excited by a shaker with either tonal 

or random noise for a frequency range of 0 – 800 Hz. Tonal noise was reduced via 

adaptive feedforward control and random noise was reduced with feedback control. 

Although both approaches showed good attenuations levels, the use of feedback control 

and distributed actuator/sensor pairs allowed a better attenuation in the sound pressure 

over the whole surface of the structure, without the need for reference pressure 

measurements [71]. Decentralised feedback control was performed by Lepage et al. in 

[72], when piezoceramic actuators were fitted in a square portion of a helicopter trim 

panel to reduce the structural vibrations of the structure and reduce the radiate sound 

power inside the cabin. 

One of the main causes of fuselage vibration in a helicopter is the vibration of the 

gearbox at its mounting points on the body. The application of active vibration control 

to this problem has been investigated by a number of researchers. Vibration due to the 

main rotor of the AgustaWestland EH101 helicopter is already actively controlled using 

hydraulic actuators in the engine struts [73].  

 

1.3 Scope and Objectives 

The purpose of this thesis is to investigate the effects of curvature on the behaviour of a 

panel, as well as on the efficiency and robustness of a direct velocity feedback control 

system. The panel used in the theoretical, numerical and experimental work is a thin 

homogeneous aluminium panel of rectangular shape. The feedback control unit consists 

of an electrodynamic proof-mass actuator collocated with a velocity sensor positioned at 

its base. The aluminium panel is either excited by a point force (shaker, impact hammer) 

or an acoustic field (loudspeaker). 

The main objectives of this thesis are: 

 To derive a relevant analytical model for vibrations in doubly-curved thin 

panels. 
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 To model and study the performance and stability of a velocity feedback 

control system, composed of one or more inertial actuators, when it is installed 

on a thin panel of different curvatures. 

 To assess the performance of a velocity feedback control system installed on a 

car roof panel.  

 To investigate the effects of structural-acoustic coupling in a doubly-curved 

panel as part of a rigid-walled enclosure. 

 To present a practical implementation of a velocity feedback control system on 

a pressurised enclosure with one flexible aluminium panel of different 

curvatures.  

 

1.4 Structure and Organisation 

This thesis consists of 7 chapters divided into two parts: the first part of this thesis – 

chapters 2 through 5 – covers the topic of feedback control on doubly-curved shells. 

The second part of the thesis – Chapter 6 – presents the application of feedback control 

to doubly-curved shells that form part of an enclosure.  

Chapter 2 provides a comprehensive study of doubly-curved panels’ theory. The 

objective of this section is to understand the mechanisms of wave propagation and free 

vibrations in shallows shells. General equations for the estimation of the natural 

frequencies of the system in the absence and presence of in-plane inertia are proposed 

for simply-supported and clamped-clamped boundary conditions. 

Chapter 3 presents analytical and numerical (FEM) models of a simply-supported 

homogeneous aluminium panel with increasing curvature. Modal analysis is performed 

on both models. The results are re-arranged and validated using Modal Assurance 

Criterion (MAC). A comparison of the mode shapes and natural frequencies is 

performed for several levels of curvature in order to observe the trends with respect to 

curvature increase. 

Chapter 4 presents the results of simulations of a smart panel for active vibration control 

(AVC) with increasing curvature in both x and y directions. The simply-supported panel 
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modelled in Chapter 3 is used for simulations of velocity feedback control and 

electrodynamic proof-mass actuators are modelled on the surface. The passive effects of 

the actuator have not been taken into account in this Chapter but are considered in 

Chapter 6. The influence of curvature change on the performance of the system, number 

and position of required actuators and stability of the control system has been 

investigated.  

Chapter 5 presents a case study investigating the implementation of active vibration 

control systems a road vehicle roof panel made of carbon steel. The first past of the 

chapter concentrates on experimental modal analysis work performed on the roof. The 

second part of the chapter includes the FEM model of the car roof panel and the modal 

analysis performed under clamped-free boundary conditions. The third part of the 

chapter provides a comparison of the two methods. Finally, simulations of feedback 

control based on numerical and experimental results are presented.  

Chapter 6 concentrates on the practical implementation of velocity feedback control on 

a curved panel which is part of an otherwise rigid enclosure. The first part of the chapter 

explains the steps involved in the design of the control unit and a compensation filter 

responding to the stability requirements of the system has been proposed. The proposed 

control system has been installed on an experimental rig in which an aluminium panel 

has been fixed on a rigid-walled Perspex enclosure. The enclosure has been pressurised 

in order to alter the curvature of the panel. A study of the effect of pressure changes on 

the performance of the active control system has been conducted.  

Finally Chapter 7 provides a summary of the results and outcomes of the research, 

followed by concluding remarks and recommendations for future work. 

 

1.5 Contributions of this Thesis 

The original contributions of this thesis can be organised into the following groups: 

 Derivation of analytical models for doubly-curved panels, which include the 

contribution of in-plane inertia, for two boundary conditions, supported by 

shear diaphragms along all edges, and clamped along all edges. 
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 Theoretical and numerical analysis of velocity feedback control on doubly-

curved panels. 

 Practical implementation of velocity feedback control with an inertial actuator 

on a panel curved by pressurisation. 
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2. Dynamic Behaviour of Curved Panels 

2.1 Overview of Shallow Shell Theory 

A shell can be defined as a three-dimensional structure, confined by two parallel 

surfaces, where the distance between these two parallel surfaces is small compared to 

the other dimensions of the structure [74]. Based on Vlasov’s definition, a shallow shell 

is a thin-walled structure where the thickness is small compared with the other 

dimensions, and the radii of curvature are larger than the other dimensions of the shells 

[75]. 

From a structural point of view, shells tend to have some advantageous properties 

compared to flat plates. Their bending stiffness makes them considerably stiffer than 

plates and more resistant to deformation, thus allowing manufacturers to produce stiffer 

and stronger structures for a given weight. Furthermore, their high resistance to 

compression provides a more stable structure. For these reasons, shells and curved 

panels are widely used in the aerospace and aeronautic industries and their application 

has become increasingly popular in the automotive and civil engineering fields [74] 

[76]. 

Based on their curvature, shells can be categorised into singly-curved (cylindrical and 

conical shells) or doubly-curved (spherical, paraboloidal and other shells of revolution). 

A large amount of literature can be found on the vibration of curved shells. The free 

vibration of shells was thoroughly reviewed by Leissa in a NASA monograph published 

in 1973, where over 1000 references have been cited to cover the research and the 

various modelling techniques conducted on the topic up to the 1970s [77]. An extensive 

review of the recent research and advances in modelling techniques for the vibration of 

homogeneous shells has been presented by Qatu in [76], which covers the work done 

between 1989 and 2000. Finally, the case of stiffened shallows shells have been 

extensively investigated by Langley, for the application to aircraft panels [78] [79] [80] 

[81]. 

The analysis of the dynamic behaviour and vibration of a structure can be studied 

through either analytical or numerical modelling. The analytical approaches are based 
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on mathematical models describing the motion of the structure under specific 

constraints and boundary conditions. This involves the derivation of the differential 

equations of motion or energy equations. As it is not always possible to obtain an exact 

solution, approximate solutions can be estimated from available theories such as 

Rayleigh-Ritz, Galerkin and Timoshenko for example. In numerical approaches, finite 

element methods are used to approximate the dynamic behaviour at discrete points on 

the structure. A discretised representation of the structure of interest is thus obtained and 

the equations of motion are derived for each point.  

The deformation of a shell is investigated in a similar manner to that of a plate: the shell 

geometry and displacements are described at its mid-surface. However, unlike plates, 

the in-plane components of motion for shells are coupled with the transverse 

components of motion, which means that the shear forces and bending and twisting 

moments must be combined with membrane forces. These coupling interactions 

between the transverse and in-plane motions introduce difficulties in the accurate 

mathematical modelling of the structure, as the resulting differential equations of 

motion have an order of 8 – instead of having an order of 4 in the case of plates – and 

are expressed in terms of three dependant variables in the x, y and z directions. Another 

problem arises from the accuracy of the modelled boundary conditions and the selection 

of trial functions that can satisfy the equations of motion [77] [82]. 

Approximate thin shell theories that can be applied to simplified cases have been 

developed in order to reduce the order of the equations from 8 to 4. In general, shell 

theories have been categorised into: (1) membrane theory, (2) bending theory, (3) shear 

deformation and rotary inertia theory. The latter category also includes the contribution 

of bending and membrane stresses and displacements. While using any of these 

theories, it is important to consider the limit of validity of each, in order to choose the 

appropriate one for the structure of interest, without inducing errors in the displacement 

and stress estimations [83]. 

Among the three categories listed above, Rayleigh’s membrane theory, Love’s 

extension and bending theory, Flügge’s theory, Arnold and Warburton’s theory and 

Kennard’s theory can be cited [83]. In his approximations, Rayleigh uses the 

expressions for kinetic and potential energy. However, only the contribution of 

extension is taken into account in the calculation of potential energy and bending has 
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been neglected. In Love and Flügge’s theories, calculations are directly performed on 

the equations of motion rather than the kinetic and potential energy equations. Both 

bending and extension are considered in the approximation. Normal stress is also 

initially taken into account but neglected in the approximations. Kennard’s work is also 

based on deriving the equations of motion but ignoring the higher order terms of 

stresses. Arnold and Warburton follow the Rayleigh-Ritz method and the energy 

equations in their work. The Lagrange equation is then used for the estimation of the 

natural frequencies of the system. Despite eliminating the contribution of in-plane 

components of inertia and only calculating the kinetic energy for transverse 

displacement, there is a general agreement between their analytical and experimental 

work [75] [83]. 

Because of their advantageous dynamic properties, and their use in the maritime, 

aircraft and automotive industries, an understanding of their structural behaviour is 

necessary in the implementation of active vibration control systems, which are of 

current interest in these industries. 

 

2.2 Wave Propagation and Transmission in Curved 

Structures 

In order to gain a better understanding of the dynamic behaviour of curved shells, it is 

important to study the mechanisms of structural excitation and wave propagation. Wave 

propagation through a structure can be transverse or longitudinal. Transverse, bending 

or flexural waves cause the particles in the structure to move normal to the wave 

direction, while longitudinal or extensional or in-plane waves excite the particles along 

the direction of motion. This section provides an overview of wave propagation and 

motion in curved structures, first for thin beams, then for thin shells with curvature in 

one or two dimensions. 

2.2.1 Wave Propagation in Thin Straight Beams 

One of the earliest studies on the dynamic behaviour and mechanism of wave 

propagation in curved structures was performed by Lamb in 1888 and considered the 
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analysis of vibrations of lightly-curved beams through the derivation of the equation of 

motion for a ring segment with free-free boundary conditions [84]. In 1928, Den Hartog 

used the Rayleigh-Ritz approach to calculate the natural frequencies of the first two 

modes of circular arcs with fixed and hinged boundary conditions. Other theoretical 

studies of curved beams such as those of Archer, Lang, Morley, Den Hartog and 

Volterra followed extending the results to more general cases with higher curvatures 

and non-circular arcs [85]. An extensive review of the work conducted on curved beams 

and arches has been performed by Leissa and Chidamparam [86]. 

The independent propagation of longitudinal and flexural waves in flat, uncurved beams 

is briefly reviewed before the complex case for curved beams is outlined, mostly based 

on the materials found in [17] [26].  

The longitudinal wave equation of free motion for an element of a thin, straight, 

uncurved beam can be expressed as 

2 2

2 2
0

u u
E

x t


 
 

 
, 

(2.1) 

where u is the component of motion in the axial x-direction, E is the Young’s modulus 

of elasticity and  is the density of the material. The longitudinal wavenumber Lk  is 

then obtained as 

L

L

k
c


 , 

(2.2) 

where the phase speed Lc  is L
Ec


 . It can be seen from the equation for Lc  that it 

is not frequency dependant, which means that longitudinal waves are non-dispersive. 

The general solution to the differential Equation (2.1) can be written in terms of positive 

and negative travelling waves with complex amplitudes, A and B as  

( ) ( )
( , ) L Lj t k x j t k x

u x t Ae Be
  

  , 
(2.3) 

where  is the angular frequency in rad
s

 and 2 f  , where f  is the frequency in 

hertz. 
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The equation of motion for bending waves in a thin straight beam is uncoupled from the 

longitudinal motion and can be expressed as 

4 2

4 2
( , )

w w
EI A p x t

x t


 
 

 
, 

(2.4) 

where ( , )p x t  is the external load acting on the beam and distributed over its length, w  

is its out-of-plane displacement, 
3

12
bhI   is the second moment of inertia of the cross-

section of a rectangular beam of width b and height h, and A is the cross-sectional area 

of the beam. Equation (2.4) is also referred to as the Euler-Bernoulli thin beam 

equation. The flexural wavenumber and phase speed for a thin beam can be obtained 

from the following equations 
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(2.5) 
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 . 

(2.6) 

In the absence of damping, the flexural wavenumber calculated in Equation (2.5) is real 

positive. Because of the frequency-dependence of the phase speed Fc , bending waves 

are dispersive. The general solution for the fourth order equation of motion of Equation 

(2.4) is: 

( ) ( ) ( ) ( )
( , ) F F F Fj t k x j t k x j t k x j t k x

n nw x t Ae Be A e B e
      

     (2.7) 

The two last terms in the above equation are the evanescent or near-field solutions that 

decay in the direction of motion – increasing x for positive travelling waves and 

decreasing x for negative travelling waves. The relationship between wavenumber and 

angular frequency, and between phase speed and frequency for longitudinal and bending 

waves are shown in the graphs of Figure 2.1. 
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Figure 2.1 - Wavenumber k plotted against circular frequency for longitudinal and bending waves 

(left), Phase speed c plotted over frequency for longitudinal and bending waves (right). 

While using the Euler-Bernoulli beam theory, it is assumed that the cross-sectional 

plane section perpendicular to the longitudinal axis of the beam is rigid, i.e. it remains 

plane and perpendicular to the axis of the beam. The deformation is considered to be 

purely due to bending and as a result, the transverse normal stress is neglected. While 

this assumption can be used for the case of thin beams, it cannot accurately represent the 

structural excitation for thick beams, composite beams or shells where the interactions 

between bending and shear deformations need to be taken into account. For an Euler-

Bernoulli beam in pure bending, the natural frequencies can be estimated from Equation 

(2.4), when it is subjected to free vibration, ( , ) 0p x t  , leading to the general equation 

2

,n F n

EI
k

A



 , 

(2.8) 

where 
,F nk  corresponds to the bending wavenumber of the n

th
 natural frequency and 

varies depending on the boundary conditions. The natural frequencies obtained from 

Equation (2.8) tend to become inaccurate for higher order modes. Consequently, the 

Euler-Bernoulli beam theory should be more specifically applied to thin beams in which 

the thickness is much smaller than wavelength. For more general cases, Timoshenko’ 

beam theory or Rayleigh-Ritz approach can be used instead of Euler-Bernoulli, because 

the contribution of shear distortion and rotary inertia of the cross-section are included in 

the derivations and the distribution of shear stress on the cross section of the beam is no 

Lk

Fk

Lc

Fc

Longitudinal
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longer considered even. Kinetic and strain energy equations are used for calculating the 

natural frequencies with the Rayleigh-Ritz approach [87]. 

2.2.2 Wave Propagation in Thin Curved Beams 

When a curved beam is considered, because of the coupling between the transverse and 

in-plane components of motion, Equations (2.1) and (2.3) are no longer sufficient for an 

accurate representation of the deflection of the structure. Based on the choice of theory 

and assumptions made for approximating the characteristics of the surface, there are 

different ways of expressing the equations of motion for a curved beam. However, the 

common starting point in all methods is the characterisation of a curved beam at its mid-

surface, in terms of polar coordinates R and  , where R is the radius of curvature of the 

beam for a given angle  . A general diagram of a curved beam and the defined 

parameters are shown in Figure 2.2. 

 

Figure 2.2 – Diagram of the cross section of a curved beam [88]. 

The strain and curvature at the mid-surface can be formulated respectively as [88] 

0
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(2.10) 

where u and w are the tangential and radial components of displacement. Their direction 

has been indicated in Figure 2.2.  
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The equations of motion for a curved beam of uniform curvature are generally obtained 

by calculating the sum of forces in the radial and tangential directions and the bending 

moments for an element of the beam of thickness h and mid-surface length Rd . The 

bending moment M and tensile force N are calculated from the integration of axial stress 

 over the beam thickness  

3
2

2 12

h

h

Ebh
M b z dz 


   

(2.11) 
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(2.12) 

where b is the width of the beam.  

The equations of motion have been derived by Lee et al in [89] [90] at the mid-surface 

of a thin uniform curved beam, based on Flügge’s strain-displacement theory, as  
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(2.13b) 

where s is the circumferential coordinate at the mid-surface and ds Rd . The 

contributions of rotary inertia, shear deformation and damping are neglected in the 

above equations. The diagram in Figure 2.3 shows the cross section of the beam and the 

direction of the components of motion. The bending moment M , shear force Q  and the 

tensile force N have been indicated in Figure 2.3.   refers to the rotation of the beam 

cross-section and is given by 
u w

R s



  


. 
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Figure 2.3 - Diagram of a curved beam with the components of motion and their direction indicated 

[89] [90]. 

The harmonic wave solutions u and w which must satisfy the equations of motion 

defined in (2.13a) and (2.13b) are 

( )( , ) ,j t ks

ww s t C e    (2.14a) 

( )( , ) ,j t ks

uu s t C e    (2.14b) 

where wC  and uC  are arbitrary constants for the radial and tangential wave amplitudes 

respectively, k  is the wavenumber and  is the frequency [90]. The substitution of 

Equations (2.14a-b) into the equations of motion defined in Equations (2.13a-b) and 

further simplifications lead to  
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(2.15) 

Using the longitudinal and flexural wavenumbers defined for a straight beam in 

Equations (2.2) and (2.5), the above equation can be further modified to formulate the 

dispersion equation in terms of Lk , Fk  and curvature  , such that [90] 
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 where 
1

R
  . The 6

th
 order polynomial of Equation (2.15) has 6 roots for k  which 

corresponds to 3 waves travelling in the positive direction and 3 travelling in the 

negative direction. Depending on frequency and curvature, these roots can be organised 

into four categories: (1) all six roots real, (2) two real and four complex roots, (3) two 

real and four imaginary roots, and (4) four real and two imaginary roots [85]. For very 

small values of  , the above equation reduces to the dispersion equation for a straight 

beam, expressed in terms of longitudinal and flexural wavenumber, as  

  4 4 2 2 0F Lk k k k    (2.17) 

The six wavenumber solutions to the above equation have been defined as the “straight 

beam limit” in [90]. Out of these six solutions, 4 are the asymptotic limits to bending 

wavenumbers and 2 are the asymptotic limits to the longitudinal wavenumbers.  

When the wavenumber is set to 0, the dispersion equation in Equation (2.16) becomes a 

function of the curvature   

4 2 2 4 2 4 0.L F L Fk k k k     (2.18) 

Substituting for 
1

R
  , and Lk  and Fk  from Equations (2.2) and (2.5) in the above 

equation, the equation for the cut-off frequency in curved beams is obtained as  
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where the term 
2

I

AR
 is due to the use of Flügge’s theory. The above equation reduces 

to L
cut off

c

R
    , if the derivation of the equations of motion is done following Love’s 

theory [85] [26] [90]. When displacement is purely radial, the wavelength is equal to the 

circumference and the beam is known to resonate at the ring frequency which is

r cut off   .  
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2.3 Vibration of Thin Cylinders 

The use of singly-curved structures such as cylindrical shells is common in aircraft and 

naval industries, for example, in aircraft fuselages, submarine hulls, rockets or other 

load bearing structures. Figure 2.4 displays the diagram of a closed circular cylindrical 

shell where the parameters and direction of components of motion are indicated.  

 

Figure 2.4 – Cylindrical shell with parameters and directions of motion indicated [82]. 

A large number of theories can be found for describing the equations of motion for thin 

cylindrical shells and estimating the natural frequencies through different approximation 

methods, among which Warburton, Donnell-Mushtari and Vlasov’s approaches can be 

cited. Warburton’s work is based on deriving the equations of motion based on Flügge’s 

theory, in which rotary inertia and shear deformation are neglected, and estimating the 

natural frequencies using the Rayleigh-Ritz approximation for clamped and free end 

boundary conditions [91]. The Donnell-Mushtari and Vlasov’s equations of motion, 

calculated in-vacuo for a thin cylindrical shell, are one of the simplest and most widely 

used [26] [92]. These are given by  
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(2.20a) 

2 2 2

2 2 2 2 2

(1 ) (1 ) 1 1
0

2 2 L

u u w

R x x R R c

   

  

     
    

    
 

(2.20b) 
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(2.20c) 
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where the effects of transverse shearing-stress in the circumferential direction are 

assumed to be negligible. The term   in the above equations is the stiffness factor 

which is defined as
2

2

212

h

R
  . The term ap  in Equation (2.20c) is the external force or 

distributed load expressed in terms of pressure.  

The solution to this set of equations is typically expressed, for example in [92], in terms 

of the non-dimensional frequency term 
L

R

c


  , where the normalising frequency Lc

R
 

is known as the ring frequency. This is the frequency at which the wavelength of the 

longitudinal waves travelling around the shell is equal to its circumference ( 2 R  ), 

so that the motion is radial and the shell resonates as a ring.  

The presence of curvature in the structure increases the speed of bending waves. 

However, the level of increase in wave speed with curvature depends on whether the 

modal frequency of the shell is above or below the ring frequency. For modes of 

vibration below the ring frequency, the rate of increase in wave speed is much steeper. 

Above the ring frequency, the shell is predominantly in bending and thus, behaves in a 

similar way to a flat plate, and the increase in wave speed with curvature is much lower 

[26] [93].  

 

2.4 Vibration of Doubly-Curved Shells 

In a similar manner to curved beams and cylindrical shells, the displacement equation 

for a doubly-curved shallow shell is generally formulated at the mid-surface. However, 

due to the presence of two radii of curvature this equation must be expressed as a 

quadratic surface given by [82] 

2 2 2 21

2 2 2x y x xy y

x y x xy y
z

R R R R R

 
      

 

. 
(2.21) 
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For a cylindrical shell, where curvature is only in one direction, the above equation 

further simplifies to a more specific case where xR R and
y xyR R  , such that, 

2

2

x
z

R
 . 

As illustrated in Figure 2.5, xR and 
yR are the radii of curvature along the x and y 

directions and 
xyR  refers to the twist in the surface. As stated in [82], there are different 

ways of measuring the shallowness of a curved shell. The parameter used in this thesis 

will be the rise-to-thickness ratio cz

h
, where cz  is the rise at the centre of the shell. 

Figure 2.5 – Diagram of a curved shallow shell with a rectangular base plane projection (left) [82] 

and shell element defined at the mid-surface for the calculations of the equations of motion (right) 

[94]. The direction of the components of displacement u, v and w has been indicated in the diagram. 

A general equation of motion for shallow shells has been derived in [82], in which a 

small element is considered on the surface of the shell as shown in Figure 2.5. In the 

first stage, the sum of the forces in the z-direction and the sum of the moments about the 

x and y axes were calculated. It was assumed that the Kirchhoff hypothesis for thin 

plates was applicable, such that the component of strain due to bending which is normal 

to the mid-surface remained normal and unstretched, and the thickness of the shell 

remained unchanged during deformation. The bending stresses were integrated over the 

shell thickness and the combination of the above steps led to  
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(2.22) 

where D, is the bending stiffness of the shell calculated from 
3

212(1 )

Eh
D





where   is 

the Poisson ratio, x xT h  and 
y yT h are the normal stress resultants, and 

xy xyT h  

is the shear stress resultant at the mid-surface and these are caused by the deformations 

of the structure. x , 
y and 

xy  are defined in terms of the mid-surface normal strains 

x , 
y and shear strain 

xy as 

2
( ),

(1 )
x x y

E
  
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(2.23) 
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(2.24) 
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(2.25) 

where the strains in x and y directions in the above equations are 
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x

u w
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
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(2.27) 
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(2.28) 

In the above equations, u,  and w are the components of displacement in the x, y and z 

directions. u and  are the in-plane, and w is the transverse component of displacement.  

The initial models for doubly-curved shallow shells were proposed by Love (1944), 

Reissner (1955) and Vlasov (1964), who excluded the contribution of in-plane inertia in 

their derivations [75] [94] [95]. In Vlasov’s analysis, it was assumed that if the 
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thickness of the shell was less than 5% of the edge dimensions, the effect of shear 

deformation and in-plane motion could be neglected [75] [94]. The different theories for 

thin elastic shells and their related equations of motion have been reviewed by Leissa in 

his NASA monograph [77] and have been derived in [94] [82]. A comprehensive study 

of shallow shells has been conducted by Liew et al. in which the influence of transverse 

shear and inertia have been investigated for thin, moderately thin and thick shallow 

shells [96]. 

In order for a doubly-curved shell similar to the one illustrated in Figure 2.5 to fall 

under the shallow shell category, the maximum rise maxcz h  and the shortest length l  of 

the structure must satisfy max
5

l
h  . Due to the small rise, the curved length and width of 

the shell can be approximated by their corresponding lengths on the base plane 

projection [75]. However, for cases where the above condition is not met ( max
5

l
h  ), 

this approximation no longer holds and the difference between the curved length and the 

projected base length must be taken into consideration. The components of 

displacement in the x, y and z direction, u,   and w, have been indicated in the diagram 

of Figure 2.5. The component of displacement w is normal to the shell surface.  

The general equation of motion formulated in Equation (2.23) can be further reduced 

and adapted to doubly-curved shallow shells. In the analytical model derived by Leissa 

in [94] for a doubly-curved shallow shell, supported by shear diaphragms along all 4 

edges which are assumed to be perpendicular to the surface, these equations are 

simplified by neglecting in-plane components of displacement u and v for twisting and 

changes in curvature 

2 2 2 2 2
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(2.29c) 

The use of shear diaphragm boundary conditions, which are equivalent to simple 

supports, allows the assumption of in-plane rigidity along the edges and the neglecting 

of the bending resistance. Figure 2.6 shows the diagram of the shell with shear 

diaphragm supports along 2 edges. For a shallow shell with a rectangular base plane 

projection of dimensions 
x yl l , these boundary conditions are defined as 

0x xw N M    ,            0, .xx x l   (2.30a) 

0y yw u N M    ,           0, .yy y l    (2.30b) 

These boundary conditions can be satisfied by using the following trial functions for u, 

 and w (for 1,2,...m  and 1,2,...n  ): 
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(2.31b) 
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(2.31c) 

By substituting the above u,   and w into the equations of motion, and solving the 

resulting eigenvalue problem, the natural frequencies of the shallow shell were 

estimated in [94] over various levels of curvature. The aim of the study was not only to 

study the effect of curvature on the natural frequencies but also demonstrate the 

resulting increase in stiffness.  
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Figure 2.6 – Side-view diagram of a doubly-curved shallow shell showing curvature in the x-

direction and shear diaphragm boundary conditions [82].  

The remaining part of this chapter will concentrate on the estimation of the natural 

frequencies of doubly-curved shallow shells through the derivation of analytical models, 

in a similar manner to the theory discussed in [75] [82] [94]. These analytical models 

will be used to investigate the effect of curvature change on the mode shapes and 

natural frequencies whilst taking into account the effect of in-plane inertia, for different 

boundary conditions. The results of this analytical study will provide a basis for the 

simulations and experiments discussed in the later chapters of this thesis. 

 

2.5 Estimation of the Natural Frequencies of Doubly-

Curved Shells  

The analytical models and general formulations for the natural frequencies of a doubly-

curved shell derived for this thesis were initially obtained based on Warburton’s theory, 

which was then modified using methods based on those of Leissa. While it can be 

argued that more complex theories and more recent models are available for 

determining the natural frequencies of doubly-curved shallow shells, Leissa’s approach 

remains amongst one of the most cited and widely used to date and, as it will be 

demonstrated in the later chapters of this thesis, provides accurate results. 
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2.5.1 Analytical Model Based on Warburton’s Approach 

The natural frequencies of a shallow shell similar to the one displayed in Figure 2.7 with 

dimensions of 
x yl l h  , were derived based on the Rayleigh-Ritz method by 

Warburton in [75], who ignored the effect of in-plane inertia. The shallow shell was 

assumed to be subjected to shear diaphragm boundary conditions along all four edges 

and the contribution of the in-plane inertia was neglected.  

 

Figure 2.7 – Diagram of a doubly-curved shallow shell with the direction of components of motion 

indicated [75]. 

The assumed mode shapes for these boundary conditions, as defined in [75], are 

   ( )cos sinx yu U t x y   (2.32a) 

   ( )sin cosx yV t x y    (2.32b) 

   ( )sin sin ,x yw W t x y   (2.32c) 

 where the wavenumbers x and 
y  are 

x

x

m

l


   and 

y

y

n

l


   respectively. The 

equation for the transverse component of displacement w is based on beam modal 

functions while the in-plane components of displacement u and   are based on 

harmonic functions. According to Warburton’s theory, the natural frequency of mode 

(m,n) can be generally expressed as 

u


w

x

yz

x

y

z
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(2.33) 

For the more specific case of a shallow shell with a square base plane projection where 

x yl l l  and 
x yR R R  , the above equation can be further simplified to: 
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(2.34) 

The above equation can be further manipulated in order to reflect the relation between 

the natural frequencies of a curved square shell and its equivalent flat shape. That is, 

since the natural frequencies of an equivalent flat plate are given by 
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(2.35) 

Equation (2.36) can be written in terms of 
flatmn  as  
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(2.36) 

The relationship between the radius of curvature and the length of the panel, as shown 

in the diagram in Figure 2.8, can be expressed as 
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Figure 2.8 – Geometric representation of a side of a doubly-curved shell 

For cases where the maximum rise in height at the centre point of the panel cz  is less 

than 5% of the length ( 0.05cz l ), Equation (2.39) can be reduced to: 
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2
2 8

c
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l l
Rz R
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(2.38) 

 The term 2

cz  can be neglected from Equation (2.37) as it is much smaller than 

2

2

l 
 
 

. 

Using the above approximation for larger values of cz will reduce the accuracy of the 

calculations. 

Finally, the substitution of Equation (2.38) into Equation (2.36) and further 

simplification leads to the following relationship between the natural frequencies of a 

doubly-curved panel with a square base-plane projection and the natural frequencies of 

a square flat panel of the same dimensions 
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(2.39) 

A similar approach can be used for the formulation of the natural frequencies of a 

doubly-curved rectangular shell. In this case, as the radii of curvature are different along 

the length and width of the panel, the natural frequencies depend on both xl  and 
yl  and 

are given by 
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(2.40) 

As the Warburton theory on shallow shells vibration derived in this section only 

estimates the natural frequencies due to the transverse component of motion, it is 

necessary to verify the contribution of in-plane modes on the vibrational behaviour of 

the structure. This can be achieved through the inclusion of the in-plane inertia in the 

derivations. The next section will provide more general analytical models for doubly-

curved shells subjected to two different boundary conditions and include the 

contribution of in-plane inertia. The basis for both is a modified version of Warburton’s 

theory adapted to more general cases of rectangular shallow shells.  

2.5.2 Analytical Model of Doubly-Curved Shallow Shell 

Including the Effect of In-Plane Inertia 

In order to derive an analytical model for a doubly-curved shell supported along all 4 

edges with shear diaphragms, the mid-surface strains can be defined using Equations 

(2.26)-(2.28). The changes in curvature are written as:   
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(2.41) 

As the Rayleigh-Ritz approximation is used here for the estimation of the natural 

frequencies, the equations for the kinetic energy and the strain energy for a doubly-

curved shallow shell need to be defined. The kinetic energy is calculated by integrating 

over the length and the width of the shell, the sum of the squared velocities in the x, y 

and z directions multiplied by the mass per unit area, which gives [75]  
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(2.42) 

The overall strain energy defined at the mid-surface of the shell in terms of the 

stretching and bending strain components, sU  and bU , is given by [75] [82] 
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where D is the bending stiffness as defined in Section 2.4. The total strain energy can be 

written by combining Equations (2.44) and (2.45)  
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(2.46) 

Substituting Equations (2.26)-(2.28) for strain and Equation (2.41) for curvature change 

into Equation (2.46) leads to 
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(2.47) 

The analytical model for a doubly-curved shallow shell will be derived in the next two 

subsections in order to estimate the natural frequencies of the shell for two different 

boundary conditions: (1) shear diaphragm supports along 4 edges and (2) clamped along 

4 edges.  
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Shear Diaphragm boundary conditions: 

The mode shapes defined in Equations (2.32) used for the components of motion u,   

and w were substituted into the kinetic and strain energy equations: 
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(2.49) 

Assuming harmonic motion in all three directions ( 2U U  , 2V V  and

2W W  ), and applying the Lagrange equation, the general equations of motion for 

u,   and w are found as follow:  
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(2.51) 

The substitution of Equations (2.48) and (2.49) into (2.51) leads to  
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(2.52c) 

Finally, the natural frequencies of a doubly-curved shallow shell can be expressed as an 

Eigenvalue problem which can be solved for different levels of curvature,  
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where the elements of the Eigenvalue matrix are 

2 2

11 2

1

2

(1 )

x y

v
E

L
v

 



   
   
  


 

 

(2.54a) 

  
12 2

1

2 (1 )

x yE v
L

v

 







 

 

(2.54b) 

13 2

1

(1 )

x

x y

v
E

R R
L

v





 
   

 


 

 

(2.54c) 



 

 61  

  
21 2

1

2 (1 )

x yE v
L

v

 







 

(2.54d) 

2 2

22 2

1

2

(1 )

x y

v
E

L
v

 



   
  

  


 

 

(2.54e) 

23 2

1

(1 )

y

x y

v
E

R R
L

v





 
  

 


 

 

(2.54f) 

31 2

1

(1 )

x

x y

v
E

R R
L

v





 
  

 


 

 

(2.54g) 

32 2

1

(1 )

y

x y

v
E

R R
L

v





 
  

 


 

 

(2.54h) 

 
22

2
2

2 2

33 2

1 1 1
2

12

(1 )

x y

x y x y

h
E v

R R R R
L

v

 



     
                    


 

 

(2.54i) 

 

Clamped Edges Boundary Conditions (CCCC): 

In order to derive an analytical model for a shallow shell clamped along all four edges, 

the equations for the kinetic energy and the strain energy were derived at the shell’s 

mid-surface using the same steps as for the shell subjected to shear diaphragm boundary 

conditions. The characteristic beam functions for a clamped edge were used for the 

boundary conditions in the transverse direction and can be found in Appendix A. Based 

on the difference between the odd and even modal indices, four different equations were 

used for describing the transverse boundary conditions as follows:  
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For the in-plane vibration, cross sliding-cross sliding boundary conditions taken from 

[97] were used in the model:  



 

 63  

   ( )cos sinx yu U t x y   (2.56a) 

   ( )sin cos ,x yV t x y    (2.56b) 

where 
x

x

m

l


    and 

y

y

n

l


  . 

The Rayleigh-Ritz method was used with the general expressions for kinetic and strain 

energy stated in Equations (2.48) and (2.49). Assuming harmonic motion in all three 

directions, the Lagrange equation was then applied using Equations (2.50) and (2.51) in 

order to obtain the equations of motion for u,   and w. Finally, the general formula for 

the rectangular panel’s natural frequencies can be expressed as the Eigenvalue problem 

stated in Equation (2.53). 

The expressions for the matrix elements and their derivations can be found in Appendix 

B. This eigenvalue problem can be solved for different levels of curvature.  

2.5.3 Effects of Curvature on the Modal Frequencies 

This section discusses the effect of increasing curvature on the modes of a panel. For 

this purpose, an aluminium panel, with assumed properties listed in Table 2.1, was used 

in the estimation of the natural frequencies. These dimensions are based on an existing 

flat panel which has been used for simulations and experimental work on active 

vibration control in [2] [98] and will therefore allow later comparison with measured 

data.  
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Table 2.1 – Geometry and physical properties of the aluminium panel. 

Parameter Value Units 

 

Dimensions 

278xl   

247yl   

mm  

mm  

Thickness 1h   mm  

Density 2700   3kgm
 

Young’s Modulus 107 10E    2Nm  

Poisson Ratio 0.33    

Modal Damping Ratio 0.01n    

 

Figure 2.9 calculated natural frequencies of the panel modes, plotted as a function of 

rise-to-thickness ratio cz

h
, which is used here as a measure of curvature. The panel was 

assumed to be supported by shear diaphragms along its four edges. Figure 2.10 shows 

the same results when the panel is clamped along all four edges. 

The overall trend of the top graph in Figure 2.9 indicates that with the increase in the 

curvature of the structure, the natural frequencies of the modes increase. However, this 

increase is not the same for all the modes. The natural frequencies of the lower order 

modes show a more pronounced increase, while the higher order modes are less affected 

by the curvature of the panel. For example, the natural frequency of the first mode 

increases from 71 Hz when the panel is flat to 940 Hz when the deflection at the centre 

of the panel is 10cz mm , whereas the natural frequency of the last mode shown in this 

figure only increases from 3.9 kHz to 4.1 kHz. This is caused by the more significant 

effect of stiffening due to the curvature on the lower order modes. This difference in the 

effect of curvature on different modes leads to the creation of a cluster of modes near 

the highest level of curvature shown in the graph. The comparison of the left-hand side 

of the graph where the panel is flat with the right-hand side where 10cz mm , shows 

that the spacing between the modes is significantly reduced at all frequencies (the 

frequency range they occupy is reduced by 700 Hz). The ratio of the highest to lowest 
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natural frequency for the 6 lower order modes in the lower graph of Figure 2.9 is 

reduced from about 4, with no curvature, to about 1.1 when 10cz

h
 . Similar results can 

be seen in the top graph of Figure 2.10 for the clamped panel model. 

 

Figure 2.9 – Behaviour of the natural frequencies of the modes of a panel supported by shear 

diaphragms boundary conditions for increasing curvature, which is expressed here in terms of rise-

to-thickness ratio: overall behaviour for 77 modes (top), behaviour of the first 6 modes. Also plotted 

in black dotted lines are the ring frequencies in the two planes, frx and fry from Equation (2.58). 
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Figure 2.10 – Behaviour of the natural frequencies of the modes of a clamped panel for increasing 

curvature, which is expressed here in terms of rise-to-thickness ratio: overall behaviour for 77 

modes (top), behaviour of the first 6 modes. Also plotted in black dotted lines are the ring 

frequencies in the two planes, frx and fry from Equation (2.58) 

The effect of curvature increase and the increase in the modal density for shells have 

been investigated by [93] [99] [100] [101]. The equations for the natural frequencies 

and modal density of a simply-supported cylindrical shell have been provided by Heckl 

in [99]. The presence of curvature in the structure increases the speed of bending waves 

and the rate of increase varies depending on whether the structural modes are below or 

 

 



 

 67  

above the ring frequency [93]. For a doubly-curved shell, the ring frequency can be 

defined in terms of the radii of curvature in the x and y directions as 

,
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(2.57) 

Since R is inversely proportional to the out-of-plane deflection cz , the two ring 

frequencies are thus directly proportional to the curvature and can be written in terms of 

the rise-to-thickness ratio cz

h
 as  
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(2.58) 

The ring frequency occurs at the point where there is a transition in the modes from 

predominantly bending into longitudinal motion [93]. For low-order modes whose 

natural frequency is situated well below rf , the rate of increase in bending wave speed is 

steep, while for higher order modes, this rate gradually diminishes. For frequencies well 

above the ring frequency, the vibration behaviour of a curved shell is like the one of an 

equivalent flat plate and curvature does not affect the modes of vibration [17].  

For an aluminium panel with dimensions and properties listed in Table 2.1, when 

10cz

h
 , the ring frequencies occur at about 800 Hz and 1 kHz. Therefore, in Figure 2.9 

and Figure 2.10, this would explain the clustering of modes starting from 2cz

h
  

onwards, and the rapid increase in the natural frequencies of the modes initially below  

1 kHz in comparison to those above this frequency. 

A closer look at the lower order modes – the first six modes have been plotted in the 

lower graphs of Figure 2.9 and Figure 2.10 – also reveals several regions of intersection 

between the curves, for example at 2cz mm , 5cz mm and 7cz mm , which is 

caused by the difference in the curvature of the panel in the x and y direction due to its 

rectangular shape  x yR R . These intersection regions also mean that the natural 

frequency of 2 or 3 modes could be the same as the panel deflects. For example, in 
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Figure 2.10, the second and fourth modes which are Modes (2,1) and (2,2) respectively, 

occur at 1096 Hz and  1098 Hz, when the panel is deflected by 10 mm.  

 

2.6 Summary 

In this chapter, analytical models of doubly-curved shells with rectangular base 

projections were formulated. The geometry and displacement were described at the mid-

surface of the shell to show the coupled interactions between the transverse and in-plane 

components of motion. Warburton’s theory was initially used as a basis for the 

derivation of the analytical models and estimation of the natural frequencies. 

Subsequently, the contribution of in-plane inertia which was omitted in Warburton’s 

work, was included in the derivations. The natural frequencies were estimated for a 

doubly-curved shell supported by shear diaphragms on all sides and for a doubly-curved 

shell clamped along all four sides. The analysis of the mode shapes of the shell with 

increasing curvature showed an increase in the natural frequency of each mode. 

However, this increase was not uniform for all modes; the lower order modes showed a 

more pronounced increase, while the natural frequency of the higher order modes did 

not significantly change with curvature. As a result, at some of the curvature levels, 

regions of intersection between the modes could be observed, indicating that at those 

curvature levels, more than one mode could occur at a single frequency or very nearby. 

Furthermore, towards the highest level of curvature in the defined range, with the 

difference in the rate of increase for lower-order and higher order modes, modal 

clustering occurred. This is believed to be near the ring frequency of the shell.  

The differences between the predictions from Warburton’s analytical model and the 

analytical model with in-plane inertia will be further discussed in the next chapter.
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3. Finite Element Modelling 

The use of finite element modelling methods has become increasingly popular over the 

past decades due to the availability of different commercial software packages, such as 

Ansys, Comsol and Nastran. The finite element method allows engineers and 

researchers to simulate complex real-life engineering problems and systems. Finite 

element modelling (FEM) or finite element analysis (FEA) uses computational methods 

to approximate the solution to a mathematical problem with defined boundary 

conditions [102]. FEA is particularly attractive because it allows changes in the 

structure to be accurately modelled and solutions to partial differential equations to be 

more rapidly estimated than with analytical techniques. However, solutions obtained 

from FEA must be validated against experimental or analytical results before being used 

as a reference and should not be used as a black box, without independent support for 

the results. 

This chapter presents the numerical (FEM) models created for an isotropic aluminium 

panel of increasing curvature and the finite element analysis (FEA) performed to obtain 

the natural frequencies and mode shapes of the system. The results are then compared 

with those obtained from the elemental versions of the two analytical models derived in 

Chapter 2, in order to assess the importance of the contribution of in-plane components 

of motion and validate the finite element models. 

 

3.1 Panel Model and Elemental Resolution 

For the purpose of the study, the finite element model of a rectangular aluminium panel 

with the properties listed in Table 3.1 was created. These dimensions are based on an 

existing flat panel which has been used for simulations and experimental work on active 

vibration control in [2] and [98], and will therefore allow for comparison with measured 

data. It was assumed that the panel was arranged in the xy plane and that the elevation in 

the panel due to curvature increase was along the z-axis. The elevation in the centre of 

the panel and the resulting curvatures in the x and y directions were limited such that the 

structure could fall under Vlasov’s definition for a shallow shell, as noted in the 
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previous chapter. In other words, based on the length, width and thickness dimensions 

of the panel in Table 3.1, the elevation from the centre of the panel was varied from 0 to 

10 mm. The consideration of higher rises would lead to violation of the assumptions 

made for shallow shells in Chapter 2. 

It was assumed that the panel was subjected to harmonic excitation and the incident 

pressure field on the surface of the panel was modelled as excitation forces exerted at 

the centre of each element of the model. The panel was assumed to be excited in air, 

which is a medium which will only lightly load a 1-mm aluminium panel. 

Consequently, the effects of fluid loading on the structure were neglected [17].  

The maximum frequency of interest was defined to 4 kHz, in order to take into account 

the contribution of higher frequency residual modes of vibration. The rise cz  from the 

centre of the panel, ranging from 0 to 10 mm, was included in the model generation 

steps for the investigation of the effect of curvature increase on the behaviour of the 

system. 

 

Table 3.1 – Geometry and physical properties of the aluminium panel 

Parameter Value Units 

 

Dimensions 

278xl   

247yl   

mm  

mm  

Thickness 1h   mm  

Density 2700   3kgm
 

Young’s Modulus 107 10E    2Nm  

Poisson Ratio 0.33    

Modal Damping Ratio 0.01n    

 

The minimum number of elements required in an elemental model must provide a 

resolution of 4 elements per wavelength in order to avoid spatial aliasing. In a structural 

model, the bending wavelength is of importance, whereas in an acoustical model, the 



 

 71  

elemental resolution must be set based on the acoustic wavelength. If both acoustical 

and structural responses are to be obtained from the same model, then the shortest of the 

acoustical and bending wavelengths must be used for calculating the elemental 

resolution. Although this chapter only focuses on the structural behaviour of the panel, 

in order to remain consistent with the results presented in the following chapter, which 

considers both acoustical and structural responses, the minimum of either acoustic or 

bending wavelengths will be used to define the elemental resolution of the model.      

The estimation of the minimum number of elements in the finite element model and 

analytical elemental models starts with the calculation of the acoustic and bending 

wavelengths  0  and F  respectively, their corresponding wavenumbers, 0k  and Fk , 

and the bending phase speed Fc . The acoustic wavenumber and wavelength are given 

by [17] 
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where 0c  is the speed of sound in air. The bending wavenumber and wavelength are 

given by 
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The dispersion curves for the acoustic and bending waves for a thin aluminium panel, 

obtained from plotting the acoustic and bending wavenumbers calculated using the 

above formulae over frequency are shown in Figure 3.1 up to 20 kHz. The acoustic and 

bending phase speed can be obtained from the ratio of   to k in each case c
k

 
 

 
. The 

point of intersection between the two curves is the critical frequency or the lowest 

coincidence frequency criticalf , which was found to be 12 kHz for this case. 
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Figure 3.1 – Dispersive curves for acoustic and bending waves on a 1-mm aluminium panel. The 

critical frequency fc which is the point of intersection between the two curves has been indicated in 

the graph. 

Below the critical frequency, where the acoustic wavenumber is smaller than the 

bending wavenumber, the bending wave is slower than the acoustic wave (subsonic). 

For frequencies above the critical frequency, this relationship is reversed and the 

bending wave travels faster than the acoustic wave (supersonic). The acoustic curve 

increases at a uniform rate over frequency which is due to the fact that acoustic waves 

are longitudinal and non-dispersive, as explained in Chapter 2. 

In order to determine the number of elements xN  and 
yN  per lengths xl  and 

yl  of the 

panel, the shortest wavelength out of 0  and F  , calculated at 4 kHz, was divided by 

the minimum elemental resolution per wavelength, 4, which is acceptable for the 

calculation frequency range of up to 4 kHz defined for the model. In the frequency 

range below the critical frequency, the bending wavelength is shorter, therefore, xN  and 

yN  are obtained from Equation (3.3a). For frequencies above the critical frequency, the 

acoustic wavelength is shorter, and xN  and 
yN  are calculated from Equation (3.3b). 
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Based on the above formulae, the number of elements for each length was found to be 

16xN   and 15yN   , leading to 240eN   elements in total. The generated elemental 

grid for the aluminium panel can be seen in Figure 3.2. The centre of each element has 

been indicated. 

Since the natural frequencies of a curved panel are known to be greater than that for the 

corresponding flat panel, the minimum number of elements calculated above for a 

curved panel should exceed that ever required for a curved panel. 

 

Figure 3.2 – Representation of the modelled panel divided into a grid of equal-sized elements. 
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3.2 Finite element Modelling 

Finite element models (FEM) of the rectangular panel with properties and dimensions 

described in Section 3.1 were implemented in ANSYS with cz  ranging from 0 to 10 

mm. All panel models were assumed to be subjected to shear diaphragm boundary 

conditions in order to follow the same boundary conditions as used in the analytical 

models of Chapter 2. 

The surface of the panel was modelled using 3-dimensional shell elements. The 

SHELL63 elastic shell element with 6 DOFs at each node (translation and rotation 

along x, y and z) was used for creating the mesh over the surface of the panels. The 

reason for choosing this shell element was the fact that it takes into account both 

membrane and bending stresses and allows both transverse and in-plane components of 

motion to be studied. The equations of motion used in SHELL63 are based on the 

Kirchhoff-Love theory. It is important to note that the transverse component of shear 

stress is not taken into account in Love’s theory. As the modelled panel can be 

considered a thin shell, this simplification does not significantly affect the accuracy of 

the approximation. However, this could be a potential problem when dealing with thick 

shells or laminated shells because it can result in the underestimation of the deflection 

of the surface [103] [104]. For the latter case, a shell element such as SHELL281 could 

be chosen, in which the derivations are based on the 1-order shear-deformation theory, 

referred to as Reissner-Mindlin. The triangular element shape of SHELL63 was chosen 

over the rectangular one for meshing the surface, in an attempt to follow more 

accurately the gradient of the curved surface.  

In order to obtain an accurate geometry for a rectangular structure curved in two 

dimensions, the panel was modelled as a rectangular section on the surface of a torus 

where the radius of the tube cross-section is 
yr R  and the distance from the centre of 

the tube cross-section to the centre of the torus is 
x yR R R  . A diagram of a torus 

with the dimensions required for the shell models is shown in Figure 3.3. 
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Figure 3.3 – Diagram of a torus with the high-lighted section on which the FEM of the doubly-

curved panel is based (left), Representation of the dimensions of the torus used in the FEM. 

The mesh geometry was created in ANSYS in using a cylindrical coordinate system. 

Figure 3.4 shows the finite element model of the rectangular panel, supported by shear 

diaphragms, when the rise from the centre cz  is 4 mm. The relation between the radii of 

curvature xR  and yR  , and cz  has been given in Equation (2.37) of Chapter 2.  

 

Figure 3.4 – Finite element model of the doubly-curved rectangular panel when zc = 4 mm. 

In the analytical models derived in Chapter 2, the out-of-plane displacement was 

calculated at the centre of each element. In order to retrieve out-of-plane nodal 

displacements that would correspond to the same positions from ANSYS, the elemental 
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resolution had to be quadrupled such that nodes would be created for those exact points 

( 960eN  ). As the mode shapes derived in the analytical models are assumed to remain 

unaffected by the changes in curvature, the mode shapes obtained from the FEM of 

curved panels will be studied to assess the importance of this simplification in the 

analytical models.  

 

3.3 Modal Analysis 

This section will present the data analysis performed in order to compare and validate 

the results from numerical and analytical models of the doubly-curved panel. The first 

part of this section will explain the process of organising and sorting the data obtained 

from the FEMs through statistical methods. The second part will discuss the obtained 

results and compare the two approaches.  

3.3.1 Modal Assurance Criterion (MAC Analysis) 

One method of comparing the two models would be to directly compare the natural 

frequencies of the two models for different levels of curvature. Even though this method 

allows the detection of possible errors in the models and a first assessment of the degree 

of correlation between each mode, the model verification should not be solely based on 

this comparison, because it does not confirm the ordering of each plotted mode in 

ANSYS with respect to its equivalent mode in the analytical models. Furthermore, the 

above approach would only allow the detection of discrepancies at the modelling and 

material properties levels of the simulation and would not verify the presence of errors 

such as the occurrence of degenerate modes. 

The one-by-one comparison of mode orders can be performed by a method of analysis 

referred to as the ‘Modal Assurance Criterion’ (MAC). The MAC number is a scalar 

value that provides the degree of correlation between two mode shapes as [105] 
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(3.4) 

where indices A and X refer to numerical values from ANSYS and analytical values 

respectively, and 
, ( , )A j x y  and 

, ( , )X j x y  are the numerical and analytical mode shapes 

respectively.  

In practice the modal assurance criterion is calculated using a finite summation over the 

elemental points from the finite element analysis rather than an integral over all 

positions, such that 

 
  

2

, ,i jMAC A X 
j i

j j i i

H

X A

H H

X X A A

 

   
 

 

(3.5) 

where 
iA

 and
jX are the vectors of the numerical and analytical mode shapes 

respectively. As both analytical models described in the previous chapter followed the 

hypothesis that the mode shape was not affected by curvature, the MAC percentages 

were only calculated between the ANSYS FEM and Warburton’s modes. The results for 

four modelled panels of increasing curvature are shown in Figure 3.5.  

For the analytical model based on Warburton’s theory, the calculated mode shapes, 

which are those of a simply-supported flat panel, have been arranged in terms of 

ascending mode order, while in ANSYS, the mode shapes are sorted in terms of 

increasing natural frequencies. This organisation difference can be seen in the MAC 

percentage graphs in the form of location mismatch between some pairs of modes. For a 

flat or lightly-curved panel, all of the modes except 2 or 3 pairs are strongly correlated 

(90% and above) and lie on the regression line.  
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Figure 3.5 – MAC analysis between the analytical model based on Warburton’s approach (vertical 

axis) and numerical FEM model (horizontal axis) for no curvature zc = 0 mm (top left), light 

curvature zc = 2 mm (top right), medium curvature zc = 5 mm (bottom left) and strong curvature   

zc = 10 mm (bottom right). 

The calculation of the MAC percentage for mid to higher levels of curvature, 

corresponding to 5 10cmm z mm  , reveals more recurring differences in mode 

location, especially for low order modes. For example, for a rise of 5cz mm , the 

modal correlation still remains above 90%, but for the highest curvature level 

corresponding to 10cz mm , the modes are more scattered despite still being strongly 

correlated. Additionally, the 5
th

 and 7
th

 modes display correlations of both 60% and 

40% between the two models. The 5
th

 ANSYS FEM mode is weakly correlated with the 

5
th

 Warburton analytical mode (40% correlation), but is better correlated with the 7
th

 

Warburton analytical mode (60% correlation). The 7
th

 ANSYS FEM mode is better 
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correlated with the 5
th

 analytical mode, rather than with the 7
th

 analytical mode. The 

poorly correlated modes are caused by the occurrence of coupled modes in the FEM. 

These modes occur at a region of crossing between two closely-spaced modes, as shown 

in Figure 2.9 and Figure 2.10, and become more frequent with increasing curvature 

because of the occurrence of modal clusters, as explained in the previous chapter.  

3.3.2 Mode Shapes and Natural Frequency Comparisons 

over Increasing Curvature 

In the analytical approaches based on Warburton’s theory and derived in Chapter 2 with 

and without the contribution of in-plane motion, the mode shapes were assumed to 

remain unchanged because the levels of surface curvature for a shallow shell are 

relatively low in comparison to the length and the width of the structure. In ANSYS, the 

nodal displacements in longitudinal and transverse directions are calculated for all of the 

elements. In order to verify whether the assumption made in the analytical model 

derivation was correct, the analytical mode shapes were compared to the numerical 

mode shapes obtained for different levels of curvature. The contour plots for the first 9 

analytical modes are shown in Figure 3.6. 

The same mode shapes obtained from the finite element models have been plotted for 

light curvature (Figure 3.7), medium curvature (Figure 3.8) and strong curvature (Figure 

3.9). The numerical mode shapes from the FEM of the flat panel have not been shown 

as they are identical to the analytical mode shapes displayed in Figure 3.6. 
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Figure 3.6 – First 9 analytical mode shapes assumed in Warburton’s theory, in which their shapes 

is assumed to remained unchanged over increasing curvature. 

 

 

Figure 3.7 – Numerical mode shapes obtained from the FEM of a lightly-curved rectangular panel 

(corresponding to a rise from the centre zc = 2 mm). 
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Figure 3.8 – Numerical mode shapes obtained from the FEM of a doubly-curved panel with a 

medium level of curvature (corresponding to zc = 5 mm). 

 

Figure 3.9 – Numerical mode shapes obtained from the FEM of a strongly-curved panel 

(corresponding to zc = 10 mm). 

In the above figures, the effect of curvature increase on the mode shapes is not 

noticeable up to medium levels of curvature. However, the mode shapes of the strongly-

curved panel shown in Figure 3.9 show that Modes (3,1) and (3.2) include the 
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contribution of other modes that are very closely-spaced due to the mode clustering at 

high levels of curvature, as seen in Figure 2.11 of Chapter 2. Furthermore, an overall 

comparison between the mode shapes of Figure 3.6 and Figure 3.9 also reveals that the 

displacement amplitudes in the modes of the strongly-curved panel are noticeably 

smaller than in those of the flat panel. This is due to the stiffening effect also caused by 

curvature increase and modal clustering.  

The natural frequencies of the two analytical models and the FEM model were also 

plotted over increasing curvature, in order to observe the differences between the three 

models and especially assess the contribution of in-plane bending. Figure 3.10 displays 

the first 10 modes plotted over increasing rise-to-thickness ratio 0,1,...,10cz

h
 for the 

numerical model and the analytical model based on Warburton’s theory. Both graphs 

show a similar overall trend: with the gradual deflection of the panel, the natural 

frequency of each mode is significantly increased over cz

h
 and a cluster of modes can 

be seen near the highest curvature. 

 

Figure 3.10 – Behaviour of the first ten modes over increasing curvature: Analytical results based 

on Warburton’s approach (left) and numerical results from FEM (right). The first 4 modes are 

plotted in black and the rest in green in order to improve clarity. 

For lower order modes, the increase in natural frequency is more pronounced, while for 

higher order modes, the difference between the natural frequencies without curvature 

and with strong curvature is not as significant. For example, the last mode calculated in 

both analytical and finite element models (not displayed in the figure) has a natural 
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frequency of 3.7 kHz when the panel is flat, and a natural frequency of 3.9 kHz when 

the panel is strongly curved 10cz

h

 
 

 
.  

The mode shapes of both the analytical and the numerical models plotted in Figure 3.10 

also reveal that the curves for the natural frequencies of the higher order modes, such as 

modes (1,2) and (2,2), intersect with the lower order modes (1,1) and (2,1). This can be 

explained by the different bow in the structure in the x and y directions, such that

x yR R , as mentioned in the previous chapter. If the modelled panel were square, the 

natural frequencies of all the modes would have gradually increased in a consecutive 

order. However, the deflections at which these intersections occur are different between 

the numerical model and the analytical model based on Warburton’s theory in which the 

contribution of in-plane motion has been neglected. For example, in this analytical 

model, modes (1,1) and (2,1) cross each other near 5cz h  , when in the FEM results, 

the same intersection occurs at 6cz h  . There is also an additional intersection between 

modes (2,1) and (1,2) in the FEM results at 2cz h  , which does not occur in the same 

modes of the analytical Warburton model. In order to examine the differences between 

the two models more closely, the natural frequencies of the individual modes for both 

models were plotted together in the same graph. The (1,1) and (2,2) modes, i.e. modes 

for which m = n,  are presented in Figure 3.11, and the (1,2), (2,1), (1,3) and (3,1) 

modes, i.e. modes for which m n , are shown in Figure 3.12.
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Figure 3.11 – Modes (1,1) and (2,2) plotted over increasing curvature for the numerical ANSYS 

model (green curve), analytical model based on Warburton’s theory (blue curve) and analytical 

model with in-plane inertia contribution (red curve). 

The curves plotted in Figure 3.11 show that the changes in the natural frequencies for 

these two modes are almost identical over increasing cz

h
 for all three models. For 

higher order modes where m n , the numerical ANSYS model gives higher natural 

frequencies in the low cz

h
 region because of the way the boundary conditions are 

defined, which causes an increase in the stiffness of the structure.  

The same agreements between the three models cannot be seen in the graphs of Figure 

3.12. The natural frequencies of the FEM and the analytical model with in-plane inertia 

contribution are in very close agreement with each other. The natural frequencies of the 

analytical model based on Warburton’s theory only follow the two other curves for very 

low levels of curvature ( 1cz

h
 ). Also, based on the analytical results, it was initially 

expected that modes such as the (1,2) and the (2,1) modes, where m n , would be 

evolving in a similar manner over increasing curvature, with mode (1,2) starting at a 

slightly higher natural frequency in the absence of curvature and then gradually 

converging toward mode (2,1) for the maximum level of cz

h
. However, according to 

Figure 3.12, from the results of the FEM it can be seen that mode (1,2) ends up at a 

much lower natural frequency for 10cz

h
 , which explains why the two modes intersect 
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each other in the overall mode shape behaviour graph (presented in Figure 3.10). This 

difference is again caused by the rectangular shape of the surface, making the 

wavelength larger on the edges that are oriented in the x-axis direction. 

 

Figure 3.12 – Modes (1,2), (2,1), (1,3) and (3,1) plotted over increasing curvature for the numerical 

ANSYS model (green curve), analytical model based on Warburton’s theory (blue curve) and 

analytical model with in-plane inertia contribution (red curve). 

The comparison of Warburton’s analytical model results with those of the FEM reveals 

that the results of the modes where m n  are similar, while those for modes where 

m n  behave differently between the two models. The difference arises from the fact 

that the contribution of in-plane inertia is neglected in the analytical model based on 

Warburton’s theory. When the displacement of the surface is pre-dominantly due to the 

transverse component of motion, i.e. for modes where m n , such as the (1,1) and the 

(2,2) modes, the absence of the in-plane contributions does not affect the mode shape. 

Therefore, the results obtained from the FEM and Warburton’s analytical model are 
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similar. However, in modes where m n , such as (1,2), (2,1), (1,3) and (3,1) modes, 

the in-plane component of displacement has more influence on the behaviour of the 

structure, consequently, neglecting their contribution in the analytical model derivation 

leads to different results. 

3.4 Summary 

In this chapter, analytical and numerical finite element models of a homogeneous 

aluminium rectangular panel were created. The panel was assumed to be supported by 

shear diaphragms along all four edges. The mesh and FEM of the panel were generated 

in ANSYS for different levels of curvature corresponding to those defined for the 

analytical models, and modal analysis was performed over increasing curvature. The 

results from the FEMs were re-arranged and validated against the analytical models 

using the Modal Assurance Criterion (MAC). The results of the MAC analysis showed 

some differences between the numerical and analytical models in the appearance of the 

modes, because the analytical mode shapes were calculated and arranged in terms of 

increasing mode order, while the ANSYS numerical mode shapes were sorted in terms 

of increasing natural frequencies. Further comparisons of the results obtained from the 

MAC analysis indicated that while for flat and lightly-curved panels, the majority of the 

numerical and analytical modes were strongly correlated, for medium to high levels of 

curvature, the percentage correlation decreased for some of the higher-order modes and 

the modes were generally more scattered. This was caused by the modal clustering and 

coupling between modes in the numerical model.  

In the analytical models, the maximum level of curvature in the surface of the shell was 

assumed to be low enough in comparison to the other dimensions for the mode shapes 

to remain unchanged. In order to verify this assumption, the analytical and numerical 

mode shapes were compared. The effect of curvature increase on the mode shapes was 

noticeable for medium to high levels of curvature. The modal displacement amplitudes 

for strong curvature were noticeably smaller in the FEM mode shapes, as a result of the 

stiffening effect due to curvature increase and modal clustering. This could not be seen 

in the analytical mode shapes as they were assumed to remain unchanged for all levels 

of curvature. Therefore, in order to increase the accuracy of the analytical model, 
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especially at higher levels of curvature, it will be necessary to model the mode shapes 

such that these changes are accounted for.   

Finally, the natural frequencies of the numerical and analytical modes were compared 

with increasing curvature, in order to assess the importance of the contribution of in-

plane inertia. This was achieved by comparing the natural frequencies estimated from: 

(1) the analytical model based on Warburton’s theory in which in-plane inertia is not 

taken into account, (2) the analytical model with in-plane inertia contribution, (3) the 

ANSYS FEM. All three showed a similar trend in terms of increasing natural frequency 

with respect to increasing curvature and occurrence of modal clustering for strong 

curvature. However, while the natural frequencies of modes where m n  were 

practically identical across all three models, the other modes of the model, i.e. where

m n , derived from Warburton’s theory in which in-plane inertia was not accounted 

for, only agreed with the other two models for light curvature and the natural 

frequencies of the mode was significantly different from the other two models for strong 

curvature.  

In conclusion, even though Warburton’s approach does help to gain a better 

understanding of the influence of two-dimensional curvature on the free vibrations of 

shallow shells and provided a good baseline for analytical models, the absence of the 

contribution of in-plane inertia in the model does not provide an accurate representation 

of the vibrational behaviour for more general cases. 
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4. Simulations of Active Vibration 

Control on Curved Panels 

In this chapter, the effects of velocity feedback control will be investigated on the 

structural response and radiated sound power for the rectangular panel modelled in the 

previous chapter. It is assumed that the panel is simply-supported along its four edges 

and baffled. The excitation on the surface of the structure is assumed to be time 

harmonic with an angular frequency of ω rad/s. The acoustic plane wave exciting the 

panel has an azimuthal angle   in the xy-plane taken from the x-axis and an angle of 

incidence θ from the normal to the surface in the z-direction. Both angles are set to 45° 

in these simulations, in order to approximate an excitation due to a diffuse sound field, 

which allows an even distribution of the excitation on the surface of the panel and for all 

the structural modes to be efficiently excited [17]. Figure 4.1 shows the arrangement of 

the panel, along with the incident harmonic acoustic wave and the resulting radiated 

sound. 

 

Figure 4.1 – Diagram of the modelled panel when it is excited by an acoustic plane wave incident at 

θ = 45° and φ= 45° [106].  




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The sound pressure field due to the harmonic excitation, defined as a function of 

position and time, is obtained from the real part of the counter clockwise rotating 

complex vector as [98] [106] 

 ( )
( , , ) Re ( ) ,x yj t k x k y

i ip x y t p e



 

  (4.1) 

where ( )ip   is the complex pressure phasors, 1j   , and xk  and 
yk  are the 

wavenumbers in the x and y direction respectively defined in terms of the acoustic 

wavenumber 0k  and the angle of incidence and the azimuthal angle as  

0( ) ( )sin( )cos( )xk k     (4.2) 

0( ) ( )sin( )sin( ),yk k     (4.3) 

where 
0

0

k
c


 and the speed of sound in air 1

0 343c ms . Similarly, the time-harmonic 

force and velocity functions at a single point on the panel are also defined as the real 

part of their complex force and velocity phasors 

 ( ) Re ( ) j tf t F e   (4.4) 

 ( ) Re ( ) ,j tw t W e   (4.5) 

where ( )f t  and ( )w t  refer to the time-harmonic force and velocity respectively, ( )F   

and ( )W   are the complex frequency-dependent force and velocity phasors. 

Throughout this chapter, the force and velocity will be expressed in the frequency 

domain and the complex exponential term 
j te 

 will be omitted for simplification.  

In the first section, it will be assumed that the feedback controller consists of an ideal 

point force collocated with a velocity error sensor. The effect of position and number of 

control forces on the performance of the system will be discussed. In the second section, 

the effect of using inertial actuators instead of point forces on the stability and 

performance of the control system will be investigated. The velocity feedback system 

with the ideal force actuator is unconditionally stable, but that with the inertial actuator 
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is only conditionally stable, i.e. only stable up to a maximum feedback gain. The third 

section of the chapter will assess the effect of increasing the curvature of the structure 

on the performance and stability of the control system. In this section, the simulations 

will be performed using the mode shapes and natural frequencies calculated in the 

analytical model of Section 2.5.2 of Chapter 2, where the contribution of in-plane inertia 

has been accounted for.  

Throughout this chapter single-channel and decentralised multi-channel direct velocity 

feedback control systems will be simulated. The basis of the work described in Sections 

4.1 and 4.2 has been based on [2] [17] [27] [98] [107]. The last section, Section 4.3, 

presents the work done towards the 2
nd

 contribution of the thesis.  

 

4.1 Formulation of Ideal Feedback Control of a 

Panel 

The excitation on the surface of the panel consists of the sum of two contributions: the 

sound pressure incident on the structure and the control forces generated by the 

feedback controller at the points of control. The rectangular panel modelled in Chapter 3 

has been divided into a grid of Ne elements and the harmonic excitation on the surface 

of the panel is assumed to be evenly distributed in terms of point forces and their 

corresponding velocities at the centre of each element. At this stage, it is assumed that 

an ideal velocity feedback control system consisting of ideal actuators generating 

secondary point forces and collocated error sensors measuring the velocity of the 

structure are positioned on the panel. The elemental representation of the modelled 

panel with the location of excitation forces, control force and the resulting panel and 

control velocities along with a lumped-parameter representation of one of the 

controllers is shown in Figure 4.2.  
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Figure 4.2 – Top, left: Elemental model of the panel showing distributed excitation and resulting 

complex velocity at the centre of each element. fe refers to the velocity of at the centre of an element 

on the panel and ẇe is the corresponding velocity of the panel at this point. Top, right: 

Representation of an ideal feedback controller with adjustable gain g on the panel surface. Bottom: 

Lumped parameter model of a controller implemented on the surface of the panel. fc refers to the 

secondary control point force and ẇc is the resulting control velocity at this point. 

The harmonic excitation force on the surface of the panel defined in Equation (4.4) and 

the resulting velocity defined in Equation (4.5) can be alternatively expressed as a 

vector ( )ef  of point forces applied at the centre of each of the elements, and a vector 

( )
e

w  of the resulting complex velocities at the same locations [2] [17] [106] 

 
1 2

( ) ( ) ( ) ( ) ,
Ne

T

e e ef f f   
e

f  
(4.6) 
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 
1 2

( ) ( ) ( ) ( ) ,
Ne

T

e e ew w w   
e

w  
(4.7) 

where 
1 2
( ), ( ),..., ( )

Nee e ef f f    correspond to the point forces applied at the centre of 

each element of the panel grid and 
1 2
( ), ( ),..., ( )

Nee e ew w w    are the resulting complex 

velocities at the same locations. The dimensions of the vectors defined in Equations 

(4.6) and (4.7) are 1eN  .  

 The i
th

 element of the force vector ( )ef  
can be expressed in terms of the pressure 

excitation ( )ip  as 
 

 
( )

( )

( ) 2 ( )

2 ( ) ,

x i y i

i

x i y i

j k x k y

e e i

j k x k y

e i

f A p e

A p e

 



 

 





 
(4.8) 

where eA is the area of each element and ( )ip  is the complex pressure amplitude of the 

incident sound wave. The factor of 2 in the above equation refers to the blocked force 

assumption on the rigid surface of the panel leading to a doubling in pressure [17]. In 

the simulations, the fluid medium in which the modelled panel is assumed to be located 

is air and therefore, the medium parameters used here are those of air, for example the 

density and the specific impedance of the medium are 3

0 1.21medium air kgm      and 

3

0 415medium airZ Z Z Nsm    respectively. The amplitude of the pressure was set to

1ip  Pa [2] [98]. 

The control point forces and resulting complex control velocities generated by the 

feedback controllers can be defined in a similar manner to the primary excitation point 

forces and velocities of the panel as vectors cf  and c
w  respectively, such that 

 
1 2 Nc

T

c c cf f f
c

f  
(4.9) 

 
1 2

,
Nc

T

c c cw w w
c

w  
(4.10) 

where the terms 
1 2
, ,...,

Nc
c c cf f f  are the control point forces at the location of the 

controller and the terms 
1 2
, ,...,

Nc
c c cw w w are the resulting complex control velocities. The 
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dimensions of both vectors are  1cN   [2] [17] [106]. For a single channel feedback 

control system Equations (4.9) and (4.10) are reduced to scalar values.  

For a proportional or direct velocity feedback control system, the output of the velocity 

error sensor is fed back to the actuator with a negative gain which for consistency with 

the previous equations can be defined here as a diagonal matrix H  containing the gains 

g  of the control system. The system is therefore, directly governed by the gain of the 

feedback loop. Consequently, based on the definition of direct velocity feedback 

control, the control force cf can be expressed in terms of the complex velocity as 

, 
c c

f Hw  (4.11) 

where 

0 0

0 0
.

0 0

g

g

g

 
 
 
 
 
 

H  

In order to make the understanding of the following equations easier for the reader, a 

diagram of the modelled panel with a decentralised multi-channel velocity feedback 

control system and the equivalent diagram, taken from [2], are displayed in Figure 4.3. 

In the block diagram, the terms eeY and ccY refer to the matrices of point and transfer 

mobilities at the centre of the elements and control points respectively, and ecY and ceY

are the matrices of transfer mobilities between the centre of the elements and the control 

points. The dimensions of eeY , ccY , ceY  and ecY are  e eN N , c cN N , c eN N and

 e cN N respectively. For a single channel feedback control system ccY is reduced to a 

single scalar value, and ceY  and ecY are reduced to  1 eN and 1eN   vectors. 
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Figure 4.3 – Diagram of a multi-channel decentralised velocity feedback control system (left) and 

equivalent block diagram (right) [2]. 

Based on the block diagram provided in Figure 4.3, in the absence of control  0,H

0cf , the elemental point and transfer mobilities can be defined as the complex 

velocity per unit excitation force at the centre of each element, or the complex velocity 

at the centre of each element can be defined as the product of the element point and 

transfer mobilities and the elemental forces 

.e ee ew Y f  (4.12) 

The above equation can be further expanded in order to show the elements of the 

matrices and the vectors as 

11 12 11 1

2 21 2 2

1 2

Ne

Ne

N Ne eN N N Ne e e e

ee ee eee e

e ee ee e

e eee ee ee

Y Y Yw f

w Y Y f

w fY Y Y

    
    
    

    
    
    
    

 

(4.13) 

The (i,j)
th

 term 
ijeeY  of the mobility matrix eeY , which is the mobility at the i

th
 element 

due to the excitation point force exerted at the centre of the j
th

 element, is calculated 

from the finite modal expansion approach explained in [17] [106], over the first N 

modes of the panel, using 
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2 2
1

( , ) ( , )
,

(1 2 )

i i j ji

ij

j

N
n e e n e ee

ee

ne n n

x y x yw
Y j

f M j

 


  

 
   

  
(4.14) 

where
iew  is the complex velocity at the i

th
 element, 

jef  is the point force acting at the 

centre of the j
th

 element, 1j   , ( , )
i in e ex y and ( , )

j jn e ex y  are the natural modes at 

the coordinates of the centres of the i
th

 and j
th

 elements respectively, 
x yM l l h  is the 

mass of the aluminium plate in kg, n  is the natural frequency of the panel in rad/s 

calculated using Equation (A.1) in Appendix A, and finally n  is the modal damping 

ratio. The properties of the panel listed in Table 3.1 have been used for the damping 

ratio and for calculating the mass and the natural frequencies of the panel. The natural 

modes ( , )
i in e ex y and ( , )

j jn e ex y  can be calculated using Equation (2.32c) of Chapter 2 

for the mode shapes in the out-of-plane direction, when the panel is simply-supported. 

Equation (4.14) can alternatively be expressed in terms of the elemental mobility matrix 

eeY  and the matrix e
  of the first N  natural modes of the panel with dimensions 

 eN N  as 

, T

ee e e
Y   (4.15) 

where 

1 1 1 1 1 1

2 2 2 2 2 2

1 2

1 2

1 2

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( , ) ( , ) ( , )
N N N N N Ne e e e e e

e e e e N e e

e e e e N e e

e e e e N e e

x y x y x y

x y x y x y

x y x y x y

  

  

  

 
 
 

  
 
 
 

e , and   is a diagonal matrix 

defined as

0 0

0 0

0 0

 
 


 
 
 

 

 of dimensions  e eN N  in which 

2 2
.

(1 2 )n n

j

M j



  
 

   

 
(4.16) 

As already mentioned in the previous chapter, in order to have an accurate 

representation of the overall response of the modelled panel the contribution of higher 



 

 97  

order residual modes needs to be taken into account. There are two ways of including 

this contribution into the calculations. One way consists of setting the dynamic 

frequency range – the range over which the modal summation of Equation (4.14) is 

calculated – well beyond the frequency range of observation, for example up to 50 times 

greater than the upper limit of the observation range as shown in [106]. However, 

depending on how large the frequency range of observation is, this method becomes 

very computationally demanding. The alternative method is to calculate the panel 

mobility due to these higher order residual modes using the modal expansion shown in 

Equation (4.14) and simplifying to only include the stiffness and damping terms, as 

these higher order residual modes are dominated by the stiffness and damping over the 

observation frequency range. Consequently, Equation (4.14) can be more generally 

expressed as [17] [41] 

,

,
,i resi

ij ij ij res

j j

ee

ee ee ee

e e

ww
Y Y Y

f f
     

 

(4.17) 

22 2
1 1

( , ) ( , ) ( , ) ( , )
,

(1 2 )(1 2 )

res
i i j j i i j j

ij

NN
n e e n e e n e e n e e

ee

n n N n nn n

x y x y x y x y
Y j j

M jM j

   
 

     

 
   

   
 

(4.18) 

where 
,ij reseeY and 

,i resew  are the panel mobility and complex velocity respectively due to 

the residual modes, and resN  is the number of included residual modes.  

When the feedback loop is closed and a control force is applied to the panel at the 

location of each controller, based on the block diagram of Figure 4.3, the equation for 

the complex velocities at the centre of each element changes to reflect the contribution 

of the control forces, such that 

. e ee e ec cw Y f Y f  (4.19) 

The complex velocities at the points of control can also be similarly expressed in terms 

of the structural mobilities, primary excitation and secondary control forces as 

.c cc c ce ew = Y f + Y f  (4.20) 
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Equations (4.19) and (4.20) can be expanded in order to show the elements of the 

matrices and vectors as 

11 12 1 11 12 11 1 1

2 21 2 2 21 2 2

1 2 1 2

e c

e c

e e ce e e e e e e c

ee ee ee N ec ec ec Ne e c

e ee ee N e ec ec N c

eN eN cNeeN eeN eeN N ecN ecN ecN N

Y Y Y Y Y Yw f f

w Y Y f Y Y f

w f fY Y Y Y Y Y

       
      
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(4.21) 
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(4.22) 

The (i,j)
th

  terms of the mobility matrices ccY , ecY and  ceY were calculated using the 

modal expansion technique of Equation (4.15) 
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(4.23) 
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(4.24) 
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1
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  
(4.25) 

Finally, by substituting Equation (4.11) into Equations (4.19) and (4.20) for complex 

velocities e
w and c

w  and with further simplifications, both Equations can be formulated 

in terms of the excitation force ef  as 

1( )    e ee ec cc ce ew Y Y H I Y H Y f  (4.26) 

1( )c cc ce ew = I Y H Y f  (4.27) 
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Equation (4.26) will be used in the next subsection for the estimation of the structural 

response and radiated sound power of the panel.  

4.1.1 Panel Structural Response and Total Radiated Sound 

Power 

The overall structural response of the panel can be estimated through the calculation of 

the total kinetic energy. The time-averaged kinetic energy of the panel is defined by the 

integration over the panel surface of the product of panel mass and the squared panel 

velocity due to the harmonic excitation as [17] [106] 

2

2

0 0

1
( ) ( , , )

4

( , , ) ,
4

x y

k

A

l l

E h w x y dA

h
w x y dydx
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








 

 

 

(4.28) 

where  and h are the density and thickness of the panel respectively with values listed 

in Table 3.1, ( , , )w x y   is the complex transverse velocity at the surface of the panel 

due to the harmonic excitation and A is the area of the panel. The additional factor of ½ 

has been introduced in the above equation for converting peak to rms values. Equation 

(4.28) can be formulated in terms of its elemental equivalent representation as a 

summation over the panel elemental grid of the product of the elemental masses and the 

squared complex velocities at the centre of each element [106] 

2

1

1
( ) ( ) ,

4

e

i

N

k e e

i

E M w 


   
(4.29) 

where 
e

e

M
M

N
  is the mass of each element. Alternatively, the vector denotation of the 

above equation can be expressed as the product of the complex velocity vector e
w  and 

its Hermitian or conjugate transpose H

e
w   

4

e
k

M
E  H

e ew w  
(4.30) 
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(4.31) 

The total time-averaged radiated sound power level is obtained from the integration 

over the surface of the panel of the product of the near field sound pressure radiated 

from the panel and the panel transverse velocity [106] 
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(4.32) 

where 0( , , )p x y   is the near field sound pressure and the factor of ½ is due to the peak 

to rms conversion. The near field acoustic pressure can be expressed in terms of the 

panel velocity with the Rayleigh integral as [17] 
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(4.33) 

where 0  is the density of air and r is the distance between the coordinates of the sound 

pressure and the panel velocity located respectively at ( , )x y  and ( , )x y found from 

2 2( ) ( )r x x y y      [106]. The substitution of Equation (4.33) into Equation (4.32) 

leads to the following quadruple integral for the radiated sound power [17] 
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(4.34) 

Since 0

0 0cos sin ,
jk r

e k r j k r
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0

0 0 0(cos sin ) sin
Re Re .

jk r j k r j k r k rje
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Consequently, Equation (4.34) can be further simplified and rewritten as 
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(4.35) 

For the elemental approach, the above integral can be formulated in terms of the sum of 

the radiated power of each element as [17] 
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(4.36) 

which can be alternatively written in terms of the complex velocity vector e
w  and its 

Hermitian H

e
w  as  

,radP  H

e rad e
w R w  (4.37) 

where rad
R  is referred to as the radiation resistance matrix of dimensions  e eN N  

defined as [17] 
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(4.38) 

Assuming that the panel is radiating into the free field and has an infinite baffle, the 

(i,j)
th

 element of the above matrix can be written as [17] 
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(4.39) 

where 
e

eN


   is the density of each element of the panel and 

ijr  is the (i,j)
th

 distance 

between the i
th

 elemental velocity and the j
th

 elemental sound pressure. 
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The structural response and radiated sound power expressions defined here for the 

elemental approach will be used in the next sections of this chapter to assess the 

performance of velocity feedback control on the modelled aluminium panel.  

4.1.2 Simulations of Structural Response and Sound 

Radiation 

Simulations of direct velocity feedback were performed with the initial assumption that 

one ideal point force actuator was positioned at the centre of the rectangular aluminium 

panel, as shown in Figure 4.4. For the simulations, up to 40 frequency-independent gain 

levels, ranging from 310  to 610 , were chosen for the feedback loop gain, in order to 

observe the effect of extreme gain variations on the dynamic performance of the panel. 

The observed frequency range was set to 1.5 kHz but the contribution of the higher 

order residual modes was taken into account through the calculation of the mobilities 

using Equation (4.18). 

 

Figure 4.4 – Elemental panel model with the location of the ideal point force controller marked as a 

red point in the centre of the panel.  

The performance, as a measure of the overall structural response, of the simulated 

control system was first assessed by plotting the frequency response of the kinetic 

energy and radiated sound power over the observed frequency range, when the panel is 

simply-supported and subjected to a diffuse field excitation  45   , before and 
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after closing the feedback loop. 25 different gain levels were used in the spectra 

displayed in Figure 4.5. The uncontrolled structural response and radiated sound power 

spectra show well separated modes for the low frequencies. The first resonance of the 

panel associated with Mode (1,1) occurs at 71.7 Hz and dominates the spectrum in both 

graphs. This is due to the fact that volumetric modes such as Mode (1,1) are strongly 

radiating modes. After that, the amplitude of the modes monotonically decreases such 

that, for example, at the mode occurring at 1.5 kHz, the amplitude reaches -60 dB which 

is 48 dB less than the amplitude of Mode (1,1). The occurrence of a pair of low-

amplitude and identical resonance peaks can be seen in both structural response and 

radiated sound power graphs at 166.7 Hz and 192 Hz. These resonances belong to the 

(2,1) and (1,2) structural modes which have a negligible influence on the radiated sound 

power due to their poor radiation efficiency.  
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Figure 4.5 – Overall structural response (top) and total radiated sound power (bottom) graphs of 

the modelled aluminium panel when a feedback controller with an ideal point force actuator is 

assumed to be positioned at the centre of the panel. The response and radiated sound power with no 

feedback gain are shown in black, with increasing gain in grey, with optimal gain in red, and with 

high gain in blue. 

When the feedback loop is closed and feedback gain is increased, the structural response 

and radiated sound power are both gradually attenuated, due to active damping. The 

lower-frequency resonances are more heavily damped while towards higher frequencies, 

the contribution of residual modes does not allow efficient control due to the resulting 

spillover effect. Both the structural response and the radiated sound power of the panel 

Low gain High gain 

Low gain 
High gain 
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are initially attenuated with increasing gain. But then, further increases in the gain level 

causes a large increase in the control force, which is a result of the controller actively 

pinning the panel. Due to the pinning effect, a new additional boundary condition is 

created at the location of control force, which causes the occurrence of new resonance 

peaks and a shift in the resonances toward higher frequencies but no additional damping 

[17]. The first new resonance peak can be observed at 200 Hz in both spectra. The 

amplitude of this resonance peak is lower than the panel’s initial first resonance in the 

absence of control because the pinning of the controller in the centre of the panel 

increases the stiffness of the structure. For the case of the radiated sound power, this 

new resonance peak has higher amplitude than that initial first resonance of the 

uncontrolled panel, because the increase in natural frequency allows this mode to 

radiate more efficiently than before.  

This effect has been demonstrated by Gardonio and Elliott in [108] where theoretical 

studies of direct velocity feedback have been conducted on a beam, first with an ideal 

point force controller then with a modelled piezoelectric patch actuator.  

4.1.3 Stability and Gain Analysis 

The use of an ideal controller for the simulations of velocity feedback control causes the 

system to be unconditionally stable for all gain levels. As explained in Chapter 1, this is 

due to the fact that the real-part of the frequency response between the ideal point force 

actuator and the error sensor –the plant response – is positive, i.e. the Nyquist plot of the 

plant response will always remain on the right-hand side or positive part of the real axis. 

As can be seen in the bottom diagram of Figure 4.2, the actuator is only modelled as an 

ideal point force and has no dynamic properties that could influence the plant, therefore, 

in theory, an ideal controller synthesises a passive system, which is always stable.  

The gain value corresponding to optimal control, for which the maximum reduction in 

the structural response is achieved, can be estimated through the integration of the total 

kinetic energy of the panel over the control bandwidth frequency, and plotting the result 

over increasing feedback gain. The optimal gain value for achieving maximum 

attenuation in radiated sound power can also be estimated using the same approach. The 

estimation of the optimal gain level can help to avoid the use of high gain levels for 

which the controller pins the structure. The resulting graphs are displayed in Figure 4.6. 
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The minimum points in both graphs correspond to the optimal gain values for which the 

structural response and radiated sound power are attenuated the most. These optimal 

values are 41.2 and 24.2 for the structural response and the radiated sound power, 

respectively, and the amplification of the feedback controller by these values result in 

attenuations of 13.6 dB and 7 dB in the structural response and radiated sound power, 

respectively.  

The gain amplitude required to minimise the radiated sound power level is almost half 

the amplitude needed for minimising the kinetic energy. This phenomenon can be 

explained by the occurrence of the new lightly-damped resonance peaks at high gain 

levels, which occur due to the pinning effect and radiate sound more efficiently. This 

mean that at high levels of gain the total radiated sound power is increased by up to 5 

dB compared to the total radiated sound power in the absence of control. Conversely, at 

high levels of gain the total kinetic energy is still reduced by almost 4 dB due to the 

efficient dissipation of the energy by these new structural modes. 

 

Figure 4.6 – Estimation of the optimal gain value for a single feedback controller through the plot 

of the total changes in kinetic energy (top) and radiated sound power (bottom) over increasing gain. 
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4.1.4 Effect of Actuators Number and Positioning on 

Feedback Control Performance 

Another factor that significantly influences optimal control conditions is the position of 

the controllers on the structure. For example, in the case of a single controller, locating 

the device at the centre of the panel provides the most efficient control. For a multi-

channel control system, the use of a symmetrical arrangement of actuators allows a 

more efficient coupling with several panel modes, while using lower gain levels than a 

single centred actuator. Achieving similar overall attenuation with a single actuator 

positioned in the centre of the panel will not be possible, as the gain will have to be 

increased to amplitudes which will cause the panel to be pinned at the location of the 

actuator. The pinning of the panel at the point of control will lead to a change in the 

boundary conditions of the panel, and the actuator will then be positioned on a node, 

resulting in no control. 

 In the next step of the investigation, the number of controllers was increased to four 

and then five. The 4 feedback controllers were placed on the diagonals of the 

rectangular panel, 10 cm away – about one third of the diagonal length – from the 

edges. The aim of this arrangement was to keep the positions symmetrical and attempt 

to cover the largest surface on the panel without being too close to the edges. The 

simulation using an arrangement of 5 point force actuators was a combination of the 

arrangements with a single actuator at the centre of the panel and with the 4 actuators. 

The excitation and control points’ coordinates have been listed in Table 4.1. Figure 4.7 

displays the panel model for 4 and 5 feedback controllers, with the controllers situated 

in the positions which produce maximum attenuation. All the controllers were assumed 

to have the same feedback gain.  

Table 4.1 – Coordinates of the positions of the ideal point force actuators on the panel 

Parameter value  units  

Position of excitation forces fei xei, yei  m 

Position of control point 1 xc1 = lx/2, yc1 = ly/2 m 

Position of control point 2 xc2 = 0.0927, yc2 = 0.1647 m 

Position of control point 3 xc3 = 0.1853, yc3 = 0.1647 m 

Position of control point 4 xc4 = 0.0927, yc4 = 0.0823 m 

Position of control point 5 xc5 = 0.1853, yc5 = 0.0823 m 
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Figure 4.7 – Arrangement of 4 and 5 actuators shown on the panel elemental model (red squares). 

 

Table 4.2 – Optimal gain values and resulting attenuations in total kinetic energy (KE) and 

radiated sound power (Prad) for arrangements of single, four and five ideal point force actuators on 

the surface of the modelled panel.  

Number of 

controllers 

Optimal Feedback 

gain (KE) 

Resulting attenuation 

in total KE 

Optimal feedback 

gain (Prad) 

Resulting attenuations 

in total Prad 

1 41.2 13.6 24.2 7 

4 41.2 16.2 14.25 7.5 

5 41.2 18.3 14.25 7.8 

 

Based on the above results, the optimal gain for maximum attenuation in total kinetic 

energy is similar for all three arrangements. In the case of the radiated sound power, the 

optimal gain for the 4 and 5 controller arrangements is nearly half the optimal gain for 

the single controller system. The use of 5 controllers has the best attenuation levels in 

comparison with the single and four controller set-ups, and it provides almost 5 dB 

more attenuation in the kinetic energy than the single controller. All three 

configurations provide similar attenuation levels for the radiated sound power, because 

the radiated sound power is dominated by the (1,1) mode, which only takes a single 

force to control. 

The comparison of the 3 different arrangements of actuators reveals that even though 

the use of 4 actuators results in more attenuation than the single controller set-up, it only 

provides an additional reduction of 2.6 dB in the kinetic energy and only 0.5 dB 

additional reduction in the total radiated sound power. The difference between the three 
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arrangements is small enough to conclude that for a flat panel, positioning a single 

controller in the centre of the plate provides the best practical choice for controlling 

both the structural modes of vibration and sound and energy levels. The choice of a 

single controller versus five controllers for active feedback control is also interesting, in 

terms of space, weight and cost minimisation, as the practical implementation of a 

multi-channel feedback control system might encounter space, weight and budget 

limitations. 

After selecting the single feedback controller setup, it was important to investigate the 

extent to which the accuracy of the placement of the controller at the centre of the panel 

would affect the levels of attenuation. The controller was moved from the centre of the 

panel along the diagonal at increments of 3.5% of the length of the diagonal to observe 

the changes in the optimal gain and the resulting attenuation levels. The attenuation 

levels achieved for the different controller position with respect to the centre of the 

panel can be found in Table 4.3. Figure 4.8 shows a plot of the total kinetic energy 

attenuation levels plotted over an increasing distance from the centre of the panel for the 

actuator. 

 

Table 4.3 – Ranges of kinetic energy (KE) and radiated sound power (Prad) attenuation levels for 

different ranges in distance from the centre of the panel for an ideal feedback control with a single 

actuator. 

 

Distance from centre (m)   Attenuation in  Ekin  (dB)   Attenuation in total Prad (dB) 

0 - 0.01 

 

13.6 - 14.7 

 

7 

0.01 - 0.03 

 

14.7 - 14.2 

 

7 to 7.1 

0.03 - 0.04 

 

14.2 - 13.1 

 

7.1 to 7 

0.04 - 0.05 

 

13.1 - 11.4 

 

7 to 6.2 

0.05 - 0.07 

 

11.4 - 10.5 

 

6.2 to 5.8 

0.07 - 0.08 

 

10.5 - 10.6 

 

5.8 to 6.1 

0.08 - 0.09   10.6 - 10   6.1 
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Figure 4.8 – Variations of total kinetic energy (left) and total radiated sound power (right) 

attenuation levels over increasing distance from the centre for the actuator.  

Up to 4 cm away from the centre of the panel, the radiated sound power attenuation 

levels do not seem to be significantly affected by the positioning of the actuator. 

However, a further reduction of 1 dB can be observed in the kinetic energy attenuation, 

1 to 3 cm away from the centre. This can be explained by the ability of a slightly off-

centre controller to couple with more modes. This outcome could be useful later for 

applications with limitations on the choice of controller locations or structures with 

slight curvature or deformation. 

 

4.2 Feedback Control of a Panel Using Inertial 

Actuators 

Inertial actuators offer an attractive solution for multi-channel vibration control systems 

because of the low cost of mass production and ease of implementation in comparison 

with other transducers. As mentioned in the first chapter, they can also generate high 

amplitude control forces with a low electrical power requirement. Therefore, these 

actuators will be used in the following investigations. 

An electrodynamic inertial actuator is composed of a suspended mass-spring system and 

an electromagnetic arrangement for dynamic and magnetic coupling. The lumped-

parameter model of a proof-mass electrodynamic actuator is illustrated in Figure 4.9 
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[107]. It is assumed that a velocity feedback control system consisting of an error sensor 

measuring the velocity of the structure and an actuator generating reactive forces 

between the mass and the base of the controller is implemented on the panel.  

The amplitude and phase of the blocked force response BT  of the actuator, per input 

voltage and per input current, are shown in the graphs of Figure 4.9.  The natural 

frequency of the actuator corresponds to the resonance peak observed in upper subplot 

of Figure 4.9. The associated 180-degree phase-lag can be seen in the lower subplot. 

The fundamental resonance of the mass-spring system influences the stability of the 

control system. For frequencies above the natural frequency of the spring-mass system, 

the structure is subjected to a sky-hook damping effect during negative velocity 

feedback control, since the base force is almost equal to the mass-spring reactive force. 

For frequencies lower than the natural frequency of the mass-spring system, however, a 

negative damping effect can be observed, caused by the base force being out of phase 

with the reactive force of the system. Consequently, instabilities can arise in the control 

system. Therefore, in order to achieve good control, it is necessary to use an actuation 

mechanism with a natural frequency much lower than the one of the vibrating structure, 

and high damping at the resonance frequency [109]. 

  



 

 112 

 

 

Figure 4.9 – Lumped-parameter diagram (left) and internal view of a particular electrodynamic 

actuator (right) [107], together with the blocked force response calculated from the lumped 

parameter model.   

Considering the lumped-parameter model of the actuator displayed in Figure 4.9, the 

complex velocity vector of the moving masses for a multi-channel feedback control 

system can be defined as 

,
proof proof proofM M Mw Y f  (4.40) 

where 
proofMY  is the mobility of the mass defined as a diagonal matrix with elements 

1
proof,iM

proof

Y
j M

 on the diagonal, 
proofM  is the proof mass, and 

proofMf  is the vector of 

the forces exerted by the magnet or moving mass of the actuator to the coil shown in 

Figure 4.9. The vector of the actuation force af  due to the vector of the current ai  in the 

coil is found from 
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,aa af i  (4.41) 

where a  is the transducer coefficient of the actuator’s coil and ai  is proportional to the 

complex velocity at the point of the control such that  

,g a ci w  (4.42) 

where g  is the feedback loop gain defined as a scalar value for a single-channel 

feedback control system and c
w  is the complex velocity vector at the locations of the 

actuator. The resultant force exerted on the panel due to the actuation force and the 

force of the inertial mass can be written in terms of the complex control velocity and 

complex velocity of the inertial mass as 

  
proofc a c a M af Z w Z w f  (4.43) 

where a
Z  is the impedance of the spring-damper system defined as a diagonal matrix 

with the elements a
a,i a

K
Z C

j
   on the diagonal. The inertial actuator parameters have 

been listed in Table 4.4. The inertial effects of the base mass and the coil have been 

omitted at this stage, but will be included later in the thesis. 

 

Table 4.4 – Inertial actuator parameters  

Parameter   value    units  

Proof mass 

 

Mproof = 0.024 

 

kg   

Suspension stiffness 

 

Ka = 511 

 

N m
-1

 

Suspension damping coefficient Ca = 1.99 

 

Ns m
-1

 

Voice coil coefficient  

 

ψa = 2.16 

 

NA
-1

 

Modal Damping Ratio 

 

ξn = 0.28 

  Natural frequency   fna = 23.2   Hz 
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Equations (4.40)-(4.42) can be combined and substituted into Equation (4.43) to 

formulate the control force in terms of the complex control velocity and the current as 

 c cc c ca af Z w Z i  (4.44) 

where 
1

   
 proofcc Mech a M aZ Z I Z Y Z  is the mechanical impedance of the actuator, 

1

a


  
 proofca a MZ I Z Y  and I  is the identity matrix. With the use of the aluminium 

panel as the base structure and application of the elemental approach, the same general 

equations as for the ideal feedback controller can be used for the complex velocities e
w  

and c
w  (Equations 4.26 and 4.27). The substitution of cf  into these equations leads to 

   
1 1 

   
c cc ca cc cc a ce cc cc e

w Y Z I Y Z i Y I Y Z f  (4.45) 

   
1     e ee cc cc ca ec ce cc ca ew Y - I + Y Z + Z H Y Y Z + Z H f  (4.46) 

For the kinetic energy and the total radiated sound power level calculations, the same 

equations as for the ideal feedback controller can be used (Equations 4.30 and 4.37). 

4.2.1 Structural Response and Sound Radiation Analysis 

The structural response and radiated sound power were calculated for 25 different gains 

ranging from 
310
 to 

610  in a similar manner to Section 4.1.2, when a single inertial 

actuator was assumed to be positioned at the centre of the panel. The observed 

frequency range was set to 1.5 kHz. The corresponding frequency responses of the 

overall structural response and total radiated sound power are shown in Figure 4.10 for 

increasing feedback gain. 

As the loading effects of the actuator have been omitted in the calculations, its 

contribution to the structural response and radiated sound power can only be observed 

in Figure 4.10, when the feedback loop is closed. In the absence of control, both 

structural response and radiated sound power are identical to those for a simply-

supported panel without any actuators added to the structure. The resonance peak 

observed at 23.2 Hz corresponds to the natural frequency of the inertial actuator. The 
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first resonance of the structure, mode (1,1), occurs at 71.7 Hz. Both spectra were plotted 

over the range of feedback gain values for which the system remained stable. High 

levels of feedback gain cause enhancement in the resonance of the actuator. 

 

 

Figure 4.10 – Overall structural response and total radiated sound power of the aluminium panel, 

when a single proof-mass actuator is located at the centre of the panel, for increasing feedback gain. 

The overall structural response and total radiated sound power are shown in black for no control, 

red for optimal feedback gain and blue for high feedback gain. 

Low gain 

Low gain 

High gain 

High gain 
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4.2.2 Stability and Gain Analysis 

When an inertial actuator is implemented on the structure, the control system is no 

longer unconditionally stable. The internal dynamics of the actuator, such as the 

resonance and phase shift associated with the moving mass, impose a limit on the 

stability of the system. The plant response, as defined in Chapter 1, now includes the 

dynamic effects of the actuator and is formulated as 

1( ) , ca cc ca cc ccG Y Z I Y Z  (4.49) 

where ccY  is the point mobility at the location of the actuator and is calculated from 

Equation 4.23. The Bode and Nyquist plots of the plant can be viewed in Figure 4.11 

and Figure 4.12, respectively.  

 

Figure 4.11 – Bode plot of the amplitude (top) and phase (bottom) of the plant response of the 

feedback control system with an inertial actuator. 

In the above figure, the damped resonance observed at 23.2 Hz is the natural frequency 

of the actuator which introduces a 180° phase shift into the plant response. This can be 

seen as the change in the phase from -90° to -270° that occurs at frequencies below the 

first panel resonance. At higher frequencies, the phase response is related to the 

structural resonances of the panel, with each resonance introducing a 180° phase shift 

between -270° and -450° is due to unwrapping of the phase response.  
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Figure 4.12 – Nyquist plot of the plant response. 

Figure 4.12 shows the Nyquist plot of the plant response. The response in the two left-

hand quadrants of the Nyquist plot is due to the contribution of the natural frequency of 

the inertial actuator. In the right-hand side of the Nyquist plot, the response is caused by 

the resonances of the aluminium panel. Consequently, the system is only stable for gain 

levels at which the graph does not cross the point of instability, -1. The boundary of the 

stability region can be found through the calculation of the maximum gain which 

corresponds to the point ( cg ,0), where the Nyquist plot intersects the negative-real 

axis. The maximum feedback gain was found to be 14 for these simulations, the 

feedback gain that provides a 6-dB gain margin is half of this value. 

The total changes in kinetic energy and radiated sound power level integrated over the 

control bandwidth, were plotted over increasing gain up to limit of stability and are 

displayed in Figure 4.13. The optimal feedback gain values for which maximum 

attenuations in structural response and sound power can be achieved were estimated by 

finding the minima in the graphs, and were 11optimalg   for minimising the kinetic 

energy and 7optimalg  for minimising the radiated sound power. 
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Figure 4.13 – Variations in total kinetic energy (top) and radiated sound power (bottom) plotted 

over increasing feedback gain up to the 6-dB gain margin when a single actuator with a natural 

frequency of 23.2 Hz is assumed to be positioned at the centre of the panel. The minimum point in 

both graphs corresponds to the gain value for which maximum attenuation in structural response 

and radiated sound power is achieved. 

The optimal gain value to minimise the overall structural response in this case is just 

below the unstable value, making the system very sensitive, but the optimal gain value 

for minimising the radiated sound power is only about half of this almost unstable 

value. 

4.2.3 Effects of Modifying the Actuator Natural Frequency 

As stated in the previous section, the natural frequency of the actuator and the amplitude 

of the resonance peak have a crucial role in maintaining the stability of the system and 
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providing efficient active damping. The lower the resonance frequency of the inertial 

actuator and the further away it is from the first resonance of the structure, the more 

possible it is to achieve optimal control conditions. One way to decrease the natural 

frequency of the actuator is to reduce its stiffness, which would be the equivalent of 

using softer springs in the proof mass suspension system. In practice, in order to 

decrease the stiffness, the actuator’s suspension must be softened and this results in a 

larger static displacement of the proof mass. This large static displacement means that 

the proof mass is more liable to hit the end stops of the actuator, which would generate 

nonlinearities and affect the stability of the control system [110]. Another alternative 

that would result in the attenuation of the resonance peak amplitude consist in 

increasing the damping of the actuator [38]. The reduction in the apparent natural 

frequency of the actuator using an electrical compensator is also discussed in Chapter 6. 

In the first step, the stiffness of the actuator, aK , was reduced by a factor of 4 

 1127.75aK Nm , to lower the actuator resonance frequency to 11.6 Hz, while aC

remained constant, and the kinetic energy and sound power level were calculated over 

25 gain levels. The boundaries of the stability region were calculated again using the 

Nyquist plot. The plant response of the actuator is shown in Figure 4.14, and the 

Nyquist plot of the plant response is displayed in Figure 4.15. The point of intersection 

between the Nyquist plot and the real-negative axis is now further from the limit of the 

stability indicating that a higher feedback gain can be used. The point of intersection of 

the real-negative axis is -0.016 corresponding to a maximum stable gain of about 60 

which is significantly larger than that obtained in the Section 4.2.2.  
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Figure 4.14 – Plant response of the control system when a single actuator with a reduced stiffness is 

modelled at the centre of the structure. 

 

Figure 4.15 – Nyquist plot of the plant response for a feedback gain of unity when the modelled 

actuator’s stiffness is reduced. 

The frequency response of the structural response and sound power level of the panel 

for the modelled actuator with reduced stiffness are shown in Figure 4.16. 
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Figure 4.16 – Overall structural response and total radiated sound power of the aluminium panel, 

when the stiffness of the actuator is reduced, for increasing feedback gain. The overall structural 

response and total radiated sound power are shown in black for no control, red for optimal 

feedback gain and blue for high feedback gain. 

Figure 4.17 shows the total kinetic energy and sound power level plotted over 

increasing gain and the resulting optimal gains. With the increase in the stability of the 

system, the optimal gains for both the kinetic energy and the sound power level are 

increased to 19.2 and 8.3 respectively, providing slightly higher attenuations of 7 and 

2dB respectively. Most importantly, however, both of these optimal values are well 

High gain 

High gain 

Low gain 

Low gain 
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below the maximum stable gain, of about 60, providing a good gain margin for the 

control system. 

 

Figure 4.17 – Variations in the total kinetic energy (top) and the total radiated sound power 

(bottom) plotted for increasing feedback gain up to the 6-dB gain margin, when a single actuator 

with a natural frequency of 11.6 Hz is assumed to be positioned at the centre of the panel. The 

minimum point in both graphs corresponds to the gain value for which maximum attenuation in 

structural response and radiated sound power is achieved. 
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4.3 Effects of Curvature Increase on the 

Performance of the Control System using an 

Inertial Actuator 

The effect on control has been investigated of increasing the curvature of the modelled 

panel in both x and y directions. The natural frequencies and modes calculated in 

Chapter 2 over increasing curvature were used in the calculation of the elemental and 

control mobilities with the modal decomposition of Equation 4.14. An inertial actuator 

having the parameters shown in Table 4.4 and a natural frequency of 23.2 Hz was 

assumed to be positioned in the centre of the panel. The structural response and radiated 

sound power were estimated for broadband disturbances both in the absence and 

presence of velocity feedback control, over different levels of curvature corresponding 

to a deflection at the centre of the panel cz  ranging from 0 to 10 mm. It was assumed 

that a single inertial actuator was positioned at the centre of the panel. For the 

simulations, the observed and dynamic frequency ranges were set to 2 kHz and 4 kHz 

respectively. The frequency responses of the structural response and radiated sound 

power level for no curvature  0cz mm , low curvature  2cz mm , medium curvature 

 5cz mm  and strong curvature  10cz mm have been plotted as a function of 

frequency for increasing feedback gain in Figure 4.18 - Figure 4.21. 

In comparison to the sound power level of Figure 4.18 where the panel has no 

curvature, where the panel is lightly curved, as in Figure 4.19, the natural frequency of 

the first panel mode is increased, so that the sound power in the absence of control has 

higher amplitude for the first structural mode.  
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Figure 4.18 – Overall structural response and total radiated sound power of a flat aluminium panel, 

when a single proof-mass actuator is located at the centre of the panel, for increasing feedback gain. 

The overall structural response and total radiated sound power are shown in black for no control, 

red for optimal feedback gain, gmax = 14, and blue for high feedback gain. 

The maximum value of the feedback gain increases with the level of curvature, from 

max 14g   for the flat panel, to max 65, 174 and 376g   for 2,5,10cz mm , since the 

first panel resonance moves further away from the actuator resonance. The optimal gain 

values calculated as in the previous section are well below the maximum stable gains 

for higher levels of curvature. The level of performance achieved by the control system 
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is, however, reduced by the clustering of the modes for higher levels of curvature, since 

the single actuator cannot independently control all the modes that cluster about the first 

panel resonance frequency in this case.  

 

 

Figure 4.19 – Overall structural response and total radiated sound power of a lightly-curved 

aluminium panel, when a single proof-mass actuator is located at the centre of the panel, for 

increasing feedback gain. The overall structural response and total radiated sound power are 

shown in black for no control, red for optimal feedback gain, gmax = 65, and blue for high feedback 

gain. 
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Figure 4.20 – Overall structural response and total radiated sound power of an aluminium panel 

with medium curvature, when a single proof-mass actuator is located at the centre of the panel, for 

increasing feedback gain. The overall structural response and total radiated sound power are 

shown in black for no control, red for optimal feedback gain gain, gmax = 174, and blue for high 

feedback gain. 
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Figure 4.21 – Overall structural response and total radiated sound power of a strongly-curved 

aluminium panel, when a single proof-mass actuator is located at the centre of the panel, for 

increasing feedback gain. The overall structural response and total radiated sound power are 

shown in black for no control, red for optimal feedback gain, gmax = 376, and blue for high feedback 

gain. 

The frequency responses of the structural response and the radiated sound power are 

shown in Figure 4.22 as a function of frequency for the 4 levels of curvature in the same 

graph, in the absence and presence of control with optimised gain, in order to observe 
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the effect of curvature on the performance. In all cases, an inertial actuator is assumed 

to be positioned in the centre of the panel. 

Figure 4.22 – Left: Overall structural response for 5 different curvatures without (top) and with an 

optimised feedback gain (bottom), Right: Total radiated sound power level for 5 different 

curvatures plotted without (top) and with optimised feedback gain (bottom). A single inertial 

actuator is assumed to be positioned at the centre of the panel. 

With the increase in the curvature of the panel, the natural frequencies of the system are 

shifted toward the higher end of the frequency range, such that for the strongly-curved 

panel  10cz h  , the first natural frequency occurs near 1 kHz rather than at 70 Hz for 

the panel with no curvature, which reiterates the results observed in Chapters 2 and 3. In 

the absence of control, the amplitudes of the low frequency resonance peaks in the 

kinetic energy are gradually decreased over the range of curvature corresponding to

0 5cz h  , because the introduction of curvature increases the stiffness of the panel 
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and acts as passive control that attenuates the structural response. In the opposite, the 

sound power level graphs of Figure 4.22 show resonance peaks with increasing 

amplitudes in the absence of control, due to the increase in radiation efficiency over 

increasing curvature. When active control with optimal gain is applied to the structure, 

the increase in curvature limits the performance of the feedback controller, such that in 

the range of curvature corresponding to 5 10cz h  , both the kinetic energy and sound 

power level graphs display no attenuation and closely resemble the curves with no 

control. Additionally, with the increase in curvature, the fundamental response of the 

actuator that can be seen near 23 Hz in the structural response and sound power level of 

the flat panel gradually disappears due to the stiffening of the panel with the increase in 

curvature. Due to the clustering of modes and the overlap of several modes in regions 

with higher 
cz h (observed in graphs of Figure 2.9 and Figure 3.10), it was suspected 

that not only the individual response for the structural modes would be overlapping for 

high levels of curvature, but also the response of some higher order modes will occur at 

frequencies lower than those of lower modes.  

Based on the assumption of the presence of modal clustering, the individual structural 

response and sound power level were calculated for each mode. Unlike earlier 

calculations where a plane wave was assumed to excite the structure, a stochastic model 

was chosen to create a ‘rain on the roof’ random excitation. The main reason for 

choosing the stochastic model was its higher accuracy for simulating acoustic diffuse 

fields (ADF) encountered in real-life problems [98]. Despite the fact that all the 

structural modes were excited by the complex pressure excitation defined earlier in the 

chapter, all the points on the panel were not equally excited and the contribution of the 

modes that were situated on a nodal line was ignored. The individual responses of these 

modes under the deterministic model displayed both resonance and anti-resonance 

peaks that cancelled each other in the overall response. 

For the stochastic model, kinetic energy and sound power level are calculated in terms 

of spectral density and spatial correlation functions. The spectral density for the total 

kinetic energy and the power spectral density of the sound power level are respectively 

( ) tr ,
2

eM
    

H

EE ee ff eeS G S G  
(4.50) 
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( ) 2tr ) ,    
H

PP ee ff ee radS (G S G R  (4.51) 

where ff
S  is the matrix of power and cross-spectral density of the forces exciting each 

element, eM  is the elemental mass and ee
G  is the matrix containing the point and 

transfer mobility functions for all the elements of the panel. Both matrices have 

dimensions of   e eN N . ee
G can be expressed in terms of the vector of the forces ef  

exerted at the centre of each element and their resulting vector of complex velocities e
w  

as 

e ee e
w = G f  (4.52) 

By substituting the equations for control force and velocity defined earlier in the 

chapter, ee
G  can also be formulated to include the effects of the feedback loop as  

     
-1

ee ee ec cc ca cc cc ca ce
G = Y - Y Z + Z H I + Y Z + Z H Y  (4.53) 

The structural response and sound power level of the first 5 modes were plotted both in 

the absence and presence of control for a modelled panel with a deflection of 

5 5cz h mm   from the centre of the panel. Figure 4.23 – Comparison displays the 

frequency response of the structural response when no control is applied to the panel 

versus when the feedback loop is closed with an optimal gain value of 50. In both 

graphs, the overall response was plotted in a black thick line over the individual 

responses. Because the panel is bowed differently in the x and y direction  x yR R , it 

was suspected that not only the individual response for the structural modes would be 

overlapping for high levels of curvature, but the responses of some higher order modes 

would occur at lower frequencies than some of the lower order modes. 
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Figure 4.23 – Comparison of the individual structural response of the 5 first modes for a panel with 

medium curvature (zc = 5h = 5 mm). Left: No control, Right: Feedback control with an optimal gain 

of 50. The overall response is indicated with a black solid line. 

The optimal gain causes an attenuation of 15 dB in Mode (1,1) and 20 dB in Mode (1,3) 

while Modes (1,2), (2,1) and (2,2) remain unaffected. The comparison of the overall 

response of the 5 modes with and without control show very little difference and no 

attenuation is observed. The bandwidth of the overall response is reduced when control 

is applied to the structure, because of the attenuation in 2 out of the 5 modes. The 

radiated sound power level of the same modes can be viewed in Figure 4.24. The 

overall response again remains unaffected due to the contribution of 3 out of 5 modes 

which are not controlled and efficiently radiate sound power. 

 

Figure 4.24 – Comparison of the individual radiated sound power of the 5 first modes for a panel 

with medium curvature (zc = 5h = 5 mm). Left: No control, Right: Feedback control with an 

optimal gain of 50. The overall radiated sound power is indicated with a black solid line. 
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The simulation was repeated for 10cz h  and the individual frequency responses for 

structural response and radiated sound power are displayed in Figure 4.25 and Figure 

4.26. The increase in the curvature of the panel causes the modes to be more closely 

grouped. As a result, the individual responses in these Figures overlap causing an 

overall response with a single sharp peak. This overlap causes the overall control to be 

less efficient than for lower amount of curvature. The overall kinetic energy and sound 

power level remain without attenuation, even though the response and radiation of 

modes (1,1) and (1,3) are reduced.  

 

Figure 4.25 – Comparison of the individual structural response of the 5 first modes for a panel with 

high curvature (zc = 10h = 10 mm). Left: No control, Right: Feedback control with an optimal gain 

of 50. The overall response is indicated with a black solid line.  
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Figure 4.26 – Comparison of the individual radiated sound power of the 5 first modes for a panel 

with high curvature (zc = 10h = 10 mm). Left: No control, Right: Feedback control with an optimal 

gain of 50. The overall radiated sound power is indicated with a black solid line. 

In the simulations conducted for medium and strong curvatures corresponding to 

5cz h  and 10cz h  respectively, the actuator was assumed to be positioned in the 

centre of the panel. Even though this position was concluded to be the most efficient at 

controlling the structural response and radiation of flat panels, due the mode clustering 

caused by the increasing curvature of the panel, the actuator hardly provides overall 

attenuation when placed at the centre. For this reason, the effect of the actuator 

positioning was investigated through simulations of feedback control at different 

positions on the panel in order to assess whether more efficient control and greater 

attenuation could be achieved at a distance away from the centre of the panel, on all 

modes.  

The position of the actuator was changed along the diagonal of the panel, moving away 

from the centre at increments of 20% of the diagonal length. With each increment, the 

individual response and radiated sound power level of more modes were attenuated. 

However, after a distance of 10 cm from the centre of panel, the response and sound 

power level of the first structural modes started increasing again. For the 10 first 

structural modes of the panel, the actuator achieved the best overall attenuation when it 

was placed 10 – 11 cm from the centre, along the diagonal. The attenuation levels for 

both kinetic energy and sound power level have been listed in Table 4.5 for this actuator 

position when 5cz mm . The attenuation levels for Modes (1,1), (1,4) and (4,1) are 

much lower than other modes as the actuator has less effect on these modes away from 
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the centre of the panel. On the other hand, other modes, such as Mode (2,2), reveal the 

highest level of attenuation, indicating that the actuator is positioned on the resonance 

peak. 

 

Table 4.5 – Attenuation levels in kinetic energy (KE) and radiated sound power (Prad) for individual 

structural modes when the feedback loop has an optimal gain value and the deflection at the centre 

of the panel is 5 mm.  

Mode Number Attenuation in KE, dB Attenuation in total Prad, dB 

(1,1) 4 1.8 

(1,2) & (2,1) 10 5 

(2,2) 18 9 

(1,3) & (3,1) 14 7 

(2,3) & (3,2) 17 8 

(1,4) & (4,1) 4 2 

 

Figure 4.27 and Figure 4.28 display respectively the frequency responses of the 

structural response and radiated sound power of these first 10 modes, when the actuator 

is placed 11 cm away from the centre of the panel. This distance was chosen in order to 

control even modes also. The maximum overall attenuations under these conditions 

were 7 dB for the kinetic energy and 3 dB for the sound power level. 
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Figure 4.27 – Individual structural responses of the first 10 modes when the actuator is placed 11 

cm away from the centre of the panel (zc = 5 mm), without control (top) and with a control gain of 

50 (bottom). The overall response is indicated with a black solid line. 

 

 

 

Figure 4.28 – Individual radiated sound power of the first 10 modes when the actuator is placed 11 

cm away from the centre of the panel (zc = 5 mm), without control (top) and with a control gain of 

50 (bottom). The overall radiate sound power is indicated with a black solid line. 

In order to get a better understanding of the structural response and radiated sound 

power level for higher levels of curvature, the kinetic energy and sound power level 

were calculated over increasing gain for each of the 11 levels of curvature in the range 

0 10cz h  . The limit of the system stability and the maximum attenuations for 

optimal gain were estimated for each case and displayed in Figure 4.29. 
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 The increase in the curvature of the panel results in a more stable system as shown by 

the increase in the maximum gain for which the system remains stable. The level of 

attenuation in the kinetic energy increases slightly, by 0.3dB, from no curvature to 

1cz

h
 , but then decreases due to modal clustering. A significant increase can be seen in 

the attenuation of the sound power level, from about 2 dB to 4 dB, as the curvature 

increases from 0 to 2cz

h
 . However, beyond 5cz

h
 , the spacing between the modes is 

too small to allow them to be controlled efficiently. Therefore, a trade-off can be 

observed between the stability of the system and the increase in curvature. The 

increased curvature provides an increase in the limit of stability and the maximum 

stable feedback gain; however, further increases in curvature then result in an increase 

in the modal density of the panel, which has a detrimental effect on the overall control 

performance. 
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Figure 4.29 – (Top) Effect of curvature increase on the maximum gain and on the optimal gain for 

maximum attenuations in kinetic energy (Middle) and radiated sound power (Bottom). 
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4.4 Summary 

The aim of this chapter was to investigate the main aspects of active vibration control 

using velocity feedback control on flat and curved aluminium panels. The elemental 

approach was used to formulate the dynamic behaviour and sound radiation of the 

excited structure. 

Ideal feedback controllers were initially used to study the effects of the number of 

controllers and their locations on the panel. The effects of different negative feedback 

gains were also observed on the kinetic energy and radiated sound power level spectra. 

The estimation of the optimal gain and determination of maximum attenuation for 

different numbers of actuators lead to the conclusion that the use of a single controller 

placed at or near to centre of the plate provided good control and seemed to be the best 

solution for practical active control designs with space and budget limitations. 

The next part of the investigation involved the use of an inertial actuator in the centre of 

the panel. In this case, in addition to the structural response and radiated sound power of 

the panel, other characteristics such as the modal contribution of the actuator and the 

spill-over effect were studied. The stability analysis of the system, using Nyquist plots 

of the open-loop system response, allowed the calculation of the boundaries for the 

stability region. It was seen how changes in the properties of the actuator, such as 

decrease in stiffness and natural frequency, directly influenced the efficiency of active 

control and the stability of the system. 

The third and final part of the study concentrated on the application of active control to 

curved panels. Initially, a small curvature stiffened the panel and this attenuated the 

structural response and radiated sound power of some of the modes. However, larger 

curvature of the panel resulted in a clustering of modes and the inability of the 

controller to attenuate the overall response and sound power level. 
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5. Vibration Analysis of a Car Roof 

Panel and Decentralised Control 

In this chapter, a feasibility study is presented of the practical implementation of 

velocity feedback control of a car roof panel. In a car, the roof panel is one of the 

components responsible for structure-borne sound radiation to the passenger 

compartment. The use of active vibration control techniques on this structure could help 

in reducing the low frequency content of interior cabin noise by attenuating the 

vibrations propagating through the structure. The aim of this chapter is to gain a better 

understanding of the dynamic behaviour of a car roof panel and assess the possibility of 

implementing such a control system. Passive NVH techniques such as damping 

treatments cannot reduce these low frequency vibrations without adding significant 

weight to the vehicle, which can lead to an increase in cost and a decrease in fuel 

efficiency due to the increase in the vehicle weight. Therefore, the successful 

application of active control technologies presents an appealing solution to the 

automotive industry. 

The analytical and numerical simulations presented and discussed in the previous 

chapters will be used here to assess the feasibility of active control in this real-life 

problem. The first part of this chapter provides a description of the experimental 

procedure used for the modal analysis and the estimation of the structural response of 

the roof panel. Numerical modelling of the roof panel through finite element models is 

also discussed when it is subjected to different boundary conditions. The experimental 

and numerical mode shapes, natural frequencies and frequency response functions 

(FRFs) are compared and discussed and the experimental data are used for validating 

the numerical results obtained from the FEMs. Finally, the last part of the chapter deals 

with the study of the feasibility of implementing a decentralised feedback control 

system for supressing the vibrations of the roof panel, through offline simulations of 

feedback control based on measured roof panel responses. 
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5.1 Vibration Analysis of a Roof Panel 

In this section, the experimental and finite element methods used to identify the 

structural modes of the roof panel are first discussed. The results from the two methods 

are then compared.  

5.1.1 Experimental Modal Analysis 

Experimental Modal Analysis (EMA) was performed on the roof panel, when the 

structure was clamped along the two edges corresponding to the windshield and the rear 

window side and left free along the two other edges. Clamping of the two edges was 

achieved by fixing them to blocks of wood of the same length which were fixed to a 

large plywood sheet.  

The surface of the panel was divided into a grid of 35 points (7 rows and 5 columns) in 

order to measure the response at different points on the surface and to be able to obtain 

the mode shapes and the overall structural response. The source of excitation was 

continuous random noise which was used to provide a force with an LDS type V201 

electro-dynamic shaker. The shaker was connected to the roof panel with a stinger and 

positioned near one of the corners of the panel in order to excite the majority of the 

modes. The excitation was detected by a piezoelectric B&K Type 8001 force transducer 

and the acceleration of the panel was measured via 5 low-mass piezoelectric PCB Type 

A352C67 accelerometers, one row of the grid at a time. The force transducer and 

accelerometers were connected to a 16–channel sensor signal conditioner set to a gain 

of 1. A picture of the rig and the experimental arrangement is displayed in Figure 5.1. A 

diagram of the experimental set-up is shown in Figure 5.2. The list of equipment used in 

this chapter has been provided in Appendix E.  
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Figure 5.1 – Picture of the rig and the arrangement of accelerometers and shaker.  

 

Figure 5.2 – Block diagram of the experimental set-up. 

The FRF of the acceleration per unit input excitation force was measured at all the 

points of the defined grid. This was done with five accelerometers which covered one 

row of the grid at a time. The measured FRFs were acquired using an LMS Scadas 

Mobile 8-channel data analyser up to 512 Hz. The reason for choosing this frequency 

range is because in a car, the structure-borne noise frequency content rolls off rapidly 

8-channel 
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beyond this range [1]. A Hanning window was applied to the data with 50% overlap and 

10 averages per acquisition. The results were exported into MATLAB files for further 

data analysis. 

5.1.2 Modal Analysis through Numerical Modelling 

A numerical model of the roof panel based on the properties and dimensions provided in 

Table 5.1 was created in ANSYS. The properties of the roof panel were based on the 

1030 carbon steel commonly used in car bodies. 

 

Table 5.1 – Dimensions and physical properties of the road vehicle roof panel  

Parameter Value units 

Dimensions 

Rise from centre of the panel 

 

 

lx = 0.95 

ly = 1.22 

zc = 0.05 

 

m 

m 

m 

 

Thickness h = 2 mm 

Density ρplate = 7800 kg m
-3

 

Young's Modulus  E = 2×10
11

 N m
-2

 

Poisson's Ratio νplate = 0.28 

 Modal Damping Ratio 

 

ξn = 0.0016 

 

    

 

The triangular SHELL63 elastic shell element used in the FEMs of Chapter 3 was used 

for generating the mesh of the roof panel. The mesh of the roof panel was first 

generated with the assumption that it was a trapezoidal section on the surface of a torus, 

in a similar manner to the FEMs in Chapter 3. The geometry of the mesh was then 

further modified to reflect the different elevations of the roof panel edges and corners, 

and to more accurately represent the structure. The frequency range for modal analysis 

was set to 1500 Hz. The mode shapes of the finite element model and the out-of-plane 

nodal displacements of the points corresponding to the experimental grid were 

calculated and exported from ANSYS for further data analysis and comparison with 

experimental data. A FEM of the roof panel with the points corresponding to the 

experimental grid has been shown in Figure 5.3.  
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Figure 5.3 – FEM of the road vehicle roof panel. The location of the 35 points corresponding to the 

experimental grid has been marked with black dots.  

Different boundary conditions were applied to the finite element model in order to 

obtain results that would be comparable with the experimental measurements. In the 

most accurate configuration, displacement and rotational constraints were applied at the 

location of the screws, which were used to fix the ends of the roof panel, in the x and z 

direction, leaving the panel flexible in the y direction to imitate the small lateral motion 

and rotation about the wooden support. The rest of the nodes of the surfaces in contact 

with the wooden blocks – where the roof would be mounted on the car body – were 

subjected to simply supported constraints (i.e. z constrained).  

5.1.3 Experimental and Numerical Results Comparison 

The natural frequencies measured for the modes of the roof panel were calculated and 

retrieved from the LMS SCADAS data analyser. The first 25 resonances have been 

listed in Table 5.2, along with the natural frequencies of the FEM for the boundary 

conditions above. 
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Table 5.2 – Natural frequencies of the structural modes of the roof panel obtained from 

measurements and finite element models. 

  Frequency (Hz) 

Mode # Experimental FEM - distributed constraint 

1 19.8 21.2 

2 26.7 26.1 

3 65.5 109.7 

4 76 113.1 

5 96.1 148.3 

6 109.4 242.8 

7 121.2 244 

8 123 269.7 

9 125.6 272 

10 140 281.6 

11 154 281.8 

12 157.5 286 

13 159.4 286.5 

14 172.6 290.6 

15 175.9 297.7 

16 181.6 299.3 

 

It can be seen from the above table that the FEM and experimental results only seem to 

accurately match for the two first modes of the system. The natural frequencies 

calculated in the numerical ANSYS model increase at a faster rate than those of the 

experimental and several modes appear to be missing. The simulated and experimental 

mode shapes were plotted for further comparison and the first 9 mode shapes of the roof 

panel are shown in Figure 5.4.  
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Figure 5.4 – The first 9 mode shapes of the roof panel obtained from measurements (top) and FEM 

(bottom). 

In order to help sort and validate the results obtained from the FEM and modal testing 

experiments, a one-by-one comparison of the mode orders was performed via MAC 

analysis (Modal Assurance Criterion) in order to determine the degree of correlation 

between the two sets of data. The resulting correlation percentages for the first 16 

natural frequencies have been shown in Figure 5.5. 
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Figure 5.5 - MAC Analysis between experimental modes and numerical modes on the roof panel. 

A poor correlation can be observed for the majority of the modes and only the two first 

mode orders can be confirmed through the MAC analysis. The overall response of the 

roof panel was calculated from the sum of the squared experimental and numerical 

velocities over the 35 points on the grid. In the FEM of the roof panel, the disturbance 

was modelled as a point force. During experimental work, an electrodynamic shaker 

was used and positioned at the same points as those chosen in the FEM. A comparative 

plot of the two can be viewed in Figure 5.6. 

 

Figure 5.6 – Overall structural response of the roof panel, measured experimentally (blue line) and 

calculated from the FEM analysis (red line). 
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Overall, both responses display a similar dynamic range but, limited agreement exists 

between the modelled and experimental responses. As expected from the mode shape 

results, the overall response obtained from the finite element model lacks many of the 

resonances observed in the experimental response in the 0-260 Hz frequency range. 

Modal clustering is visible in both responses, even though in the case of the FEM, the 

overlap starts occurring after 260 Hz, as opposed to 120 Hz in the experimental results. 

Additionally, a closer study of the experimental mode shapes reveals that some of the 

resonances observed in the lower frequency range are rigid body modes or are 

associated with the supporting panel.  

Due to the complex three-dimensional shape of the roof structure, the creation of a finite 

element model with accurate structural mode shapes can become complicated. The 

difference in stiffness due to the welding of parts of the structure together and the 

introduction of strain in the surface during manufacturing creates further limitations in 

the accurate representation of the system. 

Future work will be based on data obtained from the actual roof as the structure is 

already available. However, in an industrial development this might not be possible, due 

to cost restrictions and unavailability of the structure, and therefore, more time and 

effort might be dedicated to the generation of accurate finite element models.  

 

5.2 Simulation of Feedback Control on the Roof 

Panel 

In this section, simulations of velocity feedback control with an ideal point force are 

performed using the simulated responses of the road vehicle roof panel. Since the finite 

element model of the roof panel clearly demonstrates the main features of the measured 

structural response, this will now be used to investigate the effect of active control. The 

aim of the simulations was to achieve optimal control of the first four modes of the 

system using up to 4 control forces.  

Figure 5.7 shows the positions of the modelled control forces on the surface of the roof 

panel, based on the modelled mode shapes at 26 Hz and 108 Hz (second and third 
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modes). Simulations of feedback control were conducted using 2 and 4 ideal point 

forces, because it was not possible to model an actuator with a natural frequency low 

enough to be well separated from the structure’s first resonance and avoid 

compromising the stability of the control system. The gains of each control system were 

optimised in order to minimise the overall response of the modelled structure. 

 

Figure 5.7 – Positions of the Control points on the surface of the roof panel based on the second (26 

Hz) and third modes (108 Hz) of the system. 

The overall response of the panel before and after active control is shown in Figure 5.8 

for two control points and for four control points. The response has been plotted for the 

0-500 Hz frequency range. 
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Figure 5.8 – Roof panel response in the absence and presence of active control with optimal gain, 

when two controllers are assumed to be positioned on the surface of the roof (top), when four 

controllers are assumed to be positioned on the surface of the roof (bottom). 

Both graphs of Figure 5.8 show an attenuation of the response for the first two modes of 

the system. The 2-controller arrangement displayed in the top graph of Figure 5.8 shows 

a significant attenuation for the first two resonance peaks of the system and some 

attenuation for the 4
th

 and 5
th

 modes. Although the addition of 2 more control points, in 

the bottom graph of Figure 5.8, improves the performance of the feedback control 

system somewhat between 100 Hz and 150 Hz, the levels of attenuation in the first two 

mode is far less than for the 2-controller arrangement. This is caused by the positioning 
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of the 4 controllers, which as can be seen in the left picture of Figure 5.7, cannot couple 

as efficiently with the 2
nd

 mode of the roof panel as the 2-controller arrangement. In 

both cases, the cluster of mode observed above 200 Hz remains unaffected by the 

control system. 

The outcome of this simulation suggests that it is not feasible to use a small number of 

feedback control systems to practically control the vibration of the roof panel. Even 

though the simulations show that the first modes of the system can be significantly 

attenuated, the response of the structure in the frequency range of interest, 100Hz – 

300Hz, that contributes to the interior noise cannot be controlled. The first two modes of 

the roof occur at 20 and 26 Hz and are therefore too low in the frequency range to 

significantly influence the interior noise levels in the passenger compartment. 

Furthermore, considering how low these natural frequencies are, the design of an 

inertial actuator with a low enough natural frequency may not be practical within 

reasonable size and weight constraints, even with the addition of a compensating filter. 

 

5.3 Summary 

It can be deduced from the above results that the practical application of velocity 

feedback control on the roof panel of the road vehicle is not economically feasible. 

Based on the results obtained from the study of active control of doubly-curved panels 

in Chapter 4, this conclusion came as no surprise, because the dimensions and curvature 

level of the roof panel place it in the strongly-curved category of shallow shells (i.e. 

50cz

h
 ). In order to achieve any substantial reduction in the response level in the 100-

300 Hz frequency range, it would be necessary to install a large number of sensor-

actuator pairs, because of the cluster of local modes present in this region. However, 

this solution would not be economically efficient. In addition, even though the choice of 

other types of actuators such as PVDF patches may help the performance of the control 

system, it would still be difficult to ensure that the control system remains stable under 

all conditions, for example, for different types of driving or road surfaces.  
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Despite the lack of success in controlling the response of strongly curved panels such as 

the vehicle roof, the outcomes of Chapter 4 remain promising for shallow shells having 

low levels of curvature. The initial introduction of bow in the structure of a flat panel 

increased the attenuation level of both the structural response and radiated sound power 

levels, and also the stability of the control system. These results can be promising for 

the applications of feedback control systems on surfaces with low levels of curvature, 

such as the fuselage panels in aircraft, which are deformed due to pressurisation. As the 

fuselage tends to slightly bow during these processes, a small section of the body can 

then be considered as a doubly-curved panel of small curvature. This application is 

investigated using an experimental arrangement described in Chapter 6.  
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6. Velocity Feedback Control on a 

Pressurised Enclosure 

The previous chapters of the thesis have concentrated on the study of the structural 

behaviour of an isolated panel and its sound radiation into free space. This is not an 

accurate representation of practical systems however, in which the structure is usually 

part of an enclosure, for example part of a car body, an airplane fuselage or a submarine 

hull, and therefore, the sound radiated from the vibrating/excited structure can be 

influenced by the acoustic properties of the enclosure. An example of such interactions 

occurs in road vehicles where the coupling between structural vibrations from the 

engine and interior noise results in a low-frequency structure-borne booming noise. In 

the case of an aircraft, the structural-acoustic coupling between the vibrations of the 

flexible panels of the fuselage, caused by engine or wind turbulence excitation, with the 

acoustic properties of the cabin interior results in low-frequency interior noise.  

Such problems could be addressed by changes and optimisation in the design of the 

structure but this is often difficult or unfeasible to modify. Decentralised velocity 

feedback control can be a robust solution for the control of vibrations in flexible 

structures such as an aircraft fuselage. This chapter presents the results of experimental 

studies on the effect of changes in curvature on the performance of a velocity feedback 

control system.  

In the first part of the chapter, the experimental rig will be described and the control unit 

used in the experiments will be discussed. The second part will describe the results of 

offline simulations of active control based on measured data. The effects of adding a 

simulated compensator filter on the robustness of the system will be investigated. 

Finally the last section of the chapter will focus on real-time experiments of active 

control for increasing curvature and assess the performance and robustness of the 

system. The importance of using the compensator filter in maintaining the robustness of 

the control system is emphasised in both simulated and real-time results. 
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6.1 Experimental Set-up 

6.1.1 Experimental Rig 

The experimental rig consists of a rigid-walled enclosure on which the panel is 

mounted, whose curvature can be changed through the variation of the internal pressure 

in the enclosure. A thin homogeneous aluminium panel of 1 mm thickness is mounted 

and clamped along its four edges on a rigid frame fixed on top of the rectangular 

enclosure. The enclosure walls are made of 3-cm thick panels of Plexiglas to provide 

approximate rigid-wall acoustic boundary conditions and ensure that sound is only 

radiated by the panel. The dimensions of the free area of the panel are 
3414 314 1mm   

and the inner dimensions of the Perspex box are 3414 314 385mm  . The enclosure was 

made airtight in order to prevent any air leaking during pressurisation. The changes in 

the interior static pressure are achieved with a pressure compressor and a pressure 

regulator to control the air flow into the enclosure. In order to measure the static 

deflection of the aluminium panel, a dial indicator was mounted on the top frame of the 

enclosure and positioned at its centre. A block diagram and photograph of the set-up are 

provided in Figure 6.1. 
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Figure 6.1 – Experimental set-up and diagram of the pressurised enclosure. 

The source used in this experiment for the primary disturbance was acoustic, and to 

achieve a given volume velocity was composed of two loudspeakers fixed face-to-face 

to each other, as shown in Figure 6.2. This configuration, known as the Salava source, is 

composed of a driving loudspeaker and a sensor loudspeaker and allows to measure the 

volume velocity per unit voltage of the source [111]. The sensitivity of the source, 

which has been calculated in [111], is 4 3 1 11.1 10qS m s V    . The volume velocity per 

unit voltage was measured at the output of the sensor loudspeaker and the transfer 

response can be viewed in Figure 6.2. Because of the use of two loudspeakers in the 

source, two resonance peaks occur in the transfer response. In comparison to a single 

loudspeaker baffled source, the additional resonance increases the efficiency of the 

source at higher frequencies [111]. 
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Figure 6.2 – Salava source implemented by Anthony and Elliott in [111] and used for the current 

experiments (left), Measured volume velocity frequency response per unit driving voltage for the 

source (Right). 

In order to obtain a maximum static deflection of 2mm in the centre of the panel, the 

interior pressure of the enclosure needed to be increased to 715 Pa. This pressure was 

calculated at the design stage, in order to get safety approval for enclosure 

pressurisation during experiments, using Timoshenko’s equation of deflection for the 

case of a distributed load on a clamped-clamped surface, formulated as [112] 

4

4

0.00191 ( , )

0.00191
,

x y

c

y

q Min l l
z

D

ql

D

  



 

 

 

(6.1) 

where q  is the intensity of the distributed load and D  is the bending stiffness of the 

panel calculated from 
 

3

212 1

Eh
D

v



.  

The maximum stress applied at the centre along the x-direction can be obtained from 

Timoshenko’s equations of bending moment 
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max 2

6
,xM

h
   

(6.2) 

where xM  is the moment along the x-axis. The maximum stress max  for a 2-mm 

deflection at the centre of the panel was found to be 28.2 MPa. The yield and ultimate 

strength of aluminium were also found from the physical properties of aluminium 6061-

T6 to be 275 MPa and 310 MPa respectively, which are both well above the maximum 

stress caused at the centre of the panel by a 2-mm deflection.  

Based on the dimensions of the enclosure, the first natural frequency of the acoustic 

modes in the cavity is not expected until a frequency of 410 Hz and so these are not 

expected to play an important role in the frequency range of interest here. The 

calculated natural frequencies of the cavity and the extent to which they couple with the 

structural modes of the aluminium panel can be found in Appendix C. 

6.1.2 Control Unit 

The control unit used in this study consists of a proof-mass electrodynamic actuator 

collocated with a lightweight accelerometer for measuring the error signal, a signal 

conditioner and a power amplifier. The main criteria in actuator selection were size, 

weight and natural frequency. As the structure in question was a thin lightweight 

aluminium panel, it was required to choose an actuator that was small and relatively 

light in order to minimise the changes in the properties of the panel and the deflection in 

the surface of the panel due to the weight of the actuator. The other requirement was to 

choose an actuator which had a natural frequency low enough to be below the first 

natural frequency of the panel, and therefore avoid compromising the stability of the 

control system. The combination of the low weight and low natural frequency 

requirements brought in limitations in the selection process because the natural 

frequency is inversely proportional to the square root of the mass, for a given 

suspension stiffness. Finally, the other important limiting factor in the choice of actuator 

was the cost of the unit which must be taken into account for the practical 

implementation of the system to real-life problems, especially when more than one 

actuator is needed.  
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The transducer unit used as a proof-mass electrodynamic actuator is a 60-mm diameter 

cone loudspeaker, Type S066M, manufactured by Pro Signal. These loudspeakers are 

mass-produced and commercially available at a very low cost. They are lightweight and 

their high cone stiffness makes them fairly robust. Therefore, they are suitable for 

modification to act as inertial actuators in a lightweight and cost effective velocity 

feedback control system. The unit is used here in an unconventional way compared with 

when it is used as a loudspeaker, with the diaphragm attached to the structure and the 

mass free to move. The loudspeaker unit is composed of a Mylar diaphragm attached to 

a voice coil suspended in a constant magnetic field. The magnetic field is provided by a 

permanent magnet which in the arrangement used here, also acts as the proof mass in 

this modified arrangement. Pictures and a diagram of the actuator are shown in Figure 

6.3. 

Figure 6.3 – Pro Signal Type S066M actuator unit and diagram of the actuator. 

Various methods were investigated in order to achieve efficient coupling between the 

loudspeaker cone and the vibrating surface. Finally, it was found that the most effective 

method was to fill the cone of the loudspeaker with silicone acetate sealant and fix a 

thin plastic disk on this filling to ensure a level and smooth contact surface onto the 

panel. The silicone acetate was chosen because of its light weight, ease of application 

and flexibility. These properties allow the loudspeaker diaphragm to move freely and 

react against the surface when being driven. The measured mechanical and electrical 

properties of the unit when used in this way have been listed in Table 6.1. 

Base mass

Cone diaphragm

Coupling material

(silicone acetate)

Structure

Spider

Voice coil

Magnet

(Proof mass)
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Table 6.1 – Inertial actuator parameters 

Parameter   value    units  

Proof mass 

Base mass 

 

360 10proofM    

32.3 10baseM    

 

kg  

kg    

Suspension stiffness 

 

6700aK   

 

1Nm  

Suspension damping coefficient 2aC   

 

1Nsm  

Voice coil coefficient  

 

0.018a   

 

1NA  

Modal Damping Ratio 

 

0.05a   

  Actuator natural frequency  53.1
anf   

 Hz  

Coil electrical resistance   8eR       

Coil inductance  
688.1 10eL     H  

 

To characterise the designed actuator, blocked force measurements were performed up 

to 10 kHz when the actuator was mounted on a heavy rigid steel block acting as the 

blocked base. The blocked force response was measured between an input voltage to the 

actuator and the resulting acceleration measured by an accelerometer fixed on the top of 

the actuator. The acceleration was then multiplied by the moving mass to give the 

applied force and this, divided by the applied voltage is shown in Figure 6.4, where the 

simulated blocked force response has also been plotted in blue. The simulated blocked 

force response for a voltage-driven actuator was calculated using the actuator’s 

parameters listed in Table 6.1, and can be written as [2] 

2
,

proof

proof

Ma
blocked

eb a
M a

eb

Z
T

Z
Z Z

Z





 
 
 

  
      

 

 

(6.3) 
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where 
baseM baseZ j M  and 

proofM proofZ j M  are the impedance of the base mass and 

the proof mass respectively and a
a a

K
Z C

j
   is the impedance of the spring-damper 

system, ebZ  is the blocked electrical impedance of the actuator and eb e eZ R j L  , 

where eR  and  eL are the coil electrical resistance and inductance respectively and a  is 

the voice coil coefficient. The substitution of the above mechanical impedances into 

Equation (6.3) leads to the following equation for the blocked force response of the 

voltage-driven actuator 

2

2
2 2

,

2

a
blocked

eb a
a a a

eb proof

T
Z

j
Z M

 


    

 
 

 
   

        

 

 

(6.4) 

where a  and a  are the natural frequency and the modal damping ratio of the actuator 

respectively. For a current-driven actuator, Equation (6.4) reduces to 

2

, 2 2
.

2
blocked current a

a a a

T
j




    




 
 

(6.5) 

The details of the calculations for the simulated actuator will be covered in the next 

section of the chapter. 
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Figure 6.4 – Blocked force transfer response, normalised to the voice coil electrical resistance Re, 

when the actuator is voltage driven: Measured response (blue), Simulated response (red). 

In the above figure, the natural frequency of the actuator corresponds to the 53 Hz 

lightly-damped resonance peak observed in both of the measured and simulated transfer 

response plots. The associated 180-degree phase-lag can be seen in the lower subplot. 

The damping ratio of this resonance is about 4.8%. For frequencies above the natural 

frequency of the actuator, the response drops until it becomes flat up to an excitation 

frequency of 2 kHz, above which the unit has internal resonances, which do not occur in 

the simulated response as the contribution of these internal dynamics at higher 

frequencies has been neglected. The phase of this actuator does not go beyond the 90 

limit that would cause stability problems until about 7 kHz. By this frequency, the panel 

response has fallen sufficiently for this not to be a problem. 

As discussed in Chapter 4, the fundamental resonance of the actuator influences the 

stability of the feedback control system. At frequencies above the natural frequency of 

the spring-mass system, the structure is subjected to a sky-hook damping effect, which 

is due to a base force being equal to the mass-spring reactive force. At frequencies 

lower than the natural frequency of the actuator, a negative damping effect occurs, 

caused by the base force being out of phase with the reactive force of the system, which 

may lead to instabilities in the feedback control system. Therefore, in order to achieve 

optimal control, the actuator should have a natural frequency which is much lower than 
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the first mode of the vibrating structure under control, and high damping at the 

resonance [41] [113].  

Based on simulations of velocity feedback control performed using an actuator 

modelled with the parameters listed in Table 6.1, although the resonance of the actuator 

is below the natural frequency of the first structural mode, the spacing between the two 

is not sufficient to ensure a stable control system. 

In order to overcome these limitations for the actuator used in this study, a second order 

compensator filter was added in the feedback loop. The compensator, which reduces the 

apparent natural frequency of the actuator, was based on the design proposed by Elliott 

et al. in [114] and is described by the following equation: 

2 2

2 2

ˆ ˆ ˆ2
( ) ,

2

a a a

c c c

j
C

j

    


    

 


 
 

(6.6) 

where ˆ
a and ˆ

a are estimates of the damping ratio and the natural frequency of the 

actuator respectively, and c  and c , respectively, refer to the damping ratio and natural 

frequency of the compensator. Assuming that the actuator natural frequency and 

damping ratio are correctly identified such that ˆ
a a   and ˆ

a a  , the filter 

compensates for the actuators dynamics in Equations (6.2) and (6.3), and introduces a 

new resonance with a frequency of c  and a damping ratio of c . In this study, the new 

natural frequency is chosen to be 10.6Hz
2

c


  and is critically damped  1c   in 

order to reduce the natural frequency of the actuator by a factor of 5 and completely 

flatten the actuator’s resonance peak. 

The frequency response of the simulated compensator, the uncompensated and 

compensated blocked force frequency responses, all plotted up to 10 kHz, are shown in 

Figure 6.5 and Figure 6.6 respectively. In the graphs of Figure 6.5, the frequency 

response of the compensator displays an anti-resonance and a phase lead of 180° at the 

natural frequency of the actuator. This results in the cancellation of the actuator 

resonance peak and makes up for the 180° phase lag (Figure 6.6). However, the 

compensated blocked force response graph of Figure 6.6 also reveals that the addition of 

the compensator results in up to 20 dB enhancement below 40 Hz. This enhancement 
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may be detrimental to the stability of the feedback loop as it results in an amplification 

of the low frequency noise in the measurements. This low-frequency noise amplification 

may result in force/stroke saturation of the actuator which occurs when the actuator is 

driven with a large force and results in the proof mass hitting the casing of the actuator. 

Displacement saturation occurs causing an impulse to be transmitted to the structure, 

which in turn when detected by the error sensor can introduce additional phase shifts in 

the feedback loop and cause spillover and instability [115].  

 

Figure 6.5 – Frequency response of the compensator: magnitude (top), phase (bottom). 

 

Figure 6.6 – Blocked force frequency response of the actuator: uncompensated (blue curve), 

compensated (red curve). 
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Consequently, the degree to which the natural frequency can be lowered is limited by 

the amount of low frequency gain that can be used in the compensator. The main 

disadvantage of using such a compensator is thus the enhancement of the low-frequency 

range below the control unit natural frequency by nearly 20 dB which could cause 

potential problems in the practical implementation of the feedback control system, as 

the slightest further enhancement picked up by the error sensor could induce saturation 

in the actuator and potential stability issues may arise. 

Another danger in this actuator design is that additional phase shifts will be introduced 

into the open-loop response if the assumed natural frequency and damping of the 

actuator are not equal to the true values. This could occur if these parameters are not 

correctly identified, if they change over time or with temperature, or if a single design 

of compensator is used for a number of different actuators with a range of natural 

frequency and damping values. The robustness of the compensator has been studied by 

Rohlfing et al. in [116], who showed that the compensator phase response is not 

significantly affected by quite large changes in the actuator damping, from 0.03 to 0.06, 

but to maintain the compensated phase change to below 90  , the natural frequency 

must be estimated to about 5Hz for the damping ratio range here.  

The actuator was mounted on the surface of the panel at a position  ,c cx y   

 0.38 ,0.53x yl l  and the corresponding accelerometer sensor was positioned directly 

underneath the actuator. As described in Chapter 4, this slightly off-centre position of 

the actuator-sensor pair on the panel is optimal for controlling more modes when there 

is only one controller. The robustness of the control system unit in the presence and 

absence of the compensator filter will be further assessed in the next sections through 

offline simulations and real-time experiments of velocity feedback control on the 

pressurised enclosure. 
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6.2 Offline Simulations of Active Control 

In order to predict the performance and stability of the feedback control system for 

increasing levels of curvature, offline simulations of active control were performed 

using measured data. For this purpose, the panel was divided into a grid of 4 4  points 

and the transfer mobility between the primary disturbance and the grid of 16 points 

(acceleration measured by accelerometers per unit volume velocity of the source), the 

transfer mobility between the actuator (secondary source) and the grid of 16 points 

(acceleration measured by accelerometers per unit input voltage to the actuator) and the 

open-loop response (acceleration measured by the error sensor per unit input voltage to 

the actuator) were measured. These measurements were performed for 11 different 

curvature levels corresponding to elevations in the centre of the panel

0,0.2,0.4,...,2cz  mm. This was achieved by pressurising the air inside the enclosure. 

The closed-loop response of the system was then simulated offline using the above data 

and the effect of adding a compensator in the feedback loop was investigated. The 

results for different curvature levels are provided in the upcoming subsections. An 

elemental model of the enclosure has also been derived in Appendix D, for which the 

results of simulated of velocity feedback control are shown for different curvature 

levels. 

6.2.1 Open-Loop Response 

The actuator which was positioned slightly off-centre at the position given at the 

beginning of the chapter, was driven by a voltage source to excite the panel. The open-

loop or plant response was measured between the voltage input to the actuator and the 

acceleration measured by the error sensor over increasing curvature. Figure 6.7 shows 

the positioning of the actuator on the surface of the panel during the open-loop response 

measurements. The stability of the control system over increasing curvature was 

assessed through the Nyquist and bode plots of the plant frequency response function 

(FRF).  
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Figure 6.7 – Picture of the actuator set-up on the surface of the panel during open-loop FRF 

measurements. 

Figure 6.8 shows the Bode plots of the open-loop response with increasing levels of 

curvature. The plots show the coupled interactions between the actuator and the panel. 

In both flat and curved panel open-loop FRFs, the first peak which occurs near 40 Hz, 

corresponds to the coupled response where the actuator dominates. The actuator’s 

blocked natural frequency, of 53 Hz, is lowered to near 40 Hz, because of the decrease 

in the effective suspension stiffness which is due to the compliance of the panel. The 

frequency of this peak increases from 40 Hz to about 45 Hz as the panel stiffens when 

the enclosure is pressurised. A low-amplitude dip can also be seen in the Bode plot near 

50 Hz, which corresponds to the passive effect at the natural frequency of the mass-

spring system in the actuator.  

In the case of the curved panel, the second peak which is due to the first panel mode, is 

shifted towards higher frequencies, such that although it is near 88 Hz for the flat panel, 

it increases to 140 Hz for 2cz mm . This is caused by the stiffening effect of the 

curvature, as explained in Chapters 2-4.  
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Figure 6.8 – Bode plot of the open-loop response of the control system with increasing curvature: 

flat panel (blue curve), doubly-curved panel with a deflection of zc = 1 mm (red curve), doubly-

curved panel with a deflection zc = 2 mm (black curve).  

The effect of adding the compensator on the open-loop frequency response, and hence 

on the stability of the system can be seen in the Nyquist and Bode plots of Figure 6.9. In 

both cases, the results have been plotted for a gain level corresponding to the 6-dB gain 

margin of the uncompensated control system, in order to give an idea of the scale, as the 

6-dB gain margin of the compensated system is significantly higher.  
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Figure 6.9 – Bode plots (left) and Nyquist plot (right) of the open-loop frequency response for the 

flat and doubly-curved panels, zc = 2mm, before and after compensation. 

For the uncompensated system, the natural frequency of the actuator appears on the left-

hand side of the Nyquist plots, while the lobes on the right-hand side are due to the 

resonances of the panel. The stability and performance of the control system can be 

assessed by the ratio of the size of the right-hand side lobe to the left-hand side lobe 

[107]. The larger this ratio, the greater is the distance between the natural frequency of 

the actuator and the 1
st
 mode of the panel. It can be seen from the uncompensated 

Nyquist plots, that this ratio is much larger in the case of the curved panel than the flat 

panel. As demonstrated in the simulations of Chapters 4 and Appendix D, it can be 

deducted that the introduction of curvature in the structure may improve the stability of 

the uncompensated system. 

When the compensator is added in the feedback loop, a dip occurs at the location of the 

actuator’s resonance or compensator’s anti-resonance and a phase lag is introduced to 
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the system at this frequency. Consequently, the lobe corresponding to the actuator 

natural frequency is shifted to the right-hand side in the Nyquist plot, which corresponds 

to a significant increase in the stability of the system and allows the implementation of 

feedback control at higher gain levels. The Nyquist plot of the curved panel still shows a 

larger ratio of right-hand lobe to left-hand lobe size after compensation, showing that 

the actuator-compensator system is robust to changes in curvature.  

6.2.2 Panel Structural Response 

The transfer mobility between the primary disturbance and the grid of 16 points defined 

on the panel was measured for 11 levels of curvature corresponding to a deflection in 

the centre of the panel 0,0.2,0.4,...,10cz  mm. The averaged structural response was 

calculated from the sum of the squared velocities over the 16 points of the grid. Figure 

6.10 shows the structural response as the enclosure is pressurised and the panel 

curvature increases.  

 

Figure 6.10 – Effect of curvature increase on the overall structural response of the panel before the 

actuator is attached: flat (blue curve), curved with zc = 1 mm (red curve), curved with zc = 2 mm 

(black curve). The dotted curves between the graphs show the progression of the structural 

response over increasing curvature. 
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With the increase in the internal pressure of the enclosure, a shift in the panel modes 

towards higher frequencies can be observed in the above figure. These experimental 

results confirm the results obtained from the analytical models described in the previous 

chapters.  For example, the natural frequency of the first mode of the panel which 

occurs around 70 Hz when the panel is flat, more than doubles when the deflection in 

the centre of the panel is increased to 2 mm and can be seen to be near 150 Hz. The 

increase in curvature also reduces the amplitude of the lower natural frequencies such 

that the magnitude of the first mode is reduced by 13 dB. This is due to the increase in 

the stiffness of the panel as the stiffness-controlled region is extended to higher 

frequencies, which passively controls the panels’ lower modes. 

When the actuator is positioned on the surface of the panel slightly off-centre at the 

location specified at the beginning of the chapter, the structural response changes due to 

the influence of the mechanical properties of the actuator. Figure 6.11 shows the loaded 

averaged structural response of the panel with increasing curvature. 

 

Figure 6.11 – Effect of curvature increase on the overall structural response of the panel, when it is 

loaded with the actuator: flat (blue curve), curved with zc = 1 mm (red curve), curved with zc = 2 

mm (black curve).  
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Two low frequency resonance peaks are now seen, near 40 Hz and 78 Hz, and 

correspond to the coupled actuator resonance and the coupled first resonance of the 

panel, instead of a single dominant peak. While the natural frequency of the first mode 

of the panel is significantly increased with the enclosure pressurisation, the actuator 

resonance is only shifted by a few Hz, as its mechanical properties such as the proof 

mass and the stiffness of the coil, are not significantly affected by the changes in 

curvature. Furthermore, the amplitude of the actuator resonance is significantly 

attenuated with the increase in the stiffness of the panel over increasing curvature which 

acts as passive control on the actuator and allows the implementation of higher feedback 

gain without causing enhancements at the natural frequency of the actuator. The trend in 

the natural frequency of the actuator-panel resonance and the first 3 modes of the panel 

over the increasing curvature due to pressurisation is shown in Figure 6.12. 

 

Figure 6.12 – Natural frequencies of the first 3 modes of the panel plotted along with the natural 

frequency of the actuator over increasing deflection in the centre of the panel. 

This figure shows that while the difference between the actuator natural frequency and 

the panel mode increases, which improves control performance, the increasing curvature 

brings the natural frequencies of the panel closer together. As shown in simulations of 

active control of Chapter 4, modal clustering is detrimental to the performance of the 

control system. Consequently, there are two effects that curvature has on control 
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performance. While the stability of the system is increased due to the increasing 

difference between the actuator and the panel first resonances, worse control is achieved 

due to the decrease in the difference between the natural frequencies of the panel’s 

modes. This trade-off is demonstrated in the simulations of active control based on 

measured responses in the following subsections. 

 

6.3 Simulations of Open-Loop Response including 

the Loading Effects of the Actuator 

When a control system is implemented on a structure the coupled velocity changes to 

include the effects of this secondary source. In the simulations of feedback control of 

Chapter 4, the loading effects of the actuator on the panel were neglected in order to 

simplify the equations. In this section, the open-loop response of a SISO feedback 

control system will be simulated while the loading effect of the base and coil mass of 

the actuator are included.   

The control system modelled in this section consists of an inertial actuator collocated 

with an ideal velocity sensor measuring the velocity of the panel at the point of control. 

A lumped-parameter model of the electromechanical system of the actuator, modelled 

as a single degree of freedom (SDOF) system, is shown in Figure 6.13. The inertial 

actuator modelled here is based on the actuator used in the experiments described in this 

chapter. The parameters and physical properties of the actuator are the same as those 

listed in Table 6.1.  

 

Figure 6.13 - Lumped parameter model of the actuator with a base mass. 
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The inertial actuator both supplies a force to the panel and modifies its passive dynamic 

behaviour. If the force generated by the actuator is as a result of feedback from the 

panel’s velocity, the effect of the feedback can also be modelled as a modification to the 

plate dynamics. The overall effects of the actuator can be defined in terms of both active 

and passive contribution as 

,c mech activeZ Z Z   (6.7) 

where mechZ  is the passive or open-circuit mechanical impedance and activeZ is the active 

impedance. The mechanical impedance is calculated from the equivalent impedances of 

the SDOF system of Figure 6.13 as  

,
proof

base

proof

M a

mech M

M a

Z Z
Z Z

Z Z
 


 

(6.8) 

where 
baseM baseZ j M  and 

proofM proofZ j M  are the impedance of the base mass and 

the proof mass respectively and a
a a

K
Z C

j
   is the impedance of the spring-damper 

system.  

If a velocity feedback loop is used to drive the actuator with a voltage source, the 

equation for the active impedance of the actuator can be determined using the two-port 

network method discussed in [117], such that the voltage of the electrical circuit in 

Figure 6.13 can be written in terms of the complex control velocity and the control force 

can be expressed in terms of the current, leading to the set of equations  

a eb a em cV Z i T w   (6.9a) 

,c me a mech cf T V Z w   (6.9b) 

where aV  is the voltage across the electrical inputs to the transducer, ai  is the current, 

emT  is the transduction coefficient. For an anti-reciprocal transducer such as a moving 

coil transducer, em meT T  . The transduction coefficient emT  is the blocked force 

response of the actuator, which is the maximum force per unit input voltage and can be 

measured when the actuator is fixed on a solid block, such that the velocity of the 
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moving mass is 0 and the actuator cannot couple with the structure. For a voltage-driven 

source, the blocked force response is obtained from Equation (6.3) defined in Section 

6.1.2. 

The control velocity on the panel can be expressed in terms of the point mobility 

,cc coupledY  of the panel at the location of control, and the control force cf , as 

, ,c cc coupled cw Y f   (6.10) 

where unlike the point mobility ccY  defined in Chapter 4, 
,cc coupledY  includes the passive 

effects of the actuator and is defined as  

   
1 1

, .cc coupled c mech activeY Z Z Z
 

    (6.11) 

Alternatively, the control force can be written in terms of the impedance at the point of 

control and the complex control velocity as 

,c c cf Z w   (6.12) 

where the negative sign in the above equation is due to the direction of the force in 

Figure 6.13 being in the opposite direction of the sign convention. The substitution of 

Equations (6.3) and (6.11) in Equations (6.9a-b) and the combination of the two 

equations lead to the equation for the active impedance of the actuator 

,c blocked a mech cc coupled cf T V Z Y f    

,

1

1
c blocked a

mech cc coupled

f T V
Z Y




 
 

,1

c blocked
a

a mech cc coupled

f T
T

V Z Y



=  

 

(6.13) 

,active aZ HT  (6.14) 
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where H  is the feedback loop gain which for a single channel control system is a 

frequency-independent value, H g . Finally the open-loop response or plant response 

of the actuator is expressed in terms of the active impedance aT  and the structural point 

mobility of the panel ccY  at the point of control as  

, .cc coupled aG HY T  (6.15) 

The bode plot of the simulated open-loop response of the control system is shown in 

Figure 6.14 before and after including the loading effect of the actuator. The effect of 

the actuator base mass which was omitted in the simulations of Chapter 4, have also 

been taken into account here.  

 

Figure 6.14 – Bode plot of the simulated open-loop response of the SISO feedback control system: 

without the loading effect of the actuator (blue curve), with the loading effect of the actuator 

included (red curve).  

As shown in the blue curve of Figure 6.14, when the loading effects of the actuator are 

not taken into account, the open-loop response does not reflect the coupling interactions 

between the actuator and the panel. Therefore, the response resembles the one of a 

control system with an ideal point force actuator. In this case, the first resonance peak 

corresponds to the panel’s first structural mode. However, when these loading effects 

are included in the model, the simulated open-loop response shown by the red curve in 

Figure 6.14 closely resembles the measured open-loop response shown in the Bode 
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plots of Figure 6.8. The first resonance which is caused by the inertial effect of the 

actuator’s mass and coil on the panel and is known to occur around 40 Hz from 

measurements, can be seen in the red response curve. Simulating the loading effect of 

the actuator on the structure is an important factor to consider in the actuator selection, 

especially in applications where weight is an important factor  

 

6.4 Control Performance 

The control performance and robustness of the system were assessed through offline 

simulations based on the measured open-loop responses, the measured transfer mobility 

between the actuator and the grid of 16 points on the panel and the measured transfer 

mobility between the primary disturbance and the grid of 16 points. A fixed 

compensator was assumed for all experiments, regardless of the curvature level of the 

panel. 

In order to assess the control performance, the average structural response which is the 

sum of the squared velocities over the grid of 16 points on the panel, was calculated up 

to 500 Hz both with and without compensator. Figure 6.15 shows the averaged 

structural response and optimal gain graphs for both flat and curved panel. The increase 

in the natural frequency of the first panel mode with pressurization, from 88 Hz to 150 

Hz, is clear from the comparison of the two figures. The optimal gain value is the 

feedback gain value for which maximum attenuations in the overall frequency response 

levels can be achieved. This value can be estimated using the graphical approach 

discussed in Chapter 4 and the corresponding graphs are shown on the right-hand plots 

of Figure 6.15.  

The changes in kinetic energy level with feedback gain for the uncompensated system 

give an indication of its low gain margin. Because of the low gain margin of the 

controller and the lack of sufficient distance between the optimal gain and the maximum 

stable gain, most of the attenuation in the structural response is due to the loading effect 

of the actuator rather than the feedback controller. However, when the compensator is 

added to the feedback loop, the maximum stable gain and the gain margin are both 



 

 177  

significantly increased. The optimal feedback gain is also at least a factor of 10 away 

from the limit of instability.  

 

Figure 6.15 – Kinetic energy (left) and optimal gain plots (right) for the uncompensated and 

compensated control loops for both flat (top) and curved (bottom) panels: maximum stable gain 

(diamond) and optimal gain (circle). 

For the flat panel, the attenuation level of the first few modes is significant and the first 

peak is reduced by 20 dB. For the curved panel, even though the overall attenuation is 

not as significant as for the flat panel and the first peaks only show a 2 dB reduction, the 

optimal feedback gain is well below the maximum stable gain. Despite the change in 

curvature, the stability of the feedback system is not compromised and the controller 

with the compensator-actuator pair remains robust to the changes in the surface shape 

due to pressurisation. This is because the compensator has been designed to only modify 

the physical properties of the actuator without needing to account for the dynamics of 
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the panel. The optimal gain of the compensated system also does not seem to be very 

sensitive to the increase in curvature and is similar in both flat and curved panel cases. 

The uncompensated and compensated velocity FRFs at the location of the actuator for 

an enclosure with a flat panel are shown in the graphs of Figure 6.16, both plotted 

before control, when the feedback loop is closed with a 6-dB gain margin and when the 

feedback loop is closed with an optimal feedback gain. The same results for the case of 

a curved panel are shown in Figure 6.17.  

In the absence of the compensator, when the feedback loop is closed, the level of 

control is very limited. The uncompensated system has a low gain that cannot be 

increased without pushing the system towards instability and despite the low gain level 

up to 10 dB enhancement occurs at the 40-Hz resonance peak. However, when the 

compensator is introduced in the feedback loop, the control system can more 

successfully attenuate the response. 
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Figure 6.16 – Bode plots of the uncompensated (top) and compensated (bottom) panel velocity at 

the location of the actuator, for a flat panel.  
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Figure 6.17 – Bode plots of the uncompensated (top) and compensated (bottom) panel velocity at 

the location of the actuator, for a curved panel, zc = 2 mm.  

The comparison of the graphs of Figure 6.16 and Figure 6.17 indicates that even though 

the increase in curvature may reduce the attenuation levels for an optimal feedback gain 

value, in comparison with the flat panel, the curved panel is still controlled and no spill-

over or noticeable enhancement occurs. When the feedback loop gain is set to the 
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optimal gain value, the local attenuations in the panel velocity, especially below 200 Hz, 

is significantly less than when the 6-dB gain margin is applied. This is due to the fact 

that the optimal feedback loop gain corresponds to the maximum attenuation in the 

global response over the frequency of control, rather than local attenuations at the point 

of control. However, the use of the optimal gain value allows a better global attenuation 

and unlike the 6-dB gain margin prevents enhancements at low frequencies. 

The maximum attenuation level in kinetic energy resulting from the optimal feedback 

loop gain value was plotted over increasing curvature, before and after the introduction 

of the compensator in the feedback loop. These plots have been shown in Figure 6.18. 

This was done to assess the effect of curvature increase on the maximum overall 

attenuation in kinetic energy levels, both in the absence and presence of the 

compensator. It was expected that the control performance would be initially improved 

for lower levels of curvature before being degraded by larger deflections. Not only does 

Figure 6.18 confirm and validate the simulation results, but the compensated result 

show attenuation levels twice as high as the uncompensated attenuations. The further 

increase in curvature reduces the performance of the controller, as predicted, and the 

uncompensated and compensated plots converge to the same value for the maximum 

panel deflection 2cz mm . The addition of the compensator does, however, maintain 

the stability of the system despite the lack of overall attenuations for higher levels of 

curvature. 
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Figure 6.18 – Maximum reduction in overall kinetic energy plotted over increasing curvature, 

uncompensated (red) and compensated (black).  

The outcomes of the offline simulations discussed in this section will be verified against 

real-time implementation of active control on the experimental rig. 

 

6.5 Real-Time Experiments of Active Control 

This section discusses the results obtained from the real-time implementation of the 

single-channel feedback control system on the experimental rig. The actuator was 

mounted on the panel slightly off centre, as above, and a lightweight accelerometer was 

again mounted under it inside the enclosure. An integrator was used to convert 

acceleration to velocity and obtain proportional velocity feedback control. A second 

order analogue compensator designed to reduce the natural frequency of the actuator by 

a factor of 5 was also implemented into the feedback loop. A high-pass filter with a cut-

on frequency of 15 Hz was also added to the control system in order to filter out low 

frequency noise. The diagrams of the compensator and high-pass filter taken from [116] 

can be found in Appendix E. Although the use of the high-pass filter reduces the 

stability margin of the system due to the introduction of delay in the system, it also 
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prevents the system from being overloaded due to sudden amplifications of low 

frequency background noise.  

Three additional accelerometers were mounted on the surface of the panel in order to 

measure the acceleration at points other than the actuator location and assess the 

performance at points further away from the location of control. The primary source 

described in the previous sections was placed in the enclosure to excite the panel. The 

spectra of the accelerations at these points were measured before and after closing the 

feedback loop. The location of the additional accelerometers and the diagram of the 

feedback control system is shown in Figure 6.19. 

 

Figure 6.19 – Experimental set-up and block diagram of the feedback control system. The location 

of the accelerometers has been indicated on the panel. 

The enclosure on which the panel was clamped was pressurised in order to change the 

deflection of the panel and perform measurements for the three levels of curvature 

corresponding to a deflection of 0 mm, 1 mm and 2 mm in the centre of the panel. In the 

first stage, the 6-dB gain margin was determined by the measurement and real-time 

amplification of the open-loop response when only the actuator was exciting the panel. 

Defining this limit was important in order to adjust the input voltage into the actuator 

such that spillover and instabilities could be avoided during real-time control 

experiments. Then the feedback loop was closed and real-time feedback control was 

performed. The measured open-loop response amplified to the feedback gain to the 6-

dB gain margin is shown in the Nyquist and Bode plots of Figure 6.20 for the three 

levels of curvature.  

1 

2 
3 
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The open-loop response FRF of the flat panel is again characterised by two resonance 

peaks under 100 Hz, corresponding to the actuator’s coupled natural frequency and the 

panel’s coupled first natural frequency. These peaks correspond to the left-side lobe and 

the right-side circles of the Nyquist plot respectively. With the increase in curvature, the 

modes of the panel are shifted towards higher frequencies which results in an increase in 

distance between the actuator resonance and the panel’s first mode resonance. The 

resonance peak of the actuator is attenuated by the panel stiffening with the introduction 

of curvature. This behaviour is translated in the Nyquist plot of the open-loop response 

through the gradual reduction of the left-side lobe. As discussed previously, all these 

factors contribute to an improvement in the feedback loop stability. Although the 

compensator largely removes the left-hand lobe in the Nyquist plots for larger 

curvatures, it can be seen in the results with no curvature due to the effects of the high-

pass filter. 
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Figure 6.20 – Bode (left) and Nyquist plots of the open-loop response for a 6-dB gain margin, for 

increasing curvature. 

Real-time feedback control was performed for the three levels of curvature shown above 

corresponding to a deflection of 0 mm, 1 mm and 2 mm in the centre of the panel. 

Before the feedback loop was closed, the gain was adjusted to the 6-dB gain margin 
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level defined during open-loop measurements. The voltage output of the collocated 

accelerometer was continuously monitored via the oscilloscope in order to reduce the 

gain if needed and avoid instability and damage to the actuator.  

In order to assess the performance of the controller over increasing curvature, the 

squared velocity of the panel, measured at the location of the actuator and near the 

corner of the panel (position 3 in Figure 6.19), were compared with the uncontrolled 

squared velocity at those locations. Figure 6.21, Figure 6.22 and Figure 6.23 show these 

graphs for the three levels of curvature. As seen in the Bode plots of Figure 6.20 and the 

plots of the previous section, the implementation of the actuator on the panel results in 

coupling interactions between the two. The actuator also acts similarly to a tuned-mass 

absorber on the panel’s first resonance which, for the flat panel, contributes to 

significant passive reductions.  

However, the increase in the curvature of the panel is detrimental to the passive control 

of the actuator and as it can be observed from the graphs of Figure 6.22 and Figure 6.23, 

the loaded velocity of the panel looks like the unloaded one. On the other hand, the 

increase in curvature improves the local performance of the control system such that the 

panel’s first resonance which is the dominating peak in the response is attenuated by up 

to 20 dB and the enhancement at the actuator’s resonance is completely reduced for a 

panel deflection of 2cz mm . The stability of the system is also maintained with the 

use of the compensator. However, very little attenuation can be seen in the overall 

spectra. This is expected since a single-channel system can only effectively control a 

couple of modes and is not efficient at global control. 
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Figure 6.21 – Spectrum of the control velocity at the location of the actuator, wc, (top) and near the 

corner of the panel away from the actuator, we (bottom) for a flat panel. The response of the panel 

before mounting the actuator, with the actuator mounted but undriven, and with feedback control 

with a 6-dB gain margin are shown by the different curves. 
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Figure 6.22 –Spectrum of the control velocity at the location of the actuator, wc, (top) and near the 

corner of the panel away from the actuator, we (bottom) for a curved panel with zc = 1 mm. The 

response of the panel before mounting the actuator, with the actuator mounted but undriven, and 

with feedback control with a 6-dB gain margin are shown by the different curves. 
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Figure 6.23 – Spectrum of the control velocity at the location of the actuator, wc, (top) and near the 

corner of the panel away from the actuator, we (bottom) for a curved panel with zc = 2 mm. The 

response of the panel before mounting the actuator, with the actuator mounted but undriven, and 

with feedback control with a 6-dB gain margin are shown by the different curves. 

The measured velocities spectra at the corner of the panel away from the actuator also 

show that the attenuation levels are not as good as when the accelerometer is collocated 

with the actuator. However, except for some of the mode near 150 Hz, no enhancement 

can be seen at higher frequencies.  
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6.6 Summary 

In this chapter, the real-time implementation of velocity feedback control on an 

experimental rig was investigated. The rig consisted of an aluminium panel clamped on 

top of an airtight Perspex enclosure. The air inside the enclosure was pressurised in 

order to control the deflection in the panel. The actuator was positioned slightly off-

centre in order to allow it to couple with more modes.  

First, offline simulations of velocity feedback control were performed based on 

measured transfer responses and the effects of adding a compensator filter in the 

feedback loop were assessed. The results indicated that the addition of the compensator 

increased the gain margin and improved the stability of the system. Higher attenuation 

levels were also achieved in comparison to the uncompensated results. The increase in 

the curvature of the panel also improved the stability of the control system, pushing the 

gain margin further away from the optimal gain for which maximum attenuation in the 

overall response could be achieved. This outcome confirmed the results obtained from 

simulations in previous chapters. In addition, after an initial improvement in control 

performance as expected based on previous simulations, the attenuation levels in the 

response decreased with the increase in curvature. The addition of the compensator to 

the feedback loop did not significantly affect the optimal gain for which maximum 

attenuation in the overall response could be achieved.  

Despite the changes in curvature, the real-time experiments showed that the stability of 

the system was not compromised and the compensator-actuator pair remained robust to 

the changes in the surface shape due to pressurisation. The results from these 

experiments confirmed the outcomes of the offline simulations and analytical models of 

the previous chapters. 
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7. Conclusions and Future Work 

7.1 Conclusions 

This thesis consisted of two parts. In the first part of the thesis, the effects of curvature 

on the performance of a velocity feedback control system were investigated when the 

system was implemented on a rectangular panel. This was done through analytical, 

numerical and experimental work.  

First, a comprehensive study of doubly-curved shell theory was provided in Chapter 2 

through the formulation of analytical models of rectangular shells for two different 

boundary conditions. The analysis of the mode shapes of the shell with increasing 

curvature showed an increase in the natural frequency of each mode. However, this 

increase was not uniform for all modes; the lower order modes showed a more 

pronounced increase, while the natural frequency of the higher order modes did not 

significantly change with curvature. As a result, at some of the curvature levels, regions 

of intersection between the modes could be observed, indicating that at those curvature 

levels, more than one mode could occur at a single frequency or very nearby. 

Furthermore, towards the highest level of curvature in the defined range, with the 

difference in the rate of increase for lower-order and higher order modes, all the modes 

formed a cluster, which is believed to be near the ring frequency of the shell.  

As a continuation to the investigations of Chapter 2, in the third chapter, three analytical 

and numerical finite element models of a homogeneous aluminium rectangular panel 

were created for different curvatures: 1) the analytical model based on Warburton’s 

theory in which in-plane inertia is not taken into account, (2) the analytical model with 

in-plane inertia contribution, (3) the ANSYS FEM. The panel was assumed to be 

supported by shear diaphragms along all four edges. 

The effect of curvature increase on the mode shapes was noticeable for medium to high 

levels of curvature. The modal displacement amplitudes for strong curvature were 

noticeably smaller in the FEM mode shapes, as a result of the stiffening effect due to 

curvature increase and modal clustering. This could not be seen in the analytical mode 

shapes as they were assumed to remain unchanged for all levels of curvature. Therefore, 
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in order to increase the accuracy of the analytical model, especially at higher levels of 

curvature, it will be necessary to model the mode shapes such that these changes are 

accounted for. 

Finally, the natural frequencies of the numerical and analytical models were compared 

with increasing curvature, in order to assess the importance of the contribution of in-

plane inertia. All three models showed a similar trend in terms of increasing natural 

frequency with respect to increasing curvature and occurrence of modal clustering for 

strong curvature. However, while the natural frequencies of modes where m n  were 

practically identical across all three models, the other modes of the model derived from 

Warburton’s theory in which in-plane inertia was not accounted for, only agreed with 

the other two models for light curvature and the natural frequencies of the mode was 

significantly different from the other two models for strong curvature. Thus, even 

though Warburton’s approach does help to gain a better understanding of the influence 

of two-dimensional curvature on the free vibrations of shallow shells and provided a 

good baseline for analytical models, the absence of the contribution of in-plane inertia 

in the model does not provide an accurate representation of the vibrational behaviour for 

more general cases.  

The outcomes of these two chapters demonstrated the occurrence of modal clustering 

for increasing curvature. Previous investigations of active vibration control have shown 

successful results in the attenuation of the low-frequency structural excitations when 

there are a small number of modes and there is separation between them. It was 

concluded that this modal clustering could have a detrimental effect on the performance 

of an active vibration control system installed on the structure.  

These effects were assessed in Chapter 4. The results of simulations of velocity 

feedback control on a modelled simply-supported rectangular panel were shown for 

increasing curvature. The positive conclusion of this investigation was that the increase 

in curvature of the panel improved the stability of the system and allowed a larger gain 

margin in the controller. This is caused by the increase in the stiffness of the panel due 

to curvature increase. For strong curvatures, the contribution of the actuator dynamics 

becomes less important. Initially, the increase in curvature improves the performance of 

the control system. For the panel modelled in this chapter based on given dimensions 

and physical properties, the performance of the control system was improved up to a 
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curvature level corresponding to a deflection of 2 mm at the centre of the panel. More 

generally, for structures where the deflection from the centre is up to 0.8% of their 

length and width dimensions, efficient attenuations can be achieved when the controller 

or controllers are positioned in a non-symmetrical arrangement on the structure. Beyond 

this level of curvature, however, the clustering of the modes tended to reduce the effect 

of active control. 

Chapter 5 looked into the implementation of velocity feedback control through a case 

study on a vehicle roof panel. While there was limited agreement between the results 

from experiments and finite element analysis, they both showed the occurrence of 

modal clusters after 200 Hz. The difficulty in identifying the accurate boundary 

conditions for the FEM of the roof panel did not allow the validation of the model over 

the whole frequency range of observation.  

In the second part of the chapter, simulations of feedback control based on numerical 

and measured results were performed for arrangements of 2 and 4 ideal controllers 

positioned in an attempt to cancel the first two modes of the roof. The outcomes of this 

simulation presented a great concern for the successful implementation of a feedback 

control system on the roof panel of the car. Even though the first two modes of the 

system were significantly attenuated, based on the results obtained from the FEM, the 

response of the structure in the frequency range of interest that contributes to the interior 

noise cannot be controlled. The first two modes of the roof occurred at frequencies that 

were too low to allow the selection and design of an appropriate actuator with internal 

dynamics that would not compromise the stability of the control system without 

introducing significant changes in the mass and stiffness of the actuator that would be 

unreasonable for the size and weight constraints.  

Despite the lack of success in controlling the response of strongly-curved panels such as 

the vehicle roof, the outcomes of Chapter 4 remain promising for shallow shells of low 

levels of curvature. These results can be promising for the applications of feedback 

control systems on surfaces with low levels of curvature such as the fuselage of 

airplanes because of the structural deformation that it undergoes during 

pressurisation/depressurisation. As the fuselage tends to slightly bow during these 

processes, a small section of the body can then be considered as a doubly-curved panel 

of small curvature fitted on an enclosure.  
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For this purpose, the orientation of this thesis moved away from the application of 

feedback control to panels, and in the second part of the thesis, the performance of the 

control system was assessed over increasing curvature when the structure was assumed 

to be part of an otherwise rigid enclosure. The effects of curvature on structural-acoustic 

coupling and sound transmission into the enclosure were studied before and after 

closing the feedback loop.  

The last chapter of the thesis presented the real-time implementation of velocity 

feedback control on an experimental rig. In the first part of the chapter, offline 

simulations of velocity feedback control were performed based on measured transfer 

responses and the effects of adding a compensator in the feedback loop were assessed.  

The results indicated that the addition of the compensator increased the gain margin and 

improved the stability of the system. Higher attenuation levels were also achieved in 

comparison to the uncompensated results. The increase in the curvature of the panel also 

improved the stability of the control system, pushing the gain margin further away from 

the optimal gain for which maximum attenuation in the overall response could be 

achieved. This outcome confirmed the results obtained from simulations in previous 

chapters. In addition, after an initial improvement in control performance as expected 

based on previous simulations, the attenuation levels in the response decreased with the 

increase in curvature. The addition of the compensator to the feedback loop did not 

significantly affect the optimal gain for which maximum attenuation in the overall 

response could be achieved. Despite the changes in curvature, the real-time experiments 

showed that the stability of the system was not compromised and the compensator-

actuator pair remained robust to the changes in the surface shape. 

 

7.2 Future Work 

The outcomes of this thesis have identified several areas in which further work could be 

done towards achieving a successful practical implementation of velocity feedback 

control on curved structures. 

 The analytical model can be further improved to cover more general cases, such as 

medium and thick shells and also varying rather than uniform curvature. 
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 Now that a better understanding of the effect of curvature on the performance of an 

active control system has been gained, the control algorithm could be improved in 

the next step, for example, through the implementation of a frequency-dependent 

gain filter, rather than a constant gain. The single-channel feedback control system 

with compensator shows promising results for the implementation of a robust 

control system and the increase curvature further improves the stability of the 

control system. In real-life systems, such as an aircraft fuselage, the curvature varies 

with the changes in the pressure at different altitudes. Therefore, in the next step, the 

possibility of self-tuning the control system to adapt to changes in curvature for 

further stability and better performance could be investigated, using the method 

cited in [15] [118]. 

 

 The results of Chapter 6 also demonstrated that the stability of the control system is 

maintained without significant changes in the optimal gain. Therefore, future multi-

channel implementation of this system could be investigated. In addition, self-tuning 

of the decentralised multiple-channel feedback control system should also be 

considered [15] [118]. This will allow more efficient control of the cluster of modes 

on a curve structure. 

 

 Another potential area of future work is the investigation of different types of 

actuator. This could be in continuation to the work done by [119], where the 

application of PVDF actuators has been investigated for doubly-curved structures. 

These actuators might be more suitable for the application of control to curved 

structures, because their distributed force, rather than point force, would allow a 

better coupling with the dominant in-plane modes that cannot be controlled with 

inertial actuators. One challenge in this area is the choice of collocated and dual 

sensor, since Elliott et al and Gardonio et al have shown in [27] [120] that using a 

similar distributed sensor leads to large plant response at high frequencies because 

of the coupling via in-plane modes. 
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Appendices 

Appendix A. Natural Frequencies and Mode Shapes 

of Rectangular Panels 

For any given boundary condition, the natural frequencies of a rectangular panel can be 

formulated as [121] [97] 
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and ( ), ( ), ( ), ( ), ( )x y x y xG m G n H m H n J m  and ( )yJ n  are constants defined in Table A. 1 

for all sides clamped (C-C-C-C). 

 

Table A. 1 - Values for the constants Gx, Hx and Jx for clamped boundary conditions along the y-

direction. The constant Gy, Hy and Jy for boundary conditions along the x-directions have the same 

values [117] [93]. 
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The mode shape functions or natural modes ( , )mn x y  of the panel are calculated from 

the product of the beam functions ( )m x  and ( )n y  , such that 

( , ) ( ) ( ).mn m nx y x y    (A.3) 

The beam functions for all sides clamped boundary conditions are given in Table A. 2. 

 

Table A. 2 – Beam functions for clamped boundary conditions in the x-direction [117] [93]. The 

beam functions in the y-direction are formulated using the same equations. 
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The zeros of the gamma functions i  and 
j  can be found in Table A. 3. 
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Table A. 3 – Zeros of the gamma functions defined in Table A. 2 [117] [93].  
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Appendix B. Natural Frequencies of a Doubly-

Curved Rectangular Panel Clamped along all four 

edges 

For a C-C-C-C (all sides clamped) doubly-curved shallow shell with a rectangular base 

projection of dimensions 
x yl l h  , based on the difference between the odd and even 

modal indices, four different equations are used for defining the out-of-plane mode 

shapes. The equations for each of the four cases are given in Table B. 1. 

Table B. 1 – Equations for the transverse mode shapes of a clamped rectangular panel 

Modal indices (m,n) Transverse Mode shapes 
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The in-plane mode shapes for the shell model described in Chapter 2 are defined using 

cross sliding-cross sliding boundary conditions as [121] [97] 

   ( )cos sin ,x yu U t x y   (B.1a) 

   ( )sin cos ,x yV t x y  
 

(B.1b) 

where 
x

x

m

l


    and 

y

y

n

l


  . 

In order to estimate the natural frequencies for each of the above four cases, the 

Rayleigh-Ritz method was used with the general expressions for kinetic and strain 

energy stated in Equations (2.50) and (2.51). Assuming harmonic motion in all three 

directions, the Lagrange equation was then applied in order to obtain the equations of 

motion for u,   and w. The general equation for the natural frequencies can then be 

formulated as the Eigenvalue problem 
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            

 

 

(B.2) 

The elements of the above matrix for each of the four different transverse mode shapes 

are defined in the following subsection. 
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3. m even and n odd:  
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Appendix C. Elemental Model of a Doubly-Curved 

Panel Mounted on a Rigid-Walled Enclosure  

Comprehensive theoretical studies of the interactions between the vibrations of a 

flexible structure and the acoustic space of the enclosure it is part of have been 

presented in [118] [119] [120] [121] based on the initial theory derived by Dowell and 

Voss in [122]. These theoretical models formulate the coupled response of the system in 

terms of the uncoupled structural and acoustic modes. Other theoretical studies have 

concentrated on the matrix formulation of these coupled equations using elemental 

impedance and mobility approaches, such as [123] [124] [125] [126]. Finite element 

methods have also been used for the structural-acoustic coupling analysis of enclosures 

with complex shapes for the implementation of active noise and vibration control 

techniques, for example in applications to automotive NVH problems [42] [127] [128]. 

This appendix will present the theoretical elemental model of the experimental rig 

described in Chapter 6, where a thin aluminium panel is fixed on top of an otherwise 

rigid-walled enclosure. The effects and degree of coupling between the enclosure 

acoustic modes and the panel structural modes will be assessed.  

 

C.1 Elemental Model of the system 

The structural-acoustic coupled model considered in this section for the derivations of 

the coupled steady-steady response and study of the effects of the enclosure on the 

structural behaviour of the panel, is composed of a clamped aluminium panel which is 

fixed on top of a rectangular enclosure with otherwise rigid-walled boundary conditions. 

The dimensions and properties of the system can be found in Table C.1 which are based 

on the experimental rig presented in Chapter 6. 

The fully-coupled fluid-structural system includes the enclosure’s interior sound field 

and the vibration field in the aluminium panel, both generated by either an acoustic 

source located inside the enclosure, or by a force acting on the panel. The results shown 

here are based on an acoustic excitation which is assumed to be provided by a monopole 

source positioned in the centre of the bottom of the enclosure. Since the pressure on the 
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enclosure side of the panel, due to the acoustics of the enclosure, is significantly greater 

than that on the other side which is due to sound radiation into free space, the latter 

contribution can be ignored. 

 

Table C. 1 – Dimensions and physical properties of the aluminium panel and the enclosure 

Parameter Value Units 

 

Panel Dimensions 

278xl   

247yl   

mm  

mm  

Panel Thickness 1h 
 

mm  

Enclosure Height 385zl   mm  

Panel Density 2700   3kgm
 

Density of Air 0 1.21 
 

3kgm

 

Speed of Air 
0 343c 

 
1ms
 

Young’s Modulus 107 10E    2Nm  

Poisson Ratio 0.33    

Structural Modal Damping Ratio 0.01m    

Acoustic Modal Damping Ratio 0.01n 
 

 

 

The elemental method of Section 4.1 was used to model the system and derive the 

coupled responses. Figure C. 1 shows a diagram of the modelled enclosure with the 

location of the excitation source and the elemental grids used to define the volume of 

the enclosure and surface of the panel. 
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Figure C. 1 – Diagram of the coupled panel (left) and enclosure and elemental representation of the 

two subsystems (right). fei and ẇei refer to one of the panel elements force and complex velocity. fbi 

and ẇbi refer to one of the cavity elements force and complex velocity. 

The elemental resolution of the modelled grid was determined using the approach 

discussed in Chapter 3, Section 3.1, for a minimum resolution of 4 elements per 

wavelength. The resulting elemental grid representing the surface of the panel consists 

of 432e x yN N N    elements  24xN  , 18yN  . The top side of the enclosure 

cavity has the same elemental resolution as the panel grid. The height of the cavity is 

divided into 22zN   elements so that the total number of elements in the cavity model 

is 9504v x y zN N N N     elements. The modelled monopole source was assumed to 

be positioned at coordinates ( , , ) , ,0.005
2 2

yx
p p p

ll
x y z

 
  
 

 inside the cavity. The 

volume velocity of the primary acoustic excitation provided by the monopole source 

which was assumed to be time-harmonic can be defined as 

 ( ) Re ( ) .j t

p pq q e    (C.1) 

The frequency range of observation was set to 2 kHz while the dynamic frequency 

range was defined for up to 4 kHz, in order to take into account the contribution of 

higher frequency acoustic and structural modes. The steady-state total kinetic and 

acoustic potential energies were calculated up to 2 kHz for various panel curvatures.  
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The equations describing the mathematical model of the system will be formulated in 

the two following subsections, in the absence and presence of control. The forces and 

velocities used in the next subsections will be taken to be the force and velocity phasors 

respectively, as in Chapter 4, which are the real parts of the counter clockwise rotating 

complex force and velocity vectors. 

C.1.1 Elemental Model without the Actuator: 

The acoustic excitation due to the monopole source in the enclosure generates a set of 

forces at the elements of the panel and the resulting panel velocity, which can be 

defined as vectors of transverse point forces and velocities at the centre of each element. 

These elemental force and elemental velocity vectors can be written as 

 
1 2
( ) ( ) ( )

Ne

T

e e ef f f  
e

f  
(C.2) 

 
1 2
( ) ( ) ( ) ,

Ne

T

e e ew w w  
e

w  
(C.3) 

where the index e refers to the elements of the model, 
1 2
( ), ( ),..., ( )

Nee e ef f f    of the 

force vector correspond to point forces at the centre of each element of the panel grid, 

and 
1 2
( ), ( ),..., ( )

Nee e ew w w    of the velocity vector are the resulting complex velocities 

at the same location. The dimension of both vectors is  1eN  . 

Before the panel and the cavity are assumed to be coupled, the uncoupled elemental 

velocity of the panel is the same as the elemental velocity calculated in Chapter 4 for the 

in-vacuo panel, such that 

,e ee ew Y f  (C.4) 

where eeY  is the mobility of the panel, and the vector of elemental forces ef  is due to 

the monopole source in the enclosure. The acoustic response of the enclosure due to the 

panel motion can be expressed in terms of the source strength and the acoustic transfer 

impedance between the excitation on the panel and the monopole source, and the 

acoustic transfer impedance between the excitation due to each element on the panel 

and the pressure at each element as  
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,pq 
e ep A e

f z Z w  (C.5) 

where the negative sign reflects the fact that e
w  is defined to be positive on the upper 

panel surface. Substituting Equation (C.5) into Equation (C.4) leads to 

,pq   e ee ep A ew Y z Z w   

 
1

,pq



e ee A ee ep

w I + Y Z Y z
 

(C.6) 

where I  is the identity matrix of dimensions e eN N . The mobility matrix eeY  has 

dimensions of  e eN N  and is expressed as  

11 12 1

21 2

1 2

,

Ne

Ne

N N N Ne e e e

ee ee ee

ee ee

ee ee ee

Y Y Y

Y Y

Y Y Y

 
 
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 
 
 
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eeY =  

(C.7) 

where the (i,j)
th

 term 
ijeeY  of the mobility matrix eeY , which is the mobility at the i

th
 

element due to the excitation point force exerted at the centre of the j
th

 element, is 

calculated from the finite modal expansion approach, defined in Equation (4.15), over 

the first M structural modes of the panel, as 

2 2
1

( , ) ( , )
,

(1 2 )

i i j ji

ij

j

M
m e e m e ee

ee

me panel m m

x y x yw
Y j

f M j

 


  

 
   

  
(C.8) 

where
iew  is the complex velocity at the i

th
 element, 

jef  is the point force acting at the 

centre of the j
th

 element, 1j   , ( , )
i im e ex y and ( , )

j jm e ex y  are the natural structural 

modes at the coordinates of the centres of the i
th

 and j
th

 elements respectively, 

panel x yM l l h  is the mass of the aluminium plate in kg, m  is the natural frequency of 

the clamped panel in rad/s calculated based on the equations of Chapter 2, and finally 

m  is the modal damping ratio of the structural modes which is set to 1% here. The 

values used for all the parameters can be found in Table C.1. 
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The acoustic transfer impedance vector 
ep

z between the primary excitation for the top 

layer of the cavity and the monopole source has dimensions of  1eN   and the acoustic 

transfer impedance matrix AZ  between the excitation due to each element on the panel 

and the pressure at each element has dimensions of e eN N . These can both be written 

as  

1

2

.
i

Ne

ep

ep

ep

ep

Z

Z

Z

Z

 
 
 
 
 
 
 
 
 
 

ep
z =  

 

 

(C.13) 
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AZ =

 

 

(C.14) 

The i
th

 term 
iepZ  of the impedance vector ep

z , which is the transfer impedance between 

the force at the i
th

 element of the top layer of the cavity and the monopole excitation 

source located at ( , , )p p px y z in the enclosure, is calculated from the following finite 

modal expansion approach, over the first N acoustic modes of the cavity, as 

2

0 0

2 2
0

( , , ) ( , , )
,

2 ( )

i i i

i

N
e n e e z n p p pe

ep

np cavity n n n

f x y l x y zc A
Z

q V j

 


    

 
 

  
(C.15) 

where
ief  is the force acting on the i

th
 element, ( , , )

i in e e zx y l and ( , , )n p p px y z  are the 

natural acoustic modes at the coordinates of the centre of the i
th

 element and the location 

of the monopole source respectively. For a rigid-walled rectangular enclosure, the mode 

shape found from [124] 
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where 1n , 2n  and 3n  are the acoustic modal integers, and 1e , 2e  and 3e  are the 

normalisation factors obtained from 

1, 0
,

2, 1

i

i

i

if n
e

if n


 


 

(C.17) 

cavity x y zV l l l  is the volume of the cavity in 3m , n  is the natural frequency of the cavity 

in rad/s calculated from  

22 2

31 2
0 ,n

x y z

nn n
c

l l l
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(C.18) 

and finally n  is the modal damping ratio of acoustic modes, which is also set to 1%. 

The values used for all the parameters can be found in Table C.1. 

Similarly, the (i,j)
th

 element of AZ , denoting the force on the i
th

 element due to the 

vibration of the j
th

 element, is calculated from the finite modal expansion over the first 

N acoustic modes  

,

2 2
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(C.19) 

The total coupled structural kinetic energy and the acoustic sound power radiated from 

the free side of the panel are found using Equations (4.30) and (4.37), defined in 

Chapter 4. 
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C.1.2 Mathematical Model with Actuator: 

The inertial actuator modelled here is based on the actuator used in Chapter 6 for open-

loop response simulations and real-time experiments of feedback control on the 

pressurised enclosure experimental rig.  

The inertial actuator both supplies a force to the panel and modifies its passive dynamic 

behaviour. If the force generated by the actuator is as a result of feedback from the 

panel’s velocity, the effect of the feedback can also be modelled as a modification to the 

plate dynamics. The vector of forces at the elemental points on the panel can thus be 

written as 

, e ee e c ef Z w Z w  (C.20) 

where eeZ  is the inverse of the matrix of mobility responses eeY  of the panel, whose 

elements are given by Equation (C.8), and cZ  accounts for the overall effect of the 

actuator, both active and passive. The modified matrix of structural mobilities is thus 

 
1
.




s ee c
Y = Z Z  (C.21) 

When the feedback loop is closed, the complex elemental velocity e
w  is expressed in 

terms of both the primary elemental force ef  and the control force cf  generated by the 

actuator, which for a single-channel control system can be written as  

,cf e ee e ecw Y f y  (C.22) 

where ec
y  is the transfer mobility vector between the elements of the panel and the 

control force. The control velocity on the panel can be expressed in terms of the point 

mobility ccY  of the panel at the location of control, and the control force cf , as 

c cc cw Y f   (C.23) 

Alternatively, the control force can be written in terms of the impedance at the point of 

control and the complex control velocity as 
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,c cc cf Z w   (C.24) 

 

The substitution of Equation (C.24) into the above equation leads to  

,c cZ w e ee e ecw Y f y  (C.25) 

The velocity at the control point can be expressed in terms of the elemental velocity as  

,cw  T

e
a w  (C.26) 

where a  is a vector of the same dimensions as e
w  in which all the elements are zero 

except for the element corresponding to the location of the actuator which is 1, such that

 0 1 0 0 .a =  

As a result, Equation (C.25) can be rewritten as 

,cZ  T

e ee e ec e
w Y f y a w  (C.27) 

Finally, the combination of Equation (C.27) with Equation (C.5), leads to the general 

equation for the coupled elemental velocity as   

1

,c pZ q


     
T

e ee A ec ee ep
w I Y Z y a Y z  (C.28) 

The total coupled kinetic energy and acoustic potential energy can be calculated using 

Equations (4.30) and (4.37) defined in Chapter 4. 

 

C.2 Structural Response Analysis: 

In this section, the effect of structural-acoustic coupling for a flexible panel that is part 

of an otherwise rigid-walled enclosure will be assessed through simulations of the total 

structural kinetic energy. This will be performed first for a flat flexible panel and will 

then progress to a doubly-curved flexible panel with gradually increasing curvature. The 

results will be compared for the same model, when the panel is weakly coupled with the 



 

 220 

enclosure in order to gain a better understanding of the degree of coupling between the 

structural and acoustic modes. The volume velocity of the primary monopole source 

was assumed to be 510 m
3
s

-1
. 

C.2.1 Effects of Structural-Acoustic Coupling on the Structural Response: 

The total structural kinetic energy is shown in Figure C. 2 for a weakly coupled and a 

strongly coupled enclosure modelled based on the parameters and properties defined in 

the previous sections. It can be seen from the graph that with coupling, the natural 

frequency of the first mode is increased from 73.4 Hz to 82.5 Hz and the amplitude of 

some of the higher order modes, such as Mode (3,3) occurring near 445 Hz and Mode 

(7,1) occurring near 835 Hz, is reduced.  

 

Figure C. 2 - Simulated structural kinetic energy and acoustic potential energy for a modelled 

system consisting of a flexible flat panel clamped on the top of a rigid-walled enclosure: strongly 

coupled (black curve) and weakly coupled (red curve). The primary excitation is provided by a 

modelled monopole source with a volume velocity of 10
-5

 m
3
s

-1
. 

In order to assess the degree of coupling between different acoustic cavity modes and 

panel structural modes, the coupling coefficient is calculated from [125] as 
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(C.29) 

 where A  is the area of the panel. The results are shown in Table C. 2 for the first 9 

panel structural modes and the first ten cavity acoustic modes. It is important to note 

that the cavity acoustic modes start at much higher frequencies than the panel structural 

modes. The natural frequency of the second acoustic mode (1,0,0) is 414.25 Hz which is 

significantly higher than the natural frequency of the (1,1) panel mode. 

 

Table C. 2 - The first 9 uncoupled structural modes and first 10 uncoupled acoustic modes, their 

natural frequencies and the coupling coefficient between each of the acoustic and structural modes.  

 

The effect of the distance between the acoustic and structural modes on structural-

acoustic coupling has been investigated in [129]. A coupling constant nmg  has been 

defined in terms of the coupling coefficient as  
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(C.30) 

where m  and n  are the natural frequencies of the m
th

 structural mode and the n
th

 

acoustic mode respectively, and m  and n  refer to the half-power bandwidth of the 

m
th

 structural mode and the n
th

 acoustic mode respectively. Equation (C.30) for the 

coupling constant can be further simplified based on the following conditions as 

Panel 1 2 3 4 5 6 7 8 9

Modes Structural (1,1) (2,1) (1,2) (3,1) (2,2) (3,2) (4,1) (1,3) (2,3)

Cavity Acoustic Frequency (Hz) 73.43 124.31 172.10 207.82 219.17 298.17 321.70 322.04 367.78

1 (0,0,0) 0 0.11 0 0 0.04 0 0 0 0.04 0

2 (1,0,0) 414.25 0 0.10 0 0 0 0 0.04 0 0.03

3 (0,0,1) 445.45 -0.15 0 0 -0.05 0 0 0 -0.05 0

4 (0,1,0) 546.18 0 0 0.10 0 0 0.03 0 0 0

5 (1,0,1) 608.30 0 -0.14 0 0 0 0 -0.06 0 -0.05

6 (1,1,0) 685.50 0 0 0 0 0.09 0 0 0 0

7 (0,1,1) 704.80 0 0 -0.14 0 0 -0.05 0 0 0

8 (1,1,1) 817.52 0 0 0 0 -0.13 0 0 0 0

9 (2,0,0) 828.50 -0.05 0 0 0.09 0 0 0 -0.02 0

10 (0,0,2) 890.91 0.15 0 0 0.05 0 0 0 0.05 0

Mode order



 

 222 

 
 

 

2

, 2

0, 2

nm
m n m n

m nnm

m n m n

C

g
   

 

   


   

  
    

 

 

(C.31) 

Structural and acoustic mode pairs for which the spacing between their natural 

frequencies are less than half of the sum of their half-power bandwidth – condition 1 in 

Equation (C.31) – are referred to as mode pairs with proximate modal coupling [129]. 

The difference between the natural frequency of the structural mode (1,1) and the 

acoustic mode (1,0,0) is far too large for this pair to fulfil the proximate modal coupling 

condition and as it can be seen in Table C. 2, the coupling coefficient of this mode pair 

is 0. Due to the large spacing between the acoustic and structural modes, even the non-

zero coupling coefficients between different modes pair of Table C. 2 are low indicating 

a relatively weak coupling between acoustic and structural modes for the modelled 

enclosure.  

Figure C. 3 shows the amplitude of the coupling coefficient for different pairs of 

structural and acoustic modes. Some of the highest coupling coefficients are for the 1
st
 

structural and first acoustic mode pair, the 1
st
 structural and the 3

rd
 acoustic mode pair, 

and the 1
st
 structural and the 10

th
 acoustic mode pair.  

 

Figure C. 3 - Coupling coefficient plotted for different pairs of the first 50 structural and the first 

40 acoustic modes.  
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Appendix D. List of Equipment 

Vibration Analysis of the Car Roof Panel: 

 PC running Matlab 2011b for data analysis. 

 Laptop running LMS data acquisition and data analysis toolbox. 

 8-channel LMS Scadas Mobile SCM01 front-end.  

 Cambridge Audio A1 integrated power Amplifier. 

 16-channel PCB Electronics type 481A03 signal conditioner. 

 5 PCB Piezotronics type A352C67 piezoelectric accelerometers. 

 LDS V201 Permanent magnet electrodynamic shaker. 

 PCB Piezotronics type 208C01 piezoelectric force transducer. 

 

Experiments of Velocity Feedback Control on a Pressurised Enclosure: 

 PC running Matlab 2011b for data analysis. 

 PC running Data Physics SignalCalc data acquisition and data analysis toolbox. 

 X-channel Data Physics SignalCalc data acquisition front end. 

 Cambridge Audio A1 integrated power Amplifier. 

 16-channel PCB Electronics type 481A03 signal conditioner. 

 4 PCB electronics type A352C67 piezoelectric accelerometers. 

  ‘Salava’ volume velocity source custom-built by the ISVR. 

 Modified 66-mm diameter Pro Signal type S066M cone loudspeaker used as 

actuator. 

 2
nd

 order compensator filter custom-built by the ISVR and 15-V DC voltage supply. 

 Kemo High-pass filter. 
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Appendix E. Equipment Specifications 

Proof-mass Actuator: 

Pro Signal S066M Mylar cone speaker: 

 

Figure F. 1 – Picture of Pro Signal S066M loudspeaker. 

 66-mm external diameter. 

 Maximum power: 3W. 

 RMS Power rating: 1.5W. 

 Impedance: 8Ω. 

 Frequency response: 350 Hz-4.5 kHz. 

Weight: 60g 
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Compensator: 

55-Hz 2
nd

 order compensator filter: 

 

 

Figure F. 2 – Photograph of the analogue 55-Hz compensator filter circuit board (top) and circuit 

diagram of the compensator (bottom) [116] 
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