Dan, Wang, Yushu, Chen, Qingjie, Cao and Yeping, Xiong (2014) Dynamical analysis of a two dimensional turbomachine blade with the coupling of bending and torsion. Journal of Vibration and Shock, 33 (7), 199-205.
Abstract
Blades of turbomachine are important components to produce power like turbines or pressure compressors working in a complicated condition with high pressure, high temperature and three dimensional air flows as well. The aeroelastic problem like flutter may occur during different working states. Flow-induced vibration of the blade with the coupling of bending and torsion is investigated to reveal the mechanism of flutters. Averaging method and power flow approach are used to demonstrate the flutter behaviours of interaction between an isolated blade and the quasi-steady flow. The relation between amplitudes and the frequency of blades vibration is given to predict flutters, which is beneficial to aeroelastic designs of the turbomachine.
Full text not available from this repository.
More information
Identifiers
Catalogue record
Export record
Contributors
University divisions
- Faculties (pre 2018 reorg) > Faculty of Engineering and the Environment (pre 2018 reorg)
- Faculties (pre 2018 reorg) > Faculty of Engineering and the Environment (pre 2018 reorg) > Southampton Marine & Maritime Institute (pre 2018 reorg)
- Faculties (pre 2018 reorg) > Faculty of Engineering and the Environment (pre 2018 reorg) > Civil Maritime & Env. Eng & Sci Unit (pre 2018 reorg) > Fluid Structure Interactions Group (pre 2018 reorg)
Current Faculties > Faculty of Engineering and Physical Sciences > School of Engineering > Civil, Maritime and Environmental Engineering > Civil Maritime & Env. Eng & Sci Unit (pre 2018 reorg) > Fluid Structure Interactions Group (pre 2018 reorg)
Civil, Maritime and Environmental Engineering > Civil Maritime & Env. Eng & Sci Unit (pre 2018 reorg) > Fluid Structure Interactions Group (pre 2018 reorg)
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.