The University of Southampton
University of Southampton Institutional Repository

Effect of pre-implantation maternal low protein diet on embryos and embryoid bodies

Effect of pre-implantation maternal low protein diet on embryos and embryoid bodies
Effect of pre-implantation maternal low protein diet on embryos and embryoid bodies
Previous studies have shown that poor maternal nutrition during pregnancy may induce metabolic syndrome in adults. In this study, we explored the mechanisms of how maternal low protein diet during the first 3.5 days of pregnancy, programs embryo development and embryonic stem cell function. Our results showed that mouse maternal low protein diet (9% casein; Emb-LPD) enhanced both Clathrin dependent and independent endocytosis in both in vivo blastocysts and in vitro differentiated embryoid bodies (EB day 5) compared with maternal normal protein diet (18% casein; NPD) controls. This increase in endocytosis was accompanied by an increase in lysosome volume per cell. This was done by confocal microscopy and 3D image analysis. To determine whether this effect on the lysosome system was due to autophagy or simply due to increased endocytosis, we studied the expression of LC3 protein, Clathrin, Megalin (also named as low density lipoprotein receptor 2 (LRP2)) and Cubilin. Immunostaining and Western blot analysis revealed Megalin and Cubilin were significantly up-regulated in Emb-LPD embryos and EBs, whilst Clathrin protein level was marginally increased and LC3 protein unaltered. This enhanced nutrient uptake ability was maintained even after cells or embryos were re-introduced into a normal environment in vitro. Thus, stimulated nutrient uptake in day 5.5 EB showed compensatory growth, known to associate with long-term disease symptoms. To understand the mechanisms involved, we investigated elements of the mTOR pathway. In vitro culture of early embryos in the presence of reduced levels of the three branched-chain amino acids (Lecine, Valine and Isoleucine) as occurring in Emb-LPD uterine fluid resulted in stimulated endocytosis of Trophectoderm (TE). In addition, we found although mTORC1 was partially suppressed, mTORC2 downstream RhoA-Actin interaction was stimulated in blastocysts by observing more actin and RhoA protein in Emb-LPD blastocysts as well as that inhibiting RhoA function abolished the enhanced endocytosis by Emb-LPD. We also investigated epigenetic changes induced by Histone deacetylase 3 (Hdac3) in terms of regulation of genes involved in Extraembronic Endoderm (XEN) differentiation and cardiomyocyte differentiation. We found that Emb-LPD EBs expressed reduced Gata6 and exhibited increased histone deacetylation at promoter of Gata6, together with increased Hdac3 expression. Our results reveal for the first time at the cellular level how early embryos respond to poor nutrition environment and reprogram to protect fetal growth. This further helps us to understand the mechanism of how adult metabolic syndrome can be originated from environment which early embryos were exposed to.
Sun, Congshan
19650d2f-f387-444d-9874-1621763fcfd9
Sun, Congshan
19650d2f-f387-444d-9874-1621763fcfd9
Fleming, Tom P.
2abf761a-e5a1-4fa7-a2c8-12e32d5d4c03
Smyth, Neil
0eba2a40-3b43-4d40-bb64-621bd7e9d505

Sun, Congshan (2014) Effect of pre-implantation maternal low protein diet on embryos and embryoid bodies. University of Southampton, Biological Sciences, Doctoral Thesis, 241pp.

Record type: Thesis (Doctoral)

Abstract

Previous studies have shown that poor maternal nutrition during pregnancy may induce metabolic syndrome in adults. In this study, we explored the mechanisms of how maternal low protein diet during the first 3.5 days of pregnancy, programs embryo development and embryonic stem cell function. Our results showed that mouse maternal low protein diet (9% casein; Emb-LPD) enhanced both Clathrin dependent and independent endocytosis in both in vivo blastocysts and in vitro differentiated embryoid bodies (EB day 5) compared with maternal normal protein diet (18% casein; NPD) controls. This increase in endocytosis was accompanied by an increase in lysosome volume per cell. This was done by confocal microscopy and 3D image analysis. To determine whether this effect on the lysosome system was due to autophagy or simply due to increased endocytosis, we studied the expression of LC3 protein, Clathrin, Megalin (also named as low density lipoprotein receptor 2 (LRP2)) and Cubilin. Immunostaining and Western blot analysis revealed Megalin and Cubilin were significantly up-regulated in Emb-LPD embryos and EBs, whilst Clathrin protein level was marginally increased and LC3 protein unaltered. This enhanced nutrient uptake ability was maintained even after cells or embryos were re-introduced into a normal environment in vitro. Thus, stimulated nutrient uptake in day 5.5 EB showed compensatory growth, known to associate with long-term disease symptoms. To understand the mechanisms involved, we investigated elements of the mTOR pathway. In vitro culture of early embryos in the presence of reduced levels of the three branched-chain amino acids (Lecine, Valine and Isoleucine) as occurring in Emb-LPD uterine fluid resulted in stimulated endocytosis of Trophectoderm (TE). In addition, we found although mTORC1 was partially suppressed, mTORC2 downstream RhoA-Actin interaction was stimulated in blastocysts by observing more actin and RhoA protein in Emb-LPD blastocysts as well as that inhibiting RhoA function abolished the enhanced endocytosis by Emb-LPD. We also investigated epigenetic changes induced by Histone deacetylase 3 (Hdac3) in terms of regulation of genes involved in Extraembronic Endoderm (XEN) differentiation and cardiomyocyte differentiation. We found that Emb-LPD EBs expressed reduced Gata6 and exhibited increased histone deacetylation at promoter of Gata6, together with increased Hdac3 expression. Our results reveal for the first time at the cellular level how early embryos respond to poor nutrition environment and reprogram to protect fetal growth. This further helps us to understand the mechanism of how adult metabolic syndrome can be originated from environment which early embryos were exposed to.

Text
__soton.ac.uk_ude_PersonalFiles_Users_lp5_mydocuments_Theses PDF files_Congshan Sun PhD Thesis.pdf - Other
Download (5MB)

More information

Published date: 31 March 2014
Organisations: University of Southampton, Faculty of Natural and Environmental Sciences

Identifiers

Local EPrints ID: 363661
URI: http://eprints.soton.ac.uk/id/eprint/363661
PURE UUID: 36b1db8c-d326-403e-871e-03a3aec7dc64

Catalogue record

Date deposited: 31 Mar 2014 12:08
Last modified: 09 Nov 2021 01:10

Export record

Contributors

Author: Congshan Sun
Thesis advisor: Tom P. Fleming
Thesis advisor: Neil Smyth

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×