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Abstract1

Bluetooth is a short range communication protocol. Bluetooth-enabled devices can be de-2

tected using road-side equipment, and each detected device reports a unique identifier. These3

unique identifiers can be used to track vehicles through road networks over time. The focus4

of this paper is on reconstructing the paths of vehicles through a road network using Blue-5

tooth detection data. A method is proposed that uses Hidden Markov Models, which are a6

well-known tool for statistical pattern recognition. The proposed method is evaluated on a7

mixture of real and synthetic Bluetooth data with GPS ground truth, and it outperforms a8

simple deterministic strategy by a large margin (30%–50%) in this case.9
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1. INTRODUCTION1

Bluetooth is a protocol for short range wireless communication between electronic devices,2

such as mobile phones, computers and in-car electronics (1 ). Bluetooth devices that are in3

‘discoverable’ mode can be detected from distances of roughly 100m, and when a device is4

detected, it reports an identifier that uniquely identifies it. Bluetooth detectors can be built5

using inexpensive off-the-shelf components and deployed at road-side to collect these unique6

identifiers from devices in passing vehicles.7

Bluetooth detection is mainly of interest in vehicle tracking as an alternative (or8

supplement) to more expensive vehicle detection technologies, such as automatic number9

plate recognition (ANPR). A pair of Bluetooth detectors can be used to accurately estimate10

the travel time between the detectors as the time elapsed between the detection of the11

same device (according to its unique identifier) at one detector and then the other (2 , 3 ).12

Penetration of discoverable Bluetooth devices in road vehicles varies widely, but it is presently13

on the order of 10% (2 ), which has proved to be enough to infer accurate travel times. If14

several detectors are deployed throughout a road network, they can be used along with15

other road-side sensors, such as inductive loops and ANPR, for traffic assignment and to16

infer origin-destination matrices (4 ). The same technology is also widely used to track17

pedestrians (5 ).18

The main challenges in using Bluetooth for vehicle tracking are:19

1. The position of a detected vehicle is not known precisely. The time of detection20

is known precisely, but the device can be anywhere within the detection radius of21

the detector at this time. This radius can be reduced (to increase precision) by22

tuning antenna characteristics and transmission power levels, but this leads to the23

next challenge.24

2. A device may pass by a detector without being detected. This is due mainly to25

random delays in the detection process, which can range up to 10s even under26

ideal radio conditions (6 ); these delays will be discussed in more detail in section27

2. Particularly when a vehicle is moving quickly, it can easily pass through the28

detection radius without being detected. For example, at 22m/s (80km/h; 50mph),29

a 100m detection radius allows only 5s for detection.30

The problem addressed in this paper is to reconstruct the path of a vehicle through31

a road network using only Bluetooth detection data. In general, the vehicle’s path cannot32

be recovered with certainty, because of the challenges detailed above, but the most likely33

path can be computed. The approach taken here is to phrase the problem in the language34

of Hidden Markov Models (HMMs), which are a well-known and widely used formalism for35

statistical pattern recognition problems (7 ). The resulting paths may be useful for inferring36

origin-destination matrices and input for traffic assignment.37

Section 2 describes how the problem can be constructed as an HMM and then solved38

using standard techniques. In section 3, the proposed method is evaluated using data col-39

lected on a test track.40

2. METHOD41

We will begin by introducing the concept of a Hidden Markov Model (HMM), and then we42

will describe its application to the problem at hand. In an HMM, time is discrete. At each43
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time step, the model is in one of a fixed number of states, but we cannot directly observe1

which one (that is, the state is hidden). Instead, the model emits a symbol, which can be2

observed. For each state, there is an emission probability distribution over which symbol3

the model will emit, and there is a transition probability distribution over which state the4

model will be in for the next time step. The usual setting is that we observe a sequence of5

symbols emitted by the model over time, and we wish to infer the sequence of states that6

was most likely to generate that sequence of symbols.7

In the case of vehicle tracking, the states are chosen points in the road network.8

Vehicles move between states (that is, along roads) according to transition probabilities that9

reflect the structure of the road network and the traffic conditions. Each vehicle (or, more10

precisely, discoverable Bluetooth device) on the network is considered separately, so in each11

time step, the symbol that we observe is the name of the detector that detected the vehicle,12

or ‘none’, if the vehicle was not detected in the current time step. The emission probabilities13

for each state determine the likelihood that a vehicle will be detected by each detector if it14

is there for one time step; these probabilities will depend mainly on the state’s proximity to15

each of the detectors, but it may also reflect other site-specific factors, such as line-of-sight.16

The transition and emission probabilities are to be learned from the Bluetooth data.17

This is done using the standard Baum-Welch (BW) algorithm (7 ) for HMMs. This algorithm18

requires an initial (prior) estimate of the transition and emission probabilities, which it19

iteratively refines based on the observed data. The data consists of one sequence of symbols20

for each vehicle over a given interval. Technically, it is assumed that the parameters of the21

model are stationary over this interval, and that the sequences are independent.22

To define the states and the initial transition probabilities, we proceed as follows. The23

required input is a directed graph G, with nodes V and edges E, that represents the road24

network and determines the allowed routes. A possible road graph is illustrated in figure 1.25

Note that a two-way road has one set of nodes and edges for each direction.26

The states in the HMM are exactly the nodes in the road graph, and the transition27

probabilities will be constrained so that in each time step a vehicle can only transition to28

a nearby state in the road graph. Let τ be the length of one time step, in seconds, and29

let tuv be the shortest time required to travel from state u to state v, also in seconds. The30

tuv can be obtained by computing shortest paths through the road network and making an31

assumption on the vehicles’ maximum speed (possibly based on posted speed limits). The32

states reachable from state u are then the states with tuv ≤ τ .33

There are three types of states: traffic can enter the graph at source states, traverse34

one or more interior states, and then exit at sink states. Let S, N and T be sets of source,35

interior and sink states, respectively, so V = S∪N ∪T . When a vehicle reaches a sink state,36

it assumed that it is undetectable (out of range or turned off), and it remains in the sink37

state until it re-enters the graph at some source state. The transition probabilities for a sink38

state will typically exhibit a large probability of remaining in the sink state, and smaller39

probabilities of returning to various source states. To parameterise this, define for each sink40

u a positive weight wu that contributes to the probability of remaining in the sink state,41

and for each source state v, a non-negative weight wuv that contributes to the probability of42

re-entering the network at v. These weights can be taken to be uninformative (for example,43

by setting wuv = 1 for all u and v and setting wu to a large number), or they can be set44

to reflect historical trends or site-specific knowledge (for example, if a sink state leads to a45
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FIGURE 1 Example of a road graph for the ‘InnovITS ADVANCE’ test track
used in section 3. Junction A is signalised; junctions B and C are not. Vehicles
were restricted to the figure-of-eight during the trials; the roads in and out were
coned off. The nodes and edges at junctions are such that U-turns are not
allowed, but all other turns are allowed.
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multi-storey car park, it is very likely that vehicles will re-enter from one of that car park’s1

source states).2

Putting the road graph constraints and the sink weights together, the relative likeli-
hood of a transition from any state u to any state v is given by

āuv =


1, u ∈ S ∪N, v ∈ N ∪ T, tuv ≤ τ (1)
wu, u ∈ T, v ∈ T, u = v (2)
wuv, u ∈ T, v ∈ S (3)
0, otherwise , (4)

and the initial transition probabilities auv can then be obtained by normalising these for each
state, that is

auv = āuv/
∑
v

āuv.

Case (1) allows vehicles to move only to nearby states; if states u and v are too far apart3

(tuv > τ), case (4) sets the probability of that transition to zero. Note that when an initial4

probability is set to zero, the HMM learning algorithm cannot make it non-zero, even if that5

would be a better fit to the data.6

This completes the definition of the states and the transition probabilities; it remains7

to define the emission symbols and probabilities. Here it is important to recall that vehicles8

are considered one-at-a-time. Let D be the set of Bluetooth detectors. The set of symbols9

that the HMM can emit is then D ∪ {none}, where none means that the vehicle currently10

being considered was not detected in the current time step. Here we are assuming that it is11

unlikely that the same device will be detected by more than one detector in one time step;12

detectors will usually be far enough apart that this is a reasonable assumption.13

The raw data from the Bluetooth detectors for a single vehicle is a sequence of time-14

detector pairs. These data must be converted to a sequence with one symbol (detector) per15

time step, as follows. Let i be the index of the current time step, with i = 0, . . . , n where n16

is the number of time steps to be considered, and let di denote the symbol emitted in time17

step i. If one or more detectors detected the vehicle in the time interval [iτ, (i + 1)τ) then18

set di to be the one that detected it first; otherwise, set di = none.19

The emission probabilities then specify for each state (that is, position in the road20

network) the probability that a vehicle in that state will be (first) detected by each of the21

detectors, or by no detector, in a single time step. The relationship between position, dwell22

time and detection probability is in general complicated and site-specific, but only a simple23

model is required in order to generate initial estimates of these probabilities; the learning24

process can than refine the estimates based on the observed data. One such simple model is25

as follows.26

Let sud be the straight line distance in meters between state u and detector d. It is27

assumed that the time Tud until a vehicle at node u will be detected by detector d follows28

an Exponential distribution with rate parameter29

λud = γs−2
ud (5)

where γ is a constant to be chosen. This captures the basic intuition that a detector is30

more likely to detect a devices that is closer, because the signal strength will be higher. In31

particular, the inverse square law in (5) is based on the Friis transmission equation.32
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An important feature that this model does not capture very well is that even at close1

range (< 10m), there can be a significant detection delay due to channel (radio frequency)2

hopping. Bluetooth uses channel hopping to mitigate the effects of interference with other3

Bluetooth devices and also with other devices that use the same frequency band, such as4

WiFi wireless Internet. The detector works by periodically sending an ‘inquiry’ message5

on a pseudo-randomly chosen channel. A device will be detected only if it happens to be6

listening on that channel at the same time, in which case it receives the inquiry message and7

transmits its unique identifier (and possibly other information) to the detector. Both the8

detector and the device cycle through the possible channels (at different rates), and it can9

take some time before they choose the same one. There are several proposed models of the10

distribution of delays due to channel hopping under various simplifying assumptions (6 ,8 ).11

Matters are further complicated by the fact that the inquiry protocol has since changed12

with the 1.2 version of the Bluetooth standard, making newer devices significantly faster13

to discover. Our results will show that this model is adequate for our purposes here, but14

improvements may be possible with a more accurate model.15

To apply the above model for a single detector to multiple detectors, we note that16

the time of the first detection at any of the possible detectors, Tu, is mind Tud, which is itself17

an Exponential random variable with mean rate λu =
∑

d λud. The cumulative distribution18

function Fu(t) of Tu then gives the probability that a vehicle is detected by some detector19

within one time step. In particular, Fu(t) = 1 − exp(−λut), and the probability of being20

detected within one time step is Fu(τ). The probability that a particular detector d is the21

first one to detect the vehicle, given that there is at least one detection in the time step, is22

λd/λu. The initial estimates of the emission probabilities using this model are then23

bud =

{
(λd/λu)Fu(τ), d ∈ D
1− Fu(τ), d = none.

(6)

The final requirement is to define a distribution over the start state for each vehicle;24

from its start state, the vehicle’s movement is thereafter defined by the transition probabil-25

ities. Here we simply take all states as equally likely to be start states.26

3. RESULTS27

The proposed method is evaluated using data collected at the ‘InnovITS ADVANCE’ test28

track near Nuneaton, England on 31 May, 2012. The experiment involved 26 vehicles, all29

of which were cars except for one van and two motor cycles. Each vehicle was equipped30

with a 1Hz global positioning system (GPS) data logger (model: QStarz BT-Q1000X) that31

was also a discoverable Bluetooth device (Bluetooth version 1.2; class 2). GPS traces were32

recovered for 24 vehicles. The test track was set up as a ‘figure-of-eight’ with a signalised33

junction at the center, as shown in figure 1; the other areas of the test track were marked off34

with traffic cones. The primary purpose of the experiment was to evaluate the performance35

of several junction control algorithms and a human controller with real drivers in congested36

conditions, but six Bluetooth detectors (figure 2) were also deployed during the experiment.37

The data used here are from two twenty-minute trials. In the first trial, drivers38

were given prescribed routes to follow, such as to drive around the north west loop counter-39

clockwise. In the second trial, the drivers were asked only to drive as far as possible in40
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2dBi Bluetooth/WiFi Antenna

Class 1 Bluetooth Adapter

7Ah Battery

Single-Board Computer

FIGURE 2 A Bluetooth detector used in the trials. The detector is built from
off-the-shelf components. The Bluetooth adapter (model: LM Technologies
LM540; Bluetooth version 2.1; class 1) is connected to a single-board computer
(model: BeagleBone A5), which runs a small program that manages the inquiry
process via the BlueZ stack on Linux. The detector runs for one day on bat-
tery power. The detectors were mounted in weather-proof enclosures (sandwich
boxes) on tripods at roughly 1.5m above the road surface. The antenna is 9cm
long.
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the time allowed, subject to the site’s 30mph speed limit. It is worth remarking that the1

assumption that the overall traffic pattern is stationary is reasonable within each trial. Data2

from the first trial was used for preliminary experiments that guided the development of the3

method and advised on the range of parameters to test. The results presented here are for4

the data from the second trial, which was used only for evaluation.5

There are, however, a number of problems with this dataset, in the context of evalu-6

ating the proposed method.7

1. The test track is small relative to the usual distances over which Bluetooth detec-8

tors are used. The opposing NW-SE corners of the figure-of-eight are only 370m9

apart. This means that there is more overlap between detection radii than would10

ordinarily be the case. It also means that the physical separation between states11

(10m to 30m in these results) may be smaller than would be practical for a larger12

network.13

2. The separation between the pairs of detectors on each end of the figure-of-eight14

(namely C and D, and E and F in figure 3) was found to be too small to reliably15

determine in which direction a passing vehicle is driving. In other words, it is16

difficult to tell from the Bluetooth data alone whether a vehicle is driving one17

way around the figure-of-eight or the other way around, because the sequences of18

detections do not look sufficiently different. The proposed HMM method could19

not resolve this ambiguity, and the result was very large prediction errors that20

(while they were still below those of the baseline method introduced for comparison21

below) obscured all other trends. To work around this, we introduce two simulated22

detectors, at points G and H in figure 3. These are deterministic detectors that23

detect every vehicle within a 20m radius. This makes it much easier to resolve the24

directional ambiguity, but it may also improve the quality of the results in other25

ways.26

3. The vehicles began each trial already parked on the figure-of-eight, and they re-27

mained on the figure-of-eight for the whole trial. This means that the vehicles28

did not use any source or sink states. For simplicity, the source and sink states29

(and connecting edges) were removed to leave only the figure-of-eight. The model30

definition is still as described in section 2, but with S = T = ∅ in (1–3).31

The parameters to be chosen are the separation between states, the time step, the32

speed limit used to set the initial transition probabilities, and the γ used in the initial emission33

model (5). Graphs with varying separation between states were generated by constructing34

a graph with 5m separation between states and then subsampling. The site speed limit was35

13.4m/s (30mph), but to allow for occasional overspeed, a speed limit of 20m/s was used.36

That is, tuv was set to the shortest path distance from u to v, divided by 20m/s. The results37

presented here use γ = 50, which gives a detection rate of 99% in 10s at 10m and 5% in 10s38

at 100m.39

Figure 3 compares a vehicle’s trajectory as reconstructed from Bluetooth data with40

the (essentially ground truth) trajectory obtained from its GPS logger. The main purpose41

of the the HMM is to infer the position of the vehicle between Bluetooth detections. For42
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FIGURE 3 Comparison of a vehicle trajectory from GPS with the one recon-
structed from Bluetooth data. The vehicle begins at point (a) and drives clock-
wise (driving on the left) to point (b). The vehicle positions from GPS are
shown on the bottom layer (triangles). If the vehicle was detected by a Blue-
tooth detector, the triangle is filled; otherwise it is empty. The corresponding
(as indicated by a connecting line) positions predicted by the HMM are shown
on the top layer. Here the state separation is 30m, and τ = 3s.

example, when the vehicle passes between detectors B and F (or possibly it was detected at1

A or E, since the detection radii overlap significantly) for five time steps (15s), the HMM2

predicts that it moves one state forward in each time step; its predictions are accurate to3

within one state, in this example. The HMM used here was the result of 10 Baum-Welch4

iterations.5

Figure 4 shows the progress of the BW algorithm in training an HMM for the second6

trial for several different parameter settings. The training regime uses 4-fold cross validation7

(CV): in each fold, three quarters of the 24 vehicles are used for training, the remaining8

quarter are used for validation. The BW algorithm aims to maximise the likelihood of9

the training data. It is guaranteed to converge to a local maximum, but it may not find10

a global maximum; this is why it is important to set the initial transition and emission11

probabilities carefully. The figure shows that the likelihood of the training data increases with12

each iteration, but that the likelihood of the validation data reaches a maximum and then13

decreases. The algorithm should typically be stopped when the likelihood of the validation14

set begins to decrease; it is likely that further iterations will lead to over fitting. It is15

important to note that the likelihood is defined with reference to the Bluetooth data only;16

the GPS data are not used (except indirectly via the simulated Bluetooth detectors, in this17
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case). CV can therefore by used to decide when to stop training, even when ground truth1

GPS data are not available.2

Figure 5 shows the progress of the training in terms of the accuracy of the predicted3

vehicle positions, measured against the actual GPS positions. It can be seen that the training4

process reduces the prediction error below that for the initial HMM. Moreover, by comparing5

with 4, it can be seen that most of this improvement is made by the time the likelihood of the6

CV validation set begins to decrease (although there is some further decrease in the bottom7

two panels).8

We are not aware of any previous methods for this problem to which we could compare9

these results. For comparison, a simple deterministic strategy was also evaluated. It is as10

follows.11

1. Let the c(d) denote the closest state to detector d.12

2. When the vehicle is detected by detector d1 at time t1, predict that it is in state13

c(d1) at time t1.14

3. When the vehicle is detected by detector d2 at time t2, find the shortest path from15

c(d1) to c(d2) and assume that the vehicle maintains a constant average speed16

along that path.17

4. At the start of the sequence, before we have detected the vehicle the first time,18

assume it is in c(d1).19

5. At the end of the sequence, assume that the vehicle remains in its last position.20

This strategy is the ‘baseline’ line in figure 5, and its performance is consistently worse than21

the HMM, even before training.22

Overall, the best accuracy was achieved with shorter time steps and state separations;23

experiments with even shorter time steps and separations did not yield much improvement24

over these results, however, and they did increase the computation time. Computation times25

for τ = 3 and 10m state separation were on average 67s per iteration for all four CV folds.26

Training was done using ‘JAHMM’ (version 0.6.2), an open source HMM library.27

4. CONCLUSION28

This paper described a method for tracking vehicles using data from Bluetooth sensors based29

on Hidden Markov Models (HMMs). The method was evaluated on a mixture of real and30

synthetic Bluetooth data. The method was able to reconstruct vehicle trajectories using31

only Bluetooth data. The proposed approach outperformed a simple deterministic strategy32

by a large margin (30%–50%) in this case.33

There is much scope for future work:34

• The model used here was a pure HMM. This meant that certain constraints could35

not be included. For example, emission probabilities for adjacent states may be36

tightly coupled, but in this model they are independent parameters. Coupling37

constraints could considerably reduce the potential for over fitting. Inference would38

then require a more general Expectation Maximisation algorithm.39
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FIGURE 4 Logarithm of the likelihood of the cross-validation training and val-
idation sets over several iterations of the BW algorithm used for training the
HMM. While the likelihood of the CV training set always increases, the likeli-
hood of the CV validation set may decrease; this can be used to decide when to
stop the training algorithm.



Lees-Miller, Wilson, Box 11

Baum−Welch iterations

m
ea

n 
po

si
tio

n 
er

ro
r 

(m
et

er
s)

10

20

30

40

50

60

0 10 20 30 40 50

3s time step

10
m

 n
od

e 
se

p.

6s time step

10
m

 n
od

e 
se

p.

3s time step

30
m

 n
od

e 
se

p.

0 10 20 30 40 50

10

20

30

40

50

60

6s time step

30
m

 n
od

e 
se

p.

initial model
CV training set
CV validation set

baseline
discretisation error
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HMM and the GPS position. The ‘baseline’ is a simple deterministic strategy,
as described in the text. The ‘discretisation error’ is half of the nominal state
separation; this is a lower bound on the achievable prediction error for a given
discretisation of the road network.
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• There may be opportunities to share parameters between groups of states, par-1

ticularly when they are far away from detectors. This would reduce the effective2

number of parameters in the model.3

• The model was evaluated in an ‘off line’ mode, in which all of the Bluetooth data4

was available (smoothing). In practice, it may be desirable to run the system in an5

‘online’ fashion (filtering).6

• Bluetooth detectors also report a ‘received signal strength indicator’ (RSSI) for7

each detection. This is generally correlated with distance, so it may provide extra8

information about the position of the vehicle when it was detected. One possible9

way of incorporating this information into this HMM would be to expand the set10

of symbols to include ‘strong’ and ‘weak’ RSSI detection symbols for each detector.11

• The method was evaluated on a small road system. It is likely that the method12

would have to be applied over much larger road networks in practice. The positive13

results obtained here suggest that evaluation on a larger scale is worthwhile.14
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