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Abstract

Bluetooth is a short range communication protocol. Bluetooth-enabled devices can be de-
tected using road-side equipment, and each detected device reports a unique identifier. These
unique identifiers can be used to track vehicles through road networks over time. The focus
of this paper is on reconstructing the paths of vehicles through a road network using Blue-
tooth detection data. A method is proposed that uses Hidden Markov Models, which are a
well-known tool for statistical pattern recognition. The proposed method is evaluated on a
mixture of real and synthetic Bluetooth data with GPS ground truth, and it outperforms a
simple deterministic strategy by a large margin (30%-50%) in this case.
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1. INTRODUCTION

Bluetooth is a protocol for short range wireless communication between electronic devices,
such as mobile phones, computers and in-car electronics (1). Bluetooth devices that are in
‘discoverable’ mode can be detected from distances of roughly 100m, and when a device is
detected, it reports an identifier that uniquely identifies it. Bluetooth detectors can be built
using inexpensive off-the-shelf components and deployed at road-side to collect these unique
identifiers from devices in passing vehicles.

Bluetooth detection is mainly of interest in vehicle tracking as an alternative (or
supplement) to more expensive vehicle detection technologies, such as automatic number
plate recognition (ANPR). A pair of Bluetooth detectors can be used to accurately estimate
the travel time between the detectors as the time elapsed between the detection of the
same device (according to its unique identifier) at one detector and then the other (2, 3).
Penetration of discoverable Bluetooth devices in road vehicles varies widely, but it is presently
on the order of 10% (2), which has proved to be enough to infer accurate travel times. If
several detectors are deployed throughout a road network, they can be used along with
other road-side sensors, such as inductive loops and ANPR, for traffic assignment and to
infer origin-destination matrices (4). The same technology is also widely used to track
pedestrians (5).

The main challenges in using Bluetooth for vehicle tracking are:

1. The position of a detected vehicle is not known precisely. The time of detection
is known precisely, but the device can be anywhere within the detection radius of
the detector at this time. This radius can be reduced (to increase precision) by
tuning antenna characteristics and transmission power levels, but this leads to the
next challenge.

2. A device may pass by a detector without being detected. This is due mainly to
random delays in the detection process, which can range up to 10s even under
ideal radio conditions (6); these delays will be discussed in more detail in section
2. Particularly when a vehicle is moving quickly, it can easily pass through the
detection radius without being detected. For example, at 22m /s (80km /h; 50mph),
a 100m detection radius allows only 5s for detection.

The problem addressed in this paper is to reconstruct the path of a vehicle through
a road network using only Bluetooth detection data. In general, the vehicle’s path cannot
be recovered with certainty, because of the challenges detailed above, but the most likely
path can be computed. The approach taken here is to phrase the problem in the language
of Hidden Markov Models (HMMSs), which are a well-known and widely used formalism for
statistical pattern recognition problems (7). The resulting paths may be useful for inferring
origin-destination matrices and input for traffic assignment.

Section 2 describes how the problem can be constructed as an HMM and then solved
using standard techniques. In section 3, the proposed method is evaluated using data col-
lected on a test track.

2. METHOD
We will begin by introducing the concept of a Hidden Markov Model (HMM), and then we
will describe its application to the problem at hand. In an HMM, time is discrete. At each
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time step, the model is in one of a fixed number of states, but we cannot directly observe
which one (that is, the state is hidden). Instead, the model emits a symbol, which can be
observed. For each state, there is an emission probability distribution over which symbol
the model will emit, and there is a transition probability distribution over which state the
model will be in for the next time step. The usual setting is that we observe a sequence of
symbols emitted by the model over time, and we wish to infer the sequence of states that
was most likely to generate that sequence of symbols.

In the case of vehicle tracking, the states are chosen points in the road network.
Vehicles move between states (that is, along roads) according to transition probabilities that
reflect the structure of the road network and the traffic conditions. Each vehicle (or, more
precisely, discoverable Bluetooth device) on the network is considered separately, so in each
time step, the symbol that we observe is the name of the detector that detected the vehicle,
or ‘NONE’, if the vehicle was not detected in the current time step. The emission probabilities
for each state determine the likelihood that a vehicle will be detected by each detector if it
is there for one time step; these probabilities will depend mainly on the state’s proximity to
each of the detectors, but it may also reflect other site-specific factors, such as line-of-sight.

The transition and emission probabilities are to be learned from the Bluetooth data.
This is done using the standard Baum-Welch (BW) algorithm (7) for HMMs. This algorithm
requires an initial (prior) estimate of the transition and emission probabilities, which it
iteratively refines based on the observed data. The data consists of one sequence of symbols
for each vehicle over a given interval. Technically, it is assumed that the parameters of the
model are stationary over this interval, and that the sequences are independent.

To define the states and the initial transition probabilities, we proceed as follows. The
required input is a directed graph G, with nodes V' and edges F, that represents the road
network and determines the allowed routes. A possible road graph is illustrated in figure 1.
Note that a two-way road has one set of nodes and edges for each direction.

The states in the HMM are exactly the nodes in the road graph, and the transition
probabilities will be constrained so that in each time step a vehicle can only transition to
a nearby state in the road graph. Let 7 be the length of one time step, in seconds, and
let t,, be the shortest time required to travel from state u to state v, also in seconds. The
tuw can be obtained by computing shortest paths through the road network and making an
assumption on the vehicles’” maximum speed (possibly based on posted speed limits). The
states reachable from state u are then the states with ¢,, < 7.

There are three types of states: traffic can enter the graph at source states, traverse
one or more interior states, and then exit at sink states. Let S, N and T be sets of source,
interior and sink states, respectively, so V' = SUNUT. When a vehicle reaches a sink state,
it assumed that it is undetectable (out of range or turned off), and it remains in the sink
state until it re-enters the graph at some source state. The transition probabilities for a sink
state will typically exhibit a large probability of remaining in the sink state, and smaller
probabilities of returning to various source states. To parameterise this, define for each sink
u a positive weight w, that contributes to the probability of remaining in the sink state,
and for each source state v, a non-negative weight w,, that contributes to the probability of
re-entering the network at v. These weights can be taken to be uninformative (for example,
by setting w,, = 1 for all v and v and setting w, to a large number), or they can be set
to reflect historical trends or site-specific knowledge (for example, if a sink state leads to a
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A Source node
V¥V Sink node

o Other node
—» Direction of flow
® Bluetooth detector

FIGURE 1 Example of a road graph for the ‘InnovITS ADVANCE’ test track
used in section 3. Junction A is signalised; junctions B and C are not. Vehicles
were restricted to the figure-of-eight during the trials; the roads in and out were
coned off. The nodes and edges at junctions are such that U-turns are not
allowed, but all other turns are allowed.
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multi-storey car park, it is very likely that vehicles will re-enter from one of that car park’s
source states).

Putting the road graph constraints and the sink weights together, the relative likeli-
hood of a transition from any state u to any state v is given by

1, ue SUN,ve NUT t,, <7 (1)
B Wy, uvueT,veT ,u=uv (2)
uw = Wy, w€ET,vES (3)
0, otherwise , (4)

and the initial transition probabilities a,, can then be obtained by normalising these for each

state, that is
Auy = auv/ Z Ay -
v

Case (1) allows vehicles to move only to nearby states; if states u and v are too far apart
(tuy > T), case (4) sets the probability of that transition to zero. Note that when an initial
probability is set to zero, the HMM learning algorithm cannot make it non-zero, even if that
would be a better fit to the data.

This completes the definition of the states and the transition probabilities; it remains
to define the emission symbols and probabilities. Here it is important to recall that vehicles
are considered one-at-a-time. Let D be the set of Bluetooth detectors. The set of symbols
that the HMM can emit is then D U {NONE}, where NONE means that the vehicle currently
being considered was not detected in the current time step. Here we are assuming that it is
unlikely that the same device will be detected by more than one detector in one time step;
detectors will usually be far enough apart that this is a reasonable assumption.

The raw data from the Bluetooth detectors for a single vehicle is a sequence of time-
detector pairs. These data must be converted to a sequence with one symbol (detector) per
time step, as follows. Let i be the index of the current time step, with ¢ = 0,...,n where n
is the number of time steps to be considered, and let d; denote the symbol emitted in time
step 7. If one or more detectors detected the vehicle in the time interval [i7, (i + 1)7) then
set d; to be the one that detected it first; otherwise, set d; = NONE.

The emission probabilities then specify for each state (that is, position in the road
network) the probability that a vehicle in that state will be (first) detected by each of the
detectors, or by no detector, in a single time step. The relationship between position, dwell
time and detection probability is in general complicated and site-specific, but only a simple
model is required in order to generate initial estimates of these probabilities; the learning
process can than refine the estimates based on the observed data. One such simple model is
as follows.

Let s,q be the straight line distance in meters between state v and detector d. It is
assumed that the time T,4 until a vehicle at node u will be detected by detector d follows
an Exponential distribution with rate parameter

Mid = VS, (5)
where v is a constant to be chosen. This captures the basic intuition that a detector is

more likely to detect a devices that is closer, because the signal strength will be higher. In
particular, the inverse square law in (5) is based on the Friis transmission equation.
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An important feature that this model does not capture very well is that even at close
range (< 10m), there can be a significant detection delay due to channel (radio frequency)
hopping. Bluetooth uses channel hopping to mitigate the effects of interference with other
Bluetooth devices and also with other devices that use the same frequency band, such as
WiFi wireless Internet. The detector works by periodically sending an ‘inquiry’ message
on a pseudo-randomly chosen channel. A device will be detected only if it happens to be
listening on that channel at the same time, in which case it receives the inquiry message and
transmits its unique identifier (and possibly other information) to the detector. Both the
detector and the device cycle through the possible channels (at different rates), and it can
take some time before they choose the same one. There are several proposed models of the
distribution of delays due to channel hopping under various simplifying assumptions (6, 8).
Matters are further complicated by the fact that the inquiry protocol has since changed
with the 1.2 version of the Bluetooth standard, making newer devices significantly faster
to discover. Our results will show that this model is adequate for our purposes here, but
improvements may be possible with a more accurate model.

To apply the above model for a single detector to multiple detectors, we note that
the time of the first detection at any of the possible detectors, T, is ming 7,4, which is itself
an Exponential random variable with mean rate A, = >, Ayqg. The cumulative distribution
function F,(t) of T, then gives the probability that a vehicle is detected by some detector
within one time step. In particular, F,(t) = 1 — exp(—\,t), and the probability of being
detected within one time step is F,, (7). The probability that a particular detector d is the
first one to detect the vehicle, given that there is at least one detection in the time step, is
Ai/Ay. The initial estimates of the emission probabilities using this model are then

{(Ad/)‘u)Fu(T)v deD
bua = (6)
1— F,(1), d = NONE.

The final requirement is to define a distribution over the start state for each vehicle;
from its start state, the vehicle’s movement is thereafter defined by the transition probabil-
ities. Here we simply take all states as equally likely to be start states.

3. RESULTS
The proposed method is evaluated using data collected at the ‘InnovITS ADVANCE’ test
track near Nuneaton, England on 31 May, 2012. The experiment involved 26 vehicles, all
of which were cars except for one van and two motor cycles. Each vehicle was equipped
with a 1Hz global positioning system (GPS) data logger (model: QStarz BT-Q1000X) that
was also a discoverable Bluetooth device (Bluetooth version 1.2; class 2). GPS traces were
recovered for 24 vehicles. The test track was set up as a ‘figure-of-eight’ with a signalised
junction at the center, as shown in figure 1; the other areas of the test track were marked off
with traffic cones. The primary purpose of the experiment was to evaluate the performance
of several junction control algorithms and a human controller with real drivers in congested
conditions, but six Bluetooth detectors (figure 2) were also deployed during the experiment.
The data used here are from two twenty-minute trials. In the first trial, drivers
were given prescribed routes to follow, such as to drive around the north west loop counter-
clockwise. In the second trial, the drivers were asked only to drive as far as possible in
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FIGURE 2 A Bluetooth detector used in the trials. The detector is built from
off-the-shelf components. The Bluetooth adapter (model: LM Technologies
LM540; Bluetooth version 2.1; class 1) is connected to a single-board computer
(model: BeagleBone A5), which runs a small program that manages the inquiry
process via the BlueZ stack on Linux. The detector runs for one day on bat-
tery power. The detectors were mounted in weather-proof enclosures (sandwich
boxes) on tripods at roughly 1.5m above the road surface. The antenna is 9cm
long.
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the time allowed, subject to the site’s 30mph speed limit. It is worth remarking that the
assumption that the overall traffic pattern is stationary is reasonable within each trial. Data
from the first trial was used for preliminary experiments that guided the development of the
method and advised on the range of parameters to test. The results presented here are for
the data from the second trial, which was used only for evaluation.

There are, however, a number of problems with this dataset, in the context of evalu-
ating the proposed method.

1. The test track is small relative to the usual distances over which Bluetooth detec-
tors are used. The opposing NW-SE corners of the figure-of-eight are only 370m
apart. This means that there is more overlap between detection radii than would
ordinarily be the case. It also means that the physical separation between states
(10m to 30m in these results) may be smaller than would be practical for a larger
network.

2. The separation between the pairs of detectors on each end of the figure-of-eight
(namely C and D, and E and F in figure 3) was found to be too small to reliably
determine in which direction a passing vehicle is driving. In other words, it is
difficult to tell from the Bluetooth data alone whether a vehicle is driving one
way around the figure-of-eight or the other way around, because the sequences of
detections do not look sufficiently different. The proposed HMM method could
not resolve this ambiguity, and the result was very large prediction errors that
(while they were still below those of the baseline method introduced for comparison
below) obscured all other trends. To work around this, we introduce two simulated
detectors, at points G and H in figure 3. These are deterministic detectors that
detect every vehicle within a 20m radius. This makes it much easier to resolve the
directional ambiguity, but it may also improve the quality of the results in other
ways.

3. The vehicles began each trial already parked on the figure-of-eight, and they re-
mained on the figure-of-eight for the whole trial. This means that the vehicles
did not use any source or sink states. For simplicity, the source and sink states
(and connecting edges) were removed to leave only the figure-of-eight. The model
definition is still as described in section 2, but with S =T = ) in (1-3).

The parameters to be chosen are the separation between states, the time step, the
speed limit used to set the initial transition probabilities, and the v used in the initial emission
model (5). Graphs with varying separation between states were generated by constructing
a graph with 5m separation between states and then subsampling. The site speed limit was
13.4m/s (30mph), but to allow for occasional overspeed, a speed limit of 20m/s was used.
That is, t,, was set to the shortest path distance from u to v, divided by 20m/s. The results
presented here use v = 50, which gives a detection rate of 99% in 10s at 10m and 5% in 10s
at 100m.

Figure 3 compares a vehicle’s trajectory as reconstructed from Bluetooth data with
the (essentially ground truth) trajectory obtained from its GPS logger. The main purpose
of the the HMM is to infer the position of the vehicle between Bluetooth detections. For
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FIGURE 3 Comparison of a vehicle trajectory from GPS with the one recon-
structed from Bluetooth data. The vehicle begins at point (a) and drives clock-
wise (driving on the left) to point (b). The vehicle positions from GPS are
shown on the bottom layer (triangles). If the vehicle was detected by a Blue-
tooth detector, the triangle is filled; otherwise it is empty. The corresponding
(as indicated by a connecting line) positions predicted by the HMM are shown
on the top layer. Here the state separation is 30m, and 7 = 3s.

example, when the vehicle passes between detectors B and F (or possibly it was detected at
A or E, since the detection radii overlap significantly) for five time steps (15s), the HMM
predicts that it moves one state forward in each time step; its predictions are accurate to
within one state, in this example. The HMM used here was the result of 10 Baum-Welch
iterations.

Figure 4 shows the progress of the BW algorithm in training an HMM for the second
trial for several different parameter settings. The training regime uses 4-fold cross validation
(CV): in each fold, three quarters of the 24 vehicles are used for training, the remaining
quarter are used for validation. The BW algorithm aims to maximise the likelihood of
the training data. It is guaranteed to converge to a local maximum, but it may not find
a global maximum; this is why it is important to set the initial transition and emission
probabilities carefully. The figure shows that the likelihood of the training data increases with
each iteration, but that the likelihood of the validation data reaches a maximum and then
decreases. The algorithm should typically be stopped when the likelihood of the validation
set begins to decrease; it is likely that further iterations will lead to over fitting. It is
important to note that the likelihood is defined with reference to the Bluetooth data only;
the GPS data are not used (except indirectly via the simulated Bluetooth detectors, in this
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case). CV can therefore by used to decide when to stop training, even when ground truth
GPS data are not available.

Figure 5 shows the progress of the training in terms of the accuracy of the predicted
vehicle positions, measured against the actual GPS positions. It can be seen that the training
process reduces the prediction error below that for the initial HMM. Moreover, by comparing
with 4, it can be seen that most of this improvement is made by the time the likelihood of the
CV validation set begins to decrease (although there is some further decrease in the bottom
two panels).

We are not aware of any previous methods for this problem to which we could compare
these results. For comparison, a simple deterministic strategy was also evaluated. It is as
follows.

1. Let the ¢(d) denote the closest state to detector d.

2. When the vehicle is detected by detector d; at time t;, predict that it is in state
c(dy) at time ;.

3. When the vehicle is detected by detector ds at time t5, find the shortest path from
c(dy) to ¢(dy) and assume that the vehicle maintains a constant average speed
along that path.

4. At the start of the sequence, before we have detected the vehicle the first time,
assume it is in ¢(dy).

5. At the end of the sequence, assume that the vehicle remains in its last position.

This strategy is the ‘baseline’ line in figure 5, and its performance is consistently worse than
the HMM, even before training.

Overall, the best accuracy was achieved with shorter time steps and state separations;
experiments with even shorter time steps and separations did not yield much improvement
over these results, however, and they did increase the computation time. Computation times
for 7 = 3 and 10m state separation were on average 67s per iteration for all four CV folds.
Training was done using ‘JAHMM’ (version 0.6.2), an open source HMM library.

4. CONCLUSION
This paper described a method for tracking vehicles using data from Bluetooth sensors based
on Hidden Markov Models (HMMs). The method was evaluated on a mixture of real and
synthetic Bluetooth data. The method was able to reconstruct vehicle trajectories using
only Bluetooth data. The proposed approach outperformed a simple deterministic strategy
by a large margin (30%-50%) in this case.

There is much scope for future work:

e The model used here was a pure HMM. This meant that certain constraints could
not be included. For example, emission probabilities for adjacent states may be
tightly coupled, but in this model they are independent parameters. Coupling
constraints could considerably reduce the potential for over fitting. Inference would
then require a more general Expectation Maximisation algorithm.
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log likelihood

FIGURE 4 Logarithm of the likelihood of the cross-validation training and val-
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idation sets over several iterations of the BW algorithm used for training the
HMM. While the likelihood of the CV training set always increases, the likeli-
hood of the CV validation set may decrease; this can be used to decide when to
stop the training algorithm.
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mean position error (meters)

FIGURE 5 Mean prediction error over the course of the training process. The
prediction error is the difference between the vehicle position predicted by the
HMM and the GPS position. The ‘baseline’ is a simple deterministic strategy,
as described in the text. The ‘discretisation error’ is half of the nominal state
separation; this is a lower bound on the achievable prediction error for a given
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e There may be opportunities to share parameters between groups of states, par-
ticularly when they are far away from detectors. This would reduce the effective
number of parameters in the model.

e The model was evaluated in an ‘off line’ mode, in which all of the Bluetooth data
was available (smoothing). In practice, it may be desirable to run the system in an
‘online’ fashion (filtering).

e Bluectooth detectors also report a ‘received signal strength indicator’ (RSSI) for
each detection. This is generally correlated with distance, so it may provide extra
information about the position of the vehicle when it was detected. One possible
way of incorporating this information into this HMM would be to expand the set
of symbols to include ‘strong’ and ‘weak’ RSSI detection symbols for each detector.

e The method was evaluated on a small road system. It is likely that the method
would have to be applied over much larger road networks in practice. The positive
results obtained here suggest that evaluation on a larger scale is worthwhile.
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