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Abstract

Limitations imposed by the traditional practice in financial institutions of running price and
risk analysis on the desktop drive analysts to use simplified models in order to obtain
acceptable response times. Typically these models make assumptions about the distribution of
market events like defaults. One popular model is Gaussian Copula which assumes events are
independent and form a “normal” (Gaussian) distribution. This model provides good risk
estimates in many situations but unfortunately it systematically underestimates risk for
unusual market conditions, the very time when analysts most need good estimates of risk.
They run away from using Monte Carlo simulations since they can take days. We propose a
Monte Carlo Simulation as a Service (MCSaaS) which takes the benefits from two sides: The
accuracy and reliability of typical Monte Carlo simulations and the fast performance of
running and completing the service in the Cloud.

In the use of MCSaaS, we propose to remove outliers to enhance the improvement in
accuracy. In the process of doing so, we propose three hypotheses. We describe our rationale
and steps involved to validate them. We set up three major experiments. We confirm that
firstly, MCSaaS with outlier removal can reduce percentage of errors to 0.1%. Secondly,
MCSaaS with outlier removal is expected to have slower performance than the one without
removal but is kept within 1 second difference. Thirdly, MCSaaS in the Cloud has a
significant performance improvement over the Gaussian Copula on Desktop. We describe the
architecture of deployment, together with examples and results from a proof of concept
implementation which shows our approach is able to match response rates of desktop systems
without making simplifying assumptions and the associated potential threat to the accuracy of
the results.
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1 Introduction

Analysts working in the Financial Sector use models to predict risks and market behaviour,
and as an aid to their decision making regarding trading activity and setting prices for
financial instruments. With the arrival of modern desktop computers, it has become possible
for analysts to perform many of these tasks on the desktop and it is clear this is how they like
to work. However, there are limits to the desktop environment which means larger-scale
software simulation to calculate risk and pricing using techniques like Monte Carlo simulation
take hours to complete (MacKenzie and Spears, 2012). Techniques such as the Variance
Gamma Process (VGP) (Madan, Carr and Chang, 1998) can be used to reduce the number of
simulations necessary to obtain good results but it still not possible to obtain satisfactory
results quickly enough to satisfy analysts requirements.

The solution regularly adopted within financial institutions is to adopt a simplified model
such as “Gaussian copula” which was popular for modelling rates for mortgages, bonds and



derivatives in the finance industry prior to the 2008 crisis. Using this model, it is possible to
calculate results in an acceptable time in the desktop environment. However, although this
model offers a good approximation in ordinary situations, it has some shortcomings, notably
that it underestimates risks markedly for relatively unlikely market conditions.

In this paper, we propose an alternative solution to the problem which permits reducing the
response time to perform market simulation and analysis down to acceptable level whereby,
rather than compromise the value of the result by adopting an approximate model, recent
advances in Cloud Computing enable the application of sufficient computing resources to
complete the desired analysis in an acceptable time. We describe one approach using Monte
Carlo Simulations and Least Squares Method and the results from experiments using a
prototype implementation which show the benefits of using Cloud Computing in this context
compared with the traditional approach.

1.1 Rise and fall of the Gaussian Copula model

A collateralised debt obligation (CDO) is a type of structured asset-backed security. They are
issued by specially incorporated entities which sell series of bonds for cash which is used to
buy assets. Typically these assets include corporate loans, mortgage backed securities and
commercial property bonds. The income from these assets is then used to pay the promised
cash flows of the bonds which are issued in a serried of tranches. Should there be a shortage
of income from the assets, payment is made to bonds according to their rank in the tranches.
Earlier issued bonds take priority, the latest tranches are the first not to be paid. As with all
asset-backed securities, the risk to the holder of the bonds does not depend so much on the
underlying assets as on the definition of the various tranches, effectively transferring the risk
associated with the underlying assets to the holders of the bonds. Issuers of CDOs generally
receive an initial commission and management fees for the lifetime of the CDO. A particular
feature of this type of security is that there is no residual risk to issuers who are therefore
encouraged to pursue asset volumes rather than quality.

David X Li is credited with developing concepts and techniques widely used by financial
analysts prior to the financial crisis in 2008 to model ‘credit derivatives’ and calculate risks
and values for collateralised debt obligations (CDO) which had previously been thought too
complex to price (Li and Liang, 2005). Using Li’s technique it became possible to derive
figures for yields of a corporation’s bonds and the prices of new credit swaps rapidly. He did
this by adopting a notion of the “survival time” of an individual corporation (the time until it
defaults) in combination with the “copula function” which is an established technique used in
mortgage lending to calculate the impacts of defaults due to death of one of the borrowers
(Free, Carriere and Valdez, 1996).

Li then incorporated his work into a popular financial software package, CreditMetrics, and
Copula function together to establish “Gaussian copula” model, which has been used by the
finance industry since 1997 (MacKenzie and Spears, 2012). Combining the two approaches
permitted the finance sector to enjoy benefits from both — Gaussian’s simplicity and
familiarity and copula’s unified and easy-to-use approach.

CDO Evaluator was the final version of Li’s software. According to interviews with experts
and developers working in financial services by MacKenzie and Spears (2012), CDO
Evaluator became very popular amongst quantitative developers and investment banks for the
following reasons:

e [t avoided the need to think of many variables which are time-consuming to obtain.

e [t was easier to understand since there were fewer variables to consider.

e [t was also easier to communicate with other teams. Financial problems and

derivatives were difficult to understand and communications were not easy even



within teams. Concepts of “Gaussian copula” model and the CDO Evaluator could
ease these difficulties.

¢ Developers found it easy to reproduce Li’s concepts due to the simplicity of the model
and the problem.

e Li’s software was backed by some leading quantitative developers at that time, and
was in widespread use in investment banks.

¢ [t meant analysts could avoid using Monte Carlo simulations that took overnight or
longer to complete.

The drawback for this approach is that for the Gaussian-Copula simplification to be valid,
there can be little or no correlation between events. As correlation between events rises, the
holders of the latest investments become increasingly at risk and Gaussian-copula based
models break down in such conditions (MacKenzie and Spears, 2012). Unfortunately, this is
exactly what happened in the run up to the financial crisis of 2007/8 and commentators
believe that the problem was aggravated by traders actions which were based on seriously
underestimated estimates of risk generated by Gaussian-Copula based analyses (Ma, 2009).

12 The problem and our proposal

As discussed in Section 1.1, the problems are due to the wide adoption, limitation and
potential abuse (by traders) of the Gaussian Copula model. In our previous publication
(Chang et al, 2011), we demonstrate that the use of Cloud Computing applications can
support large-scaled simulations, e.g., up to 500,000 simulations in one go and allow all
simulations to be completed within 25 seconds in the Clouds. We also demonstrate that the
accuracy can be achieved by introducing the Least Square Method which can perform
regression to give high accuracy and reliability supported by literature and our results. While
some quantitative developers do not use Monte Carlo simulations, that is because they write
their code and perform their simulations on the desktop (MacKenzie and Spears, 2012). We
propose that with the structured and systematic way to combine the Monte Carlo calculations
in the Cloud, it can obtain the benefits from both sides: The accuracy and reliability from the
Monte Carlo simulations and the excellent performance and resource sharing in the Cloud.

2 An Alternative to Gaussian-Copula: Monte Carlo
Simulation as a Service

Gaussian copula models are used in financial modelling and many banks’ mathematical
models assume normal (Gaussian) distributions of events and may underestimate risks in real
financial markets (Birge and Massart, 2001). Moreover, these models make assumptions
about market behaviour which may not always be true with the result that the models can fail
to detect risks, as highlighted by the financial crisis in 2008. To address this alternative, non-
Gaussian financial models are needed. Various studies conclude that modelling of financial
markets needs to be addressed in two stages; one for pricing and another for risk analysis
(Feiman and Cearley, 2009; Chang, 2014). This means a more suitable model is required for
large-scale of financial analysis. MCS is the most commonly adopted and provides data for
investors’ decision-making amongst other models (Hull, 2009).

David X Li’s contribution to the finance industry has become known as a “recipe to disaster”
after the financial crisis of 2008 (Salmon, 2009). His model and software could work on the
desktop and calculated results in an acceptable amount of time, avoiding the need to run
Monte Carlo simulations which could take days to complete. However, the simplifications of



Li’s Gaussian-Copula model meant it did not work in extreme conditions (MacKenzie and
Spears, 2012) with the consequence that it underestimated risks. According to Meissner
(2008) who attended Li’s presentation, Li himself acknowledged the imitations of the model
and said: “The current copula framework gains its popularity owing to its
simplicity....However, there is little theoretical justification of the current framework from
financial economics....We essentially have a credit portfolio model without solid credit
portfolio theory”.

2.1 The objective

With the Gaussian-Copula model discredited, there is need to find an alternative analysis
technique. The obvious approach is to revert to a Monte-Carlo based technique but running
simulations on desktop clearly takes too long. However, using new techniques and
technologies, it is possible to gain access to far more processing power than is available on the
desktop. In particular, Cloud computing promises to provide users with flexible access to
large computing resources on demand.

2.2 MCSaaS using Cloud Computing

Our proposal is to offer a Cloud based analysis service. With a Cloud based approach the
limitations of the desktop no longer need apply, meaning a Monte-Carlo based solution which
won’t suffer from the shortcomings of the Gaussian-Copula based solution can be feasible.
For the particular application under consideration here, factors such as accuracy, speed,
reliability and security of financial models and their attendant costs must be considered
(Dixon, 2011). Some existing Grid based financial applications are available but they cannot
be transferred to Cloud Computing easily (Kondo et al., 2009). Additionally, privacy and data
ownership issues mean that public and hybrid Clouds are not suitable (Armbrust et al., 2009)
making a private cloud the obvious choice for the financial sector.

We propose and describe a Monte Carlo based service (MCSaaS), a Cloud based service
designed to improve accuracy and quality of both pricing and risk analysis in financial
markets, compared with traditional desktop technologies. MCSaaS is an example of Software
as a Service (SaaS) with the emphasis on how the application offers quality services in private
cloud environments. This is important because incorrect analysis leads to excessive risk
taking which may then lead to financial losses, damage to business credibility or destabilised
markets. We illustrate its use with an example which shows price and risk assessments for
investments such as stocks and shares or financial derivatives in the context of different levels
of volatility, maturity and risk free rates.

3 Methods used by MCSaaS

Adopting a better methodology not only enhances performance but also resolves some aspects
of challenges. Barnard et al. (2003) demonstrate that having the right method is more
important than using a particular language.

3.1 Monte Carlo Simulation (Monte Carlo Methods)
Consider a player wishing to know the odds for a game in a casino. One approach would be to

study the game as it is played together with the behaviour of the players and compose all this
information using the necessary mathematical theory to arrive at an answer. Depending on the



game, this might involve highly complex calculations to take into account all of the various
random factors, the behaviour of the players and interrelations between all of them.
Alternatively, they could arrive at an approximation by playing (or just watching) the game
and recording the results. The more games they record and use, the more accurate their
approximation is likely to be. This is the heart of Monte Carlo Methods (or Simulation); an
aggregation of many simulations of the system under consideration is used to discover the
behaviour of a system in place of deriving a theoretical result.

Using Monte Carlo Simulation involves the following steps:

1. Producing reliable forecasting: A model is generated which reproduces the
probabilistic behaviour of the system to be considered.

2. Outlier removal: Using an understanding (or approximation) of the distribution of the
input data to the system, values are generated for many simulations of the system.

3. Accuracy: The simulation is run using these sets of input data until sufficient
simulations have been performed to produce a result of the desired accuracy of result.
All of the simulations are aggregated to arrive at the results.

4. Performance: The proposed solution can support large-scaled simulations such as up
to 500,000 simulations in one go and can be completed within seconds.

When volatility is known, Monte Carlo Methods (MCM) can be used to calculate best prices
for buy and sell, and provides data for investors’ decision-making (Waters, 2008).

Various enhancements may be used in conjunction with Mote Carlo Methods to reduce the
number of simulations necessary to obtain a given degree of accuracy in the result. For
example, the application of error correction which may be applied throughout financial
modelling; the type of errors which may be detected and eliminated include systematic errors
in calculations and out of range of data. The use of the Variance-Gamma Process (VGP) in
conjunction with Monte Carlo Methods (MCM) in this way has been the subject of a number
of studies (Carr et al., 2002). When errors are identified, rectifications are found and applied
automatically wherever possible (Zimmermann, R. Neuneier, R. Grothmann, 2006).

Brigo et al. (2007) describe their risk modelling process and explain how VGP may be used to
reduce inconsistency. One drawback is that their technique works on desktop but not Cloud
(Ribeiro and Webber, 2004). Another is that there is a practical limit to the number of
simulations VGP can handle at once which prompts us to look for an alternative suitable for
large numbers of simulations whilst maintaining accuracy and quality. For example, MCS
written in a combination of Fortran and C# used by in Commonwealth Bank of Australia can
take anything from several hours to more than a whole day to complete when they are run on
the desktop (Chang et al., 2011).

3.2 Seamless removal of outliers

Financial computation performed by researchers (Carr et al., 2002; Ribeiro and Webber, 2004
and Brigo et al., 2007) needs additional steps to filter out outliers. Often this takes hours since
complex processes are involved. Our contribution is that the integrated approach of using
MCM and VGP under the umbrella of the “Monte Carlo Simulation as a Service” (MCSaaS)
which includes seamless removal of outliers. In other words, removal takes place prior to
computation and only the filtered results, which have the better data quality than those
without outlier removal, are reported.
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Figure 1: Frequency of call price simulation performed by LSM.

Figure 1 shows results of frequency of call price simulation performed by LSM. The x-axis is
the call price and the y-axis is the number of frequency out of 1000. The higher the peak, the
greater the probability. A key observation is that the majority of data plots in Figure 1 fall
within the bell shape in red. This means that not many outliers (which appear to be noise-like
wavelengths) have been observed. In addition, the red bell line indicates that the peak falls to
1.0775 as the call price, although the actual peak appears to be around 1.0776 while reading
the peak (in indigo). This means that there is a difference between the estimated value and the
actual value of the most-likely call price for the profitability. Our assertion is that using the
integrated approach of seamlessly adopting outlier removal, the percentage of errors is lower
than Monte-Carlo simulations without outlier removal. Hence, the hypothesis becomes

H1: Monte-Carlo simulations with outlier removal have lower percentages of errors
than Monte-Carlo simulations without outlier removal.

Within MCSaaS, another key technique involved to optimise computational performance is
Least Square Method (LSM). The advantage of using LSM is that it allows financial
computations in the Cloud to complete up to 500,000 simulations in one go in less than 25
seconds (Chang et al., 2011 a). The seamless approach can also ensure all financial
computations to run 500,000 times with their outliers removed, so that results can achieve
greater accuracy. However, it is reported that financial computation by VGP takes longer time
(Ribeiro and Webber, 2004 and Brigo et al., 2007; Chang et al., 2010), so we set the
hypothesis that

H2: The execution time between Monte-Carlo simulations without outlier removal is less
than Monte Carlo simulations with outlier removal.

Additionally, Section 1 and 2 also describe that most of the financial computation performed
by Gaussian Copula is on the desktop and has slower performance than using Cloud. Hence,
the next hypothesis is

H3: The proposed Monte-Carlo Simulation as a Service (MCSaaS) has better
performance than the desktop counterpart.



Key techniques involved in MCSaaS are the use of Least Square Method, which is presented
in the following section.

3.3 Choice of Least Square Method (LSM) for MCSaa$S

Completion of large numbers of Monte-Carlo simulations generates a large number of results
which need to be assimilated into a single graph for which our service follows current finance
industry practise and uses LSM. Various alternative methods were considered including
stochastic simulation, Terms Structure Models (Piazzesi, 2010), Triangular Methods (Mullen
et al., 1988; Mullen and Ennis, 1991), and Least Square Methods (LSM) (Chang et al., 2011;
Longstaff and Schwartz, 2011; Moreno and Navas, 2001). Of these, Least Square Method
(LSM) was chosen because it provides a direct method for problem solving, is appropriate for
large problems and it lends itself to rapid calculation in the Cloud because its computation can
be divided into sections which can be calculated independently (Moreno and Navas, 2001;
Chang et al., 2011; Longstaff and Schwartz, 2011). Robust algorithms have been developed
which estimate best values efficiently and precisely using LSM in combination with MCS
which are popular and versatile (Moreno and Navas, 2001; Choudhury et al., 2008; Longstaff
and Schwartz, 2011).

3.3.1 Least Square Method (LSM) for Monte Carlo Simulations (MCS)

Consider a data set (x;,y;), (x2, ¥2),....,(Xn, yu) With the fitting curve f{x) has the deviation d;, d;,
...., d, caused by each data point, the least square method produces the best fitting curve with
the property as follows

MinimumLeastSquareEwor(Il)=d,* +d,” +..+d, ’ +d > = Zdiz = Z[yi -fOF (D)

i=1 i=1

The least squares line method uses an equation f(x) = a + bx which is a line graph and
describes the trend of the raw data set (x;,y;), (x2, ¥2),....,(Xn, Yn). The n should be greater or
equal to 2 (n > 2)in order to find the unknowns a and b. So the equation for the least square
line is

M=d’+d," +..+d, " +d,’ =>d’=>[y,—(a+bx)I’ 2)
i=1 i=1

The least squares line method uses an equation f(x) = a + bx + cx’ which is a parabola graph.
The n should be greater or equal to 3 (rn > 3)in order to find the unknowns a, b, and c. When
you get the first derivatives of [ ] in parabola, you will have

M=d’+d,"+..+d, +d, =>d =Yy, - a+Y bx,+ Y cx)T (3)
i=1 i=1 i=1 i=1 i=1

LSM has been mathematically proven and allows advanced calculations of complex systems.
fix)=a+ bx + cx’is the equation for LSM. LSM provides a direct method for problem
solving, and is extremely useful for linear regressions. LSM simulates and performs
calculations by linear regression, which attempt to fit to the parabolic function to get a precise
approximation to the actual values closely. LSM computation can either use data or
mathematical predictive modelling (no data).

3.4 Accurate Risk modelling using the Monte-Carlo and Least Squares
Methods

When the volatility is known or provided, prices for buy and sale can be calculated. Chang et
al. (2011) have demonstrated how to calculate both call and put prices, with their respective



likely price, upper limit and lower limit. Risk analysis is carried out using models of both the
American and European styles of option as both are popular. The difference is that an
American option may exercise at any time but European options may only be exercised at
expiry (Hull, 2009). The majority of exchange-traded options are American. Adopting both
options is useful because American options indicate average performance, and European
options give the best pricing or risk at the time that research work takes place. Both American
and European options can be converted to percentages (Hull, 2009; Chang et al., 2012). This
means if a risk is calculated as the 7.52 risk price, it can be interpreted as 7.52% as the
percentage that the risk can happen and the price to accept it is 7.52.

Chang et al (2011) explain how adopting LSM allows 100,000 MATLAB simulations to be
run in the cloud, allowing such a calculation to be completed in a few seconds. MATLAB is
used due to its ease of use with relatively good speed.

The following is the result of running LSM to calculate the expected risk price.

MCAmericanPrice = 7.533 (risk price)
MCEuropeanPrice = 7.326 (risk price)

This means the average performance for risk price is 7.533 (i.e., 7.533% for operational risk
to happen), and the best risk pricing that the completion of project or the end of investment
(exit/expiry) to happen is 7.326 (7.326 % for operational risk to happen).

The next stage is to calculate the range of lower, upper and medium limit. This is an important
step to calculate precise options. The put price is used to calculate risk pricing as it represents
a price to accept this risk (Hull, 2009; Chang et al., 2012; Chang, 2013). MCSaaS calculations
allow computation of accurate results of up to five decimal places including its exact price,
lower limit and upper limit which corresponds to 95% confidence interval of the analysis.
Option prices presented in Table 1 are the results of 500,000 simulations in the Cloud for the
expected European option (for risk price).

Table 1: Precision result to calculate exact risk prices for European options
LowerLimit MCPrice (exact risk price) | UpperLimit
Put Prices: 7.26761 7.32682 7.38596

4 Experiments and Benchmark in the Clouds using
MATLAB

Using MCSaaS, Monte Carlo Simulations with LSM can be performed quickly in the Cloud.
In our previous work, we describe code used for experiments and benchmarking in the Clouds
(Chang et al., 2011, 2012). Based on a core code algorithm, the code calculates the best
American and European options. MCSaaS can calculate financial options using up to 500,000
simulations each time. Execution time (based on the average of three results) is used as the
performance benchmark with standard deviations presented. Our objective is to demonstrate
that:

H1: Monte Carlo simulations with outlier removal have lower percentages of errors
than Monte-Carlo simulations without outlier removal.

H2: The execution time of Monte-Carlo simulations without outlier removal is less than
Monte Carlo simulations with outlier removal.

H3: The proposed Monte-Carlo Simulation as a Service (MCSaa$, outlier removal) has
better performance than the desktop counterpart.



4.1 Background information about a Cloud platform for running MCSaa$S

There are several types of computing Cloud platform, each with its own benefits and
constraints. The main broad types are public, private and hybrid. As suggested by the name,
Public Clouds are normally offered by commercial organisations who offer access to them in
return for a fee. Private Clouds are contained within an organisation and not generally
available for use from outside the organisation. Hybrid clouds are a mixture of private and
public clouds, being effectively private clouds with a facility to call upon additional resources
from a public cloud when necessary.

The considerable amount of processing required for MCSaaS makes using a public Cloud an
obvious choice for MCSaaS, especially in view of the nature of much of the calculation which
can be performed independently and hence in parallel. These Clouds have virtually unlimited
processing power available (subject to cost considerations) and should be highly reliable and
available. They are also available without any capital or maintenance costs. However, they do
have some drawbacks such as security; the objective of implementing and using MCSaaS is to
achieve a competitive advantage in trading from the improved analysis it is able to produce. It
is therefore important to ensure the results of its analysis do not become available to
competitors. Indeed, it may be desirable to prevent competitors from being able to discern
patterns of MCSaaS activity.

Security issues are solved by building and using a private Cloud. As a private facility, access
to it can be strictly controlled and limited. It can also be established as a facility dedicated to
MCSaaS work. In addition, any latency associated with passing data to and from the Cloud
should be small since it is most likely to be located physically close to the analysts using it.
As with public Clouds, there are disadvantages. The most obvious being the capital cost of
obtaining the necessary hardware and the setup and maintenance costs. There will also be a
trade-off to be made between the cost of building the private Cloud and the processing power
it can provide.

In view of the nature of the application under consideration, which requires a great deal of
processing to perform many thousands of simulations quickly if it is to match the performance
of the discredited desktop applications which used Gaussian Copula techniques, it would
appear that raw performance is likely to be the key consideration. Accordingly, experiments
have been devised to establish the extent of the expected advantage of the Public Cloud in
order to establish if this is sufficient to negate any potential costs associated with resolving
the security issues arising from using a public facility.

42 Hardware used for experiments and benchmarks

Desktop experiments used a high specification desktop machine: 2.67 GHz Intel Xeon Quad
Core, 4 GB of memory (800 MHz). Figure 2 shows the architecture of the private cloud which
involves six sites in total; two in London, two in Southampton and two further collaborator
sites in Taiwan and Australia. The University of Southampton resources are used for all
experiments, and are also used to connect lead author’s home cluster, Greenwich and London
Data Centre. On the diagram, blue arrows indicate computational connections between
internal networks.

For comparison between platforms, code was executed on Amazon EC2 which has multiple
2.33 GHz dual core processors each with 7.5 GB memory offering Ubuntu 8.0.4 virtual
machines as being representative of public Clouds.



London Greenwich

University of Southampton

2 servers (with VMs), 9 GHz, 20 k\
GB at total

A

NAS: 16 TB at total

London Data Centre, advanced parallel
computing infrastructure

Red arrows: simulations and computational
connections between different networks.
Blue arrows: simulations and computational
connections between internal networks.
Green (dotted line): interactions between
different sites which need to pay for access.

ECS, server 1 (with VMs), used for
simulations, 3.0 GHz, 12 GB RAM

A

ECS, server 2 (with VMs), used for
simulations, 3.0 GHz, 4 GB RAM

Lead author’s home, Southampton

Home server 1 (with VMs), 4.2 GHz, 8
GB RAM

aaHome cluster (8 servers with VMs), 20
GHz. 24 GB RAM

HPC servers: 30 GHz o™ N
(six-cores) and 60 GB 1. Statistics
RAM at total 2. Statistics
— 5 services 3. Database
NAS: Archive (24 TB at 4. Bioinformatics
»| total, 12 TB effective, RAID 5. Virtualisation
L0)

Home NAS 1 (6 TB at total and effective,
RAID 0)

A

Figure 2: Architecture of the private cloud.
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4.3 Cross-platform baseline experiments before validating three hypotheses

Cross-platform baseline experiments are necessary before validating our three hypotheses as
we need to quantify performance differences between different platforms so we can make a
fair comparison when validating the three hypotheses.

Five different experiments were designed. Each set of experiments recorded execution time
for a sample exercise using MATLAB 2009 running from 50,000 to 500,000 simulations with
the results for each set of experiments recorded. Multiple runs were made of each set of
experiments, under the same conditions and parameters each time to ensure average
execution time is a reasonable performance indicator. The experiments were run on one
public Cloud and two configurations of private Cloud and the results were unexpected. The
final results are shown in Table 2.

Table 2: Comparative performance of types of Cloud

Platform: Public Cloud Southampton only London/Southampton Private
Private Cloud Cloud

Execution 21.1 19.7 18.9

time (sec)

Standard 0.1 0.1 0.1

deviation

Comparative | 1 6.64% 10.43%

performance Quicker Quicker

Far from exhibiting an overwhelming advantage expected from the public Cloud, the
performance of all three Cloud configurations was similar suggesting that a preference for
using a private Cloud for MCSaaS arising from security concerns does not present a barrier to
obtaining satisfactory performance.

4.4 Experiments validating the first hypothesis

Results in Section 4.3 show that performance of running MCSaaS is the best on the Private
Cloud (London and Southampton), Private Cloud (Southampton) and Public Cloud. For the
purpose of validating the first hypothesis, experiments were performed on the Private Cloud
(Southampton). MCSaaS with and without outlier removal were performed five times and
compared results with each other. Both call prices for the actual values and estimated values
were recorded. The percentage of errors can be worked out by the followings:

¢ Finding the difference between the actual and estimated values in the call price;
e The difference value is then divided by the actual value.

Results are presented in Table 3 as follows. It shows that MCSaaS without outlier removal is
50 times more accurate than the one without outlier removal, although both percentage rates

are below 1%.

Table 3: Comparison between MCSaaS with or without outlier removal

Comparison type Percentage of errors (%) | Standard deviation (%)
MCSaaS with outlier removal 0.01 0
MCSaaS without outlier removal | 0.5 0.1

11




45 Experiments validating the second hypothesis

Similar to Section 4.4, experiments were performed on the Private Cloud (Southampton). The
purpose is to compare performance of MCSaaS with and without outlier removal. All
experiments were performed five times and their results of the execution time were recorded
for simulations between 50,000 and 500,000. Figure 3 shows results of the execution time of
performing between 50,000 and 500,000 simulations. Although MCSaaS without outlier has
the better performance as expected, it has less than 1 second quicker in all the tests. This also
means that the improvement with the outlier removal is worth the effort, since it has 50 times
more accurate than the MCSaaS without outlier removal.

MCSaa$S with and without outlier removal comparison
25
o
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2
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% 101 removal
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o
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>
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No of simulations (1 unit = 50,000 simulations)

Figure 3: MCSaaS with and without outlier removal comparison
46 Experiments validating the third hypothesis

The objective is to demonstrate that the use of MCSaaS has better performance than the
desktop counterpart. Since MCSaaS runs in the Cloud, the Private Cloud (Southampton) is
used to compare with Gaussian CDO which runs on Desktop. The results in Figure 4 show a
clear advantage to MCSaaS which is much quicker and able to complete calculations using
up to 500,000 simulations nearly at 21 seconds. On the other hand, Gaussian CDO on
Desktop takes more than 140 seconds for 300,000 simulations per experiment and cannot go
beyond the boundary of 300,000 simulations per attempt.

12
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Figure 4: Performance comparison between MCS (private cloud) and Gaussian CDO on
desktop.

5 Discussions: benefits offered by MCSaaS
Two topics of discussions are presented as follows.
5.1 Benefits offered by MCSaaS

This section presents the benefits offered by MCSaaS. Firstly, it supports outlier removal and
integrates it seamlessly with the MCSaaS to ensure a good level of computational quality
prior risk modelling. Secondly, it offers a precision method to calculate risk prices up to five
decimal places with 95% confidence interval presented. This allows stakeholders to
understand the likely range and to make appropriate decisions to reduce risk. Thirdly,
500,000 simulations in the Cloud takes around 20 seconds to complete instead of more than
140 seconds for running up to 300,000 simulations on desktop. Cloud Computing provides
better performances in achieving shorter execution time and running more simulations than
the desktop. Fourthly, MCSaaS offers cost saving, as the entire infrastructure cost than
£81,000 to build and do not need millions of spending in investment banks. These four major
points can bring long-term benefits in adopting MCSaaS in the Cloud. It can allow
researchers, stakeholders and organisations to produce accurate and reliable risk analysis that
can be completed much quickly than desktop, and offer them cost saving.

We also set up three hypotheses and explain our steps to validate them. We demonstrate that
MCSaaS with outlier removal can keep the percentage of errors to be within 0.01%. It is only
less than 1 second slower than MCSaaS without outlier removal and has a significant
performance improvement over Gaussian CDO on Desktop.
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5.2 Contributions to risk analysis

There are many types of risks that affect businesses including market risk, credit risk,
liquidity risk, legal/reputation risk and operational risk. Behavioural models of systems are
often constructed to predict likely outcomes under different contexts and scenarios. Both
analytical and simulations methodologies are applied to these models to predict likely
outcomes.

For a variety of reasons, financial analysts have traditionally favoured desktop solutions
leading to widespread adoption of risk models which rely on Gaussian-Copula type
approximations to make completion of the necessary calculations practical. However, this
type of model makes dangerous assumptions about the nature of market risks. In particular,
they assume little or no dependence between events such as defaults. This may be reasonable
in a stable market, but at least a proportion of the changes which occur in unstable market
situations affect the market as a whole meaning that analysis results from models which
assume independence are not reliable and can lead to serious underestimates of risk in
unstable market situations. The recent financial crisis brought an abrupt end to the use of this
type of model which, according to some experts was a contributory factor.

Our proposed solution offers accurate results to reduce percentage of errors to be within
0.01%. This can help finance industry a good alternative for risk analysis and risk reduction
in their operational work and investment decision.

6 Conclusion

Our proposed MCSaaS is an obvious alternative technique which has the potential to provide
high quality analysis of pricing and risks in financial markets. However, to obtain these
accurate and reliable results, large numbers of simulations are required and the processing
required to perform such analysis is not practical using the desktop environment where it can
take many hours to complete. The alternative we propose is to use a Cloud based service
which, by taking advantage of the considerably increased capability of Cloud Computing,
even compared with the most powerful desktop, permits the use of Monte Carlo techniques
without the response penalty associated with using such techniques on the desktop.

We propose three hypotheses with their rationale explained. We set up the experiments and
explain the process involved to validate our hypotheses. Firstly, we confirm that the use of
outlier removal can reduce the percentage of errors to be 0.01% instead of 0.5% for those
without outlier removal. Secondly, we show that the MCSaaS with outlier removal is
expected to have longer execution time but can be managed to keep within 1 second
difference than those without outlier removal. Thirdly, the use of MCSaaS in the Cloud has a
significant performance improvement than the Gaussian CDO on Desktop and can complete
500,000 simulations in 21 seconds. The Deskptop Gaussian CDO takes more than 140
seconds and cannot go beyond 300,000 simulations.

Major benefits of adopting MCSaaS has been explained which can offer organisations long-
term cost saving, agility, accuracy and reliability in the risk analysis. We have built MCSaaS
as a proof of concept service which uses Monte-Carlo simulation in combination with LSM.
Using the service, it is possible to perform analyses in acceptable times even when it is
necessary to compete as many as 500,000 simulations.
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