
Abstract

Packet level measurement is now routinely used to evaluate the
loss and delay performance of broadband networks. In active mea-
surement, probe packets provide samples of the loss and delay, and
from these samples the performance of the traffic as a whole can be
deduced. However this is prone to errors: inaccuracy due to taking
insufficient samples, self-interference due to injecting too many probe
packets, and possible sample-correlation induced bias. In this paper
we consider the optimization of probing rate by treating all measure-
ments as numerical experiments which can be optimally designed by
using the statistical principles of Design of Experiments. We develop
an analytical technique that quantifies an overall utility function as-
sociated with: i) the disruption caused per probe packet, ii) the bias
and iii) the variance as a function of the probing (sampling) rate. Our
numerical results show that the optimal probing rate depends strongly
on what parameter the network engineer seeks to measure.
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1 Introduction

Recent research into broadband packet networks has considered the injection

of probe packets to measure the performance of the network; for example

whether it is best to probe at a uniform rate, or to send probes according to

some renewal process, such as a Poisson process. In general this research on

probing has focused on queueing systems as good general models of packet

level network performance. Whilst modeling a large network may be im-

possible, by representing the network as a queue or a series of queues, the

problem becomes more tractable.

The measurement of packet networks has a number of possible moti-
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vations: to provide solid numerical support of the guarantees written into

service level agreements, and to fault-find are two that are not necessarily

real time. Probing results are also used in support of measurement based

admission control (MBAC). In MBAC schemes the network state must be

rapidly evaluated such that the decision to admit (or not) a new connection

can be made quickly. Recently the main focus has been on wireless systems.

In [1], the authors discuss the measurement implications for end-to-end ap-

plications with Quality of Service (QoS) requirements, and propose a new

tool for measurement purposes, while in [2] and [3] wireless MBAC systems

are proposed.

Crucially we regard our network measurement process as a numerical ex-

periment we wish to measure; we appeal to methodology from the statistical

theory of design of experiments to apply these principles to the measurement

of packet networks. See [4] for a good introduction to optimal experimental

design.

In previous work [5], we have discussed some approaches for optimally

designing experiments to measure networks. In that paper, for tractability

we considered networks where we knew a great deal about the performance

of the network element under study. While this earlier approach yielded

optimal probing rates for certain simple (i.e. single buffer) schemes, it would

be hard to use for larger networks.

In measuring packet networks through active probing, we argue that the

three main objectives in any measurement are to measure the network perfor-
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mance: 1) accurately; 2) precisely; and 3) whilst causing minimal disruption

to the underlying user traffic.

In statistical terms, we are concerned with finding an estimator for some

property of the network we wish to measure. Recall that an estimator is

a function which takes some observable data and produces an estimate of

an unknown parameter we are interested in measuring. An estimate is a

particular value of this estimator, given some particular data. We seek to

minimize: 1) the bias of the estimator; 2) the variance of the estimator; 3)

some measure of disruption caused by active probing which we shall define

later. We argue in this paper that all network measurement algorithms seek

to accomplish some of these three aims, either implicitly or explicitly.

We begin in section 2 by reviewing previous work on measurement of

networks. We first consider previous work on network measurement using

inference from partial information about queues, such as that obtained by

active probing. We then look at how we can use statistical principles of

design of experiments to find an optimal active probing rate. In section 3 we

develop a general utility based methodology that can be widely applied to

any packet network given only some key parameters. We present a series of

examples of the use of the methodology in section 4. We conclude in section

5.
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2 Related work

There is a significant body of research predominantly concerned with devising

probabilistic methods and sometimes using them in model-based prediction,

rather than measurement-based inference, which we do not consider here.

Instead, we review research on inference about queues from data gathered

from customers within those queues.

2.1 Inference

Clarke [6] first investigated statistical inference in queues, deriving formulae

for maximum likelihood estimators (MLEs) for the M/M/1 queue. He chose

this particular queue with one particular sampling method (in which we begin

observing the queue at time zero with an initial number of packets ν = n(0),

ν ∼ geo
(

λ
µ

)
). The exact sampling frame, and initial distribution of the

queue, are sensible, yet arbitrary, but the method for calculating the MLE

was new and useful.

Jenkins[7] compared relative efficiencies of the direct estimate for the

mean waiting time with that suggested by Clarke, and concludes that the

MLE has a lower asymptotic variance, particularly for high values of load.

Aigner[8] summarizes work at the time (1974) and compares various es-

timators for arrival rate and departure rate parameters in an M/M/1 queue,

in which the number of packets sampled is fixed. There are a vast number

of estimators (e.g. MLE, least squares) even for this simple setup; Aigner
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uses the asymptotic variance of the different estimators as the criterion to

decide which is best. He notes that this is a somewhat arbitrary optimal-

ity criterion, does not apply to inference from small samples, and does not

take any account of the time needed to gather these data. However, Aigner

does clearly indicate the difficulty in determining, even for a fixed sampling

method and a simple queue, which estimator is the best.

Reynolds[9] looks at covariance structure in queues, and in particular

(section 5) assesses variances of different estimators. His results are presented

perhaps less methodically than Aigner, but they are more rigorous and not

limited only to M/M/1 queues. The sampling frames used are also different,

as Reynolds observes the queues up to some fixed time whereas Aigner looks

at a fixed number of customers.

Basawa and Prahu[10] prove that MLEs are asymptotically normally dis-

tributed, and show how this can be used for the example of an M/M/1 queue.

This work draws on probabilistic results from Billingsley[11]. They later[12]

derive MLEs and Fisher information for queues whose arrival and departure

distributions come from exponential families, so that two parameters are to

be estimated, a general model with much relevance to most queues studied.

Achaya[13] extends work in [12] by showing how quickly MLEs converge;

in other words, how big a sample is needed for the asymptotic theory devel-

oped to apply.

In a later paper, Basawa et al.[14] have also tried to establish a general

framework to find the Fisher information matrix, which is useful in calculat-

6



ing designs for experiments, and was also used by us in [5].

Most of this research assumes that the number of samples tends to in-

finity, i.e. that we have an unlimited amount of time in which to measure

the network. For example, we see in [14] that the MLE is not affected by

the choice of sampling method, although it does not follow that what is best

for a large sample is best for a small experiment. Indeed, in most network

measurement research, there is an implicit stationarity assumption, as de-

scribed by Roughan[15]: we consider a network where the traffic rate does

not change, in other words that we are looking over a short enough period of

time that this assumption is valid. As estimators are used on a small number

of data gathered in a short period of time, the asymptotic results cannot be

relied on.

A summary of this previous research would be that estimators of queues

can be shown to be sensible given that we have a long time to observe the

queue, but little is known theoretically about how well measurements can be

taken on queues over a short measurement period. The implication of this is

that in practice the best estimators for a given problem are not necessarily

being used by practitioners, even if they are aware of the theory.

2.2 Partial Information

In a real measurement experiment, for example when considering active prob-

ing, the experimenter is limited in the knowledge he is able to gather. He

does not have access to the underlying (cross-traffic) packets in a system.
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Basawa et al.[14] also look at the interesting problem of finding MLEs

given only partial information, here considering estimation given only wait-

ing time data. They show asymptotic consistency and normality of the es-

timators, and present forms for the MLE and Fisher information for partial

information in the special cases of M/Ek/1, where the service times have

the Erlangian distribution, and of M/M/1. The analytical results show that

these MLEs turn out to be rather poor and are biased.

Basawa[16] develops this work further, looking at queues where both ser-

vice and inter-arrival times are drawn from exponential families, when only

the sample packet’s waiting or system time, together with queue idle times,

are known.

Chen[17] takes an M/D/1 queue for which we only have knowledge of

waiting and service times for some packets, and tries to find the MLE for

the arrival rate λ for k observed packets. We could say that some packets

are controlled by the experimenter, but most are not controllable. Based

on the partial data available, a complex form for the MLE is derived, and

Chen proves that the distribution of the MLE is asymptotically normal. He

concludes that the method is more generally applicable, although the exact

method to be used will vary depending on what data are available, and what

queue is being measured.

None of this research explicitly considers active probing, where extra

packets are put into the system; instead, information on a random sam-

ple of packets is known. The authors therefore do not need to consider that
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introducing probe packets into the network may cause interference with the

data packets; we found this self-interference to be important in [5] and we

consider it further in this paper.

2.3 Recent work on probing packet networks

The PASTA (Poisson Arrivals See Time Averages) theorem, first formalized

by Wolff[18], has been a widely used principle in packet probing; it tells us

that if we introduce probe packets according to a Poisson process, then the

mean of their waiting time is an unbiased estimator of the waiting time of all

packets (combining both probe and underlying data packets) in the queue.

Although the PASTA property is desirable, Roughan[15] compares uni-

form and Poisson sampling and seeks to explain to a practitioner that both

have desirable properties depending on what information he is trying to

gather when probing. Baccelli et al.[19] show that, in the case where probes

are non intrusive, there is a wider group of mixing processes (they call these

‘NIMASTA’), including Poisson, which allow us to ‘see time averages’, and

that some of these have better properties with respect to other measures,

such as reducing variance. In the active probing case, where probes are in-

trusive, they argue that a substantial problem is the ‘inversion problem’; i.e.

being able to measure waiting time for probe packets does not allow us to

infer the waiting time of non-probe packets without error. They call this bias

introduced in the estimate by active probing the “inversion bias”, and show

that Poisson probing does nothing to minimize this.
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They go on to show in [20] that probes introduced with inter-arrival

times following a gamma distribution have the lowest mean square error in

estimating both delay and packet loss, amongst all queues with convex auto-

covariance.

Roughan[21] has shown that there are fundamental bounds on how accu-

rately network measurements can be made: that no matter how many active

probes are used in a time interval, there is a limit to the knowledge we can

gather about a queue. He makes an analogy to Heisenberg’s uncertainty prin-

ciple in quantum mechanics, where our certainty on position or momentum

of a sub-atomic particle cannot be increased above a certain limit no matter

how many times we observe it. Although his analytic results focus on mea-

surement of a system where we have ‘perfect measurements’, he generalizes

the work to active probing, although he notes that analytic results would be

complex in form and derivation.

In [22] Baccelli et al describe recent work in which they argue that back-

to-back packet trains (recommended for probing by some authors) introduces

more bias and delay than using single probe packets. In [23] Sun and Xiao

approach optimal delay and loss estimation by using an equivalent random

system, and treating it as a linear estimation problem. In [24] Duffield et

al. have patented a technique for optimal combination of sampled measure-

ments; however this relates to using optimally placed combinations of router

locations.
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3 Methodology

We observe in this previous work that there has been some research into

finding appropriate estimators of parameters for a network; this largely con-

sists of estimating parameters in known queues, and there has been little

research for more general networks. Recent work by Roughan[21] and Bac-

celli et al. [19],[20] has begun to consider the problem of reducing variance

in estimators, but has not really considered the important question of what

the optimal probing rate is, or how to find one. We are unaware of research

that explicitly covers how active measurement disrupts a network, although

minimizing disruption to users is well understood by network engineers, and

research is ongoing into QoS[25].

Motivated by this previous work, we now consider the problem of deter-

mining an optimal rate at which to probe when considering intrusive probes

in a simplified network scenario.

In this paper we view all network measurements as numerical experi-

ments, in which random processes are sampled, and the effectiveness of the

sampling is measured by a utility we place on bias and variance in the result-

ing estimator. In this way we are then able to apply the statistical principles

of Design of Experiments (DOE) to network measurement experiments to

develop a methodology which enables us to find an optimal active probing

rate. We present a general utility function that combines the bias and vari-

ance of the estimator with the added congestion in the network caused by
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probing.

3.1 Model overview and notation

Suppose we have a network into which packets arrive at a rate λ, which is

fixed but unknown, and in which they are served and leave the system at a

rate µ, which is fixed and known.

Figure 1: Overview of probing experiment

We wish to find the value of some unknown parameter of the network θ,

such as the probability of packet loss or the mean system time for the cross-

traffic (user) packets. We assume we are unable to measure this θ directly,

but we instead introduce probe packets into the system at a rate x, and

monitor when these probes enter the system and when they emerge. We can

then make inference about θ from the amount of time that the probe packets
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spend in the system. Our goal is to find the value of x which allows us to

best estimate θ. See Figure 1.

We define S(t) as the amount of time required for all packets in the

network at time t to complete service and exit the network. We call this the

virtual waiting time, because an imagined packet arriving at time t would

spend a time S(t) waiting in the network.

This is a continuous-time right-continuous process which takes non-negative

values. Instantaneous jumps occur when a packet enters the system at arrival

times a0, a1, a2, . . .. The jumps have magnitude that varies depending on the

queue discipline and corresponds to service duration for the packet arriving

at that arrival time. For example, in the M/M/1 queue the magnitude of the

jumps correspond to the service times and are thus exponentially distributed

with parameter µ.

The jump times, ai, and the magnitude of the jumps of S(t) are ran-

dom variables, but otherwise the process is deterministic, changing at rate

−1 (decreasing) until it reaches 0, where it remains until an arrival occurs.

Unless we have full knowledge of the queue, we cannot observe S(t) directly,

but we make inference about it by introducing N probe packets at times

τ1, τ2, . . . , τN . By introducing new packets into the system, we form a new

process S∗(t). This is represented diagrammatically in Figure 2.

We let the number of probes generated by the probing process be N

as above (note that N is in general a random variable, but we may fix it,

for example by having a fixed time between probes). We denote the time
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Figure 2: S(t) and S∗(t): Underlying and observed virtual waiting time
process
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between probe packet j entering and leaving the system as yj, i.e. the system

time. We are concerned with λ̂, an estimate of λ. Given N = n packets,

we have τ1 < τ2 < . . . < τn and observe S∗(τ1), S
∗(τ2), . . . , S

∗(τn) without

error. We let yi = S∗(τi), and our data are thus y1, . . . , yn, which we may

collectively write as the vector y.

3.2 The difficulties with an analytic approach

Ideally, we wish to find an analytical method of estimating the virtual waiting

time, given that we know what it is at certain time points (the probe arrival

times). If we can find an analytical function for the evolution of the virtual

waiting time under probing, then this will help us in finding exact expressions

for the expectation and variance of any estimator under a particular probing

pattern.

In other words, we seek to find P [S(t) = y|S(0) = y0]. Takacs[26] proves

that

P [S(t) = y|S(0) = y0] = P (χ(t) ≤ t+ y − y0))−∫
0≤v≤z≤t−y0

t−z
t−v

P (χ(v) ≤ v + y, χ(t) ≤ z + y)dvdz
(1)

for all y, y0 ≥ 0 and t > 0 where χ(t) is the total accumulated service time

of all customers arriving in [0, t].

If we know the distribution of the service time for a particular queue, then

we can evaluate equation (1) to get an explicit form for our virtual waiting
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time function. Chen[17] showed how to do this for an M/D/1 queue. He

forms an approximation to S(t) by a random walk

Xn = S(n∆t) = max(Xn−1 + Zn, 0), (2)

where Zn are I.I.D and represent the combined service time of all arrivals in

interval ∆t. Chen forms the recurrence

Hn(x) =

∫ ∞

0

Hn−1(v)H(x− v)dv, x ≥ 0, (3)

where H(t) = e−µv is the PDF for service time as before. The PDF for

service time in the M/D/1 case is trivial as service times for all packets are

constant, so it is relatively easy to solve this recurrence relation; Chen does

this by applying Laplace transforms. For more general networks, H(t) is

more complicated, Laplace transforms are not known, and this analytical

approach breaks down.

Cox and Isham[27] also considered the problem of determining waiting

time given partial information, and did not find it possible, apart from in

some specific cases, to derive an analytical virtual waiting time through

Laplace transforms. Without a PDF for the virtual waiting time, the design

problem of finding an optimal probing rate is also analytically intractable by

this method.
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3.3 Specifying a utility function

As the analytic approach does not seem tractable for general networks, we

consider a utility-based approach to our problem of optimizing probing rates.

We must first consider what we wish to achieve in measuring a network. It

is clear that we wish to measure our unknown network parameter (e.g. mean

delay, packet loss probability, etc.) accurately. In other words, we wish

to minimize the bias of some estimator θ̂, an estimator formed from some

function of Y , x, and µ. The bias of an estimator is the difference between

the expected value of the estimator and its true value: bias(θ̂) = E (θ̂)− θ.

The statistical theory of Design of Experiments also tells us that mini-

mizing the variance of the estimator θ̂ is desirable. Ideally we would like an

estimator which is both accurate (low bias) and precise (low variance).

In general, forming an estimate from more data leads to an estimator with

lower variance. However to get more data we must probe more. We know

that more probes in a network may disrupt the transmission of cross-traffic

packets, and we also wish to minimize the disruption of these cross-traffic

packets. We measure this disruption per packet at probe rate x as

D(x) =
1

N

(
N∑
i=1

[c(S∗(ai)− S(ai))]
r

)1/r

, (4)

where c(w) is some cost function for a delay of one packet by an amount w,

and r > 0. In general the underlying S(ai) will be impossible to observe, and

we estimate this by simulation. The index r in the disruption function allows
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us to penalize deviations from the mean delay time non-linearly; for example

in a VoIP system it may be more damaging to have one packet not delayed

and one delayed by 20ms, rather than having two packets each delayed by

10ms. In an engineering context, r allows us to penalize jitter. r = 1

corresponds to being ambivalent about jitter, where increasing r means that

we penalize high jitter more severely for equal average delays. 0 < r < 1

corresponds to penalizing low jitter, although we do not know of a useful

application for this.

In order to simultaneously minimize bias, variance, and disruption, we

form a general utility function

ψ(Bias(λ̂|x),Var((̂λ)|x), D(x)), (5)

and use this to find xλ = argminx ψ(x), our optimal probing rate.

The exact form of the utility function will depend on how much we wish to

trade accuracy and precision when estimating λ compared with the disruption

caused when measuring at this probing rate. When combining bias and

variance, a natural metric is the mean square error, MSE(λ̂) = [Bias(λ̂)]2 +

Var(λ̂). This metric is frequently used, and is natural in the sense that it

is dimensionally consistent, as Bias2, variance, and thus mean square error

have units of s−2 here. We will work with
√
MSE, the root mean square

error, or RMSE. How much to penalize disruption is more subjective, and

will depend on the network under study and the experimenter’s view on
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the relative merits of good estimates versus disruption. For example, in a

network carrying electronic mail (e.g. SMTP) traffic it may be acceptable

to have a delay of several seconds or even minutes, whereas in a network

carrying live voice traffic (e.g. VoIP), or electronic trading data, delays of

even tenths of a second may have a significant impact on service. We present

some examples below.

In order to balance, variance, and disruption, we propose a general form

of the utility function

ψ(x) = −[κ

√
MSE(λ̂) + (1− κ)D(x)], (6)

where the disruption D(x) is defined as equation (4) above, and 0 ≤ κ ≤ 1 .

This framework will suit many applications as we demonstrate through ex-

amples, although other functions may be useful in particular circumstances.

We could equally well define, for example, a multiplicative utility function,

e.g. ψ∗(x) = −κ
√
MSE(λ̂)(1−κ)D(x), however, we feel the additive function

is more justified as a probing rate that provided good estimates (

√
MSE(λ̂) =

0) but high disruption, or vice versa, meaning that ψ∗(x) = 0, would not be

in line with the goals of the experiment in balancing bias, variance, and

disruption. In this paper, we set out to provide a general framework for

balancing this goals, and demonstrate through focus on a particular utility

function, equation (6), rather than to make a comparison between them.

The choice of κ, and indeed r, in our utility function 6 allows great
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flexibility within our proposed utility function form that penalises disruption,

bias, and variance. The choice of κ is important, and may require some

careful thought (or simulation; see section 4.4) from the engineer conducting

measurement to determine it; in short κ balances the importance of the

measurement and reporting goals against the monetary or other performance

cost caused by disruption. If we are unconcerned with disruption caused by

measurement, we choose κ = 1, and if we are unconcerned with measurement

accuracy we choose κ = 0. For most practical applications, we will choose κ

between 0 and 1, see section 4.4 for some examples.

The utility function we propose is without a unit, in the sense that it is

a function which maps from a two dimensional domain (of RMSE combined

with disruption) to a one dimensional range (utility). The utility can be

thought of as a way of ordering a two-dimensional input.

4 Examples

In order to demonstrate the effectiveness of our utility-based approach, we

consider three networking examples through simulation.

We seek to emulate a real active probing environment where we may need

to make estimates quickly, e.g. in Measurement Based Admission Control

(MBAC); in this environment we can assume that network traffic rate, λ,

is constant only over a small period of time, and in most cases we wish to

find an estimate for this λ quickly. We therefore assume we have a small
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amount of time T to perform each experiment, and then we perform m

macro-replications of the experiment to assess the utility in performing the

experiments at different values of x.

For the network under study, we fix the service rate µ, arrival rate λ,

and any other parameters which determine the user traffic. We must decide

which possible probing rates we wish to consider, a set which we call X ,

which is determined by the network under study. In experimental design,

this is known as the design space.

Our procedure is:

1. Pick a probing rate x ∈ X .

2. Simulate a queue running without probing to allow for a burn-in period.

3. Continue simulating the queue, but now introduce probe packets at

rate x. Note the times spent in the system for our probe packets.

4. When the simulated queue has been running for the chosen experimen-

tal time T , form the estimator θ̂ using our choice of estimator.

5. Using the same random numbers generated for the underlying traffic

arrival and service times, re-run the simulation without probes to assess

the mean delay to the underlying packets caused by probing.

6. Repeat steps 2 to 5 in order to estimate (mean) bias and variance of

θ̂, and to calculate mean delay to packets in the underlying queue. We

do this m times to get m macro-replications.
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7. Repeat steps 2 to 6 for all x ∈ X in order to estimate bias and variance

of the estimator λ̂ for different values of x.

4.1 Example 1: A single M/M/1 queue

We now choose a simple queue upon which to demonstrate the methodology,

so we initially assume that our network consists of a single M/M/1 queue;

this network is not intended to be representative of any network in particular,

but we present it here as a simple example that the reader may be familiar

with, which will enable the method to be clearly demonstrated.

For our M/M/1 queue, we performed simulations setting service rate

µ = 5 per second (s−1) throughout. We assume here that we wish to estimate

the arrival rate, which we call θ. Any reasonable estimator may be picked,

and different estimators will in general produce different estimates and thus

different optimal rates. Following Aigner[28], we picked an estimator

θ̂ =

1
N

∑N
i=1 Yi −

1
µ

1
N

∑N
i=1 Yi

1
µ

, (7)

although we stress that the estimator is only used to provide an example of

how our method might work to determine an optimal probing rate, and not

to assess the quality of the estimator.

For simulation purposes, we set λ = 2.5s−1. The reader will note that

θ = λ here, i.e. we wish to measure one of the simulation parameters, but

we do not use knowledge of this λ when estimating θ̂ using equation (7).
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We allowed candidate points x to be in the range 0.1 to 2.4 seconds,

at intervals of 0.1. The range was thus restricted such that λ + x < µ as

studying queues at or above full load is not considered as there are no time-

stable distributions, and the situation is generally not of engineering interest.

We allowed a burn-in period of 10 seconds. After this burn-in, we assumed

that we were able to perform the probing experiment for T = 10 seconds.1

We performed m = 1000 simulations (macro-replications) for each candidate

point, and by looking at the 1000 λ̂ generated for each candidate point, were

able to estimate the bias and variance of λ̂. Knowing for the simulation

the underlying virtual system time process S(t), and the altered process

after probing S∗(t), we were able to estimate the value of our disruption

function D(x), letting c(z) = z. In other words we penalize each packet

delay “linearly”. To illustrate a possible utility function, we set κ = 1
2
.

4.1.1 Results

The results are displayed as Figure 3. The optimal probing rate is shown as

the minimum on the (bottom right) graph, here when x ≈ 1.2s−1. (We plot

−log(ψ(−x)) on the y-axis since ψ(x) is strongly negative for low x, and we

wish to plot on a scale where identifying the optimum x is clear. )

Noting the log scale of the y-axis, we see that a low rate (x < 0.5s−1) gives

significantly worse results (lower utility) than probing at a rate x > 0.5s−1.

This means in an engineering context that, if we were to have to choose one or

1We disregarded any probe packets that had not completed service after 10 seconds.
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the other, it appears to be substantially better to probe slightly too fast than

too slow, at least in this example for an M/M/1 queue. This poor behavior

at low x seems to be due primarily to a very high bias in the estimator for

low x, as indicated by the top left graph in Figure 3. As we have limited

the experiment to 10 seconds, the number of experimental Poisson probes

released in this time for low rate x is typically very small: e.g. for x = 0.1

we would only expect one probe packet. As we have such a small number of

probes, this seems to lead to very poor estimates.

As expected, the estimator λ̂ is biased for both small and large probe

rates x; this is a good demonstration of the research referred to in section

2.1, particularly Aigner[28], which tells us it is difficult to find an estimator

with good properties for all networks and probing rates. His research shows

that the best estimator depends on the design, whereas we show here that the

optimal design depends on the estimator. The increasing bias may also show

us a difficulty with active probing, that probes interfere with themselves, as

discussed in section 2.3.

4.1.2 Varying the utility function

As noted above, the optimal probing rate depends heavily on the utility

function chosen. We first look at varying the parameter r in equation (4).

The results for our disruption function and the utility function are presented

as Figure 4 (changing the value of r does not alter our bias or variance).

As discussed earlier, our index r penalizes jitter, with higher r penalizing
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probe rates for r = 1, 2, and 3
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Figure 5: Varying r detail: Utility (− log(ψ(−x))) for different probe rates
for r = 1, 2, and 3, κ = 0.5

large jitter more. As we expect, higher probe rates are now penalized as jitter

increases slightly as the network load increases. Figure 5 shows more detail

on how utility varies with the jitter-penalizing parameter r; we look here

only at the higher probe rates (x ≥ 0.6) where we are likely to find a high

utility and therefore an optimal probe rate. We see that the value of r does

not make a substantial difference. The relative merits of different probing

rates, and the optimal probing rate for all r = 1, 2, 3 from these simulated

data is x = 1.2s−1. Note that the absolute value of utility, i.e. the heights of

the graph, are not important in this application, as we seek only to find the

optimal x for a fixed value of r.

Figure 6 shows the changes in the utility when we set κ = 0.05. This
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Figure 6: Varying k: Utility (− log(ψ(−x))) for different probe rates for
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change in the value of κ could represent a network engineer now being more

concerned with minimizing delays in the network as opposed to minimizing

the mean square error of our estimator. We see here that the optimal probing

rate is lower, and can again be read as the maximal points of the three data

sets, here x ≈ 0.5s−1 for all r.

4.2 Example 2: Estimating packet loss probability in

a VoIP system

We now demonstrate the usefulness of our methodology on a more realistic

model. We assume we have a VoIP PBX with 80 users which connects via a

router to a network. We know the buffer capacity of the router, and wish to

measure the probability that a packet is dropped in the network.

For demonstration purposes, we simulate this model by 80 on-off sources

representing the users. Each user talks (is active) for a period which is

exponentially distributed with period Ton, and then is silent for a period

exponentially distributed with period Toff. When active, the users generate

167 VoIP packets per second, and we let the size of the packet generated be

53 bytes. We assume that the line has a capacity of 2.5Mbps (2.5*106 bps).

We initially assume our VoIP PBX has a buffer capacity of 100 packets, and

if an extra packet arrives while the buffer is full it will be discarded.

Let us assume we wish to estimate the probability that a cross-traffic

packet is discarded, which we call θ. We do this by sending probes into the
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network at a uniform rate x, and for this example we allow probing at integer

rates up to 100 probes per second, so our design space X = {i ∈ N ; i ≤ 100}.

We assume the probes are the same size as the VoIP user traffic (53B).

Crucially, we must now decide on the form of our utility function. For

a VoIP conversation, we can afford a delay of a certain amount per packet

before that delay affects the quality of the conversation. The level of the delay

will vary according to, for example, the number of network hops between

those conversing, and the network equipment in between, but in general a

recommended delay budget is prescribed for each hop. Let us assume here

that we can tolerate up to a 10ms delay, so our cost function becomes

c(x) =

 1 if x ≥ 0.01;

0 otherwise.
(8)

For VoIP networks, we know that jitter is a particularly undesirable phe-

nomenon, so let us set our penalizing parameter r = 2 to penalize this.

In forming our utility function, let us assume that these are important

users. Whilst we wish to monitor the loss in the network, user experience

is important, so we set our constant κ = 0.1 to express the relative weights

between disrupting of the network and measurement success.

We use our procedure described above in section 4 to again try to find

an optimal probing rate. We allow a burn-in period of 10 seconds. Our

experimental time T is also 10 seconds. We use the simple estimator θ̂ =

(Number of probe packets lost)
(Total number of probes sent)

. We perform m = 1000 macro replications
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for each candidate design point (probing rate).

4.2.1 Results
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Figure 7: Bias, Variance, Disruption, and Utility (ψ(x)) for different probe
rates for estimating packet loss percentage

The results are presented as Figure 7. We see readily once again that, in

general, bias and disruption tend to be smaller for small probe rates. There

is some variance in these simulated data, so we have fitted a sixth order

polynomial regression to the log transformed data for each of bias, variance,

disruption, and utility, and shown this as a line in each of the graphs.

It seems here that, for high probing rates, putting in more probes increases
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the variance. As discussed, we might expect to see more measurements mean

less variance, but here evidently the increased probing rate means that the

variation in packet loss between our simulations is increased. In other words,

probing not only alters the packet loss (bias increase), but also means that

this packet loss is more variable.

We remember that the bias, variance, and disruption are only estimates

we gather from the data; we do not know their true values. We see that very

low rates (less than 5 probes per second) produce much worse results than

results in the range 5 to 100 probes per second. The very best results (seen

from the maximum of the line of best fit) were achieved probing at around 20

probes per second, and the utility decreases slightly when further increasing

the probe rate. In practice, we might recommend that probing at any rate

between 5 and 100 provides results with approximately the same utility.

4.3 Example 3: Probing for available bandwidth in a

network

We now demonstrate how our utility function applies to measuring for avail-

able bandwidth. We use the same network setup of 80 voice sources as de-

scribed above, however we now assume that we are interested in measuring

the available bandwidth in the network. As we know the capacity of the net-

work (2.5Mbps), estimating available bandwidth is equivalent to estimating

the traffic rate.
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Recent research has focused on packet pair probing as a good way of

measuring available bandwidth; by allowing two probe packets to enter a

network such that one immediately follows the other, by noting any increased

difference in their exit times we can make an estimate of the amount of cross-

traffic that must have occurred between the entry of the first packet and that

of the second. If we know the capacity of the network, and the amount of

user traffic, we can easily subtract the latter from the former to gain the

available capacity.

Indeed, allowing packet triples, quadruples, or even longer packet trains is

currently the subject of research. We choose here to demonstrate our method

with packet pairs, as the principle is the same.

Keeping the same simulation of user traffic as in example 2 above, we now

allow our probing regime to consist of sending x pairs of probes per second,

and we allow x to vary. We are now interested in estimating the cross-traffic

rate which we now call θ. Given the probe size P = 53 Bytes, the service

rate µ = 2x106bps, and measuring ∆, the difference in time between probe

pairs leaving the system, we estimate θ using the estimator

θ̂ =
(∆− P

µ
)µ+ P

P
µ

. (9)

We set our jitter parameter r = 1 and our weighting parameter κ = 0.1.

We plot the results as Figure 8, here fitting a sixth order regression to the

untransformed data for each variate and showing this as a line on each graph.
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Figure 8: Bias, Variance, Disruption, and Utility (ψ(x)) for different probe
rates (pairs per second) for estimating available bandwidth
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It is worth noting that here the bias is typically around 0.1% of the true

value of available bandwidth, due to the way the paired probing mechanism

is constructed. It is again evident that the utility for this estimator is lower

for low probing rates, and that a moderate probing rate may be better. It

looks as though probe rates of around 100-150 packet pairs per second seem

best for this utility function.

4.4 Practical considerations

4.4.1 Finding bias and disruption offline in a real network

We have demonstrated that, given full knowledge of a specific network, we

can determine the optimal probing rate for our network. In practice we

may not have full knowledge of the network; in particular, when building up

our utility function, we have assumed that both our bias and our disruption

function D(x) are known, but in practice we cannot determine them.

Dealing with bias is not a problem unique to measuring data networks,

although seems often to be ignored in the network measurement literature; it

is a fundamental problem when using active measurement of data networks

that there must be a bias introduced between measurement of the “ground

truth” and the altered network that is formed when we add active probes to

the network. For some discussion of this, we refer the reader to Roughan [21].

Although Roughan considers variance, there are similar practical difficulties

when trying to determine the disruption function.
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One possible approach to estimating bias and disruption would be by

use of simulation. We build a simulator of the real network “off line” and

determine the optimal probing rate using the techniques described in this

paper for use with the real network. For the simulator, it is possible to

see how the network responds with and without the active probes, and thus

estimate the bias and disruption functions, from which we can find an op-

timal probing rate. Although our optimal probing rate would be exact for

the simulated model, discrepancies between the model and the real network

would in general mean that an optimal rate for the model was sub-optimal

for the emulator. In some situations, however, this may be the best we can

do; approximating complicated networks by simpler networks (or queues) is

not uncommon in seeking tractable solutions to measuring complex systems.

We plan to assess in future work how the model discrepancy between real

network and simulator affects the success of measurement.

4.4.2 Relaxing assumptions used in examples

In our examples we have explicitly or implicitly made some assumptions: sta-

tionarity of the network, i.e. that the arrival probability of traffic is constant

with time; simplified networks which exhibit properties such as First Come,

First Served (FCFS); lack of any routing in the network. The procedure

outlined in this paper to find the optimal probing rate is identical whether

these assumptions are used or not, however of course the response for bias,

disruption, and in particular variance might change dramatically if we relax
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these assumptions. We picked these networks as they are simple networks

which the reader may be familiar with, and we are able to readily simulate

them in order to estimate disruption and bias.

5 Conclusions

In [5], we demonstrated how to approximate a queue by a Markov chain

model, taking into account interference caused by active probing, and found

an exact optimal design for this model: an exactly optimal design for a (po-

tentially) inexact model. In this paper, the optimal design (optimal probing

rate) is found approximately in the sense that we calculate bias, variance,

and disruption from estimates derived from a simulation.

This method is flexible. We need know very little about the network, or

use any theoretical queueing models in determining an optimal probing rate.

We simply need to quantify what is important to us in measurement, for

example how accurate and precise we wish our network measurement to be,

at the expense of possibly disrupting the network. We have demonstrated

our method for several networks, and our results show clearly that optimal

rates can be found in this way for any network under consideration.

As in many other applications of statistics, expert knowledge must be used

to quantify the constants used in the utility function; the practitioner must

be able to quantify the relative effect of mean delay, and variance in delay

(jitter) compared with measurement accuracy and disruption to the network.
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We feel this subjectivity is a valuable tool in asking network practitioners

to think about their aims and targets for successful measurement. Indeed,

in many applications in network monitoring and control, success often has a

more tangible utility: whether the network meets a service level agreement

(SLA), and what financial penalties failure to meet this might entail. The

utility-based approach outlined in this paper could be used in conjunction

with an SLA monitoring system.
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