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A descending (multi-item) clock auction (DCA) is a mechanism for buying items from multiple potential
sellers. In the DCA, bidder-specific prices are decremented over the course of the auction. In each round,
each bidder might accept or decline his offer price. Accepting means the bidder is willing to sell at that price.
Rejecting means the bidder will not sell at that price or a lower price. DCAs have been proposed as the
method for procuring spectrum from existing holders in the FCC’s imminent incentive auctions so spectrum
can be repurposed to higher-value uses. However, the DCA design has lacked a way to determine the prices
to offer the bidders in each round. This is a recognized, important, and timely problem.

We present, to our knowledge, the first techniques for this. We develop a percentile-based approach which
provides a means to naturally reduce the offer prices to the bidders through the bidding rounds. We also
develop an optimization model for setting prices so as to minimize expected payment while stochastically
satisfying the feasibility constraint. (The DCA has a final adjustment round that obtains feasibility after
feasibility has been lost in the final round of the main DCA.) We prove attractive properties of this, such as
symmetry and monotonicity. We developed computational methods for solving the model. (We also develop
optimization models with recourse, but they are not computationally practical.) We present experiments
both on the homogeneous items case and the case of FCC incentive auctions, where we use real interference
constraint data to get a fully faithful model of feasibility. An unexpected paradox about DCAs is that some-
times when the number of rounds allowed increases, the final payment increases. We provide an explanation
for this.

Categories and Subject Descriptors: [Artificial Intelligence and Applied Game Theory; Experimen-
tal, Empirical, and Applications]: Auction Theory, Market Design

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: Descending Clock Auction, Incentive Auction, Spectrum Auction

1. INTRODUCTION
A descending (multi-item) clock auction (DCA) is a mechanism for buying items from
multiple potential sellers. In the DCA, bidder-specific prices are initialized at reserve
prices and then decremented over the course of the auction [Milgrom and Segal 2012].
In each round, the auctioneer decrements the offer prices to the bidders, who might
accept or decline the offers. Accepting means that the bidder is willing to sell at that
price. Rejecting means that the bidder has to exit the auction permanently and cannot
sell. This process is repeated until the auctioneer’s target number of items to purchase
would become infeasible if additional bidders were to reject any new (lower) offers. At
that point the auction ends and the current prices are paid.

We consider the following setting. The auctioneer wants to buy items from a pool, N ,
of n potential sellers. Each seller i ∈ N has a specific type of item Gi and decides to sell
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it or not depending on the offer price. The items from the sellers could be substitutable
and complementary. The auctioneer has a target number of items to buy, T , and there
is a feasibility function F : 2N → {0, 1} that specifies, for each subset of potential
sellers, S, whether the items from S can fulfill the target T or not; i.e. F (S) = 1 if the
combined items from {Gi, i ∈ S} fulfill the target.

A simple example of this is the case where the sellers have identical items and the
auctioneer wants to buy a target number T them. In this case, the feasibility is simply
F (S) = 1 if |S| ≥ T , and F (S) = 0 otherwise.

However, in real-world application such as the FCC spectrum reverse auctions dis-
cussed later, the feasibility function can be highly complex. Often it cannot be given in
closed form, but rather is stated through constraints as an optimization problem.

In the DCA, the auctioneer sends offer prices to the sellers and checks whether they
accept those prices. Bidders who accept the offers are called active. If the combined
items from the active bidders fulfill the target, then the auctioneer reduces the prices
further in the next round and repeats the process. If at some point the items from the
active bidders do not fulfill the target, then the auctioneer goes back to the last step
and conducts a last-round adjustment to offer higher prices to some declined bidders
so that feasibility is obtained. Algorithm 1 describes the general DCA framework.

ALGORITHM 1: Descending Clock Auction (DCA)
Input: A set of sellers N = {1, . . . , n} with goods {G1, . . . , Gn}, an auctioneer with a feasibility

mapping function F : 2N → {0, 1}. A target number of rounds allowed m. Initial value
function estimates vi.

Output: A set of feasible sellers A ⊂ N , i.e., F (A) = 1, and the corresponding vector of offer
prices p that aims to minimize the expected payment that the buyer needs to pay.

1. Initialize the price vector p to the reserve prices. Let the set of active bidders be A(0) = N ;
for round r = 1...m do

2.1. Find a vector of prices p to offer the bidders;
2.2. Find the set of rejected offers R;
if F (A(r)\R) = 1 then

2.2.1. A(r+1) ← A(r)\R;
2.2.2. Update the distributions of the bidders’ values;

else
2.2.3. Enter the readjustment round in Step 3;

end
end
3. Readjust the prices for bidders in the last round to meet the target;
4. Pay winning bidders the offered prices;

A key challenge in a DCA lies in how to set the prices offered to the bidders. A
natural approach is to set the offer price at some fixed percentile of the (buyer’s model
of the) distribution of that bidder’s valuation. For example, the prices could be set so
that each bidder has the same probability of accepting her offer. The choice of the
percentile would depend on what the auctioneer aims for on the trajectory of the sizes
of sets of active bidders through the rounds. An example of the trajectory could be such
that the expected number of rejections in each round is distributed evenly throughout
the auction. Another example of the trajectory is to set a fixed percentage of rejection
in each round, that is, the expected number of rejections is proportional to the size of
the remaining set of active bidders. We call this class of methods percentile based and
we will describe it formally later in Section 3.1.

Those methods have several drawbacks. First, having a fixed percentile means there
is no way to distinguish between bidders with high bid values and the rest; hence the
final payment will likely be unnecessarily high due to the probabilistic inclusion of



high-priced bidders. More importantly, those methods do not have any special treat-
ment for the degree of interaction among the items in the feasibility function.

This paper presents a significant improvement within the DCA by addressing these
issues by designing an optimization model for setting the prices. The model is designed
to minimize the expected final payment while ensuring feasibility in a stochastic sense.
It is flexible in that it can incorporate bidder-specific characteristics with respect to
feasibility.

1.1. FCC Incentive Auctions
The current flagship application of DCAs is the Federal Communications Commission
(FCC) incentive auctions. The FCC has been selling radio spectrum licenses via auc-
tions since 1994 [Cramton 1997; Milgrom 2004]—in recent years via combinatorial
auctions [Cramton et al. 2006; Day and Milgrom 2008]. However, there is not enough
spectrum left to sell for the new high-value spectrum uses that have arisen. The idea
of incentive auctions, therefore, is to buy some of the existing licenses back from their
current holders, which frees up spectrum, and then to sell spectrum to higher-value
users. The idea of such incentive auctions was introduced in the 2010 National Broad-
band Plan [FCC 2012]. It is motivated by the fact that the demand and the value
of over-the-air broadcast television has been declining while the demand for mobile
broadband and wireless services has increased dramatically in recent years. Given
the limited spectrum resources, incentive auctions were introduced as a voluntary,
market-based means of repurposing spectrum. This is done by creating a market that
exchanges the usage rights among the two groups of users: (a) existing TV broadcast-
ers and (b) wireless broadband networks. Three key players in this market are existing
spectrum owners, spectrum buyers, and the FCC, which acts as the intermediator.

An incentive auction consists of three stages [FCC 2014] (see also a whitepaper
about design choices by Hazlett et al. [2012]):

1. Reverse auction: parts of the spectrum currently used by TV broadcasters is bought
back.

2. Repacking: remaining broadcasters are reallocated to a smaller spectrum band.
3. Forward auction: freed spectrums is sold via a (combinatorial) auction for use in

wireless broadband networks.

In the reverse auction, we need to find a set of stations to be reallocated to lower-
band channels and a separate set of stations to be bought off the air, in order to achieve
the following goals: (a) meet some target on the number of contiguous channels freed
on the higher spectrum band and (b) minimize total payment by the FCC. The FCC
is required to respect the broadcasters’ carry-right, which means, in the context of a
DCA, a station that rejects the offer still has the right to stay on the air, but possibly on
a lower spectrum band. This repacking stage needs to ensure that all the stations that
rejected their offers can be feasibly repacked into the allocated band without violating
the engineering constraints, that is, interference-free population coverage, as we will
detail later in the paper.

Once the reverse auction phase is completed and the remaining stations are
repacked, the FCC announces the cleared spectrum which is now available for pur-
chase. Buyers then submit bids on bundles of spectrum frequencies. The FCC solves a
winner determination problem to decide which bids to accept or reject. This does not
involve the engineering constraints, so it resembles standard combinatorial auctions;
hence existing algorithms like those by Sandholm et al. [2005]; Sandholm [2006, 2013]
can be used for this. Therefore, we focus on the reverse auction stage.

The FCC aims to free up a number of high spectrum channels—say between channel
32 and 51. In order to do that, all stations need to be assigned to the lower band chan-



nels or give up their carry right in exchange for some payment. The process of deciding
which stations to retain, which stations to leave, and at what prices, is done through
the reverse auction. Within this stage, the repacking problem needs to be solved in or-
der to check whether the remaining stations can be feasibly reassigned to the targeted
lower-band channels. Other groups have recently also tackled the repacking part (e.g.,
Leyton-Brown [2013]).

Two apparent options for the reverse auction design are a single-round Vickrey-
Clarke-Groves (VCG) auction or a DCA. In the VCG, stations submit sealed bids. The
auctioneer then solves the winner determination problem (WDP) to determine the win-
ning bids, that is, those stations that the FCC buys back at their bid prices. Stations
with rejected bids are repacked into the lower-band channels. Unfortunately, solving
this WDP is challenging because it involves thousands of binary variables and mil-
lions of interference-avoidance constraints. In fact, the FCC has attempted to solve it,
but according to Milgrom and Segal [2013], solving an instance of this problem with
state-of-the-art optimization packages takes weeks of compute time without finding
the optimal solution. Also, even if the list of winners were available, solving for the
VCG payment for each winning bidder would involve solving a combinatorial problem
similar to the WDP. It is the same as the WDP except that a small portion of the bi-
nary variables are fixed. Furthermore, a small approximation error in solving these
problems can lead to significant over-payment [Milgrom and Segal 2012].

The DCA was proposed by Milgrom and Segal [2012], who have shown attrac-
tive features of the framework. According to documents that the FCC uses to
communicate with its stakeholders regarding incentive auctions (wireless.fcc.gov/
incentiveauctions/learn-program), the DCA is the FCC’s design of choice.

However, there is a key missing piece in the DCA: how to determine what prices to
offer to the different bidders in the different rounds. In this paper we present a solution
to this. To our knowledge, this is the first paper on the topic.

The importance of this question is highlighted on the FCC web site (wireless.fcc.gov/
incentiveauctions/learn-program/rule-option/reverse-auction.html):

The algorithm that determines how prices are decremented for each station
in each round ... is an important part of the auction design. This algorithm
will rely on a score for each bid that accounts for factors like the potential
interference created by a station and the population served by the station, as
well as the money amount of the bid. The use of population in scoring could
reflect the fact that the value of a broadcasting license depends in part on its
population served. Ranking bids and paying winning bidders in relation to
their population served or other indicators of value may reduce the amount
that the Commission would have to pay to repurpose broadcast television
spectrum. The details of the scoring will need to be examined further.

This problem is also timely. The FCC was planning to run the first incentive auc-
tion in 2014, but because the auction design is not ready, in December 2013 the FCC
postponed the start of the incentive auction to at least mid-2015 [Wheeler 2013].

1.2. Contributions and Paper Outline
We develop a natural percentile-based approach and an optimization model for setting
offer prices in DCAs. To our knowledge, this is the first paper on the topic. Section 2
starts with a general model for price setting in DCAs. Section 2.1 presents computa-
tional methods, complexity, and properties of the optimal prices for various settings.
A key purpose of DCAs is price discovery; Section 2.2 discusses updating beliefs about
the bidders’ value functions. Section 2.3 describes optimizing the final round settle-
ment in deciding the winners. Section 3 provides experiments for homogeneous-item



DCAs and for FCC incentive auctions using real data. Section 4 concludes and provides
a discussion of future directions.

2. TECHNIQUES FOR OPTIMIZING OFFER PRICES IN THE DESCENDING CLOCK AUCTION
A key component of a DCA is to set the prices to offer to the active bidders. The auc-
tioneer needs to consider the tradeoff between minimizing payment to the accepted
bidders and fulfillment of the target (i.e., repacking feasibility in the case of incentive
auctions).

Furthermore, the pricing affects the speed of the auction in terms of the number
of rounds. Therefore, there is another tradeoff. On the one hand, if the offer prices
are too high, many rounds are required, and that may be undesirable from the per-
spective of minimizing logistical effort. On the other hand, if the offer prices are too
low, many bidders reject and the auction ends too quickly without properly serving its
price-discovery purpose.

In this section, we present a method for setting the offer prices. They should be de-
pendent on (a) the estimated value functions of the bidders, (b) the importance of the
items for the target to be fulfilled, and (c) how quickly/slowly the auctioneer wants the
auction to run. We provide an optimization model that incorporates these considera-
tions.

Throughout this section, we assume the auctioneer’s target T is a given scalar num-
ber and the feasibility mapping F is given in some specific form. Obviously these inputs
are not readily available in many settings such as in incentive auctions: the feasibility
function involves a complex repacking problem. Later in Section 3.2 we show how to
translate such a complex setting to the forms of T and F described in this section.

2.1. Optimization Model for Price Setting in Each Round
Suppose each bidder has a threshold price vi below which it declines the offer. The
auctioneer does not know these threshold prices. Suppose, however, that the auctioneer
has an estimate/belief that the threshold price vi of bidder i follows some distribution
on the support set [li, ui]. Assume that the auctioneer knows these distributions.

Let Xi(pi) be the corresponding Bernoulli random variable that indicates whether
bidder i will accept the offer at price pi. The total payment is c(p) =

∑
i∈A(r)

Xi(pi)pi,

where A(r) is the set of remaining active bidders in the current round r. One objective
of the auctioneer is to set the prices in such a way that minimizes the expected payment
which is equal to

E[c(p)] =
∑
i∈A(r)

E[Xi(pi)]pi. (1)

The expected payment is nondecreasing in the offer prices. So, setting low prices would
lead to low expected payment. However, doing this would lead to a high chance of
reaching infeasibility too soon, so little price discovery could be done. The auctioneer,
therefore, needs to balance feasibility with low expected payment. The bidders’ values
are random to the auctioneer, so, for any fixed set of offer prices, the feasibility can
only be expressed in a stochastic sense. It is possible to apply ideas from stochastic
programming to model this as a chance constraint. However, this often leads to com-
putational intractability since the feasibility mapping tends to be a highly complex
function of the prices. We propose a simpler measure of the expected number of bid-
ders accepting the offers N(p) as this is directly related to the chance of feasibility,
i.e., the larger the population of active bidders, the higher the chance of feasibility.



We have E[N(p)] =
∑
i∈A(r)

E[Xi(pi)]. The problem of minimizing the expected payment

while ensuring the expected number of accepted bidders to meet some target can be
modeled as the following optimization problem:

minimize
∑
i∈A(r)

E[Xi(pi)]pi, subject to
∑
i∈A(r)

E[Xi(pi)] ≥ T (r), li ≤ pi ≤ ui,∀i ∈ A(r),

(2)
where T (r) is the targeted number of active bidders at round r. The auctioneer has the
flexibility in choosing this target depending on how quickly or slowly the auctioneer

wants to complete the auction. One possibility is to set T (r) = n(r) − n(r) − T
m− r + 1

, where

n(r) is the number of active bidders remaining, T is the final target, and (m− r + 1) is
the number of remaining rounds. In this case, T (r) is set such that the size of the sets
of active bidders reduces evenly throughout the rounds.

Both the payment and feasibility are expressed in expectation due to the stochas-
ticity of the bidders’ values. This means the actual number of accepted bidders might
exceed or fall below the target T (r). That potential disparity, and its effect on the later
rounds, imply that better prices than those from Model 2 could be obtained via a model
that incorporates recourse. We present one such model in Appendix A.2. That model
is, however, computationally highly complex to solve and might not be appropriate in
large-scale DCA settings if quick rounds are needed.

The price-setting strategy in Model 2 simplifies one important fact about the dynam-
ical nature of DCAs: the choice of offer prices in round r will affect the population of
active bidders in subsequent rounds as well as the distribution of those bidders’ val-
ues. Thus, in principle, the pricing problem in DCAs should be modeled as a dynamic
program as presented in Appendix A.1. Solving it, however, would be prohibitively
complex. Instead, we simplify this process through a dynamic scheduling of the sizes
of the sets of active bidders T (r). Specifically, we schedule the size of the set of active
bidders n(r) evenly in the last (m−r+1) rounds. The simplicity of the models described
in this section makes them appropriate in situations when it is critical to offer prices
to the bidders in a timely manner.

To simplify the notation in Model 2 a bit, let us denote by Fi(pi) the cumulative
distribution of the valuation of bidder i. It can also be interpreted as the probability
that bidder i will accept offer price pi, i.e., Fi(pi) ≡ δi ≡ E[Xi(pi)]. Model 2 can now be
rewritten as

minimize
∑
i∈A(r)

Fi(pi)pi, subject to
∑
i∈A(r)

Fi(pi) ≥ T (r), li ≤ pi ≤ ui,∀i ∈ A(r). (3)

2.1.1. Uniform Distribution on Bidder Values. We first consider the case where the bidders’
values are drawn from uniform distributions on [li, ui]. The probability that bidder i
will accept the offer price vi is,

δi(pi) = Fi(pi) =


0, if pi ≤ li,
pi−li
ui−li , if li ≤ pi ≤ ui,
1, if pi > ui.

(4)

Naturally, we can restrict the price to li ≤ pi ≤ ui. The expected payment is

E[c(p)] =
∑
i∈A(r)

Fi(pi)pi =
∑
i∈A(r)

(pi − li)pi
ui − li

.



The constraint on the expected number of stations accepting the offers is

E[N(p)] ≥ T (r) ⇔
∑
i∈A(r)

pi − li
ui − li

≥ T (r),

which is linear in the offer prices p. So, the problem of minimizing the expected pay-
ment while ensuring the probabilistic constraints on feasibility can be modeled as the
following quadratic program:

minimize
∑
i∈A(r)

(pi − li)pi
ui − li

, subject to
∑
i∈A(r)

pi − li
ui − li

≥ T (r), li ≤ pi ≤ ui,∀i ∈ A(r). (5)

The problem has a strictly convex separable quadratic objective and one joint con-
straint in addition to lower and upper bound constraints. Thus, the problem has a
unique optimal solution. In addition, the expected payment increases with p while the
expected number of rejected stations decreases with p. Thus, we would expect the con-
straint to be tight at the optimal solution. Let λ be the Lagrangian multipliers for the
joint constraint

∑n
i=1

pi−li
ui−li ≥ T

(r). The Lagrangian dual function is

L(λ,p) =
∑
i∈A(r)

(pi − li)pi
ui − li

+ λ

T (r) −
∑
i∈A(r)

pi − li
ui − li


= T (r)λ+

∑
i∈A(r)

(pi − li)pi − λ(pi − li)
ui − li

.

The Lagrangian dual problem can be derived as

max
λ≥0

Tλ+
∑
i∈A(r)

min
li≤pi≤ui

p2i − (λ+ li)pi + λli
ui − li

 .

The problem is convex, so there is no duality gap when we take the Lagrangian relax-
ation. For each fixed set of Lagrangian multipliers λ, the optimal prices can be derived:

p∗i =


li+λ
2 , if li ≤ λ ≤ 2ui − li,

li, if λ ≤ li,
ui, otherwise.

(6)

PROPOSITION 2.1. [Symmetry] For any two bidders with the same valuation distri-
bution, the optimal offer prices must be the same.

PROOF. Straightforward from Formulation 6. For any two bidders i, j with the same
boundaries, i.e., li = lj and ui = uj , any choice of λ leads to p∗i = p∗j .

The Lagrangian dual function can be calculated efficiently in O(n) for each fixed
λ. The Lagrangian dual problem is a piece-wise concave maximization problem with
one scalar variable on the non-negative orthant. One could apply a conjugate gradient
method to solve this problem. Better still, we present an algorithm that exploits the
structure of the problem and is O(n log n):

PROPOSITION 2.2. The optimal offer prices can be found—i.e., Model 5 can be
solved—in O(n log n) operations.

PROOF. The optimal offer price p∗i is a piece-wise linear function on λ with three
pieces that are intersected at two points li and (2ui− li). We can order all the 2n points



{li, 2ui− li},∀i = 1, . . . , n on the vertical axis in O(n log n). From that we obtain (2n+1)
pieces (some potentially with zero length). For λ that falls within each piece, we have a
corresponding linear mapping to the offer prices pi, i = 1, . . . , n. Thus, the Lagrangian
function on that piece can be calculated as a corresponding quadratic function on λ.
The optimum λ on each piece can therefore be calculated. The global optimal λ can be
found by taking the maximum Lagrangian function among all the (2n+ 1) pieces.

2.1.2. Heterogeneous Bidders with Respect to Target Feasibility. The feasibility constraint
in Model 5 was for the homogeneous case. Consider now a heterogeneous case where
the item from each bidder would affect feasibility differently. For example, in incentive
auctions, depending on the current list of rejected stations, the repacking feasibility is
highly sensitive to the choice of new rejection due to engineering constraints. Suppose
there is a weight vector ω = (ω1, . . . , ωn) that represents the contribution from the
bidders to the feasibility function F ; in Section 3.2 we will show how to derive these
weights for the case of incentive auctions. For now, we consider a simple example where
bidders all share the same type of item but each of them will have a different number
of items to sell. In that case, ωi can represent the amount available from bidder i.
We assume a setting where each bidder considers its item as a single product and
considers selling it or not depending solely on the offer price (to avoid the combinatorial
complexity). Now, Model 5 can be modified to

minimize
∑
i∈A(r)

(pi − li)pi
ui − li

, subject to
∑
i∈A(r)

ωi
pi − li
ui − li

≥ T (r), li ≤ pi ≤ ui,∀i ∈ A(r). (7)

Applying the same Lagrangian relaxation method as shown in solving Model 5,

p∗i =


li+ωiλ

2 , if li/ωi ≤ λ ≤ (2ui − li)/ωi,
li, if λ ≤ li/ωi,
ui, otherwise.

(8)

Similar to Model 6, the problem is strictly convex, so it has a unique optimal solution
and there is no duality gap when we take the Lagrangian relaxation.

PROPOSITION 2.3.

a) [Symmetry] For any two bidders with the same valuation distribution and with the
same weights, the optimal offer prices must be the same.

b) [Monotonicity] For any bidders with the same valuation distribution, the optimal
offer prices are higher for those with higher weights.

PROOF. In part (a), for any two bidders with identical value distributions and
weights, any choice of λ would lead to the same formulations for the offer prices (as
shown in Formulation 8) for the two bidders, which means the optimal offer prices are
the same. Part (b) can be derived in the same way with a note that both ω and λ are
non-negative.

The implication of part (b) is that the auctioneer should offer higher prices to more
‘important’ bidders to keep them active. We will show how this is applied to the case of
incentive auction where the stations affect the feasibility differently.

PROPOSITION 2.4. The optimal offer prices can be found—i.e., Model 7 can be
solved—in O(n log n) operations.

PROOF. The proof is similar to that of Proposition 2.2.



2.1.3. General Valuation Distributions. Now we drop the assumption that the bidders’ val-
uation distributions are uniform. In this setting, Model 7 generalizes to a nonlinear
program:

minimize
∑
i∈A(r)

Fi(pi)pi, subject to
∑
i∈A(r)

ωiFi(pi) ≥ T (r), li ≤ pi ≤ ui,∀i ∈ A(r). (9)

Depending on the valuation distributions, this program might be non-convex and
might be hard to solve in general. The attractive part of this model, however, is that
it has a separable objective function and only one joint constraint. Using the same
Lagrangian relaxation method, we obtain the following Lagrangian dual problem:

max
λ≥0

{
T (r)λ+

∑
i∈A(r)

min
li≤pi≤ui

(Fi(pi)pi − λωiFi(pi))
}
.

For each fixed Lagrangian multiplier λ, the optimal prices p of the inner problem
can be found by solving n nonlinear sub-problems, each with a single scalar variable.
In the case where the distribution of the value function is piecewise linear, the inner
problem is a piecewise cubic function where the optimal solution of each piece can be
found efficiently.

The problem might be non-convex so the Lagrangian relaxation method might pro-
duce some optimality gap. The Lagrangian relaxation method has been shown to per-
form well empirically, that is, with small optimality gaps, for a number of combina-
torial problems (see Fisher [2004] for details about the method and successful appli-
cations). The offer prices found, however, might not be optimal. In what follows we
present a method that could either be used as a stand-alone method for finding the
optimal offer prices or can be used in combination with the Lagrangian relaxation
method to enhance the performance. This method takes advantage of the discreteness
property of the decision variables, the separability of the objective function, and the
single joint constraint. Consider an auction design where the offer price for bidder i
must take discrete values in a given set {Pi1, . . . , Pik}. This restriction often holds in
practical auction settings because (1) allowing fractional bids can increase hassle (e.g.,
bookkeeping), and (2) allowing unimportant digits to be expressed opens the door for
collusion among bidders. Such collusion has been observed in FCC auctions and the
FCC has subsequently practiced, for example, “click-box” bidding where bidders have
to select their bids from a small set of discrete values [Cramton and Schwartz 2000;
Bajari and Yeo 2009]. The problem becomes

minimize
n∑
i=1

Fi(pi)pi, subject to
n∑
i=1

ωiFi(pi) ≥ T, pi ∈ {Pi1, . . . , Pik},∀i ∈ N . (10)

This is a mixed-integer nonlinear program. They are generally very difficult to solve.
However, this one has a knapsack-type structure so a dynamic program can be utilized:

PROPOSITION 2.5. Optimal offer prices for Model 10 can be found in O(KLn2) oper-
ations, where K is the maximum number of discrete price levels and L is the number of
precision points in the range [0, 1] used to calculate the cumulative values Fi(·).
The proof of Proposition 2.5 is shown in Appendix A.3. Here we discussed the problem
in the first round whereA(1) = N and has the largest size. Results for other rounds can
be derived similarly. Also, it is possible to combine the idea from Lagrangian relaxation
and dynamic programming to improve the computational performance further. This
can be done by using the approximated results from the Lagrangian relaxation method
and using it to guide the discretization of the feasible space for p before applying the



dynamic program. For example, the discretization around the solution suggested by
the Lagrangian relaxation could be more refined than elsewhere.

2.2. Updating Value Function Distributions
The auctioneer utilizes the price discovery feature of the DCA to update the estimated
value functions in Step 2.2.2 of Algorithm 1. Suppose that, at the beginning of round
r, the auctioneer has a belief that the random threshold price vi for bidder i follows
a distribution on the support set [li, ui] with a cumulative distribution Fi(·). Once the
auctioneer has made an offer p(r)i to i, there are two cases. In the first case, i rejects
the offer. The rejected list is updated and i is no longer active (except in the last round
when the target is not met). In the second case, i accepts the offer and stays active.
The auctioneer needs to update the belief about the threshold price of bidder i based
on the fact that the bidder accepted. We need to find the conditional distribution for
(vi | vi ≤ p(r)i ), which can be calculated as follows:

Prob(vi ≤ a | vi ≤ p(r)i ) =


0, if a ≤ li,
1, if a > p

(r)
i ,

Prob(vi≤a)
Prob(vi≤p(r)i )

≡ Fi(a)

Fi(p
(r)
i )

, if li ≤ a ≤ p(r)i .

(11)

The auctioneer then uses this new set of beliefs on the value functions and the new set
of active bidders to run a new auction round.

If Fi(pi) is piece-wise linear at iteration r, then the updated cumulative distribution
is also piece-wise linear at iteration (r+1). In the special case of a uniform distribution,
the updated distribution is uniform on [li, p

(r)
i ], that is, we simply update the upper

bound to be p(r)i .1

2.3. Final-Round Settlement
In Step 3 of Algorithm 1, the auctioneer selects the winners of the auctions after having
undertaken the price discovery through the multiple rounds of the DCA. Let p be a
vector of prices that the auctioneer offers to the bidders in the last round. Given the
offer prices, the bidders might accept or reject the offers. The auctioneer then updates
the upper bounds on the bidders’ values: upper bounds for bidders that accepted will
be updated to the offer prices and those of the bidders who rejected remain unchanged.
After the final round, the auctioneer does not have any further opportunity to do price
discover, and has to decide which bidders are the final winners to meet the target. For
the simple case where each bidder has only one item, the auctioneer chooses T bids
with the smallest updated upper bounds and pays each of those bidders that price. For
the weighted case, the auctioneer solves the following knapsack problem to determine
a set of winners that meets the target with the least total payment:

minimize
∑

i∈A(m)

uizi, subject to
∑

i∈A(m)

wizi ≥ T, zi ∈ {0, 1},∀i ∈ A(m), (12)

where zi indicates whether bid i should win.

1In general, there could also be other factors to take into account when updating the value function distribu-
tion. For one, the auctioneer might want to update the bounds based on how other bidders have responded to
offers. This, and DCAs in general, beget interesting questions for future research related to interdependent
valuations. Within the scope of this paper, our focus is, however, on how to set offer prices given the beliefs.



3. EXPERIMENTS
In this section we instantiate the methodology in two settings, and present optimiza-
tion experiments in both. We start with a setting where the items are homogeneous.
We then proceed to the reverse auction in incentive auctions, using real FCC data.

3.1. DCA with Homogeneous Items
In this section we study a relatively simple auction with n bidders, each of whom has
one item to be sold. The objects are identical from the auctioneer’s point of view, and
the auctioneer has a target of buying T objects. In this case, the feasibility function is
F (A) = 1 if |A| ≥ T , and F (A) = 0 otherwise.

To apply the general DCA framework of Algorithm 1 to this relatively simple setting,
we need to adapt Algorithm 1 in Step 2.1 and set the target number of accepting bid-
ders to T (r) = n(r) − (n(r) − T )/(m− r), where n(r) = |A(r)|, and solve Model 9 to find a
vector of prices p to offer the bidders. In this step, we assume the auctioneer first aims
for a trajectory of the sets of active bidders and then optimizes the prices correspond-
ingly. Another strategy that the auctioneer could adopt is to first try to ‘foresee’ the
offer prices in the final round by solving Model 9 for T (r) = T , and then shrink these
final prices to the upper bound by taking advantage of the multi-round guessing in
price discovery. We present details about this strategy in Appendix A.6. We also need
to adapt Step 3 of Algorithm 1 by solving Formulation 12. Details about this and other
steps are presented in Algorithm 2 in Appendix A.4.

We compare the performance of our method with a natural percentile-based method
where the prices at round r are set to

p
(r)
i = li + αi(u

(r)
i − li), (13)

where αi = 1 − Q
nr

and Q = nr−T
(m−r+1) is the expected number of rejections per round.

This essentially aims to distribute the expected number of rejections evenly among m
rounds.

This percentile-based pricing scheme needs to be incorporated into a DCA such as in
Step 2.1 of Algorithm 1. When we refer to a percentile-based method for the homoge-
neous setting, we mean Algorithm 2 (in the appendix) with Step 2.1 being replaced by
the pricing from Equation 13. Similarly, when we refer to a percentile-based method
for incentive auctions in the next subsection, we mean Algorithm 3 (in the appendix)
with Step 2.1 replaced by the percentile-based pricing from Equation 13.

One can develop other percentile-based methods such as setting the offer prices at a
fixed percentile in the bidders’ value distributions, for example, either always aiming
for a fixed 5% of rejection at each round or dynamically having this percentile depend
on the current number of active bidders and the number of rounds remaining. We con-
ducted extensive tests using these percentile-based methods. Their performance was
almost the same on average as the percentile-based method described above. There-
fore, we only present the performance of that percentile-based method in comparison
with our optimization-based method.

In the experiments, we let there be n = 100 bidders. We check the performance of the
algorithms for various choices of the target T . We first generate random bounds for the
bidders’ valuations. The upper and lower bounds for bidder i are set to ui = (1 + δ)mi

and li = (1−δ)mi, where mi is a uniform random variable in [0, 1]. Here, δ is a measure
of how good the auctioneer’s estimate of the bidders’ values is. We vary δ between 10%
and 50%. We then draw M = 10 sample valuation vectors with bidder valuations from
these ranges, that is, ξ(k)i ∼ U [li, ui] for k = 1, . . . ,M , and for each bidder i = 1, . . . , n.
That gives us M auction instances to run on. We report the average of them in the
figures.



For convenience in reference, in the rest of the paper, we use the label ‘OPT-SCHED’
to refer to DCAs that make use of the price optimization method suggested by Model 9.
These include output from Algorithm 2 for the homogeneous case and Algorithm 3 for
incentive auctions (presented later in Section 3.2).

Figures 1-a and 1-b show the performance of the DCA for the setting where the
number of rounds allowed m = 50, the weights wi = 1 for all bidders i, the target
T = 50, and δ = 20%.
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Fig. 1. Comparison between OPT-SCHED and the percentile-based algorithm in terms of price discovery.

The horizontal axis is the round number in the DCA. The vertical axis shows the
number of active bidders, the total payment the auctioneer would pay if the auction
ended at that round, the total value of the active bidders, and the optimal (lowest)
payment, OPT , with which the auctioneer could procure the needed items if he knew
the bidders’ valuations.

The number of active bidders, the total payment, and the total values decrease dur-
ing the DCA as we expected. The total payment is always above the total value, and
the total value is always higher than the optimal value. Comparing the final payments
at the last round, one can see that our optimization-based approach significantly out-
performs the percentile-based approach.

Figure 2 shows the final payoff as a function of the number of rounds allowed—for
different targets T using the same parameters described earlier.
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Fig. 2. Comparison between OPT-SCHED and the percentile algorithm in terms of the final DCA payments
for a varying number of rounds allowed.

One can see that our optimization-based approach significantly outperforms the
percentile-based approach across the board. Surprisingly, the final payment does not
decrease when increasing the number of rounds allowed. This surprising finding does
not always occur: we can find settings where the final payments for both the percentile-
based method and the optimization-based method do keep decreasing as we allow more



rounds. We can also design a specific percentile-based method that avoids this strange
behavior completely, for example, by reducing offer prices of only the bidder with the
highest upper bound first. However, that percentile-based method will not be effective
in minimizing the final total payment.

We phrase the surprising behavior as a paradox and then proceed to explain it.

PARADOX 1. Having more refined offer prices can lead to a higher total payment.

Explanation of the paradox: Throughout the multi-round auction, there are two es-
sential effects on the final payment: (a) Desirable effect (price discovery): The prices
offered to the remaining active bidders keep decreasing; this lowers the final payment,
and (b) Undesirable effect: Some lower-priced bidders are ‘accidentally’ rejected as
their offer prices keep decreasing.

The first, desirable effect occurs in both the percentile-based method and the
optimization-based method for price setting (OPT-SCHED). The second, undesirable
effect occurs more in the percentile-based method and than in OPT-SCHED because
the objective function in Model 10 has already aimed to lower this expected payment
and hence high-priced bids are supposed to be rejected before others. This leads to
overall better performance of OPT-SCHED compared to the percentile-based method,
as shown in Figure 2. To summarize, the reason behind the paradox is that, due to
the randomness of the bid values, having more rounds allow a higher chance of reject-
ing good bids before the final adjustment round. Once the good choices are excluded
through more rounds, the less choice we have in solving the final settlement problem
shown in Model 12, and thus the payment that the model is trying to minimize is
higher.

We demonstrate this paradox through a specific example. Consider the following
simple case with n = 3 bidders and a target number T = 2 items to be procured.
Suppose all the bidders are still active at round r where the current offer prices are
p
(r)
i . Consider the following two strategies: In strategy 1, we reduce all the prices in

round (r+ 1) by the amounts δi for bidder i, and in strategy 2, we reduce all the prices
in round (r + 1) by smaller amounts βi < δi first, observe the bidders’ responses, and
then reduce the price by the additional amounts (δi − βi) in round (r + 2).

Consider the following scenario: Bidder 1 accepts new price (p
(r)
1 − δ1) but Bidders 2

and 3 do not accept (p(r)2 − β2) and (p
(r)
3 − δ3). In this case, the number of acceptances

is one for both strategies, so the auctions proceeds to the adjustment round. For Strat-
egy 1, the adjustment round involves solving a knapsack problem to choose the two
smallest offers among three choices (p

(r)
1 − δ1, p

(r)
2 , p

(r)
3 ). For Strategy 2, the adjustment

round involves solving a knapsack problem to choose the two smallest offers among
three choices (p

(r)
1 − β1, p

(r)
2 , p

(r)
3 ). Since β1 < δ1, the knapsack problem resulting from

Strategy 1 has lower (or equal) cost compared to that from Strategy 2.

3.2. DCA in FCC Incentive Auctions
In this section we conduct experiments with a model of the FCC incentive auction that
uses real FCC data regarding the feasibility. A key feature of reverse auctions in in-
centive auctions is that the feasibility function is highly sensitive to the set of rejected
bids. This is due to a large set of engineering constraints between the stations that
restrict them from being assigned to the same or adjacent channels. This means the
inclusion of a set of stations in a current reject list would make the characteristics
of remaining stations totally different from each other. We first describe these inter-
ference constraints and the feasibility function. We then show how the general DCA
framework can be applied to incentive auctions.



3.2.1. Interference Constraints in Repacking and Feasibility Checking. The description of the
FCC incentive auction DCA setting with the engineering constraints is available in
detailed files on the FCC web site, which we used [FCC 2013]. There are n = 2177
stations and m = 49 channels available (ranging from channel 2 to channel 51, with
channel 37 not available). The target is to clear channels 33-51, that is, to repack all the
rejected stations to channels 2-32. The feasibility function can be defined as F (S) = 1
if S ∈ P(C), and F (S) = 0 otherwise, where P(C) is the set of feasible assignments to a
list of available channels C and is defined as

P(C) =

{
z :

zik ∈ {0, 1},∀i ∈ S and k ∈ Ci,
∑
k∈Ci

zik = 1,∀i ∈ S,
zik + zjk ≤ 1,∀(i, j, k) ∈ Ic, zik + zjk+1 ≤ 1,∀(i, j, k) ∈ Ia

}
. (14)

Here zik is a binary variable that indicates whether station i is assigned to channel k,
Ci ⊂ C, i ∈ S, is the list of feasible channels to station i, Ic is the list of triplets (i, j, k)
such that stations i and j cannot be assigned to the same channel k, and Ia is the list
of triplets (i, j, k) such that stations (i, j) cannot be assigned to neighboring channels
(k, k + 1). We present more details about the repacking problem in Appendix A.7.

3.2.2. Adapting the DCA to FCC Reverse Auctions. We adapt the general DCA framework
of Algorithm 1 to incentive auctions. First, as in the homogeneous setting, we need to
adapt Step 2.1 and set the target number of accepting bidders to T (r) = n(r) − (n(r) −
T )/(m−r), where n(r) = |A(r)|, and solve Model 9 to find a vector of prices p to offer the
bidders. The key difference between incentive auctions and the homogeneous setting
is in the feasibility function. Specifically, the feasibility function in incentive auctions
is a complicated function that is highly sensitive to the set of rejected stations. We
need to adapt Step 2.2. of Algorithm 1 to find the set of new rejections and check the
feasibility on the updated set of rejected stations. Details about this and other steps
are presented as Algorithm 3 in Appendix A.5.2

In order to apply the models developed in Section 2 to finding the offer prices in
each round, we need to modify the feasibility constraint. As the bidders’ true val-
ues are random variables and unknown to the auctioneer, any fixed set of offer prices
leads to a stochastic set of rejected bidders and hence the repacking feasibility is also
stochastic. However, at the beginning of each round, we could simulate the feasibility
problem to draw a curve that shows the probability of having feasible repacking as a
function of the number of new stations added. We could then choose a target T (r) so
that the chance of feasibility when adding T (r) new stations is at some threshold (say
99% chance of feasibility). Once a target T (r) has been determined, we can then solve
Model 5 to obtain the offer price. The choice of the feasibility probability (and hence
T (r)) would depend on how quickly or slowly the auctioneer wants to run the auction.
For example, at the beginning of the auction, the auctioneer might want to have small
T (r) for more accurate price discovery but then increase T (r) toward the end of the
auction to lower the expected payment faster.

Here we present a simple algorithm for price setting in incentive auctions. Within
the scope of this paper, we do not undertake extensive simulation to obtain a cumula-
tive function of the feasibility with respect to the number of new stations, T (r), added
in each round. Instead, we use an estimated T = 1177 number of stations in the final
set of active bidders, that is, to have U = 1000 stations feasibly rejected.3 We compare

2In Step 3 of Algorithm 3, it is possible to do an improvement and select a smaller set of winners by solving
a winner determination problem constrained by having R(r) as a subset of rejected bids. That problem,
however, has a similar structure to a winner determination problem arising from a single-round, sealed-bid
auction and is difficult to solve due to the large set of engineering constraints.
3This choice of U comes from the prior experiments we have on the feasibility problem.



the performance of our optimization model with the percentile-based method where
both use the same U .

To deal with the heterogeneity of the stations with respect to the feasibility function,
we propose to associate each active station with a weight that is proportional to the
possibility of causing interference on other stations, especially those that have already
been rejected. One possibility for setting such a weight vector is to set

wi = di(N ) + di(R(r)),∀i ∈ (N\R(r)), (15)

where di(N ) is the number of stations in the entire set of stations N that i might
interfere with, and di(R(r)) is the number of stations in the current rejected list that i
might interfere on. By setting the weights higher for stations with a higher potential
of interference on others, we essentially try to avoid having these stations rejected in
the next rounds by offering them higher prices (recall Equation 8 and Proposition 2.3).

3.2.3. Experimental Results on Incentive Auctions. Since no incentive auctions have yet
been conducted, we have to use simulated data on the bounds of the bidders’ valua-
tions. The bounds for the first experiment are generated using a uniform distribution
where the upper and lower bound for bidder i are set to ui = (1+δ)mi and li = (1−δ)mi,
where mi is a uniform random variable. Here, δ = 0.2 is a measure of how good the
auctioneer’s estimate of the bidders’ valuations is. We then draw random sample bid
values from these ranges, that is, ξi ∼ U [li, ui] for each bidder i = 1, . . . , n. We draw M
= 10 valuation vectors. Each vector corresponds to a DCA instance. Each instance has
one valuation per bidder.

Figure 3-a compares the performance of the DCA when using our optimization-based
price-setting method (Algorithm 4) versus the percentile-based method, for the bids
generated uniformly in [0, 1], for a sample DCA instance. The number of rounds allowed
is 50.
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Fig. 3. Performance of our optimization-based pricing strategy versus that of the percentile-based method—
using real FCC engineering constraints data and using homogeneous bids.

The horizontal axis of Figure 3-a shows the round number in the DCA. The verti-
cal axis shows the number of active bidders, the total payment the auctioneer would
pay if the auction ended at that round, and the total actual values of the active bid-
ders. In each pair of these curves, the dashed curves correspond to the percentile-
based method and the dot-dashed curves to our optimization-based method. As can be
seen, the number of active bidders, the payments and the total actual values decrease
through the rounds. The payment is always above the total actual values as we ex-
pected. Comparing the final payments at the last round, one can see that OPT-SCHED



results in more stations to be reallocated and also in a lower final payment compared to
the percentile-based approach. The lower final payment of OPT-SCHED was partially
due to it having more auction rounds before encountering infeasibility: the percentile-
based method encountered infeasibility at round 24 while OPT-SCHED encountered
it at round 43. The better performance of OPT-SCHED in dealing with infeasibility is
due to the added weighted constraints which essentially avoid rejecting stations that
are likely to cause interference. Another reason why OPT-SCHED outperformed the
percentile-based method is that it has a better way of rejecting high-priced bids. This
effect can be seen in each fixed number of rounds. For example, if both algorithms
are terminated at round 20, the payment for OPT-SCHED is 1088.7 while that for the
percentile-based method is 1153.4.4

Figures 3-b shows the average final payoff to bidders versus the number of rounds al-
lowed.5 One can see that our optimization-based approach outperforms the percentile-
based approach on average for all choices of the number of rounds allowed. The para-
dox of having the final payment increase as we increase the number of rounds allowed
is again observable.

We now present a setting where OPT-SCHED has some issues when high-valued
bids interfere each other, for example, when groups of stations in the same area request
high values together. We demonstrate this through an experiment where the mean
value mi is set proportional to the population that station i serves. Figure 4 shows the
average performance over five randomly generated auction instances.
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Fig. 4. Final payments using our optimization-based pricing strategy versus those of the percentile-based
method—using real FCC engineering constraints data and using heterogeneous bids.

In this case, OPT-SCHED yields higher payments on average than the percentile-
based approach (although it yielded lower payment on two of the five instances). In
what follows, we provide some explanation for this. When setting the bids to be propor-
tional to the population served, the bids from the stations in large cliques (e.g., stations
in large cities) are often large since the populations served are large. If the number of
rejected large bids is greater than the channels available, then we will reach infeasi-
bility in repacking. Note that this issue is problematic for general DCAs where many
small subsets of bidders can significantly affect the feasibility function. Among the
random instances generated, the performance of the percentile-based approach was
less affected by this because it uses a very conservative approach of gradually lower-
ing prices for all bidders in the same way. One idea to improve OPT-SCHED is to add
clique constraints on these subsets of bidders to enforce that no more than a certain
number of stations in each large clique is rejected. Another idea is to enforce that no
price decreases by more than, say, 25% between rounds. We recently conducted initial

4In the incentive auction setting we do not have a number for the optimal payment if the auctioneer knew
the bidders’ valuations since the winner determination problem is too difficult to solve to optimality.
5The random variable mi was uniformly distributed within [9.5, 10.5] for each bidder i = 1, . . . , n.



experiments with these approaches and they help, but so far we did not find settings
that outperform the percentile-based approach on average in terms of minimizing pay-
ments. This remains an important direction for future research.

4. CONCLUSIONS AND DISCUSSION
A descending (multi-item) clock auction (DCA) is a mechanism for buying items from
multiple potential sellers. DCAs have been proposed as the method for procuring spec-
trum from existing spectrum holders in the FCC’s imminent incentive auctions so spec-
trum can be repurposed to higher-value uses. However, the DCA design has lacked a
way to determine the prices to offer the bidders in each round. This is a recognized,
important, and timely problem.

We presented, to our knowledge, the first techniques for this. We develop a
percentile-based approach which provides a means to naturally reduce the offer prices
to the bidders through the bidding rounds. We also develop an optimization model for
setting prices so as to minimize expected payment while stochastically satisfying the
feasibility constraint. (The DCA has a final adjustment round that obtains feasibility
after feasibility has been lost in the final round of the main DCA.) We proved attrac-
tive properties of this, such as symmetry and monotonicity. We also developed compu-
tational methods for solving the model and very efficient polynomial-time algorithms.
(We also developed optimization models with recourse, but they are not computation-
ally practical.)

We presented experiments both on the homogeneous items case and the case of
FCC incentive auctions, where we used real FCC interference constraint data to get
a fully faithful model of feasibility. The experiments showed that the optimization-
based price-setting approach significant outperforms the natural percentile-based ap-
proaches in minimizing the final payment by the auctioneer in DCAs with homoge-
neous bidders. In incentive auctions, the performance is mixed and the optimization-
based price-setting approach is favourable if bids are generated uniformly but this
is not the case if subsets of interfering stations request high prices together. Adding
clique constraints or enforcing that prices cannot decrease too much between rounds
are techniques that help improve the optimization-based approach, but further re-
search on this is needed. An unexpected paradox on the performance of DCAs was
that sometimes when the number of rounds allowed increases, the final payment can
actually increase. We provided an explanation of this paradox.

There are a number of potential future directions that can be followed up from this
research. First, we find the paradox concerning the relationship between the expected
payment and the number of rounds allowed quite intriguing. Further research on when
this would occur, and on quantification of these relationships, would be interesting. In
this project, we have only considered the case where bidders’ values are independent.
It would be interesting to extend the techniques to settings with interdependent valu-
ations. Another extension would be to incorporate into the model the option of stations
agreeing to share a channel or to move to lower bands—something that the FCC is
seriously considering. The current DCA framework is designed for settings where bid-
ders can just accept or reject. We are extending the framework to incorporate bidders’
multiple choices into DCAs and to find the optimal prices accordingly.

Regarding the implementation of the reverse auctions DCA for the FCC incentive
auctions, having extensive simulation for better estimation of the feasibility chance
would improve the performance. Other ideas mentioned in the paper, such as using
stochastic programming and chance constraints for the feasibility constraints, as well
as approximated dynamic programming techniques are worth pursuing for such a
high-stakes setting.



ELECTRONIC APPENDIX
The electronic appendix for this article can be accessed in the ACM Digital Library.
Electronic appendix is also available at http://www.southampton.ac.uk/∼tn6g10/EC14/
DCA appendices.pdf.
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APPENDIX
A.1. A Dynamic Programming Model for Optimal Price Setting in DCA
In each round of the descending clock auction, the auctioneer needs to offer each active
bidder a price, i.e., to do Step 2.1. of Algorithm 1. Here we show a dynamic program-
ming model that the optimal set of offer prices should solve.

Let V (m,S,u, l) be the minimum expected payment that the auctioneer needs to pay
to the bidders in a descending clock auction with m rounds, with a set of active bidders
S, with upper bounds u and lower bounds l within which the bidders’ valuations lie.
Let ξ be a realization of the bidders’ values. For any offer prices p in the first round,
the state of the auction by the end of that first round will be as follows.

— The number of rounds left will be (m− 1).
— The remaining active bidders will be S(p, ξ). This includes bidder i if the offer price
pi is no smaller than the bidder’s value ξi, i.e., pi ≥ ξi.

— A new vector of upper bounds u(p, ξ) which updates the upper bound of any remain-
ing active bidder i to xi.

— Unchanged lower bounds l.

The minimum expected value that the auctioneer needs to pay under the new state
of the auction will be V (m− 1,S(p, ξ),u(p, ξ), l). Thus, the auctioneer’s problem in the
first round is to choose p that minimizes the expectation of V (m− 1,S(p, ξ),u(p, ξ), l).
We have the Bellman optimality equation

V (m,S,u, l) = min
p

E[V (m− 1,S(p, ξ),u(p, ξ), l)].

Solving this dynamic program would be extremely difficult. In fact, just finding
V (m,S,u, l) for the case m = 1 would be very difficult as shown in a simple case below.

A.2. Optimal Price Setting in the Last Round with Recourse Action
Consider the problem of setting prices in the final round of a descending clock auction.
Assume that the actual bid values are uniformly distributed random variables, i.e.,
ξi ∼ U [li, ui], where (li, ui), i = 1, . . . , n are known. Let p be a vector of prices that
the auctioneer offers to the bidders. Given the offer prices, the bidders might accept or
reject the offers. The auctioneer then updates the best upper bounds on the bids values,
that is, upper bounds for accepting bidders will be updated to the offer prices while
those of rejected bidders will remain unchanged. The auctioneer chooses T bids with
the smallest updated upper bounds and pays each of these bidders those prices. Since
the bidders’ values are random variables, the acceptance of the bidders for each set of
offer prices p will also be stochastic, so the final payment is stochastic. We consider the
problem of finding the optimal offer prices p such that the expected final payment is
minimized. Here expectation is taken over the randomness of the bidders’ valuations.
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For convenience in notation, we perform a linear transformation on the price vectors
p to x where xi = pi−li

ui−li , that is, xi ∈ [0, 1] can be interpreted as the target chance of
acceptance for bidder i. We also have pi = li + xi(ui − li). Let us denote by f(x) the
stochastic payment.

Let us first consider the simple case where T = 1 and n = 2. Here the payment
is min(u1, u2) if both bidders reject the offers, min(p1, p2) if both of them accept, and
pi, i = {1, 2} if only bidder i accepts the offer. The probability for each of these four
events can be calculated as functions of x. For example, the chance of rejecting both
offers is (1− x1)(1− x2). Putting all of these together, we have

f(x) =


min(u1, u2), w.p. (1− x1)(1− x2),
min(l1 + x1(u1 − l1), l2 + x2(u2 − l2)), w.p. x1x2,
l1 + x1(u1 − l1), w.p. x1(1− x2),
l2 + x2(u2 − l2), w.p. (1− x1)x2.

The expected payment is

E[f(x)] = (1− x1)(1− x2)min(u1, u2) + x1x2min(l1 + x1(u1 − l1), l2 + x2(u2 − l2)) +
x1(1− x2)(l1 + x1(u1 − l1)) + (1− x1)x2(l2 + x2(u2 − l2)).

The problem of determining the optimal offer prices can therefore be formulated as

min
x1,x2

E[f(x)]

s.t. 0 ≤ xi ≤ 1,∀i = 1, 2,

which is a non-convex quadratic optimization problem. If we extend the problem to the
case n > 2, the problem becomes a polynomial optimization problem as follows;

min
x

∑
S⊂N ,S6=∅

∏
i∈S

xi
∏
i 6∈S

(1− xi)min
i∈S
{li + xi(ui − li)}

+
∏
i∈N

(1− xi)min
i∈N

ui

s.t. 0 ≤ xi ≤ 1,∀i = 1, . . . , n,

which is very difficult to solve. Notice that we have considered only the simple case of
T = 1 and also considered finding the optimal decision in the last round only.

A.3. Proof of Proposition 2.5
PROOF. For each m ∈ {0, 1, . . . , n} and for each budget B ≥ 0, let us define

V (m,B) = min
p

m∑
i=1

Fi(pi)pi,

s.t.
m∑
i=1

ωiFi(pi) ≥ B,

pi ∈ {Pi1, . . . , Pi,k},∀i = 1, . . . ,m.

Then we have
V (m,B) = min

pm
Fm(pm)pm + V (m− 1, B − Fm(pm)),

s.t. pm ∈ {Pm1, . . . , Pm,k},
(16)

where V (0, B) = 0,∀B. Suppose Fj(pj) receives one of (L + 1) values in the set
{0, 1/L, . . . , 1}. Then we can calculate V (1, B) for all B ∈ {0, 1/L, . . . , 1}. If we knew
V (m − 1, B),∀B ∈ {0, 1/L, . . . ,m − 1}, then we can plug this in into Formulation 16
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and obtain V (m,B) by taking K calculations for Fm(pm)pm+ V (m− 1, B−Fm(pm)) for
each pm ∈ {Pm1, . . . , Pm,k} and then choose the minimum, i.e., 2K operations in total.
To obtain V (m,B) for all possible B ∈ {0, 1/L, . . . ,m}, we would need to repeat this Lm
times, which means the total operations incurred for each m is 2KLm. Summing this
for all m ∈ {1, . . . , n} would require KLn(n− 1) operations. Thus the complexity of the
algorithm is O(KLn2).

A.4. Descending Clock Auctions using Optimized Price Setting for the Homogeneous Setting

ALGORITHM 2: A DCA Framework using Optimal Price Setting for the Homogeneous Setting
Input: A set of sellers N = {1, . . . , n} with goods {G1, . . . , Gn}, an auctioneer with a target T .

A target number of rounds allowed m. Initial valuation estimates vi.
Output: A set of feasible sellers A ⊂ N , i.e., |A| = T , and the corresponding offer price vector p

that aims to minimize the expected payment.
1. Let the set of active bidders be A(r) = N ;
for round r = 1...m do

2.1. Set the target number of accepting bidders T (r) = n(r) − (n(r) − T )/(m− r) where
n(r) = |A(r)| and solve Model 9 to find a vector of prices p to offer the bidders;
2.2. Find the set of rejected offers R;
if |(A(r)\R| ≥ T then

2.2.1. A(r+1) ← A(r)\R;
2.2.2. Update the distributions of the bidders’ valuations using Formulation 11;

else
2.2.3. Enter the adjustment round in Step 3;

end
end
3. Adjust the prices for bidders in the last round to meet the target by solving Formulation 12;
4. Pay winning bidders the offer prices;

A.5. Descending Clock Auctions using Optimized Price Setting for Incentive Auctions

ALGORITHM 3: A DCA Framework using Optimal Price Setting for Incentive Auctions
Input: A set of stations N = {1, . . . , n}, an auctioneer with a feasibility function

F : 2N → {0, 1}. A target number of rounds allowed m. Initial valuation function
estimates vi.

Output: A set of feasible stations to reject R ⊂ N , i.e. F (R) = 1, and the corresponding offer
price vector p that aims to minimize the expected payment on the remaining stations.

1. Set the initial prices p at the reserves. Let the set of rejected bidders be R(r) = ∅;
for round r = 1...m do

2.1. Set the target number of accepting bidders T (r) = n(r) − (n(r) − T )/(m− r) where
n(r) = |A(r)| and solve Model 9 to find a vector of prices p to offer the bidders;
2.2. Find the set of rejected offers R;
if F (R(r) ∪R) = 1, i.e. via solving 17, then

2.2.1. R(r+1) ←R(r) ∪R;
2.2.2. Update the distributions of the bidders’ valuations using Formulation 11;

else
2.2.3. Enter the final Step 3;

end
end
3. Set all remaining bidders N\R(r) as winners and pay them their offer prices;

ACM Journal Name, Vol. X, No. X, Article X, Publication date: February 2014.



App–4 T. Sandholm and T.D. Nguyen

A.6. Approximation Method for the Multi-Round Case
First, assuming that the auctioneer has only one round left. Then the optimal prices
to offer to the bidders will be the solution of Model 9 for the continuous case (or 10
for the discrete case). Now, given that the auctioneer has multiple rounds to do price
discovery, he would not offer these ‘optimal prices’ right away. Instead, a set of higher
prices will be offered first to learn more about the bidders’ valuations and to update
the bounds.

A simple way that the auctioneer can do this is to discretize the prices into m equal
intervals between the uppers bounds and p∗ and offer these to the bidders sequentially
until feasibility does not hold.

A better way is to do this dynamically as shown in Algorithm 4. Here, after solving
Model 9 (or 10) in Step 1, the auctioneer can offer a guess pi =

ui+(m−1)p∗i
m to bidder

i and see how the bidder responds. This price is obtained under the expectation that
the offer price in the next m rounds will be distributed evenly within the range [p∗i , ui].
Notice, however, that once the auctioneer has offered the prices to the bidders and
received their responses to form the new state of the auction, the auctioneer now has
better information and can repeat Step 2.1 of Algorithm 1 to find the new set of offer
prices, that is, to run Algorithm 4 again with the updated information. Formally:

ALGORITHM 4: Finding Offer Prices in Round m

Input: Current round r, a current set of active bidders A(r), most up-to-date valuation
estimates vi.

Output: An offer price vector p.
1. Solve Model 9 to obtain the optimal offer prices p∗ as if this were the last round;
2. Divide the range [p∗i , ui] into m equal intervals and set the actual offer prices
pi =

ui+(m−1)p∗i
m

;

A.7. Interference Constraints in Repacking and Feasibility Checking
There are two csv data files on engineering constraints available on the FCC web
site [FCC 2013]:

— A domain file called “Domain-2013July15.csv”, of size 306KB, that specifies the fea-
sible channels for each station.

— An interference file called “Interference-Paired-2013July15.csv”, of size 6219KB,
that specifies the interference constraints that the repacking must meet. This in-
cludes:
— Pairs of (station, station) that must not be assigned to the same channel (among

a given list of channels).
— Pairs of (station, station) that must not be assigned to adjacent channels (among

a given list of channels).

The average number of feasible channels that each station can be allocated to is
44.15 (out of 49 channels) with most of the channels being freely allocated to any
available channels. However, some stations only have a few feasible channels (that
is, there are stations with only three possible channel assignments). There are 2.9 ×
106 constraints requiring pairs of stations that are not to be allocated in the same or
adjacent channels. Although this is smaller than 2mn2 = 493 × 106 in the worst case,
i.e., when interference matrices are fully dense, it is still a large number.

Let S be a set of stations that needs to be repacked into a list of channels in set C.
We use i, j as indices for stations and use k as indices for channels. Let Ci ⊂ C, i ∈ S,
be the list of feasible channels to station i. Let Ic be the list of triplets (i, j, k) such that
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stations i and j cannot be assigned to the same channel k. Let Ia be the list of triplets
(i, j, k) such that stations (i, j) cannot be assigned to channel (k, k + 1) respectively.
Data for Ci, Ic and Ia are available from the domain file and the interference-paired
file on the FCC web site [FCC 2013].

From a given list of channels C, we say the set S of stations is feasible with respect
to C if the stations can be packed into the channels without violating any of the con-
straints. Let P(C) denote the set of all subsets of stations that can be feasibly packaged
into channels in C.

Let zik be a binary variable that indicates whether station i is assigned to channel
k. We say z is an assignment to the repacking problem. For z to be feasible, we need
the following: (a) all the indicator variables zik are binary, (b) each station is assigned
to exactly one channel, and (c) no pairs of stations that might interfere with each other
can be assigned to the same or adjacent channels. The set of feasible assignments P(C)
is therefore defined as

P(C) =

{
z :

zik ∈ {0, 1},∀i ∈ S and k ∈ Ci,
∑
k∈Ci

zik = 1,∀i ∈ S,
zik + zjk ≤ 1,∀(i, j, k) ∈ Ic, zik + zjk+1 ≤ 1,∀(i, j, k) ∈ Ia

}
. (17)

There are a large number—up to 2.9 × 106—of constraints requiring pairs of sta-
tions not to be allocated in the same or adjacent channels. This makes checking the
assignment feasibility very challenging for the full problem when all 2177 stations are
rejected. In our experiments, however, the largest number of stations being rejected
among all the instances tested is less than 1000 and hence CPLEX can still handle
the feasibility problem. The feasibility problem does not involve an objective function
and hence is much easier to solve than the winner determination problem in a VCG
setting.

In the experiments, we used CPLEX to solve the repacking feasibility problem. We
could also use a satisfiability (SAT) formulation for this purpose as has been done by
Leyton-Brown [2013]. Our choice of CPLEX here was for the convenience of implemen-
tation and due to some special network structural properties of the repacking problem
that CPLEX could exploit. However, a discussion on the comparison between the per-
formance of SAT and CPLEX is out of the scope of this manuscript since our focus is on
the price setting and not on computational method for solving the feasibility problem.
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