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Abstract

Investigations into human norovirus infection, replication and pathogenesis, as well as the development of potential
antiviral agents, have been restricted by the lack of a cell culture system for human norovirus. To date, the optimal cell
culture surrogate virus model for studying human norovirus biology is the murine norovirus (MNV). In this report we
generate a tetracycline-regulated, inducible eukaryotic cell system expressing the entire MNV ORF1 polyprotein. Once
induced, the MNV ORF1 polyprotein was faithfully processed to the six mature non-structural proteins that predominately
located to a discrete perinuclear region, as has been observed in active MNV infection. Furthermore, we found that
expression of the ORF1 polyprotein alone was sufficient to induce apoptosis, characterised by caspase-9 activation and
survivin down-regulation. This cell line provides a valuable new tool for studying MNV ORF1 non-structural protein function,
screening for potential antiviral agents and acts as a proof-of-principle for such systems to be developed for human
noroviruses.
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Introduction

Human norovirus infection is the leading cause of acute non-

bacterial gastroenteritis, with epidemics common in semi-enclosed

communities such as hospitals, schools and cruise ships. Currently,

there is no vaccine or anti-viral treatment for norovirus infection.

The lack of an efficient cell culture system for studying human

noroviruses [1] has limited studies on their infection, replication

and pathogenesis as well as the development of potential antiviral

treatments. Attempts to establish a human norovirus replicon

system have had limited application since the system was first

described in 2006 [2–4]. Most studies of human norovirus

molecular biology have focused on using purified proteins and

in vitro systems which are far removed from the cellular environ-

ment of viral infection [5–14].

Noroviruses belong to a genus within the calicivirus family of

single stranded positive-sense RNA viruses. The norovirus genome

is translated into three open reading frames (ORFs), termed

ORF1, ORF2 and ORF3 [15,16]. ORF1 encodes a single

polyprotein which is proteolytically cleaved into six viral non-

structural (NS) proteins (NS1/2, NS3, NS4, NS5, NS6 and NS7)

[10,17–25], whereas ORF2 and ORF3 encode the two viral

structural proteins, VP1 and VP2, respectively [26,27]. The ORF1

polyprotein encodes the viral NS6 protease which is responsible

for processing of the polyprotein at all five NS boundaries

[17,18,25] which follows a preferred temporal order [17,28].

Studies of ORF1 polyprotein processing in human noroviruses

primarily use in vitro models with heterologously expressed protein

or peptide substrate.

The majority of our knowledge on human norovirus biology is

drawn from studies with animal caliciviruses such as murine

norovirus (MNV). The MNV genome bears a high degree of

structural similarity to that of human norovirus, with the three

main ORFs encoded within the human norovirus genome having

a direct homologue in MNV (Figure 1). Additionally, the presence

of a 4th open reading frame, ORF4, has been indentified in MNV,

which seems to have no direct homologue in human noroviruses

[29], even though the presence of a non-equivalent 4th open

reading frame has been postulated within the genome of some

strains [30]. The pathogenesis of MNV infection is markedly

different from human noroviruses: human norovirus infection

typically results in acute gastroenteritis, whereas MNV infects

hematopoietic cells and is typically asymptomatic in immune-

competent mice [31,32]. Furthermore, in cellulo studies using MNV

infection also suffer from unco-ordinated expression and a

relatively short time window in which replication studies can be

conducted before cells undergo apoptosis [33]. Attempts to

establish MNV replicon systems have met with partial success,

only transient expression of genome replication has been
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demonstrated and no permanently transformed cell line has been

established [12].

Prior to the isolation of efficient cell culture models the study of

other non-culturable pathogens such as hepatitis C virus, was

advanced by the development of inducible eukaryotic cell models

expressing full-length polyprotein or polyprotein precursors. Such

models were subsequently used to study fundamental aspects of

hepatitis C virus biology and provided a useful tool in the

development of novel antiviral strategies in a well-defined and

reproducible cellular context [34,35].

Our aim was to establish an inducible eukaryotic cell system

that would allow detailed studies of norovirus polyprotein

processing without the need for infectious virus. As a proof-of-

principle, we introduced the MNV ORF1 polyprotein under

control of a tetracycline-regulated CMV promoter into HEK293

cells. We chose this approach since we could validate the system by

comparison with MNV infected cells. Following induction, the cell

clone, termed R1, expresses the full-length ORF1 polyprotein

which is proteolytically cleaved into the six mature viral NS

proteins. Immunofluorescence studies demonstrated NS1/2

through to NS5 proteins were found in a cellular localisation

similar to that previously observed with MNV infected RAW246.7

cells [36,37]. Approximately 16–24 hours post-induction cells

underwent apoptosis which was characterised by the activation of

caspase-9 and down-regulation of survivin, as has been previously

described for wildtype MNV infection [33]. This inducible model

of norovirus NS protein biosynthesis will provide a valuable tool

for studying MNV ORF1 polyprotein processing and NS protein

function in eukaryotic cells in the absence of viral infection and

provides proof-of-principle for authentic expression and processing

of norovirus NS proteins.

Materials and Methods

Plasmid Constructs
The tetracycline-inducible system for MNV ORF1 was

constructed using the T-REx tetracycline-regulated expression

system using component plasmid pcDNA6/TR (Invitrogen) with

plasmid pcDNA4/TO/MNV ORF1.

The tetracycline-regulated CMV driven polII expression

construct pcDNA4/TO/MNV ORF1 was derived from the T-

REx component plasmid pcDNA4/TO using standard molecular

cloning techniques in a three step process. Firstly, the C-terminal

NS7 region of the MNV ORF1 polyprotein was amplified by PCR

using primers 59-cccgtgcttttggccctttctgt and 59-ccccccgggccctcact-

catcctcattcacaaag with template pMNV* [38] until the 39 end of

ORF1 and incorporating an unique ApaI site. The XhoI-ApaI

digested PCR fragment was introduced into XhoI-ApaI digested

pcDNA4/TO (Invitrogen) to make pcDNA4/TO/MNV/S1

(Figure S1). Subsequently, the 3596 bp EcoRV-XhoI fragment

from pMNV*, representing the majority of ORF1 from the start of

NS3 until the XhoI site in NS7, was cloned into EcoRV-XhoI

digested pcDNA4/TO/MNV/S1 to create pcDNA4/TO/

MNV/S2 (Figure S2). Finally, PCR was used with primer pair

59-cccccctccggagtgaaatgaggatggcaacg and 59-agagccgagttggtg-

gaagc with pMNV* template, to amplify the N-terminal region

of the ORF1 polyprotein from the 59 end of MNV with flanking

BspEI site until the EcoRV site. The PCR fragment was digested

with BspEI and EcoRV and cloned into BspEI-EcoRV digested

pcDNA4/TO/MNV/S2 to create pcDNA4/TO/MNV ORF1

(Figure S3 and S4).

Cell Culture, Transfection and Infection
HEK293 cells (obtained from ATCC) were grown in DMEM

supplemented with 10% foetal calf serum and GlutaMAX-1

(Invitrogen).

Stable cell lines were produced using the T-REx tetracycline-

regulated expression system for mammalian cells (Invitrogen).

Transfection of HEK293 cells was performed using FuGENE HD

(Promega) using 2 mg of plasmid DNA and 5 ml of transfection
reagent per well. For selection of stable cell lines, transfected cells

were allowed to recover for 48 hours before selection with full

growth medium supplemented with 5 mg/ml blasticidin (Invitro-

gen) and/or 200 mg/ml zeocin (Invitrogen). For infections, 106

mouse macrophage RAW264.7 cells were seeded per well in a 12

well tray. Once the cells were attached, the cells were infected with

MNV-CW1 at an MOI= 1. Cells were incubated with the virus at

37uC for 90 minutes and then the media changed. Time points

were taken at 4, 8, 16, and 24 hours by scraping up the cells and

then processing with NucleoSpin RNA/Protein extraction kit

(Macherey-Nagel). Protein in a final volume of 100 ml was

produced, the protein concentration quantified by BSA assay

and equal quantities loaded onto 4–20% SDS-PAGE gels for

analysis.

SDS-PAGE and Western Blot
SDS-PAGE and Western blots were carried out as described

previously [38]. Primary antibodies used were rabbit polyclonals:

anti-NS1/2, anti-NS4, anti-NS5, anti-NS6 (all generated by Prof

Vernon Ward, University of Otago, using E.coli generated,

purified, whole NS protein antigens) and mouse anti-NS3 and

anti-NS7 monoclonals, (generated on our behalf by AbMART,

Shanghai, using NS protein-specific peptides). Proform and

cleaved caspase-9 was detected using an anti-caspase-9 mouse

monoclonal antibody, clone 96-2-22 (Merck Millipore). Survivin

was detected using an anti-survivin rabbit monoclonal antibody,

clone 71G4B7 (Cell Signalling Technology). Rabbit polyclonal

anti-GAPDH antibody (ab9485- Abcam) was used to demonstrate

gel loading, this antibody was used to probe both HEK293 cells

and MNV infected RAW264.7 cells, in the murine RAW264.7

Figure 1. Schematic representation of the MNV genome. The genome of murine norovirus 1 is shown annotated with the five dipeptide ORF1
polyprotein cleavage sites that are cleaved by the viral NS6 protease. The ORF1 polyprotein is cleaved into the six NS proteins termed NS1/2, NS3,
NS4, NS5, NS6 and NS7. Also indicated are the alternative names for each non-structural protein, N-term though to 3D.
doi:10.1371/journal.pone.0090679.g001
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cells it had a high background. Goat anti-rabbit and goat anti-

mouse HRP conjugates (Sigma-Aldrich) were employed as

secondary reagents.

Confocal Microscopy
R1 cells seeded onto polylysine coated glass coverslips were

induced with 0.25 mg/ml tetracycline for 1 hour or left uninduced,

fixed at timepoints between 2 and 24 hours post-induction in 4%

paraformaldehyde, washed in PBS and permeabilised in saponin

buffer (0.1% saponin, 10% foetal calf serum, 0.1% sodium azide)

for 1 hour at 4uC. Primary and secondary antibodies were

incubated in saponin buffer for 1 hour at room temperature and

washed in saponin buffer between steps. Primary antibodies used

were as described in western blotting (above) and were detected

with anti-rabbit-Alexa488 or anti-mouse-Alexa488 conjugate

(Invitrogen) secondaries. Cells were counterstained with 1 mg/ml

DAPI (Fisher Scientific), washed a final time in PBS and mounted

onto slides with ProLongGold (Invitrogen). Images were captured

using a Leica TCP SP5 confocal microscope.

Fluorescent Apoptosis Staining
To differentiate between apoptotic and non-apoptotic path-

ways, cells were stained with the Vybrant Apoptosis Assay

(Invitrogen), following manufacturer’s protocol with slight modi-

fication. R1 cells seeded onto polylysine coated glass coverslips

were induced with 0.25 mg/ml tetracycline (Sigma-Aldrich) for 1

hour or left uninduced and at timepoints between 12 and 24 hours

post-induction stained with YO-PRO-1 and propidium iodide

diluted in full growth medium, on ice for 30 minutes. Coverslips

were mounted onto slides using PBS and imaged immediately

using a Leica Leitz-DMRB fluorescent microscope with camera.

Results

A Stable Cell Clone Expressing MNV ORF1
To establish a virus-free model for studying MNV ORF1

processing we utilised the commercial TREx tetracycline (Tet) -

regulated dual plasmid expression system. This system uses the

pcDNA6/TR regulatory plasmid which constitutively expresses

the Tet repressor gene to repress expression from the expression

plasmid, pcDNA4/TO, which was engineered to express the

MNV ORF1 polyprotein (Figure 2). In the absence of tetracycline,

Tet repressor homodimers bind to the Tet operator sequences

present in the vector to repress MNV ORF1 expression. Upon

addition, Tet binds to repressor homodimers, releasing the

repressor from the operator sequences and de-repressing expres-

sion of MNV ORF1.

Set up of this system first required selection of a cell line stably

expressing the Tet repressor, with the requirement that the cell

line chosen must also support MNV replication. Attempts to select

a stable RAW264.7 or BHK-21 cell line expressing the Tet

repressor were unsuccessful after multiple attempts (data not

shown). However, HEK293 clones which expressed the Tet

repressor were readily selectable after transfection with pcDNA6/

TR and culture in the presence of blasticidin for 2 weeks.

Following clonal expansion in the presence of blasticidin, the

repressor cell line stably expressing the Tet repressor was

transfected with the Tet responsive MNV ORF1 expressing

plasmid, pcDNA4/TO/MNV ORF1. Transformants were select-

ed for two weeks in the presence of blasticidin and zeocin and

clonally expanded for a further 4 weeks. Six individual stable

clones were screened for MNV ORF1 translation products by

Western blot and a single clone, termed R1, was selected based on

high level expression of the NS1/2 and NS7 proteins (data not

shown).

The ORF1 Polyprotein is Processed to Completion in the
Absence of Viral Genomic RNA
In MNV infection the ORF1 polyprotein is processed to

completion by the NS6 protease, yielding the mature viral NS

proteins in equal amounts. To establish whether processing of the

ORF1 polyprotein goes to completion in the R1 cell clone,

induced and uninduced cells were harvested at time points of 2, 4,

8, 16 and 24 hours post-induction and lysates probed by Western

blot using antibodies against MNV NS proteins (Figure 3A). For

comparison an equivalent time course was conducted with MNV

infected cells and NS protein expression probed by Western blot

(Figure 3B). Expression of most, fully cleaved, mature NS proteins

could clearly be detected in the R1 cell line by 16 hours post-

induction. In an active MNV infection expression of NS1/2, NS3,

NS4 and NS7 could be easily detected from 16 hours post-

infection while NS6 was only abundant at 24 hours post-infection.

Furthermore, the molecular weight of all fully cleaved NS proteins

expressed in the R1 cell line corresponded to the molecular weight

as observed in MNV infected RAW264.7 cells. No significant

amounts of uncleaved precursors could be detected with these

antibodies within the R1 cell line or MNV infection at any time

points even after over development except for NS5 (data not

shown). Interestingly, between 22–24 hours post-induction, R1

cells underwent synchronised cell death to become detached from

the surface, accounting for the lower protein concentration and

the apparent reduced protein expression at the 24 hour time point.

Cellular localisation of ORF1 Proteins
Upon induction with tetracycline, the R1 clone demonstrated

complete processing of the ORF1 polyprotein with mature NS

proteins clearly detectable by 16 hours post-induction. Previous

studies have defined the cellular localisation of MNV NS proteins

expressed both individually by transfection of cDNA and in active

MNV infection [36,37,39]. To determine the localisation of NS

proteins in the R1 cell clone, induced and uninduced R1 cells on

coverslips were fixed at equal time points 2–20 hours post-

induction. The coverslips were individually labelled with antibod-

ies against NS proteins and analysed by immunofluorescence

(Figure 4). By 8 hours post-induction, NS1/2, NS3, NS4 and NS5

all localised to a discrete perinuclear region with little diffuse

cytoplasmic staining. In contrast, NS6 demonstrated diffuse

cytoplasmic staining at all time points with no defined perinuclear

localisation apparent. Our antisera to NS7 did not work in

immunofluoresecence.

Expression of MNV ORF1 is Sufficient to Induce Apoptosis
The R1 cells underwent synchronised cell death approximately

20–24 hours post-induction. MNV infection of RAW264.7 cells

results in apoptosis beginning at 12–16 hours post-infection and

eventually leading to cell death approximately 24 hours post-

infection. MNV induced apoptosis is associated with activation of

caspase-9, caspase-3, down-regulation of survivin and apoptosis

through the mitochondrial pathway [33]. To determine whether

the same events were responsible for the cell death observed with

induced R1 cells it was first necessary to confirm the R1 cell death

was attributed to apoptosis. Induced and uninduced R1 cells were

therefore stained with the Vybrant Apoptosis Assay kit at time

points between 12–24 hours post-induction and visualised by

immunofluorescence (Figure 5A). With this system cells undergo-

ing apoptosis exhibit bright green fluorescence and necrotic cells

A Stable Cell Line Expressing Norovirus ORF1
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are labelled orange. Upon induction R1 cells underwent partially

synchronised apoptosis, beginning at 16–18 hours post-induction

and peaking at 20 hours post-induction. At times beyond 22 hours

post-induction most cells had died and become detached from the

surface.

To identify whether the observed apoptosis was associated with

caspase-9 activation and survivin down-regulation (as has been

observed with MNV infection [33]), induced or uninduced R1

cells were harvested at timepoints between 8 and 22 hours post-

induction and lysates probed by Western blot using anti-caspase-9

and anti-survivin monoclonal antibodies (Figure 5B and 5C).

Figure 2. Schematic representation of the tetracycline-regulated ORF1 expression system. In the absence of tetracycline (Tet) (A) Tet
repressor protein (TetR) homodimers, expressed constitutively from pcDNA6/TR, bind to the Tet operator 2 (TetO2) sequences in the inducible ORF1
expression vector (pcDNA4/TO/MNV ORF1) to repress transcription of the MNV ORF1 polyprotein. Upon the addition of Tet (B) Tet binds to TetR
homodimers, resulting in a conformational change, releasing it from the TetO2 sequences allowing expression of the MNV ORF1 polyprotein.
doi:10.1371/journal.pone.0090679.g002
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Caspase-9 activation could only be detected in induced R1 cells, at

16 hours post-induction as indicated by the cleaved caspase-9

product of approximately 37 kDa by Western blot. By 22 hours

post-induction most of the cells had detached from the surface,

therefore resulting in a lower protein concentration in this sample

and reduced protein loading. In MNV infected RAW264.7 cells

survivin down-regulation begins at approximately 8 hours post-

infection [33]. Concordant with this study, down-regulation of

survivin can clearly be observed in induced R1 cells at 8 hours

post-induction and is maintained down-regulated up to 22 hours

post induction.

Discussion

Our aim was to construct a human cell line capable of inducible

expression of norovirus non-structural proteins (ORF1). We

describe a stable cell line expressing the MNV ORF1 polyprotein

under control of a tightly-regulated inducible tetracycline gene

expression system. At the start of this study, attempts to select

stable transformants were performed with three well characterised

cell lines, RAW264.7, BHK-21 and HEK293. These cell lines

were chosen based on their relatively high transfection efficiencies,

and because it is possible to recover MNV from all three cell lines

following transfection with full-length viral cDNA [38,40]. Despite

multiple attempts, we were unable to select stable cell lines with

RAW264.7 and BHK-21 cells. In contrast, stable HEK293

transformants were readily selectable and an individual clone,

termed R1, was chosen for characterisation based on high

expression of the non-structural proteins at 59 and 39 end of the

ORF1 polyprotein, NS1/2 and NS7, respectively.

Upon induction, the MNV ORF1 polyprotein was processed to

completion, similar to the processing seen in MNV infection [25].

Expression of the N-terminal ORF1 protein, NS1/2, was just

detectable after only 2 hours post-induction, closely followed by

NS3, NS4 and NS7 detectable after 4 hours and NS6 at 8 hours

post-induction, with expression peaking at approximately 8–16

hours. For each NS protein the time course of expression in R1

cells was faster than that observed in MNV infected RAW264.7

cells. However, there was little difference in the final relative

amount of each NS protein expressed in the R1 cells and an active

MNV infection run in parallel and using the same reagents for

immune detection. The early, high level expression of the MNV

ORF1 polyprotein from the CMV promoter in the R1 clone

allows for greater initial synthesis of viral NS protein compared to

a natural infection (where viral genome amplificiation has to occur

before high-level protein expression is achieved) and as a result

may contribute to the induction of apoptosis observed in R1 cells.

Mature cleavage products were readily detectable in both wild

type MNV infection and the induced R1 clone. It is likely that

complete processing of the ORF1 polyprotein is essential for viral

RNA replication, making the protease an attractive target for anti-

viral therapy. The apparent processing to completion of the ORF1

Figure 3. Western blot analysis of NS protein expression in the R1 cell clone and in MNV-1 infected RAW264.7 cells. A. The R1 cell line
was induced with 0.25 mg/ml tetracycline or uninduced. B. RAW264.7 cells were infected with MNV with an MOI = 1.0. In both cases cells were
harvested at 2, 4, 8, 16 and 24 hours post-induction/post infection, total protein quantified by BCA assay and 10 mg of each lysate analysed by
Western blotting for expression of MNV NS proteins as indicated. In panel A, lysates were analysed by single concentration SDS PAGE. In panel B, 4–
20% gradient SDS-PAGE was used, accounting for variations in relative migration of some of the molecular weight markers to those in panel A.
doi:10.1371/journal.pone.0090679.g003
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polyprotein in R1 cells clearly demonstrates that the NS6 protease

retains activity in this model system. The R1 cell line will therefore

provide a useful tool for evaluating potential protease inhibitors in

a tightly regulated, reproducible, eukaryotic system that is free

from viral replication where secondary factors such as unco-

ordinated expression can have interfering effects.

In RAW264.7 cells all MNV NS proteins locate to a distinct

perinuclear region along with dsRNA and it is thought to be the

location of viral RNA replication [36,37]. In our model system the

first four NS proteins, NS1/2, NS3, NS4 and NS5, all located to a

perinuclear region similar to that observed in MNV-infected

RAW246.7 cells. In contrast, NS6 demonstrated largely diffuse,

cytoplasmic fluorescence with no distinguishable perinuclear

localisation.

Following induction of the ORF1 polyprotein R1 cells undergo

cell death and become detached from the surface after approx-

imately 24 hours, which was not observed in uninduced R1 cells or

an inducible HEK293 cell line expressing b-galactosidase (data not

Figure 4. Localisation of MNV NS proteins when expressed in HEK293 cells. R1 cells were induced with 0.25 mg/ml tetracycline and fixed at
2, 4, 8, 16 and 24 hours post-induction before being labelled with antisera specific to MNV NS proteins (green) and cell nuclei were counterstained
(blue). Images were captured by confocal microscopy. Scale bar is 25 mm.
doi:10.1371/journal.pone.0090679.g004
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shown). The observed ORF1 related cell death was characterised

by induction of apoptosis at approximately 16 hours post-

induction and associated with the activation of caspase-9 and

down-regulation of survivin. These observations are in agreement

with previous findings where it was shown that MNV replication

triggered apoptosis in infected RAW264.7 cells at 12–16 hours

post-infection, through the activation of caspase-9, caspase-3 and

was associated with a down-regulation of survivin (an inhibitor of

apoptosis which prevents activation of caspase-9). Furthermore,

both UV inactivation of virus or treatment with cycloheximide

eliminated apoptosis and the expression of individual structural or

non-structural proteins was shown not to result in down-regulation

of survivin, suggesting active viral replication was required to

induce apoptosis [33]. Here we report that only expression of the

MNV ORF1 polyprotein is sufficient to induce survivin down-

regulation and apoptosis in the complete absence of viral genome

or viral genome replication. Taking these data together, it seems

likely that the survivin down-regulation and induction of apoptosis

is mediated by one or more ORF1 polyprotein products, but not

by a single NS protein expressed alone or by viral genome

replication. However, it is unclear whether this may be the effect of

several mature non-structural proteins working in co-operation

and/or transient ORF1 polyprotein precursor products.

It is not known what role apoptosis and programmed cell death

may play in MNV infection. In RAW264.7 cells MNV infection

clearly causes apoptosis and programmed cell death, most likely

through an atypical pathway involving survivin and possibly other

players such as cathepsin B [33,41]. Blocking apoptosis using a

pan-caspase inhibitor both accelerated cell death and changed the

death pathway to typical necrosis, while resulting in an over 10-

fold reduction in infectious virion production [41]. It was therefore

suggested MNV has adapted a strategy to allow apoptosis to

proceed and thus provide a larger time window for virus

replication. Alternatively, activation of caspases may provide a

vital role in the viral replication process. The MNV ORF1 N-

terminal protein, NS1/2, has been shown to be processed by

caspase-3 into two fragments of 13.6 and 24.7 kDa [25], the first of

which contains the majority of the disordered region [42]. The

function of the NS1/2 protein is not known and it is likely to

perform multiple roles during replication. However, it is possible

that cleavage of the NS1/2 protein by activated caspase-3 may be

a functional requirement of this protein.

In the absence of a human norovirus cell culture system most of

our knowledge of norovirus molecular biology comes from studies

with MNV. There is a human norovirus replicon system but this

suffers from low level replication and an absence of mature ORF1

polyprotein cleavage products hindering certain approaches such

Figure 5. Expression of the MNV ORF1 polyprotein is sufficient to induce apoptosis in HEK293 cells. (A) R1 cells were seeded onto glass
coverslips, induced with tetracycline and at 14, 16, 18, 20, 22 and 24 hours post-induction, stained with YO-PRO-1 (green) and propidium iodide
(orange) and visualised by fluorescence microscopy. Western blot analysis of induced or uninduced R1 cells harvested at 4, 8, 16 and 24 hours post-
induction for caspase-9 activation (B) or at 8, 16, 20 and 22 hours for survivin expression (C). For each lysate total protein quantification was
performed by BCA assay and 50 mg of protein loaded per lane. Due to low protein concentration in the induced 24 hour sample approximately 100-
fold less protein was loaded.
doi:10.1371/journal.pone.0090679.g005
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as pulse chase analyses and the development of protease inhibitors.

By contrast the inducible norovirus R1 cell line described here is

ideal for such studies which require co-ordinated high level

expression and is well suited for applications such as high

throughput enzyme inhibitors testing. In addition, the well-defined

cellular architecture of the parental HEK293 cells used to establish

the R1 cell line makes them easier to use than MNV infected

RAW264.7 cells which have a smaller cytoplasm and less well

defined cellular features.

In conclusion, we have established and characterised a stable

cell line with tightly regulated inducible expression of the MNV

ORF1 polyprotein which is processed into mature non-structural

proteins. This cell line will provide a valuable tool for studying

polyprotein processing and non-structural protein function in

eukaryotic cells, for screening for novel protease inhibitors and

provides a proof-of-principle for similar systems to be established

with non-culturable human noroviruses.

Supporting Information

Figure S1 Map of plasmid pcDNA4/TO/MNV/S1. PCR
was used to amplify the ORF1 C-terminal region from pMNV*

from upstream of the XhoI site until the 39 end and incorporating a

downstream ApaI site. The XhoI-ApaI digested PCR fragment was

ligated into XhoI-ApaI digested pcDNA4/TO at the multiple

cloning site to create pcDNA4/TO/MNV/S1.

(TIF)

Figure S2 Map of plasmid pcDNA4/TO/MNV/S2.
Plasmid pcDNA4/TO/MNV/S2 was created by ligating the

EcoRV-XhoI fragment from pMNV*, representing the large central

portion of the MNV ORF1 region, into EcoRV-XhoI digested

pcDNA4/TO/MNV/S1 to give pcDNA4/TO/MNV/S2.

(TIF)

Figure S3 Map of plasmid pcDNA4/TO/MNV ORF1.
Plasmid pcDNA4/TO/MNV ORF1 was created by PCR

amplifying the ORF1 N-terminal region of pMNV* with flanking

upstream BspEI site until the EcoRV site and ligating the BspEI-

EcoRV PCR fragment into BspEI-EcoRV digested pcDNA4/TO/

MNV/S2.

(TIF)

Figure S4 Plasmid pcDNA4/TO/MNV ORF1 features
table and sequence. The main features of plasmid pcDNA4/

TO/MNV ORF1 are shown with the nucleotide co-ordinates and

the full plasmid nucleotide sequence.
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