
A semi-automated design of instance-based fuzzy
parameter tuning for metaheuristics based on decision

tree induction

Jana Ries1∗, Patrick Beullens2

1Portsmouth Business School, University of Portsmouth,
2School of Mathematics, School of Management, University of Southampton,

jana.ries@port.ac.uk, p.beullens@soton.ac.uk

Abstract

Two main concepts are established in the literature for the Parameter Setting Prob-
lem (PSP) of metaheuristics: Parameter Tuning Strategies (PTS) and Parameter Con-
trol Strategies (PCS). While PTS result in a fixed parameter setting for a set of problem
instances, PCS are incorporated into the metaheuristic and adapt parameter values ac-
cording to instance-specific performance feedback.

The idea of Instance-specific Parameter Tuning Strategies (IPTS) is aiming to com-
bine advantages of both tuning and control strategies by enabling the adoption of
parameter values tailored to instance-specific characteristics a priori to running the
metaheuristic. This requires, however, a significant knowledge about the impact of
instance-characteristics on heuristic performance.

This paper presents an approach that semi-automatically designs the fuzzy logic
rule base to obtain instance-specific parameter values by means of decision trees. This
enables the user to automate the process of converting insights about instance-specific
information and its impact on heuristic performance into a fuzzy rule base IPTS system.
The system incorporates the decision maker’s preference about the trade-off between
computational time and solution quality.

Keywords: Heuristics, Parameter calibration, Fuzzy systems, Decision trees, Travelling Sales-
man Problem.

∗Corresponding author

1

1 Introduction

The Parameter Setting Problem (PSP) is the search for a set of algorithm-specific parameter

values to improve metaheuristic performance. Solving the PSP is important for ensuring the

efficient implementation of a metaheuristic approach to combinatorial optimisation problems

(Hooker 1995, Johnson 2002).

Several methodologies for the PSP have emerged during the last decade, leading to the

main strategies of: Parameter Tuning or PTS (Coy et al. 2001, Adenso-Diaz & Laguna 2006,

Kern 2006) and Parameter Control or PCS (Battiti 1996, Eiben et al. 1999, Jeong et al.

2009), which are also referred to as offline and online approaches, respectively. PTS look

for one fixed set of parameter values to be used for each instance to be solved later. The

determination of this best set of values occurs a priori by an examination of metaheuristic

performance on a representative set of instances. PCS dynamically adjust the parameter

values to instance-specific values during the metaheuristic search on the instance.

A recent addition are the so-called Instance-specific Parameter Tuning Strategies (IPTS).

IPTS aim to combine advantages of PTS and PCS, and to incorporate an explicit knowledge

of the impact of instance characteristics and decision maker preferences about the trade-

off between solution quality and computational time. As in PTS, a representative set of

instances is first investigated. Rather than aiming to obtain one specific ‘robust’ set of

parameter values, the instance set is used to design an efficient tuning method that can

return instance-specific parameter values based on measurable instance characteristics. Prior

to running the metaheuristic on a particular new instance, the instance is examined by the

tuning method and appropriate parameter values are returned to initialise the metaheuristic,

which is then applied to the instance. Only few approaches can be currently found in the

literature that consider the importance of instance-specific information. Existing ones use

case-based bayesian reasoning (Pavon et al. 2009) or fuzzy logic (Ries et al. 2012), while

Kadioglu et al. (2010) propose a clustering approach with parameter tuning systems that

2

ignore structural information of instances, i.e. ParamILS (Hutter et al., 2007) and Gender-

Based Genetic Algorithm (GGA) (Gil et al., 2009). Hence, the authors cluster similarly

structured instances and subsequently associate the new instance with the parameter setting

that has been found using a non-instance-specific tuning tool.

Which of these methods is best is difficult to assess in general. PTS do not require the

adaptation of the metaheuristic, nor an explicit knowledge of instance characteristics, nor

an explicit knowledge of the impact of parameter values on heuristic performance. Once the

set of robust parameter values is determined from a representative set of instances, they are

simple to use. However, as the set of parameter values is typically chosen as to maximise the

average performance over a set of instances, the parameter values are typically not optimal for

any particular instance of the set. In other words, the approach can be expected to perform

well as long as the metaheuristic appears to behave robustly and ‘is relatively insensitive to

differences in problem characteristics, data quality and parameter tuning’ (Barr et al. 1995),

at least for the area of application from which the instances are drawn.

PCS often need the modification of the metaheuristic algorithm, or at least allow for

dynamic communication of this algorithm with an external parameter control procedure.

Some knowledge of how algorithm-specific parameter values influence heuristic performance

is required in order to adjust the parameters dynamically. Instance-specific information,

however, is used only implicitly through an observed heuristic performance in an iterative

process of adjusting, for example, intensification and diversification efforts of the search

routine. PCS work arguably well when the instances that need solving are not a priori well

known but are expected to differ significantly in their characteristics so that dynamically

tailoring the parameter values pays off in solution quality or computational time.

Several experimental studies have outlined that the investigation of structural information

implicitly present in a problem instance, and its impact on heuristic performance, can be

crucial in improving parameter setting methods (Coy et al. 2001, Johnson 2002, Kern 2006,

Ridge 2007). This supports the idea of having a clear advantage from using a well structured

3

approach to calibrating a metaheuristic based on instance-specific information.

Figure 1: IPTS in the use phase

In IPTS, the interaction between some measurable instance characteristics and algorithm-

specific parameter values is to be explicitly incorporated in the design of the tuning strategy.

A representative set of instances is used to design the tuning method. Once designed, the

tuning method calculates the characteristics of any given instance, and then applies a method

to return a set of instance-specific parameter values. These values are subsequently used

to initialise the metaheuristic in order to solve the particular instance, see Figure 1. The

approach therefore aims to preserve much of the simplicity of PTS but allows for the use,

like in PCS, of instance-specific parameter values. This set-up aims to avoid the additional

computational efforts during the metaheuristic search required in PCS, and designers of IPTS

can use any metaheuristic of which the code is not explicitly available; it may e.g. only be

available as a callable routine with the ability to set its parameter values.

In a further attempt to facilitate and adjust a parameter setting strategy for practitioners,

a decision maker preference parameter p can be easily introduced in IPTS. This parameter

can be interpreted as the ‘time pressure’ under which a solution needs to be obtained. The

parameter takes values between 0 and 1, the former value indicating no time pressure and the

latter the need for short computational times. Any in-between value describes a preference

as a weighted combination of both performance values, which ideally should correspond with

4

parameter settings that follow the pareto front in the two-dimensional objective space of

solution quality and computational time. From the point of view of the practioner, the IPTS

replaces the problem of choosing a set of metaheuristic parameter values by the problem of

choosing an appropriate value for p.

An IPTS design poses several challenges including the selection of relevant characteristics

and the identification of the relation between the instance-specific information, the parameter

values of the algorithm, and their impact on running times and quality of solutions obtained.

The current IPTS in the literature provide the structure for a successful calibration concept.

The design of this calibration system itself, however, is based on expert judgement and a

manual set-up, irrespective of whether further learning during the search is either incorpo-

rated (Pavon et al. 2009) or not (Ries et al. 2012). The design of the tuning method in

the latter study, for example, is based on an extensive statistical analysis for identifying

main and interaction effects between instance characteristics, algorithmic parameters of the

metaheuristic, and performance of the metaheuristic. Subsequently, it requires an expert to

interpret the statistical results in order to manually specify a meaningful set of fuzzy decision

rules.

In order to overcome these difficulties, this paper suggests a semi-automated approach for

designing (fuzzy logic) IPTS whereby the classification rules are derived from automatically

generated decision trees. Hence, the knowledge of the interaction between instance- and

algorithm-specific parameters does not need to become explicit to the designer, but will be

implicitly and automatically transferred into a (fuzzy) rule base for parameter tuning. The

proposed approach of rule induction from induced decision trees is quite generally applicable

for developing an IPTS for any metaheuristic and type of problem. To make the application

concrete in this paper, the approach is used for the development of a specific tuning method

of the class of fuzzy logic-based IPTS.

The remainder of the paper is organised as follows. Section 2 presents the test cases

for the symmetric and asymmetric Travelling Salesman Problem (TSP) in combination with

5

Guided Local Search (GLS). The outline of the design of an automated rule base for a fuzzy

system using decision trees is found in Section 3, and results are outlined in Section 4. Section

5 gives conclusions and recommendations for future research.

2 Description of the test case environment

The main aim of this article is to outline and demonstrate the potential of a semi-automated

approach to design a fuzzy tuning method for IPTS. Its value is hence foremost to be deter-

mined from a comparison with the approach in which expert judgement and a manual set-up

is used, as in Ries et al. (2012). Arguably, the latter approach is time consuming for the

programmer as it requires a careful explicit interpretation and translation of the statistical

results into a fuzzy rule base. The automated approach avoids that any statistical tests need

to be conducted, interpreted, and translated into a rule base, and hence will produce the tun-

ing rules in principle much quicker. The question is hence whether the automated approach

gives a tuning method of at least comparable average performance. To facilitate this com-

parison, we hence use the same test case of the TSP and fuzzy tuning for GLS. In addition,

the value of the IPTS tuning method obtained can be further established by comparing its

average performance relative to a simple approach whereby a fixed set of parameter values

is being used.

The symmetric case of the optimisation problem considered calls for solving two-dimensional

symmetric instances of the Traveling Salesman Problem (STSP). The STSP searches for the

shortest Hamiltonian tour in a complete undirected graph G = (V,E), visiting all vertices in

V once, and given the length of each edge in E. Let |V | = n. For the STSP, the distance

between two vertices d(vi, vj) = d(vj, vi). The asymmetric Travelling Salesman Problem

(ATSP) follows a similar definition by searching for the shortest tour in a complete directed

Graph GD = (V,A), while d(vi, vj) 6= d(vj, vi). The fuzzy tuning system is to work in front

of the Guided Local Search (GLS) algorithm developed in Ries et al. (2012).

6

2.1 TSP instance characteristics

The instance-specific characteristics are the following four presented in Ries et al. (2012): the

instance size n, the distance metric s, a clustering index c, and a shape ratio r. The number

of vertices n is assumed given. The Minkowski distance metric determines s (0 < s ≤ ∞),

and an approximate value is typically available from the pratical context. In particular, s = 1

gives Manhattan and s = 2 gives Euclidean distances. These two cases correspond to major

applications of the TSP (Applegate et al., 2006, Schmitting, 1999). If s is not given, it takes

the default value 1.5. The cophenetic correlation coefficient c (0 ≤ c ≤ 1) (Everitt et al.,

2001) is used to indicate the degree of clustering; the closer c is to 1, the more certain the

instance is clustered. Finally, the shape of the area in which the vertices of an instance are

distributed determines the value for r (1 ≤ r ≤ ∞). It is calculated as the ratio of the largest

side to the smallest side of the rectangle with minimal area that encompasses all vertices.

Finally, it is assumed that some appropriate value of p is provided by the decision maker.

2.2 Case study GLS for the TSP

GLS for TSP (Voudouris and Tsang, 1999) is based on the principle of iteratively calling a

local search procedure with incrementally adapted distance data. In each iteration of GLS,

the longest edge in the current solution is penalised by increasing its corresponding distance

value. However, the penalisation principle also diversifies by taking into account the relative

number of times an edge has been penalised. The particular GLS algorithm selected in this

study incorporates 2-opt local search, and, to reduce computational effort, the mechanisms

of active marking (Bentley 1992) and neighbour lists. The parameters of this algorithm are

denoted by α (0 < α ≤ 1), NL (0 < NL ≤ 1), and IT ; α is the fraction of the average edge

length in an initial solution with which an edge is penalised; NL determines the length of the

sorted nearest neighbour list of every vertex, i.e. (n− 1)NL is the number of vertices in each

list; and IT is the number of GLS-iterations.

7

The GLS algorithm is one of the better deterministic algorithms for solving symmetric

TSPs (see Voudouris and Tsang 1999). It should be emphasised that the aim of IPTS is not

to identify which metaheuristic is best, but to facilitate practioners in not having to set the

values of parameters of a metaheuristic of which they may not have a detailed knowledge. The

semi-automated approach aims to help designers of the IPTS to develop a tuning algorithm

as to make the performance of a given metaheuristic as good as possible, while allowing the

decision maker to express his preference concerning the time pressure.

2.3 Fuzzy IPTS

We shortly outline the fuzzy logic concepts used in the IPTS approach developed in Ries

et al. (2012), and refer to this article for further details. Fuzzy logic, introduced by Zadeh

(1965), is a set theory about objects for which partial set membership (any value between 0

and 1) rather than crisp set membership (either 0 or 1) is allowed. A Fuzzy Inference System

(FIS) aims to specify an output from a given input by means of fuzzy logic. The input in

this case are crisp values of instance characteristics n, s, c, and r, and the time preference

p, and the different outputs are crisp values for each of the algorithm-specific parameters

of the GLS. The FIS consists of membership functions, logical operations, and an if-then

rule base. A membership function describes how a crisp value for one input (output) maps

onto a membership value of a specific linguistic term associated with a valid set of the input

(output). For example, the input n can be described by three sets labelled, respectively,

‘small’, ‘medium’, or ‘large’; an instance of size n = 500 may hence be mapped to being

‘small’ of degree 0.4, and being ‘medium’ of degree 0.6. The process of translating crisp

input to membership values is called fuzzification. This process depends on the shape of the

set membership functions. The proposed fuzzy IPTS design uses triangular- and trapezoidal-

shaped functions due to their simplicity in design. A similar process, called defuzzification,

determines a crisp value for an output based on the knowledge of its set membership functions

and values. To find set membership values of an output based on set membership functions

8

of inputs, a set of fuzzy rules, or rule base, is needed. A simple example of a rule base to

find the set membership values for the output IT would be:

• IF n is small AND r is rectangular THEN IT = small

• IF n is small AND r is squared THEN IT = medium

• IF n is medium THEN IT = medium

• IF n is large AND c is small AND r is rectangular THEN IT = medium

• IF n is large AND c is small AND r is squared THEN IT = large

• IF n is large AND c is large THEN IT = large

The fuzzy AND operator will determine a combined degree of truth of the antecedent of

each rule as the intersection (or minimum value) of all membership values of the inputs. In

the presented design the centroid method is applied, returning the value corresponding to

the centre of the area generated from all rules applying to that particular output.

This paper presents an approach for the automatic derivation of a rule base from an au-

tomatically generated decision tree using the TDIDT algorithm, further discussed in Section

3. The approach has, to the best of our knowledge, not yet been applied to the PSP problem,

but has been applied in many other applications. For example, Sugumaran & Ramachandran

(2007) use decision tree rule extraction to design a fuzzy system applied in fault diagnosis.

2.4 Experimental set-up

The experimental set-up follows that of Ries et al. (2012) and in fact, reuses the same

training sets ΦGLS−STSP and ΦGLS−ATSP of instances. These instances were generated by a

random instance generator such that each instance characteristic, see Table 1, forms an input

parameter. It is noted that in the case of the ATSP the parameter distance metric has been

excluded. For non-clustered instances a set of randomly distributed points were generated

9

within a rectangle specified by r. In the case of clustered instances, the approach of Johnson

and McGeoch (2002) is adapted by choosing a set of centre locations and creating a set of

data points that are normally distributed around a selected cluster centre. There are in total

6 instances in each of 192 classes. These classes were based on a full-factorial design for the

factors n, s, r, c, α, NL, and IT, see Table 1. All factors were considered at two levels only,

except for n for which three levels were used.

Table 1: 2-Factorial Design
- 1 + 1

Number of vertices* n 100 1000
Clustering c Non-Clustered (0) Clustered (1)
Distance metric** s Manhattan Distance (1) Euclidean Distance (2)
Ratio r 1 (Square) 100 (Rectangle)
GLS-Alpha α 0.2 0.4
GLS-NL-Size NL 0.2 0.4
GLS-Iterations IT 1000 100000

*Vertices on third level ’0’ with 500 vertices, **excluded for ATSP

For each of the instances in ΦGLS−STSP and ΦGLS−ATSP , values need to be obtained for

solution quality and computational time. As in Ries et al. (2012), the experiments on each

TSP instance are conducted in a way that reduces the number of needed runs as follows. For

each of the factor value combinations for α and NL for GLS as specified in Table 1, one run

is conducted up to 3 million GLS iterations for the symmetric case and 50000 GLS-iterations

for the asymmetric case. At the start of each of these runs (four runs in total), the length of

the initial TSP tour is recorded, f 0(GLS), which is the length obtained from the repeated

nearest neighbour heuristic. When the number of GLS-iterations reaches one of the specified

factor values for GLS-iterations listed in Table 1, the length of the incumbent TSP tour

f(GLS) and the computational time consumed is recorded. At the end of the run, the length

of the final incumbent solution is recorded. The TSP tour of minimum length across all four

runs is calculated and called f ∗
h(GLS).

The above approach is possible when having access to the metaheuristic code. For meta-

heuristics only available as a black-box, each of the 1152 instances would need to be separately

10

ran, as well as (perhaps) an additional series of long runs to establish values for f ∗
h(.).

The measure of the solution quality of a given TSP instance when using algorithm a and

algorithm parameter combination P (a) as proposed in Ries et al. (2012) is adopted, and

defined as:

S(a, P (a)) = (f(a, P (a))− f ∗
h(a))/(f 0(a)− f ∗

h(a)). (1)

This measure hence scales the solution quality S of a given instance in the training sets

ΦGLS−STSP and ΦGLS−ATSP to a value between 0 and 1. The lower S, the better the particular

algorithm-specific parameter combination is for solving this TSP instance.

Table 2: Membership Subsets - Input Variables
Parameter Subset Min Med1 Med2 Max

Number of vertices n Small 0 0 400 800
Number of vertices n Medium 400 800 - 1200
Number of vertices n Large 800 1200 5000 5000

Clustering c Non-Cl 0 0 - 1
Clustering c Cl 0 1 - 1

Distance metric s Man 0 0 - 2
Distance metric s Eucl 1 2 - 3

Ratio r Square 0 0 10 100
Ratio r Rect 10 100 150 150

Time pressure p Small 0 0 - 0.5
Time pressure p Medium 0 0.5 - 1
Time pressure p Large 0.5 1 - 1

The design of input and output set membership functions for a fuzzy system is an in-

tuitive approach which in the presented case is based on the factorial design. Tables 2 and

3 show the membership functions adopted in this study for the STSP. While the input pa-

rameter membership functions are kept the same for the ATSP, Table 4 shows the structure

of the membership functions for the ATSP. It is a well-known issue that the design of the

membership functions affects the performance of the fuzzy inference system. However, no

further analysis is conducted in this paper related to this matter.

11

Table 3: Membership Subsets - Output Variables - GLS - STSP
Parameter Subset Min Med I Med II Max

GLS-Alpha α Small 0 0.2 - 0.4
GLS-Alpha α Large 0.2 0.4 - 0.6

GLS-NL-Size NL Small 0 0.2 - 0.4
GLS-NL-Size NL Large 0.2 0.4 - 0.6

GLS-Iterations IT Small 0 0 10000 50000
GLS-Iterations IT Large 25000 100000 240000 240000

Table 4: Membership Subsets - Output Variables - GLS - ATSP
Parameter Subset Min Med I Med II Max

GLS-Alpha α Small 0 0.2 - 0.4
GLS-Alpha α Large 0.2 0.4 - 0.6

GLS-NL-Size NL Small 0 0.2 - 0.4
GLS-NL-Size NL Large 0.2 0.4 - 0.6

GLS-Iterations IT Small 0 0 10000 50000
GLS-Iterations IT Large 10000 50000 240000 240000

3 Rule extraction using TDIDT

3.1 Decision tree classification

Besides neural networks and nearest neighbour classifiers, decision tree modelling is one of

the most popular approaches in the area of classification. The aim of (crisp) classification is

to assign each object of a series to exactly one of several classes according to object features

or attributes. Formally, a classification problem is defined as the mapping g : O → C of a

set of objects O = {o1, o2, ..., on}, each of which is characterised by a set of attributes, on a

set of classes C = {c1, c2, ..., ok} such that each object is assigned to exactly one class.

A decision tree used for classification is a tree where the root node and each internal

node is labelled with a question related to (typically one of) the attributes, see also Figure

2 for a simple example. Each arc eminating from each such node represents one of a finite

set of possible answers to the associated question, with the set of arcs eminating from a

node comprising the complete set of possible answers. A node that does not have any arcs

eminating from it is called a leaf node and refers to a particular class, with the set of all

12

Figure 2: Decision Tree Example

leaf nodes referring to all classes of set C at least once. Given a decision tree, each object of

the set O can be examined one by one, and by answering the questions subsequently found

at each node and following the corresponding branch in the tree, its classification obtained.

From a decision tree, a set of corresponding classification rules can be derived. For example,

the rule base presented in Section 2.3 corresponds to the decision tree of Figure 2.

3.2 Decision tree design using TDIDT

Decision tree classification is mainly a 2-stage approach (Dunham, 2003, p.73). Firstly, a

training set of objects is used to design a decision tree structure and, secondly, a test set

of objects is classified according to the designed structure to assess its classification power.

To design the tree, this paper applies the Top-Down Induction of Decision Tree (TDIDT)

algorithm (see Quinlan, 1979), using in particular the inducer rule induction workbench by

Bramer (2004) with as attribute selection method the information gain concept.

Given a training set of objects, a list of considered categorical attributes about each

of these objects, and knowledge about the class to which each object belongs, the TDIDT

13

algorithm employs a top-down greedy search through the space of possible decision trees to

find the best possible tree satisfying the property that all objects in any of its leaf nodes

belong to the same class. The most important part of the algorithm is to decide on how

to create child nodes from every node in the tree. This is often translated into deciding on

which attribute to split at each node, and to create the corresponding branches according to

the attribute values. This procedure is also called recursive partitioning (Bramer, 2007).

Popular attribute selection criteria include the information gain (Quinlan, 1979) and the

gini index (Breiman et al., 1984). The former is based on the concept of entropy E, a measure

of uncertainty from information theory (Shannon, 1948). The entropy of a node Li in a tree

is:

E(Li) =
k∑

j=1

−p(j|Li)log2p(j|Li) (2)

where p(j|Li) represents the relative frequency of objects in the training set of class cj at

node Li (only considering classes with p(j|Li) 6= 0), and is calculated by dividing the number

of objects in cj at node Li by the total number of objects at node Li. If from among the set

of attributes, attribute A with categorical values {A1, ..., Av} is selected to split upon and

derive v child nodes {Li+1, ..., Li+v}, the information gain G(A) from splitting the parent

node Li into v partitions through A is the expected reduction of the entropy:

G(A) = E(Li)−
v∑

m=1

li+m

li
E(Li+m) (3)

where li and li+m is the number of objects in Li and Li+m, respectively (m = 1, ..., v), and the

second term is the expected entropy presented in the collection of child nodes {Li+1, ..., Li+v}.

According to the information gain criterion, the best attribute A to split upon would be that

one which will maximise (3).

14

3.3 Input requirements and validation approach

The TDIDT algorithm requires all included attributes to be categorical data instead of con-

tinuous. Standard discretisation approaches partition the range of continuous data into a

number of categories. Often used approaches are the equal-width-interval method and the

equal-frequency-interval method. In the first method, the continuous data is subdivided into

t categories by division of the total range by t. The second method places the boundaries

between the categories as to obtain an equal number of values in each category.

There are several possible methods to validate the derived decision tree and the corre-

sponding classification rules. This study uses a cross validation (Han & Kamber, 2006), a

popular approach that separates the data set of n instances into k different equal sized sub-

sets. (k -1) of the subsets are used to design a decision tree and one is used as test set to

evaluate the decision tree. This process is repeated k times such that each subset is at least

once used as a test set. The estimated accuracy is then calculated by the number of correct

classification overall k runs and is divided by the total number of data instances.

3.4 Application to the test case

In decision tree terminology, each instance in ΦGLS is an object, and each of the factors

within the factorial design outlined by Table 1 an object attribute. Given that the design of

the instance set follows the factorial set-up, the attributes are categorical in nature.

For preferences p is small and p is large, solution quality (S) and computational time

(T) are, respectively, determining the classification of the objects. As these are recorded as

continuous data they need to be discretised. The case study uses a subjective approach to

introduce a set of classes representing different levels of S, T and Balance (B) - a combination

of both. Table 5 shows the discretisation intervals for Solution Quality and Computational

Time.

A decision maker preference describing a balance of both performance measures is derived

15

Table 5: Discretisation - Heuristic Performance
S (Excess in %) 0 to < 0.01 0.01 to < 1 1 to < 5 5 to < 15 15 to < 50 ≥ 50

Class - S 1 2 3 4 5 6
T (in seconds) 0 to < 1 1 to < 3 3 to < 10 10 to < 25 25 to < 50 ≥ 50
Class - Time 1 2 3 4 5 6

by taking an average of both assigned class intervals. Therefore, the number of classes for

the discretisation of Balance ranges from 1, 1.5, 2, 2.5,..6. For example, the combination of

a good solution quality (Class 2 - S) associated with a reasonably long computational time

(Class 4 - T) would result in a B Class 3.

Once all results for the set ΦGLS are discretised according to S, T and B, the inducer

rule induction workbench by Bramer (2004) is used to derive a set of rules for the algorithm-

specific parameters, α, NL and IT, using the set of instance-specific parameters and a per-

formance class representing a decision maker preference. Hence, a set of decision rules is

derived for each decision maker preference in combination with each algorithm-specific pa-

rameter. For the set of rules corresponding to best solution qualities, all rules including Class

1 - SQ are selected. Similarly, rules including Class 1 - T are selected to represent decision

maker preference on short computational times. The balance is explained by the set of rules

including Class 2.5 - B.

It is important to note that based on the experimental set-up and, for example, the

fixed upper level of IT to 100000, does not allow for every single combination of instance

characteristics to achieve Class 1 - S and, subsequently, Class 2.5 - B. Hence, for some sets

of instance characteristics, rules were adjusted by using those rules that are associated with

a performance level closest to the anticipated one: Best S (p=0), Balance (p=0.5), Short T

(p=1), as outlined in Table 6 and Table 7 for the STSP and ATSP, respectively.

Table 6 shows the automatically derived set of rules for each decision maker preference

and each algorithm-specific parameters. The predictive accuracy for the STSP is given in

Table 8 for each combination of algorithm-specific parameter and investigated decision maker

preference. It shows that the obtained classification rules for α are of reasonable predictive

16

Table 6: Rule-Base obtained by TDIDT - GLS - STSP
Input p=0 p=0.5 p=1

n c s R α NL IT α NL IT α NL IT
Small Non-Clust Man Square s l l l s s s s s
Small Non-Clust Man Rect s l l l s s s s s
Small Non-Clust Eucl Square l s l s s s s s s
Small Non-Clust Eucl Rect s s l s s l s s s
Small Clust Man Square s l l l l s s s s
Small Clust Man Rect s l l s l s s s s
Small Clust Eucl Square l l l s s s s s s
Small Clust Eucl Rect s l l s l s s s s

Medium Non-Clust Man Square s s l l s s s s s
Medium Non-Clust Man Rect s s l s** s** l** s s s
Medium Non-Clust Eucl Square s s l l s s s s s
Medium Non-Clust Eucl Rect s s l s** s** s s s s
Medium Clust Man Square s s l s s s s s s
Medium Clust Man Rect s s l s l s s s s
Medium Clust Eucl Square l s l s s s s s s
Medium Clust Eucl Rect s s l l l s s s s

Large Non-Clust Man Square s* s* l l l s s s s
Large Non-Clust Man Rect s s l s l s s s s
Large Non-Clust Eucl Square l s l l l s s s s
Large Non-Clust Eucl Rect s s l l l s s s s
Large Clust Man Square s s s l s s s s s
Large Clust Man Rect s l* l* s l s s s s
Large Clust Eucl Square l l l l s s s s s
Large Clust Eucl Rect s l l l l s s s s

*uses Class 3 - SQ, **uses Class 3 - Balance

Table 7: Rule-Base obtained by TDIDT - GLS - ATSP
Input p=0 p=0.5 p=1

n c R α NL IT α NL IT α NL IT
Small Non-Clust Square s l l s l s s l s
Small Non-Clust Rect s l l s l s s l s
Small Clust Square s l s s l l s l s
Small Clust Rect l l l s l∗∗∗ l s l s

Medium Non-Clust Square s l l s l∗∗∗ s l s s
Medium Non-Clust Rect s l l l l∗∗∗ s l s s
Medium Clust Square s l l s l l s l s
Medium Clust Rect s l l s l∗∗∗ l s l s

Large Non-Clust Square s l l∗ l∗∗ l s s s s
Large Non-Clust Rect s l l∗ s s∗∗∗ s s s s
Large Clust Square s l l∗ s l s s s s
Large Clust Rect s l l∗ s∗∗ l∗∗∗ s s s s

∗uses Class 2 - SQ, ∗∗uses Class 3 - Balance, ∗∗∗uses Class 2 - Balance

17

power, while the level of prediction accuracy is higher for parameters NL and IT. This is

similarly shown for the ATSP in Table 9.

Table 8: Predictive accuracy GLS - STSP
Algorithm-specific parameter p=0 p=0.5 p=1

GLS-Alpha α 0.61 0.62 0.53
GLS-NL-size NL 0.67 0.7 0.63

GLS-Iterations IT 0.8 0.88 1.0

Table 9: Predictive accuracy GLS - ATSP
Algorithm-specific parameter p=0 p=0.5 p=1

GLS-Alpha α 0.53 0.6 0.54
GLS-NL-size NL 0.68 0.73 0.77

GLS-Iterations IT 0.78 0.85 0.97

4 Performance comparison

Computational experiments have been run for a set ΦSTSP of 50 TSPLIB instances (Reinelt,

1991) and a randomly created set of 35 ATSP instance ΦATSP and three different decision

maker preferences: p=0, p=0.5 and p=1.

The solution quality SQ for instance φi from the test sets ΦSTSP and ΦATSP is calculated

as the percentage of tour length obtained by the implemented fuzzy logic IPTS f(πFuzzy, φi)

excessing the known optimal tour length fOpt(φi):

SQ(πFuzzy, φi) = (f(πFuzzy, φi)− fOpt(φi))/(f
Opt(φi))

Computational times T are reported in absolute terms (seconds).

Table 10 shows the average performance of ΦSTSP for each decision maker preference

derived by the Fuzzy IPTS, compared to a range of fixed parameter settings derived from

all combinations of α = 0.2, 0.3, 0.4, NL=0.2, 0.3, 0.4 and IT = 1000, 10000, 50000, 100000,

200000. It is important to recognise that within the given factorial design in Table 1 the

18

level set for IT does not exceed 100000, while the the middle level of 0.3 is not considered

for α and NL.

Considering the reduction of computational time, results show on average an excess of

0.67% compared to the optimal solution known while computational time is 2.07 seconds.

With regards to decision maker preference on short computational times and a balance be-

tween SQ and Time, the average computational time values for p = 0 and p = 0.5 differ

marginally, similar to the average solution quality.

Table 10: GLS-Performance - ΦSTSP
IPTS using decision trees

Decision Maker preference SQ - Excess Optimality SQ-Stdev Time Time-Stdev
SQ 0.0027 0.0052 19.865 22.5280

Balance 0.0064 0.0093 2.3478 2.7256
Time 0.0067 0.0096 2.0732 2.2653

IPTS using manual set-up (Ries et al., 2012)
SQ 0.0018 0.0038 48.56

Balance 0.0028 0.0064 22.26
Time 0.0083 0.0108 2.27

Fixed parameter setting
NL Alpha IT SQ - Excess Optimality SQ-Stdev Time Time-Stdev
0.2 0.2 1000 0.0263 0.0242 0.1737 0.1809
0.2 0.3 1000 0.0231 0.0237 0.1797 0.1917
0.2 0.4 1000 0.0219 0.0223 0.1857 0.1990
0.2 0.2 10000 0.0096 0.0128 1.1548 1.2650
0.2 0.3 10000 0.0084 0.0114 1.1822 1.2972
0.2 0.4 10000 0.0082 0.0102 1.2153 1.3385
0.2 0.2 50000 0.0042 0.0069 5.4509 6.0464
0.2 0.3 50000 0.0034 0.0059 5.5856 6.2406
0.2 0.4 50000 0.0043 0.0072 5.7167 6.4171
0.2 0.2 100000 0.0029 0.0052 10.9188 12.2247
0.2 0.3 100000 0.0024 0.0052 11.1882 12.5729
0.2 0.4 100000 0.0029 0.0058 11.3109 12.7544
0.2 0.2 200000 0.0017 0.0040 22.0182 24.9092
0.2 0.3 200000 0.0014 0.0030 22.3496 25.4003
0.2 0.4 200000 0.0022 0.0048 22.5647 25.6598
0.3 0.2 1000 0.0254 0.0242 0.2021 0.2188
0.3 0.3 1000 0.0229 0.0230 0.2109 0.2351
0.3 0.4 1000 0.221 0.0213 0.2154 0.2394
0.3 0.2 10000 0.0095 0.0119 1.3647 1.4976
0.3 0.3 10000 0.0081 0.0109 1.435 1.5817
0.3 0.4 10000 0.0087 0.0107 1.4737 1.6278
0.3 0.2 50000 0.0049 0.0077 6.66 7.4027
0.3 0.3 50000 0.0038 0.0063 6.9149 7.7149
0.3 0.4 50000 0.0037 0.0061 7.0527 7.8963
0.3 0.2 100000 0.0035 0.0065 13.4044 15.0062
0.3 0.3 100000 0.0026 0.0047 13.8559 15.5834
0.3 0.4 100000 0.0028 0.0053 14.0043 15.8256
0.3 0.2 200000 0.0024 0.0058 27.1891 30.6628
0.3 0.3 200000 0.0019 0.0039 27.9291 31.5907
0.3 0.4 200000 0.0024 0.0052 28.1212 31.9135
0.4 0.2 1000 0.0251 0.0234 0.2347 0.2602
0.4 0.3 1000 0.022 0.0230 0.2537 0.2813
0.4 0.4 1000 0.0217 0.0213 0.2522 0.2881
0.4 0.2 10000 0.0092 0.0120 1.6297 1.7933
0.4 0.3 10000 0.0077 0.0106 1.7384 1.9176
0.4 0.4 10000 0.0086 0.0104 1.7875 1.9655
0.4 0.2 50000 0.004 0.0064 8.0614 8.9159
0.4 0.3 50000 0.0035 0.0059 8.3398 9.2742
0.4 0.4 50000 0.0038 0.0062 8.3612 9.3316
0.4 0.2 100000 0.0027 0.0053 16.0343 17.8566
0.4 0.3 100000 0.0021 0.0039 16.4925 18.5646
0.4 0.4 100000 0.0029 0.0054 16.7156 18.8145
0.4 0.2 200000 0.0018 0.0046 32.2582 36.2234
0.4 0.3 200000 0.0017 0.0037 33.0849 37.4601
0.4 0.4 200000 0.0025 0.0052 33.5938 38.0602

In comparison to the selected set of fixed parameter settings (diamonds), it can be seen

19

in Figure 3 that the results associated with the fuzzy IPTS can be found together with

other fixed parameter combinations on the Pareto front or reasonably close in the case of the

preference on good solution quality. In contrast to the IPTS approach (triangular shaped),

all fixed parameter settings are chosen randomly.

Figure 3 shows that in particular the right-hand side ending of the curve stagnates: the

best level of solution quality is reached with a computational time of 20 seconds and is not

significantly improved for any larger computational times. On the other end, a solution

quality of 1% can be considered as a large value for solution quality that is still considered

to be a reasonable performance; any value above may be disregarded as not acceptable. The

semi-automated IPTS results can be found within the non-stagnant parts or good parts of

the curve. Solution quality can be kept below 0.7% while the manual set-up moves from

either above that value for very short T to below 0.5% but above 5 seconds. Hence, the

semi-automated IPTS has shown potential to interpolate heuristic performance along the

Pareto curve.

Figure 3: IPTS settings and Fixed settings - STSP

Figure 3 also indicates that parameter settings obtained by a manual set-up of a fuzzy

IPTS (circular shaped) using statistical insights of effects between instance characteristics

and algorithm-specific parameters result in a reasonable performance compared to a set of

randomly chosen fixed set of parameter values. A manual approach requires, however, a

more detailed understanding and expertise with the particular algorithmic behaviour which

20

not every decision maker may be equipped with. Hence, non-experts in meta-heuristics

benefit from an automated approach that replaces a substantial statistical analysis needed

in a manual approach (Ries et al., 2012).

Table 11 shows the average performance of ΦATSP for each decision maker preference

derived by the Fuzzy IPTS. A comparison is made to a set of fixed parameter settings

namely α = 0.2, 0.4, NL=0.2, 0.4 and IT = 1000, 10000. This is due to observations made in

preliminary testing that have shown the consistent behaviour of limited improvement beyond

50000 iterations.

Table 11: GLS-Performance - ΦATSP
IPTS using decision trees

Decision Maker preference SQ - Excess Optimality SQ-Stdev Time Time-Stdev
SQ 0.1678 0.2571 123.02 115.89

Balance 0.1165 0.3186 95.34 57.76
Time 0.1727 0.3358 13.34 8.71

Fixed parameter setting
NL Alpha IT SQ - Excess Optimality SQ-Stdev Time Time-Stdev
0.2 0.2 1000 0.2516 0.2528 7.6592 8.0063
0.2 0.2 10000 0.1210 0.1932 62.1746 55.4399
0.4 0.2 1000 0.3799 0.3422 6.2861 6.0012
0.4 0.2 10000 0.2497 0.3209 47.9674 39.1947
0.2 0.4 1000 0.3127 0.3174 12.7901 12.1438
0.2 0.4 10000 0.2167 0.2669 97.0381 80.8173
0.4 0.4 1000 0.2905 0.3224 12.9115 12.3110
0.4 0.4 10000 0.1918 0.2896 102.7516 86.3560
0.3 0.3 1000 0.3059 0.3335 9.8195 9.3275
0.3 0.3 10000 0.2286 0.2720 76.8627 65.7613
0.2 0.3 1000 0.3308 0.3393 9.7246 9.3087
0.2 0.3 10000 0.2295 0.2689 75.7255 65.9128
0.4 0.3 1000 0.2985 0.3293 9.8553 9.3421
0.4 0.3 10000 0.2268 0.2920 78.5166 67.1043
0.3 0.4 1000 0.2921 0.3214 12.7923 12.3339
0.3 0.4 10000 0.1844 0.2594 103.4103 87.7988
0.3 0.2 1000 0.3796 0.3407 6.3314 6.0966
0.3 0.2 10000 0.2719 0.3135 49.7673 42.1308

Figure 4 shows that the SQ levels for all decision maker preferences are fairly similar. It

also underlines the importance of the impact of membership functions as an anomaly can

be observed with the p = 0.5 showing a better SQ than p = 0. It shows the sensitivity of

the approach to the extraction of the rule base from the decision tree. In Figure 4 several

decisions had been made to determine a corresponding rule if the performance class (Balance

= 2.5) is not existing for a combination of instance-specific characteristics. This manual

consideration impact final performance and in the presented case has been made with a

preference to SQ.

21

Figure 4: IPTS settings and Fixed settings - ATSP

5 Conclusions

The use of classification rule extraction using decision trees to automatically design a fuzzy

IPTS rule base has been introduced. This approach is semi-automated due to the facilita-

tion of the rule base design in addition to the manual design of membership subsets in a

fuzzy system. The success of the presented method is considerably influenced by the discreti-

sation of both objective variables - solution quality and computational time, including the

adjusted combined performance value that represents a decision maker preference in heuristic

performance as a combination of good solution quality and short computational times.

The performance of the TDIDT design is also dependent on the mode of attribute selec-

tion. The most influential factor, however, is likely to be the investigated data set Φa for an

algorithm a itself. As it is based on a full factorial design, it has resulted in a small number

of membership subsets. The level of flexibility may be increased by extending the data set

to a larger number of levels in the factorial design.

The results are promising and provide a structured technique of creating a rule base with

the flexibility of modifying the corresponding membership functions. A semi-automated

IPTS using fuzzy logic shows potential in finding a set of parameter values that results in

good heuristic performance, according to a decision maker preference. The presented system

is static in its design such that once the set of rules and set of membership functions are

22

constructed they are fixed. An adaptive system to differently structured instances using an

evolving design strategy is currently being investigated.

Appendix

The test set ΦTSP consists of the following TSPLIB instances: a280,berlin52, bier127,

ch130, ch150, d1291, d1655, d198, d493, d657, dsj1000, eil101, eil51, eil76, fl1400, fl1577,

fl417, kroA100, kroB100, kroB150, kroB200, kroC100, kroD100, kroE100, lin105, linhp318,

nrw1379, p654, pcb1173, pr107, pr124, pr136, pr144, pr152, pr226, pr264, pr299, pr439, pr76,

rat195, rat99, rd100, rd400, rl1304, rl1323, rl1889, ts225, u1060, u1432, u159, u1817.

References

[1] B. Adenso-Diaz and M. Laguna. Fine-tuning of algorithms using fractional experimental

designs and local search. Operations Research, 54(1):99–114, 2006.

[2] D.L. Applegate, R.E. Bixby, V. Chvatal, and W.J. Cook. The Travelling Salesman

Problem - A Computational Study. Princeton Series in Applied Mathematics. Princeton

University Press, Princeton, 2006.

[3] R.S. Barr, B.L. Golden, J. Kelly, W.R. Stewart, and M.G.C Resende. Guidelines for

designing and reporting on computational experiments with heuristic methods. Journal

of Heuristics, 1(1):9–32, 1995.

[4] R. Battiti. Reactive search: Toward self-tuning heuristics. In I.H. Rayward-Smith, I.H.

Osman, C.R. Reeves, and G.D. Smith, editors, Modern heuristic search methods, pages

61–83. John Wiley and Sons Ltd., New Jersey, 1996.

[5] J.J. Bentley. Fast algorithms for geometric traveling salesman problems. ORSA Journal

on Computing, 4(4):387–411, 1992.

23

[6] M. Bramer. Inducer: a rule induction workbench for data mining. In In Proceedings of the

16th IFIP World Computer Congress Conference on Intelligent Information Processing,

pages 499–506, Beijing, 2004.

[7] M. Bramer. Principles of data mining. Undergraduate topics in computer science.

Springer, London, 2007.

[8] S. P. Coy, B. L. Golden, G. C. Runger, and E. A.‘ Wasil. Using experimental design to

find effective parameter settings for heuristics. Journal of Heuristics, 7(1):77–97, 2001.

[9] M.H. Dunham. Data Mining: Introductory and Advanced Topics. Prentice Hall, New

Jersey, 2003.

[10] A.E. Eiben, R. Hinterding, and Z. Michalewicz. Parameter control in evolutionary

algorithms. IEEE Transactions on Evolutionary Computation, 3(2):124–141, 1999.

[11] B. S. Everitt, S. Landau, and M Leese. Cluster Analysis. Arnold, London, 4th edition,

2001.

[12] C.A. Gil, M. Sellmann, and K. Tierney. A gender-based genetic algorithm for the

automatic configuration of algorithms. Constraint Programming 2009, Springer LNCS

5732, pages 142–157, 2009.

[13] J. Han and M. Kamber. Data mining - Concepts and Techniques. Morgan Kaumann

Publishers, San Francisco, 2nd edition, 2006.

[14] J.N. Hooker. Testing heuristics: We have it all wrong. Journal of Heuristics, 1(1):33–42,

1995.

[15] F. Hutter, H.H. Hoos, and T. Stuetzle. Automatic algorithm configuration based on

local search. In Twenty-Second Conference on Artifical Intelligence (AAAI ’07), pages

1152–1157, Menlo Park, 2007. AAAI Press.

24

[16] S.-J. Jeong, K.-S. Kim, and Y.-H. Lee. The efficient search method of simulated anneal-

ing using fuzzy logic controller. Expert Systems with Applications, 36(3):5, 2009.

[17] D.S. Johnson. A theoretician’s guide to the experimental analysis of algorithms. In M.H.

Goldwasser, D.S. Johnson, and C.C. McGeoch, editors, Data Structures, Near Neighbor

Searches, and Methodology: In Proceedings of the 5th and 6th DIMACS Implementation

Challenges, pages 215–250, Providence, 2002. American Mathematical Society.

[18] D.S. Johnson and L.A. McGeoch. Experimental analysis of heuristics for the stsp. In

G. Gutin and A.P. Punnen, editors, The Traveling Salesman Problem and its Variations,

pages 369–443. Kluwer: Academic Publishers, Norwell, 2002.

[19] S. Kadioglu, Y. Malitsky, M. Sellmann, , and K. Tierney. An instance-specific algo-

rithm configuration. In In Proceedings of the 19th European Conference on Artificial

Intelligence, pages 751–756, Amsterdam, 2010. IOS Press.

[20] M. Kern. Parameter Adaption in Heuristic Search - A Population-Based Approach -.

Phd thesis, University of Essex, 2006.

[21] R. Pavón, F. Dı́az, R. Laza, and V. Luzón. Automatic parameter tuning with a

bayesian case-based reasoning system. a case of study. Expert Systems with Applica-

tions, 36(2):3407–3420, 2009.

[22] J.R. Quinlan. Discovering rules form large collections of examples: A case study. In

D. Michie, editor, Expert systems in the micro electronic age. Edinburgh Press, Eding-

burgh, 1979.

[23] G. Reinelt. Tsplib - a traveling salesman problem library. Journal of Computing,

3(4):376–384, 1991.

[24] E. Ridge. Design of Experiments for the Tuning of Optimisation Algorithms. Phd thesis,

University of York, 2007.

25

[25] J. Ries, P. Beullens, and D. Salt. Instance-specific multi-objective parameter tuning

based on fuzzy logic. European Journal of Operational Research, 218(2):305–315, 2012.

[26] W. Schmitting. Das Traveling Salesman Problem: Anwendung und heuristische

Nutzung von Voronoi-/Delaunay-Strukturen zur Loesung euklidischer, zweidimension-

aler Traveling-Salesman-Probleme. PhD thesis, University of Duesseldorf, 1999.

[27] C.E. Shannon. A mathematical theory of communication. The Bell System Technical

Journal, 27(3):379–423, 623–656, 1948.

[28] V. Sugumaran and K.I. Ramachandran. Automatic rule learning using decision tree

for fuzzy classifier in fault diagnosis of roller bearing. Mechanical Systems and Signal

Processing, 21(5):2237–2247, 2007.

[29] C. Voudouris and E. Tsang. Guided local search and its application to the traveling

salesman problem. European Journal of Operational Research, 113(2):469–499, 1999.

[30] L.A. Zadeh. Fuzzy sets. Information and Control, 8:338–353, 1965.

26

