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University of Southampton 

ABSTRACT 

FACULTY OF ENGINEERING AND ENVIRONMENT 

Engineering Sciences 

Doctor of Philosophy 

APPLICATION OF SIGNAL PROCESSING TO RESPIRATORY CYCLE RELATED EEG 

CHANGE (RCREC) IN CHILDREN  

By Shayan Motamedi Fakhr 

 

Sleep is an important part of everyday life. It directly affects daytime cognition and general 

performance. In children, sleep is a crucial requirement for growth and learning and lack of 

sleep may manifest itself as a long lasting developmental deficit. Sleep disorders which disrupt 

the normal continuity of sleep therefore benefit from early identification and treatment. A 

common cause of sleep disruption is sleep disordered breathing which can be associated with 

frequent arousals from sleep. Many relevant areas of sleep research continue to generate new 

and interesting findings utilising biosignals such as EEGs. Respiratory cycle related EEG change 

(RCREC) is a good example of this. The method for quantification of RCREC relies on the 

appropriate application of signal processing and the signals involved in the procedure are 

polysomnographic. Furthermore, RCREC is thought to reflect morbid micro-arousals in sleep 

and is hence also of clinical importance. Given that the field of RCREC research is a recently 

established one, there is much room for constructive investigation. The current state of RCREC 

research is therefore expanded in this thesis. The method for calculation of respiratory cycle 

related EEG change (RCREC) is replicated and expanded in this project. Shortcomings of the 

method have been identified and accounted for where appropriate. In particular, the sensitivity 

of RCREC to airflow signal segmentation is addressed and alternative segmentation approaches 

are suggested. The general influence of airflow segmentation on RCREC is investigated and a 

mathematical explanation for RCREC sensitivity is given. Additionally, the ability of RCREC 

related parameters to predict daytime cognitive functions is assessed. Results suggest that 

RCREC parameters are capable of predicting quality of episodic memory, power (speed) of 

attention and internal processing speed.  
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Chapter 1   

 

 

 

Introduction  
 

Polysomnography (PSG) is the gold standard method in sleep monitoring. It provides a rich data 

set containing both physiological and diagnostic information. The information contained in PSG 

data is far more than what is routinely extract from it. Signal processing is a tool which helps to 

extract further information from any data set. There are a vast number of techniques which can 

be applied to different sets of data (based on the applications) to learn more about the 

underlying structure of that data. In sleep analysis, signal processing techniques can be 

particularly useful as they may reveal diagnostic or physiological information which cannot be 

detected on standard visual inspection.  

The overall aim of this project was to identify, develop, and combine signal processing 

techniques which can be effectively applied to PSG data sets in order to detect or analyse 

important events in sleep such as arousals or micro arousals. To this end, a substantial review of 

the literature focusing on the applications of signal processing in sleep EEG analysis was carried 

out (see Appendix A). The starting point of the experimental and analytical works outlined in 

this thesis was the study of an American group led by Dr. Ronald Chervin on respiratory cycle 

related EEG changes (RCREC) [1]. This phenomenon is characterised by statistically significant 

changes of EEG power in different stages of respiration. It is hypothesised that RCREC reflects 

brief but frequent micro-arousals which are capable of producing morbid daytime effects. The 

relation to arousals combined with the fact that the method for calculation of RCREC was largely 

dependent on signal processing, encouraged us to further investigate the method, the parameter 

and the relationship between the parameter and daytime neurobehavioral measures. As a 

result, this thesis is dedicated to the various analyses of RCREC carried out during the course of 

research. In particular, dependence of RCREC on respiratory signal segmentation was found to 

be an area not addressed in the literature previously and since respiratory cycle segmentation is 

an integral part of RCREC quantification, potential effects of airflow signal segmentation on 

RCREC were thoroughly investigated. Suggestions for improvement of the original method for 

calculation of RCREC were also given. In addition, daytime neurocognitive correlates of RCREC 

parameters were identified in a relatively large sample of paediatric subjects. The latter study 
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revealed for the first time that RCREC parameters may be capable of predicting quality of 

episodic memory, power (speed) of attention and quality of internal processing in the brain. 

 

The rest of the thesis is arranged as follows: first, since the subject of research is inherently 

multidisciplinary, a literature review covering the relevant aspects of sleep and sleep 

disordered breathing (SDB) is provided (Chapter 2), the data used throughout the project is also 

described in Chapter 2, this includes the acquisition procedure, notes on post-acquisition 

scoring, and any personal observations worthy of note during the data acquisition sessions. 

Respiratory Cycle Related EEG Change (ECREC) is then formally introduced; this includes the 

review of relevant previous studies on RCREC and touches on the current method to calculate 

RCREC (Chapter 3), Chapter 3 also describes the methodology which was developed in this 

project to quantify RCREC; this includes the development of a respiratory cycle detection 

algorithm, automatic abnormal nasal flow data rejection, pre-processing done on the PSG 

signals prior to RCREC calculation and statistical analyses required for full RCREC 

characterisation. Chapter 4 describes the preliminary investigations on RCREC. In this chapter, 

the work on RCREC was first replicated in a single subject. Two selected experimental case 

studies with relatively small sample sizes were then carried out. Relationship with apnoea-

hypopnoea index (AHI) and effect of airflow segmentation on RCREC were briefly assessed. The 

results obtained from the initial case studies directed the research to systematically test the 

hypotheses emerged during the analyses. Hence, chapter 5 includes a thorough investigation 

(both theoretical and experimental) of the effects of alternative airflow segmentation on RCREC. 

Chapter 6 examines the ability of RCREC parameters to predict daytime measures of 

neurocognition. The seventh and the final chapter of the thesis presents a summary of the main 

findings, conclusions and describes potential future work. The next chapter provides a 

background for sleep and sleep disordered breathing and details the data used for analytical 

studies. 
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Chapter 2   

 

 

 

Sleep and sleep disordered breathing (SDB) 
 

This section aims to provide an introduction to sleep and some of the closely related topics such 

as sleep evaluation, sleep scoring, sleep staging and sleep disordered breathing based on the 

current literature. It also describes the data used throughout the project for case studies.   

2.1 Introduction to Sleep 
 

Sleep put simply is what occurs between goings to bed at night and waking up in the mornings. 

More accurately, however, sleep experts define it as “a reversible state of perceptual 

disengagement. A universal behaviour across the animal kingdom” [2]. It is fundamentally 

driven by the brain state. Sleep is a crucial part of everyday life. It directly affects cognitive 

performance, learning capabilities, and general physical and emotional wellbeing. While adults 

spend more than one third of their lives sleeping, children spend about half of their lives in this 

brain state. During infancy when brain development is rapid, sleep occupies up to 16 hours a 

day [3, 4]. Sleep is traditionally divided into REM (rapid eye movement) and NREM (non rapid 

eye movement). NREM sleep is further categorised into four stages with Stage one being the 

lightest stage of sleep and stage four being the deepest. This will be further described in the 

sleep staging section. Figure 1 shows a hypnogram (decomposition of sleep into stages) of a 

paediatric subject.  

 

Figure 1. Traditional hypnogram of a single paediatric subject. WK represents wake, an arousal from sleep. 
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Sleep is the primary activity of the brain in infancy and is thought to promote neural plasticity 

[5, 6]. Sleep problems in early life may result in lasting neurocognitive deficits [5]. 

Understanding the role of brain activity in sleep is an exciting frontier of neuroscience. Krueger 

et al. [7] point out that “during sleep one gives up the opportunities to reproduce, eat, drink or 

socialize and one is subject to predation. Sleep could only have evolved despite these high 

evolutionary costs if it serves a crucial, primordial function”. It also plays an important role in 

memory consolidation [8]. Sleep clearly serves an important role for the very young.  

 

A more recent theory on sleep function suggests that sleep should no longer be looked at as a 

whole organism phenomenon controlled by a single central mechanism. It is more likely that 

sleep is governed by numerous local neuronal assemblies within the brain (a distributed control 

system) [7]. That is to say at any given time, a part of one’s brain can be asleep whilst the rest is 

awake.  

 

A very common question regarding sleep is: how much sleep is enough to maintain health? As 

was mentioned above the amount of required sleep varies significantly with age, as infants may 

need up to 16 hours of sleep a day and adults only need about eight hours. A relatively recent 

study on 48 healthy adults shows that sleeping less than six hours may ultimately be as harmful 

as not sleeping for two consecutive nights in terms of cognitive deficits [9]. However, in general 

there is not a physiologically evidenced number associated with the optimal amount of sleep 

required. 

 

2.2 Sleep Evaluation 
 

In order to research sleep there must be a means to quantify sleep. Sleep activities are 

commonly measured using bioelectric signals (e.g. EEG, EMG, ECG, etc). There have also been 

several methods used extensively for sleep evaluation out of which polysomnography (PSG) is 

known as the gold standard and is discussed here. The next section gives an introduction to 

bioelectric signals and then continues to introduce polysomnography in more details.  

2.2.1 Introduction to Bioelectric signals 

 

A signal is a way of conveying information. Biomedical signals are signals acquired from living 

beings. They generally aim to extract information about a specific function. For instance, to 

examine the response of visual cortex to sudden changes in the luminosity of the surrounding 
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environment, one can stimulate the eye with a sequence of light flashes and monitor the brain 

activities in the occipital lobe for consistent changes.  

Bioelectric signals are biomedical signals which are electromagnetic in nature. The existence of 

bioelectric signals is directly related to existence of neurons (nerve cells). That is due to the fact 

that nerve cells (also muscular cells) function chemically in nature and the chemical reactions 

induced by these cells, affect the electric and/or magnetic fields of those cells and their 

neighbouring ones. These changes in electric and/or magnetic fields caused by changes in 

intracellular and extracellular ion concentration can then be measured using appropriate 

instruments. 

Why is there any change in the electric/magnetic field? The answer to this question lies in the 

mechanism by which neurons work. A neuron is capable of processing, transferring and 

acquiring information. Its main parts are the cell body (soma), the dendrites and the axon. A 

schematic of a neuron is shown in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The cell body is surrounded by an excitable membrane (dendrites are the extensions of the cell 

membrane). Since the ion concentration in intracellular and extracellular fluids is not the same 

and the membrane permeability also responds differently to each of the ions, there would 

always be an electric/magnetic field across the membrane. This base voltage created across the 

membrane is referred to as the resting potential. Although the resting potential varies in 

different cells, an approximate value of 80 millivolts (mV) has been given in literature (inside of 

the cell being negative with respect to the outside environment)[10]. The resting potential can 

Figure 2. A schematic of a nerve cell. The axon (output of the neuron), the dendrites (connections with other 
neurons) and the cell body (containing intracellular fluids essential for cell functioning) can be seen. 
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change dramatically if a cell is stimulated by a chemical or electrical reaction.  If a stimulus 

elevates the voltage across the membrane of a cell up to a certain threshold, that cell will no 

longer retain its resting potential. Instead, the resting potential will be increased, becomes 

positive for a short period of time and then declines back to its previous value. This cycle of 

resting potential – polarisation – depolarisation and resting potential is referred to as an action 

potential. Action potentials differ in time duration and shape in different cells as for instance, 

muscle cells have an action potential with a much longer duration than the nerve cells.  A typical 

action potential is shown in Figure 3. 

 

 

Figure 3. Different phases of an action potential can be seen in the above graph. Action potentials provide a 
means for information transfer. Action potential above was synthetically generated in Matlab using the first 
derivative of a gamma probability density function with θ=0.15 and α=10.  

Note that although action potentials are discussed for a single cell, they never occur in only one 

cell alone, as excitation of one cell results in excitation of neighbouring cells (provided that the 

excitation is strong enough). Hence there will be a propagation of the action potentials. 

However, this propagation is always in one direction and cannot propagate back as the potential 

of the exciting membrane will be still too high to be excited again by a neighbouring cell (it can 

only be excited again if enough time has elapsed and the voltage across the membrane has come 

back down to its resting potential, this duration is referred to as the “refractory period”). 

Existence of action potentials is the reason there is a change in electric/magnetic field of cells. It 

also describes the nature of bioelectric signals. Hence, for example, when measuring an 

electroencephalography (EEG) signal, what is actually being measured is a superposition of 

many electric fields in the brain caused by propagation of action potentials. This section was 
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largely based on the following references [10, 11]. The next section introduces 

polysomnography.      

 

2.2.2 Polysomnography (PSG) 

 

Polysomnography is an investigative tool which is widely used in sleep analysis. The direct 

translation of the name is “many sleep writings” and in fact polysomnography is nothing but a 

large collection of biomedical signals acquired from different body parts of a living being while 

asleep. 

Standard signals acquired during polysomnography include: 

 

1) Electroencephalograms (EEG) which are measured by attaching electrodes to the scalp. 

The obtained EEG recordings are associated with the brain activities. 

2) Electrocardiograms (ECG) which are recorded by attaching electrodes to the chest area 

anterior to the heart, the so called ‘precordium’. ECGs are associated with heart 

activities. Other derived parameters like RR (the interval between two successive 

ventricular systoles) can also be calculated from the ECG signal. 

3) Electromyograms (EMG) which are measured by attaching electrodes to certain muscles 

such as the submentalis chin muscle as it is very sensitive and can reflect wake/sleep 

status or the anterior tibialis in the lower leg to measure limb movements in sleep. 

4) Electrooculograms (EOG) which are measured by connecting one electrode alongside 

each outer canthus. EOG signals are associated with eye movements. 

5) Flow which is measured by thermistors or nasal pressure transducers and is associated 

with oral/nasal air flow, new standards recommend simultaneous use of both in 

children. 

6) Thoracic and abdominal excursions which are measured by piezoelectric belts or 

respiratory inductance plethysmography (RIP). The obtained signals from the above 

two are directly associated with thoracic and abdomenal movements.      

7) Oxygen saturation (SpO2) which is measured by pulse oximetry and represents the 

oxyhaemoglobin saturation in blood. 

 

EEG, EOG and EMG signals are required to define sleep stages as well as arousal events. Other 

parameters yield important information about cardiorespiratory activities and in conjunction 

with the EEGs, enhance interpretation of sleep stages and also open new dimensions as to 

measure other bodily functions such as autonomic activities (e.g. heart rate variability). Some 

studies also include CO2 measures and oesophageal manometry. Although the number of 
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signals in polysomnography can vary greatly, these are the usual combination for a standard 

study. There are also a number of parameters in each PSG which are not independently 

measured but are derived from the existing signals, RR interval and pulse transit time (PTT) are 

examples of those. Figure 4 shows a 30 second epoch of a standard polysomnograph of a child 

(Alice 5 software, Respironics). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In order to have a clearer understanding of the EEG signals, it is essential to know how the 

electrodes are placed on the scalp to measure different bioelectric brain signals. EEG electrodes 

are currently placed according to the 10-20 international electrode placement system [12]. This 

system suggests placing the electrodes in 10 and 20 percent deviation from the 4 anatomical 

brain landmarks, those are the nasal bridge, the occipital protuberance and left and right 

depression points in front of each ear [4]. Furthermore, as can be seen in Figure 4, in each PSG, 

EEG signals can be distinguished from one another using their names. The starting letter in each 

name indicates the general scalp region (F for frontal, C for central, O for occipital and T for 

temporal) and the following number specifies the exact electrode positioning.  Electrodes placed 

on the left side of the brain are assigned odd numbers and electrodes on the right are associated 

with even numbers. Electrodes in the middle are indexed as “z”. For instance, C3A2 is referred 

Figure 4. A 30 seconds epoch of a full PSG of a child (obtained from Southampton General Hospital, Welcome 
Trust Research Facility). FzA2, C3A2, C4A1, O1A2, O2A1, PzA1, T3A2 and T4A1 are the EEG signals obtained from 
electrodes placed  in different scalp locations, LEOG and REOG are the left and right EOG signals, THO and ABD 
are the thoracic and abdominal movements respectively and SpO2 is the oxygen saturation level in percent. 
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to the electrode placed on the left-central side of the brain. A1 and A2 refer to left and right 

earlobes respectively, they are used as references since they have little to no EEG activity [4]. 

Figure 5 shows a schematic of the 10-20 electrode placement system [12]. 

 

 

  

  

 

PSGs are extensively used in sleep analysis and diagnosis of certain sleep disorders and can be 

performed on infants and children of any age given that experienced technicians are available 

[3].   

2.3 Sleep scoring and sleep staging 
 

Sleep staging is the process of dividing sleep into several distinct and physiologically meaningful 

intervals based in the information gathered from polysomnography. Sleep scoring is the process 

Figure 5. EEG electrode placement according to the international 10-20 
electrode placement system (no permission required, public domain material). 
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of recognising/identifying certain signal patterns in polysomnography, and is the basis upon 

which sleep staging is formed.  

Sleep is traditionally divided into REM and Non-REM (NREM) sleep (Active and Quiet sleep in 

infants [2-4]). NREM Sleep is then divided into four stages referred to as stages 1 to 4, however, 

due to physiological similarities between stage 3 and stage 4, these two were more recently 

merged to create a single sleep stage referred to as  stage 3 or slow wave sleep (SWS) [4]. Each 

of the above stages is associated with certain EEG patterns and unique physiological 

interpretations. More recently, the American Academy of sleep medicine (AASM) has re-defined 

and re-categorised the conventional sleep stages (Stages 1 to 4) into three new categories 

namely N1, N2 and N3 with N1 corresponding to Stage1, N2 to stage 2 and N3 to SWS. This new 

classification aims to update the conventional standards by Rechtschaffan and Kales [13] which 

had been in place for more than 40 years. Although the newly introduced standards seem to 

have had a positive impact on sleep scoring and sleep staging overall [14], the Rechtschaffen 

and Kales manual is still in use to date and complete transition from the old standards to the 

AASM is likely to take few more years. The next section describes some of the sleep EEG 

patterns which are commonly used in sleep staging and scoring. 

2.3.1 Introduction to well-known EEG patterns 

 

EEG signals are made up of a range of frequencies (0 to 30 Hz). These frequencies are 

conventionally divided into five groups, each having a unique name. In the literature, these 

frequency bands are referred to as delta (0.5-4 Hz), theta (5-7 Hz), alpha (8-12 Hz), sigma (13-

15 Hz) and beta (16 to 30 Hz) [15, 16]. Slightly different categorisation may be found in the 

literature [17]. The frequency bands introduced above are routinely used in describing different 

EEG patterns and the spectral contents of different sleep stages.  

 

Sleep Spindles:  

According to Rechtschaffen and Kales [13], Sleep Spindles are transient waves of 12-14 Hz 

frequency (distinct from the background) which last for more than 0.5 seconds (in adults). More 

recently, it was found that Sleep Spindles in children could occur independently at two 

frequency intervals of 11 to 12.75 Hz and 13 to 14.75 Hz over frontal and Centro parietal 

electrodes respectively. Furthermore, Sleep Spindles are known markers of sleep stage 2 [4]. A 

typical sleep spindle is shown in figure 6 (taken from [18]).  
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K-complexes: 

A  K-complex is a bi/triphasic pattern which starts with a rapid negative component, followed 

by a slower positive one and could last from 0.5 to 2 seconds; they occur in the delta frequency 

band and have higher amplitude than the background EEG activity (the amplitude is often >200 

µV)  [4, 15, 18, 19]. A K-complex is shown in Figure 6 (taken from [18]). 

 

 

 
Figure 6. Sleep Spindles followed by a sequence of K complexes. As can be seen spindles are more pronounced 
in the central area rather than the occipital region (compare C4A1 with the rest of the EEG patterns) [18]. 

 

 

Vertex Sharp waves: 

A vertex sharp wave is composed of a very rapid negative component followed by a sharp 

positive component. Vertex sharp waves last from 50 to 200 msecs and are particularly present 

in the transient between stage 1 and stage 2 of sleep [4, 18]. Figure 7 (taken from [18]) shows a 

sequence of vertex sharp waves. 

 

 

 

Figure 7. A sequence of vertex sharp waves in transient between stage1 and stage2 of sleep [18]. 

 

 

Spindles K complexes 

Sequence of vertex sharp waves 
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Delta bursts: 

Delta bursts are described as waves with at least two cycles of delta frequency activity (0.5 to 4 

Hz) with amplitudes 1/3 (or more) greater than the background activity. They are most 

prominently seen in the slow wave sleep (SWS) with a lower frequency than the Posterior 

rhythm. Figure 8 shows a typical delta burst (taken from [18]). 

 

 

 

Figure 8. A Typical delta burst in slow wave sleep [18]. 

 

 

Polyphasic bursts: 

Polyphasic bursts are groups of high amplitude delta waves accompanied (or mixed) by theta, 

alpha or beta rhythms. They are mostly seen in sleep stage 2 and especially before REM onset. A 

polyphasic burst is shown in Figure 9 (taken from [18]). 

 

 

 

 

Figure 9. A Typical polyphasic burst in sleep stage 2 [18]. 

 

Delta burst 

Polyphasic burst 
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EEG arousals (or cortical arousals): 

An EEG arousal is described as an abrupt change in the EEG frequency towards higher 

frequencies including theta, alpha and beta but not spindles. For an arousal to be scored, it 

should be preceded by at least 10 seconds of sleep and last for 3 seconds (Mograss et al. [20] 

argue that one second of EEG frequency shift is adequate to score an arousal in paediatric 

subjects). EEG arousals are thought to fragment sleep and have deleterious effects if they occur 

frequently [18, 21]. Figure 10 depicts an EEG arousal (taken from [18]). EEG arousal is the last 

EEG pattern touched on here. The next section describes the conventional sleep stages and their 

physiological properties. 

 

 

 

 
Figure 10. An EEG arousal preceded and followed by sleep [18]. 

 
 

2.3.2 REM (rapid eye movement) sleep 

 

The term rapid eye movement (REM) was first used in 1953 [2, 18]. REM sleep is a sleep state 

which is closely associated with rapid eye movements (as verified by the EOG signals) and low 

amplitude mixed frequency EEG activity.  REM sleep is the most relaxed stage of sleep in terms 

of muscle activities even though the brain signals closely resemble those of wakefulness.  In 

infants there is a REM like state called “active sleep (AS)” which has a similar EEG and 

polysomnographic characteristic as the REM sleep. REM (or AS in infants), is described  as an 

stage with rapid eye movements, irregular respiration and heart rate (higher sympathetic 

nervous system activation rate), negligible chin EMG (very relaxed muscle tone) and frequent 

small limb or face movements [4].  REM sleep (or AS) is particularly important in neonates as 

they spent 2/3 of their total sleep time in this  state as opposed to adults which spend only 20-

EEG Arousal 



14 
 

 
 

25% [3]. Figure 11 shows the polysomnographic features of REM sleep (Alice 5 software, 

Respironics).  

 

 

 

 
Figure 11. A 30s epoch showing a child in REM sleep. Rapid eye movements are clearly seen (particularly in 
the 5 – 10s region). The muscle tone is decreased and is at its lowest. High amplitudes of EOG signals confirm 
the “rapid eye movement” feature of the REM sleep. Furthermore, variations in heart rate (irregularities seen 
in the ECG signal) also confirm the elevated sympathetic activation and hence the REM stage. 

 

2.3.3 Non Rapid Eye Movements (NREM) 

 

All the other sleep stages (i.e. Stage1, Stage2 and SWS) are categorised as NREM. Sleep 

commonly starts from Stage 1 (NREM1) and then alternates between other NREM and REM 

stages. NREM stages are explained in more details below. 

 

i. NREM 1(stage 1) 

 

NREM1 is generally the first stage of sleep (sleep onset in infants younger than 3 month is REM 

sleep). It starts with drowsiness (slower eye movements, spontaneous eye closure, reduced 

muscle tone) followed by a decrease in the background EEG frequency with respect to the age 

specific wakefulness EEG activity. An epoch of NREM sleep would be scored as NREM 1 if it has 
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no spindles, K-complexes or Slow Wave activities (SWA)[4]. Note that vertex sharp waves may 

also be present in NREM1 especially in transient between NREM1 to NREM 2 [18]. NREM1 is 

usually quite short in duration and is immediately followed by NREM2. A 30 seconds epoch 

showing a paediatric subject transitioning into NREM1 is shown in Figure 12 (Alice 5 software, 

Respironics).  

 

 

Figure 12. An epoch of a standard paediatric polysomnograph of a child transitioning into NREM1 stage 

(NREM1 starts at about 10 seconds in). Slower eye movements and decreased EEG frequency can be clearly 

seen in epoch shown. 

 

ii. NREM 2(stage 2) 

 

NREM2 generally follows after NREM1 at sleep onset. Sleep spindles are characteristic of this 

stage and in fact are the best polysomnographic markers for this stage. Another feature of 

NREM 2 is the presence of K-complexes; if a thirty second epoch contains either sleep spindles 

or K-complexes and <20% of slow wave activity (delta activity) it is scored as NREM 2. Muscle 

tone in NREM2 is reduced relative to NREM1 and little to no eye movement is expected [18, 19]. 

In adolescents and adults, NREM2 is the most prevalent stage. A study on 6 to 11 year old 

children showed that on average 51% of sleep time was spent in stage 2  [2]). Figure 13 shows a 

thirty second epoch of NREM2 stage (Alice 5 software, Respironics). 
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Figure 13. A 30 second epoch of full PSG of a child in NREM2 stage (30 seconds event). Little to no eye 
movements can be spotted. A spindle like activity is visible around the 21 second mark. 

 

 

iii. Slow Wave Sleep (NREM 3) 

 

Slow wave sleep (SWS) is the deepest stage of sleep when one is least arousable. It is thought 

that this stage is important for growth (especially in infants and pre-pubertal children) as 

growth hormone is uniquely secreted at this time. A thirty second epoch would be scored as 

NREM3 if >20% of the epoch contains slow wave activity (i.e. 0.5-2 Hz EEG waves with high 

amplitudes of usually > 75 μV). It is worth mentioning that scoring criteria for SWS remains the 

same in both children and adults [4]. Figure 14 shows an example of SWS (Alice 5 software, 

Respironics). 
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Figure 14. An epoch of a full PSG of a child in SWS sleep (30 seconds event). The slow wave activity and high 
amplitudes of the EEG signals are clearly seen. 

 
 

2.4 Introduction to SDB 
 

SDB is a term encompassing any respiratory difficulty associated with sleep. The most common 

in children is obstructive sleep disordered breathing which describes a spectrum of upper 

airway problems in sleep ranging from snoring to upper airway resistance, to obstructive sleep 

apnoea. 

Obstructive sleep apnoea (OSA) is formally defined as a “disorder of breathing during sleep 

characterized by prolonged partial upper airway obstruction and/or intermittent complete 

obstruction that disrupts normal ventilation during sleep” [22]. It may be caused by 

adenotonsillar hypertrophy (enlargement of adenoid and tonsil tissues) in healthy typically 

developing children (particularly in 2 to 8 year olds) and it has been shown that it can be 

treated in these children by surgically removing the enlarged tissues [23]. Other factors in OSA 

include but are not limited to age, obesity and craniofacial anatomy.  

Upper Airway Resistance Syndrome (UARS) is referred to as increased respiratory effort during 

sleep with no obstructive apnoea, arousal or abnormal gas exchange [3]. Diagnosis of UARS is 

done by direct measurement of breathing effort using an oesophageal pressure manometer 

(Pes) [3].   
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Snoring is the most common clinical manifestation of SDB [24]. It is important to note that the 

prevalence rate of obstructive sleep apnoea is from 0.9% to 4.3%. Furthermore, it is reported 

that primary snoring, that is snoring without apnoea, hypoventilation or excessive arousals 

from sleep [25] occurs in 10% of pre-school children [2].  

SDB and in particular OSA in children is associated with consequences such as day time 

sleepiness, behavioural problems such as conduct difficulties, hyperactivity and impaired 

academic achievement. OSA is also known to affect executive function and neurocognitive 

performance in children [16, 17, 22, 26-28].    

Obstructive SDB manifests itself as apnoeic or hypopnoeic events (apnoea-hypopnoea). Apnoea 

and hypopnoea are known to disturb sleep architecture (e.g. unwanted arousal from sleep). The 

next section will consider apnoea and hypopnoea in more detail. 

 

2.4.1     Apnoea-Hypopnoea 

 

Apnoea is defined as a cessation of breathing (nasal and oral airflow) for a certain amount of 

time. In children this time is defined as anything greater than two breath cycles, that is, an 

apnoeic event would be scored if there is no airflow for > 2 breaths cycle duration [15, 17]. In 

adults, an apnoea is defined as cessation of breathing for more than 10 seconds [29]. This is 

mainly due to the underlying change of respiratory rate with development.  Figure 15 shows a 

PSG epoch with normal respiration.  
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Figure 15. Parameters THO and ABD (thoracic and abdominal movements) clearly are in-phase. Flow 

parameters also show a clear airflow at the nose. 

 

Apnoeas in general fall into three categories: 

 

Obstructive Apnoea:    

Obstructive apnoea is defined as cessation of nasal and oral air flow in presence of continued 

chest and abdominal movements for > 2 breaths cycles [17, 28]. Obstructive apnoeas occur 

when thoracic and abdominal movements are out of phase due to upper airway obstruction. 

Normally, in the inspiration phase, both thorax and abdomen move outward and in the 

expiration phase both of them come back down to the normal level. However, in obstructive 

apnoea thoracic and abdominal movement will be out of phase. This phenomenon is also 

referred to as paradoxical breathing. Figure 16 shows an example of paradoxical breathing 

(Alice 5 software, Respironics). 
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Figure 16. Parameters THO and ABD (thoracic and abdominal movements) clearly show out of phase 
movements which result in a diminished airflow. 

 

Central Apnoea: 

Central apnoea is defined as cessation of airflow due to absence of chest and abdominal 

movements for at least two breaths cycle duration. Central apnoeas are frequently seen in 

infants and children, particularly during REM sleep [3]. Figure 17 shows an example of a central 

apnoea (Alice 5 software, Respironics).  

 

Mixed Apnoea: 

Mixed apnoea is the mixture of obstructive and central apnoeas and as all apnoeas, it results in 

full or partial cessation of breathing for greater than 2 breaths cycle duration in children (or 10 

seconds in adults). Figure 18 shows an occurrence of a mixed apnoeic event (Alice 5 software, 

Respironics).  
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Figure 17. It is clear that there are no thoracic or abdominal movements for a period of about 15 seconds. 
This event which results in cessation of air flow is referred to as a central apnoea and may be followed by an 
arousal. 

 

 

 

Figure 18. A mixed apnoeic episode is shown in the figure above. Observe the flow parameter. 

 

Central apnoea Obstructive apnoea 
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Hypopnoea: 

Hypopnoea is defined as a decrease in oral and nasal air flow by >50% accompanied by oxygen 

de-saturation of > 4% (or 3% in children) and/or an arousal [17].  

The Average number of apnoeas and hypopnoeas per hour of sleep is referred to as the apnoea- 

hypopnoea Index (AHI). AHI is the standard measure used in the diagnosis of OSA. 

Apnoeas may be but are not necessarily followed by arousals (waking up from sleep for a short 

period of time or going to lighter stages of sleep) or oxygen de-saturation [15]. Arousals are 

known to disturb the normal sleep structure. The next section is dedicated to arousals, and their 

influence on normal sleep. 

2.4.2 Arousals 

 

Arousals are important defence mechanisms. Human beings respond to changes in their 

surrounding environment even in sleep. For example, they may wake up from sleep if someone 

turns on a light or shouts (i.e. visual and auditory stimuli). Arousals also protect against the 

cardio respiratory sequelae of SDB as one breathe better awake than asleep [3]. In children and 

infants, the arousal threshold is higher than adults, meaning that arousals are less frequent in 

children. It is thought that sleep in infants and children is of significant importance to 

neurodevelopment and since frequent arousals in infants could be harmful to that, they tend to 

have a higher arousal threshold [4]. It is also important to note that although cortical arousals in 

children are less frequent, there may be sub-cortical arousals present which do not reach the 

cortex and will not be detected by the EEG electrodes; but may be identifiable from the other 

polysomnographic signals such as the pulse transit time (PTT) or heart rate, hence it is 

worthwhile to closely monitor other signals included in the PSG in a suspected arousal event.  

 

i. Definition and importance of Arousals 

 

An arousal is defined as a transient intrusion of wakefulness into sleep. If wakefulness lasts for 

more than 15 seconds or behavioural components such as crying of eye opening are seen, then 

the term arousal should be replaced with awakening  [21]. A more practical definition of arousal 

(often referred to as an EEG arousal or cortical arousal) is given by the American Academy of 

sleep medicine (AASM). EEG arousal is an abrupt shift in frequency towards higher frequencies, 

theta, alpha or beta but not spindles. The definition is valid if at least 10 seconds of sleep is 

observed before scoring an arousal [18, 21]. There are 3 types of arousals: 
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Spontaneous arousal: 

Spontaneous arousals are present in the normal structure of sleep. It is believed that they do not 

disturb the natural process of sleep as they are spontaneous and not caused by an external 

stimulus [21]. 

       

Respiratory related arousals: 

Respiratory related arousals occur immediately after a respiratory event such as an obstructive 

apnoea or hypopnoea. These arousals are both protective and harmful. they are protective when 

apnoeic events occur by minimising exposure to hypoxia but harmful when they happen too 

frequently and result in sleep fragmentation which may cause daytime symptoms such as 

sleepiness and behavioural deficits [21]. In children and infants, since arousal threshold is 

higher, respiratory related arousals are less frequent and hence they are less likely to suffer 

from fragmented sleep [4].  

 

Non-respiratory related arousals:  

Arousals which are due to environmental stimuli are referred to as non-respiratory arousals as 

they are neither respiratory related nor spontaneous.   

 

2.4.3 Influence of SDB on the Autonomic Nervous System (ANS) 

 

This section aims at briefly describing some of the potential deficits which are thought to arise 

from the influence of SDBs on the autonomic nervous system (ANS) such as various 

cardiovascular abnormalities including heart failure, elevated blood pressure, ischaemic heart 

disease, etc. It will also briefly mention why SDB can play a very important role in long term 

development of such problems. 

i. Brief introduction to Autonomic Nervous System (ANS) 

 

The ANS is part of the human nervous system which works without conscious control. It 

governs glands, cardiac muscle, and smooth muscles (i.e. muscles with no voluntary control) 

such as those of the digestive system, respiratory system, and the skin. The ANS is traditionally 

divided into the two subsystems, the sympathetic nervous system (SNS) and the 

parasympathetic nervous system (PNS) [30]. The SNS is the branch of the ANS which is 

generally activated to prepare organs for facing a threatening situation.  This response has also 

been loosely referred to as a “fight or flight” response.  Physiological alterations observed in 

these situations can be summarised as: 
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 Increased Heart Rate (HR) 

 Increased Blood Pressure (BP) 

 Redirection of blood flow to skeletal muscles from other organs such as skin or spleen 

 Pupillary dilation and bronchiolar airway dilation 

 Mobilization of energy stored in fat cells 

It can be intuitively seen that the above changes are advantageous in a threat like situation. 

The PNS on the other hand, is mainly responsible for restorative functions and it normally 

activates when an organ is at rest. This process has been loosely referred to as “rest and digest” 

response. Physiological changes upon activation of PNS can be summarised as follows: 

 Reduction in cardiovascular activity (reduced HR and BP) 

 Facilitation of digestion 

 Absorption of nutrients and excretion of waste materials 

Heart rate regulation through the vagus nerve is probably the most significant function of the 

PNS as it can increase the heart rate in situations which require high vigilance without a need 

for SNS activation. This is achieved by simply switching off the inhibition of the Ventral Vagal 

Complex located in nucleus ambiguus. 

Having control over cardiac and smooth muscles, ANS is responsible for regulating parameters 

such as blood pressure, arterial wall stiffness and respiratory sinus arrhythmia (respiratory 

induced heart rate variability). 

ii. Consequences of SDB on Autonomic Nervous System  

 

SDB has been associated with ANS dysfunctions in adults. For instance, it is well documented in 

the literature that arousals in sleep activate the SNS with a resulting pressor response (i.e. rise 

in blood pressure) [31]. Furthermore OSA in adults is associated with cardiovascular 

abnormalities such as hypertension, ischaemic heart disease, arrhythmia and heart failure [32]. 

O’Brien and Gozal studied such associations in children. They reported that SDB in young 

children is associated with persistent waking associated autonomic nervous system dysfunction 

[31, 33]. Although it had been previously shown by Baharav et al. [34] that children with OSA 

have enhanced sympathetic activity, the study was not based on direct measurements such as 

pulse arterial tonometry (used by O’Brien and Gozal) but based on spectral analysis of the heart 

rate signal. Importantly in children the development of the human nervous system (SNS in 

particular) does not terminate at birth but continues throughout the life. This suggests that SDB 

in young children could have the potential to manifest as a cardiovascular disease years later. 
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Note that analogous to the SNS, maturation of the brain in response to stimulation (sometimes 

termed neuroplasticity) also continues in the postnatal life. This maturation process 

characterized by remodelling of the brain via using/disusing a particular neural networks, 

apoptosis (or programmed cell death), dendritic arborisation, myelination, etc. can also be 

affected by sleep and SDB [35]. Therefore, it is apparent that sleep disorders in children can 

adversely affect both the ANS and the CNS (central nervous system) and give rise to 

developmental deficits.       

It is clear from the argument above that early diagnosis of OSA (or in general SDB) is of essence 

and should be given extra attention to.  

2.4.4 Potential predictors of SDB outcomes 

 

As was mentioned above, frequent arousals from sleep may have deleterious effects on quality 

of sleep. In children this is of particular importance as sleep fragmentation may cause long term 

developmental deficits. Therefore, even though infants and children have fewer cortical 

arousals [4] there may be sub-cortical arousals present in the sleep and this may cause health 

issues similar to that of sleep fragmentation. Hence, there is a need to detect such harmful 

events and identify their originating sources. 

As was previously discussed, SDBs have potentially morbid consequences. Some of the known 

consequences or outcomes are thought to be predictable using certain analytical techniques. 

Respiratory cycle related EEG changes (RCREC) is for instance, a derived parameter from PSG 

which is capable of predicting next day sleepiness in adults [16]. Cyclic alternating pattern 

(CAP) is another polysomnographic feature which can be used to improve the correlation 

between PSG parameters and day time consequences. CAP can be interpreted as a measure of 

sleep instability. Arousals from sleep are the main driver of sleep instability. Unstable sleep is 

caused by frequent arousals and can result in sleep fragmentation (CAP) [18]. These two 

parameters essentially define two distinct ways of interpreting the same signal or in other 

words looking at different features of the same signal.  The above two parameters are briefly 

introduced below.   

i. Respiratory Cycle Related EEG Changes (RCREC) 

 

For the first time, in 2003, Chervin et al. [15] developed a computerized signal analysis 

algorithm to observe whether cortical activities change from breath-to-breath cycles. It was 

later on shown that RCREC could predict next day sleepiness (in adults) [16]. The current 

hypothesis states that RCREC may be a manifest of short duration but numerous micro arousals 

[15]. 
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This technique, divides a breath cycle into four segments based on expiratory and inspiratory 

peaks and their middle points. Figure 19 shows a typical example of this segmentation (taken 

from [15]). As can be seen the respiratory cycle is divided into four segments, namely, early 

expiration, late expiration, early inspiration and late inspiration respectively. 

 

 

Figure 19. Segmentation of a respiratory cycle in RCREC algorithm. Note that the segmentation is performed 
by calculating the peak points and then the middle points, i.e. the points placed in the middle of two 
consecutive local peaks [15]. 

 

The aim is to calculate the EEG power in each segment (e.g. EEG power in early inspiration 

portion) and divide it by the total EEG power of the respiratory cycle to obtain relative powers. 

In the original work, EEG power was calculated using Short Time Fourier Transform (STFT) 

with a one second sliding window. The signal processing methods mentioned here as well as the 

method for quantification of RCREC will be addressed more thoroughly in the subsequent 

chapters.  

Average change of relative EEG power from one respiratory cycle segment to another was then 

used as the predictive parameter. For instance RCREC in the sigma (13-15 Hz) band has been 

shown to predict next day sleepiness as measured by multiple sleep latency tests. 
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ii. Cyclic Alternating Pattern (CAP) 

 

CAP is another sleep analysis parameter which uses the polysomnographic data and looks at 

patterns which can be associated with sleep instability. Frequent arousals for instance can be 

interpreted as a form of sleep instability as they distort the natural process of sleep. It is 

speculated that some types of CAP sequences may be associated with brain attempts to preserve 

sleep by blocking arousals [18].  

CAPs are defined as periodic EEG activities in Non-REM sleep which are distinct from the 

background activities and recur at least, every 1 minute, they consist of an A-phase followed by 

a B-phase each lasting 2 to 60 seconds. An A-phase could be any of the wave forms introduced in 

2.3.1 and a B-phase is just the background activity which separates two A-phase components. 

Figure 20 shows a  good example of a CAP sequence (taken from [18]). 

 

 

 

 

Figure 20. A typical CAP sequence is shown between the two black arrows. As can be seen, the final A-phase is 
not followed by a B-phase and another A-phase and hence the black arrow shows the end of the sequence 
[18]. 

 An A-phase is divided into three categories based on the synchrony level of EEG wave forms. In 

A1, de-synchrony of neurons firing is less than 20% (slow wave) and hence A1 can be easier to 

Start of the CAP 

sequence  

an A-phase  a B-phase  
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score as it contains high amplitude, slow wave activity which are distinct from the background. 

In A2, de-synchrony is greater than 20% but less than 50% and finally in A3, de-synchrony is 

higher than 50% making scoring more difficult [18]. Figure 21 shows an example of the three A-

phases (taken from [18]). 

 

 

 

Figure 21. Sub-types of A-phase. A-phases are shown between the black arrows. Black dots show the extent of 
de-synchrony and as can be seen, de-synchrony in A3>A2>A1 [18]. 

 

A recent study by Kheirandish-Gozal et al. [28] suggests that children with SDB have reduced 

CAP rate and also reduced CAP entropy, this may suggest non-restorative sleep in these 

children. It has also been suggested that CAP may correlate better with certain outcomes of SDB 

than the conventional parameters however.  
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2.5 Data 
 

Data is an important part of every biomedical research and as such needs to be described in 

details; therefore, this section is dedicated to the data that has been used during the course of 

this project. In particular, two sources of data were made available to us, the first was through 

the Wellcome Trust Clinical Research Facility (WTCRF) in the Southampton General Hospital 

and the second was the data gathered by Dr. Catherine Hill’s group when studying the chronic 

effects of altitude on sleep architecture of Bolivian children (henceforth will be referred to as 

the Bolivian data). Each data set is described below in details. 

2.5.1 Wellcome Trust Clinical Research Facility (WTCRF) data 

 

The WTCRF within Southampton General Hospital (SGH) is an established centre for biomedical 

research. Research conducted in the centre ranges from cancer related research to nutritional 

care to sleep and respiratory related researches. The WTCRF also benefits from a fully equipped 

paediatric research section which includes a sleep laboratory and offers full night PSG and 

bronchoscopy services. Full night PSGs of paediatric subjects generated in the WTCRF were the 

only data available at the early stages of the project. Data acquisition procedure, data 

acquisition software/hardware, signals obtained, equipments used and PSG scoring are 

expanded on below. 

i. WTCRF data acquisition procedure 

 

Children suspected with OSA accompanied with parent(s) with prior appointment for a full 

night sleep test show up in the WTCRF sleep laboratory between 6:00 to 8:00 PM and are 

greeted by the friendly staff of WTCRF, they are then guided to their room (prepared in advance 

for the sleep test). It is not uncommon for parent(s) to stay with their child throughout the night 

and therefore additional beds are provided when needed. An experienced sleep technician will 

then prepare the subject for the PSG. This generally involves attaching the appropriate 

electrodes to the appropriate parts of the body of the subject and has to be done with care as the 

quality of the later obtained data will directly depend on the electrode attachment, this process 

is fully non-invasive. Data collection starts shortly after; the subject and the real-time signals 

will be monitored throughout the night by the sleep technician to first ensure the safe 

progression of the test and second, to avoid losing signals due to excessive movement of the 

subject. If a signal happens to be lost duo to movement, the technician will re-attach the 

corresponding electrode and resume the sleep test. Once the test finishes (i.e. when the child 

wakes up in morning) the data is stored and readied for subsequent scoring. Note that since the 
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WTCRF data is collected on an ongoing basis and occasionally includes non-OSA patients (e.g. 

cystic fibrosis patients), selection of any population for further analysis will depend on the 

analysis to be done and therefore, providing demographic information is avoided here. For the 

purpose of RCREC analysis however, demographics are be given in the subsequent chapters.  

ii. Data acquisition software/hardware 

 

WTCRF data is obtained using Alice 5 diagnostic sleep system (Respironics, Philips). Alice 5 

includes both the hardware and the software necessary to acquire a full night polysomnographs. 

The hardware includes a PC like base station and a head-box. The head-box serves as the 

interface between the base station and the electrodes connected to a subject. The base station 

includes the necessary electronics to receive, slightly process (analogue to digital conversion) 

and store the data. Further information about the Alice system can be found on their website1. 

iii. Signals and equipments 

 

As mentioned, the data from WTCRF is collected on an ongoing basis and therefore, minor 

inconsistencies between the instruments used and the signals obtained are not uncommon. 

However, in general, the following signals are present in the WTCRF data: 

EEG: Four EEG channels (C3/M2, C4/M1, O1/M2 and O2/M1) with electrode placement 

according to the international 10-20 system [12] commonly exist in the WTCRF data. In some 

cases these four channels are complemented with another four (Fz/M2, Pz/M1, T3/M2 and 

T4/M1). The letter “M” indicates a mastoid reference.  EEG signals in the WTCRF are acquired 

using standard electrodes, sampled at 100 Hz and quantised using a 10 bit Analogue to digital 

convertor.  

ECG: A single channel of ECG is commonly present in the WTCRF data. ECG signal is acquired 

using standard ECG electrodes, is sampled at 200 Hz and quantised using a 12 bit A to D 

convertor. A standard three lead placement system is commonly used in WTCRF to acquire ECG 

signals. 

EOG: Two EOG channels marked as LEOG and REOG (left and right EOG) are present in the 

WTCRF data. The EOG signals are sampled at 100 Hz and quantised using an 8 but A to D 

convertor. 

                                                           
1
 http://www.healthcare.philips.com/main/homehealth/sleep/alice5/default.wpd 

http://www.healthcare.philips.com/main/homehealth/sleep/alice5/default.wpd
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EMG: Three EMG channels (submentalis chin, right leg and left leg) are commonly included in 

the WTCRF data. The EMG signals are acquired using standard EMG electrodes and are sampled 

at 200 Hz and quantised with an 8 bit A to D convertor.   

Flow: A single channel of flow signal is present in most WTCRF data. This flow signal is either 

measured using a nasal pressure transducer cannula or a nasal thermistor. Pressure transducer 

based flow measurement instruments are more responsive to changes in the nasal flow but less 

bearable for most children, therefore, it is not uncommon for the flow signal to disappear 

(subject removing the sensor) and re-appear (technician re-installing the sensor or replacing it 

with a flow thermistor). Flow signal in the WTCRF is sampled at 10 Hz and quantised using a 16 

bit A to D convertor.  

Thoracic and abdominal excursions: Thoracic and abdominal excursion are acquired using 

piezoelectric belts in the WTCRF data. Similar to the flow signal, the excursions are sampled at 

10 Hz and quantised using a 16 bit A to D convertor.    

Blood oxygen saturation: Oxyhaemoglobin saturation in blood measured using a pulse 

oximeter is also included in the WTCRF data. This data is sampled at 1 Hz and quantised using a 

10 bit A to D convertor.  

Plethysmograph:  A single channel of plethysmography (marked as pleth) is often present in 

the WTCRF data. This signal is sampled at 100 Hz and quantised with 10 bits.  

Secondary parameters such as RR interval (time interval between two successive ECG-R peaks) 

and pulse transit time (PTT) which can be calculated from the above signals are also included in 

the WTCRF data.   

iv. WTCRF Polysomnography scoring 

 

Following a successful data acquisition, each PSG is scored by an expert sleep technician based 

on the AASM criteria on paediatric sleep staging and sleep scoring. These criteria are discussed 

in the previous sections are therefore not repeated here.   

 

2.5.2 Bolivian data 

 

As part of a larger study (Development and Sleep at Altitude - DeSAt) investigating the effects of 

altitude on sleep disordered breathing and neurocognitive performance, 62 children and 

adolescents from Santa Cruz, 500 m above sea-level (nL=33) and La Paz, 3700m above sea-level 
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(nH=29), Bolivia underwent a single night of attended polysomnography and completed a series 

of neurocognitive measurement tests. Subjects were aged from 7 to 17.15 years, (35M:27F), had 

been born at term, had no chronic health conditions and had been born and lived at their 

respective altitudes for at least five years prior to participation. The study was approved by the 

institutional ethics committees of the University of Western Australia and the Universidad 

Privada de Santa Cruz de la Sierra, Bolivia.  

i. Bolivian data, acquisition procedure 

 

Recruited children showed up in the place of experiment with their parent(s) between 6:00 to 

9:00 PM. Having completed a set of neurocognitive measurement tests, each subject was 

prepared for polysomnography (similar to the WTCRF data). Attended polysomnography was 

carried out in an established sleep laboratory setting (Santa Cruz) and temporary adapted 

facility (La Paz) using computerised ambulatory systems (Compumedics PS2 system, 

Melbourne, Australia) according to accepted guidelines [36]. All studies were performed by an 

experienced polysomnographic technologist. 

ii. Bolivian data acquisition software/hardware 

 

Software and hardware for the experiments were provided by Compumedics Ltd. ProFusion 

PSG 2 software was used to extract the raw data (stored as EDF files). Further information 

regarding compumedics sleep solutions can be found on their website2. Biosig toolbox for 

Octave and Matlab version 2.49 was used to import the EDF files into Matlab. 

 

iii. Signals and equipments 

 

Although the equipments used at high altitude were part of an ambulatory system, the signals 

obtained from all PSGs are identical. All PSGs include the following signals: 

EEG: Two channels of EEG (C3/A2 and C4/A1) are available in the Bolivian data. Standard EEG 

electrodes have been used in the data acquisition. EEG signals are sampled at 256 Hz using an 8 

bit A to D convertor. Generally speaking, quality of the EEG signals in the Bolivian data is higher 

than those from the WTCRF data.  

                                                           
2
 http://www.compumedics.com/products.asp?p=39 

http://www.compumedics.com/products.asp?p=39
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ECG: A single ECG channel accompanies the Bolivian data. The ECG signal is acquired using a 

standard three lead placement and is sampled at 64 Hz using an 8 bit A to D convertor. The 

sampling rate of the ECG signal is rather low, but most ECG related analyses can get away by 

interpolating the signal. Sampling rate of 200 Hz or above is usually recommended for ECG data 

acquisition.  

EOG: Two EOG channels are present in the Bolivian data (marked as EOG/L and EOG/R). The 

EOG signals are sampled at 128 Hz with an 8 bit A to D convertor.  

EMG: A single EMG channel is present in the Bolivian data. The EMG signal is sampled at 128 Hz 

with an 8 bit A to D convertor. There are also two leg movement indicators (LEG/L and LEG/R) 

which record (crudely) if there was a leg movement. The later two signals are sampled at 32 Hz 

and quantised using an 8 bit A to D convertor (the sampling rate is not nearly enough for 

accurate recording of leg muscle EMG).  

Flow: A single flow channel (nasal thermistor) is provided in the Bolivian data. The flow signal 

is sampled at 16 Hz using an 8 bit A to D convertor.  

Thoracic and abdominal excursions: Two separate signals are provided for thoracic and 

abdominal excursion (Thor and Abdo). Both signals are acquired using RIP (respiratory 

inductance plethysmography) bands, sampled at 16 Hz using and quantised with an 8 bit A to D 

convertor.  

Sound: sound is also recorded for potential detection of snoring. The sound data is sampled at 

16 Hz using a 6 bit A to D convertor. This is not to be confused with an audio signal as the 

sampling and quantisation rates are far too low for a meaningful audio. It can instead be thought 

of as a simple indicator for audible snoring. 

Blood oxygen saturation: A single SaO2 channel indicating the saturation of oxyhaemoglobin in 

blood is present in the Bolivian data. SaO2 signal is sampled at 1 Hz.  

 

Similar to the WTCRF data, secondary parameters such as pulse rate are also present in the 

Bolivian data. Lack of a plethysmograph however, means that no PTT measure can be provided.  

iv. Bolivian data scoring 

 

Polysomnographs were scored based on the established sleep staging [13] and respiratory [37] 

criteria for paediatrics and all studies were peer reviewed. Obstructive apnoea was defined as 
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chest or abdominal wall movement in the absence or decrease of airflow by > 90% of the 

preceding breath for two or more breaths. Hypopnoeas were classified as for apnoeas but 

where the reduction in flow was 50-90% of the previous breath and only if accompanied by 

either oxyhaemoglobin (SpO2) desaturation ≥ 3% or arousal within 2 breaths of event 

termination. Central apnoeas were scored if there was a reduction in airflow amplitude by 

>90%, in the absence of respiratory effort, and if they were associated with either an arousal, an 

awakening or a >3% oxyhaemoglobin desaturation. The Apnoea-Hypopnoea Index (AHI) was 

defined as the number of obstructive apnoeas, hypopnoeas and mixed apnoeas per hour of total 

sleep time. 

 

2.6 Summary 
 

This chapter was dedicated to sleep, sleep disordered breathing and sleep data. Sleep was 

initially defined as a reversible state of perceptual disengagement however, it was pointed out 

the more recent theories on sleep suggest that sleep should no longer be looked at as an event 

occurring at a whole organism level but it may be a property of brain’s neuronal assemblies [7]. 

Quantification of sleep (sleep evaluation) was discussed, polysomnography was introduced and 

criteria for sleep staging and scoring were described. Sleep disordered breathing was then 

touched upon and in particular OSA (obstructive sleep apnoea), its definition, its 

polysomnographic traits and its morbid effects on daytime neurocognitive functions were 

explained.  Two potential predictors of SDB outcomes, namely, RCREC and the CAP sequences 

were also introduced. Last but not least, the polysomnographic data sets used in the project 

were described in details. The next chapter is dedicated to RCREC introduction and its 

quantification.   
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Chapter 3   

 

 

 

RCREC 
 

3.1 Introduction to RCREC 
 

In the previous chapter, the concept behind Respiratory Cycles Related EEG Change (RCREC) 

was briefly introduced [15]. RCREC is a phenomenon characterised by a statistically significant 

change in relative EEG power during different stages of respiration. It was first reported by 

Chervin et al. [15] in 2003 when investigating whether individual non-apnoeic respiratory 

cycles in children with sleep disordered breathing (SDB) are associated with brief changes in 

cortical activity. In their first study on a single child with sleep disordered breathing, 

quantifiable differences in delta, theta and sigma power between different stages of the 

respiratory cycle (early expiration, late expiration, early inspiration and late inspiration) were 

observed. Interestingly, these differences demonstrated change following adenotonsillectomy 

leading the authors to hypothesise that RCREC may represent brief microarousals and could 

offer a more sensitive measure of sleep disruption than standard EEG arousal scoring. This 

hypothesis was later strengthened when they found evidence suggesting that micro arousals 

may get more intense with increased breathing effort [38]. In a second study they further tested 

this theory in nine paediatric subjects before, and a year after, adenotonsillectomy [1]. While 

this was a small sample and only five of the children had obstructive sleep apnoea, RCREC 

changes, but not changes in apnoea/hypopnoea indices (AHIs), predicted changes in Multiple 

Sleep Latency tests (MSLT) across the time points. It was also noted that RCREC existed in both 

OSA patients and controls. More extensive studies in adult patients supported these data 

indicating that RCERC can predict objective sleepiness measured by MSLT in adults [16]. The 

relationship between RCREC parameters and neurobehavioral measures associated with OSA is 

also noted in the patent describing the system and the algorithm for RCREC quantification. In 

short, it is reported that RCREC parameters are more likely to be correlated with 

neurobehavioral measures such as IQ, children’s memory scale (CMS) attention/concentration 

score, and Wechsler individual achievement test (WIAT)-mathematical reasoning score than are 

conventional polysomnographic variables such as AHI, EEG arousal index or minimum oxygen 

saturation [39]. RCREC is therefore a promising parameter which can help to predict 

neurobehavioral outcomes of SDB in paediatrics and adults and as such it is of significant 
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clinical importance.  The physiology driving RCREC is not yet fully understood however, the 

working hypothesis is that it represents numerous subtle inspiratory related microarousals [40, 

41]. The method for calculation of RCREC as detailed in [15] is described below.  

 

3.1.1 Method for calculation of RCREC in the literature 

 

The method for calculation of RCREC can be divided into two parts, first is the detection and 

segmentation of the airflow signal into the four respiratory cycle segments (see Figure 19), and 

second, is the calculation of the frequency band specific relative EEG power for each respiratory 

cycle segment. Description for each part follows. 

i. Respiratory cycle detection/segmentation 

 

The first three hours of sleep is selected for the analysis in the original work. This is justified by 

stating that the first three hours of sleep is more likely to have long streams of slow wave sleep. 

Respiratory cycles below the 5th or the above the 95th percentile in amplitude and duration were 

removed to ensure regular respiratory cycle detection. For clipped peaks, the mid point was 

used as an estimate of where the true peak lies. Chervin then suffices to stating that a 

computerised algorithm divided each respiratory cycle into four segments based on inspratory 

and expiratory peaks/troughs and their mid points. No further detail about the respiratory cycle 

detection/segmentation algorithm and its performance is provided. A new respiratory cycle 

detection/segmentation algorithm is hence developed here which will be discussed further in 

the subsequent sections.   

ii.  Relative EEG power calculation in a single respiratory cycle 

 

Upon successful detection and segmentation of respiratory cycles, relative EEG power in each of 

the conventional frequency bands (1-4 Hz delta, 5- 7 Hz theta, 8- 12 Hz alpha, 13- 15 Hz sigma 

and 16- 30 Hz beta) and in each respiratory cycle segment is calculated. This is done by first 

band-pass filtering the EEG signal into the conventional bands and then dividing the frequency 

band specific EEG power corresponding to each respiratory cycle segment by the frequency 

band specific EEG power corresponding to the entire respiratory cycle. Note that only one EEG 

channel (C3/A2) is used in the original study. Short time Fourier transform (STFT) with one 

second windows (Hanning weighted and detrended) and 98% overlap was used to calculate the 

filtered EEG power. The formula below clarifies the above mathematically. 
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Where S is the STFT of the signal, F is the frequency band (e.g. delta), Ti is the time duration of 

the respiratory cycle segment of interest (e.g. early expiration) and T is the time duration of the 

whole respiratory cycle.  

The index Ci reflects the difference between frequency band specific EEG power of a sub-

segment and frequency band specific EEG power of the whole respiratory cycle that the sub-

segment belongs to. If the two quantities in the numerator and the denominator are almost 

equal, the ratio approaches unity and Ci approaches zero which means there is no difference 

between the respiratory cycle average EEG power and respiratory cycle sub-segment average 

EEG power. If Ci is greater than 1, it implies that the average EEG power of respiratory cycle sub-

segment is greater than that of the whole respiratory cycle and if Ci is smaller than 1 the average 

EEG power of the respiratory cycle is greater than that of the respiratory cycle sub-segment.  

In a more recent work, STFT is replaced with simple digital filtering for EEG power calculation 

as there is really no need to use STFT to calculate EEG power [16](this can be simply done by 

squaring the EEG signal samples and summing them in the time domain). 

3.1.2 Definition of RCREC 

 

Repeating the procedure described above for all the selected respiratory cycles will give an 

ensemble of frequency band and respiratory cycle segment specific relative EEG powers 

averaging over which gives what is referred to as mean relative EEG power (MREP) which is 

also frequency and respiratory cycle segment specific. RCREC in each frequency band is then 

defined as the maximum MREP in that frequency band minus the minimum MREP in that 

frequency band. Figure 22 shows an example of how RCREC (magnitude) is calculated from 

MREPs. As can be seen RCREC is a range parameter measuring how EEG power varies between 

respiratory cycle segments. MREPs have been shown to be statistically significantly different 

between respiratory cycle segments in most subjects and this difference was actually the spark 

which brought about RCREC as a measure of neurocognition.  
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Figure 22. An example showing how RCREC magnitude is calculated from MREPs 

 

The next section elaborates on how RCREC is quantified.  

 

3.2 Quantification of RCREC 
 

In order to understand RCREC, there must be a means to quantify it. This section is therefore 

dedicated to details on quantification of RCREC. The algorithm for calculation of RCREC 

although explained in the original work is not fully reproducible without making a few 

assumptions on the flow signal segmentation algorithm. It is thus attempted to give a complete 

algorithm for flow signal segmentation and also validate it. Processing of the EEG signal and 

statistical methods used in calculation of RCREC are also discussed. First however, the algorithm 

for calculation of RCREC is explained in a step by step manner. 

 

3.2.1 RCREC quantification: overall algorithm 

 

Although explained in 3.1, it is helpful to give an overall structure to the steps needed to 

calculate RCREC.  The algorithm utilised can be summarised in the following steps:    

 

1) Nasal air flow signal was segmented into individual respiratory cycles using the peaks and 

the troughs present in the signal.  

2) Individual respiratory cycles were divided into 4 sub-segments namely: early expiration, 

late expiration, early inspiration and late inspiration. This is after removing portions of the 

data which may have been abnormal; this includes apnoea, hypopnoea or any other 

respiratory disturbances that cause significant deviation from a normal (semi-sinusoidal) 

respiratory pattern. Figure 23 shows how the typical segmentation is done. 
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3) Corresponding EEG powers (C3/A2) in delta, theta, alpha, sigma and beta bands were 

quantified for each and every respiratory segment. This is done by band-pass filtering the 

EEG signal to generate frequency band specific EEG (e.g. delta EEG) and then calculating the 

power of the filtered signal in the time domain. Note that respiratory and EEG signals are 

time locked. 

 

Figure 23. Conventional segmentation of a single respiratory cycle. The thermistor generated flow signal is 
divided into four segments based on its local maximum, minimum and the mid points. EE stands for early 
expiration, LE for late expiration, EI for early inspiration and LI for late inspiration. 

4) Frequency band specific powers of each sub-segment were normalised (divided by the 

frequency band specific power of the whole respiratory segment) to generate frequency 

band and respiratory cycle segment specific relative EEG power. This can be mathematically 

shown as:  
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(2) 

Where Nj is the length of the jth respiratory cycle segment (j=1,2,3,4 where 1 corresponds to 

early expiration, 2 to late expiration, 3 to early inspiration and 4 to late inspiration), N is the 

length of the respiratory cycle in samples,     is the starting sample of the  th respiratory 

cycle segment,    is the starting sample of the respiratory cycle and f
iX  is the ith element in 

the frequency band specific EEG signal. The parameter f
jS  is the segment and frequency 

specific relative EEG power. Note that the above formula relates to a single respiratory cycle 

only. 

5)  Taking into account all respiratory cycles leads to formation of the frequency band specific 

matrix fQ from the calculated f
jS  values: 
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Where M is the total number of regular respiratory cycles. 

6) The significance of the difference between the four columns of fQ  (i.e. the relative EEG 

powers in different respiratory cycle segments) is assessed using the one way analysis of 

variance (ANOVA) test. Fisher’s F values are produced as a measure of this significance. Further 

information about one way ANOVA can be found in [42].  

7) Averaging over the columns of fQ , a frequency band specific RCREC parameter is defined as 
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f
jS is the frequency band and respiratory cycle segment specific mean relative EEG powers 

(MREP). 

 

All the steps above were implemented using Matlab (Mathworks). The overall algorithm is 

explained in details in the subsequent sections, details of the airflow segmentation algorithm 

and the spectral analysis routine are in particular discussed. 

3.2.2 RCREC quantification: airflow signal segmentation 

 

The airflow signal – being from a nasal pressure transducer of a thermistor – generally follows a 

sinusoidal like morphology. Peaks and troughs in the signal indicate the beginning of expiration 

or beginning of inspiration. In order to segment the airflow signal, peaks and troughs should be 
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carefully identified. As with all biomedical signals, the airflow signal also suffers from various 

artefacts such as multichannel interference, movement and displacement of the measuring 

instrument. These challenges particularly complicate the automatic detection of peaks and 

troughs when large streams of data are to be analysed.    

A simple and fast algorithm is therefore developed which can automatically segment the airflow 

signal into individual respiratory cycles and exclude the spurious flow data. This algorithm uses 

a derivative based maxima/minima detector at its core and utilises thresholds (constant and 

adaptive) to detect abnormalities.  It is fast since operations performed on the data are not 

sequential but global meaning that the data points are not analysed one after another but as a 

whole, which significantly enhances the execution speed of the algorithm even when analysing 

long streams of data. The rest of this section illustrates the algorithm in a step by step manner.  

 

Detecting the peaks and troughs: 

 

1. Initial maxima/minima detection: first order derivative of the signal was used to detect 

all the existing local maxima and minima in the flow signal. Due to existence of artefacts, 

peaks and troughs of interest are not the only local maxima and minima detected. Figure 

24 shows an example of the initial detection; troughs are highlighted with red circles. 

Note that for presentation purpose, the focus is on detection of the troughs only but the 

actual detection procedure is almost identical for both the peaks and the troughs. 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

4100 4150 4200 4250 4300 4350 4400 4450 4500 4550

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x 10
4

Sample

A
m

p
lit

u
d
e

Flow signal after applying the envelope detector

 

 

Flow (REM)

Upper envelope

Lower envelope

Figure 24. Flow signal after applying the maxima/minima detector. Red circles show the positions of the detected minima. As 

can be seen, not all the minima correspond to the notches in the flow signal. That is due to small fluctuations in the signal 

caused by different sources of errors (e.g. high frequency electrical noise or interference), and hence, we must differentiate 

between the “true minima”, i.e. those which correspond to the notches in the flow signal, and “false minima”. An amplitude 

threshold can be applied to remove some of the erroneous minima.  
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2. Amplitude thresholding: an amplitude threshold was applied to the lower envelope to 

remove the false minima. This threshold removes troughs with positive amplitude 

(similarly to detect peaks, there is a threshold which removes peak with negative 

amplitude). Since airflow signal amplitude can differ from one data set to another, the 

flow signal is de-trended prior to peak detection. Figure 25 shows the remaining troughs 

after applying the amplitude threshold.  

 

 

 

 

 

3. Duration thresholding: Immediately after applying the amplitude thresholds, a duration 

threshold was applied to remove samples which are too close to each other (see the two 

samples between 4550 and 4600 in figure 25) the threshold was set to 1.5 second. 

Figure 26 shows the typical result after applying the duration threshold. 
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Lower envelope after applying the amplitude threshold

Figure 25. As can be seen most of the false minima are removed. Applying an amplitude threshold is also 
useful in identifying spurious events in sleep and can be used to remove abnormal data. 
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4. Abnormal data removal: an additional duration threshold was applied to differentiate 

between normal and abnormal data parts based on the separation between two 

consecutive troughs. For instance, if separation of two consecutive troughs is greater 

than 6 seconds – which is longer than an average breath cycle – it becomes evident that 

the interval between the two detected troughs contains abnormal data (previously 

removed by the amplitude threshold or two consecutive troughs with separation of 

greater than 6 seconds). Figure 27 illustrates how abnormal data is removed using the 

algorithm.  
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Lower envelope after applying the amplitude threshold
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Figure 26. Note that the false minimum between the samples 4550 and 4600 is removed. 

Figure 27. Unwanted values are replaced with “Pi” (a unique number) for presentation purposes. Once the 

duration between two consecutive samples is greater than the adjusted duration threshold, those samples in 

addition to their adjacent ones are identified as abnormal and are removed. 
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The same procedure was carried out to detect the peaks in the flow signal. Union of the 

excluded (abnormal) regions from both the peak and the trough detection routines was 

calculated and excluded from further analysis. Note that in case of poor signal quality, 

the abdominal (or thoracic) excursion signal can be used to either estimate the peak 

positions in the airflow signal, or replace the flow signal entirely, however, the produced 

results may be arguable. Figure 28 shows the airflow signal plotted together with the 

abdominal excursion.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Refinements: Upon detection of abnormal data, four preceding and processing 

respiratory cycles were rejected to ensure physiologically regular respiratory cycle 

detection, additionally, a minimum continuous data requirement was added to the 

algorithm which rejected any streams of data smaller than 12 consecutive respiratory 

cycles, this will ensure a low false positive detection rate for respiratory cycles which is 

essential for RCREC quantification.  Implementation of a routine which ensures that 

each respiratory cycle starts with an early expiration (i.e. a local maximum) and 

calculation of the mid points were the final refinements of the algorithm.  Figure 29 

shows an example output of the completed algorithm. 
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Figure 28. Flow and abdominal movement plotted together. 
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Figure 29. Respiratory cycle detection and segmentation. Starting from the beginning of the graph, the first 
red circle is the starts of an early expiration and the 5th red circle is the end of the late inspiration of that 
cycle (or the start of the next early expiration). Due to poor signal quality, abdominal excursion is used for 
peak position estimation. 

 

The above five steps describe the segmentation algorithm developed for the purpose of RCREC 

quantification. Note that the flow signal can be low-pass filtered prior to segmentation for 

smoothing purpose; however, the cut-off frequency should not be set very low. Filtering with a 

very low cut-off frequency can change the peak and trough positions significantly and may mask 

the actual physiology of respiration reflected by the airflow signal. Figures 30 and 31 show the 

output of the algorithm when applied to 3 hours of PSG data. Note that the flow signal is low-

pass filtered with cut-off frequency of 0.5 Hz in the subsequent figures (this cut-off frequency 

although quite low, is chosen to conform to the previous work on the RCREC). 
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Figure 30. First 3 hours of sleep EEG and Flow signals. Dense vertical red lines show the segmented regions. 

The rest of the signal is automatically detected as abnormal. Figure 31 shows a zoomed in version of this 

figure. 

 
Figure 31. Zoomed in version of figure 30. Maxima and minima are detected and shown by red vertical lines. 
Note that this graph does not show the mid points. 
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Finally, several other features such as manual exclusion of data, successive envelope detection 

for higher reliability and sleep stage specific airflow segmentation (using the scored sleep stage 

signal) were also added to the algorithm to complement the package. The next section shows 

the validation procedure for the developed flow segmentation algorithm using a representative 

sample of the available flow signal.  

 

3.2.3 Airflow segmentation algorithm validation 

 

Now that the development of the algorithm is finished, it is essential to test and quantify its 

performance. As a result, an algorithm validation procedure was developed to test the 

capabilities of the algorithm in real life tests. The section below describes this procedure. 

i. Validation procedure 

 

The Bolivian PSG data was used as the test data for the validation process. Ten random subjects 

were selected for the analysis (using a uniform random number generator for subject selection). 

For each subject a continuous stream of 100 respiratory cycles was selected. This selection was 

also randomised; a uniform random number generator was used to generate a random starting 

epoch for each subject, 100 respiratory cycles were then counted from the starting epoch. Each 

stream of 100 respiratory cycles was scored manually for abnormalities, that is, any significant 

deviation from the background nasal flow signal. Flow signals were low-pass filtered with cut-

off frequency at 0.5 Hz.   

The developed nasal airflow signal detection/segmentation algorithm was applied to the 

selected flow data for each subject. In order to quantify the performance of the algorithm, each 

automatically scored flow signal was compared to its corresponding manually scored flow 

signal. True positive, false positive, true negative and false negative detection rates were then 

computed to quantify the performance of the algorithm through sensitivity and specificity 

figures. Assuming that the manual scoring represents the gold standard, a true positive 

detection indicates that a regular (normal) respiratory cycle is detected as such. A false positive 

detection however indicates that an abnormal respiratory cycle is falsely detected as a normal 

respiratory cycle. A true negative detection shows successful rejection of abnormal respiratory 

cycles and a false negative detection shows false rejection of a true respiratory cycle. Using the 

four parameters above one can calculate the sensitivity and specificity of the algorithm. 

Sensitivity here measures the ability of the algorithm to detect true normal respiratory and 

specificity measures how well the algorithm rejects abnormal respiratory cycles. Results of the 

validation follow. 
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ii. Validation results 

 

Table 1 shows the true positive (TP), false positive (FP), true negative (TN) and false negative 

(FN) detection rates for the selected subjects. Equations for calculating sensitivity and 

specificity are given below: 

 

FNTP

TP
ySensitivit


  

 
(7) 

 

 

FPTN

TN
ySpecificit


  

 
(8) 

 

Where TP stands for true positive, FN stands for false negative, TN stands for true negative and 

FP is short for false positive.  Table 1 provides the numerical figures corresponding to the 

performance of the algorithm. Based on the above formulas above and the data in Tabel1, the 

segmentation algorithm developed here is 92.4% sensitive and 97.4% specific.  

Table 1. Nasal airflow signal detection/segmentation algorithm performance 

Subject ID True positive 

(TP) 

False 

positive 

(FP) 

True 

negative 

(TN) 

False 

negative 

(FN) 

Total 

1 98 2 0 0 100 

2 85 0 7 8 100 

3 94 0 6 0 100 

4 100 0 0 0 100 

5 83 0 9 8 100 

6 84 0 9 7 100 

7 97 0 0 3 100 

8 85 0 5 10 100 

9 70 0 8 22 100 

10 57 0 31 12 100 

Total 853 2 75 70 1000 
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Sensitivity 
%4.92

70853

853



 

Specificity 
%4.97

275

75



 

     

iii. Validation discussion 

 

As can be seen, there is a very good agreement (92.3%) between the manually scored flow 

signal and the automatically scored one. Since the algorithm developed here was designed to be 

used for polysomnographic RCREC quantification, and RCREC quantification requires regular 

(normal) airflow signal to be valid, care has been taken to make sure what the algorithm detects 

as a regular respiratory cycle is in fact a regular respiratory cycle and not an artefact, this is 

reflected by the very low false positive detection rate in Table 1 (this is at the expense of having 

a slightly higher false negative detection rate). To conclude, given the sensitivity and specificity 

figures, it is clear that the developed algorithm for nasal airflow signal detection/segmentation 

performs well and is particularly well suited to applications where RCREC is to be quantified.    

All the Matlab codes and functions for nasal airflow segmentation are available. The next section 

describes the EEG processing required for RCREC quantification. 

 

3.2.4 RCREC quantification: EEG processing 

 

PSG provides a set of time locked signals and hence by segmenting the respiratory cycles it is 

possible to directly capture the corresponding EEG segmentation. The next step in 

quantification of RCREC is to calculate the EEG power for each sub-segment namely: early 

expiration, late expiration, early inspiration and late inspiration across all the segmented 

respiratory cycles. This is achieved by filtering the signal into conventional frequency bands 

(e.g. delta, alpha, etc.) and calculating the power in the time-domain. The EEG signal was notch 

filtered at 50 Hz with a second order infinite impulse response (iir) filter, then band-pass 

filtered between 0.4 Hz and 32Hz using a 5th order Butterworth filter and finally de-trended 

prior to the analysis. Figure 32 clarifies how the procedure is done in practice.   
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Figure 32. Roughly 16 seconds of EEG data filtered into the conventional frequency bands and segmented into 
early and late expirations and inspirations.  

For each respiratory cycle, EEG power in early expiration was divided by that of the entire 

respiratory cycle. This was repeated for the other three segments (i.e. late expiration, early 

inspiration and late inspiration). More formally (as defined in equation two and repeated here 

for convenience), relative power in each frequency band (e.g. delta) for an individual 

respiratory cycle was calculated using the following formula: 
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Where fX represents the frequency band specific (i.e. filtered) EEG signal, Nj is the length of the 

jth respiratory cycle segment (j=1,2,3,4 where 1 corresponds to early expiration, 2 to late 

expiration, 3 to early inspiration and 4 to late inspiration), N is the length of the respiratory 

cycle in samples,     is the starting sample of the  th respiratory cycle segment,    is the starting 

sample of the respiratory cycle and 
f

iX  is the ith element in the frequency band specific EEG 

signal.  

The parameter f
jS  is the segment and frequency specific relative EEG power (e.g. 

1S is the 

relative EEG power in the delta band and in the early expiration segment). It reflects the 

difference between frequency band specific EEG power of a segment and frequency band 

specific EEG power of the whole respiratory cycle. If the two quantities in the numerator and 

the denominator are almost equal, the ratio approaches unity and f
jS  approaches zero which 

means there is no difference between the respiratory cycle average EEG power and respiratory 

cycle segment average EEG power. If f
jS is greater than zero (positive), it implies that the 

average EEG power of respiratory cycle segment is greater than that of the whole respiratory 

cycle and if f
jS  is smaller than zero (negative), the average EEG power of the respiratory cycle is 

greater than that of the respiratory cycle sub-segment.  

Calculating the f
jS for all respiratory cycles results in formation of the frequency band specific 

matrix fQ from the calculated f
jS  values: 
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Where M is the total number of regular respiratory cycles (can range from 1000 to 7000 

depending on the quality of the data). Averaging across the columns of fQ gives the segment 

specific mean relative EEG powers or MREPs for short. Figure 33 shows the distribution of 

MREPs in the delta band for an arbitrary subject. 
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Figure 33. Mean relative EEG power of an arbitrary subject in the delta band. This graph is directly used in calculation of 

RCREC. In fact, RCREC is the difference between the maximum and the minimum values in the graph above which in this 

case translates to mean relative EEG power in the late inspiration minus the mean relative EEG power in the late 

expiraiton. This figure serves as an example only. 

 

Mean relative EEG powers (MREP) are directly used in calculation of RCREC; in fact, frequency 

band specific RCREC is given as the maximum difference between segment specific MREPs for 

that frequency (e.g. in the figure above, RCREC is the MREP of late inspiration minus the MREP 

of late expiration). Note that RCREC magnitude is always positive. MREPs are shown to be 

statistically significantly different from one another, that is, they are highly unlikely to have 

emerged from the same statistical population. More information on the statistical tests used to 

draw such conclusions is given in the subsequent section.  

 

3.2.5 RCREC quantification: statistical analysis 

 

As was mentioned above, what is noteworthy about RCREC is that in majority of subjects, 

MREPs of the four segments do not come from the same statistical population; what many may 

intuitively think otherwise. The test used in the original study to highlight this is the one way 

analysis of variance (ANOVA), however, depending on the analysis, other tests may also be used. 

This section gives a brief introduction to the statistical tests used in quantification of RCREC. 

Other statistical tests used throughout the thesis for different analysis purposes are also briefly 

addressed here.  
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i. One way analysis of variance (ANOVA) 

 

One way analysis of variance is a parametric statistical hypothesis test which determines 

whether means of two or more groups of observations differ significantly. In its simplest form, it 

is a generalisation of Student’s t-test to more than two groups. One way ANOVA requires the 

observations to be independent, normally distributed and have the same variance, however, in 

practice, it has been shown that ANOVA has been particularly robust to violations of the 

normality assumption [43]. Significance of ANOVA is calculated using the Fisher’s F value. 

Mathematically it is given as: 

 
  

                      

                     
 

(9) 

 

The F-value can be translated into a P-value based in its numerical value and the degrees of 

freedom of the numerator and the denominator of equation 9. MANOVA (multivariate ANOVA) 

is a variant of ANOVA which has been used in Chapter 5. It is essentially, used when there are 

dependencies between the groups of observations [44]. There are many other variants of 

ANOVA used in the literature (ANCOVA, ANORVA, etc.) discussing which is outside the scope of 

this thesis. For further information on ANOVA see [45].  

ii. Kruskal-Wallis test 

 

Kruskal-Wallis test (sometimes referred to as non-parametric ANOVA or one way ANOVA by 

ranks) is the non-parametric version of ANOVA test [46]. A non-parametric test may be 

preferable when the distribution of samples is not normal. Although non-parametric tests in 

general are less powerful than parametric test, they may be more appropriate if the pre-

requisites of the parametric tests are not met. The Kruskal-Wallis test determines if two or more 

groups of observations with the same distribution shape and scale have the same median.  More 

detailed information on the Kruskal-Wallis test can be found in [46]  

iii. Wilcoxon signed-rank test 

 

Wilcoxon singed-rank test is a non-parametric paired hypothesis test which determines 

whether two related groups of observations (e.g. before and after treatment) have the same 

median. Being a non-parametric test, It however, requires the observations to be independent. 

The Wilcoxon signed-rank test does not require the populations to be normally distributed. It is 
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a replacement for paired t-test (or independent sample t-test) when the population cannot e 

assumed normal.  

iv.     Mann – Whitney – U test 

 

Mann – Whitney – U test (also known as Wilcoxon rank sum test) is a non-parametric 

hypothesis test which determines whether two groups of observations come from populations 

with differing medians. The test requires the groups of observations to be independent. The 

Mann – Whitney – U test can be used in situations where the number of observations in the two 

groups is not equal. For more information on the test see [46]. 

v. Shapiro – Wilk test  

 

Shapiro – Wilk is a test to determine whether a given group of observations come from a normal 

distribution. The test is simple to compute and can be used for small sample sizes (n<20) with 

considerable sensitivity. Further information regarding the Shapiro – Wilk test can be found in 

the original paper describing the methodology [47].  

vi. Lilliefors test 

 

Lilliefors test is another test of normality, it determines whether a given set of observations (i.e. 

data, samples) come from a family of normal distribution, that is, mean and variance of the 

normal distribution need not to be specified.  

This concludes the statistical hypothesis tests that have been used in the thesis. The next 

chapter details the preliminary case studies on RCREC. The statistical analyses in the thesis 

where done in Matlab and SPSS.  

3.3 Summary 
 

This chapter was dedicated to RCRECC, its definition and quantification. The chapter starts by 

introducing RCREC as described in the literature and follows to include the algorithms which 

have been developed and used to quantify RCREC.  Since the information given in the literature 

was not sufficient for fully reproducing RCREC studies, this chapter expands on RCREC 

quantification to provide a step by step description of the airflow signal segmentation 

algorithm, EEG processing and pre-processing, and finally includes a range of statistical tests 

which have been used in RCREC quantification.  



55 
 

Chapter 4   
 
 
 
Preliminary case studies 
 

The chapters above provide background to sleep, sleep disordered breathing, RCREC and the 

data used in the course of the project. This chapter provides details on the preliminary 

investigative works done on polysomnographic RCREC quantification. These preliminary 

analyses led to more substantial studies which are discussed in Chapter 5.  

The case studies here focus on replication of Respiratory Cycle Related EEG Changes (RCREC) in 

a single paediatric subject and then expand and explore the relationship between RCREC and 

AHI in a few subjects with an without OSA. Alternative airflow segmentation and its effect on 

RCREC is also investigated.  

 

4.1 RCREC – replication in one paediatric subject 

4.1.1 Introduction  

 

Now that the algorithm for quantification of RCREC is developed and the airflow segmentation 

algorithm is tested and validated, a complete replication of the original work [15] is attempted. 

This is to quantify RCREC in a single paediatric subject and compare the results with that of the 

original work. The procedure and the results follow.  

 

4.1.2 Subject and methods 

 

The methodology follows the approach detailed in the Chapter 3. Quantification of RCREC is 

attempted in a 4 year old with very mild OSA (apnoea-hypopnoea index of 1.2). The subject is 

selected from the WTCRF data set. This should be comparable to post-operative data provided 

by Chervin [15] in the original work. The subject had a standard all-night polysomnography.  

 

4.1.3 Results 

 

Having calculate the RCREC parameters in all the conventional frequency bands it was found 

that frequency band specific mean relative EEG powers were statistically significantly different 
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in all the frequency bands.  Table 2 shows the results of the analysis done here and that of the 

original work (post-operative). 

 

Table 2. MREP difference amongst 4 respiratory cycle sub-segments in all frequency bands using ANOVA 

 

A small P value suggests that the relative EEG powers significantly change between the different 

stages of respiration. Note that the findings here are very similar to Chervin’s in [15] where all 

frequency bands were statistically significantly different. Since distribution of relative EEG 

powers were not normal, a non-parametric test hypothesis test was also used to confirm the 

findings. Although ANOVA is known to be robust to violation of the normality assumption, 

nevertheless, a non-parametric significance test may be more appropriate. Table 3 shows the 

results after employing the Kruskal-Wallis test (non-parametric one way ANOVA which employs 

ranks instead of absolute values). 

Table 3. MREP difference amongst 4 respiratory cycle sub-segments in all frequency bands using The 
Kruskal-Wallis test 

 

As can be seen in the tables above, relative EEG powers change significantly amongst different 

stages of respiration. The obtained miniscule P values confirm the existence of RCREC, in other 

word, the probability that RCREC happen by chance is less than 0.01%.  

In order to further ensure that the simulation is comparable with the original work, a graph of 

mean relative EEG powers in all frequency bands was generated and compared them with those 

provided by Chervin. Note that since the chosen subject had almost normal AHI index, the MREP 

results were compared with the postoperative MREPs of Chervin’s. Figure 34 shows this 

comparison (the graph on the left is taken directly from [15]). 

 

 

 Delta Theta Alpha Sigma Beta 

ANOVA  

P-value  

<0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

ANOVA  

P-value 

(Chervin [15])  

 

<0.0001 <0.001 <0.01 <0.01 <0.01 

 

 

Delta Theta Alpha Sigma Beta 

Kruskal-Wallis 

P Value 

<0.0001 <0.0001 <0.0001 0.089 0.0068 
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Figure 34. Comparison of mean relative EEG powers of two almost normal (AHI= 0.2 for the left graph and AHI≈1 for 

the one on the right) paediatric subjects in all frequency bands. As can be seen the magnitude of MREPs in both 

graphs are similar (range from -0.06 to +0.06) which ensures us that we have correctly replicated Chervin’s work. 

Furthermore, the trends of MREPs in both graphs are alike which further shows that the replication is appropriately 

done. 
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As can be seen in Figure 34, both the amplitude values and trends are comparable in the original 

and the replicated results. Some discrepancies exist as the subjects and naturally the EEG 

patterns are different. The results suggest that the method for quantification of RCREC is 

correctly replicated. 

During the replication process, some interesting observations emerged which are discussed 

below. 

4.1.4 Discussion and conclusion 

 

The main goal of this case study was to replicate Chervin’s original method on quantification of 

RCREC. As can be seen in the result section this goal has been successfully achieved. Both the 

statistical analysis and graphs highlighting the mean relative EEG powers are closely 

comparable with the original results [15].  

In the original work, Chervin band-pass filters the EEG signal to divide it into the five 

conventional frequency bands (e.g. delta, theta, etc) prior to the spectral analysis. This filtering 

process introduces spectral leakage into other frequency bands which may slightly affect the 

relative EEG powers. It is possible to avoid this spectral leakage by taking the spectrogram of 

the original EEG signal and then calculating the average power in the different frequency bands; 

the frequency resolution of 1Hz (due to use of 1 second windows) is adequate to differentiate 

between the conventional frequency bands of interest. Further, Chervin low-pass filters the air 

flow signal prior to segmentation. A low pass filter with sufficiently low cut-off frequency can 

potentially transform the flow signal into a smooth sinusoidal waveform and greatly ease the 

peak and trough identification process; however, it also shifts the position of the actual peaks 

and troughs by up to about half a second. This shift may remove the physiological information 

contained withinin the original flow signal. Filtering can dramatically affect the morphology of 

the flow signal and can hence alter the results and their subsequent interpretation. It has been 

in fact observed that quantification of RCREC can be greatly influenced by the air flow signal 

segmentation.  

Another observation that was made was the high standard deviation of the relative EEG powers 

in a given band. Figure 35 shows an example relative EEG powers in the delta band. 
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Figure 35 shows that although there is seemingly a considerable overlap between the standard 

deviations of the relative EEG powers, it is highly unlikely that they come from the same 

population (P<0.0001).  

Based on the previous works, RCREC is a promising parameter which can help to predict 

neurobehavioral outcomes of SDB. Chervin’s Method for quantification of RCREC has been 

successfully replicated. Moreover, it has been observed that certain aspects of the algorithm can 

be improved. This case study helped to better understand the RCREC parameter and opened the 

way for more critical research questions, some of which will be addressed in the subsequent 

case studies. 

 

4.2 RCREC – investigation in 7 paediatric subjects with AHIs ranging from 

0.2 to 8.2 

4.2.1 Introduction and motivation 

 

Diagnosis of OSA is solely performed by calculating the apnoea-hypopnoea index (AHI) which is 

the number of apnoea and hypopnoea per hour of sleep. A subject is diagnosed with mild OSA if 
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Figure 35. Box and whisker plot ANOVA results for relative EEG powers of the 4 respiratory cycle sub-

segments in the delta band. Note that red crosses represent the outliers (i.e. data points outside 1.5 times the 

inter quartile range) As can be seen, even though there is a statistically significant (p<0.0001) difference 

amongst the 4 stages, the standard deviation considerably overlap. Hence it is not unlikely to obtain vastly 

different trends for the mean relative EEG power values. 
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his/her apnoea-hypopnoea index (AHI) is greater than one but smaller than five, and is 

diagnosed with severe OSA if the AHI is greater than five. Hence it is clear that AHI is an 

established and clinically valuable parameter in sleep analysis and the most important 

parameter in OSA diagnosis.     

The study was motivated by the fact that quantification of the AHI is a manual, time consuming 

and effortful process; should RCREC – which is an automatically derived parameter – be able to 

predict the AHI well enough, it can potentially remove the need for laborious calculation of the 

AHI.     

Hence, this case study aims to investigate possible relationships between the AHI and frequency 

band specific RCREC. Graphs of RCREC versus AHI have been inspected for meaningful patterns. 

Furthermore, duration of slow wave sleep within the first three hours of sleep onset in different 

subjects is investigated. 

 

4.2.2 Materials and methods 

 

Whole night polysomnograms of seven paediatric subjects with AHIs ranging from 0.2 to 8.2 

were selected from the WTCRF data set. All subjects were 4 to 5 years old at the time of data 

acquisition.  As with the previous case study, PSGs included standard sleep montage with EEG 

leads (C3/A2, O1/A2, C4/A1, O2/A1); nasal air flow (Protech) and thoracic and abdominal 

excursions.  

Magnitude of RCREC in each frequency band and for each subject was. Graphs of AHI indices 

against frequency band specific RCREC were inspected for patterns. Moreover, RCREC in 

different frequency bands in all subject were plotted against the amount of slow wave sleep 

(duration of slow wave sleep within the first three hours of sleep) to check for potential 

correlations. Pearson linear correlation was employed for the correlation analysis. The results 

are described below. 

 

 

4.2.3 Results     

 

Table 4 shows the details of the subjects selected for this study. 
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Table 4. Subjects selected for the study. 

Patient ID D.O.B Acquisition 

date 

Age Sex AHI 

12 19/06/2002 20/07/2006 4 F 0.2 
06 05/02/2001 23/06/2006 5 M 0.7 

18cc 02/12/2002 01/09/2006 4 M 1.2 

11 31/03/2001 21/07/2006 5 M 1.9 

02 01/06/2001 29/06/2006 5 M 4.7 

08 09/03/2002 20/07/2006 4 M 6.3 

28 29/01/2001 10/11/2006 5 M 8.2 

 

Mean relative EEG powers (MREPs) were calculated in each frequency band and for each 

patient. The analysis was once carried out for all the data within the first three hours of sleep 

and again for SWS portions of the data within the first 3 hours of sleep. The amount of slow 

wave sleep was also calculated. Figures 36 and 37 show an example of segmentation and MREP 

quantification in one subject (AHI=0.2, all sleep stages). 

 

 
Figure 36. Nasal air flow and sleep stage signals plotted together for patient 12 (AHI=0.2). Note that 74.4% of 
the segmented data is composed of SWS. Also note that the duration of SWS in the first 3 hours is 1.59 hours. 
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The MREP graphs were used to calculate the RCREC magnitude. Figure 38 shows the RCREC 

against AHI in three hours of sleep data where all stages are analysed (on the left) and where 

only SWS is analysed within the first three hours of sleep (on the right).  
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Figure 37. Mean relative EEG power changes in 5 different frequency bands for patient 12 (AHI=0.2, all sleep 
stages) 
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Figure 38. AHI Vs. frequency specific RCREC. The analysis was done on all sleep stages (left) and SWS only (right). 
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No meaningful patterns were found between the AHI and RCREC. As an extension of the work, 

frequency band specific RCREC values were checked against SWS portion (percentage of the 

SWS within the first three hours of the segmented data when taking into account all sleep 

stages) and SWS duration (duration of SWS only within the first three hours of sleep). It was 

found that there was a negative correlation between alpha RCREC and SWS portion and a 

positive correlation between beta RCREC and SWS duration, Figure 39 and 40 clarify this 

further.  

 
Figure 39. Correlation between SWS portion and alpha RCREC in the 7 subjects (p=0.0185<0.05). Note that 
the P value is calculated using the Pearson correlation coefficient, the same correlation does not reach 
significance if Spearman’s rho is employed instead (0=0.13) 

 

 

 

0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13
45

50

55

60

65

70

75
Correlation between SWS ratio of the analysed data Vs Alpha MRCREC in 7 paediatric patients

MRCREC Alpha

P
o

rt
io

n
 o

f 
S

W
S

 (
in

 %
)

 

 

data 1

   linear



65 
 

 
Figure 40. Correlation between SWS duration and beta RCREC in the 7 subjects (P=0.0125). Note that the P 
value is calculated using the Pearson correlation coefficient, the same correlation does not reach significance 
if Spearman’s rho is employed instead (0=0.06) 

 

Note that no other significant correlations were found in any of the other frequency bands. 

Discussion of the results and the conclusions are given next. 

 

4.2.4 Discussion and conclusion 

 

The results above show that the airflow segmentation algorithm and automatic abnormal data 

exclusion work well, it also shows that given a hypnogram, the algorithm can successfully 

analyse specific sleep stages such as the slow wave sleep. The reason behind choosing to 

analyse slow wave sleep (or deep sleep) rather than all the other stages such as S1, S2 or REM, 

is because of its physiological importance. Slow wave sleep is known to have recuperating 

effects and people suffering from SDB have lesser slow wave activity (SWA) compared to the 

normal population [48]. Hence it was decided to give special attention to SWS and analyse it in 

more details.  

Figure 38 (AHI vs. RCREC) showed there was little difference between RCREC parameters when 

calculated from all sleep stages inclusive against SWS only. This is probably due to the fact that 

most of the segmented data within the first three hours is composed of SWS and hence by 

removing other sleep stages from the analysis, not a considerable amount is actually removed. 

therefore, there are no significant trend changes between the two graphs. However, subjects 

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7
Correlation between SWS ratio of the analysed data Vs beta MRCREC in 7 paediatric patients

MRCREC beta

S
W

S
 d

u
ra

ti
o

n
 (

H
o

u
r)

 

 

data 1

   linear



66 
 

 
 

with higher AHIs do seem to have more varying RCREC which may be caused by the lack of SWS 

compared to the other subjects.  

Correlation analysis revealed that there may be a degree of correlations between frequency 

specific RCREC and SWS in absolute duration (Figure 40) and, RCREC and SWS percentage 

(Figure 39). The result in Figure 39 loosely suggests that on average, changes in EEG relative 

power in alpha band declines with increasing amount of SWS. In other words, alpha activity 

becomes more regular or stable (less variable) as one experiences more SWS. Similarly, the 

result depicted in Figure 40 suggests that on average, relative EEG power changes in the beta 

band increases with increasing SWS duration, meaning that beta activity becomes more variable 

as one goes through more deep sleep. Assuming that SWS is responsible for restoration of 

cortical columns and beta activity discharges the restored cells, the latter finding suggests that 

the more one recuperates through deep sleep, the more fatigued one gets which seems 

contradictory. 

Finally, note that the P values obtained from the correlation analyses are only marginally 

significant, and if a non-parametric test such as the Spearman’s rho is employed, P values do not 

reach significance. It should also be noted that a sample size of seven is not suitable for drawing 

solid conclusions out. Hence, repeating the analysis on a bigger population is worthwhile. 

 

4.3 RCREC – Extension, is RCREC sensitive to airflow segmentation? 

4.3.1 Introduction and motivation 

 

In a recent work on RCREC it was noted that the authors use the esophageal pressure monitor 

signal (acquired with an esophageal balloon) and low-pass filter it to produce a respiration 

signal with reduced artefact [38]. In the previous section, where replicating the method to 

quantify RCREC, it was noticed that low pass filtering the airflow signal would greatly smooth it 

and simplifies the peak and trough detection process, however, at the same time it changes the 

actual peak and trough positions. This can alter the physiological information embedded in the 

airflow signal and ultimately influence the RCREC values. In order to test whether filtering of the 

airflow signal can influence the RCREC,  two different smoothing methods were compared, first 

a standard 5th order digital Butterworth filter with cut off at 0.51 Hz was employed and then a 

2nd order (or 2nd degree) Savitzky-Golay filter (a polynominal fitting filter). The Savitzky-Golay 

filter is known for its shape-preserving capability which means it can better preserve the actual 

peaks and troughs. Note that the airflow signal was originally sampled at 16 Hz and then was 

interpolated to have the same number of samples as the EEG signal (256 Hz). 
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Respiratory cycle related EEG power changes as well as changes in four other parameters 

namely: skew, kurtosis, length of each sub-segment and irregularity index were then quantified. 

The irregularity index was calculated using the Sample Entropy (SampEn) method; a technique 

developed for estimating the complexity of time series [49].  

The employed parameters provided us with a clearer judgement as to whether RCREC is 

sensitive to the airflow segmentation process.  It was found that RCREC is sensitive to airflow 

segmentation and different smoothing algorithms can produce differing results.  

Looking at the irregularity index was also of particular interest. It was speculated that if the 

changes in RCREC are caused by numerous micro-arousals, then respiratory cycle related EEG 

complexity changes may reveal that more clearly. In other words, it was hypothesised that 

frequent microarousals may manifest themselves as EEG complexity changes; however, 

difference between the complexity of the EEG signals within the four respiratory cycle sub-

segments did not reach significance for any of the subjects. 

4.3.2 Materials and Methods 

 

Polysomnograms of ten paediatric subjects (Bolivian data set) from 8 to 15 year old were 

imported from the Compumedics software to Matlab as EDF files. Biosig toolbox for octave and 

Matlab3  was used to read the EDF files in Matlab. Subjects’ respiratory disturbance index (RDI) 

ranged from 0.1 to 3. RDI is a measure almost identical to AHI with the difference that it may 

also take into account deleterious respiratory events other than apnoea and hypopnoea.  

In addition to mean relative EEG powers, three other parameters were computed in a similar 

way. Skewness, kurtosis and length of each sub-segment of the EEG signal in each and every 

respiratory cycle sub-segment and each frequency band were calculated for the first three hours 

of sleep and used as features. The irregularity index was not calculated for each band but for the 

original EEG signal using standard parameterisation with m=2 and r=0.25 (see Richman [49] for 

fundamental information on SampEn and Aboy [50] for its synthetic and real applications). 

Skewness measures the asymmetry of the underlying probability distribution of a real random 

variable; kurtosis is a measure of how “peaked” the underlying probability distribution is (e.g. a 

high value of kurtosis means most of the variability in the signal is caused by extreme values). 

Length of each respiratory cycle sub-segment was also included to inspect if different 

smoothing routines can significantly change the length of the sub-segments. In this study it was 

aimed to find out whether the parameters mentioned above change significantly with different 

smoothing procedures.  Results of the study are provided below.  

                                                           
3
 http://biosig.sourceforge.net/download.html 

http://biosig.sourceforge.net/download.html
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4.3.3 Results 

 

Table 5 shows details of the subjects selected for this study. If only AHI is taken into account, all 

subjects can be considered controls. 

 

Table 5. Details of the ten paediatric subjects selected for this study. 

Patient ID Age Sex AHI RDI 

P11 10 M 0.1 0.1 
P1 15 F 0.0 0.2 

P3 15 F 0.4 0.5 

P12 13 F 0.0 0.5 

P5 9 M 0.2 0.8 

P18 8 F 0.8 1.2 

P9 9 M 0.6 1.4 

P4 8 M 0.7 2.0 

P10 9 M 0.6 2.3 

P8 8 M 0.6 3.0 

 

 

RCREC in power, skewness, kurtosis and sub-segment length were calculated for all subjects, 

once after using a Butterworth filter and another time with the Savitzky-Golay filter and the 

differences between them were tested using one way ANOVA. Tables 6 and 7 show the resulting 

P values for subject P1 (with zero AHI) as an example. 

 

Table 6. P1, airflow signal smoothing using the Butterworth low-pass filter. 

Patient1 All bands Delta Theta Alpha Sigma Beta 

Power (2 seg) 0.01 0.03 0.22 0.09 0.0006 0.08 

Skew (2 seg) 0.07 0.01 0.07 0.25 0.04 0.84 

Kurt (2 seg) 0.04 0.03 0.12 0.31 0.29 0.37 

Seg length (2 seg) 0 0 0 0 0 0 

Irregularity (2 seg) 0.27 
     

Power (4 seg) 2.7E-08 7.1E-07 0.003 0.0001 0.0003 0.0002 

Skew (4 seg) 0.29 0.09 0.89 0.66 0.66 0.51 

Kurt (4 seg) 0.41 0.13 0.03 0.006 0.85 0.81 

seg Length (4 seg) 0 0 0 0 0 0 

Irregularity (4 seg) 0.34 
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Table 7. P1, airflow signal smoothing the using Savitzky-Golay filter. 

Patient1 All bands Delta Theta Alpha Sigma Beta 

Power (2 seg) 0.01 0.02 0.41 0.01 0.0001 0.11 

Skew (2 seg) 0.12 0.06 0.81 0.19 0.01 0.005 

Kurt (2 seg) 0.003 0.001 0.002 0.004 0.003 0.57 

Seg length (2 seg) 0 0 0 0 0 0 

Irregularity (2 seg) 0.25 
     

Power (4 seg) 1.3E-09 8.4E-08 0.002 9.0E-05 4.7E-05 4.9E-05 

Skew (4 seg) 0.07 0.03 0.37 0.12 0.13 0.84 

Kurt (4 seg) 0.006 6.7E-05 2.3E-06 9E-06 0.02 0.79 

seg Length (4 seg) 0 0 0 0 0 0 

Irregularity (4 seg) 0.54 
     

 

 

The entries in the above two tables are the P values, those highlighted in green indicate P<0.01 

and those in yellow are for P<0.05. Parameters marked with “2 seg” indicate that in the analysis, 

each respiratory cycle was divided into two segments i.e. expiration and inspiration and “4 seg” 

indicates that each respiratory cycle is divided into four segments namely: early expiration, late 

expiration, early inspiration and late inspiration. It is clear from the tables that the number of 

parameters which reach significance is different when the smoothing procedure changes (in the 

above example, the number of parameters which reach significance is higher when SG filter is 

used). The results suggest that although the difference between the smoothing procedures may 

not seem significant when visually assessing the two versions of the smoothed airflow signal 

(see Figure 41 for clarification), it can almost substantially influence the results. Table 8 

emphasizes the difference between the two smoothing procedures. 
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Figure 41. An example comparing Butterworth low pass filter smoothing against the Savitzky-Golay 

smoothing. Peaks/troughs produced by the two procedures can differ up to 0.5 second in position. Although 

the difference does not seem significant for the majority of the peaks and troughs, it was shown that it can 

influence the results. 
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Table 8. difference in number of parameters reaching significance for the two smoothing procedures 
(Butterworth vs. Savitzky-Golay) 

 Butterworth low-pass filter Savitzky-Golay fitting filter 

Subject ID RDI 

Number of 

parameters 

reaching 

significance 

at p<0.01 

Number of 

parameters 

reaching 

significance at 

p<0.05 

Number of 

parameters 

reaching 

significance at 

p<0.01 

Number of 

parameters 

reaching 

significance 

at p<0.05 

P11 0.1 20 27 21 29 

P1 0.2 20 27 29 35 

P3 0.5 3 6 17 26 

P12 0.5 6 9 18 24 

P5 0.8 17 24 28 29 

P18 1.2 20 25 28 32 

P9 1.4 2 18 21 27 

P4 2.0 22 24 20 25 

P10 2.3 21 26 18 20 

P8 3.0 22 27 23 27 

Total 153 213 223 274 

 

 

The table above essentially compares the overall number of parameters reaching significance 

when smoothing with the SG and the Butterworth filter. For instance, the first table for subject 

P1 (Table 6) has 20 green entries and 7 yellow entries meaning that it has 20 parameter 

reaching significance at P<0.01 and 27 parameters reaching significance at P<0.05. As can be 

seen in Table 8, the number of parameters reaching significance is considerably higher in total 

when SG filter is employed. A further observation was that respiratory cycle related complexity 

changes (i.e. the irregularity index) did not reach significance in any of the subjects. 

 

4.3.4 Discussion and conclusion 

 

The results provided above suggest that RCREC is sensitive to prior airflow signal segmentation 

and seemingly small variations in peak/trough position estimation can lead to differing results. 

During the simulations it was observed that commonly, smoothing the airflow signal using a 
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standard low pass filter with a relatively low cut off frequency results in a relatively uniform 

separation of peaks and troughs, however, this uniform separation was artificial and not 

physiologically plausible. It had also been noticed that the lower the cut off frequency the more 

uniform the peak/trough separation. The airflow signal smoothed by the low-pass filter 

therefore had its actual peaks and troughs positions shifted in time (see Figure 41). As a result, 

it was evident that in order to take full advantage of the physiological information embedded 

within the airflow signal, there was a need to produce better estimates of the actual peak and 

trough positions. Hence, a Savitzky-Golay filter, which is known for its shape preserving ability, 

was chosen as the appropriate smoothing filter. As the results suggest, the SG filter accentuates 

the differences between the respiratory cycle segments. A direct consequence of use of SG filter 

is that the peak/trough separation (i.e. length of the respiratory cycle sub-segments) will not be 

artificially uniform and in fact, will be dramatically different. 

One way analysis of variance (ANOVA) was employed despite our prior knowledge of statistical 

tests such as Wilcoxon rank-sum or Kruskal-wallis which better suit this purpose in this 

particular case study. The main reason for doing so was to keep the results comparable with the 

results previously published in the literature. 

An interesting observation which came out of this study was that complexity of the EEG signal 

did not significantly change within the respiratory cycle segments. This observation opens three 

possibilities, 1) RCREC is not caused by frequent microarousals, 2) frequent microarousals do 

not manifest themselves as complexity changes and 3) the method used has not been 

appropriately chosen (or the results have not been interpreted appropriately). SampEn method 

was chosen because it was a nonlinear method capable of producing complexity estimates 

without requiring a large number of samples and with a reduced bias compared to the 

Approximate Entropy method. Other complexity measures usually require a large number of 

samples to reliably estimate the complexity.  In order to quantify the complexity of the EEG 

signal for a single respiratory cycle sub-segment (about 300 samples), the required method had 

to be capable of producing reliable complexity measures with a small number of samples and 

therefore, SampEn method was chosen. Matlab code for calculating sample entropy was 

employed from the physionet sample entropy toolbox4. The question as to whether RCREC is 

caused by numerous microarousals or whether microasousals manifest themselves as 

complexity changes is a substantial one which requires dedicated research and is outside the 

scope of this case study. What can be addressed with certainty here is that RCREC is sensitive to 

prior segmentation of airflow signal and the RCREC values quantified may not be consistent and 

hence appropriate pre-processing is of essence.   

                                                           
4
 http://www.physionet.org/physiotools/sampen/. 

http://www.physionet.org/physiotools/sampen/
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Another issue which may be influencing RCREC is that the amount of data selected for the 

analysis in each subject is different from that of others simply because the amount of rejected 

data (i.e. abnormal, apnoea, hypopnoea) varies from one subject to another due to factors such 

as different sleeping patterns or different severity degree of the underlying SDB. How data 

length affects RCREC is something that has not been looked at and may need further 

investigation. 

 

This concludes the chapter on preliminary case studies. The case studies here helped in better 

understanding some of the gaps in RCREC research and defined the next steps of the research. 

The next chapter is dedicated to the substantial investigations on the effects of alternative 

airflow segmentation on RCREC. 

 

4.4 Summary 

 

In this chapter the preliminary analyses on RCREC were described, it started with successful 

replication of the original RCREC work on a single paediatric subject and then expanded to 

explore possible simple relationships between AHI and RCREC in a small sample of seven 

subjects. No significant relationships or patterns were found between AHI and the RCREC 

parameters. Effects of alternative airflow signal smoothing was also addressed. It was found 

that seemingly negligible changes in the airflow smoothing can significantly alter the statistics 

of respiratory cycle segments.   
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Chapter 5   

 

 

 

Systematic investigation of the effects of alternative airflow 

segmentation on RCREC 
 

The preliminary case studies provided valuable clues to the direction of RCREC research. In 

particular, the third case study revealed that seemingly negligible changes in airflow signal 

segmentation can change the RCREC parameters extracted from PSG. This paved the way for a 

systematic analysis on the effects of alternative airflow segmentation on RCREC. The rest of this 

chapter contains the main case study on the effects of alternative airflow segmentation with an 

emphasis on transition segmentation, an airflow segmentation routine based on 

inspiratory/expiratory transitions. Different oral/nasal airflow measurement instruments were 

also looked at and their potential influence on RCREC were investigated. Last but not least, an 

attempt was made to mathematically explain how a small shift in the airflow signal 

segmentation points can change RCREC.  

5.1 Effects of modified respiratory cycle segmentation on RCREC 
 

RCREC has been demonstrated to predict sleepiness in patients with obstructive sleep apnoea 

and is hypothesised to represent microarousals. As such RCREC may provide a sensitive marker 

of respiratory arousals. A key step in quantification of RCREC is respiratory signal segmentation 

which is conventionally based on local maxima and minima of the nasal flow signal. An 

alternative respiratory cycle segmentation method based on inspiratory/expiratory transitions 

is investigated here. 

5.1.1 Motivation and data set 

 

As it was revealed in the third preliminary case study, identification and segmentation of 

respiratory cycles is a crucial step in the quantification of RCREC. Recall that in the original 

work, after removal of abnormal portions of thermocouple generated flow signal, each 

respiratory cycle was divided into four segments based on its local maximum, minimum and the 

mid points between the two. Whilst segmenting the signal directly according to its extrema is 

intuitive, it may not be optimal. The aim here is therefore to test a novel approach to respiratory 

cycle segmentation to achieve greater significance in the relative EEG power differences and 
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hence potentiate the ability of this measure to predict neurocognitive outcomes of sleep 

disordered breathing.  

5.1.2 Methods 

i. Pre-processing 

 

Bolivian data was selected for the analysis duo its higher overall quality and larger samples size. 

PSGs with less than one thousand regular respiratory cycles or insufficient quality in either of 

the EEG or the flow signal were excluded from further analysis. This initial sifting procedure left 

47 refined PSGs (24M:23F) to work with. EDF files were imported into Matlab using the Biosig 

toolbox version 2.49 for Octave and Matlab [51]. The toolbox, by default, inverts the 

neurophysiological signals (EEG, EOG, EMG, ECG) and zero-order interpolates all 

polysomnographic signals to match the highest sampling rate in the data set (EEG with 256 Hz 

in this case). Neurophysiological signals were hence re-inverted and all interpolated signals 

were decimated to their original sampling rates. They were then re-interpolated by zero 

padding and low-pass filtering using a symmetric Finite Impulse Response (FIR) filter [52]; this 

is to avoid artificial discontinuities in the signals introduced by zero-order interpolation. EEG 

channels were notch filtered at 50 Hz and then band-pass filtered between 0.5 and 32 Hz using a 

5th order digital Butterworth filter. The thermistor flow signal was low-pass filtered at 0.5 Hz 

also using a 5th order Butterworth filter. As a result of filtering, clipped regions of the flow signal 

were smoothed. Although the 0.5 Hz cut-off is generally too low for filtering the respiratory 

signal, it does not considerably affect the thermistor generated flow signal as thermocouple 

based flow monitors are less sensitive to rapid changes in airflow. The 0.5 Hz cut-off was chosen 

to conform to previous work in the area [38]. Filtering for all signals was executed in forward 

and reverse directions to avoid unnecessary phase shifts (zero phase filtering). EEG channels 

and the thermistor flow signal were finally de-trended and readied for subsequent analysis. 

Since quantification of RCREC is solely dependent on a single EEG channel and a time-locked 

naso-oral flow signal, pre-processing was limited to the EEG and the thermistor flow signals. 

ii. Transition segmentation 

 

The respiratory cycle segmentation approach employed here is based on a novel departure from 

the conventional segmentation. Instead of dividing each respiratory cycle into four segments 

based on the detected maxima-minima and their mid points the average position of every two 

consecutive conventional segmentation points (mid points) were used to define respiratory 

cycle segments. This new segmentation captures the peaks and troughs and essentially looks at 
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the transitions from expiration to inspiration and vice versa. It is therefore referred to as 

transition segmentation henceforth; Figure 42 clarifies the transition segmentation.     

 

 

Figure 42. Transition segmentation of the same respiratory cycle shown in Figure 23. The flow signal is 
divided into four segments based on the mid points of the conventional segmentation points. TEE stands for 
transition to early expiration, TLE for transition to late expiration, TEI for transition to early inspiration and 
TLI for transition to late inspiration. 

 

iii. Statistical analysis 

 

Demographic data and polysomnoraphic variables were examined for normality using the 

Shapiro-Wilk test.  As most variables were non-parametric in distribution, group differences 

were evaluated using the Mann Whitney U tests and all data, irrespective of distribution, are 

presented as medians for clarity. As age was found to differ significantly between the high and 

low altitude groups, altitude comparisons were co-varied for age but only for measures of sleep 

architecture and total sleep time which are influenced by age [53].  

For each subject and in each frequency band, relative EEG powers in the four respiratory cycle 

segments were compared using the parametric one way analysis of variance (ANOVA) in 

accordance with previous work [15]. Note that although ANOVA assumes independence of 

samples and that is unlikely to be the case here, we have kept it for compatibility with the 

original studies on RCREC. Inclusion of dependent samples in ANOVA can affect the degrees of 

freedom of the test and subsequently change the corresponding P values and with that, 

interpretation of what is and what is not statistically significant. The significance of the 

difference between relative EEG powers was measured using the Fisher’s F value derived from 

ANOVA. The distributions of the relative EEG powers were not normal, however, ANOVA has 

been shown to be robust to violations of the normality assumption [43]. F values were 

calculated once with the conventional segmentation and once with the transition segmentation 

and were then statistically compared. Given that, arguably, the extracted F values for each 
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individual were likely to be correlated, and the potential for Type one error due to multiple 

comparisons (6 frequency bands), repeated measures multivariate analysis of variance 

(MANOVA) was selected for the comparison of the conventional and the transition RCREC F 

values across the 6 bands. Assuming a main effect of segmentation method (conventional vs. 

transition), the univariate tests were inspected to see which frequency bands were driving this 

effect. Accordingly, no adjustment for multiple comparisons was required. Conventional and 

transition F values in each band were also compared using the paired non-parametric Wilcoxon 

signed rank test to confirm the findings. No differences in the results were found, therefore, the 

results from the univariate tests are reported here. As age did not correlate with the F values in 

any of the frequency bands, and there were no gender differences, no account was taken of 

these in the analyses.  

5.1.3 Results 

 

Children at high altitude were statistically significantly older than those at low altitude. Analysis 

of PSG variables that are known to vary with age were therefore controlled for age effects.  Key 

PSG findings of the 47 subjects are summarised in Table 9. Total sleep time, sleep efficiency and 

REM% were comparable between settings. Children at low altitude had significantly more delta 

sleep and less stage 2 sleep than those at high altitude after controlling for age effects. As would 

be predicted, SpO2 variables were significantly lower at high altitude. Obstructive 

apnoea/hypopnoea indices indicated high rates of sleep disordered breathing at high altitude 

with significantly more children having an obstructive AHI > 1. Children at high altitude 

experienced more central apnoeas than those at low altitude.  
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Table 9. Key demographic and polysomnographic variables 

 Low altitude 
(N=26) 
Median (IQR) 

High altitude 
(N=21) 
Median (IQR)  

P 
value 

Age in years 
 

9.7 (4.7) 12.1 (5.4) <.05 

Gender 
 

12 male 12 male NS 

Total sleep time in minutes 
 

405.3 (71.8) 
 

378.5 (103.0) 
 

NSa 

Sleep efficiency 
 

94.9% 92.6% NSa 

N2 % 
 

44.9(7.8) 50.7 (11.2) <.05a 

N3  % 
 

31.0 (8.4) 25.7 (9.2) <.05a 

REM % 
 

19.8 (5.7) 18.3 (7.6) NSa 

Mean SpO2%  
 

97 (2.0) 88 (3.0) <.001 

Minimum SpO2 
 

92 ( 3.3) 81 (7.5) <.001 

Central apnoea index 
 

0.3 (0.6) 0.7 (1.6) <.05 

Obstructive apnoea index 
 

0.0 (0.0) 0.0 (0.0) NS 

Obstructive apnoea/hypopnoea index 
 

0.6 (1.1) 2.0 (3.0) <.01 

No. children with AHI >1  
 

7 13 <.02 

No. children with AHI >5 
 

0 3 NS 

Respiratory arousal index 
 

0.3 (0.4) 
 

0.3 (0.7) 
 

NS 

Number of respiratory cycles 
analysed  
 

3507 (2099) 4496 (2184) NS 

a  Controlling for the effect of age 

 

Multivariate comparison of Fisher’s F values across 47 subjects and in all frequency bands 

revealed that utilising the transition segmentation strongly increases the statistical significance 

of the difference between the relative EEG powers in the four respiratory cycle segments, 

F(6,41)=7.06, P<.001. The main effect size, partial η2, associated with the segmentation method 

used, was 0.51 which is interpreted as “large enough to be visible to the naked eye”[54]. 

Frequency band specific F values were also individually compared (univariate comparison) and 

the transition F values were found to be significantly higher (p<.05) than the conventional ones 

in all frequency bands except beta, Table 10 contains the details of the comparison. Since in 

calculation of F values (i.e. between group variability/within group variability), the degrees of 
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freedom of the denominator, associated with the number of non-apnoeic respiratory cycles 

throughout sleep, is large, F values are comparable and therefore, statistics such as mean and 

standard deviation are defined and meaningful. The distribution of the F values for the 

conventional and the transition RCREC are also graphically shown as box plots in Figure 43. No 

significant differences were found in the RCREC or transition RCREC parameters between the 

low and high altitude groups having controlled for age. RCREC and transition RCREC 

parameters were also compared across the two AHI groups (27 controls vs. 20 mild/severe 

OSA) using the Mann-Whitney U test and no significant differences were found.   

 

Table 10. Statistical comparison of the conventional and the transition RCREC 

 Conventional RCREC  
F-values 

Mean± SD 

Transition RCREC  
F-values 

Mean± SD 

Significance 

Whole spectrum 
(0.5-32 Hz) 

 

25.8 ± 17.1 31± 22.6 F(1,46)=8.63 
P<.01 

Delta 
(0.4-4.5 Hz) 

 

25.7 ± 18.3 30± 24.1 (1,46)=5.32 
P<.05 

Theta 
(4.5-8 Hz) 

 

15.1 ± 9.6 18.8 ± 11.5 F(1,46)=27.3 
P<.001 

Alpha 
(8-12 Hz) 

 

14.4 ± 10.5 19.4 ± 14.5 F(1,46)=21.2 
P<.001 

Sigma 
(12-16 Hz) 

 

12.9 ± 12.3 16.3 ± 15.9 F(1,46)=9.99 
P<.01 

Beta 
(16-30 Hz) 

 

13.7±20.5 13.6±20.3 F(1,46)=.004 
P>.5 

 

 

Statistical comparison of the conventional and the transition Fisher’s F values in 47 subjects using the 

repeated measures MANOVA. Mean and standard deviation (SD) of the F values associated with each 

segmentation method are provided.  
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Figure 43. F value distribution of the conventional and the transition RCREC as illustrated by box plots. The top and the 
bottom lines of the box represent the upper and lower quartile values respectively and the middle line represents the 
median of the distribution. Maximum whisker length is set at 1.5 × the interquartile range, and all points outside this range 
(outliers) are removed. P values are the exact counterparts of those shown in Table 1. 
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i. Variations of segmentations tested 

 

To gain further insight into the effects of alternative segmentations on the statistical significance 

of RCREC, several variations of respiratory cycle segmentation were also tested, details of which 

are briefly described below. 

 

Backward shift 

The conventional segmentation points shown in Figure 23 were all shifted by an arbitrary 50 

samples (195 milliseconds) to the left (backward) to generate a new segmentation. Similar to 

the previous analysis, significance of the difference between respiratory cycle segments were 

computed for conventional and backward shifted RCREC in 47 subjects. Multivariate 

comparison of Fisher’s F values across the six bands showed a statistically significant increase 

in the difference between relative EEG powers in the backward shifted segments, F(6,41)=7.63, 

P<.001. Note that the F values extracted from the transition segmentation were on average 

larger than those obtained from the backward shift segmentation in all frequency bands except 

beta. 

 

Forward shift 

Original segmentation points were also shifted forward by 50 samples (195 milliseconds) and 

the same procedure as above was carried out for the analysis. By contrast, the forward shift 

significantly decreased the significance of the difference between relative EEG powers in the 

forward shifted respiratory cycle segments, F(6,41)=6.47, P<.001.   

 

Long shift 

To investigate the criticality of synchronisation between the EEG and nasal flow signals, 

influence of longer shifts on RCREC were assessed. For simplicity, instead of shifting the 

segmentation points, the time-locked C3/A2 EEG channel was temporally shifted. The EEG 

signal was once circularly shifted backwards and once forward by an arbitrary time of one 

minute. F values for both cases were calculated in the same manner as above and compared 

with the original RCREC F values. F values for forward and backward long shifts were both 

significantly (p<.001) lower than the conventional F values, Fforward(6,41)=11.36 and 

Fbackward(6,41)=13.03. No significant differences were found between the forward and backward 

long shift F values F(6,41)=.72, P>.5. 
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ECG based segmentation 

To assess the relationship between cardiac rhythm and RCREC, respiratory cycles were 

segmented based on time-locked ECG R peaks (detected automatically using a modified Pan-

Tompkins algorithm [55]). Segment specific relative EEG powers in respiratory cycles with the 

most frequent number of R peaks were calculated in 12 subjects. A preliminary comparison of P 

values associated with the difference between relative EEG powers in the conventional and ECG 

segmented respiratory cycles showed no significant increment, suggesting that RCREC is 

unlikely to be influenced by the temporal location of R peaks within respiratory cycles.      

  

5.1.4 Discussion 

 

In this case study, a number of alternative segmentation routines were introduced and their 

effect on RCREC was investigated. In particular, the transition segmentation was found to 

increase the significance of the difference between respiratory cycle segment specific relative 

EEG powers. We speculate that this increment in significance is a result of better isolation of the 

temporal source(s) driving the RCREC. 

The results presented here show that segmenting the thermistor generated respiratory cycles 

based on transitions from expiration to inspiration and vice versa (Figure 44) noticeably 

increases the statistical significance of the difference between relative EEG powers in the four 

respiratory cycle segments. This study is not the first to emphasise the physiological importance 

associated with transition from expiration to inspiration or vice versa. In an investigation of the 

effects of respiration on input pulmonary arterial impedance (Z) in dogs, Castiglioni et al. [56] 

reported that Z modulus and phase undergo significant changes in transition from inspiration to 

expiration. In contrast, in a similar study in humans, where respiration was only classified into 

inspiration and expiration, no significant differences were found in the overall Z-spectrum 

between inspiration and expiration [57]. In another study on rats, Ezure et al. [58] investigated 

the firing properties of respiratory centre neurons in the brainstem just before the transition 

from expiration to inspiration. They concluded that some inspiratory neurons are activated 

prior to the start of inspiration whilst some are inhibited by strong firing of the augmenting 

expiratory neurons of the Bötzinger complex; a further insight into the process of brainstem 

activity in transition from expiration to inspiration.  

The results generated from the brief forward and backward shifts suggest that RCREC is 

sensitive to respiratory cycle segmentation. Whilst slightly shifting the conventional 

segmentation points backward significantly increases the differences between relative EEG 

powers, a shift forward, will do the exact opposite. Changes in significance induced by simply 

shifting the segmentation points back and forth are likely to be related to the temporal location 
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within the respiratory cycle at which the underlying physiology (or physiologies) driving the 

RCREC occurs. Hence, in order to gain insight and ideally identify the physiological mechanisms 

underpinning RCREC, instrumental delays must be taken into account. Whilst there is virtually 

no delay in EEG signal acquisition, the thermocouple based flow signal monitors are associated 

with relatively large delays. Xiong et al. [59] report an average of 370 milliseconds delay 

(ranging from 120 to 720 milliseconds) for nasal flow thermistors compared to oesophageal 

pressure fluctuations and emphasise that only a small portion of this delay is due to the 

physiology of the respiratory system. A pilot experiment was also designed to assess potential 

phase differences between a thermistor and a pressure transducer nasal cannula which follows 

after this case study. Although in general these delays can be neglected in most sleep scoring 

and sleep event identification criteria, it has been shown that they have a profound effect on 

RCREC and hence should be taken into account when investigating the physiological basis of the 

technique. The increase in the statistical significance of RCREC seen after briefly shifting the 

conventional segmentation points backward is likely to therefore represent temporal alignment 

of the airflow and EEG signals.  Filtering the flow signal may also introduce artificial shifts (see 

Chervin et al. [38] for an example), particularly when the cut-off frequency is very low with 

respect to the major spectral content of the signal, and should hence generally be avoided as it 

may affect the resulting RCREC.   

Long shifts revealed that circularly shifting the EEG signal by one minute dramatically reduces 

the differences between the relative EEG powers in the respiratory cycle segments, suggesting 

that synchronisation between the EEG and the respiration signal plays an important role in 

RCREC and is crucial for its detection and understanding. Furthermore, there were no 

significant differences between the forward and backward F values after the long shift, implying 

that the systematic pattern brought out by the small forward and backward shifts only holds 

when the EEG and the flow signal are relatively well synchronised.  

ECG based segmentation failed to increase the significance of the difference between 

respiratory cycle segments when compared to the conventional segmentation routine. This 

suggests that temporal locations of R peaks within respiratory cycles are unlikely candidates to 

explain the regulation of RCREC.  

In this study only three subjects were diagnosed with moderate-severe OSA (AHIs of 7.2, 7.2 

and 40.6) out of which only one had an obstructive apnoea index of greater than one. Given that 

RCREC were consistently present in most frequency bands (number of significant RCREC in 

delta: 46, theta: 43, alpha: 44, sigma: 38 and beta: 32 out of 47 participants) and that there were 

no significant differences between the RCREC parameters between the two AHI groups led to 
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the speculation that although RCREC may be related to inspiratory microarousals and 

respiratory effort [38, 40], it might not be dominantly derived from them.  

Another speculation into the origin of RCREC can be made based on its consistent presence in 

different populations. RCREC exists in children as well as adults and in controls as well as OSA 

patients; consequently, RCREC could be a manifestation of the respiratory regulatory system. 

One hypothesis, noted by Chervin et al. [15], is the possible relationship between respiratory 

related evoked potentials [60] (RREP) and RCREC.  It is possible that inspiring against a fully or 

partially obstructed airway is analogous to common stimuli used in RREP studies (e.g. 

inspiratory occlusion or the use of resistive loads), and hence, coherently averaging the EEG 

signals (time-locked to the start of inspiration) across a few hundred respiratory cycles gives a 

consistent pattern. This hypothesis was briefly assessed from a technical stand point using a 

bootstrapping method developed for objective detection of evoked potentials [61] (see 

Appendix B). A single control subject with very significant respiratory cycle related EEG changes 

in all bands was selected for this analysis. The PSG was divided into eight large segments, each 

having more than 250 respiratory cycles and a significant RCREC (P<0.01) when looking at the 

whole spectrum of the EEG signal. The coherently averaged EEG signals: 1) produced different 

patterns across the eight segments and 2) the generated patterns were not significantly 

different from randomly generated ones in seven out of eight segments, suggesting that there is 

little evidence to support a causal relationship between RREP and RCREC, however, reaching a 

firm conclusion will need further investigation. 

In summary RCREC is sensitive to respiratory cycle segmentation and as a result, experimental 

designs regarding RCREC should carefully account for factors which may alter the morphology 

of the respiratory signal as well as ensuring optimal synchrony between respiratory and EEG 

signals. The introduced respiratory cycle segmentation technique based on inspiratory and 

expiratory transitions strengthens the statistical significance of the respiratory cycle related 

EEG changes when compared to previously published segmentation techniques. The transition 

segmentation approach may thus provide a better synchronisation with the underlying RCREC 

driving physiology and increase the ability of this measure to predict neurocognitive outcomes 

in sleep disordered breathing.  
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5.2 Comparison of two nasal airflow measurement instruments: pressure 

transducer nasal cannula vs. nasal thermistor 
 

5.2.1 Motivation 

 

The previous case study showed that if the segmented airflow signal is shifted slightly to the left 

(by 0.2 – 1 second), it is highly likely that the corresponding EEG power changes between the 

respiratory cycle sub-segments will increase. Similar shifts to the right yielded the opposite 

effect. This was puzzling and therefore, it was argued that since the selection of the 

inspiratory/expiratory peaks as the basis for segmentation have been somewhat arbitrary, it 

could be that the transition points from expiration to inspiration and vice versa, hold greater 

physiological importance. However, it was also important to account for delays imposed by 

various airflow measurement instruments [59], hence it was speculated that this shift can be 

related to the existing delays in the airflow measurement instruments. Since the RCREC 

research subjects had their flow measured using thermistors, the findings about shifting the 

flow signal were, strictly speaking, limited to the airflow signals acquired using thermistors. It 

was naturally presumed that the flow signal measured by different but commonly used 

instruments should more or less result in similar general signal structure, and the expiration 

and inspiration peak positions should be partially preserved. Based on that assumption, a 

simple experiment was designed to reveal those presumably fine differences between two of 

the most commonly used nasal flow measurement instruments in sleep research. The 

experiment was to simultaneously measure the signal generated from both a nasal thermistor 

and a pressure transducer nasal cannula and characterise their relative delays. In contrast to the 

assumption made, results revealed that the signals generated from the two instruments are 

considerably different. The expiratory and inspiratory peak positions particularly, are not well 

preserved. This can be crucially important in applications where flow signal morphology and 

the inspiratory/expiratory peak positions are core to the analysis, an example of such 

application, is quantification of RCREC. 

5.2.2 Materials 

 

Simultaneous nasal airflow signal was acquired from a single healthy adult subject using a 

pressure transducer nasal cannula and a nasal thermistor in sitting position. A nasal/oral 

thermistor was used but the oral sensor was deliberately covered with blue tack. Both 

instruments were provided by pro-tech (component number P1259 and P1274 from the Pro-

Tech diagnostic sensor catalogue) and Alice 5 diagnostic sleep system5 was used as the data 

                                                           
5
 http://www.healthcare.philips.com/gb_en/homehealth/sleep/alice5/default.wpd 

http://www.healthcare.philips.com/gb_en/homehealth/sleep/alice5/default.wpd
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acquisition platform. The sampling rate was set to 200Hz to ensure accurate delay profile 

estimation and 16 bits were used for quantization. In total, 11 minutes of data was acquired and 

in order to avoid excessive artefacts, the subject was instructed to breathe calmly and regularly 

through his nose. Figure 44 shows a snap shot of the subject (with his consent) after the setup 

and an example of the acquired normalised raw signals. 

 

 

   

 

 

 

 

 

5.2.3 Methods 

 

Signals acquired from the Alice 5 platform were imported into Matlab. The first few respiratory 

cycles (approximately 32 seconds) were removed from the analysis; this is to allow the 

thermistor to heat up and reach its steady state.  Both signals were zero phase filtered (forward 

and backward filtering) with a 5th order digital low-pass Butterworth filter with cut off at 1 Hz. 

As can be seen in Figure 44, the fundamental frequency is approximately 1/6 Hz (5 cycles in 30 

seconds) which means the chosen cut-off frequency allows up to five harmonics to reconstruct 

the signal whilst removing any higher spectral components; this is desirable as the information 

of interest largely lies within the low frequency region. Both signals were then de-trended. 

Figure 45 shows an example of the resulting waveforms; the graph shown is the same as the one 

in Figure 44, pre-processed but not normalised.   
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Figure 44. Left) Snap shot of the subject after setup, the blue tube is the nasal cannula and the white rectangular box with two heat 
sensitive nasal sensors is the thermistor. Note that the oral sensor is blocked with blue tack and moved away from the mouth. 
Right) An example highlighting both signals in raw form. 
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Figure 45. Pre-processed nasal airflow signals. Removal of high frequency components is apparent. 

 

Next, peaks and troughs of both signals were detected using amplitude and duration thresholds. 

All the detected extrema were visually inspected to ensure that the number of peaks and 

troughs in both signals are equal. The difference between peak positions of the two signals gives 

a direct indication of the delay between them; similar statement can be made about the troughs. 

5.2.4 Results 

 

A total of 111 peaks and 111 troughs were extracted from each signal. The difference between 

the extrema of the two signals was calculated as follows: 

                     
⃗⃗ ⃗⃗ ⃗⃗  ⃗      

⃗⃗ ⃗⃗ ⃗⃗  ⃗ 

                       
⃗⃗ ⃗⃗ ⃗⃗  ⃗      

⃗⃗ ⃗⃗ ⃗⃗  ⃗ 

Where    
⃗⃗ ⃗⃗ ⃗⃗  ⃗ is the peak position vector generated by the thermistor and    

⃗⃗ ⃗⃗ ⃗⃗  ⃗ is the peak position 

vector generated by the cannula. Similarly,     
⃗⃗ ⃗⃗ ⃗⃗  ⃗ and    

⃗⃗ ⃗⃗ ⃗⃗  ⃗ are trough position vectors generated 

from the thermistor and the cannula respectively. Mean and standard deviation of both  

                  and                     are shown in Table 11. 
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Table 11. Standard statistics of peak and trough delay vectors 

 Mean (seconds) 
 

Standard deviation 
(seconds) 

Peak delay vector 
 

1.035 0.164 

Trough delay vector 
 

2.054 0.265 

 

Underlying distribution of the delay vectors were assessed using histograms and norm plots. 

Figure 46 and 47 illustrate the results for peak and trough delay vectors. 

 

 

Figure 46. Histogram and norm plot of peak delay vector. The histogram appears to be following a near normal 
distribution and the almost straight line on the norm plot (deviation of data points from a normal distribution, curvature 
in the data points is a marker of non-normal distribution) confirms this. Lilliefors test of normality also confirms that the 
data can be assumed to be normally distributed (P>0.5). As can be seen there are clear outliers in the data which can 
influence the characterisation of the distribution and for that reason they were removed from the data. 
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Figure 47. Histogram and norm plot of trough delay vector. This histogram also can be modelled with a normal 
distribution although the data points on the norm plot are not a clear straight line. A Lilliefors test of normality revealed 
that the data can be assumed to be normally distributed (P=0.32, null hypothesis stating that the data comes from a normal 
distribution is not rejected). After outlier removal the P value increased to more than 0.5. 

As can be seen, both histograms and norm plots suggest that delay vectors can be assumed to be 

normally distributed. Lilliefors test of normality was also applied to both the peak delay vector 

and the trough delay vector to test the assumption. In both cases the test failed to reject the null 

hypothesis (P>0.5 for the peak delay data and P>0.3 for trough delay data) indicating that the 

normal distribution assumption for the delay data is reasonable.  

To parameterise the distribution, the outliers (defined by any data value which lies outside 

                            of the data vector) were removed and normal distribution 

parameters (i.e. mean and standard deviation) were calculated using the maximum likelihood 

estimation method.  Table 12 shows the estimated parameters and their 95% confidence 

intervals.  

Table 12. Distribution parameterisation of the peak and the trough delay vectors 

                        

Peak delay vector 

distribution 

                                                 

Trough delay vector 

distribution 
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Where   is the mean and   is the standard deviation of the normal distribution;    and    are 

the lower and upper bounds of the 95% confidence interval for the mean   and    and    are 

the lower and upper bounds of the standard deviation  .  

5.2.5 Discussion and conclusion 

 

The above results suggest that there are profound differences between the two measures of 

nasal airflow. It is visibly clear that the morphology of the two signals is different. Whilst the 

thermistor produces a regular sinusoidal-like waveform, the signal generated from the pressure 

transducer nasal cannula is more complex. The signal from the nasal cannula is more responsive 

and sensitive to small changes in breathing patterns, whereas, the thersmistor is slow to 

respond and considerably less sensitive to small physiological changes. This is not the first 

study to promote the use of nasal cannulae; Trang et al. [62] have shown that nasal cannulae 

outperform thermistors in detection of respiratory events, in particular, obstructive apnoea and 

obstructive hypopnoea; similar findings have been reported by Budhiraja et al. [63].  

Furthermore, sensitivity of nasal cannulae offers an extra advantage in detecting UARS (upper 

airway resistance syndrome) [64].    

Here, the relative responsiveness of the thermistor is quantified with respect to the pressure 

transducer nasal cannula. The results indicate that under normal (healthy, calm and regular) 

breathing condition, the thermistor is on average approximately one second lagging behind the 

pressure transducer nasal cannula and the delay profile follows a normal distribution. 

Furthermore, assuming that the valleys present in both signals mark the start of inspiration 

(end of expiration), it has been shown that inspiration starting time in each respiratory cycle 

measured by the thermistor is on average delayed by about two seconds (normal delay profile) 

relative to the inspiration starting point measured by the nasal cannula (these delays are also 

apparent in Figure 45). Whilst a delay of one second between the peaks can be explained by the 

slow response of the thermistor to thermal changes, a delay of two seconds between the troughs 

cannot; that is where the signal morphology and inherit differences between the methods come 

in to play. Each peak in the pressure transducer cannula signal is often followed by a sharp 

transient to a trough whereas, the same transition for the thermistor is considerably slower. 

Therefore, it is not clear where the actual inspiration points are located. Moreover, during the 

experiment, it was noticed that the inspiration to expiration duration ratio for nasal cannula 

was on average, 2.25 times greater than that of the thermistor (2.8 compared to 1.2). Neither of 

these values support what is considered a normal inspiration to expiration (I:E) ratio. A normal 

I:E ratio setting for mechanical ventilators mimicking normal respiration physiology can ranges 

from  1:1.5 to 1:4 (that is 0.67 to 0.25) [65, 66]. It is evident that both values (2.8 and 1.2) 

obtained in the experiment significantly exceed normal I:E ratios; this is another indication that 
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the true inspiration point locations may not be well defined in thermistor and nasal cannula 

generated signals. This is most likely an artefact of the simplistic definition of inspiration, 

although it is not uncommon to define inspiration as the interval between a local minimum and 

its successive local maximum on flow signals [15].  

In short, it is concluded that the inherit difference between the two instruments can have a 

notable effect on the resulting RCREC parameters and should hence be accounted for. 

 

5.3 Shifting the segmentation points - a mathematical point of view 
 

The first study in this chapter showed that a small phase shift (≈200 msec) in the airflow signal 

segmentation points can noticeably affect the statistical significance of RCREC. The second study 

emphasised that phase shifts of this magnitude are quite common between different flow 

monitors. Filtering the flow signal as noted in the preliminary studies can also cause similar 

shifts. Given that time shifts can influence RCREC and the fact that relative time shifts between 

different measures of respiration are common, it was attempted to mathematically investigate 

the conditions under which a small shift in airflow segmentation points results in an increment 

of RCREC significance.  

 

5.3.1 Why does a small shift accentuates the significance of RCREC 

 

In order to answer this question, a subject whose relative EEG power differences were 

significantly increased after a small shift was selected. Table 13 shows how the statistical 

significance values change after shifting the segmentation points 50 samples backward in a 

single subject. 

 

Table 13. RCREC significance as indicated with Fisher's F value in a single subject 

 All 
bands 

Delta Theta Alpha Sigma Beta 

P16 F-values 
 

18.75 18.09 11.43 32.63 33.16 2.63 

P16 F-values 
50 samples 
Backward shift 

25.85 22.95 15.95 37.26 36.42 5.65 

 

MREPs (mean relative EEG powers) of the whole spectrum (denoted as “All bands” above) for 

both segmentations are now considered.  
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Figure 48. Mean relative EEG powers (whole spectrum) of a single subject. Left figure shows the MREPs after 
conventional segmentation and the right figure shows the MREPs after a small backward shift is applied to all 
the conventional segmentation points.  

 

Observe that magnitudes of MREPs are noticeably increased after applying the shift, this 

increment is most pronounced in early expiration. In ANOVA, the F statistic is essentially 

defined as: 

  
                      

                     
 

In the above subject, as it is in most, it was the                          which changed after 

applying the shift. The                         remained almost identical. Hence, the increase 

in the significance of RCREC can be explained by the increased between-group variability and 

the increase in this variability is due to the induced change in the magnitude of MREPs. In the 

subject above, MREP in early expiration has the most increase and therefore contributes most to 

the increased between group variability. This also holds for the majority of the other subjects, 

that is, the increased between group variability after the shift is mostly due to contribution from 

a single MREP. It is therefore possible to refine the original question to how does a small shift 

increase the mean relative EEG power? Or decrease it when the MREP is negative to begin with.  
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5.3.2 Condition for increment of an MREP after a phase shift 

 

A single respiratory cycle is considered (Figure 49). 

 

 

 

 

 

 

 

 

 

 

 

 

Relative EEG power in early expiration according to the above figure is defined as: 
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Where   is the “all band” EEG and     is the relative EEG power in early expiration.    to    are 

the conventional segmentation points shown in Figure 49. All the segmentation points are then 

shifted by   samples to the left to define the new relative power in early expiration. This will 

yield: 
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N1 N2 N3 N4 N5 

m 

N1 – m + 1 
Figure 49. A single respiratory cycle. The dotted red line indicates an arbitrary 

"m" samples backward shift 
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Where    
  is the shifted early expiration relative EEG power. Now re-write    

  as: 
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For readability define: 
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    (22) 

Where   is the number of samples in early expiration,   is the number of samples in entire 

whole respiratory cycle,    is the EEG signal energy in early expiration,     is the EEG signal 

energy in the whole respiratory cycle,     
  is the EEG signal energy associated with the shifted 

respiratory cycle,     is the EEG signal energy corresponding to the initial   samples of the 

shifted respiratory cycle,    is the EEG signal energy corresponding to the   samples preceding 

late expiration,    is the EEG signal energy corresponding to the latter   samples of the shifted 

respiratory cycle and,      and    
   are simple transformations of the original EEG relative 

power equations as follows: 
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(24) 

 

This is done by substituting the parameters above into Equations 10 and 12. For MREP in early 

expiration after the shift to be greater than that before the shift, the following must be true: 

 

      
         (25) 

Where   is the expected value operator. Equation 25 is in essence the mean difference between 

relative EEG powers of early expiration after and before the shift is applied. Note that from this 

point on, the whole ensemble of respiratory cycles are considered and therefore all the 

parameters are treated as random variables. Substituting for    
  and     we will have: 
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(26) 

 

Rearranging the equation above, will yield: 
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Denoting 
 

    
  as   and [          

        
  

   
] as   results in: 
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Using the covariance of    will give: 

                     
(29) 
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(30) 

 

Where     is the covariance of   and    Note here that      is a positive quantity and therefore 

inequality 30 can be written as follows: 

 
     

    

    
 

 
(31) 

 

Therefore, for MREP in early expiration after the shift to be greater than that before the shift, 

inequality 31 should hold. If the covariance of   and   is positive the right hand side of 

inequality 31 will be negative and consequently, inequality 31 will satisfy the condition stated in 

inequality 25.  

 

         
(32) 
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(33) 

 

Therefore, a sufficient condition for MREP to increase in early expiration is that the covariance 

of   and   be positive. For the particular subject here     was 0.06.  

With a simple substitution and an approximation (assuming that 
  

   
 and        

  are 

uncorrelated) we can further infer that: 

 

 
             

  

   
  

 
(34) 

 

Replacing   
  

   
  with an approximate value of 0.25, inequality 35 will emerge as: 

 

 
           

 

 
           

 
(35) 

   

Inequality 35 states that the MREP in early expiration after the shift will be increased if the 

difference between    and    is on average, greater than approximately 25% of the average 

difference between    and   . Figure below attempts to graphically clarify inequality 35. Note 

that the Figure only displays a single respiratory cycle and is solely provided to make the 

concept more tangible. Note that the above was specifically focused on an increment of MREP in 
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early expiration, however, the calculations can be very similarly extended to include any of the 

other respiratory stages.  

 

 

 

 

 

 

Figure 50. EEG signal energy (EEG^2) plotted together with the time-locked respiration signal. In this figure, 
the relationship Y1 - Y2 > 0.25(Y1 - Y5) is almost visually identifiable. Note however that this is only a single 
respiratory cycle and inequality 35 requires the average of all Y1 – Y2 to be greater than the average of all 
0.25(Y1 – Y5). The figure is only to provide visual clarification. Also note that Y1, Y2 and Y5 are those defind in 
Equations 18 – 20. 

 

5.3.3 Conclusion 

 

Here it is shown mathematically how an arbitrary shift in airflow segmentation points may 

increase the statistical significance of RCREC. Although the final inequality given is an 

approximation, it may yet provide valuable information on the mechanism of RCREC. Based on 

inequality 35, an increment in early expiration MREP is elicited if the difference between the 

energy of the initial   samples and the   samples just before the start of late expiration (N2) is 

greater than roughly a quarter of the difference between the energy of the initial and the latter 

  samples. If       was negative, and       was positive, the inequality would obviously not 

hold. If both the left and the right hand sides of the inequality were negative, it would still not be 

very likely for the inequality to hold as a quarter of       will make the right hand side 
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fourfold larger. If however       is positive, it is more likely for the inequality to hold as now, 

even where       is positive, the approximate 0.25 scaling factor works in favour of holding 

the inequality and decreases the right hand side.  Therefore, when            , it is probable 

that an increment in early expiration MREP is seen. This might have a few physiological 

implications. In its simplest form, it can be argue that the MREP in early expiration is increased 

since the EEG signal energy in the initial   samples after the shift is greater than energy content 

of the EEG signal in the portion removed from early expiration MREP after the shift. Since the 

shift also accentuates the RCREC significance, it can be argued that the physiology driving 

RCREC is better aligned with the shifted segmentation than the conventional one. A speculation 

may be that the shifted segmentation accounts for most of the delay present in thermistor 

generated nasal flow signal and is hence more responsive to changes in respiration. This is 

however, assuming that respiration itself is evoking RCREC which may not be the case and 

hence it is left as a speculation. A worthwhile suggestion for future work may be to use a more 

sensitive respiratory monitor device such as the pressure transducer cannnulae for 

experiments.  

5.4 Summary 
 

In this chapter, effects of alternative airflow signal segmentation were assessed in details, in 

particular, a new segmentation routine (transition segmentation) was introduced and it was 

shown that the new segmentation accentuates the difference between MREPs of different 

respiratory cycle stages. It was further highlighted that shifting the conventional segmentation 

points slightly forward or backward results in a considerable change of RCREC significance. 

Given that a small shift in airflow signal segmentation points can produce varying RCREC 

parameters, it was noticed that airflow measurement instruments can introduce delays when 

compared to each other. As a result, relative delay profiles of the two of the most commonly 

used nasal flow measurement instruments were inspected. Significant differences were found 

between the relative delay profiles of the nasal pressure transducer cannula and the thermistor 

highlighting the point that use of different measurement instruments can result in differing 

RCREC parameters. Finally, a mathematical analysis of RCREC was carried out to determine why 

a shift in flow signal segmentation points can increase or decrease the significance of RCREC. As 

the result of this work, a mathematical condition (inequality) was derived which if satisfied, 

guarantees that a shift in airflow signal segmentation points results in an increment in RCREC 

significance. The next chapter discusses the neurobehavioral implications of RCREC. 
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Chapter 6   

 

 

 

Day time neurocognitive correlates of RCREC  
 

In the previous chapter it was revealed that alternative airflow segmentations can affect the 

significance of RCREC. In particular, small backward shift and transition segmentation 

considerably increased the significance of RCREC. Whilst that is an improvement in itself and is 

a step towards identification of the physiology underpinning RCREC, it does not guarantee a 

stronger correlation between RCREC parameters and day time neurocognition. Arguably, the 

most important finding to date regarding RCREC is that it can predict next day sleepiness (as 

measured with multiple sleep latency tests) in adults with sleep disordered breathing [16]. It 

was unfortunately not possible to objectively test whether the alternative segmentations 

improve the predictive power of RCREC as the available PSG data sets did not contain next day 

multiple sleep latency (MSLT) data, however, the Bolivian data described in Chapter 2 was 

accompanied by a number of  neurocognitive measures including but not limited to:  accuracy of 

attention, power of attention, speed of memory retrieval, quality of working and episodic 

memories, Wechsler intelligence scale for children (WISC) processing speed index and Ravens 

progressive matrices. This offered an opportunity to investigate the relationship between 

RCREC and day time neurocognitive functions. Furthermore, it was now possible to assess 

whether different airflow segmentations potentiate RCREC to better correlate with 

neurocognitive measures. Hence this chapter is dedicated to investigation of day time 

neurocognitive correlates of RCREC. It is worth re-emphasising that the information in the 

previous chapter empirically justified that the statistical significance of RCREC (as measured 

using Fisher’s F value), increases when employing the small backward shift (henceforth will be 

referred to as “shifted segmentation”) or the transition segmentation. An increment in the 

significance of RCREC however, may not necessarily change the magnitude of RCREC 

parameters. In the literature, in all the previous work involving RCREC as a predictive measure, 

it is the magnitude of RCREC parameters that correlate with or predict the neurocognitive 

measures and not their statistical significance (F values). If the increment in the statistical 

significance of RCREC does not at least moderately change the magnitude of RCREC parameters, 

then there will be little point in investigating whether RCREC calculated with our alternative 

flow segmentation routines can better relate to the neurobehavioral measures. Therefore, the 

effect of increased RCREC significance on RCREC magnitude is first briefly examined.  Exploring 
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the potential relationship between RCREC and day time neurocognitive performance then 

follows.      

6.1 Does Shifted/transition segmentation change RCREC magnitude? 

 

To answer this question, the Bolivian data set described in Chapter 2 was once again employed 

for the analysis. PSGs with less than one thousand regular respiratory cycles or insufficient 

quality in either of the EEG or the flow signal were excluded from further analysis. In total, 47 

subjects were selected for the subsequent analysis. RCREC parameters (magnitudes) in all the 

five conventional bands were calculated once using the conventional segmentation, then using 

the transition segmentation and finally using the shifted segmentation routines. The difference 

between RCREC magnitudes and transition and shifted RCREC magnitudes were statistically 

assessed using the paired sample t-test. The results are tabulated below. Note that we denote 

transition RCREC as TRCREC and shifted RCREC as SRCREC. We also use the absolute value 

operator notation to indicate magnitude.  

Table 14. Magnitude difference between RCREC and TRCREC in a cohort of 47 subjects. 

 Mean difference t-statistic Significance 
(P value) 

|        |  |         | -.0033 -1.09 .280 

|        |  |         | -.0035 -1.75 .085 

|        |  |         | -.0055 -2.36 .022* 

|        |  |         | -.0065 -2.20 .032* 

|        |  |         | .0000 .023 .981 

 

As can be seen in the table above, magnitude of RCREC is on average, consistently lower than 

that of TRCREC. Furthermore, this difference is statistically significant in the alpha and sigma 

bands, and is close to significance in the theta band.  
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Table 15. Magnitude difference between RCREC and SRCREC in a cohort of 47 subjects. 

 Mean difference t-statistic Significance 
(P value) 

|        |  |         | -.0015 -.92 .362 

|        |  |         | -.0046 -3.51 .001* 

|        |  |         | -.0063 -4.08 .000* 

|        |  |         | -.0036 -2.24 .030* 

|        |  |         | -.0012 -.88 .382 

 

Similarly, it is shown that shifted RCREC magnitudes are consistently larger than those of 

RCREC. Moreover, this difference is significant in three of the five conventional frequency bands. 

Since the distribution of RCREC/TRCREC/SRCREC magnitudes in few of the frequency bands 

could not be assumed to be normal (as tested using the Lilliefors test of normality [67]), the 

above comparisons were repeated using the paired non-parametric Wilcoxon sign rank test; the 

results remained largely  the same, that is, the difference between RCREC and TRCREC 

magnitudes were significant in the alpha and sigma bands and the difference between RCREC 

and SRCREC magnitudes reached significance in the theta, alpha and the sigma bands.    

6.1.1 Conclusion 

 

Given that the magnitude of RCREC parameters were significantly different than those of 

TRCREC and SRCREC in almost three of the five conventional bands, it is sensible to include 

TRCREC and SRCREC parameters in predictive models of neurocognition as they may provide 

additional information not reflected by the RCREC parameters alone. For completeness sake, all 

the parameters obtained from TRCREC and SRCREC (even those not significantly different from 

the RCREC parameters) are included in the subsequent analysis. Also note that the magnitudes 

of TRCREC and SRCREC parameters are on average consistently higher than those of RCREC 

which is what is expected given that the statistical significance of TRCREC and SRCREC are 

higher than RCREC. The next logical step is to investigate any potential relationships between 

RCREC/TRCREC/SRCREC and day time neurocognition.  
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6.2    Neurcognitive correlates of RCREC, TRCREC and SRCREC 
 

6.2.1 Motivation 

 

The notable fact regarding RCREC is that it is one of few automatically driven measures 

extracted from PSG which has been shown to predict a day time consequence of SDB 

(sleepiness) and correlate with few neurocognitive functions [1, 16, 39]. Given the unique 

opportunity provided by a large matched data-set of neurocognitive and PSG data, it was 

possible to assess the relationship between RCREC and neurocognitive function. It was 

anticipated that this work would add to the existing body of literature on RCREC and may lead 

to discovery of new associations between RCREC and cognitive functions. Neurocognitive 

measures selected for this analysis are accuracy and power of attention, quality of episodic and 

working memories, speed of memory retrieval, WISC processing speed index and Raven 

progressive matrices. This selection was made based on personal communication with cognitive 

neuropsychologist Professor Romola S. Bucks (School of psychology, University of Western 

Australia). Additionally, the relationship between RCREC parameters and AHI was also revisited 

here. An exploratory correlation analysis was conducted on the measures above and the 

RCREC/TRCREC/SRCREC parameters. Pairs with significant correlation were then selected and 

further analysed using multiple linear regression to observe whether of RCREC parameters are 

capable of predicting neurocognitive functions. Confounding factors such as age and gender 

were also controlled for in the analysis. The rest of section two will first briefly describe the 

neurocognitive measures employed and give details of their acquisition procedure; it then 

describes the methods used in the analysis in further detail and finally presents the results of 

the study and attempts to discuss the implications of the obtained results.  

6.2.2 Neurocognitive measures 

 

The neurocognitive measures used in this study can be divided into two separate categories, 

CDR (cognitive drug research) based or non-CDR based. CDR is a computerised cognitive 

function assessment tool developed by Professor Keith Wenes in 1970 and has since been 

consistently used in clinical trials aiming to quantify cognitive deficit/improvement [68]. 

Accuracy and power of attention, quality of episodic and working memories and speed of 

memory retrieval are the CDR based neurocognitive measures used in our study and the WISC 

processing speed index and Ravens progressive matrices are the non-CDR based parameters. A 

brief description for each of the above measures is given below. 
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i. CDR based neurocognitive measures 

 

Accuracy of attention:  

Accuracy or continuity of attention reflects the ability of a subject to sustain his/her attention 

over a prolonged period of time. Accuracy of attention is a combined measure calculated from 

digit vigilance detection accuracy, choice reaction time accuracy, digit vigilance false alarms and 

tracking error.   

 

Power of attention: 

Power or speed of attention reflects the ability of a subject to dedicate his/her attention (focus) 

to a particular task for a short period of time. It is a combined measure of three independent 

tests namely, simple reaction time, choice reaction time and digit vigilance detection speed.  

 

Quality of episodic memory: 

Ability of a subject to encode, hold, and retrieve information. Quality of episodic memory is a 

combined measure calculated from immediate and delayed word recall accuracies, word 

recognition accuracy and picture recognition accuracy.   

 

Quality of working memory: 

Quality of working memory reflects the ability of a subject to temporarily hold numeric and 

spatial information. It is another combined measure quantified from the numeric working 

memory accuracy and spatial working memory accuracy. It is also a component of executive 

function. 

 

Speed of memory retrieval:   

Speed of memory retrieval reflects the speed at which a subject can decide whether something 

specific is stored within the working or the episodic memory. It is a combined measure 

calculated from picture recognition speed, word recognition speed, numerical working memory 

speed and spatial working memory speed.   
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Further information regarding the individual tests included in the CDR package can be found in 

[68]. 

ii. Non-CDR based neurocognitive measures 

 

WISC processing speed index: 

Wechsler intelligence scale for children (WISC- III) processing speed index measures the ability 

of children (aged 6 – 16) in understanding and organising visual information. It is a combined 

measure taking into account motor control as well as mental processing speed and accuracy 

[69].    

 

Ravens progressive matrices: 

Raven’s progressive matrices score (RPM) is a measure of general non-verbal intelligence. It 

consists of a series of multiple choice questions each asking the subject to choose a (visual) 

pattern which completes a bigger picture. The questions are sorted based on their difficulty and 

aim to quantify one’s “reasoning” capability [70].      

 

6.2.3 Neurocognitive testing procedure  

 

Neurocognitive data collection took place within universities UPSA (Santa Cruz, 500m) and 

Universdad de La Salle (La Paz, 3700m). All participants were informed and had contested to 

take part in the study (parents contested for children). Participants attended either a morning 

or an afternoon session of neurocognitive data collection which included the CDR battery, 

Raven’s progressive matrices (questionaire) and the WISC (III). All sessions were supervised by 

Masters of Psychology students. Participants were given a small gift for their participation. 

6.2.4 Methods 

 

The Bolivian data described previously was employed for the analysis. PSGs with less than one 

thousand regular respiratory cycles or insufficient quality in either of the EEG or the flow signal 

were excluded from further analysis. This initial sifting procedure left 47 PSGs (24M:23F) for 

the subsequent analysis. Since the neurocognitive data was provided as an SPSS file, RCREC 

related parameters were prepared and then imported into SPSS. The statistical analyses done 
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on the data were henceforth carried out within the SPSS software package. Details of the 

analyses performed on the data are described below. 

i. Correlation analysis 

 

Having grouped the neurocognitive measures as well as RCREC, TRCREC and SRCREC 

parameters including their magnitude and significance (Fisher’s F values) under a single SPSS 

file, an exploratory correlation analysis was conducted including all the measures to identify 

potential significant correlations. Since the majority of the parameters were not normally 

distributed, the non-parametric Spearman’s Rho was used as the correlation measure. We were 

aware of the potential risk of type one error in our correlation analysis, however, since RCREC 

research is a relatively new field and there have not been many studies on day time 

neurobehavioral correlates of RCREC, hypothesis driven analysis of the data would not have 

been very practical. This study may instead serve as a pilot to discover and establish 

relationships between RCREC and neurocognition.  Note that existence of a strong correlation 

between two parameters does not necessarily guarantee a relationship as it may be caused by a 

confounding factor. The aim of the correlation analysis is to provide an initial “guess” on what 

may be a correlate of RCREC. It is possible to then examine that guess further using linear 

regression and controlling for common confounding factors.  

ii. Linear regression 

 

Having identified the potential correlates of RCREC through the correlation analysis, it is 

essential to ensure that the obtained results are in fact genuine. This was carried out by 

employing linear regression and controlling for confounding factors. Each of the neurocognitive 

measures found to correlate with any of the RCREC parameters was checked for common 

confounds including age, gender and altitude. Group differences between the neurocognitive 

measures for gender and altitude were assessed using the non-parametric independent samples 

Mann-Whitney U test. Upon finding a significant group difference, the grouping parameter 

(gender or altitude) was added to the regression model as an independent variable. As for age, 

since it correlated very significantly with almost all the neurocognitive measures (except the 

WISC processing index as it by definition is adjusted for age), it was included as an independent 

variable in almost all the regression models. Having controlled for the appropriate confounding 

factor, if the correlate of a particular neurocognitive measure still adds significantly to the 

regression model, an underlying relationship between the two parameters is assumed. Also 
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note that since the predictive power of regression models lower with increasing number of 

independent variables, the number of additional independent variables is kept minimal.  

 

6.2.5  Results 

 

i. Correlation analysis 

 

Inclusion of the entire correlation table here is not feasible due to its sheer size, however, 

significant observations are reported below. Accuracy of attention correlated positively with 

RCREC magnitude in the delta band (rho=-.29, P=.048) and SRCREC magnitude in the same band 

(rho=-.33, P=.022). Quality of episodic memory correlated positively with RCREC magnitude in 

the theta band (rho=.32, P=.025) and TRCREC magnitude in the delta band (rho=.30, P=.036). 

Including the significance of RCREC as separate parameters in the correlation table also yielded 

some interesting results. Power of attention was found to correlate with RCREC F value in the 

theta, alpha and sigma bands (rho=.29, P=.043, rho=.38, P=.008 and rho=.42, P=.003 

respectively). TRCREC and SRCREC F values were also found to correlate strongly with power of 

attention in the alpha and sigma bands, the correlation coefficient for TRCREC alpha was 

rho=.39, P=.006 and for sigma was rho=.37, P=.01, whilst that for SRCREC alpha was rho=.4, 

P=.005 and for sigma was rho=.46, P=.001. Speed of memory retrieval correlated positively with 

RCREC F values in the alpha band (rho=.3, P=.04) and finally, WISC processing index was found 

to correlate with RCREC F value in the theta band (rho=.29, P=.041). Note that all the P values 

provided are two sided. The tables below summarise the results obtained from the correlation 

analysis. Each entry in the table is a pair of correlation coefficient (Spearman’s rho) and its 

associated statistical significance (P value). Note that none of the correlations between RCREC, 

TRCREC and SRCREC parameters correlated with AHI which suggests the poor ability of RCREC 

to reflect AHI.  
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Table 16. Neurocognitive measures correlating with the magnitude of RCREC, TRCREC and SRCREC 
parameters. Each entry is pair of correlation coefficient and its associated statistical significance (rho, P). 

 Magnitude of 

RCREC TRCREC SRCREC 

(δ) (θ) (δ) (δ) 

Accuracy of 

attention 

(.29, .048)   (.33, .022) 

Quality of 

episodic memory 

 (.32, .025) (.30, .036)  

 

Table 17. Neurocognitive measures correlating with the significance of RCREC/TRCREC/SRCREC parameters. 
Each entry is pair of correlation coefficient and its associated statistical significance (rho, P). 

 Significance (Fisher’s F value) of 

RCREC TRCREC SRCREC 

(θ) (α) (σ) (δ) (α) (σ) (α) (σ) 

Power of 

attention 

(.29, 

.043) 

(.38, 

.008) 

(.42, 

.003) 

 (.39, 

.006) 

(.37, 

.010) 

(.40, 

.005) 

(.45, 

.001) 

Speed of memory 

retrieval  

 (.30, 

.040) 

      

WISC processing 

speed index 

   (.30, 

.041) 

    

 

ii. Regression analysis 

 

The results obtained above revealed significant correlations between RCREC, TRCREC and 

SRCREC parameters and day time neurocognitive measures. It was interesting that employing 

the significance of RCREC parameters as a correlate resulted in more frequent and more 

significant correlations. However, many of the resulting correlations may be spurious. To assess 

this, each of the neurocognitive measures included in Tables 16 and 17 was tested for potential 
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confounds. Table 18 shows the extent to which age, gender and altitude influence the 

neurocognitive measures. 

Table 18. Potential confounds of neurocognitive measures. 

 Correlation 
(Spearman’s rho) 

Group differences 
(Mann-Whitney U test) 

 
 Age 

(rho, P value) 
Gender 

 (P value) 
Altitude 

(P value) 

Accuracy of attention (.66, .000)* .004* .129 

Power of attention (-.82, .000)* .444 .716 

Quality of episodic memory (.54, .000)* .617 .493 

Speed of memory retrieval (-.80, .000)* .067 .168 

WISC processing speed index (-.10, .474) .034* .018* 

*Statistical significance reached 

 

As can be seen, age correlates very strongly with all the neurocognitive measures except the 

WISC processing speed index which is age adjusted by definition. This implies that the 

subsequent regression models for accuracy and power of attention, quality of episodic memory 

and speed of memory retrieval must include age as an independent variable. Note that the 

correlation between age and the neurocognitive measures is not unexpected given the age range 

of our subjects (7-17 year olds). Given the strong correlation between age and the 

neurocognitive data, it is quite likely that the correlations found previously (Table 16 and 17) in 

fact reflect age. Gender and altitude can play a similar role; accuracy of attention and WISC 

processing speed index are shown to be significantly different between the two genders with 

females scoring on average higher than males in the both categories. WISC processing speed 

index is also significantly different between the children from low and high altitudes. 

Accounting for the influence of age, gender and altitude on a neurocognitive measure, if an 

RCREC/TRCREC/SRCREC parameter still adds significantly to the variance explained by the 

regression model, it may be possible to assume an underlying relationship between the two 

parameters.  

iii. Significant observations: 

 

Having controlled for age, RCREC magnitude in the theta band was found to predict quality of 

episodic memory. Inclusion of theta RCREC magnitude in the regression model predicting 
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quality of episodic memory significantly added to the variance already explained by age (R2 

change = .350 - .256 = 9.4%, P=.015). The rest of RCREC/TRCREC/SRCREC magnitude measures 

did not hold a statistically significant predictive power.  

Significance of RCREC, TRCREC and SRCREC parameters as measured using Fisher’s F values, 

added significantly to the model predicting power of attention,  (after controlling for age). WISC 

processing speed index was not affected by age but by gender and altitude. Inclusion of delta 

TRCREC F values in the model predicting the WISC processing index score still added 

significantly to the variance explained by the model even after controlling for gender and 

altitude. Speed of memory retrieval on the other hand, was not found to relate significantly to 

any of the RCREC related parameters. Table 19 summarises the significant results obtained from 

the regression analyses. For readability, the absolute value operator is used to denote the 

magnitude of an RCREC parameter and the norm operator is employed to indicate the 

significance of an RCREC parameter. 

Table 19. Summary of the significant observations obtained from the regression analyses 

 Controlled  

for 

Parameter 

added to the 

regression 

model 

Increase  in the 

variance explained by 

the model    (R2 

change) 

Significance of  

R2 change (P 

value) 

Quality of 

episodic memory 

Age |        | .350 – .256 = .094 F=6.3, P=.015 

Power of 

attention 

Age ‖        ‖ .721 – .646 = .075 F=11.7, P=.001 

‖        ‖ .689 – .646 = .043 F=5.9, P=.019 

‖         ‖ .690 – .646 = .044 F=6.1, P=.017 

‖         ‖ .679 – .646 = .033 F=4.5, P=.039 

‖         ‖ .716 – .646 = .070 F=10.7, P=.002 

‖         ‖ .695 – .646 = .049 F=7.0, P=.011 

WISC processing 

speed index 

Gender, 

altitude 

‖         ‖ .325 – .216 = .109 F=6.8, P=.012 
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6.2.6 Discussion 

 

Results presented above revealed that RCREC parameters may potentially predict certain 

neurocognitive functions. When looking at the magnitude of RCREC/TRCREC/SRCREC (as 

defined by maximum difference between frequency band specific MREPs), quality of episodic 

memory is the only neurocognitive measure which relates significantly to an RCREC parameter 

(RCREC magnitude in the theta band). When looking at the significance of 

RCREC/TRCREC/SRCREC (as measured using Fisher’s F value generated from one way ANOVA) 

however, two more neurocognitive measures come into play. Magnitude of RCREC is essentially 

a change parameter. It measures the range between frequency bad specific MREPs across early 

and late expiration and inspiration. The significance of RCREC is however, a somewhat more 

complicated measure. It measures the relative variability of MREPs. Whilst both measures are 

similar in that they indicate the amount of average EEG power change over the four respiratory 

intervals and that are generally proportional (the higher the range, the higher the variability), 

they reflect different qualities. RCREC magnitude reflects the maximum change in mean relative 

EEG power from early expiration to late inspiration, whereas, RCERC significance, broadly 

speaking, reflects the variability of mean relative EEG powers between the respiratory cycle 

segments. RCREC magnitude is a measure essentially calculated from two of the four MREPs (i.e. 

maximum MREP – minimum MREP) whilst RCREC significance takes into account all the four 

MREPs. It is therefore not unreasonable to include the significance of RCREC parameters as 

predictive measures.  

Power of attention was found to relate to RCREC, TRCREC and SRCREC significance in the alpha 

and sigma bands. It is worth noting that magnitudes and significance of RCREC, TRCREC and 

SRCREC parameters are often considerably inter-correlated and it therefore is not unexpected 

to obtain results such as those we have found and tabulated in Table 19 (where significance of 

RCREC, TRCREC and SRCREC in the alpha and sigma bands are all significant predictors of 

power of attention).  

The quality of episodic memory was predicted by the magnitude of theta RCREC after 

controlling for age (P=.015). Episodic memory is a subset of the working memory system which 

deals with encoding of temporal-spatial information, that is to say, when and where something 

happened [71]. The relationship between theta band EEG synchronisation (an increment in EEG 

power when compared to a baseline) and episodic memory is well documented in the literature, 

in short, theta band EEG is associated with encoding of new information into episodic memory 

[72]. Note that the method for calculation of RCREC is in fact very similar to that used in event 

related synchronisation/de-synchronisation analyses [73]. In event related synchronisation 
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(ERS) studies, relative EEG signal power in a specific frequency band is measured before and 

after a particular event, this is repeated several times. Then, if the EEG power in that band is on 

average significantly larger after the event has occurred, we have a case of event related 

synchronisation; otherwise, it is an event related de-synchronisation. RCREC is different from 

ERS in two major aspects, 1) in RCREC analysis there is no predefined event aiming to measure 

a particular cognitive function and 2) whilst ERS/D analyses are performed in awake human 

subjects, RCREC is calculated solely from PSGs, that is, sleeping human subjects. Yet it is shown 

that there may be a link connecting respiratory related change of EEG power in the theta band 

to quality of episodic memory in sleep. Whether episodic memory and respiration are directly 

connected remains unknown and there is little that the literature can offer on this specific topic. 

However it is known that respiration (breathing) can influence the brain function. A manifest of 

this influence is the effect of respiration on patients with epilepsy (a brain disorder 

characterised by unpredictable disruptions of normal brain function [74]) where for instance 

slow breathing reduces the rate of epileptic seizures [75] or most people with idiopathic 

epilepsy are also associated with moderate to severe hyperventilation [76].  The relationship 

between sleep and memory consolidation is well-established, with most studies suggesting that 

different aspects of memory (semantic, episodic and procedural) are enhanced after an episode 

of sleep [8, 77]. An opposing view by Fosse et al. [78] suggests that episodic memory 

consolidation is not sleep related at all, however, the focus of that study is generally around 

reported recollection of dreams and not the analysis of polysomnographs and it hence is not 

directly comparable with the study here. Based on the above, that is, given that EEG power 

changes in the theta band reflect episodic memory activity in awake human subjects and that 

respiration can affect cognitive function and the fact that sleep plays a crucial role in memory 

consolidation (including episodic memory consolidation) it is not unreasonable to speculate 

that theta RCREC reflects to an extent the quality of encoding new information into episodic 

memory or shows the degree to which the recent memory traces in the episodic memory are 

consolidated in children.  

The significance of RCREC, TRCREC and SRCREC in the alpha and sigma bands were all found to 

predict power of attention. As was mentioned, this is probably due to inter-correlation between 

these parameters. The significance of Alpha RCREC was the strongest predictor of power of 

attention (F = 11.7, P=.001). To ensure that the rest of the parameters indeed appear due to 

inter-correlation, the regression model for power of attention was expanded to include an 

additional independent variable. Whilst the significance of alpha RCREC was kept as the second 

independent variable (after age), an additional predictor of power of attention was added it to 

the model as the third independent variable, this procedure was repeated for all five 
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parameters. This is done to observe whether the different predictors add independently to the 

variance explained by the regression model. The overall variance explained by the multiple 

regression model was not significantly increased by any of the five parameters. Looking at the 

standardised coefficients of the models to assess the effect of each independent variable on the 

dependent (power of attention) would not be advised as the inter-correlated nature of the 

independent variables (regressors) impose a classic case of multicollinearity and therefore 

inaccurate model coefficient estimation [79]. A potential treatment for multicollinearity is 

having a-priori knowledge about the problem. Fortunately, the literature can help with 

providing such information in this case. Alpha band EEG power de-synchronisation is known to 

occur as a response to attentional demands [80-83]. These studies, as a whole, suggest that 

there is an established link between alpha band EEG power changes and attention. Although the 

details of these studies are different from the study here in various aspects such as awake vs. 

sleeping subjects, or slightly different definitions for the alpha band (e.g. dividing the alpha 

band into lower alpha, higher alpha and/or individually adjusted alpha bands) nevertheless, 

they are all congruent in that activity in the alpha band is related to attention. It is shown here 

that respiratory related changes in alpha band EEG power in normal sleeping children is a 

strong predictor of their general power of attention. Whilst age is negatively correlated with 

power of attention, that is, older children have a lower reaction time (faster response), RCREC 

significance in the alpha band is correlated positively with power of attention. Assuming that a 

higher RCREC significance reflects a larger EEG change and a lower RCREC significance reflects 

a lower EEG power change (stability), one may conclude that subjects with more stable breath-

to-breath EEG change in the alpha band score higher in power of attention related subtests (e.g. 

simple reaction time, choice reaction time, etc.). Implications of this may be significant as this is 

the first study to show the influence of RCREC on neurocognition in a relatively large sample of 

normal children. This will however remain as a hypothesis which requires further research.   

The potential relationship between WISC processing speed index and the significance of 

TRCREC in the delta band is a difficult one to interpret. This is mainly due to the relatively broad 

spectrum that WISC processing speed parameter covers. WISC processing speed index does not 

measure a single cognitive function but a combination of few. A high processing speed score 

requires concentration (an attentional demand) and a strong integration between subsets of the 

working memory. Furthermore, the measure itself can be sensitive to motivation and 

adaptation to work under pressure [84]. There are also no previous findings on the relationship 

between WISC processing speed index and delta EEG activity. If however, we interpret the WISC 

processing speed as an attentional demand requiring internal processing and concentration, it 

may be possible to justify the relationship between TRCREC delta and the WISC processing 
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speed. Harmony et al. [85], observed an increment in the delta band EEG activity during the 

progress of a mental task. They hypothesised that the increase in the delta band activity is an 

indication of attention to internal processing. A more recent study has attributed the delta band 

EEG activity to load on working memory (a factor in the WISC processing speed index) [86]. 

Whether delta TRCREC significance is truly related to WISC processing speed index remains 

unknown, however, the two studies mentioned above in addition to our result here, may 

suggest a potential link between sleep and respiratory related regulation of processing speed in 

the brain. 

AHI and RCREC, TRCREC and SRCREC parameters were not found to significantly correlate 

suggesting that RCREC is not a correlate of AHI. Although it had previously been suggested that 

RCREC changes may be related to changes in AHI [1], the results here suggest otherwise.  

6.3 Summary 
 

In the first study done in this chapter, it was shown that transition and shifted segmentations 

not only increase the significance of RCREC but also increase its magnitude and hence it is 

sensible to use transition and shifted RCREC parameters in subsequent statistical analyses to 

link RCREC and neurocognition. The second study, bringing together all the previous RCREC 

parameters (conventional, transition and shifted) suggests that RCREC parameters may predict 

neurocognitive functions in normal children. The quality of episodic memory was predicted by 

the magnitude of RCREC in the theta band. Magnitude of theta RCREC may therefore be 

associated with sleep related encoding of new information into the episodic memory. Power of 

attention was predicted by the significance of RCREC in the alpha band. It is speculated that a 

low alpha RCREC significance reflects a stable breath-to-breath alpha EEG activity throughout 

the night and that plays a role in the general ability of children to focus their attention. In short, 

the more stable the alpha EEG activity in sleep, the shorter the reaction time of the children 

(faster response time). Transition RCREC significance in the delta band was also found to 

predict WISC processing speed index. The latter result is not directly supported by the literature 

however, important factors in brain processing speed (load on the working memory, attention 

to internal processing) have been reported to be correlated with delta EEG activity and hence 

the relation between TRCREC delta and WISC processing speed may be genuine. Last but not 

least, the alternative segmentations used for quantification of RCREC (i.e. TRCREC and SRCREC) 

helped in revealing an additional link between RCREC and neurocognition (WISC processing 

speed and TRCREC delta) and therefore, are advised to be kept as predictive measures in 

relevant future studies. No significant correlations were found between AHI and RCREC 

parameters. 
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Chapter 7   

 

 

 

Summary and conclusions 
 

The work done in this thesis is the collection of investigations on respiratory cycle related EEG 

changes (RCREC). The work can be broken down into three sections, the preliminary case 

studies, systematic investigation of the effects of alternative airflow segmentation on RCREC 

and day time neurobehavioral correlates of RCREC. The preliminary case studies include the 

replication of the original work in addition to two other small sample studies, one on the 

relationship between RCREC and apnoea-hypopnoea index (the measure used in diagnosis of 

OSA) and slow wave sleep (SWS), and the other on sensitivity of RCREC to slight changes in 

airflow segmentation. The last case study in particular, led us to investigate the influence of 

airflow segmentation on RCREC further. Systematic investigation of the effects of alternative 

airflow segmentations on RCREC include a large sample study on 7 – 17 year old children 

(mostly normal) in which different airflow segmentation routines were shown to dramatically 

affect the significance of RCREC. This section also looks at how different nasal airflow 

measurement instruments can influence RCREC and finally mathematically assesses how an 

alternative segmentation can increase RCREC significance. The last section, day time 

neurobehavioral correlates of RCREC, looks at how RCREC parameters can be used to predict 

day time neurocognitive functions in normal children. The neurocognitive measures are those 

obtained from a CDR (cognitive drug research) test in addition to the WISC processing speed 

index and the Ravens progressive matrices.   

In the preliminary case studies Chervin’s original work was successfully replicated (and 

improved) as a first step and in the first case study. In the second study, comparison of the 

RCREC parameters with the AHI revealed no particular pattern between frequency band specific 

RCREC magnitude and AHI. Two interesting correlation however emerged from the analysis of 

SWS. Alpha RCREC was found to negatively correlate with percentage of SWS, and beta RCREC 

correlated positively with SWS absolute duration. Whilst these correlations appear interesting 

at first it should be noted that the correlations found were marginal and the number of samples 

used in the study was only seven, therefore, drawing out any solid conclusion would not have 

been feasible. The third case study showed for the first time that RCREC can be sensitive to 

small changes in airflow segmentation. By filtering the airflow signal using two different filters 

(a standard 5th order low pass Butterworth against a Savitzky-Golay filter) it was shown that 
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small variations in airflow signal peak/trough position estimates imposed by different filters 

can notably change the significance of RCREC. The Savitzky-Golay filter was found to accentuate 

RCREC related parameters. Furthermore, the complexity of EEG signal was calcualted in each 

respiratory cycle segment throughout the first three hours of the night and for each subject. 

Complexity of the EEG signal as calculated using sample entropy (SE) was not found to be 

different between respiratory cycle segments (i.e. early expiration, late expiration, etc.). Note 

that findings in the third case study inspired further investigation of the effects of alternative 

airflow signal segmentation on RCREC in a larger cohort. 

In systematic investigation of the effects of airflow segmentation on RCREC it was aimed to 

solidly address whether changes in segmentation of airflow signal can affect RCREC and if so, 

why? In the first study, effect of alternative airflow segmentation on RCREC was explored in a 

large cohort of children (47 subjects). Statistical significance of RCREC was quantified in all 

frequency bands using a number of different segmentation routines, namely, transition 

segmentation, small shift forward and backward, and long shift forward and backward. 

Transition segmentation emphasises the transitions from expiration to inspiration and vice 

versa.  Small shift forward and backward look at how application of a small (≈200 msec) but 

consistent phase shift to the conventional segmentation points can affect RCREC, and long shift 

forward and backward can assess the sensitivity of RCREC to synchronisation between the 

airflow and the EEG signals. It was concluded that transition and small shift backward 

segmentations dramatically increase the significance of RCREC whilst small shift forward and 

long shift forward and backward considerably decreased the significance of RCREC. The small 

shift forward and backward segmentations suggest once again that RCREC is sensitive to small 

changes in airflow segmentation and long shift (≈ 1 min) forward and backward show that the 

underlying synchronisation between the airflow and the EEG channels is key in quantification of 

RCREC. The fact that small shift backward and the transition segmentation increase the 

significance of RCREC may be related to the inherit delay in the thermistor flow measurement 

instruments. By shifting the conventional segmentation points backward, a portion of that delay 

is being accounted for automatically. It may also provide a better alignment with the physiology 

driving the RCREC and potentiate the RCREC parameters to better relate to day time 

neurobehavioral measures.  

In the second study, to understand the delays imposed by the flow measurement instrument, a 

pilot study was carried out to compare two nasal airflow measurement devices, a thermistor 

and a pressure transducer nasal cannula. Based on 111 respiratory cycles acquired 

simultaneously with both devices, it was found that on average the thermistor generated peaks 

(start of expiration) are delayed by approximately one second, and the troughs are delayed by 
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approximately two seconds when compared to the pressure transducer nasal cannula. This 

result in addition to those previously published in the literature suggest that although delays of 

this magnitude are generally negligible in most sleep scoring and staging applications, it has 

been shown that they can significantly affect RCREC and should hence be accounted for in future 

RCREC related experimental designs.  

In the third study of this section, given that delays in airflow data acquisition are almost 

impossible to avoid, and that a small shift backward increases the significance of RCREC, it was 

attempted to mathematically address the question of why a small backward shift increases the 

significance of RCREC? It was first inferred that an increment in significance of RCREC is likely 

to be an effect caused directly by an increment (or decrement) of the mean relative EEG power 

(MREP) in one of the respiratory cycle segment. The condition under which a backward shift of 

conventional segmentation points results in an increased MREP in one of the respiratory cycle 

segments was then derived. Finally, it was concluded that if the energy of the new samples 

added to a respiratory cycle segment after applying the shift is on average greater than the 

average energy of the samples removed from the same respiratory cycle segment, MREP in that 

respiratory cycle segment is likely to increase.  

The final section of the work on RCREC is dedicated to identifying daytime neurocognitive 

correlates of RCREC and assessing whether RCREC calculated with alternative segmentations 

(transition, shifted) improves these correlations. Using the magnitude and significance of 

RCREC as independent variables and neurocognitive measures as dependent variables in a 

multiple regression model, having controlled for common confounding factors (age, gender and 

altitude) found three significant relations between day time neurocognition and RCREC were 

found. It was concluded that the quality of episodic memory was predicted by RCREC magnitude 

in the theta band. This result is partially supported by the literature as EEG signal power in the 

theta band is known to increase in response to episodic memory related tasks in awake human 

subjects. We speculate that theta RCREC magnitude reflects sleep and maybe respiratory related 

strengthening of recently established memory traces in the episodic memory. Power of 

attention was strongly predicted by the significance of RCREC (as measured using Fisher’s F 

value generated from one way ANOVA) in the alpha band. Various aspects of attention are 

known to affect EEG signal power in the alpha band. It is therefore sensible to assume that the 

relationship between RCREC significance in the alpha band and power of attention is a genuine 

one. It was speculate that RCREC alpha significance reflects breath-to-breath stability of the EEG 

signal power in the alpha band and it appears that subjects with more stable alpha EEG activity 

during sleep score better (faster response time) in day time power of attention tests. Transition 

RCREC significance in the delta band was found to predict the WISC processing speed index. 
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Given that delta band EEG activity is related to some of the components of processing speed 

(working memory load and internal attention) we suggest a sleep related regulation of 

processing speed in the brain. Whilst transition and shifted segmentation were not found to 

improve the existing correlations, use of transition segmentation revealed an additional relation 

between RCREC and neurocognition and it may hence be worthwhile to keep transition 

segmented RCREC as predictive measures.      

 

7.1 Future work 
 

The field of RCREC research is a recently established one and therefore there is much work to be 

done in the area. Some of these are addressed below.  

7.1.1 Major physiological driver of RCREC 

 

The major driver of RCREC remains unknown, whilst the working hypothesis suggests that 

numerous micro-arousals throughout the sleep are responsible for the effect, this is in fact not 

proven. Further experimental and analytical work is required to understand the underlying 

physiological driver of RCREC. Since RCREC can be identified in as few as 101 respiratory cycles 

[15], miniaturised versions of the experiments could be repeated in awake subjects to clarify 

whether RCREC is at all a sleep specific phenomenon and gain deeper insight into its physiology. 

Moreover, and as mentioned, the method for calculation of RCREC bears a striking resemblance 

to the well established field of event related EEG synchronisation and de-synchronisation 

(ERS/D) [73] yet no links have so far been made between the two fields. Hence, event related 

synchronisation/de-synchronisation analysis of RCREC may also be of value in identifying the 

underlying mechanisms that generate RCREC. It was also speculated that intracranial pressure 

(ICP) changes may play a role in RCREC, it was intended to run a set of experiments to measure 

simultaneous EEG, airflow (with/without resistance) and tympanic membrane displacement 

(TMD) to learn more about this, but the time did not allow. This remains as a future work. 

Mayer waves (blood pressure related) may also be a factor in RCREC. They occur at a similar 

frequency as breathing and are used as a surrogate marker of sympathetic nervous system 

(SNS) activation. SNS activation is related to frequent micro-arousals and if the original 

hypothesis is true then these waves may help us prove that. 
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7.1.2 Potential shortcomings in RCREC quantification 

 

There are a few points to be made on how RCREC is calculated. Although the nasal flow signal 

provides a relatively good indicate of where expiratory peaks and inspiratory troughs are 

located, it does not give their exact positions. In order to take full advantage of the physiological 

information embedded within the airflow signal, one needs to produce better estimates of the 

actual peak and trough positions.  Estimating the true location of inspiration from the 

conventional flow signals (nasal cannula and thermistor) may therefore be beneficial in RCREC 

quantification. It is speculated that simultaneous use of abdominal and thoracic excursions may 

help in shedding more light on this matter.  

Another issue is the arbitrary division of a respiratory cycle into four segments based on mid 

points. In alveolar pressure simulations, each respiratory cycle is divided into three segments, 

one for inspiration, one for a hold time and one for expiration. Therefore, as a future work, each 

respiratory cycle may be divided into three segments each representing a distinct physiology. 

Another suggestion may be to mathematically estimate the position of the segmentation points 

to maximise RCREC significance. If then there is consistency between the estimated 

segmentation points throughout sleep and in different subjects, it would provide a very valuable 

clue as to what the driver of RCREC is.   

A rather different issue is that RCREC quantification only benefits from a single EEG lead. Whilst 

it is very convenient to perform multichannel RCREC analysis, so far, this has not been done in 

large samples. It is noted specifically that neurocognitive functions are brain region dependent, 

and therefore, use of multiple EEG channels is advantageous in uncovering relations between 

RCREC and neurocognition.     

 

7.1.3 Individually adjusted frequency bands 

 

As mentioned in the last chapter of the thesis, a few of the studies on event related 

synchronisation analysis employ an experimental method to individually adjust the frequency 

bands used in EEG analysis. EEG power changes in the individually adjusted bands are shown to 

better relate to neurocognivie functions such as attention or memory processes. This may be 

included in experimental designs for RCREC analysis and may reveal further information about 

the sleep and respiratory related regulation of neurocognition.  
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7.1.4 Respiratory related evoked potential (RREP) and RCREC 

 

The relationship between RCREC and RREP was briefly assessed in the thesis. However, the 

study was done on a single subject. It may be worthwhile to repeat the analysis in a larger 

population with an objective measure to quantify the degree of similarity between RCREC and 

RREP (respiratory related evoked potential).   
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Appendix 

 

Appendix A 

 

Application of signal processing to human sleep EEG- A review 
 

Sleep EEG signals have been a valuable source of information for decades. Much of the 

information inferred from these signals to date, are acquired through visual inspection. Signal 

processing techniques are mathematical tools which unveil further information about signals 

which may be hidden otherwise. However, choosing an appropriate method for a particular 

application can often be difficult. This section aims to provide a thorough overview of signal 

processing techniques applied to the analysis of sleep EEG signals.  

Introduction 

Understanding and measuring brain activity in sleep is an exciting frontier of neuroscience and 

polysomnography (PSG) provides a data-rich source for understanding sleep in both health and 

disease. Signal processing allows extraction of detailed information from such signals. 

Applications of these methods in relation to sleep EEG range from simple time and frequency 

domain analysis to implementation of sophisticated nonlinear pattern recognition and 

classification algorithms. Kubicki et al. [87] emphasize that going beyond the well-known and 

commonly used Rechtschaffen and Kales scoring criteria [13] will not be possible without the 

use of signal processing techniques and computer aided analysis to unveil further information 

on microstructure of sleep. The body of literature developed for the analysis of sleep EEG is 

huge and therefore this review provides a synthesis of a selection of this literature to generate 

an overview of signal processing techniques applied to human sleep EEG analysis and their 

relative merits. Signal processing techniques will be considered under three main sections, 

namely: pre-processing, feature extraction and feature classification. Each section describes the 

most frequently addressed methods related to its topic followed by a full Taxonomy table which 

contains the relevant signal processing techniques, their brief descriptions (and their pros and 

cons where appropriate), their specific applications in sleep EEG analysis and the corresponding 

references.  In order to further increase the readability, an additional table is provided which 

categorises the signal processing techniques based on their applications in intensively 

researched sleep areas such as sleep staging, transient pattern (e.g. sleep spindles, K-

complexes) detection and OSA diagnosis. The Taxonomy tables are designed to be self contained 



148 
 

 
 

so that each can be used like a dictionary. Studies included in this survey are limited to surface 

EEG signals in sleeping humans (including the paediatric population). 

Pre-processing 

In biomedical signal analysis it is essential to understand the data, and differentiate between 

signal and artefact. Having successfully understood the difference between artefact and data, it 

is then important to understand the features of interest in the data (e.g. a certain oscillation 

frequency, some peaks or notches or general trend of data). EEG recordings and in particular 

sleep EEG recordings typically suffer from various types of artefacts. In biomedical signal 

processing, artefacts are unwanted patterns not caused by the underlying physiological event of 

interest. Thus, depending on the purpose of the analysis, judgement must be made as to what is, 

and what is not, an artefact. For successful analysis and to obtain reliable results it is essential to 

give special care and attention to identifying artefacts as ignoring them may dramatically 

influence the results and the consequent conclusions. In PSG sleep EEGs are often recorded in 

conjunction with other physiological signals. Hence many artefacts in sleep EEGs are caused by 

interference. Such artefacts include, but are not limited to: 

 

 ocular artefacts that can occur due to eye movements (slow or fast) which affects the 

electrical field of the corneal-retinal dipole 

 muscle artefacts (i.e. EMG interference) which occupy a broad frequency range and can 

appear in the form of spikes or continuous interference 

 electrical field changes induced by the cardiac muscle depolarisation which interfere 

with EEG signals 

 

Other types of artefacts include: 

 

 head, body and chest movements 

 changes in electrolyte concentration at electrodes (e.g. sweat artefacts) 

 mains (power-line) interference at 50 or 60 Hz depending on local standards 

 

These can all distort the EEG signals and result in misinterpretation (see Anderer et al. [88] for a 

review on sleep EEG artefact processing). Examples of such artefacts are shown in Figure A1. 
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Figure A1. Common EEG artefacts. A) 50 Hz mains interference appears as a thickened signal caused by superposition of 
50 Hz mains waves on the EEGs. B) Movement causes a sudden and significant deviation from the background EEG and C) 
severe movement can clip the EEG. D) ECG interference appears as a pulsed EEG, it occurs when the pulses on the ECG are 
superimposed on the EEG. E) Sweat artefact is a slow drift of the baseline EEG. 

 

The EEGs of infants and newborns also suffer from similar artefacts (for a detailed illustration of 

EEG artefacts in newborns see Walls-Esquivel et al. [89]). 

Even though a major part of pre-processing deals with artefact handling it is not limited to that. 

Segmentation of the EEG signal is also a step which is commonly taken prior to the analysis of 

sleep EEG. This section highlights some of the most frequently used signal processing 

techniques for dealing with artefacts and touches on segmentation techniques and their 

application in sleep EEG signal analysis.  

Artefact processing: 

Successful analysis of sleep EEGs requires appropriate artefact handling. This involves detection 

of the artefacts, and depending on their type, may require the exclusion of the whole epoch 

which contains the artefacts, removal of small contaminated portions of signal or artefact 

reduction (i.e. recovering the EEG as best as we can using signal processing techniques).  

Methods that have been frequently used for processing sleep EEG artefacts include, but are not 

limited to, frequency selective filtering, independent component analysis (ICA) and regression 

and correlation based methods. Note that mathematical details of artefact processing are not 

given here, instead, an overview of applications of signal processing techniques in the analysis 

of contaminated sleep EEGs is provided. See Taxonomy Table A1 for the complete list of signal 

processing techniques employed in sleep EEG artefact handling. 
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Frequency selective filters (low-pass, high-pass, band-pass, band-stop) have been almost 

universally used in artefact processing (e.g. see [90] for application of simple and effective 

filtering methods to muscle artefact detection). 

ICA is a statistical signal processing technique which aims to linearly decompose a set of 

random variables into new sets of maximally independent variables [91]. It has been frequently 

applied to sleep EEG signal for source isolation or artefact reduction. There are several 

algorithms (e.g. AMUSE, SOBI, JADE, Infoamx) which can be employed to achieve ICA. AMUSE 

(Algorithm for Multiple Unknown Source Extraction) and SOBI (Second Order Blind 

Identification) are based on second order statistics which makes them computationally more 

efficient than JADE (Joint Diagonalization of Eigen Matrices) and Infomax which are based on 

higher order statistics. Each of these algorithms uses a fundamentally different assumption to 

achieve ICA and this affects the performance and applicability of these techniques in different 

situations.  Crespo-Garcia et al. [92] have recently compared the performance of these four 

algorithms for EMG interference reduction and found that AMUSE not only shows the best 

performance but also requires the lowest computation time.  Devuyst et al. [93] have reported 

that the use of conventional ICA techniques does not result in efficient ECG artefact reduction 

due to lack of synchrony (phase shift) between interference peaks and R peaks of the ECG and 

thus proposed a modified ICA method. ICA has been frequently and successfully used for sleep 

EEG artefact reduction and it has been particularly useful in high resolution studies where the 

number of EEG electrodes exceeds the usual 4-8 channels conventionally used in PSG. For more 

details on the application of ICA to EEG artefact processing (not limited to sleep), see Jung et al. 

[94].  

Regression based methods commonly assume that that an artefact induced in the EEG signal is 

correlated with the source of that artefact (e.g. EOG interference in EEG is correlated with the 

EOG signal itself). This class of methods has the advantage of simplicity but may suffer from 

bidirectional contamination (i.e. removing a portion of the EEG activity as well as the artefact) 

[94, 95].  Regression based de-noising has been commonly used to remove ocular artefacts by 

subtraction of an attenuated version of the EOG from the EEG signal [96]. For more details on 

EOG artefact removal by regression see Woestenburg et al. [97]. Whilst, conventional frequency 

selective filtering cannot eliminate EMG artefacts due to their broad spectrum (10 to 200 Hz 

[98]) it is reported that in high resolution studies they can be removed using linear regression 

and spectral estimation [99, 100]. This is particularly important in sleep studies which aim to 

analyse alpha (8-12 Hz), sigma (13-15 Hz) or beta (16-30 Hz) band since their analysis may be 

undesirably affected by the muscle artefact due to their overlapping spectra.  

Not all artefact processing methods focus on eliminating a single type of artefact. Artefacts can 

often be thought of as any significant deviation from normal (e.g. a sudden change in sleep EEG 
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amplitude which lasts for 2 seconds). These changes manifest themselves as non-stationarities 

and therefore, techniques which can detect dynamic changes in a signal can then be used to 

identify potential artefacts. For example, embedding an autoregressive (AR) model into a 

Kalman filter can form such an artefact detection method used in pre-processing of sleep EEGs 

[101]. Energy operators are also useful markers of sudden changes (e.g. spikes) as they are 

operators sensitive to instantaneous fluctuations of frequency dependent energy [102].      

In a more recent work, Klekowicz et al. [103] proposed a computerised system which can 

parametrically detect most polysomnographic artefacts including EMG, ECG, EOG interference in 

addition to sweat and high frequency artefacts. Depending on the state of the sleep EEG signal 

the program can be tuned (manually by an expert or automatically by self-learning) to be more 

or less sensitive towards different artefact types.  

 

Sleep EEG segmentation:  

Segmentation of the sleep EEG signal before the analysis (i.e. feature extraction and 

classification) is the other crucial pre-processing step. There are almost no studies in which 

some form of segmentation is not done prior to the analysis. Segmentation can be performed 

uniformly or non-uniformly (adaptively). Uniform segmentation is the most widely used 

segmentation routine carried out in sleep EEG pre-processing. Dividing the signal into constant 

30 or 20 or even 1 second epochs are examples of uniform segmentation. Depending on the 

analysis which is to be carried out, use of this method of segmentation may be sufficient. 

However, in some applications, for instance when a large number of data samples are required 

(such as high resolution spectral analysis, or nonlinear analysis of signal complexity), one 

second portions may not contain sufficient number of samples. Uniform segmentation offers 

simplicity but may lack flexibility. 

Adaptive segmentation on the other hand is the more sophisticated approach to segmentation. 

It aims to detect sudden dynamical changes or non-stationarities in the signal and separates or 

classifies them. This divides the EEG signal into quasi-stationary portions of variable length. One 

advantage is that feature extraction after adaptive segmentation will be more reliable since 

features are extracted from homogenous epochs rather than constant length ones [104]. 

Adaptive segmentation of EEG signals was first proposed by Bodenstein and Praetorius in 1977 

[105]. Their method was based on detection of sudden spectral changes driven from a linear 

prediction autoregressive (AR) model using a single sliding window. Amir and Gath [106] 

extended this work by employing time varying autoregressive (TV-AR) modelling for adaptive 

segmentation of EEG signals. Barlow et al. [107] reported the use of mean amplitude and mean 

frequency for adaptive segmentation of EEG signals. This work was later extended and modified 

to be also applicable to infant EEGs [108]. Krajca et al. [109] proposed another method based on 
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spectral estimation and use of statistical measures and shape parameters. They used two 

connected sliding windows rather than one. Agarwal et al. [110, 111] exploited the use of 

nonlinear energy operators, and Arnold  et al. [112] applied Hilbert Transform Filters (HTF) to 

achieve adaptive segmentation. 

All of the above methods have been successfully used in segmentation of sleep EEGs in different 

studies and for different applications (see Taxonomy Table A1). Segmentation techniques are 

not limited to those highlighted above; and in fact any technique which can capture and follow 

the dynamics of a signal can be potentially used for segmentation. For an early clear review on 

segmentation of EEG signals see Barlow [113]. The next section is dedicated to the extraction of 

features from sleep EEGs and techniques used for this purpose.         

Taxonomy Table A1. Artefact Processing and segmentation of sleep EEG signals. 

Technique  Technique 

variations 

Technique brief description Applications and references 

Artefact 

removal 

   

 Independent 

component 

analysis (ICA) 

Linear decomposition of signals 

into maximally independent 

components [114] 

Comparison of four ICA algorithms (AMUSE, SOBI, JADE, 

Informax) for muscle artefact removal [92], artefact 

reduction (ocular, myogenic and cardiac) [95], ECG 

interference cancelation [93, 115], ballistocardiogram 

artefact removal [116], general artefact removal [94] 

Regression- 

correlation 

Assumes that contaminated and 

contaminating signals are 

correlated and uses this to detect 

artefacts, see [97] for an example  

EOG artefact removal [96, 97], EMG artefact removal [99], 

ECG interference removal [117] 

Interpolation Approximating an unknown data 

value from future and past 

samples  

ECG artefact removal (assumes missing data and then 

interpolates) [118] 

Kalman 

filtering 

Famous predictive de-noising 

filter in fields of communication 

and control [119] 

Detect discrete dynamic changes, general artefact detection 

(combined with AR model and RBFNN which stands for 

Radial Basis Function-Neural Network) [101] 

Morphological 

filtering 

Non linear filters which alter the 

geometrical features of signals 

[115, 120] 

ECG interference elimination [115], ocular artefact removal 

[121] 

Bayseian 

model 

averaging 

Uncertainty based classification 

method [122] 

Application of technique in sleep EEG artefact removal [123] 

Energy 

operators 

Analyses the energy of a single 

component signals[124] 

Smoothed non-linear Teager-Kaiser energy operator for 

detection of R peaks in EEG (ECG interference reduction) 

[102] 

Ensemble 

averaging 

Simple point by point averaging 

of several parallel time series 

ECG artefact reduction [102] 

Wavelet 

transform 

Signal decomposition into a set of 

fast decaying functions 

(wavelets) [125] 

Wavelet shrinkage combined with non linear adaptive 

filtering for ECG interference cancelation [126]  

Segmentation    

 Adaptive 

segmentation 

Signal division into variable 

length epochs which enforce 

quasi-stationarity, done prior to 

feature extraction for improved 

performance. Can also be used 

for artefact detection 

Topographic analysis of neonatal EEG [127], neonatal sleep 

state discrimination [104, 108], automatic sleep staging 

(infants [128-131], adults [111, 130, 132, 133]), application 

of TV-AR in segmentation [106], burst and spike detection 

in neonates (based on Hilbert transform) [112], neonatal 

state discrimination [134], spectral analysis [135], 

microarousal detection [136], application of change point 

detection in segmentation [137] 
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Feature extraction  

 

Analyses of time series are often carried out by extracting features from the signal of interest. 

Features can be defined as parameters which provide information about underlying structures 

of our data such as mean amplitude, median frequency or number of zero crossings. There have 

been numerous techniques applied to sleep EEG signals for the purpose of feature extraction. 

These techniques range from simple averaging to computationally intensive complexity 

measures. Names, descriptions and applications of these techniques to sleep EEG processing are 

given in Taxonomy Table A2. Note that studies often employ more than one feature in their 

analyses and hence more often than not, features are complementary. The rest of this section 

provides additional information on some of the most frequently used techniques and features 

found in the table.  

Temporal features:  

Temporal features are characteristics obtained from the signal of interest primarily in the time 

domain. Amplitude values, standard deviation of the time series, and number of zero crossings 

are examples of such features. Some of the more widely used temporal features and their 

associated signal processing techniques are described below.   

Standard statistics which are measures of the basic properties of a time series are the most 

frequently used temporal features in sleep EEG analysis. These statistics can include absolute 

amplitude values, mean amplitude values over an interval, mode, median, standard deviation, 

variance, skewness, and kurtosis. These parameters are easy to derive and often provide 

essential basic information about the signal. 

Period-Amplitude Analysis (PAA) and zero-crossings are closely related methods based on 

parameterisation of a given signal using the zero crossing points. PAA generally extracts 

parameters such as amplitude, period, or area underneath the curve from half-waves (curves 

between two successive zero crossings) and uses these to characterise a signal [138]. For 

instance, the distribution of intervals between consecutive zero crossings provides a measure of 

rhythmic activity - the smaller the intervals, the faster the activity [139]. Geering et al. [138] 

state that the method is very sensitive to noise and more importantly, for reliable use of the 

technique, the signal should not contain superimposed components. This limits the use of this 

technique in practical situations existence of superimposed components is almost inevitable 

when dealing with biomedical signals and particularly the sleep EEG. They further suggest the 

use of band-pass filtering to avoid some of the superimposed components and hence obtain 
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more reliable results. Armitage et al. [140] carried out a study to compare PAA and Power 

Spectral Analysis (PSA). They argue that PAA and PSA are comparable even without pre-

filtering and hence disagree with the conclusion reached by Geering et al. [138]. They further 

promote the method by stating that it performs better than PSA in quantifying low amplitude 

activities. Insensitivity to non-stationarities and general variability (not noise) are other 

properties of PAA which can be beneficial or detrimental depending on the application [140]. 

Zero crossing can be thought of as a subset of PAA which generally aims to measure central 

frequency fluctuations of the dominant band by counting the number of zero (baseline) 

crossings [141]. Both methods can easily be implemented and used in practice; however, for the 

purpose of rhythmic activity quantification, more suitable frequency domain signal processing 

techniques (high resolution spectral analysis, wavelet transform, matching pursuits, etc.) may 

be used.       

Hjorth parameters were developed in 1970 by Bo Hjorth [142] for the purpose of EEG time 

domain analysis. Hjorth parameters are designed to describe activity, mobility (shape) and 

complexity of EEG signals using simple time domain operators such as amplitude, variance and 

time derivatives [142, 143]. They have been used as complementary features in a variety 

applications related to sleep EEG analysis. One shortcoming is that Hjorth parameters are 

sensitive to noise and hence the signal of interest is commonly filtered prior to calculation of 

these parameters [144]. 

Detrended Fluctuation Analysis (DFA) proposed by Peng et al. [145] is a relatively new technique 

which allows accurate detection of long range temporal correlations in a time series [146]. It 

can also be used as a linear measure of self-similarity [147]. It is theoretically suitable for the 

analysis of non-stationary, noisy signals such as the sleep EEGs [148, 149]. Since its 

development, the method has received considerable attention in various fields of science and 

engineering. It has been used in a variety of applications in sleep EEG analysis.  

Entropy of amplitudes (ENA) is a non-conventional temporal feature used in a number of sleep 

EEG related studies [150]. It is a measure of disorder (regularity, complexity) in the amplitude 

distribution of a time series. It is simply defined as: 

   )log( ii xxENA   
(A1) 

 

Where xi is the amplitude distribution (histogram) of the signal in a given interval [151]. As can 

be seen, ENA can be simply calculated and thus has been used as a complementary feature in a 

few studies. 
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There have been other less commonly used temporal feature extraction techniques applied to 

the analysis of sleep EEG signals, these are not discussed in the text but are included in 

Taxonomy table A2. 

Spectral features: 

Arguably the most commonly extracted features from sleep EEGs are the spectral features. They 

are essentially parameters which characterize the signal in the frequency domain. Sleep EEGs 

are traditionally divided into five frequency bands namely delta (0-4 Hz), theta (5-7 Hz), alpha 

(8-12 Hz), sigma (13-15 Hz) and beta (16-30 Hz). Many of the visual scoring criteria for sleep 

EEG signals are based on these frequency bands, which may explain in part the widespread use 

of spectral features in the analysis of these signals. This section describes some of the most 

frequently employed spectral features and their associated signal processing techniques, and 

highlights the important properties of each technique where appropriate.  

Non parametric, parametric and subspace spectral estimation methods are different techniques 

for approximating the power spectrum of a given signal. As can be seen in Taxonomy Table A2, 

these spectral estimators have numerous applications in sleep EEG analysis. Non-parametric 

spectral estimators are based on direct use of the Fourier transform (FT) which is commonly 

calculated using the Fast Fourier transform (FFT) algorithm. The Welch method is, for instance, 

a well known non-parametric power spectral density (PSD) estimator [152]. Non-parametric 

spectral estimators have been by far the most frequently used techniques in sleep EEG analysis. 

They are simple to implement and interpret but can only be applied to a small portion (e.g. 1 

second window) of the sleep EEG signal at a time or they may violate the stationarity 

assumption. Instructions on how to use FFT for sleep EEG analysis are given by Campbell [153]. 

Parametric spectral estimation is a model-based approach in which the spectrum of the signal is 

approximated by fitting a mathematical model to it. Upon calculation of the parameters of such 

a model one can obtain a spectral estimate which is often more accurate than those obtained by 

non-parametric counterparts. In addition, close spectral peaks in the spectrum are more likely 

to be resolved using a parametric estimator than a non-parametric one. Autoregressive (AR) 

modelling, adaptive AR modelling [154] and Kalman filtering are all considered as parametric 

modelling methods. A very important issue which rises in parametric modelling is the choice of 

the model order (number of parameters in the AR model). The Akaike information criterion 

(AIC) [155] has often been used to determine the model order for reliable spectral analysis 

[139]. Herrera et al. [156] have more specifically discussed the model order selection issue for 

sleep EEG signals. For a review of parametric modelling techniques applied to EEG analysis see 

Pardey et al. [157]. Subspace methods (also referred to as high resolution or super resolution 

techniques) are spectral estimation methods based on Eigen analysis. They are particularly 
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good at capturing the spectral characteristics of single component signals (which may be hidden 

by noise). Multiple Signal Classification (MUSIC) or Eigenvector (EV) methods are examples of 

subspace spectral estimators [158, 159]. 

All the above spectral estimation methods, when employed appropriately, that is taking into 

account possible non-stationarities and optimal model order selection, can provide useful 

information about the underlying structure of the signal and can consequently be used as 

features for further analysis. 

 

Higher-order spectral analysis (HOSA) is the extension of power (second order) spectral analysis. 

A reasonable motivation for the use of higher order statistics is that the power spectrum does 

not contain any information about the phase of the signal. This issue can be overcome by use of 

higher order spectra as under certain circumstances, they can provide a means for the phase 

information to be recovered [160]. This additional phase information has made HOSA a major 

investigative tool in analysis of phase coupling in sleep EEG [161]. Bispectral analysis is a well 

established branch of HOSA which has been widely used in estimating the depth of anaesthesia 

(and sleep) by calculating the Bispectral index (BIS) from the EEG signals [162-164]. Various 

other instances in which bispectral analysis or HOSA in a more general sense have been applied 

to sleep EEGs are shown in Taxonomy Table2. It should be noted that quantities such as 

bispectrum, bicoherence, trispectrum, and tricoherence, are all related to the more general 

higher order spectral analysis; they are in fact the Fourier transform of different moments of the 

signal [160, 165]. To summarise, HOSA provides complementary information to that which can 

be obtained by power spectral analysis and is especially suitable to analyses where phase 

information is of particular importance.   

Coherence analysis is very closely related to the spectral analysis methods previously 

mentioned. It is in fact, the normalised cross-spectrum and can be thought of as frequency 

domain correlation [166, 167]. Coherence is a parameter which reflects the degree of synchrony 

between frequency components of two signals and can provide estimates of functional 

connectivity in the brain. It has hence, often been used in investigation of cortical interactions 

[100, 168]. For instance, existence of sleep spindles in two separate channels can be shown by a 

high coherence value at about 13 Hz, that is, a higher degree of synchrony at 13 Hz. Coherence 

analysis can theoretically only be applied to stationary signals and hence sleep EEG signals have 

to be segmented to quasi-stationary portions prior to the analysis. Coherence analysis is most 

suitable in high resolution studies when the number of derivations is not limited to 4 or 8. For a 

detailed discussion on application of coherence analysis to sleep EEGs see Achermann [169]. In 

short, coherence analysis is simple to implement and interpret, and has been shown to be a 
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powerful tool in unveiling new information about functional cortical connections [170]. It is 

worth mentioning that Directed Transfer Function (DTF) method (previously called directed 

coherence) is a more recently developed method for the purpose of investigating functional 

connectivity in different brain regions. As the name suggests, it not only reveals a possible link 

between two channels, but also specifies a direction for the information flow [171]. DTF is 

sensitive to phase shifts between signals but robust in presence of noise [168].      

Spectral entropy (SEN), similar to amplitude entropy, is a measure of irregularity of EEG signals 

[172]. It reflects the degree of disorder in the spectrum of the signal. For instance, if the spectral 

power is accumulated on a single frequency, SEN is minimised (i.e. there is little irregularity) 

and if it is uniformly distributed over a broad spectrum it is maximised [150].  Spectral entropy 

is given as: 

   )log( ii PPSEN   
(2) 

 

where Pi are amplitude values of the discrete power spectrum. SEN has been used in the 

analysis of sleep EEGs usually as a complementary feature. It is simple to calculate and can 

provide useful information about the complexity of a time series.     

The spectral features listed above are by no means inclusive of all methods proposed in the 

literature, but they provide an overview of the frequency domain techniques used in the 

analysis of sleep EEG. Taxonomy Table A2 provides further details on the application of these 

techniques in human sleep EEG analysis.  

Time-frequency features: 

Time-frequency analysis is a powerful tool which allows decomposition of signals into both time 

and frequency. It thus provides a means for frequency tracking in time [173]. 

Sleep EEGs are non-stationary signals, i.e. their amplitude, frequency and phase vary rapidly 

with time. In the analysis of such signals one is often interested in the evolution of the frequency 

content with time. This is particularly important in analysis of sleep EEGs where many of the 

events such as arousals, sleep spindles and alpha intrusions are manifested by sudden changes 

in amplitude and frequency characteristics. Some of the more widely used time-frequency 

methods in the analysis of sleep EEGs are highlighted below. 

The wavelet transform is one of the major mathematical tools in time-frequency analysis. It is 

analogous to Fourier series. In Fourier series a signal is broken down into its basic sinusoidal 

components of different amplitudes and frequencies; in wavelet analysis however, the signal is 
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decomposed into several wavelets (fast decaying waves) with different scaling factors and time 

shifts. The scaling factor and time shifts can then be translated to frequency and time 

parameters respectively [125]. Wavelet transform uses variable size windows to achieve time-

frequency decomposition; this essentially means that the sizes of the windows can be adopted 

to suit the characteristics of a signal and achieve optimal time-frequency resolution. This 

optimal resolution, in addition to the capability to deal with non-stationary signals are 

significant advantages of wavelet transform [174]. On the other hand, an orthogonal discrete 

wavelet transform is not generally time shift invariant, that is, different time shifts in the input 

do not result in time shifted version of the decomposition but a different decomposition; this 

may limit the use of wavelet transform in certain applications [175]. Although wavelet 

transform has often been successfully applied to analysis of sleep EEGs, there have been few 

studies which have employed but not benefited greatly from this technique (see Zoubek [176] 

for an example). Hence depending on the nature of the analysis one may choose simpler 

techniques which can be easier to implement and interpret. Applications of wavelet analysis in 

the processing of sleep EEGs are shown in Taxonomy Table A2. 

 

Matching pursuits (MP) is a more recently developed time-frequency method. It is based on 

signal description via a collection of mathematical functions (commonly Gaussian modulated 

sinusoids) called dictionaries. An advantage of MP is the large dictionary size which is not 

limited to a certain form of function (as opposed to the Fourier transform which uses only 

sinusoids or the wavelet transform which employs a mother wavelet function) [177]. MP 

achieves time-frequency decomposition by finding the best matches that fit the structure of the 

signal from the dictionary. Parameterisation of the identified matches in time, frequency, 

amplitude and energy results in a complete decomposition [178]. Analyses which employ MP 

benefit from high time-frequency resolution, accurate transient event description and 

appropriate characterisation of non-stationarities. Furthermore, parameterisation of sleep EEGs 

using MP is compatible with the conventional visual scoring criteria. An addressed issue of MP 

algorithm in analysing sleep EEGs is the statistical bias which is caused by the structure of the 

employed dictionary and can be alleviated by use of stochastic dictionaries [179, 180]. However, 

a possible shortcoming of the method is its high computational cost which may limit its use in 

real-time applications. In short, since its introduction, MP has been widely used in the analysis 

of sleep EEGs; its high time-frequency resolution makes MP an ideal candidate for estimating 

the dominant frequency of transient patterns [181]. More details on applications of MP to sleep 

EEG analysis can be found in Taxonomy Table A2.     
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Short Time Fourier Transform (STFT) is a simple, powerful tool in time-frequency analysis. In 

STFT the signal of interest is uniformly segmented into many short duration portions. The 

Fourier transform of overlapping segments of the signal is then calculated. This method can 

therefore capture the spectral characteristics of each segment. Thus one can see how these 

spectral properties change from one segment to another. The time-frequency resolution of STFT 

is directly determined by the segment size: the smaller the segment, the higher the time 

resolution and, the lower the frequency resolution. By increasing the size of segments one can 

increase the frequency resolution at the cost of time resolution. Also note that longer segments 

may violate the quasi-stationarity assumption required for appropriate application of the 

Fourier transform. Hence one should take into account issues about time and frequency 

resolution in addition to stationarity of the signal prior to analysis. STFT has been widely used 

in the analysis of sleep EEG mainly due to its simplicity and ease of implementation. For details 

on the techniques see Cohen [173]. 

Empirical mode decomposition (EMD) is a decomposition technique which aims to analyse non-

stationary and nonlinear processes. In this method, the signal is broken down into several 

functions, called the intrinsic mode functions (IMF) which have distinct oscillatory modes. 

Instantaneous frequencies of each oscillatory mode are then computed using the Hilbert 

transform. Using the calculated frequency values one can produce an energy-time-frequency 

representation of the signal. This time-frequency plot is known as Hilbert spectrum [182]. Use of 

EMD in sleep EEG analysis has not been very wide, even though the method offers certain 

advantages such as capability of appropriately dealing with non-stationary and non linear 

processes. This could be partly due to the fact that the method has been developed relatively 

recently compared to most other time-frequency methods. It seems likely that the application of 

EMD to the analysis of sleep EEG signals will increase in the future. 

 

Nonlinear features/complexity measures: 

It is traditionally assumed that EEG signals are generated from stochastic processes and hence 

statistical methods should be employed to characterise them. A more recent view suggests that 

EEG signals may be generated from a deterministic nonlinear process [183]. Since nerve cells 

are highly nonlinear in nature, this recent view is intuitively more realistic [184]. In fact, Fell et 

al. [185] have shown that EEG signals are highly unlikely to be fully characterised by linear 

stochastic models.  

A nonlinear dynamical system is typically described by its states (the system variables) and its 

dynamics. The space which these variables span is known as the phase space (or the state 
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space) and this contains all the possible states that the system can produce. The dynamics of the 

system can be defined as the rules by which the system changes in time i.e. the governing 

equations. An important concept in nonlinear dynamical systems is the attractor. An attractor is 

a subset of the phase space which, given enough time, the system tends to evolve to [186]. In 

systems with multiple attractors, the initial conditions determine which attractor the system 

will evolve to. Attractors have properties which can be estimated and be used as descriptive 

features. See Stam [187] for a very comprehensive review on nonlinear dynamical analysis of 

EEG signals.  

Parameters which describe the nonlinear system can also be used as features in time series 

analysis. These features often incorporate information about the degree of nonlinearity of the 

system. Based on the assumption that more complex systems generate more complex time 

series, nonlinear features have also often been used as complexity measures (see Taxonomy 

Table A2). Nonlinear features have been widely applied to the analysis of sleep EEGs. They can 

provide complementary information to characterise specific waveforms as well as different 

stages of sleep. An important issue in nonlinear analysis of time series is the reliability and 

interpretability of the potential results. Successful application and interpretation of these 

techniques requires a good understating of the method and the application [184, 188]. However, 

careful analysis of nonlinearities can reveal useful information which is otherwise hidden [189]. 

The rest of this section briefly describes some of the nonlinear features/techniques which have 

been more frequently employed in the analysis of sleep EEGs. 

Correlation dimension is by far the most frequent complexity measure used in the analysis of 

sleep EEGs [190]. In a one dimensional time series, it estimates the complexity of the nonlinear 

system which is capable of generating that time series. Correlation dimension is a property of an 

attractor and often exhibits a fractal (non-integer) dimension in practice. Correlation dimension 

is most commonly calculated using the numerical algorithm of Grassberger and Procaccia [191]. 

It has been applied to the analysis of both neonatal [192, 193] and adult [194, 195] sleep EEGs.  

Correlation dimension has often been used in characterisation of different stages of sleep by 

monitoring the complexity of the EEG signal during different sleep stages. It is reported that 

correlation dimension can reflect statistically significant differences between most sleep stages. 

More specifically, studies suggest that the deeper the sleep the lower the complexity measure 

(see [192, 193, 196] for relevant paediatric complexity studies, and see [150, 197-205] for 

relevant adult studies). Accurate estimation of correlation dimension requires a large sample 

size and therefore, it is generally not suitable for parameterization of short transient events 

such as sleep spindles or arousals. The standard algorithm also requires the signal to be 

stationary. For a variant of the technique which can be applied to non-stationary signals see 
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Skinner et al. [206]. Taxonomy Table A2 highlights different applications of correlation 

dimension in the analysis of sleep EEGs.    

Lyapunov exponents estimate the average convergence or divergence rate of trajectories in 

phase space. These exponents can be positive, zero or negative and their interpretation changes 

depending on their signs [187, 207, 208]. Most literature on sleep EEG analysis report the use of 

Largest Lyapunov Exponent (LLE) or first and second positive Lyapunov exponents as markers 

of chaotic source behaviour, and their high sensitivity to initial conditions [209]. Whether or not 

sleep EEGs are generated from a chaotic source remains unclear; Gallez et al. [184] argue that 

existence of at least two positive Lyapunov exponents is the footprint of chaos whereas 

Acherman et al. [195] and Palus [189] believe that their findings do not support the idea of a 

chaotic source for EEG signals.   

Furthermore, Lyapunov exponents are used to characterize the attractors in dynamical systems. 

Assuming that sleep EEGs are generated from a nonlinear dynamical process, Lyapunov 

exponents can be used to parameterise an attractor of such a generator.  This parameterisation 

can be used as a discriminative feature [150] or a diagnostic feature [210] in the analysis of 

sleep EEGs. The main algorithm for calculation of non-negative Lyapunov exponents from a one 

dimensional time series was proposed by Wolf et al. [211] in 1985 and is still in use to date. 

Taxonomy Table A2 shows several instances where Lyapunov exponents have been used for 

analysis of sleep EEGs.   

 

Fractal dimension (FD) is also a complexity measure. The basic idea comes from quantification 

of dimensionalities of fractals. Fractals are geometries which are self-similar on different scales, 

see Koch snowflake in [212] as an example. That is to say for instance, one fractal is more 

“space-filling” than the other and hence has a higher dimension. This concept has been 

expanded to the analysis of time series highlighting the point that different signals may also be 

looked at as fractals and may differ in their space-filling property. For the one-dimensional 

sleep EEG signal, FD can range from 1 to 2 (its dimension is at least one and cannot be greater 

than two, FD=2 means the whole one dimensional space is filled by the signal) [213]. There are 

several algorithms for calculation of FD from a time series, but the algorithm proposed by 

Higuchi [214] and Katz [215] has been reported most frequently in sleep EEG analysis. FDs are 

suitable for transient detection (such as sleep spindles) in EEG signals [198, 216] but require 

the signal to be stationary. FDs can be applied to short segments of data and are relatively stable 

measures of complexity [217]. Taxonomy Table A2 shows applications of FD in the analysis of 

sleep EEGs.    
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Approximate entropy (ApEn) & Sample entropy (SampEn) are two closely related regularity 

measures. ApEn is a technique which is capable of quantifying the complexity of a system. The 

method was first introduced by Pincus [218] in 1990, and has become an attractive signal 

processing technique for researchers ever since. Generally speaking, ApEn reflects the 

conditional probability that two time series remain similar to each other for the next m samples, 

given that they have previously  been similar; if the signals have high degree of regularity (low 

degree of complexity) it is more likely for them to stay similar for the next few samples and 

hence they produce a low ApEn value [219, 220]. According to Fusheng et al. [221]  ApEn is: 

1)  robust in the analysis of short data segments (100 to 5000 samples),  

2)  resilient to outliers and strong transients,  

3)  capable of dealing with noise by appropriate estimation of its parameters and  

4)     can be applied to both stochastic and deterministically chaotic signals.  

However, Pincus [219] states that ApEn requires at least 1000 samples to classify a complex 

system, hence for reliable and more interpretable results it is advisable to use at least 1000 data 

points in calculation of ApEn. In spite of being a practical technique, ApEn is a biased estimator 

of complexity and its measures may be inconsistent; this is the main motivation for introduction 

of sample entropy (SampEn) [49]. Theoretically SampEn and ApEn are very similar. SampEn is in 

fact an improved version of ApEn; its results are reported to be consistent, less biased and 

largely independent of sample sizes [49]. Both methods have been used in the analysis of sleep 

EEGs for instance, it has been reported that SampEn can capture and reflect the distinctive 

characteristics of sleep in different stages [222] (see Taxonomy Table A2 for more applications 

of these techniques). SampEn appears to be an appropriate method for the analysis of sleep 

EEGs and can be applied to characterise transient events with short durations.  

 

The nonlinear methods highlighted above are the most frequently used techniques in the 

analysis of sleep EEGs. Sleep EEG specific applications of these methods in addition to several 

other methods are provided in Taxonomy table A2. For a review on some of these nonlinear 

methods see Subha [223] and for a tutorial see Pritchard & Duke [224]. 

 

Spatial features and Model based features are also features extracted for the analysis of sleep 

EEGs; however, their use has not been as wide as the four main categories mentioned above (i.e. 

temporal features, spectral features, time-frequency features and complexity measures).  

Spatial features are very popular in high resolution brain studies where the number of EEG 

derivations exceeds those of usual PSGs (e.g. epilepsy research, brain computer interface 

applications, etc.). Spatial features are often extracted for source localization and techniques 

such as independent component analysis (ICA), principle component analysis (PCA) and low 
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resolution electro-magnetic tomography (LORETA) serve this purpose (see Taxonomy Table A2 

for further details). 

Model based features attempt to model the sleep EEG signal based on the observed signal 

(empirical) or some physiological assumption (e.g. neuronal interaction via feedback loops 

[225]). Parameters of these models can then be used as informative features which can be 

employed for further analysis (see Taxonomy Table A2 for the list of applications). 

 

The application of random walk theory to sleep EEG analysis is included here due to the 

unusual nature of the method. The concept was first introduced by Karl Pearson in 1905 [226] 

and the theory has been applied to numerous fields of science and technology since then. The 

method has not been frequently used in sleep EEG analysis, but Cai et al. [227] have applied a 

modified version of the random walk theory to produce a stationary time series from the non-

stationary sleep EEG signal. The resulting time series has been shown to be capable of 

characterising different sleep stages.   

Features mentioned above, in addition to those highlighted in the Taxonomy Table A2 provide 

an overview of the features and feature extraction techniques used in the analysis of sleep EEGs 

(for further information also see Thakor [228] for a review of quantitative analysis techniques 

applied to EEG signal). It can be seen that the number of different features which can be 

obtained from a single time series can be enormous. Even though one may need to explore 

different aspects of the signal by looking at many different features, it may not be 

computationally possible, and hence there is often a need for feature space reduction by feature 

selection. 

Feature selection is a procedure by which the preliminary feature space is reduced to a smaller 

space which preserves most of the information in the original space. There are numerous 

methods and algorithms which can be used for optimal and sub-optimal selection of features 

(See for example Bashashati [229] for a list of potential feature selection algorithms) out of 

which principle component analysis (PCA), genetic algorithm (GA) and factor analysis have 

been more frequently used in human sleep EEG analysis. PCA has been applied for feature 

reduction in analysis of both infant [230, 231] and adult [232, 233] sleep EEGs. It has also been 

recently used to study features which best capture the differences between sleep stages [234]. 

GA is a heuristic search algorithm which is often used in optimisation problems [235]. In sleep 

EEG analysis, GA has been employed in feature selection procedure for automatic sleep staging 

[236], cyclic alternating pattern (CAP) detection [237] and EEG signal compression [238]. 

Factor analysis, which is theoretically very similar to PCA has also been used for feature space 

reduction in neonatal sleep EEG analysis [127].   
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Taxonomy Table A2. Features and feature extraction techniques in sleep EEG signal processing. 

Feature Techniques  Technique/feature 

description 

Applications and references 

Temporal 

features 

   

 Standard statistics 

(amplitude, mean, 

median, mode, 

standard deviation, 

variance, skewness, 

kurtosis) 

Features extracted by 

applying standard statistical 

operators to a time series. 

Automatic sleep staging (in neonates [129, 239], adults [111]), 

topographic analysis of neonatal EEG [127], neonatal sleep state 

discrimination [104, 134, 176], automatic transient event detection 

[240],  assessment of treating effects in patients with depression 

[241], RMS values used for characterization of sleep stages [242], 

analysis of auditory evoked potential in sleep [243], Automatic CAP 

detection [244], automatic arousal detection [245], study of sleep 

stage separability [234], automatic REM detection [246] 

Period-amplitude 

analysis  

Parameterizing half-waves 

(curves between 2 adjacent 

zero crossings) by period, 

amplitude, area, etc [138, 

247]  

Comparison with spectral analysis [138, 140, 248], sleep study of 

depressed patients [249-251], analysis of delta activity [252], inter-

hemispheric study of delta waves [253], comparison with spectral 

analysis in elderly vs. young [254] 

Zero crossings Number of baseline (zero) 

crossings in a finite time 

series [141, 255] 

Complementary feature for automatic state classification in 

neonates [239, 256], characterization of neonatal states [141], delta 

wave (0.5-2Hz) detection [257], delta wave detection for automatic 

sleep staging in infants [258],automatic transient event detection 

[240], REM detection in neonates [259] 

Hjorth parameters Time domain parameters to 

describe activity, shape and 

complexity of EEG signals 

[142] 

Neonatal state discrimination [134, 260], OSA diagnosis [261], 

automatic sleep staging [144, 262-264], study of sleep stage 

separability [234] 

Detrended 

fluctuation 

analysis (DFA) 

Allows accurate detection of 

long-range correlations. Also 

a linear measure for self-

similarity (or persistence) in 

a time series. Suitable for 

non-stationary signals [145, 

147]   

Investigation of linearity/nonlinearity of different sleep stages 

[147], characterization of sleep stages [148], Investigation of 

interdependencies between heart rate and sleep EEG [265], OSA 

diagnosis [261], analysis of sleep EEG scaling exponent (calculated 

from DFA) [146], characterization of sleep EEG in depressed men 

[149] 

Entropy of 

amplitudes (ENA) 

Measures the degree of 

disorder in the amplitude 

distribution of a signal [150] 

Discriminating sleep stages [150, 176], automatic state 

classification in neonates [128, 239], automatic REM detection 

[151] 

Matched filtering Linear filtering based on 

template matching. Simple 

but not very flexible. 

Automatic CAP detection [266], automatic spindle and K complex 

detection [267], topographic analysis of spindles [268], 3 types of 

matched filters used in K complex detection [269] 

Teager energy 

operator 

Analyses the energy of a 

single component 

signals[124] 

Automatic spindle detection [270, 271] 

Mutual 

information 

measure 

Measures the amount of 

shared information between 

two random variables [272, 

273] 

Discriminating features in transient event detection [273], K 

complex/delta wave discrimination [274] 

Tsallis entproy Generalization of Boltzmann-

Gibbs entropy [275] 

Characterization sleep stages [227] 

Other time related 

features 

 Cross correlation has been used to quantify the degree of synchrony 

in newborns [276] and Investigate the slow eye movement (SEM) 

and sleep EEG relationship [277], sleep event duration for 

automatic sleep staging [117], symbolic correlation function for EEG 

pattern recognition [278], likeness method-based on calculation of 

instantaneous phase- for Sleep Slow Oscillation detection (SSO) 

[279], application of Fujimori’s method (a waveform recognition 

technique) [280]  

Spectral features   Features obtained by 

analyzing the signal in 

frequency domain. 

Characterization of brain maturation in infants [281], spectral 

analysis of pre vs. full term infants [282] 

 Non-parametric 

spectral analysis 

Frequency component 

calculation by direct use of 

Sleep spindle detection [283-287], sleep stage discrimination 

(paediatrics [104, 230, 260, 288], adults  [176]), study of delta 
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(Periodogram, 

Welch, etc) 

Fourier transforms. waves in preterm infants [289], automatic sleep staging (paediatrics 

[128, 129, 256, 258, 290, 291], adults [144, 264, 292-295]), CAP 

analysis at different ages [296], characterization of neonatal states 

[141, 297], comparison with PAA [138, 140, 248], study of spindles 

[298], investigation of temporal evolution in sleep EEG [170], OSA 

diagnosis [299-301], arousal detection [245, 302], study of cortical 

interactions [303], study of  fast and slow spindles [304], study of 

primary insomnia [305], study of temporal coupling in REM [306], 

combined with penalized spline smoothing for spectral analysis of 

EEG [307], Investigation of interdependencies between heart rate 

and sleep EEG [265, 308], delta wave detection in infants [258], 

analysis of high frequency bands (15-45 Hz) [309], automatic REM 

detection [151, 310, 311], dominant spindle frequency estimation 

[181], alpha activity detection [312], sleep onset estimation [233], 

parameterization of sleep EEG  [232], spectral analysis of delta and 

sigma bands in infants [313], artefact detection [121], analysis of 

auditory evoked potential in sleep [243], analysis of wake-sleep 

transition [314, 315] (marikowa ), spectral analysis of pre vs. full 

term infants [316], spectral analysis of young vs. elderly [254], 

spectral analysis of healthy vs. sick newborns [317] 

Parametric 

spectral analysis 

(AR, AAR , TV-AR 

modeling, Kalman 

filtering) 

Power spectral estimation by 

fitting a mathematical model 

to the signal [157].  

Complementary feature for automated sleep staging [111, 117, 262, 

293, 318, 319], Investigation of linearity/nonlinearity of different 

sleep stages [147], neonatal state characterization [320], automatic 

spindle detection [321], continuous sleep depth monitoring [322], 

study of SWA [323], sleep stage discrimination [318], Tufts-

Kumaresan (for method detail see [324]) for transient enhancement 

[325], spectral analysis of sleep EEG [135], artefact detection [121], 

phenomenological spindle analysis[326], phenomenological EEG 

modelling [327], analysis of sleep dynamics [328-330], study of 

sleep stage separability (feature selection) [234], automatic arousal 

detection [331] 

Subspace methods 

(MUSIC and EV) 

Spectral estimation based on 

Eigen decomposition of the 

covariance matrix [158] 

Multiple Signal classification (MUSIC) used in high resolution 

spindle study [332], subspace tracking for spectral analysis of 

spindles [333], MUSIC used in automatic spindle detection [271], 

Hankel total least square method used in dominant spindle 

frequency estimation [181] 

Higher order 

spectral analysis 

(bispecrum, 

bicoherence, etc) 

Fourier transform of different 

moments (greater than 2) of 

the signal [160].  

Adaptive quadratic phase coupling analysis in infant sleep EEG 

[161, 334], bispectral index (BIS) used as a measure of sleep depth 

[162, 164], characterization of sleep spindles [335, 336], drug effect 

study [337], BIS used for sleep staging [163], exploratory study of 

HOS techniques [338], phase coupling analysis in neonates [339]  

Coherence analysis Normalized cross spectral 

density (CSD). Extracts 

linearly correlated rhythms 

between multiple signals 

[11].  

Investigation of sleep related oscillations (SWS, spindle) in human 

EEG (spindles found highly coherent) [169], investigation of 

neurobehavioral status of infants [231], investigation of cortical 

interaction [167, 168, 340], investigation of temporal evolution in 

sleep EEG [170], study of depressed patients [250], sleep onset 

estimation [341], functional connectivity in low birth weight infants 

[342], investigation of heart rate-EEG interaction in OSA patients 

[343], analysis of wake-sleep transition [314, 315] 

Spectral entropy Shannon entropy of 

frequencies. power spectrum 

of the signal is used instead of 

the probability distribution 

function in calculation of 

entropy [172] 

Investigation of the practical aspect of the method in sleep EEG 

[344], discriminating sleep stages [150], characterization of sleep 

states in (newborns [276], adults [345], automatic sleep staging 

(infants [128, 130], adults [130, 144, 262]), OSA diagnosis [299], 

comparison of spindles in sleep and anaesthesia [346], automatic 

REM detection [151] 

Spectral edge 

frequency (SEF) 

Evaluating the frequency, up 

to which X% (usually 85-95) 

of total power is accumulated 

[150]. 

Discriminating sleep stages [150], measure of sleep depth [162, 

164], characterization of sleep states in newborns [276], automatic 

sleep staging  in infants [128], drug effect study [337], spectral 

analysis of healthy vs. sick newborns [317], study of sleep stage 

separability [234] 

Spectral mean 

frequency 

Mean frequency value 

calculated from spectral 

estimates 

sleep depth measure [143, 347, 348], analysis of quiet sleep in 

premature and full term infants [349], study of sleep stage 

separability [234] 

Hilbert transform Filters out all negative Adaptive Hilbert transform in burst and spike detection in neonates 
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filter frequency components of a 

signal  [350], also used for 

envelope detection 

[112], analysis of quiet sleep in premature and full term infants 

[349, 351], Hilbert transform for spindle parameterisation [352] 

Itakura distance 

(ID) 

Distance measure between 

coefficients of two AR models 

[353] 

Sleep stage discrimination [318, 354], assessment of similarity 

between EEG and EOG [355], OSA diagnosis [261] 

Directed transfer 

function (DTF) 

Describes direction and 

spectral characteristics of 

propagation between 

channels [168, 171] 

Investigation of cortical interactions [168, 303] 

Frequency selective 

filtering 

Extracting a frequency band 

of interest from the spectrum 

of the signal. 

Spindle feature extraction (in infants [356], in adults [283]), 

neonatal state discrimination [288] 

Delta power Evaluates Sum of spectral 

densities in delta band [150]  

Discriminating sleep stages [150], characterization of sleep states in 

newborns [276] 

Other spectral 

parameters  

 Spectral centroid, spectral flux, spectral flatness, cepstral 

coefficients and 3 Hz power were used as complementary features 

for automatic state classification in neonates [239], brain symmetry 

index (BSI) used to quantify symmetry in newborns [276], first 

spectral moment was used in automatic sleep staging in infants 

[128], evolution map approach (EMA) was used to assess phase 

synchronization [357], median frequency for OSA diagnosis [299], 

cross spectral power used in sleep study of depressed patients 

[250], cosine modulated filter banks used for sleep spindle study 

[358], quadrature filter in burst pattern recognition in neonates 

[359], harmonic parameters for sleep stage discrimination [295, 

318, 360] and OSA diagnosis [261], adaptive recursive filter for 

centre frequency tracking and spindle detection [361, 362], brain 

rate (weighted mean frequency) used in sleep onset estimation 

[341], complex demodulation used in study of spindles [352, 363, 

364], Kullback information measure used as a distance metric for 

sleep staging [365], phase lock loops for spindle detection [366], 

spectral correlation for information flow calculation in arousals 

[367], maximum entropy method for spectral analysis [368, 369] 

Time-Frequency 

decomposition 

 Tracking the evolution of 

frequencies in time. 

 

 Wavelet transform 

(wavelet 

coefficients) 

Signal decomposition into a 

set of fast decaying functions 

(wavelets). Dilation and 

translation of wavelets can 

provide a time-frequency 

representation [125] 

Complementary feature for automatic arousal detection [370], sleep 

stage discrimination [176], automatic spindle detection [270, 271], 

spindle identification [371], neonatal state discrimination [134], 

automatic sleep staging (infants [130], adults [130, 372]), 

microarousal detection (the same as arousal detection) [136], 

dominant spindle frequency estimation [181], applicability of 

wavelets in sleep EEG analysis [174, 373], CAP detection [237], OSA 

diagnosis [374-376], feature extraction-application of wavelet 

entropy to sleep EEG [377], automatic REM and spindle scoring 

[378], automatic K complex detection [379], spindle 

parameterization [352] 

Matching Pursuits 

(MP) 

High resolution time-

frequency method, 

decomposes a signal into a 

large set of functions with 

known parameters 

(frequency, amplitude, phase, 

etc) [177]. 

Study of sleep spindles [175, 177, 179, 180, 380-383], study of delta 

waves [381, 384], study of Slow Wave activity (SWA) [382], 

investigation of drug effects on sleep [385], dominant spindle 

frequency estimation [181], spindle parameterization [352, 364], 

parameterization of sleep EEG (micro and macro structures) [386], 

automatic sleep staging [387], automatic spindle detection [388] 

Short Time Fourier 

Transform (STFT) 

Time-frequency 

decomposition by evaluation 

of Fourier transform for 

successive overlapping 

windows.  

Analysis of respiratory cycle related EEG changes (RCREC) [15, 39], 

spectrogram (|STFT|²) used for automatic arousal detection 

[389],sleep onset estimation [341], automatic spindle detection 

[271], visualization of sleep micro and macro structure [390], sleep 

stage characterization [391], phenomenological analysis of K 

complexes [392] 

Empirical mode 

decomposition 

(Hilbert-Haung 

tranform) 

Signal decomposition into 

single oscillatory mode 

functions and extraction of 

instantaneous frequencies 

Automatic spindle detection [393], automatic sleep staging [394] 
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using Hilbert transform [182] 

Wigner-Ville 

distribution 

High resolution time-

frequency method, suffers 

from cross-terms due to 

bilinear structure [173] 

K complex/delta wave discrimination [274], sleep spindle 

localization [395] 

Fast time 

frequency 

transform (FTFT) 

High resolution time-

frequency method, based on 

instantaneous frequency 

estimation [396] 

Sleep EEG segmentation [397] 

Choi-Williams 

distribution 

Improved time-frequency 

method by control of cross 

terms through use of 

exponential kernels [398]  

comparison of spindles in sleep and anaesthesia [346] 

Joint time and 

time-frequency (T-

TF) 

Optimal transient event 

detection, combines time and 

time-frequency features to 

minimize the error 

probability [399] 

Automatic K-complex and delta wave detection [399] 

Complexity 

measures/nonlin

ear parameters 

 Quantifies irregularity 

(variability or randomness) 

in a signal, often based on 

nonlinear dynamical analysis. 

 

 Correlation 

dimension (or its 

estimate: 

dimensional 

complexity) 

Property of an attractor 

which can be used as a 

complexity (irregularity) 

measure of time series [184]. 

Based on the work of Takens 

[400]. Most often calculated 

using Grassberger-

Procaccia’s algorithm [191]. 

Feature to characterize different sleep stages (in infants [192, 193, 

196], in adults [194, 197-205]), used for discriminating sleep stages 

[150], Investigation of linearity/nonlinearity/chaos in different 

sleep stages [147, 195], characterization of SWA [401], investigation 

of SWA [402], investigation of possible relationships with 

respiration [403], variation of correlation dimension in delta sleep 

investigation [404] , OSA diagnosis[261], assessment of non-

linearity of sleep EEG [185], automatic REM detection [151] 

Lyapunov 

exponents 

Assess the degree of 

nonlinearity in a signal, (e.g. 

existence of two positive 

Lyapunov exponents is a 

marker of chaos) [184, 211]. 

Assessing the predictability of human EEG in different states e.g. 

deep sleep vs. wake [184], characterization of EEG signals at 

different sleep stages [203, 209, 405], discriminating sleep stages 

[150], assessment of sleep EEG non-linearity [185], automatic REM 

detection [151] 

Fractal dimension Measure of how “space 

filling” an object is. Allows 

non-integer dimension 

values. Powerful in transient 

event detection [198, 406]. 

Characterization of  EEG signals at different sleep stages (infants 

[297], children [290], adults [198, 407]), characterization of 

neonatal states [141], automatic sleep staging (infants [128]), 

comparison of spindles in sleep and anaesthesia [346], wavelet 

based multifractal analysis in sleep stage characterization [408-

410] 

Approximate 

entropy (ApEn) 

Signal complexity (or 

regularity) measured by 

evaluating conditional 

entropy [219]. 

Investigation of the practical aspect of the method [344], 

characterization of EEG signals at different sleep stages [198, 345], 

comparison of spindles in sleep and anaesthesia [346] 

Sample entropy 

(SampEn) 

Improved ApEn. More 

consistent, unbiased and 

suitable for short data 

segments [49] 

Characterization of sleep stages [222], characterization of sleep 

stages in different age groups [411] 

Synchronization 

likelihood 

Unbiased measure of 

dynamical (non-linear) 

interdependencies between 

time series, can deal with 

non-stationarities and non-

linearities [412] 

Investigation of interdependencies between heart rate and sleep 

EEG [265, 308] 

Recurrence plot Visual aid for diagnosis of 

dynamical systems. Describes 

natural time correlation. 

information [413]. Reveals 

non-stationarities of time 

series [223] 

Used to characterize EEG signals at different sleep stages [198], 

assessment of treating effects in patients with depression [241] 

Autoregressive 

model order 

Number of past samples (AR 

model order) used in 

Investigation of the practical aspect of the method in [344], 

neonatal state characterization [320] 
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prediction of a future sample 

is a complexity measure, not 

robust  [344]. 

Kolmogorov-Sinai 

entropy (also 

known as metric 

entropy or KS 

entropy) 

Rate of information loss in a 

system. Measure of average 

time interval in which the 

signal remains similar to 

itself [184]. 

Assessing the predictability of  EEGs in different states e.g. deep 

sleep vs. wake [184], discriminating sleep stages [150] 

Phase space  plot Plotting a signal against its 

time delayed version. 

Requires a mean for time 

delay estimation [198]. 

Characterization of EEG signals at different sleep stages [198] 

Hurst exponent Evaluates the extent of long 

range dependencies and 

roughness in a time series 

[147, 198]. 

Feature to characterize EEG signals at different sleep stages [198] 

Delay vector 

variance 

Method for detection of non-

linearity and determinism in 

a time series [414] 

Automated sleep staging [415] 

Embedding space 

Eigen spectrum  

Uses the rank of the 

embedding matrix as a 

measure of complexity [344]. 

Investigation of the practical aspect of the method [344] 

Other non-linear 

techniques 

 Green-Savit measure used to assess non-linearity of sleep EEG 

[185], fuzzy sets used for modelling sleep dynamics [416], neural 

networks used for measuring complexity of sleep EEG [417], 

correlation exponent in sleep stage characterization [202], a non 

linear index was used to investigate interdependencies between 

heart rate in infants (similar to synchoronisation method) [418], T-

entropy used for sleep staging [419], Lampel-Ziv complexity for 

characterization of sleep stages [345]  

Spatial features/ 

source 

localization  

   

 Independent 

component 

analysis (ICA) 

Linear decomposition of 

signals into maximally 

independent components 

[114] 

Separating different physiological signals in ambulatory sleep 

recording [420], spindle identification [421], Spindle source 

localization [422, 423] 

 Low resolution 

electro-magnetic 

tomography 

(LORETA) 

Brain activity localization 

through direct calculation of 

it current distribution. 

Assumes simultaneous firing 

of adjacent neurons [424]   

Spindle source localization [422, 423] 

 Principle 

component 

analysis (PCA) 

Multivariate method which 

transforms a high number of 

inter-correlated variables 

into a smaller number of 

uncorrelated variables [425]. 

 

Study of temporal coupling in REM [306] 

Model based 

features 

   

 EEG generation 

model (rhythmic 

activity modeling)  

Reproducing EEG by filtering 

and parameterising white 

noise [225, 426]  

Automatic CAP detection [266, 427], optimal detection of alpha 

rhythm [428], automatic K complex and vertex wave detection [225, 

429], sleep staging by sigma rhythm monitoring [430], SWS analysis 

[431], non-stationary model for spectral analysis [432]  

 Coupled oscillators 

model 

Modelling the inter-relation 

between signals by degree of 

coupling between differential 

equations [433]  

Analysis of signal coupling in neonates [434]   

Random walk 

theory 

 Theory based on the problem 

of estimating the distance of 

an object from its origin after 

taking “n” random steps 

[226] 

Characterization of sleep stages [227] 
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Feature classification  

 

Features are individual measurable characteristics of a time series. Once features are extracted 

from the signal we often attempt to group them; that is to divide the feature space into a 

discrete number of categories. For instance, in sleep staging we may have five possible classes 

(wake, stage1, stage2, slow wave sleep and REM) or in automatic spindle detection, we may 

have two (i.e. spindle vs. non-spindle). Classification can improve the automation process and 

enhances our understanding and interpretation of the underlying system. 

In classification, features within each category (or class) share some form of similarity and are 

classified based on that similarity. In sleep EEG analysis we commonly have to deal with sleep 

micro and macro structural classification problems. Classification can be undertaken for a 

diagnostic purpose, e.g. classifying patients with obstructive sleep apnoea vs. controls, or can 

aid automation (classification of transient events in sleep or classifying sleep stages). Numerous 

techniques have been proposed and used for sleep EEG signal classification. Taxonomy Table A3 

is dedicated to these methods and their applications in the analysis of sleep EEGs. As with 

previous sections, we explore the more frequently used techniques and comment on them 

where appropriate.  

Neural network (NN) classification: 

Neural networks or artificial neural networks (ANN) are the outcomes of early attempts to 

understand how the human brain works. They are mathematical models inspired by neuronal 

interactions in the brain and can be used to model a wide range of complex systems. An ANN 

commonly consists of an input layer, an output layer and a number of hidden layers. Layers are 

composed of artificial neurons (or nodes). Neurons linearly combine their weighted inputs and 

produce an output based on their nonlinear output function. Using several neurons in 

conjunction, ANNs become capable of modelling very complex nonlinear systems [435]. 

Similarly, they can be used to define nonlinear boundaries between sets of features in the 

feature space. 

Parameters of ANNs are generally the weights by which the inputs are scaled. These weights are 

obtained through training (or learning), for instance, for classification of sleep stages, one can 

use a previously scored polysomnogram with known sleep stages to train an ANN (i.e. adjust the 

weights for each sleep stage) and then employ the trained ANN to classify new polysomnograms 

(see Shimada [436] as an example).  

ANNs are adaptive and can deal with nonlinearities in classification. In other words, decision 

boundaries generated by ANNs can be nonlinear. Decision boundaries are hyper-planes (or 
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hyper-surfaces) which partition the feature space into several classes.  ANNs have been very 

frequently used in the analysis of sleep EEGs and have been generally successful. They are often 

not computationally efficient and their performance is directly dependent on their training. 

There are many different types of ANNs with different architectures and training algorithms, 

some of which are included in Taxonomy Table A3. Note that more details about different 

structures and training algorithms of ANNs are outside the scope of this thesis (see Haykin 

[435] for more details on ANNs and Robert [437] for a review of applications of ANNs to EEG 

analysis).  

 

Multilayer perceptron (MLP) is the most commonly reported ANN in the literature. It consists of 

an input layer, one or more hidden layers and an output layer [438]. The nonlinear output (or 

activation) function of neurons in the hidden layer(s) usually follows a sigmoid function (a 

smooth “s” shaped graph which is differentiable everywhere) [435, 439]. Given enough neurons 

in the hidden layers, MLPs can be used to approximate any continuous function arbitrarily well 

[440]. Thus, MLP (and ANN in general) benefit from considerable flexibility in classification. 

However, this flexibility may also result in sensitivity to overtraining [441]. MLPs are widely 

used in the analysis of sleep EEGs for in a variety of applications such as sleep staging, event 

detection and obstructive sleep apnoea (OSA) diagnosis. Providing that there is enough data 

available for reliable training, MLPs are effective classifiers. For more information on use of 

MLPs in the analysis of sleep EEGs refer to Taxonomy Table A3. 

 

Self-organizing maps (SOM) or Kohonen maps are neural network based mapping methods the 

for analysis and visualisation of high dimensional data [442]. When classifying, SOMs do not 

need prior knowledge about the number of classes and they can achieve classification through 

maximal separation of input features [443, 444] (see Roberts & Tarassenko [328, 329] for an 

examples of this).  

SOMs can yield satisfactory results with a small number of training data sets and can also be 

significantly faster than conventional ANNs by employing computationally efficient algorithms 

[442].  

The advantages mentioned above in addition to the general benefits of ANNs (such as the 

capability to produce nonlinear decision boundaries and flexibility) make SOMs a competitive 

candidate in classification problems (for more details on SOM see Kohonen [445]).  

Its use in sleep EEG analysis has been moderate but diverse which highlights the flexibility of 

this technique. Taxonomy Table A3 shows the applications of SOMs in sleep EEG analysis.   
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Two other types of ANNs (learning vector quantizer and sleep EEG recognition neural network) 

and their use in the analysis of sleep EEGs are also shown in Taxonomy Table A3. 

 

Statistical classification: 

Statistical classification is another popular routine for classifying the feature spaces. In this 

section, the term statistical classification accommodates a range of diverse methods, from 

classical Fisher’s discriminant analysis [446] to more modern hidden Markov models to 

statistical learning theory based support vector machines (SVM).   

Statistical classifiers usually separate the feature space into different classes by calculating the 

probability that a certain feature belongs to a certain class, in other words, they are based on 

probabilistic models [447] (note that SVMs are exempt from this, they are not based on explicit 

probabilistic models). 

The rest of this subsection briefly describes some of the more frequently used statistical 

classifiers in the analysis of sleep EEG signals, for more details on the actual applications see 

Taxonomy Table A3. 

 

Linear discriminant analysis (LDA)/ Fisher’s linear discriminant (FLD) are linear classification 

methods which attempt to divide the feature space into several classes by hyperplanes (planes 

which exist in one lower dimension than the feature space, for instance, a two dimensional 

feature space can be separated into two by a line and a three dimensional feature space by a 

plane) [446, 447]. Both methods are very similar in principles and the terms have been used 

interchangeably. LDA is simple to implement (particularly when separating only two classes), 

easy to interpret and generally works well in classifying linearly separable data; however, there 

exist distributions for which the error probability of LDA is close to one even when the data are 

linearly separable [448]. Also note that LDA, as the name suggests, is a linear classifier and is 

unable to produce nonlinear decision boundaries, thus it is not suitable for classification of 

features which are nonlinearly separated. Note that a simple variation of LDA, namely Fisher’s 

quadratic discriminant analysis may be useful in dealing with nonlinearly separated data if the 

classes of interest can be separated by a quadratic curve.   

LDA and its variations have been used relatively frequently in the analysis of sleep EEGs, 

Taxonomy Table A3 shows the areas for which LDA has been found useful.       

 

Support vector machines (SVM) are linear learning machines used for pattern classification 

through use of optimal separating hyperplanes [435, 449]. SVMs map the current input vector 

into a higher dimensional feature space through some nonlinear mapping and then exploit the 

use of optimal hyperplanes for separating the features [449].  
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SVMs are conventionally categorised as linear classifiers, however, they can also be easily 

integrated with neural networks to create nonlinear decision boundaries. They are flexible (i.e. 

can be generalised to suit different needs), robust and not sensitive to overtraining; they may 

however, suffer from high computational expense [450].  

Use of SVMs in sleep EEG analysis has been moderate but inclusive of a relatively wide range of 

applications. They have been frequently successful in classification problems and can work well 

even in situations where the training data set is small [451]. Taxonomy Table A3 shows the 

instances where SVMs have been employed for the analysis of sleep EEGs (for a thorough 

tutorial on SVMs see Burges [452]). 

 

Hidden Markov models (HMM) are an extension of Markov models (or Markov chain models). A 

Markov process is a stochastic model which attempts to characterise a system by its possible 

states (outputs) and transition probabilities between those states at any one time. If the states 

of the system are deterministic, i.e. each transition leads to a certain outcome, we have a Markov 

model, however, if the states (outcomes) are themselves probabilistic (i.e. at the end of each 

transition, all states can possibly occur) we have a Hidden Markov model (HMM) [453, 454]. 

HMMs can be applied to the analysis of non-stationary signals by dividing the signal into locally 

stationary segments and calculating the probabilities for transitions and states. For instance, in 

the analysis of sleep EEGs, locally stationary states can be thought of as the sleep stages and can 

be further analysed with HMMs [455]. 

HMMs are promising tools for classification of time series; they achieve classification by 

calculating the likelihood that a feature belongs to a certain class. They are also capable of 

dealing with nonlinearly separated data [450].  

They have been moderately used in sleep EEG analysis and their use has been relatively focused 

on sleep staging related applications. Taxonomy Table A3 provides the details on these 

applications.  

 

The three above methods conclude most of the statistical classifiers used in analysis of sleep 

EEGs. Bayesian classifiers have also been employed but their use has not been very wide, see 

Taxonomy Table A3 for the details.  

 

Fuzzy classification: 

Fuzzy sets were introduced by Zadeh in 1965 as an attempt to mathematically describe 

ambiguous classes, those are classes which do not have a well defined boundary such as “the 

class of beautiful women” or “the class of tall men” [456]. Ever since its introduction, the 
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concept of fuzziness has become a practical and widely used tool in pattern recognition and 

classification.     

Fuzzy classifiers do not assume absolute membership of  feature to a single class and hence they 

are more applicable to real data where boundaries between subgroups might not be well 

defined [457]. 

Fuzzy classifiers are versatile; they have very good generalization capabilities and can be 

effectively integrated with other classification routines for better performance (e.g. neuro-fuzzy 

classifiers, fuzzy decision trees, fuzzy k-nearest neighbour algorithm, etc.). For details and 

fundamental concepts of fuzzy classification, see Bezdek [458]. 

Use of fuzzy classifiers and their simple variations have been frequent and successful in the 

analysis of sleep EEGs. Taxonomy Table A3 shows the instances where fuzzy classification or 

fuzzy based reasoning has been employed to analyse sleep EEGs.   

 

Cluster analysis, or clustering, is the process of dividing a set into natural homogenous 

subgroups where elements within each subgroup are similar to each other and different from 

those within other subgroups [458]. Although there are subtle theoretical differences between 

clustering and classification, in practice, the terms are often used interchangeably. The simplest 

and the most widely employed clustering algorithm is the k-means. This algorithm assumes that 

the feature space consists of k clusters (this can be decided beforehand based on possible 

knowledge of the data) whose centres are randomly distributed. It then iteratively adjusts those 

random centre points to get closer to the centre of the actual clusters. This adjustment is done 

by minimizing a simple squared error function. 

The algorithm is computationally efficient and simple to implement. Its downside however, is 

that due to random initialization of the centroids, clustering may result in error, that is , the 

algorithm may fail to detect the true clusters. Hence, in practice, clustering is done with a 

number of sets of random initial points rather than a single set. For the exact description of the 

algorithm and more details, see Jain [459]. 

Due to its simple implementation, use of k-means algorithm in the analysis of sleep EEGs has 

been relatively frequent; Taxonomy Table A3 shows its specific applications. 

 

Rule based classification is simply classification based on pre-defined rules. In practice, it is 

very similar to the “if” and “else” statements used in programming: if event X occurred, then 

perform act Y, else, perform Z. In the context of sleep EEG analysis one may notice that 

Rechtschaffen and Kales [13] have proposed a set of rules for scoring sleep PSGs. Those rules 

can be exactly implemented in a computerized system for classification of stages and events 

using a rule based classifier [117].  
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Rule based classifiers are simple, can be implemented as soon as the pre-defined rules are 

available, and are as flexible as the rules that they are based on. By convention, they solely rely 

on human knowledge which maybe limited and hence, their use in the analysis of sleep EEGs 

has been sparse, Taxonomy Table A3 shows the details. 

For more information on rule based classification see Michie et al. [447]. 

 

Last but not least, combined classifiers are, as the name suggests, classifiers which are based 

on two or more conventional classifiers. Although these are generally bound to be slower in 

execution, they tend to achieve more accurate classification, hence they can be used for offline 

analysis where execution speed is not the main concern. A widely used combined classifier is 

the Neuro-fuzzy classifier (NFC). NFCs are particularly good at approximating nonlinearities; 

however, their complexity grows exponentially with additional inputs, this is referred to as the 

“curse of dimensionality” [460]. See Taxonomy Table A3 for applications of NFCs in sleep EEG 

analysis. More detailed information on the classifiers described above can be found in Lotte et 

al. [450] and Jain et al. [459]. 

 

Taxonomy Table A3. Feature classification techniques applied to sleep EEG signals. 

Technique  Technique 

variations 

Technique brief 

description 

Applications and references 

Neural 

network 

classification 

 Mathematical models 

inspired by human brain 

neuronal interactions. Used 

to model nonlinear and 

complex systems. They are 

adaptive and capable of 

producing nonlinear 

decision boundaries. Need 

training [435] 

Automatic K-complex detection [461, 462], feature based 

classification of sleep stages (paediatrics [290], adults [292]), 

arousal identification [302], transient event classification [273], 

burst and spike detection in neonates [112], study of drug effects 

[463], automatic REM detection [151, 311], OSA diagnosis [300, 

374, 376, 464], micro and macro structure analysis [465], 

automatic REM and spindle scoring [378], Bayesian inference 

based NN for sleep staging [466] 

 Multilayer 

perceptron 

(MLP)  

Basic ANNs. Given enough 

neurons in the hidden layer, 

they can approximate any 

continues function. Flexible 

but sensitive to overtraining 

[435]  

Sleep stage discrimination [176], automatic spindle detection 

[285, 286, 321, 467, 468], neonatal state classification [260], 

burst-suppression and burst-interburst pattern recognition 

[359],automatic sleep staging [263, 372, 469], automatic REM 

detection [310], OSA diagnosis [375] 

 Self-

organizing 

maps (SOM, 

Kohonen 

networks) 

ANN based mapping method 

for analysis and 

visualization of high 

dimensional data. Flexible. 

Can be initialized with small 

training set [442] 

Characterization of sleep stages for classification [470], study of 

evoked K complexes [471], analysis of sleep dynamics [328-330], 

automatic sleep staging [294] 

 Learning 

Vector 

Quantizer 

(LVQ)  

Predecessor of SOM 

(Kohohen networks). Based 

on competitive supervised 

learning  [445] 

Neonatal state classification [260], study of evoked K complexes 

[471] 

 Sleep EEG 

recognition 

NN (SRNN) 

NN for sleep EEG transient 

detection, recognition based 

on time-frequency patterns 

[472, 473] 

Transient event detection (spindles, alpha waves, humps and 

background activity) [472], automatic sleep staging [436] 

 Other neural 

networks 

 Radial basis function NN (RBFNN) combined with Kalman 

filtering for artefact removal [101], RBFNN has been used in 
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automatic arousal detection [331]  

Statistical 

classification 

   

 Linear 

discriminant 

analysis 

(LDA)/Fisher

’s linear 

discriminant 

(FLD) 

Separation of classes by 

hyperplanes, optimized by 

least squares or maximum 

likelihood. Simple, generally 

good for linearly separable 

data, cannot produce 

nonlinear boundaries [446, 

447]  

FLD for artefact detection [121], neurobehavioral and risk 

assessment of infants [231],  FLD for classification of neonatal 

brain states as well as classification of burst suppression 

patterns [239], automatic sleep staging [474], automatic state 

recognition in infants [291], stepwise LDA for automatic arousal 

detection [370] , high voltage, low voltage discrimination in 

neonates [475], classification of insomniacs vs. controls [476] 

 Support 

vector 

machines 

(SVM) 

Linear learning machines 

which achieve classification 

by exploiting optimal 

separating hyperplanes 

[435, 449]. Robust and 

flexible 

Radial basis SVM for automatic spindle detection [321], 

automatic arousal detection [302, 389, 451], neonatal state 

discrimination [134], automatic sleep staging [144, 360], 

automatic REM detection [246] 

 Hidden 

Markov 

model 

(HMM) 

Stochastic model that 

evaluates the future state of 

a process by its present 

state. Both states and 

transitions are probabilistic. 

Can deal with nonlinear data 

[453] 

Development of a new sleep staging scheme (not based on RKR) 

[455, 477], automatic sleep staging in infants and adults [130], 

continuous density HMM used for K complex detection [478], 

hidden process modeling (generalization of HMM) used for 

modelling sleep EEG dynamics [479], automated sleep staging 

[262, 480] 

 Bayesian 

classifier 

Probabilistic classification 

through calculation of a 

posteriori probabilities using 

Bayes rule  

Sleep stage discrimination [176], naïve Bayes classifier for 

neonatal state discrimination [134] 

 Other 

statistical/m

achine 

learning 

classifiers 

 Fisher’s quadratic discriminant analysis for Arousal 

identification [302], decision trees (a machine learning classifier)  

for transient event detection [481], k-nearest neighbours 

algorithm for automatic sleep staging [144, 394] 

Fuzzy 

classification 

 Classification by evaluating 

the membership degree of 

each feature vector to each 

class [458]. 

Used in a sleep spindle detector (classifying spindle vs. non-

spindle [283, 482], classifying spindle amplitude profile in infant 

PSGs [356]), spindle detection  [284, 285, 287], sleep stage 

classification [132, 294], sleep EEG segmentation [133, 135], 

fuzzy ganglionar lattice for automatic neonatal state 

classification [256], alpha activity classification [312], 

fuzzification of features prior to sleep staging [483], automatic 

CAP detection [427] 

 UFP-ONC 

(unsupervise

d fuzzy 

partition-

optimum 

number of 

clusters) 

Fuzzy K-means + fuzzy MLE. 

Uses no a priori information. 

Works well even with 

variable cluster shapes and 

densities [457]. 

Combination of fuzzy K-means and fuzzy Maximum Likelihood 

estimation results in optimal partitioning of sleep EEG signals 

(sleep staging) [457], 

Cluster 

analysis 

  Automatic arousal detection [245],  

 K-means 

algorithm 

Simple iterative algorithm 

which finds the clusters by 

minimizing the distance of 

the points in a class from 

their centre point. Sensitive 

to initial condition [459]  

Classification of time structure of neonatal sleep [129], automatic 

sleep stage classification (infants [128, 130], adults [111, 130, 

263, 295]), clustering of similar EEG segments (EEG 

segmentation) [137], artefact detection [121] 

Rule based 

classification 

 Similar to “if” and “else” 

statements in programming: 

if X then do Y, else do Z 

Simple rule based classification of sleep microstructure (e.g. 

arousals, spindles, A phase of CAPs) [484], minimum distance 

classification for automatic K complex detection [379], sleep 

stage characterization [391] 

 Rule based 

case based 

(RBCB) 

Improved rule based 

classification through by 

further post-processing 

Automatic sleep stage classification [117, 293] 
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hybrid [117] 

Combined 

classification 

 Classification by merging (or 

simultaneously applying) 

two or more classifiers  

 

 Neuro-fuzzy 

classifiers 

(NFC) 

Combination of neural 

networks (NN) and fuzzy 

inference system. Works 

well with no a priori 

information but suffers from 

the curse of dimensionality 

[460] 

Sleep stage classification in infants [460, 485], K complex 

detection [486], automatic sleep staging [469] 

Other 

classification 

routines 

  Theory of evidence (for details of the method see [487]) for sleep 

stage classification [483], conditional random field (for details on 

CRF see Lafferty [488]) for sleep stage classification [489]  

 

The categorisation of techniques from a sleep perspective 

 

The previous two tables in this review (Tables A2 and A3) are technique oriented, that is they 

are organised by techniques and further information about application to sleep EEG is then 

given. Some readers may be more interested in quickly identifying an area of sleep analysis (e.g. 

automatic sleep staging, sleep spindle analysis or K-complex detection) in which particular 

signal processing techniques have been useful. Table A4 has been designed to achieve such 

identification. All the references cited in Taxonomy tables A2 and A3 are cross-referenced in 

Table A4. The columns of the table represent the more frequently addressed topics in sleep EEG 

analysis and the rows are the signal processing techniques in the same order as they appear in 

Taxonomy Tables A2 and A3. Thus, tracking down techniques of interest becomes straight-

forward. For instance, if one is interested in finding the signal processing techniques employed 

for sleep staging, one can look into the sleep staging column of Table A4. If one further wishes to 

find techniques which are applied to paediatric sleep staging, within the same column, it will be 

noted that some of the references are marked with capital “P”, denoting “paediatric”. Transient 

events are also clearly addressed in Table A4. There are two separate columns for sleep spindle 

and arousal events. Other commonly discussed transients appear under the “other transient 

detection/analysis” column. Detection applications are marked with a small “d” and analysis 

applications with a small “a”. For example, “Dwa” stand for Delta wave analysis and “Kcd” stands 

for K-complex detection. The guide at the bottom of Table A4 provides the necessary 

information for interpreting the table. Having found the event of interest, one can then go back 

to Taxonomy Tables A2 or A3 for a brief description of the technique and a slightly more 

detailed explanation on the application, and ultimately refer to the related references.  
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Table A 

Table A4. Categorization of signal processing techniques from sleep perspective 

Technique  Technique 

variations 

Sleep 

staging* 

Sleep 

stage 

character-

isation** 

OSA 

diag-

nosis 

CAP 

detection, 

analysis 

Spindle 

detection, 

analysis 

Arousal 

detection, 

analysis 

Other 

transient 

detection, 

analysis*** 

Cortical 

interact-

tion 

Explora-

tory 

study 

Temporal 

features 

          

 Standard 

statistics 

P[129, 

239], 

[111], 

Rd[246] 

P[104, 

134, 176], 

[234, 242] 

 d[244]  d[245] Gd[240] [127] [241, 

243] 

PAA  Da[252]      [253] [138, 

140, 

248-251, 

254] 

Zero-

crossings 

P[239, 

256],P-Rd 

[259] 

P[141]     Gd[240], 

Dwd[257], 

PDwd[258

] 

  

Hjorth 

parameters 

[144, 262-

264] 

P[134, 

260], [234] 

[261]       

DFA  [147-149] [261]      [146, 

265] 

ENA P[128, 

239], 

Rd[151] 

[150, 176]        

Matched 

filtering 

   d[266] d[267], 

a[268] 

 Kcd[267, 

269] 

  

Teager 

operator 

    d[270, 

271] 

    

Mutual 

information 

      Gd[273], 

Kcd[274] 

  

Tsallis 

entropy 

 [227]        

Spectral 

feature 

extraction 

          

 Non-

parametric 

spectral 

estimators 

P[128, 129, 

256, 258, 

290, 291], 

[144, 264, 

292-295], 

Rd[151, 

310, 311], 

S1d[233] 

P[104, 

141, 230, 

260, 288, 

297],  

[176], 

Ba[309], P-

DSa[313] 

[299-

301] 

a[296] d[283-

287], 

a[181, 298, 

304] 

d[245, 

302] 

P-

Dwa[289], 

P-

Dwd[258], 

Ad[312],  

[303] P[316, 

317],[12

1, 138, 

140, 

170, 

232, 

243, 

248, 

254, 

265, 

305-308, 

314, 

315] 

Parametric 

spectral 

analysis 

[111, 117, 

262, 293, 

318, 319] 

P[320],  

[147, 234, 

318], 

Da[323], 

  d[321], 

a[326], 

d[331] Ga[325]  [121, 
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Neural 

network 
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 P[290], 

[292, 466], 

Rd[151, 

311, 378] 

[465] [300, 

374, 

376, 

464] 

 d[378], d[302] Kcd[461, 

462], 

Gd[273], 

PGd[112] 

 [463] 

 MLP P[260], 

[263, 372, 

469],Rd 

[310] 

[176] [375]  d[285, 286, 

321, 467, 

468] 

 Gd[359]   

SOM [294] [470]     Kca[471]  [328-

330] 

LVQ P[260]      Kca[471]   

SRNN [436]      Gd[472]   

Statistical 

classifiers 

          

 LDA/FLD [291, 474] P[239]    d[370] PGd[475],  [121, 

231, 

476] 

SVM [144, 360], 

Rd[246] 

P[134]   d[321] d[302, 

389, 451] 

   

HMM [130, 262, 

480] 

     Kcd[478],  [455, 

477, 

479] 

Bayesian 

classifier 

 P[134],[17

6] 

       

Fuzzy 

classifiers 

 P[256], 

[132, 294, 

483] 

[133, 135],   d[427] d[283-285, 

287, 482], 

Pa[356] 

 Awd[312]   
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      d[245]    

 K-means  P[128, 

130], [111, 
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       P[129], 
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  [391]     Gd[484], 
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 RBCB [117, 293]         

Combined 

classifiers 

          

 NFC P[460, 

485], [469] 

     Kcd[486]   

*P stands for paediatrics, R for REM, S1 for stage 1 (sleep onset), “d” stands for detection, ”a” for analysis 

** D,T,A,S,B stand for delta (slow wave), theta, alpha, sigma and beta activities respectively 

*** G stands for general, Dw, Aw, Vw stand for delta wave, alpha wave and vertex sharp wave respectively, Kc stands for K complex 

Examples: “PDwd” stands for paediatric delta wave detection, “Pa” stands for paediatric analysis, “Ga” stands for general analysis  
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Summary and conclusion 

 

An overview of signal processing techniques applied to the analysis of sleep EEG signals in both 

paediatric subjects and adult population was given. The analysis was broken down into three 

main parts: pre-processing, feature extraction and feature classification.   

 Taxonomy table 1 provided further details of pre-processing techniques,   

 Taxonomy table 2 served as a guide to aid sleep researchers choose the appropriate 

signal processing techniques for their application of interest and provided brief 

descriptions of signal processing techniques in addition to their existing applications in 

the analysis of sleep EEG signals, 

 Taxonomy table 3 provided an overview of classification techniques as an aid to 

researchers in selecting appropriate algorithms, and 

 Table 4 summarised the more frequently addressed topics of sleep EEG analysis, 

splitting them into nine main categories (sleep staging, sleep stage characterisation, OSA 

diagnosis, cyclic alternating pattern detection, spindle detection/analysis, arousal 

detection/analysis, other transient detection/analysis, cortical interactions in sleep and 

other exploratory analyses) and providing details of signal processing techniques which 

have been employed in their analyses. Utilising this table, one can conveniently navigate 

and quickly identify the topic of interest (e.g. paediatric sleep stage characterisation or 

sleep spindle analysis) 

 

An important aspect of this review is that it can show us potential gaps in the field of sleep 

research; that is where quantitative analysis of sleep is lacking. Such cases have been identified 

from Table Four and are highlighted here. According to Table Four (categorisation of signal 

processing techniques from a sleep perspective), analysis of cortical interactions in the sleeping 

brain is an area not touched upon by many researchers. Given that signal processing techniques 

such as the directed transfer function (DTF) and synchronisation likelihood exist and are very 

well suited to applications such as functional connectivity analysis, it seems logical and 

interesting to explore this field further. The table also points out that OSA diagnosis is still very 

much a manual process with sleep technicians going through hours of PSG data to diagnose OSA. 

This is certainly an area which can benefit from the advances of signal processing however, 

what may be an apparent lack of communication between the two fields might have limited this. 

Finally, it reveals that certain well defined cortical patterns seem to be less attended to than 

others (e.g. vertex sharp waves vs. sleep spindles) which may mask their true importance. The 

review also drew our attention to RCREC and helped us develop it further.  
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Appendix B 

 

 

Objective detection of evoked potentials in RCREC 
 

Given that the physiology driving RCREC is not yet identified, a valid speculation is that it may 

be originated from respiratory related evoked potentials (RREP). To assess this hypothesis we 

selected a single control subject with very significant RCREC in all bands. Table below shows the 

RCREC significance as denoted with Fisher’s F value in this subject. 

 

Table B1. RCREC significance in all frequency bands in a single subject 

 All 
bands 

Delta Theta Alpha Sigma Beta 

P69 F-values 
 

77.57 83.03 24.97 45.41 43.94 72.22 

 

The data was automatically segmented into large chunks with reasonable quality for RCREC 

quantification. Eight chunks each having at least 250 respiratory cycles were selected for 

objective evoked potential detection. Each of the eight chunks had a significant RCREC when 

looking at the whole spectrum. First, for every chunk, the EEG signal was segmented according 

to the conventional airflow segmentation points. The segmented EEG signals were then 

coherently averaged across early expirations, late expirations, early inspirations and late 

inspirations to produce evoked potentials. Since respiratory cycle stages vary in length, for each 

segment, we looked at 210 samples (approximately 0.8 seconds) including and after each of the 

conventional segmentation point. Here we are assuming that the conventional segmentation 

points are analogous stimuli in evoked potential studies. To assess whether the produced 

evoked potentials were significant, each of the produced results was compared with 500 other 

randomly generated evoked potentials, random in the sense that the starting point for each 

segment was selected at random.  Figure below shows an example of the produced evoked 

potentials plotted together with five and then 500 randomly generated evoked potentials. 
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Figure B1. Evoked potentials generated based on respiratory signal landmarks (blue) vs. randomly 
generated potentials (red). The blue trends are often not significantly different from red ones.  

 

If the produced potentials based on the physiological segmentation (i.e. segmentation based on 

respiratory signal land marks) are significantly different from those produced randomly, we 

may be able to safely state that RCREC is related to and may be a manifest of RREP. Minimum, 

maximum and peak to peak amplitude values were used to compare patterns.   
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In our pilot study, in seven out of eight chunks analysed; the generated patterns were not 

significantly different than randomly generated patterns. Moreover, the produced patterns 

themselves were not similar in morphology. These evidence suggest that RCREC and RREP are 

at least not immediately related however, a solid conclusion requires dedicated research and is 

hence recommended as a future work. 
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Appendix C 

 

Examples of other investigations 

 

This section of the thesis highlights some of the techniques previously mentioned in chapter 4 in 

more details; some of the techniques are implemented in Matlab and tested in practice for 

further understanding of the method.  

Conventional Pre-Processing techniques 

 

As mentioned, pre-processing techniques are not unique and indeed there are many techniques 

which can be employed for pre-processing purposes. Some of the techniques which have been 

extensively used in practice are briefly discussed here. 

 

Filtering 

In many practical cases, it is desirable to attenuate some frequency components of a signal, 

and/or completely eliminate them. This process of changing the frequency spectrum of a signal 

by attenuating some of its frequency components and not attenuating others is referred to as 

filtering [490]. 

 

Wiener filtering: 

Parameters of common digital frequency selective filters (i.e. lowpass, bandpass and highpass) 

are sometimes obtained empirically (i.e. the cut off frequencies for instance are chosen partially 

based on trial and error). Hence, it is clear that those filters do not have a mean to remove the 

superimposed noise optimally (unless there is further information regarding the underlying 

sources of errors). Wiener filtering (also referred to as optimal filtering), assumes that signal 

and noise are generated from independent sources and that they are both stationary random 

processes [11]. Based on these assumptions, Wiener filter then finds filter coefficients in a way 

to minimise the difference between the estimated output and the desired output in a Least Mean 

Square (LMS) sense. Figure C1 further clarifies how a Wiener filters works. 
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Another interesting fact about Wiener filter is that filter coefficients are calculated using an 

elegant closed form solution (i.e. no iterative algorithm needs to be employed) and this could 

significantly simplify practical implementation issues.  

Wiener filters could be useful in situations where one signal is contaminated with another, (e.g. 

ECG signal contaminated by EMG or EEG signal with interference from ECG) as by defining the 

contaminated signal as the input to the filter and the uncontaminated signal as the output of the 

filter, noise spectrum can be estimated and removed from the signal.   

 

Median Filtering: 

Another type of digital filter which can be used for pre-processing is the median filter. This non-

linear filter (as opposed to the filters mentioned above) has been often used to remove 

unwanted and spurious spikes in a given signal [491]. In short, this non linear technique, 

defines a sliding window on a sequence, sorts the values of that sequence (in ascending of 

descending order to find the median) and then replaces the central value of the window with 

the median, and then slides the window by one sample.  Smoothing by running medians was 

Figure C1. Wiener filter principle. As can be seen above, Wiener filter improves the Signal to Noise Ratio (SNR) of 
the output signal by amplifying the signal at frequencies which most power is concentrated in. 
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first introduced by John Tukey in 1976 [492] where he mentioned that outliers (e.g. spikes in 

our case) whether or not they are errors, disturb a smooth curve and we do not want that. That 

was the principle idea behind the median filter. Figure C2 shows an example of stereotypical 

spike removal using a 5 point median filter (i.e. the window length is 5 samples). Note that the 

signal shown in Figure C2 is a smoothed EEG signal with synthetic spikes generated for 

demonstration only. 

  

 

Figure C2. Spike removal using one dimensional median filter. As can be seen all the spikes are successfully 

removed from the original signal after median filtering. Note that the spikes are synthetically generated and 

the graph above is shown for illustration purpose only. Although, median filter works generally well for spike 

removal, it does alter the trend of the original signal (the higher the window length, the more significant the 

changes). Peak amplitude reduction and peak flattening are the main distortions which are mediated by 

median filtering.    

 

As can be seen in the graph above, median filtering can be considered a good candidate for pre-

processing of a signal with numerous erroneous spikes. However, in a signal where the fine 

trends are of critical importance, median filtering could potentially ruin the data as it brings 

about significant distortions to the curves and results in flat-topped truncated peaks [491]. The 

magnitude of this distortion depends on the window length of the median filter and in general, 

the higher the window length the more considerable the distortion. Another less important 

disadvantage associated with median filtering is its relatively high computational expense. This 

is due to the sorting process which needs to be done before identifying the median, however, as 

far as data analysis is concerned this is not an issue. Hence, it is again clear that median filtering 
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is another pre-processing tool which its performance is completely dependent on the 

application it is used for.     

Adaptive filtering (or Adaptive Noise Cancellation): 

Another pre-processing method used for additive noise (i.e. interference, stochastic or 

deterministic noise) removal is the adaptive noise cancelling approach. In short, adaptive noise 

cancelling is a variation of optimal filtering (analogous to Wiener filtering) that can be very 

advantageous in many applications (e.g. it can be applied to non-stationary signals to remove 

non-stationary interference). It makes use of a reference signal which is acquired in the noise 

field (i.e. containing little to no signal) and filters it to produce an estimate of the noise which is 

present in the primary input (i.e. signal AND noise). It then subtracts the estimated noise from 

the primary input to reduce or eliminate the noise [11, 493]. Figure C3 shows a schematic of an 

adaptive noise canceller (the figure is directly taken from [493]). 

 

 

 

 

 

 

 

 

 

 

 

 

A very interesting biomedical application which Adaptive Noise Cancellers (ANC) have been 

successfully used for, is the extraction of fetal heart beat (an ideally its waveform) from 

maternal ECG and abdominal signals. It is known that the waveform measured from mother’s 

abdomen using normal electrodes contains both fetal and maternal heart beat signals. Hence, 

using the maternal ECG signal as the reference input (i.e. noise with no signal, as we are 

interested in fetal heart beat) and abdominal signal as the primary input, the employed adaptive 

noise canceller successfully extracted the fetal heart beat. Note that, the obtained results from 

this adaptive filtering yielded a significantly better result compared to the previous attempt 

made to extract fetal heart beat from maternal ECG [493]. Figure C4 (taken directly from [493]) 

clarifies this further. 

 

 

Figure C3. A Schematic of an adaptive noise canceller. As can be seen the 
reference input is filtered optimally to produce an estimate of the noise 
present in the primary input [493]. 
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As can be seen in the graph above, use of adaptive noise cancellers can be very beneficial in 

applications where a reference input signals is available. 

Two of the popular adaptive filters which have been extensively used for noise cancelling are 

the Least Mean Squares adaptive filter (LMS) and the Recursive Least Squares (RLS) adaptive 

filter. In the LMS method, filter coefficients which minimise the mean squared error (MSE) are 

determined using a gradient based approach. LMS is particularly advantageous because of its 

simplicity and ease of implementation. However, it is not suitable for rapidly varying signals (i.e. 

very non-stationary signals) as its convergence is relatively slow. RLS on the other hand, has 

been used in real time system identification and noise cancellation due to its fast convergence 

and it works by minimising the exact Least Squares.  An interesting fact about RLS algorithm is 

Figure C4. a. Reference input (chest lead), b. primary input (abdominal lead), c. 

fetal heart signal after adaptive filtering [493] 
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its built-in forgetting factor which gives more weight to more recent error values. This is 

particularly useful in dealing with non-stationary signals as varying characteristics of those 

signals make the exclusion of the past data very appropriate [11]. Hence, adaptive noise 

cancellers are potentially very useful tools in pre-processing of biomedical signals with additive 

noise or interference (because of the non-stationary nature of those signals). 

 

Independent Component Analysis (ICA) 

In the vast majority of scientific investigations where there is a need for data acquisition 

through experiments, the acquired data is not a direct measure of the activity of interest but a 

correlate (in general sense) of that. For instance, EEG signals are indeed not indicative of deep 

brain activities but superposition of scalp synaptic discharges. Nevertheless, the assumption is 

that these synaptic discharges in the cortex provide valuable information about deep brain 

activities. Similarly, in many applications, the measured signal is a combination of several 

activities emerged from different sources. Microphone recording in an orchestra is a good 

example of that. Although there are many instruments (i.e. sources) producing different sounds, 

the signal measured by the microphone contains only the linear combination of all the sounds 

(produced by all the instruments). The contribution that each instrument makes to the 

measured signal is dependent on many factors such as the total number of instruments in the 

room, the distance of each instrument from the microphone, the loudness of each instrument, 

and possibly factors which we are not aware of yet. If one knew all these factors, it would be 

possible to perfectly reconstruct the music played by each instrument; however that is very 

difficult in practice. Finding the underlying sources in a set of measurements is potentially very 

beneficial as it can reveal significantly more information about the nature of data which is being 

investigated. Figure C5  clarifies this with a synthetic example (the graph is taken directly from 

[494]).  
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As can be seen in the above two figures, the underlying sources of the observed data shown in 

Figure C5 provide more information about the observed data. For instance, it is now clear that 

waveforms produced by two of the sources are deterministic and only one seems to be random. 

In practice, such observations can be very important for analysis (or diagnosis). 

Figure 52 

3 observed signals which are presumed to be generated from 3 different sources [494].   

Figure C5. 3 different sources which generated the signals shown in figure 38. As can 
be seen, knowing the underlying sources which generated the observed signals can 
greatly improve our understanding of the nature of observed data [494]. 
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In biomedical signal processing where it is rarely feasible to work with direct measures of the 

parameters of interest, it would be extremely advantageous to have a processing technique 

which can provide an estimate of the signals produced by their underlying sources (based on 

any assumption). If those estimates have physical interpretations, the processing technique 

used in the procedure can be very important. This problem of transforming a set of 

measurements into their original form created by their sources without having specific prior 

knowledge about the process is referred to as Blind Source Separation (BSS).  

Independent Component Analysis (ICA) is a promising method used in Blind Source Separation 

problems. The only assumption in the method is that the signals generated by each source are 

maximally independent from signals generated by other sources (e.g. assuming that 

instruments play independently) and that the observed data are linear superposition of the 

signals generated from the sources. The statistical independence assumption has been shown to 

be particularly meaningful in Neurophysiology and hence very useful in multi channel EEG 

analysis [495]. In short, an ICA problem can be formulated as follows: we assume that any 

observed measurement is driven from a linear combination of n (number of sources) signals. 

For n observed signals that is: 
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Where xi(t) is the ith observed signal and si(t) is the ith original signal (i.e. signal generated by 

ith source) and A is an n×n mixing matrix (i.e. linear mixing coefficients). ICA aims at calculating 

the signals generated by the sources. If matrix A has an inverse, the equation above can be re-

written as: 
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Where A-1 is the inverse of the mixing matrix or the de-mixing matrix. Based on the initial 

assumptions made to find the de-mixing matrix, there have been numerous methods proposed 
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in the literature (for more information see [496]). There have also been software packages 

(FastICA) which allow the decomposition of a set of signals into their independent components.  

ICA is a technique which can be used in a wide range of applications; it has for instance been 

used in digital imaging, economic and financial markets and psychometric tests along with the 

analysis of biomedical signals such as neurophysiological and cardiac signals. It has also been 

used for the analysis of biomedical images such as in fMRI (functional Magnetic Resonance 

Imaging), and for feature extraction [496]. With some modifications, ICA can also be used for 

efficient artefact removal. This variation of ICA which is used for artefact removal is known as 

“constrained ICA”. In this method, extracted independent components are also constrained to 

resemble a reference signal [497].  

Hence, ICA is a technique which can be used in analysis of multichannel (or single channel, see 

[495, 498]) EEG signals for both artefact removal and feature extraction.  

 

Feature extraction techniques 

In general, any alterations made to a signal which helps us gain more information and 

understand the signal (or its physical interpretation) better, is useful. Feature extraction 

techniques are methods which can be applied to signals to reveal information which can not be 

readily seen. This section is dedicated to some of those feature extraction techniques which 

have been used in biomedical applications. 

Spectral analysis 

We often deal with signals in the time domain, meaning that we look at the time variations of a 

signal. This is because time is a fundamental parameter. However, it is often useful to look at a 

signal in another representation. This is usually done by decomposing the signal into a set of 

functions. Mathematically, there are infinitely many ways for doing this. What separates these 

representations from each other and makes some distinct, is the physical interpretation of those 

representations [173]. The idea behind one of these expansions which was founded by Fourier 

in 1807 was to decompose a signal on sinusoids (Fourier’s original idea was to express a 

discontinuous function with a sum of many continuous functions). Expanding a signal using its 

underlying sinusoidal components is very advantageous for two main reasons. 1) Sinusoids of 

different frequencies (oscillation rates) are orthogonal and 2) sinusoids are common in nature 

and they can therefore be physically interpreted very well. Hence, Fourier’s work resulted in a 

fundamental, orthogonal and physically interpretable decomposition and provided a powerful 

tool for scientists to learn more about the nature by looking at the frequency components of 

signals rather than their time variations. Note that frequency components of a signal can not be 

readily seen in the time domain signal and there is a need for the Fourier decomposition. This 
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process of analysing a signal in frequency domain or simply looking at the frequency 

components of a given signal is referred to as spectral analysis or frequency domain analysis. 

Spectral analysis is one of the most useful techniques for understanding the nature of a signal. It 

can be also thought of as a feature extraction technique as it reveals the spectral features of a 

signal. In spectral analysis we are often interested in power of the signal in different frequency 

bands or the Power Spectral Density (PSD).  There has been abundant literature on how to 

estimate the PSD of a given signal from its time domain representation. They range from Fourier 

transform (FFT) of the signal to more complex statistical modelling (e.g. Auto-Regressive 

modelling). The rest of this section briefly introduces three of those PSD estimation methods 

namely Periodogram, Welch method and Auto-Regressive modelling and complements them by 

including the practical use of those methods in sleep related spectral analysis. 

Periodogram: 

Possibly, the simplest way to estimate the PSD of a given signal is to use the Periodogram 

method, which in discrete time and amplitude is practically calculated by using the Discrete 

Fourier Transform (DFT). Formula below shows the details: 
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Where t[n] is a window (for weighting the signal) of length N, x[n] is the discrete time signal and 

S(ejw) is the continues and periodic estimate of the PSD of the signal [499]. Sampling S(ejw)  at 

w=2πk/N for k=0,1,…, N-1 results in the discrete frequency PSD which is more appropriate for 

efficient computation and storage in computers. Alternatively, if V(k) is the N point DFT of the 

windowed signal v[n]=t[n].x[n] then the discrete frequency PSD can be defined as: 
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Further, note that if t[n] is a rectangular window the denominator of the equation above will be 

equal to one and hence the PSD calculations become further simplified. It is worth mentioning 

that this method is called Periodogram only when the window used is rectangular. In cases 

where other windows (e.g. Hamming, Hanning, etc) are used, this method will be referred to as 

modified Periodogram [500].  
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As an example to illustrate the PSD estimation by Periodogram, 128 seconds of EEG (C3A2) was 

taken from a paediatric OSA patient whilst in sleep stage 2 (sampling frequency of 100 Hz).  

Figure C6 shows the acquired EEG signal after removing the DC component (i.e. the mean 

value).  

 

 

Figure C6. The EEG signal acquired from the C3/A2 lead from a paediatric OSA patient in second stage of 
sleep. 

 

The estimated PSD (using the standard Periodogram method) of the EEG signal shown above is 

depicted in Figure C7. 
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Figure C7. Power Spectral Density (PSD) of the EEG signal shown figure C6. The small peak on the 12-13 Hz 

shows multiple occurrences of sleep spindles which are expected in sleep stage 2. As can be seen the PSD 

estimation is not smooth and has a relatively large variance (i.e. the signal seems to be noisy). 

 

Note that even though the results may seem sufficiently meaningful, it is not appropriate to 

apply the Periodogram to a non-stationary signal (Stationarity is not a very good assumption 

when dealing with 128 seconds of EEG signal, however, at the same time, the assumption is not 

too bad as the whole EEG chunk is taken from a single sleep stage and is bound to have similar 

characteristics throughout the whole chunk). The next section describes a new method based on 

the windowing principle which is capable of producing smooth PSDs. 

 

Welch PSD estimation method: 

As it was briefly mentioned above, standard or modified Periodograms are not likely to give a 

smooth PSD estimate in real applications where considerable noise and artefacts are present. 

Hence there is a need for better estimators of PSDs, those which yield smaller variances.  

A conventional method to reduce the variance in an estimate is time averaging (also referred to 

as synchronised or coherent averaging), that is averaging over a number of statistically 

independent estimates. However, in many cases it is not feasible to use this method as there is 

only a single signal available and not an ensemble of signals. Therefore, a procedure was 

developed (this is attributed to Bartlett) in order to reduce the variance of PSD estimate from a 

single signal. The idea was to divide the original data into N segments, calculate the 

Periodogram of each segment and finally, coherently average all N PSD estimates (that is if 

segments can be assumed to be independent). Bartlett’s method yields a smoother PSD 
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estimate. In 1967 Welch showed that the by dividing a time series into N segments, the variance 

of the estimated PSD (at best) will be reduced by factor of 1/N (i.e. number of segments is 

inversely proportional to the variance if the segments are not overlapping) [11, 152]. However, 

note that by segmenting a signal, we also reduce the frequency resolution and consequently, for 

a time limited signal, we can not make the variance arbitrarily small. Welch’s method suggests 

that by overlapping the segments we achieve a better reduction in variance with the same 

frequency resolution (i.e. the same segment length). Figure C8 shows the PSD of the EEG signal 

shown in Figure C6, estimated by the Welch method. 

 

 

Figure C8. Power Spectral Density (PSD) of the EEG signal shown figure C6 calculated using the Welch 

method. The bump on the 12-13 Hz shows multiple occurrences of sleep spindles which are expected in sleep 

stage 2. As can be seen the PSD estimate is significantly smoother than the estimate made by the standard 

Periodogram and it is also meaningful. Note that a 256 points window results in frequency resolution of 

1/2.56 which is about 0.4 Hz. 

 

Note that the above graph was obtained by using a 256 points Hamming window with 50% (i.e. 

128 samples) overlap and 4096 points FFT. Hence, it is clear that in terms of smoothness and 

lower variance in the estimate, Welch method is a better estimator of PSD when compared to 

standard Periodogram. Furthermore, it is worth pointing out that stationarity assumption is 

stronger when we are dealing with 2.56 seconds of EEG rather than 128. Also note that 

decreasing the number of windows results in a higher frequency resolution but a less smooth 

curve (i.e. higher variance). The frequency resolution in the graph above is 1/(2.56)≈0.4 Hz 

which is sufficiently high. 

Next section describes a different PSD estimation method based on Auto-Regressive modelling. 
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Auto-Regressive (AR) modelling: 

Process y[n] is autoregressive if: 
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That is when the current output value depends only on the current input value and past output 

values. The equation above can be equivalently written as follows: 
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Where X(z) and Y(z) are the z transforms of the input and output signals respectively, aks are the 

model parameters and b 0 is a constant [501]. Note that the equation above is in fact an all pole 

FIR linear filter of order p. One interesting property of AR models is their capability in directly 

estimating the PSD from coefficient estimation (that is assuming white noise as the input 

signal). The following formula clarifies how PSD is estimated from an AR model. 

 

 

 

 

Where σ2 is the variance of the white noise at the input, p is the model order, and aks are model 

parameters [502]. AR modelling can be applied to both stationary and non-stationery signals 

(with some modifications) and it also results in a smooth PSD estimate, hence it can often be a 

useful estimator of PSD. Figure C9 shows the PSD estimate of the signal shown in Figure C6, 

using the AR modelling approach. 
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Figure C9. Power Spectral Density (PSD) of the EEG signal shown in figure C6 calculated using the AR 

modelling approach. The small peak on the 12-13 Hz shows multiple occurrences of sleep spindles which are 

expected in sleep stage 2. As can be seen the PSD estimate is even smoother than the estimate made by the 

Welch method and it is also meaningful. Note that by increasing the model order the variance of estimate 

increases (the curve becomes less smooth) hence choosing a good model order has to be taken care of. 

 

As can be seen in the figure above, AR modelling results in a smooth and meaningful PSD 

estimation. Hence it can be a good candidate for spectral analysis of biomedical signals. Various 

ways for estimation of AR model parameters have been suggested in literature (see [501-503] 

for more details).  

The methods mentioned above are by no means the only ways for spectral analysis and there 

are numerous methods suggested in the literature for achieving the goal of analysing a signal in 

frequency domain, however, the above methods give practical examples of how spectral 

analysis can be used and for further detail one can refer to references provided.  

 

Time-Frequency analysis 

In many applications it is not the power spectrum of the signal that we are looking for but the 

evolution of frequencies with time. That is the frequency content of a signal in a given time 

instance (or a given time interval). With PSDs we know that certain frequencies exist in a signal 

however, what we do not know is when those frequencies have actually occurred. Taking the 

EEG signal shown in figure 54 as an example, it is clear from the PSD estimates that sleep 

spindles have been occurring in that 128 seconds of EEG (shown by the small peak between 12-

13 Hz in PSD estimates shown in figures 33-35). However, the time of occurrence and duration 

of those spindles are not present in the PSD estimates. Time-frequency analysis is a tool which 
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enables us to look at the frequency components of a signal in different time instances and has 

indeed been very useful in elevating our understanding of the underlying system. The rest of 

this section is dedicated to two of the Time-Frequency methods namely, the Wavelet Transform 

and the Empirical Mode Decomposition (EMD). 

Wavelet transform: 

As mentioned above, the need for time-frequency methods to unveil more information about 

the nature of signals is undeniable and the simple Fourier transform does not satisfy that need. 

As it was pointed out in the Spectral Analysis section, mathematically, there are infinite ways to 

decompose a signal into several underlying components. What makes a decomposition method 

distinct is its physical interpretation or its mathematical content. One way of decomposing a 

signal is to find its constituting sinusoidal components; that is what Fourier method achieves 

(i.e. breaking down a signal into sinusoidal basis functions). Fourier Transform is well suited 

only to the study of stationary signals and cannot properly deal with discontinuities and sharp 

spikes. Wavelets, on the other hand, are mathematical functions that divide the data into 

different frequency components and analyse them with resolutions matching their scales.  

Wavelet Transform (WT) provides a time-frequency representation of the signal and has been 

developed to overcome the short comings of the Short FFT (also used to analyse non-stationary 

signals). More specifically, while SFFT gives a constant resolution at all frequencies, WT uses 

multi-resolution technique by which different frequencies are analyzed with different 

resolutions. 

A wavelet, is a small wave which decays to zero at ±∞ and for practical reasons, this decay 

should be very fast [125]. Figure C10 shows an example of a wavelet function (known as the 

Mexican Hat wavelet). 
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Figure C10. An example of a wavelet function known as the Mexican Hat wavelet. The fast decay to zero is 
clear in the above graph 

 

Note that there have been numerous wavelet functions introduced in the literature (based on 

application needs) and the Mexican Hat is only a simple example of those. 

As can be seen in figure 58, it is not possible to reconstruct a whole signal using only a single 

wavelet, just as it is not possible to reconstruct a signal from a single sinusoid in Fourier 

decomposition. Analogous to Fourier methods in which we use a sum of sinusoids with different 

amplitudes and frequencies to reconstruct a signal, in wavelet analysis, we use a sum of scaled 

and time shifted wavelet functions to achieve this goal (i.e. a wavelet series). A generalisation of 

the wavelet series results in a more practical tool of the wavelet transform which can then be 

used in time-frequency analysis as one of its many applications.    

The wavelet transform uses scaled and time shifted wavelet functions to decompose a signal. It 

is more formally defined as: 
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Where Ψ(t) is the basic wavelet function which has to satisfy some general conditions, a is the 

scaling factor and b is the time shift factor. Although Frequency and time do not directly appear 

in the equation above, parameter 1/a gives the frequency scaling and parameter b gives the 

local occurrence time of an event [182]. In short, Wavelet analysis can be thought of as an 
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adjustable window Fourier Spectral analysis [182] where window sizes can be adjusted by the 

scaling factor and hence time-frequency decomposition using the wavelet approach can adapt to 

the nature of the data in a more efficient manner.  

Wavelets have had a wide range of applications since their introduction. They have been 

particularly effective in image and data processing (for de-noising and compression). As 

mentioned above, wavelets have also been extensively used for time-frequency analysis and 

feature extraction (for instance, see [502] for details on feature extraction from 

neurophysiologic signals using wavelets).  

Last but not least, it is essential to emphasize that similar to all time-frequency methods, 

interpretation of the analysis is of significant importance and special care and attention should 

be given to understanding the chosen basic wavelet function and the result of the analysis.  

Empirical Mode Decomposition (EMD): 

A recent time frequency analysis method which is applicable to both non-linear processes and 

non-stationary signals is briefly explained in this section. As mentioned at the beginning of the 

section, time-frequency analysis is a tool which enables us to estimate the energy (or power) of 

a signal at a given time and frequency and hence understand the underlying mechanism of 

natural (or artificial) phenomena better.  Numerous methods have been proposed in the 

literature for time-frequency decomposition out of which approaches such as Short Time 

Fourier Transform (STFT), wavelet analysis, and Wigner-Ville distribution have attracted 

significant attention. Each of the mentioned methods has its strengths and weaknesses but none 

of them is able to successfully deal with non-stationary signals and non-linear processes. Use of 

instantaneous frequencies as oppose to a variation of Fourier transform enables the EMD 

method to cope with non-stationary and non-linear processes [182]. Empirical Mode 

decomposition is an adaptive method (i.e. it is data driven) which looks at the local 

characteristics of a signal. The main part of the technique focuses on decomposing a signal into a 

set of few Intrinsic Mode Functions (IMFs). An IMF is a function that satisfies the following two 

criteria: 

1) The number of zero crossings and extremas should be equal (or differ by one) 

2) The envelope mean of the signal should at any time be equal to zero (this enforces 

symmetry on the signal) 

It is shown that any function which satisfies the above two conditions (i.e. an IMF) has a well 

defined Hilbert transform and it can hence be represented as an analytic signal with no 

ambiguities. The method then uses the derivative of the phase of the analytic signal as the 

instantaneous frequency, that is if z(t) is an analytic signal: 
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Then instantaneous frequency is given by: 
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Huang et al [182] admit that there has been controversy over the concept and definition of 

instantaneous frequency however, they believe that this definition is better than other existing 

ones as it matches our intuition better. 

The process of obtaining IMFs from a given signal is somewhat simple. Let x[n] denote the 

original signal and mx1[n ]denote the envelope mean of x[n], we then have: 
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Where r1[n] is the signal which results from subtraction of the envelope mean of the signal from 

the signal itself. We then treat r1[n] as the original signal, that is: 
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Where mrk[n] is the envelope mean of rk[n]. This iterative process continues till the difference 

between   rk[n] and rk-1[n] becomes negligible (this is practically done by setting a threshold on 

the standard deviation calculated using rk[n] and rk-1[n]). If the mentioned condition is met, rk[n] 

is chosen as the first IMF. The first IMF is then subtracted from the original signal to produce 

x2[n]. The procedure explained above is then repeated on x2[n] to get the second IMF. This 

procedure continues till there are no more IMFs, that is xm[n] is a constant or a monotonic 
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function. Note that the first IMF contains the highest oscillations (shortest period components) 

of the signal and last IMF contains lowest oscillations (longest period components) of the signal. 

The process of obtaining IMFs is referred to as the “sifting process”. Figure C11 shows the IMFs 

calculated from the EEG signal shown in figure C6. 
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Figure C11. Intrinsic Mode Function (IMFs) calculated from 128 seconds of sleep stage 2 EEG signal. Note that 

addition of all the IMFs shown above results in perfect reconstruction of the original signal and hence the 

words “complete decomposition”. As can be seen each IMF has a different oscillation rate when compared to 

the rest of the IMFs.  

 

As can be seen in the figure above, 12 IMFs have been resulted from the EEG data, each having a 

different oscillation rate. Note that the input signal in the above case was band pass filtered 

from 0.4 to 25 Hz in order to remove spurious higher frequency components.   

Having calculated the IMFs, we can produce an energy-frequency-time spectrum (Hilbert-Huang 

spectrum) which shows the energy of the signal at any given time and frequency. Frequency 

components were obtained by differentiating the phase of the analytic signals which were 

derived from IMFs. Figure C12 shows the smoothed (convolved with a 5x5 Gaussian mask) 

Hilbert-Huang spectrum of the EEG signal shown in Figure 62. 
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Figure C12. Smooth Hilbert-Huang spectrum. The energy distribution of the EEG data in time and frequency 
can be seen. As with all time-frequency analysis methods, interpretation of the analysis and how well it fits 
our intuition is of essence. 

 

As can be seen in the above figure, low frequency dominance is clear. Lack of low frequency 

components and presence of 12-14 Hz activity can probably be interpreted as sleep spindles, 

however for rigorous event detection in sleep, complimentary algorithms may be needed (see 

[393] for details on automatic sleep spindle detection using Hilbert-Huang spectrum). 

To summarise, EMD is a useful way of decomposing signals which are not stationary or are 

generated by non-linear processes. This decomposition enables us to obtain a rich Energy-Time-

Frequency distribution which increases our understanding of the nature of the signal we are 

dealing with.  
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