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Abstract 

This paper describes a novel procedure for the fabrication of a gas diffusion electrode 

(GDE) suitable for use as a bifunctional oxygen electrode in alkaline secondary batteries.  

The electrode is fabricated by pre-forming a PTFE-bonded nickel powder layer on a nickel 

foam substrate followed by deposition of NiCo2O4 spinel electrocatalyst by dip coating in a 

nitrate solution and thermal decomposition. The carbon free composition avoids concerns 

over carbon corrosion at the potentials for oxygen evolution. The electrode shows acceptable 

overpotentials for both oxygen evolution and oxygen reduction at current densities up to 100 

mA cm-2. Stable performance during > 100 successive, 1 hour oxygen reduction/evolution 

cycles at a current density of 20 mA cm-2 in 8 M NaOH at 333 K was achieved.    
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1. Introduction 

Presently, there is considerable interest in rechargeable metal/air and regenerative O2/H2 

fuel cells with alkaline electrolytes [1-4]. These require GDEs able to operate at high current 

densities with acceptable overpotentials and to be stable in conditions of both oxygen 

evolution and oxygen reduction. They should be based on non-precious metal catalysts and 

carbon components need to be avoided since they have a tendency to corrode when evolving 

oxygen. While there is substantial literature on bifunctional oxygen electrocatalysts [5-7], it 

generally considers only low current densities. In addition, early work [8-10] on ways to 

fabricate these electrocatalysts into GDEs has not been followed up. This paper therefore 

describes a novel approach to the fabrication of a GDE for secondary alkaline flow batteries 

and reports performance at high current densities.  

Nickel materials are generally stable under the conditions for oxygen evolution and 

hence the aim was to base all components of the GDE on such materials. The spinel, NiCo2O4 

was selected as the bifunctional electrocatalyst since it is known to be an effective catalyst for 

both O2 reduction and O2 evolution [5,10-14,15], and  preliminary studies showed it to be an 

effective catalyst. It was also simpler to prepare than other oxide catalysts and the relatively 

low temperature for its preparation is critical to the procedure used for fabrication of the 

GDE. 

2. Experimental 

Nickel powder (Huizhou Wallyking Battery Ltd, 2 - 10 µm particle size by SEM), nickel 

foam (Changsha Lyrun New Material Co Ltd, thickness 1.6 mm, 43 pores/cm), nickel nitrate 

(Aldrich, 99.999 %), cobalt(II) nitrate (Aldrich, ≥ 98 %), sodium hydroxide (Fisher, 97 %), 

polytetrafluoroethylene (PTFE, Aldrich, 60 wt% dispersion in H2O), and commercial 
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Pt/carbon GDEs (Johnson Matthey Fuel Cells, 15 wt % Pt with loading 4 mg cm-2)  were 

used as received.  

The procedure for making the bifunctional oxygen electrodes had two stages. The first 

stage led to a porous nickel powder/PTFE layer on nickel foam. Nickel foam (70 mm x 120 

mm) was cleaned by sonicating in isopropanol and then water for 15 min each. Nickel 

powder and PTFE binder (solid weight ratio 10 to 3) were mixed with isopropanol and water 

to form an ink then dried to a paste. The paste (loading ≈ 150 mg cm-2) was spread uniformly 

on the nickel foam giving a paste area of 50 mm x 100 mm and the structure was then 

compressed in a hydraulic Instron C press using 10 MPa at 298 K for 1 min. The second step 

was to form the catalyst layer. The nickel powder/PTFE coated nickel foam was soaked in a 

solution containing 0.5 M Ni(NO3)2 and 1 M Co(NO3)2, dried at 298 K for 10 min and then 

heat treated in a Carbolite ELF 11/6 furnace at 648 K for 15 min to form the NiCo2O4 spinel. 

The dip, dry and heat cycle was repeated 6 times before the sample was calcined at 648 K for 

3 hrs. X-ray diffraction confirmed that layers formed in this way had a spinel structure. The 

uniformity of the GDE structure was checked by SEM while cross sectional SEM images of 

the final GDE show its thickness to be ~ 1 mm. The loading by NiCo2O4 was estimated to be 

~ 3 mg cm-2 by weight increase. For the experiments reported here, discs 12 mm in diameter 

were cut from the finished electrodes. 

Electrochemical measurements were carried out using an Autolab potentiostat/ 

galvanostat, PGSTAT30. Most experiments used a water jacketed glass cell (volume 200 

cm3) with a GDE, a platinum gauze counter electrode and a Hg/HgO reference electrode 

placed inside a compartment with a Luggin capillary. The GDE was mounted inside a PTFE 

holder and electrical contact made with a nickel wire and mesh on the gas side. A Camlab 

W14 water recirculator maintained the electrolyte temperature at 333 K.  O2 was passed to 

the rear of the GDE with a feed rate of 200 cm3 min-1, controlled via a flow meter. Unless 
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otherwise stated the electrolyte was 8 M NaOH at 333 K. Current cycling was carried out 

under galvanostatic control at current densities in the range 10 – 100 mA cm-2. Current 

densities are based on the geometric area of the electrode (0.5 cm2) exposed to the electrolyte 

and gas compartments. Some cyclic voltammetry employed a conventional three electrode 

cell where the NiCo2O4 spinel layer was deposited directly onto a low area, fine nickel mesh. 

3. Results and Discussion 

Electrodes were prepared using the procedure described above. With Ni powder and 

PTFE on the Ni foam, but without the deposition of the NiCo2O4 coating, the electrodes 

showed very poor activity for O2 reduction. When the spinel coating was deposited by 

dipping the preformed electrode in Ni/Co nitrate solution followed by thermal decomposition, 

the performance improved markedly.  Fig. 1 shows the potential vs. time responses for O2 

reduction and evolution at a constant current density of 20 mA cm-2 for the NiCo2O4 coated 

GDE in 8 M NaOH at 333 K.  It can be seen that the potential quickly reaches a constant 

value during both oxygen reduction and evolution. The steady state potentials are separated 

by only 620 mV confirming that NiCo2O4 spinel is an effective bifunctional catalyst in this 

alkaline medium.  A number of electrodes were tested with carbon powder or carbon paper 

components but all failed after a period of O2 evolution when large increases in overpotential 

occurred and there was visible signs of corrosion of the structure [5]. This is illustrated by 

data for a commercial Pt/carbon GDE.  When an initial cathodic current is passed, the Pt 

catalysed GDE performs well, giving a slightly lower overpotential (~ 40 mV) for oxygen 

reduction than observed with the spinel. On the other hand, after a short period of O2 

evolution there is a catastrophic increase in potential.   

Fig. 2(a) reports the performance of the NiCo2O4 coated GDE when it was cycled 

between oxygen reduction and oxygen evolution using a current density of 20 mA cm-2 for 1 
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hour periods at 333 K. The potentials for oxygen reduction and evolution are ~ - 0.08 V and ~ 

+ 0.54 V vs Hg/HgO, respectively, giving a 620 mV potential difference between these two 

reactions. Moreover, there was no degradation in steady state performance over the timescale 

of 100 cycles (the figure shows the first 50 cycles).  In fact, there is slight trend to lower 

overpotential for both reactions. It was also noted that the open circuit potentials following 

O2 evolution and reduction were quite different, see Fig. 3. Fig. 2(b) shows an expanded view 

of the potential vs time responses during the 1st, 10th and 50th cycles. It can be seen that on 

switching between cathodic and anodic current, there is a period where the overpotentials are 

lower before it increases to that for oxygen reduction/evolution. On the first cycle this period 

is short but it extends with cycling and eventually becomes an important component of the 

electrode behaviour. It should be emphasized that these lower overpotential periods are 

beneficial since when the electrodes are used in a battery, the voltage efficiency of the battery 

is improved.  During this period, another reaction must be occurring; this is likely to be the 

inter-conversion of Ni(OH)2/NiO(OH) or a metal oxidation state in the spinel coating at the 

electrolyte/electrode interface.  Since the period of lower overpotential is lengthening during 

cycling, it suggests that the interfacial area is increasing, eg. there is some movement of 

electrolyte through the GDE structure.  

The performance of the NiCo2O4 coated electrode at different current densities is shown 

in Fig. 3. At all current densities, stable potentials are seen during both oxygen reduction and 

evolution. As expected, the overpotentials for both electrode reactions increase with current 

density. The increases are larger than expected for the increased rate of electron transfer 

alone suggesting a contribution from IR drop in the electrolyte between Luggin capillary tip 

and the GDE as well as perhaps within the electrode itself. 

In order to provide background information, some voltammograms were recorded for a 

small piece ( ~ 10 mm x 10 mm) of fine nickel mesh both uncoated and NiCo2O4 coated.  
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Fig. 4 compares the voltammograms recorded at 298 K and using a potential scan rate of 50 

mV s-1. Both responses show oxidation/reduction peaks at potentials just negative to oxygen 

evolution. For the uncoated nickel, a well formed, symmetrical anodic peak and a coupled 

symmetrical cathodic peak are seen. These are associated with surface conversion between 

Ni(OH)2 and NiOOH [15-18]. With the spinel coated electrode, the charges associated with 

oxidation and reduction are much higher as expected for a rough and, perhaps porous, 

coating. The response is also more complex. Three overlapping anodic peaks are seen on the 

forward scan at + 340 mV, + 460 mV, and + 500 mV, with the latter two peaks not well-

resolved and the response on the reverse scan consists of very broad peaks.  The shape of the 

peaks and the charge balance between total anodic and total cathodic charges confirms that 

the electrochemistry is reversible and occurring within a surface layer.  This is confirmed 

since there is no significant change between 1st and nth scan cyclic voltammograms. This 

voltammetry is similar to that reported by Tseung et al [12].  While it is not possible to assign 

the peaks to specific reactions, in general, there is little doubt that the peaks result from 

changes to the oxidation state of nickel and cobalt centres within the spinel structure.  The 

voltammetry also shows most clearly that at the potentials for oxygen reduction and oxygen 

evolution, the catalyst is in different oxidation states. 

The spinel catalysed GDE when cycled between cathodic and anodic currents must be 

expected to undergo the same change in metal oxidation state where there is an interface 

between catalyst and electrolyte. This is seen in the potential/time responses, Fig. 2(b). 

Moreover, the open circuit potentials immediately after periods of oxygen reduction and 

oxygen evolution are quite different, + 10 mV and + 490 mV vs. Hg/HgO respectively. 

Hence, (a) the two reactions are occurring on surfaces with transition metals in different 

oxidation states and all the oxidation states are stable (b) cycling between oxygen reduction 

and oxygen evolution requires the passage of a charge to effect this change in oxidation state 
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before oxygen evolution/reduction can occur.   

 

4. Conclusions 

The procedure described in this paper leads to the fabrication of gas diffusion electrodes 

without carbon components. After the formation of a Ni powder/PTFE layer within Ni foam,  

the spinel catalyst layer is formed by a simple dip/heat cycle.  Such GDEs performs well as a 

bifunctional oxygen electrode in alkaline environments. They give acceptable overpotentials 

for both O2 reduction and evolution and may be extensively cycled between oxygen evolution 

and reduction without loss in performance. The compressed nickel foam provides both 

strength and good, continuous electrical contact with the external circuit. The absence of 

precious metals and the simplicity of fabrication create the opportunity for low cost GDEs.  

While details of the mechanism for these reactions have not been studied, it is interesting 

to note that the two reactions occur on surfaces where the transition metals are in different 

oxidation states. These changes in oxidation state provide a mechanism for short 

charges/discharges with very good energy efficiency. When these period are over, oxygen 

evolution/reduction take over as the electrode reactions, giving a lower voltage efficiency but 

giving the possibility of long timescale charge/discharge cycles.           
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Captions for Figures.  

Fig. 1.  

Comparison of potential vs. time responses during current density cycling of spinel coated 

Ni/PTFE GDE and a commercial Pt/C GDE. Cathodic and anodic currents both 20 mA cm-2.  

Fresh GDE.  Electrolyte: 8 M NaOH at 333 K. Oxygen feed rate: 200 cm3 min-1.  

 

Fig. 2.  

(a) Potential vs. time responses during current density cycling of a spinel coated Ni/PTFE 

GDE in 8 M NaOH at 333 K. Current density 20 mA cm-2.  Oxygen feed rate: 200 cm3 

min-1. Shown are 1st to 50th cycles. Each cycle – 1 hour. 

(b) Expand presentation of the 1st, 10th and 50th cycles. 

 

Fig. 3.  

Potential vs. time responses during current density cycling of a spinel coated Ni/PTFE GDE. 

Current densities: 20, 50, and 100 mA cm-2 in 8 M NaOH at 333 K. Fresh GDE. Oxygen feed 

rate: 200 cm3 min-1.  

 

Fig. 4.  

Cyclic voltammograms recorded at a spinel coated nickel mesh (b) and an uncoated nickel 

mesh (a) in 4 M NaOH at 298 K. Potential sweep rate: 50 mV s-1. The inset shows an 

expanded view of the voltammogram at the uncoated mesh. 
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