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In this paper I consider the self-excited rotation of an elliptical cylinder towed in a
viscous fluid as a canonical model of nonlinear fluid structure interactions with possible
applications in the design of sensors and energy extraction devices. First, the self-excited
ellipse system is shown to be analogous to the forced bistable oscillators studied in classic
chaos theory. Next, fully coupled computational fluid dynamics simulations of the motion
of the cylinder demonstrate limit cycle, period doubling, intermittently chaotic, and fully
chaotic dynamics as the distance between the pivot and the centroid is varied. The viscous
wake behind the cylinder is presented for the limit cycle cases and new types of stable
wakes are characterized. The wake in the chaotic case demonstrates a strong history
effect, with a variety of wake types possible for a given structural state. The rotational
kinetic energy and fluid vorticity is found to be maximum in a stable period-2 limit
cycle associated with leading edge vortices. The adjacent chaotic case has a broadband
frequency response and the second highest maximum kinetic energy, 15 times greater
than the average over the trajectory. The chaotic response of the system is found to
persist when moderate structural damping is applied and down to Reynolds numbers as
low as 200.
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1. Introduction

The analysis of fluid structure interactions (FSI) is fundamental to diverse engineer-
ing fields with examples ranging from the flow induced motions of telephone wires and
offshore drilling risers (Bearman 1984; Williamson & Govardhan 2004), to the flutter of
membranes such as the wheezing of the soft pallet (Huang 1995) or a flapping flag (Con-
nell & Yue 2007). Exciting new developments in the field include the design of energy
extraction devices which utilize resonant structural response to the flow (Bernitsas et al.
2008; Abdelkefi et al. 2013; Barrero-Gil et al. 2010) and passive hydrodynamic sensors
such as those of Beem et al. (2013) which are inspired by the ability of a hunting harbour
seal to detect its prey’s wake minutes after its passing.

While some of these systems are approximately linear and many feature periodic re-
sponses, the non-periodic response of nonlinear deterministic systems have been a source
of fascination and rewarding research since their discovery by Lorenz (1963). Holmes
(1979) and others developed this theory to apply to a broad range of harmonically forced
model systems useful in mechanical applications. Chaotic FSI gives rise to many practical
problems such as snap loading (Connell & Yue 2007), buckling of wings in aircraft ma-
noeuvres (Sipcic 1990) and ship roll and capsize (Spyrou & Thompson 2000). The broad
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frequency response of chaotic mechanical systems is also important, with its impact on
the fatigue life of structures (Modarres-Sadeghi et al. 2011; Dahl et al. 2007), and its
ability to maximize response of sensors and energy extraction devices over a broad range
of excitation frequencies (Arrieta et al. 2010; Townsend & Shenoi 2013).

In this paper I consider the self-excited rotation of an elliptical cylinder towed through
a viscous fluid as a canonical model of nonlinear fluid structure interactions. Like a
simple pendulum, this is a nearly trivial one degree of freedom mechanical system, yet
its behaviour is incredibly rich; sensitively ranging through periodic, semi-periodic, and
fully chaotic dynamics. The investigation of simple nonlinear FSI systems is an active one
and recent experimental work has shown that a single degree of freedom pendular disk in
a cross flow exhibits bistability (Obligado et al. 2013). An entire field of literature exists
on the rotational galloping and torsional flutter of bluff cylinders due to their prevalence
in civil and industrial engineering (Nakamura 1990; Van Oudheusden 1996; Robertson
et al. 2003; Alonso et al. 2010). Understandably these analyses are mostly focused on
preventing such large amplitude motions and generally feature quasi-static analysis and
static experiments at high Reynolds number. In contrast, the present study is focused
on describing the nonlinear dynamics of this system free from structural damping or
restoring forces. Additionally, the current study uses low Reynolds number (Re < 10%)
both because this is more appropriate for small scale flow sensors, but also because it
avoids turbulent fluid forcing confusing the analysis of this deterministic system. Another
related area of research is that of auto-rotation (Lugt 1983), in which an object such as
a flat plate rotates about an axis perpendicular to an oncoming flow despite having a
nominally zero net torque about its center. The rotation is due to the unsteady vortex
shedding, and while thick ellipses show much less tendency to auto-rotated than plates
due to their rounded edges they are near the stability limit (Lugt 1980).

The towed rotating ellipse is a uniquely simple example of chaotic FSI. While the fluid
supplies infinitely many degrees of freedom and nonlinear forcing even at low Reynolds
number, previous example systems depend strongly on continuously deformable or multi-
linkage structures or on turbulent flow. Indeed, the onset of chaotic motions in flexible
risers is attributed to the interaction of structural waves and fluid gradients along the
span (Modarres-Sadeghi et al. 2011). And flapping membranes with excessive stiffness or
reduced mass-ratio exhibit only simple period-1 oscillations up to Re = 5000 (Connell &
Yue 2007). In the one degree of freedom rotational galloping experiments of Van Oud-
heusden (1996) two stable limit cycles are found for certain parameters, but the author
explains the difficulty in isolating this possible bifurcation experimentally. The current
work is therefore not only beneficial because of the problem’s relevance to engineering
systems, but also because of its simplicity and the possibility for detailed investigation
using fully coupled computational simulations.

The formulation of the system is detailed in §2, using analytic arguments to demon-
strate its similarity to the classic forced bistable oscillators studied in the early develop-
ment of chaos theory. Next, §3 presents the numerical approach used to study the fully
coupled unsteady fluid-structure system. In §4 the trajectories, wake modes, and energy
levels are presented over a range of geometric, structural damping, and Re conditions.
Finally, §5 discusses the findings and presents conclusions.

2. Formulation and Equivalence to Forced Bistable Oscillators
Consider a two-dimensional elliptical cylinder, towed at steady velocity U through a

fluid of density p, and free to pivot about the tow point. The system is sketched in Fig 1a.

The major axis of the ellipse is L, the minor axis is ¢, and the instantaneous angle of
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Figure 1: (a) Sketch of the fluid structure interaction problem. The ellipse is towed at
constant speed and allowed to rotate freely around the pivot at o. (b) Approximate
normalized restoring torque % given by equation 2.5. (¢) Stable fixed point ¢* and linear

spring coefficient at that point g—i ¢+ as a function of r/Lg.

rotation is ¢. The pivot point is located a distance r from the centroid of the ellipse along
the major axis.

While the structure has only one degree of freedom, the dynamical system depends on
o, qi), and the state of the continuous fluid. The angular equation of motion about the
pivot governs the rotation of the ellipse,

La=1,= 74 Fls)  (#(s) — Z,)ds (2.1)
s
where [, is the second moment of area of the ellipse about the pivot, a = (b is the angular
acceleration, and 7, is the integrated torque relative to the pivot due to the contact force
f on the solid/fluid interface S. The resulting position and velocity of the ellipse set the
boundary conditions on the fluid, leading to a fully coupled FSI problem. Note that only
the fluid forces are considered; there are no structural damping or restoring torques.
The fluid motion and resultant forces in Eq 2.1 are governed by the full viscous Navier-
Stokes equation, but it is insightful to approximate these forces analytically where pos-
sible. In particular, given that the added mass matrix for the ellipse is diagonal, the
potential flow estimate is,

1
Fo = —(ms3 + r’my)a + §U2 sin 2¢(mg — my) (2.2)
= —Il,a— Ky () (2.3)
where m; = §pm (2, L?, 35 (L* — t?)?) are the added mass components in each body fixed

coordinate direction (x1, x9, x3 = ¢) as labelled in Fig la. Equation 2.2 is composed of an
angular fluid inertia term I, from the acceleration of the off-center ellipse, and the well
known Munk moment &y (¢$) which tends to rotate slender bodies broadside to the flow.
Indeed the stable fixed points for this system are clearly ¢ = 47 while the unstable
fixed points are ¢, =0, 7.

Note that the Munk moment has no dependence on the lever arm r. In thin airfoil
theory the Munk moment is supplemented with the torque induced by the lift force, but
this cannot be applied the flow around a bluff body. A simple drag force model,

D= Cp()UL (24)
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is more appropriate, where the drag coefficient could be roughly estimated as Cp =
1-— %cos 2¢. Additionally, the lack of pressure recovery on the back half of the ellipse
which causes the drag will also reduce the magnitude of the Munk moment (Lugt 1980).
Applying this drag force to the centroid of the ellipse gives the estimated total restoring
torque as,

K i r
ngQLQ sin ¢ | cos ¢ 5 (2 — cos2¢) (2.5)
where 3 is an empirical coefficient scaling the Munk moment. When the pivot is at the
center the torque is given soley by the Munk moment and the fixed points are located at
¢s = £7, as before. Increasing the size of the lever arm increases the drag component
of the restoring torque, driving the stable fixed points toward ¢ = 0 (Fig 1b,1c). At
r/LB = 1, the two stable points merge at ¢ = 0 and this fixed point undergoes a Hopf
bifurcation and becomes the sole stable fixed point.

The arrangement of two stable fixed points straddling an unstable fixed point classifies
the system as a bi-stable oscillator. The classic bistable model system considered in
Holmes (1979) is

[{;:

¢+ (P — 10+ 20 = f cos(wt) (2.6)
and informative comparisons can be made to this system. Performing a Taylor expansion
of Eq 2.5 around ¢ = 0 recovers & = —c1¢ + c2¢° + O(¢°) where ¢; = 1 —r/LS and
cy = %r /LB+ % The system has a cubic restoring term, which leads to its bi-stability, as
in Eq 2.6. However, the nonlinearity in the rotating ellipse system is more severe. First,
the polynomial coefficients of the ellipse restoring torque are a function of ¢. The linear
coeflicient of the spring at the stable fixed point, % o=, varies strongly with r /L[ and has
a local maximum at r/LS ~ 0.2 (Fig 1c¢) which can not be modeled by Eq 2.6. Second,
while the motion through a viscous fluid will supply damping, that damping is nonlinear
and depends on both ¢ and qb Finally, time-dependent forcing similar to that in Eq 2.6
is supplied by the alternating shedding of vortices off the body, but this will not produce
a constant amplitude harmonic force. Instead, the amplitude and timing depend on the
state of the near-field flow around the body. These additional nonlinearities require the
use of a numerical approach to fully quantify the response of the towed ellipse.

3. Numerical Methodology for the Fully Coupled Simulations

A set of two-dimensional simulations enable detailed quantitative predictions of the
coupled viscous fluid / dynamic body system. In this work I utilize the Boundary Data
Immersion Method (BDIM), a robust immersed boundary method suitable for dynamic
fluid-structure interaction problems detailed in Weymouth et al. (2006) and Weymouth &
Yue (2011). Briefly, the full Navier-Stokes equations and the angular governing equation
2.1 are convolved with a kernel of support ¢ = 2h, where h is the grid spacing. The
integrated equations are valid over the complete domain and allow for general solid body
dynamics to be simulated. Previous work has validated this approach for a variety of
dynamic rigid-body problems such as flapping and translating foils (Wibawa et al. 2012)
and deforming body problems such as a model of a fast escaping octopus (Weymouth &
Triantafyllou 2013).

The tests are run using a 2:1 ellipse and the body density matches the fluid density.
An inertial computational domain is used with dimensions 8L x 5L which translates with
the body but does not rotate. All cases use the no-slip and no-penetration boundary
conditions on the solid /fluid interface. No-penetration conditions are applied on the top
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Table 1: Amplitude of oscillation ® and percentage error relative to the finest solution
e=1—®/Py_g. 011 for the r = 0 period-1 limit cycle presented in §4.

h/L 0.039 0.026 0.02 0.013 0.01

® 0.421 0.470 0.497 0.504 0.507
e 0.17 0.074 0.020 0.007 —

and bottom walls and a convection exit condition is used. This narrow domain incurs
blockage effects but tests with larger computational domains indicated that the same
nonlinear response features are found, just at slightly different values of the pivot location.

The coupled BDIM equations are discretized using a finite-volume method (third-order
convection and second-order diffusion) in space and Heun’s explicit second-order method
in time. An adaptive time-stepping scheme is used to maintain stability. Table 1 presents
a grid convergence study on the magnitude of oscillation for a periodic case with r = 0.
The results converge with third-order accuracy overall and the maximum difference in
the solution between the fine and intermediate grid (h/L = 0.02) is only 2%. This verifies
the high accuracy of these viscous two-dimensional simulations and the intermediate grid
level is used for the remainder of the paper.

4. Results for the Freely Rotating Ellipse

This section details the numerical results of the self-excited rotations of a 2:1 elliptical
cylinder. The Reynolds number based on the steady tow speed U is set to Re = % =10°
unless otherwise mentioned to avoid intrinsically non-periodic forcing due to transition
to turbulent flow on the cylinder. The length of the lever are was systematically varied
in the range of 0 < r/L < % which simultaneously adjusts the fluid restoring torque
and moment of inertia as detailed in §2. None of the cases studied with the 2:1 ellipse
produced fixed point motion due to the spontaneous onset of bluff body vortex shedding.
Instead, the trajectories show either limit-cycle, intermittently periodic, or fully chaotic
motion.

Figure 2 shows the vortex wake and Fig 3 the time history, power spectral density,
and phase portraits of the rotation angle ¢ for values of r/L which result in limit cycle
trajectories. By combining the structural state information in Fig 3 with the fluid state
information in Fig 2, a fair understanding of the system in these simple cases is achieved.
These figures have been oriented such that the trajectories all move to the positive fixed
point, but adjusted initial conditions make either branch accessible.

When the lever arm is large, the torque induced by the bluff-body drag limits the
motions to small amplitude and speed. At r/L = 0.5 the limit cycle is centered on ¢ = 0
suggesting that this is a stable fixed point. As r/L is decreased the Hopf bifurcation in
Eq 2.5 is crossed some time before r/L = 0.4, destabilizing ¢ = 0 and creating two stable
fixed points on either side. This indicates that the value of § is approximately 1/2 for
this Reynolds number.

There is near-periodic orbit at r/L = 0.4 with a wake characterized by a standard
Karman vortex street. In the literature of vortex induced vibrations (Williamson & Go-
vardhan 2004) this is categorized as a 2S wake, having two single vortices per cycle.
Before /L = 0.3, the trajectories undergo period doubling as seen clearly in the fre-
quency content of ¢. This wake (not shown) features two pairs of vortices, a 2P wake,
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Figure 2: Vorticity field (red/blue) in the wake of the ellipse (black outline, travelling
right-to-left) as it rotates freely in limit cycle motion at Re = 1000. Two times are shown
for each value of r at approximately the extreme values of ¢. The instantaneous value of
¢ is indicated on the pivot of the ellipse for reference.

with one larger than the other. A second period-2 limit-cycle appears at r/L = 0.25
which has 20% larger amplitude and a dominant period-2 component. The wake for this
cycle is similar, but one of the vortices in the smaller pair is grouped with the larger pair
leaving the other small vortex isolated, making this a T+S wake (Triplet plus Single).
The region from 0.25 > r/L > 0.15 features mostly non-periodic trajectories, but
a small amplitude period-1 limit cycle centered on 7/8 is found at r/L = 0.2 with an
asymmetric P wake. A periodic response is also found at /L = 0.18 with a large period-3
limit cycle which alternates between the positive and negative fixed points. The wake is
a symmetric version of the /L = 0.25 limit cycle, with a 2P+42S wake. This is the first
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Figure 3: (a) Time history, (b) normalized power spectral density, and (c) phase portraits
of ¢ for values of r/L which produce periodic limit cycles at Re = 1000. The phase
portraits are drawn with 70% transparency so that overlapping orbits appear darker.

wake which features leading edge vortex (LEV) separation and these vortices power the
trajectory through the unstable fixed point at ¢ = 0.

A stable limit cycle is found between 0.15 > /L > 0.05 with large amplitude (® ~ 7/2)
and high velocity ((ID ~ %WU /L) as in rotational galloping. The frequency content shows
that this a period-2 limit cycle with nearly zero period-1 component. LEVs form a vortex
street on the centerline with peak vorticity levels double that of the r/L = 0.1 limit cycle
wake. Smaller trailing edge vortices form off-center between the LEVs resulting in a 4S
wake. As r/L — 0 this large amplitude orbit decays intermittently into a smaller period-1
cycle centered on ¢ = +m/2 with an asymmetric P wake.

Overall, the vortex shedding frequency is completely dominant for the limit cycle cases.
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Figure 4: (a) Time history and (b) normalized power spectral density of ¢ for values of
r/L which produce orbits with intermittently periodic behaviour at Re = 1000.

The number of vortices corresponds directly to the period of the cycle; two for the period-
1 cycles (2S, P), four for the period-2 cycles (2P,T+S), and six for the period-3 cycle
(2P+2S). The period-1 frequency of the trajectories is also determined by the vortex
dynamics. At /L = 0.5, ¢* = 0, and the cross stream width is w = L/2, which results
in the standard bluff body Strouhal number St = fw/U ~ 0.2. As r/L is decreased, the
fixed points spread from ¢ = 0 increasing the effective cross stream width, accounting
for the decreased period-1 frequency observed in Fig 3.

Non-periodic behaviour is found between most of these periodic limit cycles for r/L <
0.3. Figure 4 shows the response for selected trajectories which display many types of
non-periodic behaviour associated with bi-stable oscillators. The trajectory at r/L = 0.23
transition from one limit cycle to another (the /L = 0.3 cycle to the r/L = 0.25 cycle).
r/L = 0.19 shows an extended non-periodic phase followed by stable period-1 motion and
the fixed point chosen is sensitive to the initial conditions. The other three (r/L = 0.21,
0.185, and 0.05) shows windows of periodic behaviour interspersed with non-periodic
bursts of activity. Many of these trajectories feature non-periodic transitions from one of
the stable fixed points to the other which results in a broadband frequency response.

A strong fully chaotic response is found in the window between the large period-3 orbit
at /L = 0.18 and period-2 orbit at /L = 0.1. The chaotic response for r/L = 0.16 is
examined in detail in Fig 5. The time history is shown for a set of trajectories with a less
than 1% distance between their initial conditions. Figure 5b shows the average evolution
of the distance between trajectories. The solutions remain close for times tU/L < 5 while
the flow around the cylinder initially develops. As the wake brakes symmetry the distance
between the trajectories grows exponentially, with a (largest) Lyapunov exponent of 0.9.
By tU/L = 12 the trajectories have completely diverged. Figure 5¢ shows the phase
portrait for one trajectory for 0 < tU/L < 10%. Similarities to the limit-cycle found at
r/L = 0.18 are evident, but most of the structural states within that envelope are visited
at least once and the most common states are at (¢ = +7/4, ¢ = 0) which is not in that
limit cycle. Fig 5 also plots the normalized power spectral density of the trajectories.
There is a peak at fL/U = 0.05, which corresponds to period-6, but the response is
generally broadband.

Figure 6 shows the vortex wake for the same chaotic case. In this figure, four times
are shown when the trajectories pass through approximately the same point in the phase
space. However, the wake in each image is completely unique; a lone pair of bound vor-
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Figure 5: Trajectory characteristics of chaotic rotations with /L = 0.16 and Re = 1000.
(a) Time history of three trajectories started with initial conditions §y = .25% apart. (b)
The evolution of the average distance between the trajectories in (a). The slope of the
dashed line is 0.9 for reference. (c) Phase portrait for one trajectory from 0 < tU/L < 103
using 70% line transparency. (d) Linear and (e) log plot of the normalized power spectral
density of ¢ for the same trajectory as in (c).

Figure 6: Vorticity field (red/blue) in the wake of the ellipse (black outline, travelling
right-to-left) as it rotates freely in chaotic motion with r/L = 0.16 and Re = 1000. Four
times are shown at approximately the same values of ¢ and ¢.
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Figure 7: (a) Average and (b) Maximum rotational kinetic energy %IOQISQ of the ellipse
scaled by the constant translational kinetic energy. (¢) Ratio of the maximum to the
average energy. Black crosses: period-1 cases, Blue x’s: higher period limit cycles, Red
triangles: intermittent cases, Green diamond: chaotic r = 0.16L case. Re = 1000.

tices, a set of 2P+S vortices, and a large vortex pair shooting far off centerline upwards or
downwards. The torque applied to the ellipse is unique in each case, leading to completely
different future trajectories.

The rotational kinetic energy of the ellipse during free oscillations is shown in Fig
7 as a function of r/L. The trend is an increase in KE with decreasing r/L until the
r/L = 0.1 cycle is reached, which has the maximum value observed. However, the details
are markedly different for the different types of trajectories. The limit cycle cases show
average energy levels that follow the trend mentioned, but the period-1 limit cycles have
very low maximum energy levels. In contrast the average kinetic energies of the non-
periodic cases are essentially constant, but their maximum energy level increases with
the trend. Plotting the ratio of maximum to average rotational kinetic energy cleanly
divides the period-1 cycles below 3, the non-periodic orbits above 7, and the higher
period orbits between. The r/L = 0.16 chaotic case has the maximum ratio of nearly 15.

Finally, the dependence on damping is investigated in two ways; first, through the
reduction of Reynolds number, and second, through the introduction of linear structural
damping. Figure 8 shows the behaviour of the system as the Reynolds number is reduced
for the highest energy trajectories, 0.1 < r/L < 0.16. The increased fluid damping reduces
the size and speed of oscillations throughout this range, and at Re = 100 all trajectories
have been damped to period-1 limit cycles around a single fixed point. However, there
are still strong non-periodic response found for Reynolds numbers as low at 200. The
change in Reynolds number also adjusts the location of the peak chaotic response from
r/L = 0.16 (as in Fig 5¢) down to r/L ~ 0.1. This is likely due to a change in the
balance of the magnitude of the Munk moment and drag induced moment, quantified by
the parameter 5 in Eq 2.5. The increased fluid damping has also stabilized higher period
responses than were observed at Re = 1000, with the most extreme example being a
period-14 limit cycle found at Re = 200, r/L = 0.12.

Figure 9 shows the result of adding linear structural damping torque ¢ ng to the system,
as in Eq 2.6. This is for the case of r/L = 0.16 and Re = 1000 which is chaotic for the un-
damped system. Here, the damping is nondimensionalized by Iy f1 /7 where f1L/U = 0.3
is the observed period-1 frequency in this range. Therefore, ( = 1 corresponds to critical
damping of this frequency in the absence of fluid excitation. As with the Reynolds num-
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Figure 9: Phase portraits for { = 0.375 — 2 with Re = 1000 and r/L = 0.16.

ber study, adding damping results in a less energetic trajectory, and ¢ = 2 (overdamped)
results in a period-1 limit cycle around the stable fixed point. Less extreme damping
destabilizes this trajectory and leads to period-2 cycle at ( = 1, period-3 at ( = 0.5, and
a period-6 cycle at ¢ = 0.4375. By ¢ = 0.375 the trajectory is fully chaotic but much less
energetic than the undamped case, with velocities 1/4 the magnitude and no switching
between the positive and negative fixed points.
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5. Discussion and Conclusions

This work considers a simple towed elliptical cylinder which is free to rotate around
a pivot, and demonstrates that the system responds with a rich set dynamics, includ-
ing limit cycles, period doubling, and chaotic motions. The mean restoring torque was
approximated analytically and used to show that the system has a region of natural
bi-stability dependant on the distance r/L between the centroid and the pivot. The un-
derlying system is closely related to that of the classic forced-bistable oscillators, which
are well known to incorporate these dynamical behaviours.

The trajectories the limit cycles cases (Fig 3) are dominated by the vortex dynamics,
as observed in the literature of autorotation (Lugt 1983). The frequency and number of
oscillations in each limit cycle corresponds directly to the bluff body Strouhal number,
indicating that this is the dominant time-scale in the system. Decreasing r/L from 0.2 to
0.1 changes the character of the wake from trailing edge to leading edge vortex shedding
with a corresponding increase in the amplitude of motion (Fig 2) and the occurrence of
trajectories visiting both of the stable fixed-points.

The vortex wake of the chaotic case at /L = 0.16 is only weakly correlated with
the state of the ellipse, featuring any number of vortices as well as pairs of vortices
shooting far off center-line in either direction (Fig 6). This sensitive wake history effect
is a necessary condition for chaotic motions and stands in sharp contrast to the period-1
oscillations before the Hopf bifurcation in which the wake is fully determined by the
instantaneous state of the ellipse. The irregularity of the wake also illustrates the limits
of the analogy to the classic forced bi-stable systems such as Holmes (1979). The current
system is self-exciting, not subject to a harmonic forcing. Therefore there is no fixed
frequency or amplitude of forcing, and a constant period Poincare map is no better at
clarifying the strange attractor than a random sample of the phase portrait.

The r/L = 0.1 period-2 limit cycle has the largest rotational energy observed in this
study, with a maximum of nearly 60% of the translational kinetic energy. The ratio of
maximum to average kinetic energy perfectly separates the trajectory types, consistent
with the cascade of energy into a wider frequency spectrum. The ratio for the chaotic
case is nearly 15, indicating extremely nonlinear loading on the ellipse in this trajectory.
This is consistent with the ‘snap’ loading observed in chaotic FSI problems with flexible
bodies (Sipcic 1990; Connell & Yue 2007).

The energy of the ellipse motions is reduced as the damping losses are increased either
through structural damping or decreased Reynolds number. In this way it is possible to
restrict even the highest energy cases (0.1 < /L < 0.16) to low-amplitude period-1 limit
cycles. Fluid damping is seen to stabilize the motion of the system, and at Re = 200 a
period-14 limit cycle is observed, as well as fully non-periodic motion. Similarly, moderate
structural damping enables period-6 limit cycles, before finally degenerating to chaotic
motion for ¢ < 0.375.

The damping studies demonstrate that the energy of the FSI system is a critical factor
for the stability of low-period limit cycles. This can be extended to the undamped case
by considering how the energy changes as r/L is adjusted. As r/L is reduced from 0.5
to 0, the stable fixed points diverge from ¢ = 0 increasing the effective cross-stream
width of the object. This has the combined effect of decreasing the bluff body shedding
frequency and, crucially, of increasing the mean drag force on the tow point. The tow
point is therefore doing more work on the FSI system, and the total KE must increase
with the decrease in r/L. The system cannot accommodate this energy by increasing its
rotation frequency because this is set from the Strouhal number. Nor can the trajectories
visit ¢ much greater than the stable fixed point because of the extremely large restoring
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force beyond this point (Fig 1b). The only resolution is for the system to dump this
increased energy into infrequent high-energy vortex shedding events. This leads to the
observed period doubling, increased complexity of the wake, ‘snap’ loading, and the onset
of chaos.

New applications such as sensors and energy extraction devices rely on the sensitive
response of the structure to the flow. This work successfully demonstrates that even the
simplest possible nonlinear FSI problem incorporates the full range of sensitive chaotic
responses, and the range of possible dynamics only increases as variations to the Reynolds
number, mass ratio, and cylinder cross-section are considered. As such, it may serve as a
canonical example of nonlinear interactions, suitable for education, detailed analytic and
experimental analysis, and to instigate new passive or minimally-actuated hydrodynamic
sensor and energy extraction designs.
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