The University of Southampton
University of Southampton Institutional Repository

Coupling of the cryosphere and ocean during intervals of rapid climate change in the palaeo record: a multi-proxy study of the Heinrich events of the last glacial from the Northeast Atlantic

Coupling of the cryosphere and ocean during intervals of rapid climate change in the palaeo record: a multi-proxy study of the Heinrich events of the last glacial from the Northeast Atlantic
Coupling of the cryosphere and ocean during intervals of rapid climate change in the palaeo record: a multi-proxy study of the Heinrich events of the last glacial from the Northeast Atlantic
Determining the response of the global thermohaline circulation to freshwater perturbations is of vital importance for future climate modelling efforts. The Heinrich events of the last glacial provide classic case studies, with major episodic inputs of freshwater associated with large numbers of icebergs flooding the North Atlantic Ocean. Climate modelling experiments and proxy reconstructions have both indicated a significant decrease in the strength of the meridional overturning circulation in response to this fresh water input to the ocean during each Heinrich event. Here, I present high resolution, multi-proxy reconstructions of cryospheric and surface and deep ocean behaviour over the last 40,000 years from Ocean Drilling Project (ODP) Site 980 in the northeast Atlantic, incorporating Heinrich events 1 to 4. Oxygen, carbon and neodymium isotope reconstructions of bottom water chemistry show a unique signature at this site for every Heinrich event, indicating the influence of a different water mass during each event. Bulk sediment leachate neodymium isotope values are strongly offset towards more radiogenic values than both planktonic foraminifera and fish debris throughout the Holocene, however, the agreement between the substrates is much closer under glacial conditions. This observed offset is attributed to modification of the leachate signal by fine material transported by strengthened bottom current activity in the Holocene, suggesting that bulk sediment leachates may not always record bottom water chemistry faithfully at sediment drift sites. Rare earth element profiles suggest that foraminifera without their ferromanganese coatings removed do not undergo significant diagenetic modification in the sediment, making these a better choice for reconstructions of bottom water neodymium isotope signatures. Each Heinrich event shows a different sequence of changes in the lithologies of ice-rafted debris, which argues against a simple repeating pattern of ice sheet destabilisation at each Heinrich event. The high degree of spatial variability in IRD patterns between sites in close proximity, however, suggests that surface ocean properties and circulation likely exerted a strong control over the IRD flux records, and hence the phasing of the circum-Atlantic ice sheets cannot be simply deduced from any single sedimentary record. Evidence of perturbation in bottom water properties can be seen prior to the deposition of the main ice-rafted debris layer during some of the Heinrich events at Site 980, suggesting that circulation changes may have played a role in the destabilisation of ice sheets, though the nature of these precursor changes differs between events. These findings show that Heinrich events are not simple, repeating events. Instead, differences in fresh water input and in surface ocean properties and circulation between Heinrich events likely give rise to different patterns of middepth North Atlantic circulation. The observed contrasts in bottom water chemistry at Site 980 between different Heinrich events highlights the sensitivity of the overturning circulation to fresh water inputs and argues against a simplistic model of thermohaline circulation cessation at each Heinrich event.
Crocker, Anya Jane
1215fbdd-ad43-408a-bd79-c54c6847e68c
Crocker, Anya Jane
1215fbdd-ad43-408a-bd79-c54c6847e68c
Palike, Heiko
b9bf7798-ad8c-479b-8487-dd9a30a61fa5

Crocker, Anya Jane (2013) Coupling of the cryosphere and ocean during intervals of rapid climate change in the palaeo record: a multi-proxy study of the Heinrich events of the last glacial from the Northeast Atlantic. University of Southampton, Ocean and Earth Science, Doctoral Thesis, 268pp.

Record type: Thesis (Doctoral)

Abstract

Determining the response of the global thermohaline circulation to freshwater perturbations is of vital importance for future climate modelling efforts. The Heinrich events of the last glacial provide classic case studies, with major episodic inputs of freshwater associated with large numbers of icebergs flooding the North Atlantic Ocean. Climate modelling experiments and proxy reconstructions have both indicated a significant decrease in the strength of the meridional overturning circulation in response to this fresh water input to the ocean during each Heinrich event. Here, I present high resolution, multi-proxy reconstructions of cryospheric and surface and deep ocean behaviour over the last 40,000 years from Ocean Drilling Project (ODP) Site 980 in the northeast Atlantic, incorporating Heinrich events 1 to 4. Oxygen, carbon and neodymium isotope reconstructions of bottom water chemistry show a unique signature at this site for every Heinrich event, indicating the influence of a different water mass during each event. Bulk sediment leachate neodymium isotope values are strongly offset towards more radiogenic values than both planktonic foraminifera and fish debris throughout the Holocene, however, the agreement between the substrates is much closer under glacial conditions. This observed offset is attributed to modification of the leachate signal by fine material transported by strengthened bottom current activity in the Holocene, suggesting that bulk sediment leachates may not always record bottom water chemistry faithfully at sediment drift sites. Rare earth element profiles suggest that foraminifera without their ferromanganese coatings removed do not undergo significant diagenetic modification in the sediment, making these a better choice for reconstructions of bottom water neodymium isotope signatures. Each Heinrich event shows a different sequence of changes in the lithologies of ice-rafted debris, which argues against a simple repeating pattern of ice sheet destabilisation at each Heinrich event. The high degree of spatial variability in IRD patterns between sites in close proximity, however, suggests that surface ocean properties and circulation likely exerted a strong control over the IRD flux records, and hence the phasing of the circum-Atlantic ice sheets cannot be simply deduced from any single sedimentary record. Evidence of perturbation in bottom water properties can be seen prior to the deposition of the main ice-rafted debris layer during some of the Heinrich events at Site 980, suggesting that circulation changes may have played a role in the destabilisation of ice sheets, though the nature of these precursor changes differs between events. These findings show that Heinrich events are not simple, repeating events. Instead, differences in fresh water input and in surface ocean properties and circulation between Heinrich events likely give rise to different patterns of middepth North Atlantic circulation. The observed contrasts in bottom water chemistry at Site 980 between different Heinrich events highlights the sensitivity of the overturning circulation to fresh water inputs and argues against a simplistic model of thermohaline circulation cessation at each Heinrich event.

Text
Crocker_PhD_2013.pdf - Other
Download (22MB)

More information

Published date: August 2013
Organisations: University of Southampton, Paleooceanography & Palaeoclimate

Identifiers

Local EPrints ID: 364163
URI: https://eprints.soton.ac.uk/id/eprint/364163
PURE UUID: f3fdc3b3-db8d-4de2-bdcf-dcf212b18a54

Catalogue record

Date deposited: 07 Apr 2014 13:48
Last modified: 17 Jul 2018 16:31

Export record

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of https://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×