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Abstract

Three-dimensional cutting and packing problems have a range of important applications and are of par-

ticular relevance to the transportation of cargo in the form of container loading problems. Recent years

has seen a marked increase in the number of papers examining a variant of the container loading problem

ranging from largely theoretical to implementations that focus on meeting the many critical real world

constraints. In this paper we review the literature focusing on the solution methodologies employed by

researchers, with the aim of providing insight into some of the critical algorithmic design issues. In addition

we provide an extensive comparison of algorithm performance across the benchmark literature.
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1. Introduction

The three-dimensional (3D) packing problem is a natural generalization of the classical one- and two-

dimensional problems. The most commonly cited application for such problems is the transportation of

goods that may be packed directly into containers or trucks or first packed on pallets. With a few exceptions,

the literature focuses on items contained within three-dimensional boxes. Even with this restriction, it is

clear that the relevance and scope of application is high. Despite its important industrial and commercial

applications, historically, publications on this problem area are relatively few in comparison to its one- and

two-dimensional counterparts. However, recent years has seen rapid growth in research and publications on

this problem, including new research avenues that examine integrating packing with routing and scheduling.

Arranging boxes into a container, truck or pallet is one of the more complex packing problems with

respect to real world constraints. While aiming to produce a packing arrangement that makes the best

use of resources, an underestimate of the number of containers required to transport certain goods may
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be very costly in terms of delay or carrying extra containers that are under-utilized, resulting in wasted

resource. In addition to the box sizes, there is a host of constraints associated with weight distribution,

stacking, stability and support that need to be respected when determining the number of containers.

Further, clients may constrain consignments to be carried together, or delivery vehicles need to unload at

several locations. Bortfeldt and Wäscher (2013) provide a comprehensive review of such constraints.

The aim of this paper is to review the literature on 3D container loading. Here, the term container

loading is used in its broadest sense, in a similar way to Bortfeldt and Wäscher (2013), who recently

provided a review that specifically focuses on the inclusion of authors of various constraints encountered

in practice but gives relatively little attention to the solution approaches. Our paper is a complementary

review to that of Bortfeldt and Wäscher (2013) in that it focuses on the design and implementation of

solution methodologies for solving these problems. We also provide an experimental comparison of different

algorithms on benchmark data sets to identify the state-of-the-art in solution methods in the area. In order

to contain the size of the review, we have excluded pallet loading, irregular objects and do not explicity

review the open dimension problem although some papers addressing this problem are mentioned.

The rest of the paper is structured as follows. The next section provides a detailed description of

the problem types reviewed in the paper, following the typology of Wäscher et al. (2007). Section 3

briefly discusses the constraints met in practice. Sections 4 and 5 discuss specific aspects of the solution

approaches, these are the placement heuristics (how a layout is constructed) and the improvement heuristics

(how to search for better solutions) respectively. Section 6 presents the research that examines the use

of exact methods. Section 7 gives an overview of how the literature is split between different problem

varients. Experimental results, along with benchmark data sets are analyzed in section 8. Conclusions are

given in Section 9.

2. Problem Variants

According to Wäscher et al.(2007), cutting and packing problems can be grouped by dimensionality,

assortment of large items, assortment of small items and the objective. Here we are only concerned with

three dimensional items that are cuboid. We will call the large items containers and the small items boxes.

Boxes may be identical, weakly heterogeneous (many boxes but a few box types) or strongly heterogeneous

(few boxes and many box types). If there is more than one container, these can be identical, weakly or

strongly heterogeneous. They provide the following problem typology.

If the objective is one of input minimization, then the aim is to pack all the boxes in as few containers

as possible. Combining the classes of large and small item assortments gives six unique problems as follows,

• Single Stock-Size Cutting Stock Problem (SSSCSP) if the containers are identical and boxes are
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weakly heterogeneous,

• Single Bin-Size Bin Packing Problem (SBSBBP) if the containers are identical and the boxes are

strongly heterogeneous,

• Multiple Stock-Size Cutting Stock Problem (MSSCSP) if the containers and the boxes are weakly

heterogeneous ,

• Multiple Bin-Size Bin Packing Problem (MBSBPP) if the containers are weakly heterogeneous and

boxes are strongly heterogeneous,

• Residual Cutting Stock Problem (RCSP) if the containers are strongly heterogeneous and boxes are

weakly heterogeneous,

• Residual Bin Packing Problem (RBPP) if the containers and the boxes are strongly heterogeneous,

If the objective is one of output maximization, then the aim is to pack a subset of boxes that give the

highest value into a fixed set of containers. Here there may be a single container or multiple containers.

Seven unique problems can be defined as follows:

• Identical Item Packing Problem (IIPP) if there is a single container and the boxes are identical

• Single Large Object Placement Problem (SLOPP) if there is single container and weakly heteroge-

neous boxes,

• Single Knapsack Problem (SKSP) if there is a single container and the boxes are strongly heteroge-

neous,

• Multiple Identical Large Object Placement Problem (MILOPP) if there are multiple identical con-

tainers and weakly heterogeneous boxes,

• Multiple Heterogeneous Large Object Placement Problem (MHLOPP) if the containers are weakly

or strongly heterogeneous and weakly heterogeneous boxes,

• Multiple Identical Knapsack Problem (MIKSP) if there are multiple identical containers and strongly

heterogeneous boxes,

• Multiple Heterogeneous Knapsack Problem (MHKSP) if the containers are weakly or strongly het-

erogeneous and strongly heterogeneous boxes.

All the above problems assume the containers have fixed dimensions. There is one further case where

two dimensions are fixed and one, either the length or height, is variable. Clearly, this is a single container
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input minimization problem, defined by Wäscher et al.(2007) as the Open Dimension Problem. We do not

explicitly review this problem type here, some example papers are Allen et al. (2011), Bortfeldt and Mack

(2007), Faina (2000), Fujiyoshi et al. (2009), He et al. (2012), Lai et al. (1998), Li and Cheng (1992),

Miyazawa and Wakabayashi (1997, 1999), and Yeung and Tang (2005).

3. Problem Constraints

There are three basic constraints that are fundamental to the problem and observed by all research

papers. These are stated as follows:

• boxes may only be placed with their edges parallel to the walls of the container,

• all boxes must be placed within the container,

• boxes may not intersect each other.

In many cases only solutions that result in the entire base of the box being fully support are acceptable,

others allow a small amount of overhang. In cases where the centre of gravity of a box must be supported,

it is assumed to be at the same position as its geometrical centre.

Beyond these basic constraints are a multitude of practical considerations. These are largely associated

with box orientation, stability, stacking, weight distribution, weight capacity, multi-drop, prioritization

and bearing strength of boxes. These are comprehensively discussed by Bortfeldt and Wäscher (2013),

who divide them into constraints in relation to the container, items, cargo, positioning and load. We only

briefly describe them here.

There are six unique orientations for a box. Many authors allow boxes to freely rotate, for example,

Gehring and Bortfeldt, (1997), Wang et al (2008), Egeblad and Pisinger (2009). Perhaps more realistically

is the case when the vertical orientation is fixed but boxes may rotate horzontally, for example, Heassler

and Talbot (1990), Chien and Deng (2004). While a few papers (Scheithauer, 1992; Morabito and Arenales,

1994) disallow any rotation among boxes.

Load stability is an important consideration in practice, yet is inconsistently dealt with in the literature.

If a load is unstable it can lead to cargo damage and difficulty loading and unloading. Use of straps and

filling gaps with airbags between boxes and between boxes and the container wall is an industry practice,

but costly and less desirable. Load stability is most commonly achieved through guaranteeing full support

for the bottom of the boxes (Gehring and Bortfeldt, 1997). Others relax this constraint and allow partial

support by defining a maximum overhang (Parreño et al., 2008; Parreño et al., 2010). Several papers include

further constraints such as requiring at least one side to be attached to another box. Two measurements

for evaluating cargo stability are proposed by Bischoff and Ratcliff (1995).
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Stacking constraints refer to restrictions on how boxes are placed on top of each other as a result of

the bearing strength of the boxes. Each box has a maximum weight per unit of area it can support that

may vary depending on the box orientation. Also, Bischoff and Ratcliff (1995) argue that the load bearing

strength of a box is primarily provided by its side walls. Therefore, in some cases it would be feasible to

place an identical box directly on the top of the existing box, but damage may be caused if a box half the

size with half the weight is placed centrally on top. Limits on the height a heavy box can be placed in the

container may also be associated with stability.

The weight capacity and how the weight is distributed across the container are both important prac-

tical constraints for shipping and handling the already loaded container. The ideal weight distribution is

measured if a container’s centre of gravity is close to the geometrical mid-point of its floor. An unevenly

distributed weight may cause difficulties for certain handling operations. In the case of loading a vehicle,

the weight on the axels is the critical measure. Further, containers may not exceed a total weight, and in

some scenarios, weight capacity, rather than the limited available loading space, is the binding constraint.

Multi-drop is a situation in which a container will be unloaded in a number of different terminals

(Bischoff and Ratcliff, 1995; Lai et al., 1998; Ren et al., 2011). Boxes with different consignments are

packed separately as an effective strategy to deal with this situation. Therefore, the arrangement of

packing patterns is better to be designed in a way that unloading and re-loading a large part of cargo at

every destination is avoided.

The above mentioned constraints, which have direct impact on the packing patterns, have to be taken

into consideration within the single container heuristic. Eley (2003) defines two other constraints that

impact the distribution of boxes among the different containers. Separation of boxes refers to the situation

that boxes of two different types must be stored in separate containers. In practice, foodstuff and perfumery

articles are required to be transported separately. Complete shipment refers to the situation that shipment

should include all other boxes belonging to a certain sub-set.

4. Placement Heuristics

In any heuristic solution approach, there needs to be a mechanism to decide how to put the boxes in the

container, whether this is simply to generate an initial solution or as an integral part of the approach. Here

we call this the placement heuristic, also commonly known as the construction heuristic. For container

loading there are a wide range of approaches. When the mix of boxes are weakly heterogeneous then the

most common are wall building and layer building, whereas in the strongly heterogeneous case, boxes will

be placed one at a time.

Under wall and layer building schemes, boxes of the same type are arranged in rows or columns to fill

one side or the floor of the empty space. A list of empty spaces is created for all the feasible placement
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positions. Once an empty space accommodates a wall or layer, new spaces are generated. Generally, once

a wall or layer is built, the remaining space is treated as a reduced-sized container. Both approaches mimic

manual packing by attempting to create flat packing faces.

Along with the decision of how to pack the boxes comes the decision of which box type to pack next.

Common approaches include pre-determined ordering and dynamic ordering. The pre-determined ordering

is achieved by employing some sort criteria, such as box volume, number of boxes, base area or a certain

dimension of a box. Dynamic sorting tends to be based on the usable space remaining after the next

placement, volume of remaining boxes of the same type and free floor space.

The following sections discuss the placement heuristics including the sequencing decisions. Many of

these papers may employ improvement strategies in addition, these are discussed in the following section.

4.1. Wall-building

The basic wall-building scheme fills the container with a number of walls across the depth of the

container. While the walls are created sequentially, issues around weight distribution can be dealt with by

swapping, interchanging or taking the mirror image, provided the boxes do not interlock.

The earliest example of wall-building is by George and Robinson (1980). They design a two-section

heuristic based on a real industry example of 800 boxes with no more than 20 types. Given the next empty

space, initially the whole container, they select the first box of each wall so that each wall has a size which

is not too deep or too shallow using the following ranking criteria. First, select the box whose smallest

dimension is the largest among all candidates. In case there is a tie in the first criterion, select the box

type with the highest quantity. If there is still a tie, select the box type with the longest largest dimension.

Once at least one of a certain box type has been packed, that box type is open. Open box types are given

preference where the type with largest quantity has the highest ranking. If the length of unfilled container

is too short, usually below a certain defined amount, the rest packing no longer follows the wall-building

rules.

Based on the George-Robinson framework, Bischoff and Marriott (1990) compare 14 different heuristics,

combined by six ranking rules and three filling methods developed by others, with different ranking criteria.

Without a clear winner, they proposed a hybrid version where all 14 heuristics are executed and compared

to select the best solution.

Moura and Oliveira (2005) adopt the placement heuristic of George and Robinson (1980) with two

modifications. The first modification arises from new space creation. While George and Robinson’s heuris-

tic assumes the width of original space as the width of the new created height space, Moura and Oliveira

(2005) restrict the space to the area above the packed boxes, citing issue with stability in the former ap-

proach. The second modification restricts the width of new wall to be no longer than that of the previous
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wall, resulting in the amalgamation of unpacked spaces into larger more useful spaces and increasing cargo

stability.

Instead of using a fixed sorting criteria, Chien and Wu (1998) and Pisinger (2002) determine the

arrangement of boxes by a tree-search algorithm and use the wall approach first proposed by George and

Robinson (1980). In Pisinger’s (2002) extension of wall building approach, a tree search is designed to find

the set of wall depths and strip widths, which can be either vertically or horizontally oriented, to make

up the wall. Firstly different wall depths are selected at each branching node, followed by the strip width.

Only a fixed number of sub-nodes are considered for each branching node and back tracking is permitted.

Several different wall depths are considered according to a total of 27 ranking criteria at each branching

node.

Bischoff and Ratcliff (1995) consider the container loading with where cargo has multiple destinations.

Their approach packs each consignment in sequence starting with those assigned to the final destination.

Given a consignment, the next box packed and its orientation is selected in order to maximize the remaining

usable space. In the case of a tie, they select the box space combination with the smallest length protrusion.

Two further tie-breakers are to choose the box with largest volume and then to choose the space with

shortest width. Here the wall building strategy sequentially adds individual columns or a container width

instead of complete walls.

Gehring et al. (1990) pack boxes into a single container of known dimensions using a wall-building

approach. The length (thickness) of each wall is decided by the length of the ’Layer Determining Box’

(LDB) which is the first, usually largest, box placed in that wall. Two non-overlapping spaces are generated

in that section once the LDB is placed. The first space stays next to the LDB with the same height. The

second space is above LDB and the first place and is across the container width. Each box is allowed to

stay within a wall rather than project into adjacent walls. Davies and Bischoff (1999) adopt the concept

of LDB for generating a block which consists of a fixed number of walls rather than a single vertical

wall. Boxes are allowed to bridge the adjacent walls but not two separate blocks. The ranking criteria for

selecting box types and orientations are based on Bischoff and Ratcliff (1995). When it is impossible to

place another LDB, the current wall is considered as the last wall and its wall depth is extended to the

end of the container rather than the length of the LDB. Bortfeldt and Gehring (2001) also use the wall

construction heuristic based on LDB as part of a hybrid genetic algorithm.

Bortfeldt and Gehring (1998) and Bortfeldt et al. (2003) construct cuboid configurations of a single

box depth, which are effectively walls. In a 1-arrangement, the cuboid consists of as many of one box type

as can feasibly fit along the width and height. A 2-arrangements places two 1-arrangement cuboids next

to or one on top of the other. All empty spaces are stored in a list, and the space with smallest volume is

always packed first. Two available standards are applied alternatively to evaluate the local arrangements
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within a packing space. The first standard is that the overall volume of the boxes placed in the space

should be maximized. The second standard contains double criteria of smallest possible loss volume and

largest possible maximum effective volume.

Chien and Deng (2004) describe a container packing support system to determine and visualize, in a

step-by-step manner or continuously, the container packing pattern that consists of the packing orientation

of each box and corresponding location within a fixed dimensional container. Boxes are packed into

vertical strips which later are combined into walls. The spatial matrix representation method is adopted

when searching and merging the empty spaces.

4.2. Layer-building

Layer building is also a common placement heuristic, although fewer researchers adopt this approach.

The packing arrangement is constructed by first placing boxes on the bottom of the container to create

the base layer. Once this layer is full, the next layer is constructed on top of the base layer, and so on until

no further layers can be contained within the height of the container. It is important to note that some

paper describe layers that, according to our terminology, are walls.

The approach of Bischoff and Ratcliff (1995) is inspired by pallet loading. Patterns are built from the

container floor upwards in the form of layer building. Each layer contains no more than two different types

of boxes, selecting the box type and orientation according to the utilization of the loading surface on which

a layer is built. Their motivation for this approach was in tackling stability resulting from significant

height differences or gaps exist between adjacent walls of boxes found in other approaches. Lim et al.

(2012) follow the same layer building approach as part of an iterative heuristic that focuses on the issue of

packing awkward box types. A certain boxes packing priority is revised after each iteration to reflect how

“awkward” it was to pack. As a result awkward boxes are packed earlier.

Ratcliff and Bischoff (1998) build on the previous work and design a container loading algorithm which

allows for load bearing constraints. Their heuristic approach iteratively packs layers of boxes one at a time

from the container floor upwards. Each layer contains no more than two rectangular blocks. Boxes in a

single block are of the same types and all have the same orientation. At each step, the algorithm checks

the inequality between the weight of the chosen block and the load limit on the loading surface. Boxes

with a low load bearing ability can not be packed in the early stages of the procedure. Therefore, the

opportunities for future placements on higher layers are examined at each step.

Loh and Nee (1992) propose a layer building construction heuristic. Weakly heterogeneous boxes are

grouped according to height and then groups are sorted tallest to shortest. Within each height group, they

are sorted by descending base area. Boxes are packed starting at the back of the container, in order, in the

first large enough space. Lodi et al. (2002) following a similar sorting strategy, however, group boxes if
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they are within a certain hight tolerance. If the tallest box in the group has height h, then all boxes with

height between h and αh are also members of that group. α is set between 0 and 1. Like Loh and Nee

(1992), boxes are sorted by non-increasing base area within groups. A two dimensional packing heuristic

creates the layer by evaluating and scoring candidate positions. After generating layers that accommodate

all the pieces, they solve a one dimensional bin packing problem to pack layer heights within a finite bin

height. They call the heuristic Height first - Area second (HA) and combine it with tabu search.

4.3. Other placement heuristics

Blocks are homogeneous and each block consists of only identical boxes. Packing container with ho-

mogeneous blocks results in several advantages. First of all, it is easy to arrange and requires less loading

time. Re-sorting cargo is avoided after unloading as boxes of same type are stowed closely to one another.

The constraint of load bearing strength is less problematic when identical boxes are stacked. The block

structure provides extra stability as identical boxes packed in rectangular shape cannot easily slip. Liu

et al. (2011a) develope a hybrid tabu search approach in which both a tabu search and a block-building

heuristic run iteratively. Box types are sorted in decreasing volume to generate the initial solution. Blocks

are made up of the same box type in a configuration to best fit the available space. In some cases another

box type is added to improve the fit. Ren et al. (2011) adopt a block placement strategy to tackle shipment

priority within a single container. They define five block evaluation functions and use a tree search strategy

branching on the best block placement for each evaluation function. Wang et al. (2008) also use a tree

structure to represent the container and branch on the mutually exclusive sub-spaces left after placing a

block of identical boxes. Zhang et al. (2012) propose a block-building heuristic under which multiple types

of boxes can be bound in one single block. A multi-layer search algorithm is designed for block selection.

Lai and Chan (1997) propose the maximal space strategy. Maximal space intervals are the set of largest

cuboid spaces that entirely cover the unpacked volume of the container. Note these spaces may overlap.

After a box is placed, these are generated and stored in a list. Any intervals that are not sufficiently large

to contain a box or that are entirely contained within other space intervals are removed from the list. The

next box is packed in the closest space to the bottom left corner of the container that is large enough

to accommodate the box. Many efficient algorithms adopt the maximal space approach. For example,

Parreño et al. (2008; 2010) design a constructive heuristic that can place columns, rows, walls or layers

of boxes of the same type. The main idea is to identify maximal spaces and then fill them with the best

configuration of identical boxes according to one of two criteria. In each iteration the maximal space with

the minimum distance to a corner of the container is filled where space volume is used to break ties. This

heuristic is combined with GRASP in Parreño et al. (2008) and Variable Neighborhood Search in Parreño

et al. (2010). Other recent papers generating competitive results on benchmark dataset embrace this idea
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(Gonçalves and Resende, 2012; Zhu and Lim, 2012; Zhu et al., 2012b; Araya and Riff, 2014).

Gehring and Bortfeldt (1997) pack boxes into towers or stacks when dealing with strongly heterogeneous

boxes. Towers have a base box directly placed on the container floor. Each of the rest of boxes within that

arrangement is placed on another box in a way that its bottom area is entirely supported from below. A

greedy algorithm is used to minimize the spaces wasted above the base boxes. In the second step, tower

bases are arranged to cover the floor of the container using as a two-dimensional packing problem.

Eley (2002) solves single container loading problem with boxes in block arrangements. The proposed

greedy heuristic sorts boxes by volume in the non-increasing order. Each combination of box orientation

and empty space is investigated by certain criteria, and the most appropriate empty space is chosen for a

box. The main criterion is that after packing a box the sum of the volume of spaces where no remaining

boxes can be packed is minimized. In the case of a tie, preference is given to the empty space closest to the

lower back left corner of the container. The solutions are further improved through considering different

box loading sequences via a tree search where branching is carried out for different box types and box

orientations.

Lim et al. (2003) sort the boxes by evaluating a pairwise priority according to the ratio of volume and

base area. They propose a new construction approach called multi-faced buildup algorithm where boxes

can be placed on any wall in the container as each and every wall can be used as base or floor. Once boxes

are placed on the wall of the container to construct the first base, the other boxes will be placed on top of

these boxes.

Ngoi et al. (1994) avoid the dependency of the layout on the order of the boxes by evaluating every

potential placement location for each box. In order to improve the efficiency of their approach, they use

a spatial representation technique. A single 3D matrix (or the spatial matrix), in the form of layers of

2D matrices is used to represent the positions and dimensions of all the packed boxes and empty spaces.

Chua et al. (1998) and Chien et al. (2009) also use the spatial representation techniques to model the

box packing process and to track both the packed and unpacked space in a single container. Compared to

that of Ngoi et al. (1994), their algorithm allows users to pre-assign positions for certain boxes. Spacial

matrices are also used by Bischoff (2006) who develops a new construction heuristic to specifically consider

load bearing strength. The approach guarantees all boxes are directly placed on the container floor or have

their whole base in direct contact with other boxes. The constructive heuristic packs a single box in each

iteration and uses a scoring system made up of five criteria to choose between placement alternatives. The

available loading surfaces are stored and updated in two matrices, one records the height of surfaces and

the other records their corresponding load bearing ability.

The above packing heuristics model available spaces. Martello et al. (2000) and Crainic et al. (2008)

both follow an alternative strategy of identifying placement points, the former calling it corner points, the
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latter extreme points. These become the candidate placement positions for placing the unpacked boxes.

Consider the packing profile over the 3D surface (if overhang not permitted), these points arise from contact

between the face of two boxes or a box and the container and are located at the point where three edges

coincide to create a fully concave corner. Martello et al. (2000) approach first distributes boxes between

bins before determining the specific position of each box. Each bin is constructed using a tree search where

each node is a partial solution and there is a child node for each feasible corner point for the next box,

where boxes are packed in non-increasing order of volume. Crainic et al. (2008) simultaneously assigns

boxes to containers and packs using the well known best fit decreasing heuristic.

A similar placement strategy is proposed by Huang and He (2009a) and Huang and He (2009b) to pack

boxes into a single container. In their papers they call it caving degree where boxes packed into a corner or

even a cave, an empty hollow-like space surrounded by many boxes, whenever possible. The caving degree

approach stores all available corners into a list and evaluates all combinations of corners, types of boxes

and allowed orientations selecting the best combination of corner, box and orientation based on ranking

rules. He and Huang (2010) suggest a modification to the original approach in the effort of decreasing

the searching space. He and Huang (2011) make further improvement to the modified approach including

adding a local search phase.

Han et al. (1986) construct an L-shape pattern by placing boxes along the base and one vertical edge

of the container. George (1992) designs a heuristic to solve the same problem of identical boxes. The

heuristic runs iteratively and each iteration creates a layer. The reorientation of the container is allowed

and layers can be built against any side wall or even floor rather than only the end wall suggested by

common approaches.

Lins et al. (2002) provide a directed graph representation of a packing arrangement that builds on

a successful application to the two-dimensional case. Three directed graphs are needed to represent the

x, y and z edges of each box within the container. They claim that degeneracy and symmetry lead to a

sufficient reduction in problem size to allow for enumeration. Experimental results are for identical boxes

with six orientations and a largest problem size of 394 boxes.

Clearly there are many diverse ways of creating arrangements of boxes to load a container in terms of

placement rules and static and dynamic ordering. While there is no definitive answer as to the best ap-

proach, sorting by volume is a very common characteristic. Chien and Wu (1999) proposed the integration

of space allocation and ranking in a decision support system, although did not provide any experimental

evidence.
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4.4. Sequencing

Sequencing refers to the ordering of the boxes and can be critical to the effectiveness of the packing

heuristic. Modifications to the placement heuristics often involve altering the box sequence. Here we

summarize the most common box sequences described in the literature. We categorize sequences into

two groups: static and dynamic. Static sequencing refers to fixed ranking of boxes or box types before

packing takes place. Dynamic sequencing refers to the criteria that decides the next box or space to be

packed during the packing process. Twelve static sequencing rules and five dynamic sequencing rules are

identified through the review. Table 1 provides a tabulated listing of the sequences found in the literature.

The primary ranking criteria for a particular paper is stated as 1, and the first and second tie breaking

criteria are indicated as 2, 3, and onwards. It is worth to mention there are two slight exceptions. In Xue

and Lai (1997), three criteria are picked and all combinations with a third-tier tie are tried . There is no

clear winner of 6 combinations. Among Crainic et al.’s (2008) proposed sequencing rules, two combinations

generating best results are remained in the table. However, the first priority of both combinations is slightly

different from the ones we defined in this paper. Take the first combination, clustered area and height, as

an example. Clustered area means separating base areas into clusters defined by certain intervals. Boxes

are then assigned to clusters according to their base areas. Clusters are ordered by certain rule, and boxes

within the same cluster are ordered by height.
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5. Improvement Heuristics

While the placement heuristics will provide a fast, and in many cases reasonable quality, solution,

broadening the search space using an improvement heuristic can usually provide a significant gain. In

general, these work with one or more complete solutions and make neighborhood moves to find better

solutions. These vary in sophistication from simple neighborhood structures and acceptance criteria that

only accept improving moves, to complex and varying neighborhoods and acceptance criteria that can

find many local optima including many implementations of the standard metaheuristics. In this section

we review how these techniques have been employed for 3D container loading and how they build on the

placement heuristics described in the previous section.

Many of the placement heuristics are dependant on a sorted order, or permutation, of boxes. This

representation is often used in a Genetic Algorithm (GA) implementation. Its popularity may be due to

the many genetic operators designed to deal with permutation representations in the GA literature.

One of the earliest examples is Hemminki (1994) who uses a GA to determine the widths of the walls.

Each chromosome consists of a string of integers. Each integer indicates the packing strategy used in

corresponding wall, and all these walls are combined into a whole container. Parent chromosomes are

selected randomly and the selection chance of each chromosome is directly linked to its fitness. Crossover

or mutation is applied to two parents in order to generate two child chromosomes. Best combinations of

walls will be decided through the evolving process of the generations.

The GA of Gehring and Bortfeldt (1997) solves a two-dimensional subproblem. As discussed earlier,

boxes are arranged into towers. The tower bases form the two-dimensional packing problem. A chromosome

represents the solution by a placement vector, which indicates the sequence of the placements of the tower

bases and the two possible orientations of each tower base. Each chromosome is transformed into a solution

by identifying an order list of placement corners and placing the boxes in the first feasible placement corner.

The population are ranked according to fitness value and the ranking provides the selection probabilities.

Since the chromosomes in this cases are permutations of tower bases, a permutation preserving operators

are applied to generate descendants representing feasible solutions. Crossover and mutation are alternated

randomly. A similar framework for the GA is implemented by Bortfeldt and Gehring (2001). However, in

this work the GA is representing layers (walls) of boxes that are constructed using a basic heuristic based

on the LDB. The basic heuristic is used to generate starting solutions and new layers for offspring via

crossover and mutation. The chromosome with the best stowage plan finally undergoes resequencing of the

layers in order to determine the best weight distribution. Gehring and Bortfeldt (2002) try to improve the

solution quality through the application of a parallel genetic algorithm. The new model is implemented in

a local PC network and each GA instance is assigned to a separate workstation.
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Wu et al. (2010) propose two different approaches to load boxes into a single bin. The second approach

is a genetic algorithm. Each bit of the chromosome has two parts, the box and its rotation angle numbered

from one to six. Initially all the GA chromosome encode the boxes in non-increasing volume order with a

randomly assigned rotation. Reproduction uses roulette wheel selection, a one point crossover with repair

mechanisms and a mutation that randomly swaps boxes or changes rotations. The best solution is copied

to the next generation.

Gonçalves and Resende (2012, 2013) also use a permutation structure but avoid the need to correct

descendent chromosomes by using a biased random key strategy. The strategy considers a permutation of

boxes and randomly assign a real number to each box. Sorting the boxes by the random number provides

a new permutations. The biased random key approach applies the genetic operator to the random keys

rather than the boxes, hence ensuring any offspring is feasible. Their implementation doubles the length

of the chromosome to include a placement heuristic for each box.

Dereli and Das (2011) propose an alternative population heuristic that has many similarities to GA but

is inspired by foraging behavior of honey bees. The bees algorithm works with a population of solutions

and evaluates their fitness, where promising solutions are selected and undergo a neighborhood search

phase. The best solutions and some newly generated solution go on to the next population. Layouts are

constructed using LDB placement heuristic hence the focus of the search algorithm is to find the alternative

widths of layers for a better overall performance through enabling or disabling the rotation of the boxes.

Tabu Search (TS) is one of the most popular metaheuristics in combinatorial optimisation and this is

also reflected in how often it has been adopted in 3D packing. Bortfeldt and Gehring (1998)and Bortfeldt

et al. (2003) employ tabu search in combination with their wall building heuristic for loading a weakly

heterogeneous boxes into a single container. A complete solution is first generated through a basic heuristic.

The tabu search algorithm operates on the encoded problem in the form of a packing sequence and fillable

packing spaces. Neighborhood moves involve deviating from the fillable space order. The tabu list holds

the complete packing sequence of the selected neighbor. Parallelization of the tabu search algorithm is

later applied to improve the solution quality (Bortfeldt et al., 2003). The general approach in these papers

is built on by Mack et al., (2004), who apply a simulated annealing (SA) algorithm as an alternative to the

TS while maintaining the basic heuristic. SA is later combined with TS to form a hybrid search system.

Efforts are taken to integrate the advantages of both meta-heuristics and avoid their weakness. Therefore,

SA is pre-processed to determine a good starting solution for one or more TS iterations. The parallelization

of SA and the hybrid search is introduced in the end.

Liu et al. (2011) also perform a search over the assignment of boxes to spaces. Instead of altering the

free space assigned to a box, the search alters the box packing order using a swap neighborhood. The tabu

list length varies with the size of the problem.
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An intuitive way to combine TS and a placement heuristic when solving the multi-container problem is

to use the TS to assign boxes to containers and then use the placement heuristic to determine the layout

within the container. This is the approach of Jin et al. (2003), who design several neighborhood moves

with the aim of eliminating a target bin. Crainic et al. (2009) suggest a two-level tabu search. The

first-level tabu search, similar to Jin et al. (2003), focuses on assigning boxes to bins without deciding

their placement. The neighborhood focuses on changing bin assignment through swapping and reassigning

boxes between containers. The second-level tabu search works to arrange the boxes in each container using

an extreme point construction heuristic and searching over the interval graph proposed by Fekete and

Schepers (1997, 2004). Each pair of boxes in the same bin will follow a certain approach to form seven

feasible combinations.

Instead of assigning boxes to containers Lodi et al. (2002) use tabu search to assign boxes to two

dimensional layers. Their unified tabu search approach has been successfully applied in two dimensional

bin packing. The tabu search governs the boxes in each layer and attempts to reduce the total number

of layers. The neighborhood moves are designed to empty a specific target layer that is considered the

weakest or most empty. A single box from the target is combined with all boxes in k other bins. The

neighborhood includes different values of k as well as different boxes from the target layer. The tabu list

holds move penalties determined by the outcome of the move.

Guided local search (GLS) has many similarities to TS in terms of using memory to guide the search.

Farøe et al. (2003) tackle the SBSBBP using guided local search (GLS). The paper is novel in that it

permits overlap between boxes within the containers. Given a fixed number of containers, the aim is to

find a feasible arrangement of boxes, once found, one container is eliminated and the boxes are distributed

over the remaining containers and the search begins again. A neighborhood move arises from moving a

single box along one coordinate axes within a single container or moving a box to the same co-ordinate

position in another container. Features that guide the local search away from local optima are defined

by the volume of overlap between box i and box j and the total volume of i and j. Due to the large

neighborhood, fast local search is used to find local minima.

Apart from Mack et al. (2004), SA has not been a common choice of meta-heuristic. Further examples

are Lai and Chan (1997) and Faina (2000), both examine the open dimension problem. In the case of

Lai and Chan (1997), neighborhood moves arise from swapping two boxes in the packing order and the

search is governed by a fairly standard cooling schedule. Results are reported for the 2D problem but not

the 3D problem. Faina (2000) also performs neighborhood moves over the sequence of the boxes. A clear

disadvantage to this approach is the computational cost of reconstructing solutions after a move. Faina

(2000) reports that beyond 64 boxes the computational effort of improving the solution is unfavorable.

While GA, TS and SA are the classic trio of meta-heuristics, Greedy Randomized Adaptive Search
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Procedure (GRASP) and Variable Neighborhood Search (VNS), are popular predecessors. GRASP is

designed to use a greedy solution construction heuristic and perturb characteristics of the construction

process by making selections randomly from a restricted candidate list rather than the most greedy choice.

Hence, it has clear advantages for combining with a placement heuristic for container loading.

Lai et al. (1998) consider the open dimension problem where boxes are grouped into collections of

customer orders and packed as separate sub-lengths of the container. Hence they argue that they can

solved each subproblem of minimizing the packing length of each customer order. They model the problem

as a graph and show that the optimal soluton is when the maximum clique is equal to the number of the

boxes. They solve the maximum clique problem exactly and the maximal clique problem using GRASP.

Moura and Oliveira (2005) sort the available box types by the volume utilization given the next empty

space. The basic greedy strategy chooses the first box type. Under GRASP, they select a random box from

a candidate list of the best candidates controlled by a threshold parameter set between zero and one. When

set to one the selection is purely random and when set to zero it is purely greedy. The constructed solution

is then improved by a first found improve local-search where the neighborhood unpacks the tail of the

sequence then repacks greedily forbidding the first box in the tail to be returned to its previous position. A

similar implementation of GRASP is used by Parreño et al. (2008) and combined with the maximal-space

placement heuristic. This time candidates join the restricted list according to rank (i.e. being in the top

100a%, where the parameter a is between zero and one) rather than meeting a quality threshold. Initially,

a is randomly chosen from a set of possible values. As the search progresses probabilities are attached to

each possible value according to its past success.

Following the successful implementation of GRASP, the same authors combine their maximal-space

heuristic with VNS algorithm (Parreño et al., 2010). The authors propose five types of neighborhood move

for the descent phase of the VNS and an additional neighborhood move for the shaking phase. These are

layer reduction that removes rows or columns from a layer and attempts to fill the empty space with other

boxes, column insertion adds a new column in one of the empty spaces, box insertion is similar to column

insertion but only adds a single new box, and the last two moves are to empty an already packed region

and to fill it using best-volume for one neighborhood and best-fit for the other. The shaking neighborhood

eliminates between 10% and 30% of the boxes in the current solution and refilling with the best-volume

criterion.

While the meta-heuristic approaches described above seek to be less greedy or at least include phases

that allow a more diverse search of the solution space, other authors simply perform a greedy local search

many times. For example Takahara (2006, 2008) perform local search over the permutation of pieces and

piece orientation via swap moves. Multiple starting solutions provide a broader search of the solution

space. Another approach is to make the greedy choice after looking ahead a few steps, thus reducing
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the short-term focus of the decision. Zhu and Lim (2012) describe a look-ahead tree search that decides

the next placement on the basis of the best node of an expanded tree of depth d where the m best child

nodes are expanded at each node. A predecessor of this paper, Eley (2002) uses a restricted tree search

to construct a solution. The tree is searched breadth first and a limit is imposed on the number of child

nodes explored. In addition, to avoid a dominant solution path, if two nodes at the same depth have the

same evaluation function and the item is packed, then one of the nodes is removed. They call the tree

search the pilot method.

6. Exact Methods

Compared to the number of heuristics available, the number of exact algorithms in 3D container loading

are limited. One reason behind this limitation is the difficulty in representing possible patterns or practical

packing constraints. Even if this can be done (and we provide pointers to the literature below where it is),

another difficulty is the solution of the resulting formulation, which is often large-scale due to the number

of containers and boxes. Nevertheless, encouraging progress has been made along this line of research for

which a review is presented below.

Mohanty et al. (1994) describe an algorithm for the (3D) BPP, where the aim is to pack boxes of different

types, each with a prespecified number, length, width and height, into a set of containers of different sizes,

with the objective of maximizing the total value of packed boxes. The problem is originally formulated as

a multidimensional knapsack problem, including an integer variable that is defined with respect to each

container type packed with respect to a given pattern. As the number of such patterns is excessively large,

the complexity of solving the formulation to optimality is a challenge. For this reason, the authors describe

a column generation procedure where the pricing problem involves solving an integer program, in the form

of a general fractional knapsack problem with side constraints, which itself is difficult to solve. Instead, the

authors propose heuristics to solve it. Although the overall solution approach is heuristic in nature, it is

interesting that elements of exact solution methods (i.e., mathematical formulations) are integrated within

the approach. In a relevant study, Eley (2003) looks at a similar problem setting, possibly with some side

constraints, and an objective function that minimizes the number of bins used using a two-stage column

generation algorithm. In the first stage, a limited number of patterns (columns) are generated a priori

using a heuristic, which are then fed into an integer program that is solved to optimality in the second

stage. The algorithm has the advantage of being able to incorporate a number of practical constraints,

such as box orientation or load stability. The computational results that the author presents on benchmark

problems suggests that the integer program does not require more than five seconds of solution time, and

the algorithm itself outperforms those by Ivancic et al. (1989) and Bortfeldt (2000).
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Given the success of column generation, it is not surprising to see that Zhu et al. (2012a) have also

described a similar algorithm for the Multiple Bin-Size BPP, where the aim is to minimize the cost of

containers used. The problem also incorporates some side constraints, namely full-support and partial-

support for boxes and that all boxes are packed orthogonally. The pricing problem here is a single container

loading problem. Instead of generating the actual columns, which is costly, the authors instead resort to

a strategy where a reasonable approximation of the columns, named prototype columns, are generated.

Compared with the algorithm of Che et al. (2011a), the proposed method finds solutions that improve the

average gap from the optimal solutions by about 50%.

An alternative approach to mathematical models where variables are defined with respect to each

possible pattern (or packing) has been to use formulations where variables are defined with respect to

placement of individual items. Such an approach avoids the problem of dealing with a large set of patterns,

and instead relies on a discretization of the container space and an explicit representation of decisions on

whether items are placed in certain coordinates or not. Chen et al. (1995) present such a model in the

form of a mixed integer linear programming formulation for the general 3D container loading problem, with

an objective to minimize the unused space of the containers used. The model is used to solve a sample

instance of three heterogeneous containers and six boxes using LINGO, with a solution time of 15 minutes.

The authors also report results on another sample instances with a single container and six boxes, this

time to minimize the required length of the container. A polyhedral study of an improved version of this

formulation is presented by Padberg (2000). The study provides some facet results and valid inequalities,

with the recommendation that they are used within a branch-and-cut algorithm to solve the problem. Allen

et al. (2012) provide empirical evidence that the computational reach of this formulation is only about 20

boxes using modern solvers. The authors present an alternative formulation that is based on space-index

variables, which has better performance than that of the Chen et al. (1995) and Padberg (2000), both

with respect to the size of the instance and the computational time required to solve to optimality. Wu et

al. (2010)builds on the work of Chen et al. (1995) for the open dimension problem.

For a mixed integer programming formulation of the BPP with identical bins, see Hifi et al. (2010),

who also present some valid inequalities and computational results. Another model based on the Carte-

sian coordinate system is presented by Junqueira et al. (2012a) for the 3D container loading problem,

where constraints representing vertical and horizontal stability and load bearing strength of the boxes are

explicitly represented in the formulation. Computational results presented by the authors show that by

using CPLEX 11.0 with default parameters, the formulation is able to solve randomly generated instances

with four types and up to 20 boxes, and between 10 and 100 containers, in most cases to optimality. The

difficulty of finding an optimal solution increases with the number containers as well as with the similarity

of dimensions of the boxes. An extension of this model to the variation of the problem with multi-drop
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constraints is presented in Junqueira et al. (2012b).

Lim et al. (2013) present a heuristic algorithm for a problem named the single container 3D load-

ing problem with axle-weight constraints, which arises due to the weight restriction for trucks which carry

containers when they are offloaded from ships. This additional restriction introduces nonlinearities in a pos-

sible mathematical programming formulation of the problem. The authors describe a heuristic procedure,

but make use of integer linear programming formulations, either mixed or binary, within the algorithm to

improve the packing.

Finally, we mention the work by Hifi (2002) presents approximation algorithms for container loading

problem. The algorithms are based on the idea of solving a series of knapsack problems to form stacks,

and then putting the stacks into the container by solving unbounded knapsack problem.

7. Implementation by Problem Type

In this section we categorise the papers according to the problem types they address. Bortfeldt and

Wäscher (2013) provide a useful table that identifies each paper by its problem type. Here we go further

and identify the features of the methodologies employed for each of these problems.

7.1. Single Container Loading

Among the papers we have reviewed, twenty-five tackle SLOPP. The type and sophistication of the

methodologies vary greatly. Thirteen of the paper only employ a placement heuristic, and of these thirteen

seven use a static ranking and a placement criteria (Bischoff and Marriott, 1990; Chien and Deng, 2004;

Chien et al., 2009; Christensen and Rousøe, 2009; George and Robinson, 1980; Loh and Nee, 1992; Ren

et al., 2011). The remaining six use dynamic selection of the next box or space (Bischoff and Ratcliff,

1995; Davies and Bischoff, 1999; Ratcliff and Bischoff, 1998; Wang et al., 2008), or a tree search to make

the exploration less greedy (Lins et al., 2002; Morabito and Arenales, 1994). Eleven papers augment

the placement heuristic with an improvement heuristic, or design an improvement heuristic that directly

tackles the problem. Of these two use genetic algorithm (Gonçalves and Resende, 2012; Kang et al., 2012),

three use tabu search (Bortfeldt et al., 2003; Liu et al., 2012a; Mack et al., 2004) and one uses simulated

annealing (Mack et al., 2004), with the rest adopting various local search techniques (Bischoff, 2006; Burke

et al., 2012; Eley, 2002; Hifi, 2002; Moura and Oliveira, 2005; Parreño et al., 2008, 2010). Finally Junqueira

et al. (2012b) is the only paper we reviewed that developes exact methods for SLOPP.

Thirty-three papers aim to solve SKP. The methodologies differ largely in terms of type and sophis-

tication. Ten of the paper only employ a placement heuristic, and of these ten five use a static ranking

and a placement criteria (Chien and Wu, 1999; Gehring et al., 1990; Haessler and Talbot, 1990; Lim et

al., 2003; Liu et al., 2011b). The remaining five use dynamic selection of the next box or space (Burke
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et al., 2012; Lim and Zhang, 2005; Ngoi et al., 1994; Scheithauer, 1992), or a tree search to make the

exploration less greedy (Chien and Wu, 1998). Nineteen papers augment the placement heuristic with an

improvement heuristic, or design an improvement heuristic that directly tackles the problem. Of these

nineteen eight use genetic algorithm (Bortfeldt and Gehring, 2001; Gehring and Bortfeldt, 1997, 2002;

Gonçalves and Resende, 2012; Hasni and Sabri, 2013; Liang et al., 2007; Lin et al., 1993; Yeh et al., 2003),

one uses tabu search (Liu et al., 2011a) and one uses simulated annealing (Egeblad and Pisinger, 2009),

with the rest adopting various local search techniques (Fanslau and Bortfeldt, 2010; He and Huang, 2011,

2012; Huang and He, 2009a, 2009b; Lim et al., 2005; Parreño et al., 2008, 2010; Pisinger, 2002). Finally

the following four papers develope exact methods for SKP, Fekete et al. (2007), Junqueira et al. (2012a,

2012b), Padberg (2002).

7.2. The Multiple Container Packing Problem

To load multiple containers, three strategies are usually suggested: sequential strategy, pre-assignment

strategy and simultaneous strategy (Eley, 2003). Under a sequential strategy (de Castro Silva et al.,

2003; Thapatsuwan et al., 2012; Wu et al., 2010; Xue and Lai, 1997), containers are filled one after the

other. A new container is opened once the current containers can not store any of the available boxes.

However, one of the disadvantage of this strategy is that containers filled last are at risk of poor volume

utilization ratios since large or awkwardly formed boxes are often left to the end. The pre-assignment

strategy first distributes boxes among different containers. No actual packing occurs at the distribution

stage. A heuristic is then applied to load assigned boxes into each container. Boxes not be packed in their

designated containers are re-packed to other containers under additional mechanisms. Jin et al. (2003) is

a typical example of adopting this strategy. The simultaneous strategy adopted by Chen et al. (1995), de

Almeida and Figueiredo (2010), and Soak et al. (2008) attempts to assign and pack boxes into more than

one container at a time. It is surprising to learn that the sequential strategy outperformed the simultaneous

strategy in Eley’s 2002 approach. A few exceptions are Che et al. (2011a), Crainic et al. (2009) and Farøe

et al. (2003) who all apply mixed strategies. Che et al. (2011a) firstly pack boxes into packing patterns and

then load one container at a time based on these patterns. Crainic et al. (2009) build initial solution under

a sequential strategy but apply improvement phase using pre-assignment strategy. Farøe et al. (2003)

construct an initial solution by firstly generating a number of walls before combining them into whole bins.

Seven papers address SSSCSP. Among them, Bischoff and Ratcliff (1995) and Ivancic et al. (1989)

only propose placement heuristic, while Che et al. (2011a, 2011b), Eley (2002) and Kang et al. (2010)

design improvement heuristic. Sciomachen and Tanfani (2007) is an exceptional paper which determines

container stowage plans in a ship by comparing its own problem to SSSCSP in 3D packing. We reviewed

fourteen SBSBPP papers. Most paper in this category only focus on the construction of placement heuristic
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(Amossen and Pisinger, 2010; Burke et al., 2012; Crainic et al., 2008; de Castro Silva et al., 2003; Epstein

and Levy, 2010; Lim and Zhang, 2005; Martello et al., 2000; Miyazawa and Wakabayashi, 2009). Among

those proposed improvement heuristic, tabu search is surprisingly chosen by most papers (Crainic et al.,

2009; Jin et al., 2003; Lodi et al., 2002, 2004), while Farøe et al. (2003) propose a guided local search. Hifi et

al. (2010) is the only paper to use exact methods although these are embedded within a broader heuristic,

while Boschetti (2004) suggests a new lower bound. Among MSSCSP papers, Ivancic et al. (1989) only

give a placement heuristic while others (Brunetta and Gregoire, 2005; Che et al., 2011a, 2011b; Eley, 2003)

all design improvement heuristic. All four MBSBPP papers (Brunetta and Gregoire, 2005; Ceschia and

Schaerf, 2011; de Almeida and Figueiredo, 2010; Jin et al., 2003) contain improvement heuristic. Chen

et al. (1995) claim their paper can solve all problem types including RCSP. However, no algorithm is

proposed to tackle specifically RCSP. Two papers (de Almeida and Figueiredo, 2010; Jin et al., 2003) in

our collection solve RBPP. Similar to RCSP, Hifi’s (2002) algorithm is capable of solving MILOPP but

it is a problem type remaining almost untackled. MIKP is the third problem type remaining unexplored.

Eley (2003) and Mohanty et al. (1994) are the only two papers we found solving MHLOPP. The paper of

Ceschia and Schaerf (2011) also solves MHKP.

8. Experimental Results

One aim of this paper is to provide a comparison of the various algorithms described above based on

their performance on benchmark data sets, in an attempt to identify the state-of-the-art algorithms for this

class of problems. To our knowledge, five classes of benchmark data sets exist for 3D loading problems.

These are:

1. Ivancic et al. (1989): This data set contains 47 instances of weakly heterogeneous boxes. Only one

container size is assigned to each instance, but different container sizes are assigned across different

instances. The number of containers should be kept as small as possible as is typical in the Single

Stock-Size Cutting Stock Problem (SSSCSP).

2. Loh and Nee (1992): This data set contains weakly heterogeneous boxes and a single container in

each of its 15 problem instances. Boxes may be left over if the single container is full. This dataset

is designed for the Single Large Object Placement Problem (SLOPP).

3. Bischoff and Ratcliff (1995): This set is for the Single Large Object Placement Problem (SLOPP)

which packs weakly heterogeneous boxes into a single container. There are seven classes in total with

each class including 100 instances.

4. Davies and Bischoff (1999): This set pertains to the Single Knapsack Problem (SKP) which packs

strongly heterogeneous boxes into a single container. There are eight classes in total with each class

22

Page 22 of 39International Transactions in Operational Research



including 100 problem instances. This set is usually merged with Bischoff and Ratcliff (1995) to

become a so-called BR1-15 dataset.

5. Martello et al. (2002): This set is for a typical Single Bin-Size Bin Packing Problem (SBSBPP) which

packs strongly heterogeneous boxes into a minimum number of identical containers. There are eight

classes of problem that are randomly generated according to certain parameters, but the second and

the third classes are not included in the result tables due to their similarity to the first class.

In the rest of the section we provide comparisons of all algorithms published in papers listed in Table 2,

which also presents the running environment of each algorithm. Then, we present comparison results for

each data set. In particular, Table 3 is for the data set by Ivancic et al. (1989) and Table 4 is for the data

set by Loh and Nee (1992). Tables 5 and 6 jointly present the data sets by Bischoff and Ratcliff (1995) and

Davies and Bischoff (1999). Finally, Table 7 presents the comparison results for the instances by Martello

et al. (2002).

Table 2 lists all the papers whose algorithms we compare in this section. Papers are listed by year of

publication and we assign a code that contains the first letter of the author’s name and year of publication.

In cases where more than one method is presented in the same paper, extra letters, usually short for the

methods (and often assigned by the authors themselves), are added to the end. For example, two methods

are presented in Lodi et al. (2002). We therefore include both methods in the table under names of

L2002-HA and L2002-TS. Some authors present two sets of results, one that takes account of box stability

(S), and another where stability is ignored (U). In these cases we add letter S for when box stability is

included, and letter U when it is not. An example would be Fanslau and Bortfeldt (2010) as we differentiate

them as FB2010S and FB2010U. Gehring and Bortfeldt (1997), as well as Bortfeldt and Gehring (1998),

re-ran their algorithm after the publication of their original papers using a more powerful PC. In this case

the new codes GB1997N and BG1998N are assigned. The last two algorithms are separated in the table

because they are lower bound generators. In Table 3 the number of box types and total number of boxes

are provided for each of the 47 instances. For the 13 methods compared, results are presented in term

of the number of containers used. In some cases average running times are reported. A lower bound is

also presented in the last column of the table. Table 4 contains 15 problem instances and the number of

boxes is given for each instance. Overall, the results of 17 algorithms are presented. While 16 results are

shown by the percentage utilisation rate in the columns of U%, the original Loh and Nee (1992) paper uses

packing density (D%) to present their results. Instead of using the original three container dimensions,

the maximum used container dimensions are chosen. The number of boxes leftover (BL), running time in

seconds indicated as rt(s) and stopping time in seconds are presented for each method, if they are reported

by the original authors. Data set Bischoff and Ratcliff (1995) (reported as BR1-7) and Davies and Bischoff
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(1999) (generally reported as BR8-15) are combined making it a total of 15 data sets, namely BR1-15.

Tables 5 only includes those results taking stability into consideration while Tables 6 consists of results

without taking stability into account. Numbers of box types are given to each class for both tables. The

results are presented as percentage utilisation. Running times and stopping time are also presented if they

are available. It is worth pointing out that in Table 5 although all algorithms attempt to take stability

into account, the levels of stability are still different and difficult to identify. While some algorithm have

the base of all boxes fully supported, others permit a certain percentage of the base to be supported.

Therefore, inferior results don’t necessarily mean the algorithm is less competitive. Bin dimension and

number of items are presented for each class in Table 7. Results are in the form of the number of bins used,

and stopping time is presented if available. A lower bound is also presented in the last column of this table.

All tables show clear improvements on results along the time. Partly benefiting from the development of

computer technology, it proves that more competitive algorithms are being developed through all these

years.
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Year Paper Code Running Environment

1989 Ivancic et al., 1989 IMM1989 IBM PC System 2, model 50

1990 Bischoff and Marriott, 1990 BM1990 (not stated)

1992 Loh and Nee, 1992 LN1992 HP9000 Series 300 workstation with the CPU rated at 5 MIPS

1994 Ngoi et al., 1994 N1994 80386 processor with 33 MHz clock speed

1995 Bischoff and Ratcliff, 1995 BR1995a (not stated)

1995 Bischoff and Ratcliff, 1995 BR1995b (not stated)

1995 Bischoff and Ratcliff, 1995 BR1995C (not stated)

1997 Gehring and Bortfeldt, 1997 GB1997 Pentium/130 MHz PC

1997 Gehring and Bortfeldt, 1997 GB1997N Pentium PC with a frequency of 400 MHz

1998 Bortfeldt and Gehring, 1998 BG1998 Pentium PC with a frequency of 200 MHz

1998 Bortfeldt and Gehring, 1998 BG1998N Pentium PC with a frequency of 400 MHz

1998 Chua et al., 1998 C1998 DOS platform; IBM PC

2000 Bortfeldt, 2000 B2000 Pentium PC (200 MHz)

2000 Martello et al., 2000 MPV2000 HP9000/C160 160 MHz

2000 Martello et al., 2000 MPV2000-BS HP9000/C160 160 MHz

2000 Martello et al., 2000 MPV2000-SPack HP9000/C160 160 MHz

2001 Bortfeldt and Gehring, 2001 BG2001 Pentium PC with a frequency of 400 MHz

2002 Eley, 2002 E2002-seq Pentium C with 200 MHz clock and 32MB memory

2002 Eley, 2002 E2002-sim Pentium C with 200 MHz clock and 32MB memory

2002 Eley, 2002 E2002 Pentium C with 200 MHz clock and 32MB memory

2002 Gehring and Bortfeldt, 2002 GB2002 slave on Pentium PC, 400 MHz; master on 486 PC, 33 MHz

2002 Lodi et al., 2002 L2002-HA Digital 500 workstation with a 500 MHz CPU

2002 Lodi et al., 2002 L2002-TS Digital Alpha 533MHz

2003 Bortfeldt et al., 2003 B2003 Pentium with a frequency of 2 GHz

2003 Bortfeldt et al., 2003 B2003PS Pentium with a frequency of 2 GHz

2003 Eley, 2003 E2003 Petium II PC with a 266 MHz clock and 192MB memory

2003 Farøe et al., 2003 F2003 Digital 500 workstation with a 500 MHz CPU

2003 Lim et al., 2003 L2003 alpha 600 MHz machine

2004 Mack et al., 2004 M2004 several Intel Pentium computers with a frequency of 2GHz combined in a LAN

2005 Lim et al., 2005 L2005 (not stated)

2005 Lim and Zhang, 2005 LZ2005 2.40 GHz Pentium 4 PC with 128 MB memory limit

2005 Moura and Oliveira, 2005 MO2005 Pentium IV at 2.4GHz with 480Mb RAM

2006 Bischoff, 2006 B2006 1.7 GHz Pentium 4 computer with 256 Mb of RAM

2006 Takahara, 2006 T2006 Pentium4 PC with 2.8GHz and 1GB memory

2008 Takahara, 2008 T2008 Xeon PC with 3.0GHz and 3GB memory

2008 Parreño et al., 2008 P2008 Pentium Mobile at 1,500MHz with 512MB RAM

2008 Wang et al., 2008 W2008 Pentium PC

2008 Crainic et al., 2008 C2008 Pentium4 2000 MHz CPU

2009 Crainic et al., 2009 C2009 Pentium4 2000 Mhz CPU

2010 Fanslau and Bortfeldt, 2010 FB2010S AMD Athlon processor (64 FX60, 2.6GHz) with 2,048MB RAM

2010 Fanslau and Bortfeldt, 2010 FB2010U AMD Athlon processor (64 FX60, 2.6GHz) with 2,048MB RAM

2010 He and Huang, 2010 HH2010 Intel(R) Xeon(R) 2.33 GHz and 1 GB RAM

2010 Parreño et al., 2010 P2010 Pentium Mobile @ 1,500MHz with 512MB RAM

2011 Che et al., 2011a C2011 Intel Xeon E5430 CPU @ 2.66 GHz, 8GB RAM

2011 Dereli and Das, 2011 DD2011 (not stated)

2011 He and Huang, 2011 HH2011 Intel(R) Xeon(R) 2.33 GHz

2011 Liu et al., 2011a L2011 Intel Centrino Duo CPU 1.66GHz and RAM 1GB

2011 Ren et al., 2011 R2011 Intel Core 2 U9300 PC (1.2GHz, 2GB RAM)

2012 Gonçalves and Resende, 2012 GR2012S AMD 2.2 GHz Opteron 6-core CPU

2012 Gonçalves and Resende, 2012 GR2012U AMD 2.2 GHz Opteron 6-core CPU

2012 Lim et al., 2012 L2012 2.40GHz Pentium 4 pc with 512MB memory limit

2012 Zhang et al., 2012 Z2012S Intel(R) Xeon(R) X5460 @ 3.16GHz

2012 Zhang et al., 2012 Z2012U Intel(R) Xeon(R) X5460 @ 3.16GHz

2012 Zhu and Lim, 2012 ZL2012S Intel Xeon E5520 Quad-Core CPUs @ 2.27GHz with 8G RAM

2012 Zhu and Lim, 2012 ZL2012U Intel Xeon E5520 Quad-Core CPUs @ 2.27GHz with 8G RAM

2012 Zhu et al., 2012a ZE2012aS Intel Xeon E5520 CPU @ 2.26GHz, 8GB RAM

2012 Zhu et al., 2012a ZE2012aU Intel Xeon E5520 CPU @ 2.26GHz, 8GB RAM

2012 Zhu et al., 2012b ZE2012b Intel Xeon E5520 Quad-Core CPUs @ 2.27 GHz

2014 Araya and Riff, 2014 AR2014S Intel Xeon @ 2.20GHz and 8GB RAM with 2 quad-processors

2014 Araya and Riff, 2014 AR2014U Intel Xeon @ 2.20GHz and 8GB RAM with 2 quad-processors

2002 lower bound (Eley, 2002) lbE2002 Pentium C with 200 MHz clock and 32MB memory

2004 lower bound (Boschetti, 2004) lbB2004 Pentium III Intel 933 MHz

Table 2: Lists of Papers included in the Results Comparison
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No. Box Types Total Boxes No. IMM1989 BR1995b B2000 E2002-seq E2002-sim E2003 LZ2005 T2006 T2008 C2011 L2012 ZE2012aU ZE2012aS lbE2002

1 2 70 26 27 25 27 26 25 25 25 25 25 25 25 25 19

2 2 70 11 11 10 11 10 10 10 10 10 10 10 10 10 7

3 4 180 20 26 20 21 22 20 19 20 20 19 19 19 19 19

4 4 180 27 27 28 29 30 26 26 26 26 26 26 26 26 26

5 4 180 65 59 51 55 51 51 51 51 51 51 51 51 51 46

6 3 103 10 10 10 10 10 10 10 10 10 10 10 10 10 10

7 3 103 16 16 16 16 16 16 16 16 16 16 16 16 16 16

8 3 103 5 4 4 4 4 4 4 4 4 4 4 4 4 4

9 2 110 19 19 19 19 19 19 19 19 19 19 19 19 19 16

10 2 110 55 55 55 55 55 55 55 55 55 55 55 55 55 37

11 2 110 18 25 18 17 18 17 16 16 16 16 16 16 17 14

12 3 95 55 55 53 53 53 53 53 53 53 53 53 53 53 45

13 3 95 27 27 25 25 25 25 25 25 25 25 25 25 25 20

14 3 95 28 28 28 27 27 27 27 27 27 27 27 27 27 27

15 3 95 11 15 11 12 12 11 11 11 11 11 11 11 11 11

16 3 95 34 29 26 28 26 26 26 26 26 26 26 26 26 21

17 3 95 8 10 7 8 7 7 7 7 7 7 7 7 7 7

18 3 47 3 2 2 1 1 2 2 2 2 2 2 2 2 1

19 3 47 3 3 3 2 2 3 3 3 3 3 3 3 3 1

20 3 47 5 5 5 2 2 5 5 5 5 5 5 5 5 2

21 5 95 24 26 21 24 26 20 20 20 20 20 20 20 20 17

22 5 95 10 11 9 9 9 8 9 9 9 8 9 8 8 8

23 5 95 21 22 20 21 21 20 20 20 20 19 20 19 20 17

24 4 72 6 7 6 6 6 6 5 5 5 5 5 5 5 5

25 4 72 6 5 5 6 5 5 5 5 5 5 5 5 5 4

26 4 72 3 4 3 3 3 3 3 3 3 3 3 3 3 3

27 3 95 5 5 5 5 5 5 5 5 5 5 5 4 4 4

28 3 95 10 12 10 11 10 10 9 10 10 10 9 10 10 9

29 4 118 18 23 17 18 18 17 17 17 17 17 17 17 17 15

30 4 118 24 26 22 22 23 22 22 22 22 22 22 22 22 18

31 4 118 13 14 13 13 14 13 12 13 13 12 12 12 12 11

32 3 90 5 4 4 4 4 4 4 4 4 4 4 4 4 4

33 3 90 5 5 5 5 5 5 4 5 5 4 4 4 4 4

34 3 90 9 8 8 5 9 8 8 8 8 8 8 8 8 5

35 2 84 3 3 2 2 2 2 2 2 2 2 2 2 2 2

36 2 84 18 14 14 18 14 14 14 14 14 14 14 14 14 10

37 3 102 26 23 23 26 23 23 23 23 23 23 23 23 23 12

38 3 102 50 45 45 46 45 45 45 45 45 45 45 45 45 25

39 3 102 16 18 15 15 15 15 15 15 15 15 15 15 15 12

40 4 85 9 11 9 9 9 8 9 9 9 8 9 8 8 7

41 4 85 16 17 15 16 15 15 15 15 15 15 15 15 15 14

42 3 90 4 5 4 4 4 4 4 4 4 4 4 4 4 4

43 3 90 3 3 3 3 3 3 3 3 3 3 3 3 3 3

44 3 90 4 4 3 4 4 4 3 3 3 3 3 3 3 3

45 4 99 3 3 3 3 3 3 3 3 3 3 3 3 3 2

46 4 99 2 2 2 2 2 2 2 2 2 2 2 2 2 2

47 4 99 4 4 3 3 3 3 3 3 3 3 3 3 3 3

Total 763 777 705 725 716 699 694 698 698 692 694 691 693 572

Avg. Time (s) <30 6.43 <2 45.94 6.43 246.2 116.7

Table 3: Ivancic et al., 1989
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9. Conclusion

In this paper we have focused our review on the design and implementation of solution methodologies

for solving 3D container loading problem with an experimental comparison on the performances of various

algorithms on benchmark data sets. We have reviewed 113 papers that cover all variants of 3D container

loading and address a wide spectrum of combinatorial optimisation methodologies, which we review accord-

ing to placement heuristics, improvement heuristics and exact methods. We have attempted to provide an

insightful review that describes the main ideas clearly. These sections do not differentiate between problem

types, so we provide an overview of these papers by problem variant. Our examination of the literature has

highlighted three possible fruitful avenues for research. First we found that there are significantly fewer

papers examining the multiple container packing problem when compared to the single container loading

problem. Further, of the papers looking at multiple containers, very few consider heterogeneous container

Class Bin Dimensions Item No. MPV2000 MPV2000-BS MPV2000-SPack L2002-HA L2002-TS F2003 C2008 C2009 lbB2004

1 100*100 50 13.6 13.5 15.3 13.9 13.4 13.4 13.7 13.4 12.9

100 27.3 29.5 27.4 27.6 26.6 26.7 27.2 26.7 25.6

150 38.2 38 40.4 38.1 36.7 37 37.7 37 35.8

200 52.3 52.3 55.6 52.7 51.2 51.2 51.9 51.1 49.7

Class Total 131.4 133.3 138.7 132.3 127.9 128.3 130.5 128.2 124

4 100*100 50 29.4 29.4 29.8 29.4 29.4 29.4 29.4 29.4 29

100 59.1 59 60 59 59 59 59 58.9 58.5

150 87.2 87.3 87.9 86.9 86.8 86.8 86.8 86.8 86.4

200 119.5 119.3 120.3 119 118.8 119 118.8 118.8 118.3

Class Total 295.2 295 298 294.3 294 294.2 294 293.9 292.2

5 100*100 50 9.2 9.1 10.2 8.5 8.4 8.3 8.4 8.3 7.6

100 17.5 17 17.6 15.1 15 15.1 15.1 15.2 14

150 24 23.7 24 21.4 20.4 20.2 21 20.1 18.8

200 31.8 31.7 31.7 28.6 27.6 27.2 28.1 27.4 26

Class Total 82.5 81.5 83.5 73.6 71.4 70.8 72.6 71 66.4

6 10*10 50 9.8 11 11.2 10.5 9.9 9.8 10.1 9.8 9.4

100 19.4 22.3 24.5 20 19.1 19.1 19.6 19.1 18.4

150 29.6 32.4 35 30.6 29.4 29.4 29.9 29.2 28.5

200 38.2 40.8 42.3 39.1 37.7 37.7 38.5 37.7 36.7

Class Total 97 106.5 113 100.2 96.1 96 98.1 95.8 93

7 40*40 50 8.2 8.2 9.3 8 7.5 7.4 7.5 7.4 6.8

100 15.3 13.9 15.3 13.3 12.5 12.3 13.2 12.3 11.5

150 19.7 18.1 20.1 17.2 16.1 15.8 17 15.8 14.4

200 28.1 28 28.7 25.2 23.9 23.5 25.1 23.5 22.7

Class Total 71.3 68.2 73.4 63.7 60 59 62.8 59 55.4

8 100*100 50 10.1 9.9 11.3 9.9 9.3 9.2 9.4 9.2 8.7

100 20.2 20.2 21.7 19.9 18.9 18.9 19.5 18.8 18.4

150 27.3 26.8 28.3 25.7 24.1 23.9 25.2 23.9 22.5

200 34.9 34 35 31.6 30.3 29.9 31.3 30 28.2

Class Total 92.5 90.9 96.3 87.1 82.6 81.9 85.4 81.9 77.8

Total 769.9 775.4 802.9 751.2 732 730.2 743.4 729.8 708.8

Stopping Time (s) 1000 1000 1000

Table 7: Martello et al. 2000
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problem types. Another observation is that often papers that tackle the multi container problem do so by

simply extending their models for the single container loading problem. A second research issue surrounds

the consideration of real world constraints. Only a small proportion of papers comprehensively address

this, while most other papers focus on a few specific constraints. Even within those papers discussing real

world constraints, not all critical constraints are taken into consideration. A consistent set of real world

constraints would benefit the research community and make adoption by practitioners more likely. This

links with the final research issue regarding the quantity and quality of benchmark datasets. As Bortfeldt

and Wäscher (2013) point out, the current decade-old data sets might not be challenging anymore. Real-

istic and challenging data sets with clear real world constraints would help in moving this research area

forward.
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