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Chapter 1 

  

 

Introduction 

 

 

 

1.1 Background 

Vibration refers to mechanical oscillations with respect to an equilibrium position [1]. In most 

cases, vibration is undesirable creating noise and potentially harmful response. According to 

these detrimental effects, engineers are motivated to find approaches to control vibration levels.  

 

Vibration control measures can be classified into passive vibration control, semi-active vibration 

control and active vibration control. Passive vibration control is typically achieved by changing 

the mass, stiffness or damping [2]. The latter is applicable for resonance behaviour and energy 

dissipation, whilst changing the mass or stiffness will change the natural frequencies which 

might be of benefit. It is usually simple to implement, reliable and cost efficient, but its 

successful application requires a thorough understanding of the excitation and the vibration 

problem in hand [2]. Semi-active vibration control can be broadly defined as a passive vibration 

control measure in which the systems mechanical properties, such as stiffness and damping, can 
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be adjusted in real time by the application of a control signal [3, 4]. The semi-active system can 

possess the reliability of passive control using a small amount of energy to tune the system. It 

also supplies the versatility and effective performance at high frequencies [3, 5]. Its main 

disadvantage is its inherent nonlinearity and complicated engineering design. Fully active 

vibration control augments the system with actuators, sensors and some form of electronic 

controller together with signal conditioning devices to achieve the modification of the 

characteristics of the vibrating system [4]. The active systems require external energy to drive 

active devices continuously. However, its practical applications are limited due to the cost, 

stability and energy consumption [4]. 

 

In some cases, e.g. for harmonic excitation, then the use of tuned passive devices such as 

vibration absorbers [2] might be applicable and is the passive control method in this study. It is 

not feasible to use active controllers for vibration control in many practical applications. The 

reasons include the cost, added weight or required external power supply. For typical harmonic 

vibration control, passive vibration control system can also make for a relatively simple 

analytical approach. Hence, designs are sought, based on passive vibration control, for harmonic 

excitation and response [6].  

 

This chapter briefly introduces the literature on the vibration response for linear and nonlinear 

vibration absorbers. The following chapters will present the absorber dynamic characteristics of 

a nonlinear absorber system under harmonic and random excitations.  

 

1.2  Dynamic vibration absorbers 

Dynamic vibration absorbers (DVAs), also sometimes called tuned mass dampers or vibration 

neutralizers, consist of mass, stiffness and damping elements. They are usually used in two 

distinct and different ways; the dynamic vibration absorber is tuned to a troublesome resonance 

of the host structure to which it is applied and the neutraliser is tuned to a problematic excitation 

frequency [2]. The purpose of a dynamic vibration absorber is to reduce the structural vibration 

at the resonance frequency, and the purpose of the vibration neutralizer is to add a large 

mechanical impedance to the host structure to minimize the structural vibration at a single 

frequency of excitation [7]. 
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Dynamic vibration absorbers are important practical devices used for vibration reduction in 

structures (cf. Figure 1.1-1.2 [8, 9]). When connected to a structure or machine, the dynamic 

vibration absorbers are capable of absorbing the vibrational energy. Therefore, these devices 

have been used extensively in the vibration reduction of machinery and are typically applied 

when structures are excited near their resonance frequencies. Consequently, a structure can be 

protected from excessively high vibration levels [10]. Thus, the problem of how to improve the 

effectiveness of the vibration reduction using a dynamic vibration absorber, which occurs at 

frequencies around which it is tuned, and its optimal design are important research topics in the 

field of structural dynamics.  

 

 

Figure 1.1 Dynamic vibration absorber is installed to the Taipei 101 to counteract vibrations   in 

the building [8]. 

 

 

Figure 1.2 Multiple dynamic vibration absorbers are installed to a bridge [9].  
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1.3 The linear dynamic vibration absorber 

Passive vibration mitigation of mechanical structures is often associated with the dynamic 

vibration absorber developed by Den Hartog [11]. The passive linear absorber is well-known 

and has been extensively studied [2, 7]. In its simplest form it consists of a mass supported by a 

linear elastic spring acting in parallel with a viscous damper. The design of this absorber relies 

on a solid theoretical basis, and the absorber possesses very well known properties (e.g., its 

capability to mitigate the response in one mode of the primary structure, the trade-off between 

performance and robustness and the introduction of a second resonance frequency). As will be 

described below, it appears that their performance is dependent upon the choice of the system 

properties and typically they act over a narrow band of frequencies. Den Hartog has presented 

the design formula for the optimal linear absorber [11]. In his book one can find the detailed 

investigation of optimal tuning and damping parameters. However, the vibration reduction 

bandwidth of Den Hartog’s optimal criterion is different compared to that presented in the 

following section. Den Hartog’s optimal criterion presents the vibration response to pass 

through two invariant points in the frequency response curve for the primary system, where its 

response amplitude is independent of the damping of the absorber system. The stiffness value 

that results in equal amplitudes at the invariant points is taken to be optimal [11-13]. 

 

1.3.1 Vibration reduction bandwidth 

Ormondroyd and Hartog [14] derived the mathematical treatment of the linear absorber 

suppressing the vibration response of an undamped single-degree-of-freedom primary system. 

The model is shown in Figure 1.3 where sk  and sm  are the linear spring constant and mass of 

the primary system under harmonic external force cos( )F t ; sx  is the displacement of the 

primary system. For the absorber, it has a mass m , a viscous damper c  and a linear spring 1k  

with x  the displacement of the absorber mass. The mathematical expression for the non-

dimensional terms as used by Den Hartog [11] are the mass ratio sm m  , the damping ratio 

of the absorber 12c m  , the linear tuned frequency ratio 0 1 s    and the excitation 

frequency ratio s   . The variables used for inspecting the performance of the absorber 

are the maximum amplitude sX , which is the displacement amplitude of the primary system, 

0X  the static displacement amplitude of the primary system due to a static force of magnitude 

F , given as 0 / sX F k . 
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Figure 1.3 A linear dynamic vibration absorber (DVA) attached to an undamped single degree-

of-freedom primary system.  

 

The primary system frequency response, the amplitude ratio of the response normalized by the 

static displacement for a static force of equal amplitude to the excitation force, 
0/sX X , is 

shown in Figure 1.4. The effect of a damped vibration absorber is beneficial vibration 

attenuation around the structures resonance frequency range compared to the linear system 

without an absorber. 

 

The effectiveness of the nonlinear absorber was first quantified and defined by Roberson [15] 

who introduced the concept of a "Vibration reduction bandwidth". The Vibration reduction 

bandwidth of an absorber is produced when the amplitude ratio is less than unity, i.e. 

0/ 1sX X  , i.e. a dynamic response reduction compared to a static response level is achieved, 

which is shown by a thin horizontal solid line in Figure 1.4. The vibration reduction bandwidth 

is then to be determined such that 0/ 1sX X   in that the frequency range. The frequency 

range is L R   , where L  and R  are the lower and upper frequency bounds for the 

vibration reduction bandwidth range respectively. The "Vibration reduction bandwidth" is 

restricted to discussion on the frequency values between the resonance peaks of the frequency 

response curves. This frequency bandwidth can be determined as B R L   , and the width 

of this band has been compared for both linear and nonlinear stiffness absorbers [15, 16].  
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The vibration attenuation amplitude is used to examine the effectiveness of the linear absorber. 

The vibration attenuation is determined by the ratio between the vibration amplitude at the tuned 

frequency with an absorber and the amplitude of the primary system without an attached 

absorber. The analytical expression for the vibration attenuation of a linear absorber has been 

obtained [7]. However, the analytical expression for the vibration attenuation of the nonlinear 

absorber could be difficult to derive, due to the complexity of the mathematical algebraic 

relationships. The detailed derivation of the solution in the latter case will be presented in 

chapter 3. 

 

 

  

Figure 1.4 The frequency response curves of the normalised displacement on the primary 

system 0/sX X  as a function of the non-dimensional excitation frequency s    

showing the vibration reduction bandwidth for a system with a linear vibration absorber 

attached ( 0.1  , 
0 1  ). The response for the single system without an absorber is given by 

the dashed-dotted line. For the linear absorber, the solid line is the low damping case with the 

absorber damping given by 0.02   and the dashed line is the high damping absorber with 

0.08  .  

 

 

 

 

L R

Vibration reduction 

bandwidth

  

0

sX

X
 



   

7 

 

1.4 The nonlinear dynamic vibration absorber 

There are some known limitations with the linear vibration absorber, for which a passive 

nonlinear absorber might have some advantages. Whatever nonlinear device is considered, it 

will preferably need both analytical study and experimental validation. The structure vibrates as 

a  result of periodic excitation such as unbalanced rotating machines [17]. It is important to 

analyse the effects and behaviour of such excitations on vibrating systems to understand the 

foundation for the analysis of more general types of excitation [2, 11, 17, 18]. The periodic 

motion provides a basis of characterization of more complicated dynamic motions. Random 

vibration is non-deterministic motion where the response can be described on the basis of 

probabilistic and statistical approaches [18-20]. Many structures respond dynamically to random 

environmental loads such as an automobile driving across a rough road and ground motion due 

to an earthquake [20, 21]. The response to broadband random vibration of a nonlinear system is 

likely to be more complicated  dynamic behaviour. 

 

A linear absorber has a major drawback, it is limited in that it reduces vibration over a very 

narrow frequency range. This range is typically not large enough to cope with practical cases 

that correspond to changes in the excitation frequency, i.e. in speed for a rotating unbalanced 

source due to load, motor power supply or source variations [15]. To overcome this problem, 

the linear absorber can be designed to act as a wideband device by adding mass to the absorber. 

However, it is undesirable for the absorber mass to be too large in many applications because 

additional static loading of the primary system will occur. As a result, the absorber mass is 

typically restricted to a factor equivalent of about 10% or less of the primary system mass. In 

addition, the potentially large size and weight in structural applications are significant 

limitations [2]. 

 

In the light of some of the limitations, interest has arisen in the use of a nonlinear dynamic 

vibration absorber (NDVA). A technical benefit of the NDVA has been hypothesized that it can 

operate efficiently over a broader range of forcing frequencies. 
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1.4.1 The nonlinear dynamic vibration absorber under periodic   

excitation            

The vibration bandwidth problem was first investigated by Roberson [15] who used the 

impractical case of an undamped absorber comprising a mass supported by a linear plus 

nonlinear spring acting in parallel. The nonlinear spring was chosen to produce a restoring force 

which is proportional to its extension and compression raised to a power of three (subsequently 

termed a cubic spring). The first approximation of a nonlinear system is obtained by the Duffing 

Iteration Method which investigates the effect of the parameters of the system. Pipes [22] used a 

hyperbolic sine spring with a hardening characteristic which followed Roberson’s method. The 

characteristic of a hardening spring is that as the restoring force increases, then the difference in 

the displacement of the spring will be decreased. The benefit of a hardening spring is that it does 

not produced an unstable response [23]. In addition, Arnold [24] later confirmed Roberson’s 

results.  

 

Hunt and Nissen [16] presented a practical NDVA with a softening spring composed of a stack 

of Belleville washers to demonstrate double vibration bandwidth compared to a linear absorber. 

The response of the system is obtained by a numerical integration solution (Runge-Kutta-

Nystrom method). The main inherent disadvantage of a softening spring is an unstable 

phenomenon which is produced due to large displacement over a critical value [23]. The 

unstable behaviour can change very suddenly and dramatically [25]. Nissen et al.[26] studied 

the optimal parameters of a NDVA and considered the technical aspects for realisation. Rice et 

al. [27] presented the nonlinear vibration absorber incorporating an asymmetric nonlinear 

element (a linear plus cubic springs) with hardening or softening behaviour and a solution by 

the harmonic balance method. Investigation of the system parameters, for a selection of spring 

types for narrow-band absorption applications, showed results that are up to 50% better than the 

linear absorber. It was found that a hardening absorber is equally as good as a softening one for 

maximizing the bandwidth. 

 

Vibration reduction response has been reported using solutions obtained by the averaging 

method for a nonlinear vibration absorber [28], but no comparison of its efficiency has been 

performed. Zhu et al.[29] studied the system with nonlinear damping and nonlinear springs 

using the averaging method. They found that vibration reduction can be obtained by adjusting 

the parameters of the nonlinear dampers and the nonlinear spring stiffness from an examination 
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of the frequency response. It has also been demonstrated [30-33] that the primary phenomena 

behind the energy pumping produced, which refers to energy from a primary subsystem to a 

nonlinear attachment, is due to resonant interactions between coupled linear and nonlinear 

components. Sun et al. [34] investigated the response attenuation of a hardening Duffing 

oscillator utilizing a nonlinear absorber, a semi-active absorber and a multiple absorber 

consisting of the two in parallel. The multiple absorber was found to effectively reduce the 

steady state response. Some studies designed a practical oscillator with different components 

producing the nonlinear stiffness characteristics experimentally. Examples of such components 

are the pneumatic spring [35], magnets [36-38], Belleville washers [16, 26] and springs [6, 39-

42]. 

 

Miller and Gartner [35] presented measurements on a pneumatic spring absorber with hardening 

characteristics and provided a detailed design of a prototype. Yamakawa et al. [36] presented a 

absorber consisting of magnets with hardening characteristics using different material of the 

magnets to investigate the vibration reduction. Kojima and Nagaya [37] analyzed a magnetic 

torsional dynamic vibration absorber with softening characteristics to investigate the optimum 

absorbing effect. Hunt et al. [16] and Nissen et al. [26] provided dynamic vibration absorbers 

with softening springs (Belleville washers) to demonstrate wider vibration reduction bandwidth 

compared to a linear absorber. Nissen et al. [26] provided guidance on the design of the 

Belleville washer as an absorber spring.  

 

Rice [40] has presented the nonlinear vibration absorber (bow-type spring) incorporating an 

asymmetric nonlinear element (a linear plus cubic springs) with hardening or softening 

behaviour. The experimental data was investigated for a selection of the parameters for the 

absorber and its vibration reduction. Nayfeh [41] and Balachandran [42] investigated 

experimentally systems with a nonlinear element (a quadratic spring) which exhibited 

quasiperiodic and chaotic regimes at certain frequency. The undesirable responses could only be 

eliminated by careful tuning of the systems’ frequencies. It is not a desirable way for a practical 

passive absorber. 

 

Jiang et al.[6] investigated a nonlinear energy sink (a cubic spring) with hardening 

characteristics attached to a linear primary structure under sinusoidal excitation both 

theoretically and experimentally. They presented the energy absorption by the nonlinear energy 
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sink, realised a more broad frequency range, producing a which effective frequency range. Gatti 

et al.[39] designed a hardening oscillator (a linear plus cubic springs) to investigate the dynamic 

responses at the resonance frequencies of a nonlinear two degrees-of-freedom system. However, 

the result could not produce vibration reduction of the primary system as the mass of the 

nonlinear system was much smaller compared to the mass of the primary system. 

 

The nonlinearity considered can present a stability problem for the primary and absorber system. 

It will affect significantly the vibration effectiveness of the absorber. Instability should be 

avoided by choice of the nonlinear absorber design. The instability characteristics refer to the 

system undergoing amplitude changes very suddenly and dramatically [25]. Many studies 

presented the stability characteristics for different forms of nonlinear stiffness characteristics 

[28, 43-47]. Rice [43] investigated the combinational instability using a perturbation method for 

the nonlinear absorber design. It was found that the nonlinearity will present an undesirable 

response for the almost-periodic response. Shaw et al. [44] found that the presence of 

nonlinearities introduced dangerous instabilities using the method of multiple scales. In some 

cases, the nonlinearity may lead to response amplification rather than vibration reduction. For 

this reason, for the design of an efficient NDVA it is necessary to develop a completely 

analytical procedure, which in addition to predicting the steady state responses also analyzes 

their stability characteristics. Stability here refers to the system undergoing smooth changes in 

their response [25]. Natsiavas [28] analyzed the stability characteristics of a nonlinear response 

and periodic steady state solutions were located and identified. By proper selection of the 

system parameters the resulting solutions avoided the dangerous consequences of instability. 

Malatkar and Nayfeh [46, 47] analyzed the stability characteristics of the steady-state vibration 

response for the nonlinear oscillator attached to the linear subsystem. It might cause increasing 

response in the linear subsystem when the damping of linear subsystem is low. 

 

1.4.2 The nonlinear dynamic vibration absorber under transient   

excitation            

Transient response occurs for a dynamical system excited by a suddenly nonperiodic excitation, 

such as when sudden load changes are initiated. For transient excitation studies, some 

researchers [6, 48-50] published data showing that a nonlinear absorber uses a smaller mass 

than a linear absorber to produce the same vibration reduction and effectively reduces the 

transient response of the primary structure. Similarity, Sun et al.[34] investigated the vibration 
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reduction of a hardening Duffing oscillator using the multiple absorber. The multiple absorber 

was found to be effective in reducing the transient response compared to a nonlinear vibration 

absorber. 

 

1.4.3 The nonlinear dynamic vibration absorber under random   

excitation            

Random vibration is a vibration phenomenon under an excitation satisfactorily modelled by a 

stochastic process [20]. The excitation and the system response can be described on the basis of 

probabilistic and statistical approaches. Many researchers present the development of the theory 

for random vibration [51, 52]. Applications of random vibration vary widely from aerospace 

industries, random road inputs in vehicles to the collapse of structures due to random loading 

[53]. These problems involve the structural responses due to random loading and nonlinear 

response resulting from large motions [53]. Many practical dynamic systems are also exposed to 

wide band frequency excitations, rather than single frequency excitation. A linear absorber is 

insufficient for such cases [54].  

 

Lee [55] investigated a primary system coupled with a pendulum absorber under random 

excitation for autoparametric response, in which the absorber region improves as the damping 

increases. The autoparametric response is the varying of the parameters drives the system. 

Examples of parameters that may be varied are its resonance frequency and damping [56]. 

Rüdinger [57] investigated the performance of nonlinear viscous damping for a nonlinear 

absorber attached to a SDOF primary system excited by white noise. It was found that damping 

has a slight effect on the optimal parameters for a nonlinear absorber. In addition, the optimal 

linear and nonlinear absorbers have approximately the same effect in terms of vibration 

reduction. 

 

The experimental investigation of nonlinear system is to validate the analytical results and to 

provide physical insight into complex response characteristics [58, 59]. Some studies have been 

conducted on the nonlinear vibration absorber using different components attached to a primary 

structure for autoparametric response system. Examples of such components are beam-type 

systems [59, 60] and pendulum-type systems [54]. Cuvalci [60] investigated experimentally an 

autoparametric system comprising a nonlinear absorber attached to the primary system under 

both sinusoidal and random excitations. The absorption region for the nonlinear absorber was 
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defined and the performance investigated as a function of the parameters of the vibration 

absorber. Cicek [54] determined the energy transfer between a beam, representing a primary 

structure, and a NDVA represented by a pendulum for autoparametric response system. This 

work provided the scope and limitations of the beam–pendulum oscillator as a potential 

vibration absorbing device. 

 

1.5 Motivation for this study       

From the review of the existing literature presented, the nonlinear absorber produces complex 

nonlinear dynamic responses. The nonlinear absorber is still not fully explored for its potential 

usage. An objective was to analyze the richness and complexity of nonlinear system in order to 

improve the design of vibration absorber. In addition, it can be seen that experimental results for 

the nonlinear absorber have not been widely published and sporadic attempts not supported by 

analytical predictions. Due to the somewhat limited work and understanding of the nonlinear 

absorber, then there is still a need for some further fundamental research. The aim of this thesis 

is to partially fill this gap and to investigate the benefits of using additional cubic nonlinearity in 

the elastic element of the vibration absorber in order to improve the effectiveness of such a 

nonlinear device. 

 

1.6 Objectives and contributions 

Given the fairly limited literature concerning the nonlinear dynamic vibration absorber (NDVA), 

this project was conceived. The specific objectives of the study were as follows: 

 To develop a complete analytical expression and verify the numerical solutions that 

describe the performance of the particular NDVA under harmonic excitation. 

Subsequently, investigate the response and its sensitivity to the various physical 

parameters of the absorber namely the absorber mass, damping and stiffness. The latter 

possesses restoring force contributions which are both linear and nonlinear cubic 

powers of the displacement.  

 To analyze the bifurcation and stability characteristics of the periodic steady state 

response and identify when, under periodic excitation, the response is not periodic. 



   

13 

 

 Determine whether the NDVA under harmonic excitation suffers from the problem of 

amplification and resonances outside the controlled bandwidth. Also, determine the 

bandwidth for control in comparison to the linear case. 

 To investigate the performance of the various parameters of the NDVA under random 

excitation. 

 To provide experimental validation for the vibrational characteristics of the NDVA and 

compare the results with the predictions. 

 

The original contributions presented in this thesis are as follows: 

For harmonic excitation 

 An original derivation and formulation of approximate analytical expressions for the 

steady state response of a simple MDOF system (primary system with attached NDVA) 

using the harmonic balance method. 

 Presentation of an in-depth analysis and interpretation of the parameters which affect 

the bifurcation and stability characteristics of the periodic steady state response. 

 Presentation of an in-depth analysis and interpretation of the parameter range which 

affects the vibration response and determines the vibration reduction bandwidth. 

For random excitation 

 Presentation of an in-depth analysis and interpretation of the parameter range which 

affects the vibration response in the primary system has been produced using numerical 

simulations. 

Experimental Validation  

 An original design for a nonlinear absorber rig, for which the nonlinear stiffness and 

mass of absorber can be easily changed, has been provided. 

 The implementation of the practical nonlinear absorber under harmonic excitation 

shows a broader vibration reduction frequency bandwidth, supporting and validating the 

theoretical predictions.  

 The implementation of a practical nonlinear absorber under random excitation; the 

measurement provided a vibration response behaviour to support and validate the 

theoretical predictions.  
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1.7 Outline of the thesis  

This study is concerned with the passive nonlinear dynamic absorber attached to a linear 

primary structure. The problem is first studied here analytically, to determine the most 

important features, before an experimental design is presented, implemented and its behaviour 

presented and discussed. The structure of this thesis is shown in Figure 1.5 and the contents of 

Chapters 2 to 6 are briefly described as:  

 

Chapter 2: A mathematical model of the system is developed. Next, an approximate periodic 

solution of the system is determined using the Harmonic Balance Method (HBM). 

In addition, the bifurcation and stability of the steady-state solution is analyzed. 

 

Chapter 3: The effect of the nonlinear absorber’s physical parameters on the frequency response 

curve is investigated. In particular, the linear tuned frequency of the nonlinear 

absorber, the effect of damping, the amount of stiffness nonlinearity and the 

absorber mass ratio are considered and the subsequent effects on the response are 

produced and examined in detail. 

 

Chapter 4: Statistical techniques for investigating the response under random excitation and the  

frequency response analysis is briefly described before application to numerical 

simulations investigating the dynamic behaviour of a system with an attached 

nonlinear vibration absorber. Control parameters (e.g., random input amplitude, 

nonlinear stiffness, damping ratio and mass ratio) are considered at different levels 

and the random response related to the effectiveness of the absorber is considered. 

                                                        

Chapter 5: Design, experimental implementation and measurement on a nonlinear absorber 

which is used to validate the model under both harmonic and random excitation 

cases.  

 

Chapter 6: Conclusions of the current research work are presented and recommendations made 

for future investigations and projects. 
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Figure 1.5 Structure of the thesis. 
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Chapter 2   

 

 

Analysis of a single degree of freedom  

system with an attached nonlinear  

absorber under harmonic excitation 

 

 

In order to produce the stiffness property of the nonlinear absorber, the system is selected to 

have symmetric stiffness properties i.e., the stiffness characteristic is the same when the spring 

is in compression or in tension, then the restoring force is an odd function in the displacement 

[23]. The combination of a linear plus cubic spring acting in parallel can be designed to have 

linear behaviour for low response levels and strongly nonlinear cubic behaviour for higher 

response [16, 24, 28, 39, 45, 61-63]. The characteristic of a hardening spring is that as the 

restoring force increases, then the difference in the spring displacement will be decreased. The 

benefit of a hardening spring is that it does not produced an unstable response [23]. However, in 

contrast the main inherent disadvantage of a softening spring is an unstable phenomena which is 

produced due to large displacement over a critical value [23]. The form considered in this study 

is only the case of a symmetric and hardening vibration absorber (linear plus positive cubic 

spring). 

 

A primary purpose of this chapter is to derive the equations of motion of the entire dynamic 

system (i.e., the single degree-of-freedom mass-spring-damper primary structural system 

installed with a NDVA). This nonlinear absorber is designed to behave as the modelled 
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hardening vibration absorber. The mathematical expressions for calculating the frequency 

response curves of the primary structural system are determined for the harmonic steady state 

response at the harmonic excitation frequency. The nonlinear differential equations of motion 

are solved using the Harmonic Balance Method (HBM); simple approximate formulae for the 

description of the vibration are subsequently derived and produced. The detailed procedures are 

presented in the following sections. The investigation presented is focused on producing 

analytical expressions that describe the performance of the NDVA, i.e. its vibration reduction 

effectiveness and frequency bandwidth compared with a linear DVA. Achieving this might help 

to improve the design of a NDVA.  

 

To obtain these approximate expressions, there is a need to establish an analytical relationship 

between the response amplitude and the frequency of excitation. It is the vibration reduction of 

the primary system at the excitation frequency that is the main component of interest in many 

practical problems for harmonic excitation. As far as possible, the equations and expressions 

obtained can be expressed in terms of non-dimensional parameters that will be introduced. The 

procedure which analyzes the bifurcation and stability characteristics of the identified periodic 

and harmonic steady state solutions are also presented separately. In some situations a non-

harmonic response will occur and this is also considered. 

 

2.1 Derivation of the governing equations of motion  

As shown in Figure 2.1, the NDVA is attached to a linear single degree-of-freedom mass-

spring-damper primary structural system. In the figure, sk , sc  and sm  are the linear spring 

constant, viscous damping coefficient and mass of the primary structural system respectively; 

sx , sx  and sx  are the displacement, velocity and acceleration of the primary structural system 

respectively. For the NDVA, it has a mass m , a viscous damper c  and a nonlinear spring with a 

nonlinear restoring force given by a general function 3

31)( xkxkxf  , where x  is the 

displacement across the spring, which has linear and nonlinear stiffness terms 1k  and 3k  

respectively. The sign of 3k  denotes the nonlinear stiffness behaviour; a positive value means 

that the system is hardening and is considered in this study. x , x  and x  are the displacement, 

velocity and acceleration of the mass m  of the NDVA respectively. 
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Figure 2.2 shows the typical static restoring force function versus the displacement of the spring 

for the linear and linear plus cubic combination. The tangent to the force versus deflection curve 

is known as the tangent stiffness and the hardening characteristic corresponds to an increasing 

tangent stiffness for the nonlinear spring modelled and plotted.  

 

     

Figure 2.1 A nonlinear dynamic vibration absorber (NDVA) attached to a single degree-of-

freedom spring-damper-mass primary system. 

  

Figure 2.2 Spring force–displacement characteristic of the linear and nonlinear hardening spring 

types in non-dimensional form. Linear spring: 1( )f x k x  (dashed line), hardening spring:

3

31)( xkxkxf   (solid line), where 1 1k   and 3 0.5k  . 
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The total kinetic energy of the entire vibrating system shown in Figure 2.1 is given by 

2 21 1

2 2
k s sE m x mx                                                                                                                (2.1)                                    

The total potential energy of the entire vibrating system is given by 

4

3

2

1

2 )(
4

1
)(

2

1

2

1
xxkxxkxkV ssss                                                                   (2.2)                                              

The generalized forces sQ  and Q  including the linear viscous damping forces are: 

( ) ( )s s s sQ c x x c x F t                                                                     (2.3a,b)                           

)( sxxcQ                                                                                

Equations (2.1)-(2.3a,b) are then substituted into the following Lagrange’s equations of motion 

[64] 

s

sss

Q
x
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x

T

x

T

t





























                                                                                                (2.4a,b) 
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




























                                                                

The equations of motion are subsequently given by Nayfeh and Mook [65] for the case of 

harmonic excitation applied to the primary mass 

3

1 3( ) ( ) ( ) cos( )s s s s s s s s sm x c x k x c x x k x x k x x F t                            (2.5a,b)              

0)()()( 3

31  xxkxxkxxcxm sss
                           

where the excitation is periodic in time t  with frequency   and amplitude F . 

  

It is convenient to write equations (2.5a,b) in non-dimensional form as  

2 3

0 0( ) 2 ( ) ( ) 2 cos( )sw y w y w y w w w                           (2.6a,b) 

2 3

0 02 0y w w w                             

where the substitutions for the non-dimensional parameters are given below. 
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s
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y s
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0

2 x

x
y

s


 , 

0x

x
y

s


 , 

0x

x
y   

0

2 x

z
w

s


 , 

0x

z
w

s


 , 

0x

z
w  ; 

s

s
s

m

k
2  ,

m

k12

1  , ts   

Here 0x  is the static extension of the linear spring sk  due to a static force of amplitude F , 

defined as 
1 3

0 0, 0, 0s k k
x F k

  
 , )(

d
)( 

d
 is the derivative with respect to non-
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dimensional time in which 
st   is non-dimensional time, 

s  is the natural frequency of the 

primary system and xxz s   is the extension of the nonlinear spring (equivalent to the 

relative displacement of the primary mass to the NDVA mass). It is noteworthy that 
1  is not 

the natural frequency of the nonlinear system but is a characteristic frequency which is the 

natural frequency of the linearised nonlinear vibration absorber (setting 
3k  to zero or a very low 

value such that the nonlinearity is negligible). 

 

In equations (2.6a,b), the non-dimensional terms  ,  , 
s ,  , 0  and   are, respectively, 

the mass ratio, a nonlinear stiffness parameter, the linear damping ratio of the primary system, 

the linear damping ratio of the absorber, the linear tuned frequency ratio and the excitation 

frequency ratio which are all given by the following algebraic expressions respectively: 

sm

m
 , 

2

3 0

s

k x

k



 , 

2S

s

s s

c

m



 , 

12

c

m



 , 

s


 1

0   , 
s




   

When simplified equations (2.6a,b) become 

2 3

0 02 2 cos( )s s s sy y y w w w                                                     (2.7a,b)                                                

sywwww  32

002   

Equation (2.7b) is multiplied by the mass ratio term   and substituted into equation (2.7a) 

yielding 

(1+ ) 2 cos( )s s s sy y y w                                                                                 (2.8a,b)                                                               

2 3

0 02 sw w w w y         

These are still coupled and nonlinear, but the nonlinear term (cubic) just occurs in one of these 

equations. 

 

It is noted that the other non-dimensional parameters (damping ratio, mass ratio and linear tuned 

frequency) remain constant, a change in the non-dimensional nonlinear parameter γ  is only 

caused by a change in the nonlinear stiffness 3k  or in the amplitude of the excitation F  and 

hence 0x  [39, 45]. The other absorber parameters (damping ratio, mass ratio and linear tuned 

frequency) that affect the vibration effectiveness to these parameters are examined using 

separate variations in just one parameter at a time. These simulation results will be presented in 

chapter 3. If the system parameters remain constant, a change in the excitation level F  could 

result in the system having nonlinear behaviour as reported by others [39, 45, 66].  
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In general, the solutions of nonlinear differential equations are obtained either by numerical 

integration or approximate closed-form expressions. However, the approximate solution of 

nonlinear differential equations are not always obtained straightforwardly and can be complex 

using mathematical techniques [65]. 

 

There are some different procedures using the averaging, perturbation and multiple scales 

methods to obtain approximate solutions. However, these methods have some common features 

and limitations [65, 67]. The applicability of those methods are available for periodic excitation, 

transient and random excitations. The solution is found by applying small nonlinear 

perturbations to the linearised equation, but the implementation of these methods is restricted to 

weakly nonlinear systems. A weakly nonlinear system is one where its motion is described by a 

differential equation that can be separated into one part containing linear terms and a part with 

nonlinear terms which are small relatively to the linear ones [65]. In addition, complicated 

mathematical expressions for higher order terms will be produced [28, 29, 43]. 

 

The Harmonic Balance Method (HBM) has been applied within this thesis for harmonic 

excitation [65]. The reason that the HBM has been chosen to find the approximate solution of 

the nonlinear differential equation is described rather clearly by Worden [68]. ”The purpose of 

applied mathematics is to describe and elucidate experiment. Theoretical analysis should yield 

information in a form which is readily comparable with observation. The method of the 

harmonic balance conforms to this principle beautifully as a means of approximating the 

Frequency Response Functions of nonlinear systems.” 

 

Furthermore, as stated by Hamdan et al. [69] it is not restricted to weakly nonlinear problems 

and, for smooth systems, the assumed harmonic solutions always converge to the exact solution. 

The mathematical analysis can be conducted relatively easily due to it not producing 

complicated mathematical expressions for higher order terms. However, the HBM has some 

limitations in accuracy. In the interpretation considered here, one chooses just to use the 

response at the excitation frequency, i.e., by assuming that sub and super harmonics are 

negligible compared to the fundamental harmonic and that the system is only under periodic 

excitation. In addition, the stability characteristics require a separate analysis. 
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2.2. An approximate periodic solution 

To investigate the dynamic behaviour of the primary system with the nonlinear absorber 

attached, the HBM is used, as this enables mathematical expressions to be derived and the 

analysis to be conducted relatively easily. The fundamental assumption in the HBM approach 

used for the first order solution is that the response of the primary system and the absorber is 

predominantly harmonic at the harmonic excitation frequency. Applying the HBM, it is 

assumed that a solution exists of the form 

cos( )s s sy Y                                                                                                              (2.9a,b)                                                                             

cos( )w W              

exists where sY  and W are the real response amplitudes, s  and  the phase of the responses 

with respect to the harmonic excitation force. 

 

Non-dimensional time derivatives of equations (2.9a,b) yields  

sin( )s s sy Y       , 2 cos( )s s sy Y                                                            (2.10a,b) 

sin( )w W       , 
2 cos( )w W                                        

Substituting equations (2.9a,b)-(2.10a,b) into equations (2.8a,b) gives 

)cos())cos(()cos(

)sin(2))cos()(1(

2

2









WY

YY

ss

sssss
                                      (2.11a,b)  
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2 3 2

0

cos( ) 2 sin( )

         (Wcos( )) (Wcos( )) Y cos( )s s
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       

      

         
   

By neglecting harmonics of order higher than 1, one can simplify these equations using the 

trigonometric identity 

3 1 3
os ( ) (3cos( ) cos3( )) cos( )

4 4
c                                                (2.12)                            

Substituting equation (2.12) into equation (2.11b) and simplifying gives 

2

2

cos( ) 2 sin( )

                                 1 (1 ) cos( ) cos( )

s s s

s s

W Y

Y

     

   

      

        

                           (2.13a,b) 
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 
              
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To separate the components the orthogonality conditions for the trigonometric functions are 

used. Equation (2.13a) is multiplied by the terms cos( )  and sin( )  separately and 

integrated over one period of the excitation to yield  

 

2
2

20

2

0
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1 (1 ) cos( )
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


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  
        
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                                (2.14a,b)                                                                       
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Equation (2.13b) is multiplied by the terms cos( )  and sin( )  separately and integrated to 

yield  
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2 sin( ) W W W cos( ) cos( )
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                                                                                                                                            (2.14c,d) 
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Thus produces four algebraic equations (2.14a,b,c,d)  

2 2cos 2 sin 1 (1 ) cos 1s s s s sW Y Y                                                 (2.15a,b,c,d)                                                              

2 2sin 2 cos 1 (1 ) sin 0s s s s sW Y Y               
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 
        

              

2 2 3 2

0 0

3
2 cos sin Y sin

4
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 
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The frequency response function can be calculated by squaring and adding equations (2.15c,d) 

to give 

   
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 
                                                       (2.16) 
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Equation (2.16) can be expanded and rearranged as 

2 6 4 2 2 4 2 2 2 4 2 2 2 4 2

0 0 0 0

9 3
( ) ( 4 2 ) 0

16 2
sW W W Y                                 (2.17)                  

From equation (2.17) 

2 2 6 2 2 4 4 2 2 2 4 2 2 2
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1 9 3
( ) ( 4 2 )
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                (2.18)    

To eliminate sY  from equation (2.15a,b), one can use equations (2.15c,d) to eliminate sins sY   

and coss sY   in equation (2.15a,b) to obtain  
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      (2.19a,b) 

Squaring and adding equations (2.19a,b), and after some algebraic manipulation one obtains the 

following equation for W , the amplitude of the nondimensionalized relative displacement 

6 4 2 0aW bW cW d                                                                                                       (2.20)                                                             
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The phase of the relative displacement can be obtained from equation (2.19b) 
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 
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          (2.21) 

In addition, equation (2.15d) is divided by (2.15c) to yield the phase of the primary system 
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                                               (2.22) 

Once the parameters for the system and the excitation frequency have been specified, then the 

solutions of equation (2.20) in 
2W  give the three solutions, which should be checked for their 

physical interpretation and existence. It is noted that only real solutions for 
2W  are physical 

responses. 

 

The three steady-state solutions of equation (2.20) are obtained [70] 
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W s t j s t
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                                                                    (2.23a-c)                                                        

where the additional terms are given by 

2 3

3 3
4 4 3

9 27 2
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108 108 54

abc a d b
s r t r r

a a a

   
                

where the discriminant   of a polynomial is a function of its coefficients which gives 

information about the nature of its roots. This discriminant is also a polynomial in powers of the 

nonlinear stiffness parameter  . 

 

When the normalised relative displacement W  has been determined, then one can substitute 

back into equations (2.18) and (2.21) to obtain the nondimensional amplitude of the primary 

system sY  and the phase of the relative displacement   separately. Then, substitute   and W  

into equations (2.22) to yield the phase of the primary system s . The same expressions as 

those in equations (2.18) and (2.20) were also found using the method of averaging [28]. 

 

The effect of the nonlinear stiffness   on the primary system frequency response curves of the 

normalized displacement sY  versus excitation frequency ratio   can be evaluated for various 

levels of nonlinear stiffness and are given in Figures 2.3-2.4. The response 0s sY X X  is set 

to unity, i.e. 1sY , which is shown by a thin horizontal solid line. The vibration reduction 

bandwidth is to be then determined such that 1sY  in that frequency range which is described 
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in detail in chapter 1. The vibration reduction bandwidth can be seen in Figures 2.3-2.4, i.e., the 

bandwidth where 0 1s sY X X  . 

 

The frequency response curves in the sY  plane was also checked by numerical integration 

of the equations of motion. The differential equation can be solved using the MATLAB ode45 

function due to the equations not being stiff. A stiff equation is a differential equation for which 

certain numerical methods for solving the equation are numerically unstable, unless the step size 

is taken to be extremely small. It has proved difficult to formulate a precise definition of 

stiffness, but the main idea is that the equation includes some terms that can lead to rapid 

variation in the solution [71]. Equations (2.7a,b) were solved numerically and the Fourier 

coefficients extracted from the steady state periodic time histories. The amplitude of the first of 

these coefficients is depicted by circles in the frequency response curves shown in this chapter. 

In addition, it was verified that, for the parameters used in this work, the amplitudes of the other 

harmonics never exceeded 5% to be compared to the amplitude at the fundamental excitation 

frequency. It is noted that in order to find the stable multivalued responses the initial conditions 

for the displacement and velocity need to be adjusted. 

 

For small values of nonlinearity, i.e. 
-61 10   , the amplitudes of the other harmonics never 

exceeded 5% of the amplitude at the fundamental frequency for all frequencies in Figure 2.3. If 

the nonlinearity increases to exceed NH , i.e. -6

NH> =1 10   , the approximate analytical 

expression for the frequency response curves fails to predict the response, which is not 

harmonic (NH) in a frequency range. In Figure 2.4 the absence of a numerical harmonic 

solution confirms the presence of the NH labelled frequency range. The amplitudes of the other 

harmonics never exceeded 5% of the amplitude at the fundamental frequency outside the NH 

frequency range. Examples of these cases are illustrated in section 2.3. The effect of the 

nonlinear parameter in the absorber on the harmonic response is summarised in Table 2.1. 

    
0    

s  Numerical results 

-61 10   0.02 1 0.002 0.001 The solution is stable and produces a harmonic 

response at all frequencies. 
-61 10   0.02 1 0.002 0.001 A non-harmonic solution exists at some frequencies. 

The harmonic solution at other frequencies is stable. 

Table 2.1 The effect of the nonlinear absorber stiffness parameter on the harmonic response. 
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Figure 2.3 The effect of the nonlinear absorber stiffness on the primary system frequency 

response curves sY  as a function of  . (
610  , 

0 1  , 02.0 , 0.001s  , 

0.002  ). The solid line is the stable solution and the dashed line gives the unstable solution. 

Direct numerical solutions are shown by the symbol ( ' ' ).  

 

Figure 2.4 The effect of the nonlinear absorber stiffness on the primary system frequency 

response curves sY  as a function of  . (
46 10   , 

0 1  , 02.0 , 0.001s  , 

0.002  ). The solid line is the stable solution and the dashed line gives the unstable solution. 

Direct numerical solutions are shown by the symbol ( ' ' ). The approximate analytical 

expression for the frequency response curves fails to predict the response, which is not 

harmonic (NH) in the frequency range identified. 
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2.3. Stability and bifurcation analysis 

The stability characteristics refer to the system undergoing smooth amplitude changes in the 

harmonic response. Depending on the degree of nonlinearity in the NDVA system, there are 

combinations of the parameters which produce a multivalued response. To find the conditions 

for such a response,  , the discriminant [39, 62, 70] obtained for the cubic polynomial in 
2W  

in Equation (2.20) can be examined  

2 2 3 2 2 318 27 4 4abcd a d cd ab b c                                                                           (2.24) 

 

If 0   there are three distinct real roots for  , which correspond to three steady-state values 

for the system response (two stable and one unstable). If 0   there is one real root for   and a 

pair of complex conjugate roots which corresponds to a single valued response solution. Lastly, 

if 0   then there are at least two real coincident roots for  , which occur at the jump-up and 

jump-down frequencies in the system frequency response, respectively. The jump-up and jump-

down phenomenon is a sudden (discontinuous) change of the amplitude of the system response 

when the frequency is varied very slowly and the rest of the system parameters are kept constant 

[23]. 

 

The bifurcation points occur when the equilibrium of the system changes qualitatively (i.e. 

transition from stable to unstable behaviour) or quantitatively, (e.g. from one to three solutions) 

[72]. To determine the bifurcation curves from one to three real solutions in sY  and W , 

Equation (2.24) is set to zero i.e. 0   and a polynomial equation for   is  

2 0A B C                                                                                                                    (2.25)   

 

That can be solved for   to give 

2

1,2

4

2 2

B B AC B

A A


     
                                                                                      (2.26)                                                                  

where  

2 2

2

27a d
A




 , 

34 18b d abcd
B



 
 , 

2 2 34C b c ac  ,  
3

2 2
4

3d b ac


   
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The curves corresponding to 
1  and 

2  obtained by Equation (2.26) in the   plane are 

plotted in Figure 2.5. Any combination of the parameters   and   from the area between the 

two curves yields a multivalued response, with three distinct real solutions for the steady-state 

amplitude sY  and Y . The points identified 1C , 2C  and 1T  show where the two curves intersect. 

The values for 
1C , 

2C and 
1T  could be obtained numerically from equation (2.26). It can be 

seen that there are minimum values for the nonlinearity 
1C  and 

2C  that result in multi-valued 

solutions.  

 

 

Figure 2.5 The bifurcation curves defined by equation (2.26) showing the transition and 

characteristic regions I, II, III and IV in the   plane for the frequency amplitude response 

of sY  and Y (
0 1  , 02.0 , 0.001s  , 0.002  ). Red shading denotes the unstable 

solution for the system frequency response. 

 

In order to emphasize the relationship between the bifurcation curves in the frequency response 

curves in the sY , Y  and the   planes, the three graphs involving the four 

variables ,  ,   and sY Y are plotted in Figures 2.6-10. It can be seen that a thin horizontal 

solid line, drawn for a particular value of  , may be interpreted as the projection of the 

corresponding frequency response curves on the   plane. Moreover, the intersections 
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between the dotted line and the bifurcation curves give the value of the jump frequencies. The 

solid line bifurcation curve corresponding to jumps at the points 1P , 2P , 1Q  and 2Q  shown in 

Figures 2.7-10. The stable and unstable solutions of the frequency response curves are shown as 

solid and dashed lines, respectively. The determination of the unstable region for these steady-

state HBM solutions is calculated by applying Floquet theory as described by Malatkar and 

Nayfeh [46, 47, 73] and the expressions are shown in appendix A. Thus, the characteristic 

regions are presented as regions I, II, III and IV in Figure 2.5. In Figure 2.7, it is noted that the 

unstable solutions for the dashed lines are not shown clearly due to the lower value of the 

nonlinear parameter.  

 

In Figure 2.6, which corresponds to parameter values for region I, where the nonlinear 

parameter is very small, the frequency response curve is single-valued and the system behaves 

similar to a linear system, no multivalued solution exists and there are two resonant peaks. For 

higher values of nonlinear stiffness  , corresponding to Region II, the multivalued solution 

appears close to the first resonant peak frequency range between 1P  and 2P  as shown in Figure 

2.7. In Figures 2.8-9, corresponding to region III, the multivalued solution appears in the 

frequency ranges between 1P  and 2P , and 2Q  and 1Q  separately. Finally, as   is increased so 

that the system corresponds to region VI, the frequency response curves appear to possess 

multivalued unstable solutions in the frequency range from 1Q , but it is now single-valued 

around the first resonant peak as shown in Figure 2.10. 
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Figure 2.6 The relationship between the bifurcation curves and the frequency response curves. (

95 10   , 
0 1  , 02.0 , 0.001s  , 0.002  ). On the sY  and Y  plane, 

the solid line is the stable solution. Direct numerical solutions are shown by the symbol ( ' ' ). 
Red shading denotes the unstable solution of the system frequency response. 
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Figure 2.7 The relationship between the bifurcation curves and the frequency response curves. (

810  , 
0 1  , 02.0 , 0.001s  , 0.002  ). On the sY  and Y  plane, the 

solid line is the stable solution and the dashed line gives the unstable solution. Direct numerical 

solutions are shown by the symbol ( ' ' ). The intersections between the plane containing the 

frequency response curve and the bifurcation curves on the plane indicate the expected values 

for the jump frequencies. Red shading denotes the unstable solution of the system frequency 

response. 
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Figure 2.8 The relationship between the bifurcation curves and the frequency response curves. (

610  , 
0 1  , 02.0 , 0.001s  , 0.002  ). On the sY  and Y  plane, the 

solid line is the stable solution and the dashed line gives the unstable solution. Direct numerical 

solutions are shown by the symbol ( ' ' ). The intersections between the plane containing the 

frequency response curve and the bifurcation curves on the plane indicate the expected values 

for the jump frequencies. Red shading denotes the unstable solution of the system frequency 

response. 
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Figure 2.9 The relationship between the bifurcation curves and the frequency response curves. (

510  , 
0 1  , 02.0 , 0.001s  , 0.002  ). On the sY  and Y  plane, the 

solid line is the stable solution and the dashed line gives the unstable solution. Direct numerical 

solutions are shown by the symbol ( ' ' ). The intersections between the plane containing the 

frequency response curve and the bifurcation curves on the plane indicate the expected values 

for the jump frequencies. Red shading denotes the unstable solution of system frequency 

response. The approximate analytical expression for the frequency response curve fails to 

predict the response which is not harmonic (NH) in a frequency range.  
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Figure 2.10 The relationship between the bifurcation curves and the frequency response curves. 

(
46 10   , 

0 1  , 02.0 , 0.001s  , 0.002  ). On the sY  and Y  plane, 

the solid line is the stable solution and the dashed line gives the unstable solution. Direct 

numerical solutions are shown by the symbol ( ' ' ). The intersections between the plane 

containing the frequency response curve and the bifurcation curves on the plane indicate the 

expected values for the jump frequencies. Red shading denotes the unstable solution for the 

system frequency response. The approximate analytical expression for the frequency response 

curves fails to predict the response which is not harmonic (NH) in a frequency range. 
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The primary system response curves were presented in Figures 2.8-10, and then the 

corresponding time response and Fourier series coefficients are plotted in Figures 2.11-13. For 

small values of nonlinearity, i.e. 
-61 10   , the amplitudes of the harmonic orders of the 

excitation frequency do not exceeded 5% compared to the amplitude of the response at the 

fundamental excitation frequency. The amplitudes of the harmonic response are depicted by a 

Fourier series and Fourier Transform. This situation is illustrated in Figures 2.11(a)-(b). In 

Figures 2.12(a)-(b), the nonlinearity increases further and exceeds NH , i.e. -6

NH> =1 10   , 

the harmonic response at the excitation frequency did not exist at 1.01 . The second 

harmonic appears in the response using the Fourier series analysis, so that the HBM expression 

is not sufficiently accurate in representing the actual solution around this excitation frequency. 

Examining this situation by Fourier Transform, other harmonics appear in the response around 

excitation frequency. Away from the range where non harmonic (NH) response occurs, the 

amplitudes of the harmonic response reduce to again less than 5% compared to the amplitude at 

the excitation frequency. For even higher values of  , i.e. 
-46 10   , a harmonic response was 

not be obtained and a way to chaotic motion seems to occur at 1.15 . Examining this 

response using the Fourier Transform analysis, the other harmonics produce the response, so 

that the HBM expressions are no longer valid. However, the other harmonic responses do not 

appear in the response using the Fourier series analysis. But the Fourier Transform shows, for 

1.15 , the possibility of close harmonic frequency components and beating taking place. 

These points are illustrated in Figures 2.13(a)-(b). 
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Figure 2.11(a) Time response and corresponding Fourier series coefficients of the primary 

system frequency response curves for the normalized displacement sY . (linear tuned frequency 

0 1  , nonlinear absorber stiffness 
610  , mass ratio 0.02   and damping 0.001s  , 

0.002  ). The actual response from numerical integration is the solid line and the first-

harmonic approximation (HBM) is the dashed line. The corresponding excitation frequency is 

0.9  . 
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Figure 2.11(b) Time response and corresponding Fourier series coefficients of the primary 

system frequency response curves for the normalized displacement sY . (linear tuned frequency 

0 1  , nonlinear absorber stiffness 
610  , mass ratio 0.02   and damping 0.001s  , 

0.002  ). The actual response from numerical integration is the solid line and the first-

harmonic approximation (HBM) is the dashed line. The corresponding excitation frequency is 

1.0  . 
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Figure 2.12(a) Time response and corresponding Fourier series coefficients of the primary 

system frequency response curves for the normalized displacement sY . (linear tuned frequency 

0 1  , nonlinear absorber stiffness 
510  , mass ratio 0.02   and damping 0.001s  , 

0.002  ). The actual response from numerical integration is the solid line and the first-

harmonic approximation (HBM) is the dashed line. The corresponding excitation frequency is 

0.9  . 
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Figure 2.12(b) Time response and corresponding Fourier series coefficients of the primary 

system frequency response curves for the normalized displacement sY . (linear tuned frequency 

0 1  , nonlinear absorber stiffness 
510  , mass ratio 0.02   and damping 0.001s  , 

0.002  ). The actual response from numerical integration is the solid line and the first-

harmonic approximation (HBM) is the dashed line. The corresponding excitation frequency is 

1.01 . 
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Figure 2.13(a) Time response and corresponding Fourier series coefficients of the primary 

system frequency response curves for the normalized displacement sY . (linear tuned frequency 

0 1  , nonlinear absorber stiffness 
46 10   , mass ratio 0.02   and damping 

0.001s  , 0.002  ). The actual response from numerical integration is the solid line and 

the first-harmonic approximation (HBM) is the dashed line. The corresponding excitation 

frequency is 0.9  . 
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Figure 2.13(b) Time response and corresponding Fourier series coefficients of the primary 

system frequency response curves for the normalized displacement sY . (linear tuned frequency 

0 1  , nonlinear absorber stiffness 
46 10   , mass ratio 0.02   and damping 

0.001s  , 0.002  ). The actual response from numerical integration is the solid line and 

the first-harmonic approximation (HBM) is the dashed line. The corresponding excitation 

frequency is 1.15 . 
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The bifurcation two curves plotted in Figure 2.14 are for different values of damping and for a 

particular value of the mass ratio. The curve for the light damping case is given as a solid line 

for reference. The different values of damping for the system appear to produce similar 

responses. From inspection of Figure 2.14 there is a level of nonlinear stiffness for the NDVA 

such that at this level and below the system has only one response at all frequencies. When the 

level of damping is increased, the level of the stiffness nonlinearity can increase such that still 

only one response solution occurs. In addition, the domain of the parameter values for which 

multi-valued solutions are present is significantly narrower for 1 . For 1  this change is 

not apparent. In Table 2.2, the effect of the damping in the absorber is summarised by showing 

the limitation on the value of the nonlinear parameter NH  which produces a harmonic 

response. As the damping is increased, the value of the limiting nonlinear stiffness NH  can be 

slightly increased. 

 

The bifurcation curves are also plotted for different values of the mass ratio and a fixed value of 

the damping ratio in Figure 2.15. It can be seen that as mass ratio increases, the level of 

nonlinearity can slightly increase and still only one harmonic response solution occurs. In 

addition, the frequency range for which multi-valued solutions exist is significantly broader for 

1 . However, the bifurcation frequency range is smaller for higher frequencies 

corresponding to 1 . Given in Table 2.3 are the limiting values for the nonlinear stiffness 

parameter   for which the single harmonic solution occurs. As the mass ratio is increased, the 

limiting value NH  will be slightly increased. 
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  
0    

s  NH  Numerical results 

0.02 1 0.002  0.001 -61 10   

The stable solution is harmonic at all frequencies if 

NH <   . 

0.02 1 0.005 0.001 -64 10  

0.02 1 0.008 0.001 -68 10  

0.02 1 0.01 0.001 -51 10  

Table 2.2 The effect of the damping in the absorber on the limitation of the nonlinear parameter 

  which will produce a harmonic response. 

 

 

  
0    

s  NH  Numerical results 

0.02 1 0.002  0.001 -61 10   

The stable solution is harmonic at all frequencies if 

NH <   . 

0.05 1 0.002 0.001 -69 10  

0.08 1 0.002 0.001 -55 10  

0.1 1 0.002 0.001 -55 10  

Table 2.3 The effect of the mass ratio on the limitation of the nonlinear parameter   which will 

produce a harmonic response. 
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Figure 2.14 The effect of the damping ratio   on the bifurcation curves for the frequency 

amplitude response of sY  and Y  (
0 1  , 02.0 , 0.001s  ). For 0.002   (solid 

curve), 0.008   (dash-dot curve). 

 

 
Figure 2.15 The effect of the mass ratio   on the bifurcation curves for the frequency 

amplitude response of sY  and Y  (
0 1  , 0.001s  , 0.002  ). For 0.02   (solid 

curve), 0.1   (dash-dot curve). 
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Consider a particular numerical example with mass ratio 0.02  , linear tuned frequency 

0 1   and the damping ratios of the primary system and the absorber are 0.001s   and 

0.002  , respectively. For values of the nonlinearity 
-610  , the amplitudes of the 

harmonic orders of the excitation frequency do not exceeded 5% compared to the amplitude of 

the response at the fundamental excitation frequency. 

 

It is also useful to consider the response sensitivity on the level of the nonlinearity given by the 

value of the parameter  . The effect of the linear (i.e. 0  ) and nonlinear vibration absorber 

(i.e. 
-6=10 ) on the primary system displacement versus excitation frequency ratio   are 

shown in Figure 2.8. By observation though, the nonlinear absorber produces an almost 

identical vibration reduction bandwidth compared to the linear absorber and tabulated in Table 

2.4. It was found that some range of the parameters did not produce a wider vibration bandwidth 

compared to the linear absorber. An in-depth analysis of the parameters which affect the 

vibration response and control the vibration reduction bandwidth will be detailed and discussed 

in the chapter 3. 

 

 

  Reduction 

Bandwidth 

Bandwidth improvement compared 

to the linear absorber (%) 

0 (Linear case) 0.019  
810
 0.019 0 

85 10  0.019 0 

710
 0.019 0 

75 10  0.019 0 

-610  0.019 0 

Table 2.4 The frequency bandwidth for the vibration reduction produced by the nonlinear 

absorber on the primary system frequency response curves of the normalized displacement sY . (

1 0  , mass ratio 0.02   and damping 0.001s  , 0.002  ). 
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2.4. Conclusions 

This chapter presented the nonlinear differential equation for a vibration absorber possessing a 

linear plus cubic restoring force, the latter with a hardening characteristic. The HBM approach 

has been applied to solve the equation of motion under harmonic excitation. Simple algebraic 

expressions which describe the behaviour, in terms of different nondimensional parameters of 

the nonlinear absorber, have been derived.  

 

The stability characteristics of the periodic steady state solution have been analyzed using 

Floquet theory. The relationship between the frequency response curves and the bifurcation 

curves are presented. At low nonlinear absorber stiffness levels the solutions are stable, similar 

to a linear absorber with no bifurcation. For a medium nonlinear stiffness the solutions can be 

either stable or unstable, unstable solutions appears around the first and second resonance 

frequencies with bifurcation occurring. At higher levels for the nonlinear stiffness, unstable 

solutions appear around the second resonance frequency, but now only stable solutions appear 

around the first resonance frequency. It should be noted that when the stiffness nonlinearity 

exceeded at certain values, the HBM expressions are inaccurate in producing the actual solution 

at some frequencies. The numerical solutions, using direct numerical integration, show the 

presence of multiple frequencies in the response is not at the harmonic excitation frequency. In 

addition, the limitations on the nonlinear absorber parameters were also presented. The effect of 

the magnitude of the nonlinear absorber parameters on the vibration reduction effectiveness and 

frequency bandwidth, under harmonic excitation over a wide frequency range, will be examined 

in detail and discussed in the following chapter. 
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Chapter 3  
 

 

 

Vibration reduction of a  

nonlinear vibration absorber:  

harmonic excitation 

 

 

 
As described in Chapter 2, the equations of motion were derived for the primary system 

installed with an NDVA under harmonic excitation force and solved using the approximate 

analytical solutions (HBM). Mathematical expressions for the frequency response curves of the 

primary system were subsequently determined. A detailed analysis of the bifurcation and 

stability characteristics of the indentified periodic steady state solutions have been given in 

Section 2.3.  

 

The aim of this chapter is to investigate the performance of an NDVA attached to a single 

degree-of-freedom primary system. The effect of the nonlinear stiffness parameter (  ), the 

damping ratio ( ), the mass ratio ( ) and the linear tuned frequency ( 0 ) on the vibration 

reduction will be investigated using the approximate analytical solutions (HBM).  

 

In order to produce a harmonic response at all frequencies, a limited value for the nonlinear 

stiffness parameter was obtained. These were checked by direct numerical integration of the 

equations of motion. The vibration control dependent upon the nonlinear stiffness parameter can 
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be considered in terms of the vibration bandwidth effectiveness of the absorber. The effect of 

the nonlinear stiffness is also discussed for higher values of the linear tuned frequency. These 

characteristics and behaviour are both presented and discussed. 

 

Following this, the other absorber parameters (damping ratio, mass ratio and linear tuned 

frequency) that affect the vibration bandwidth effectiveness and the sensitivity of it to these 

parameters is examined using separate variations in just one parameter at a time. In addition, the 

vibration reduction bandwidth for a linear and nonlinear absorber at the same linear absorber 

tuned frequency is presented for comparsion. 

 

3.1 The effect of the nonlinear stiffness parameter ( ) 

3.1.1 The effect of the nonlinear stiffness parameter at the ‘tuned’ 

frequency ( 0 1 1s    ) 

The mass ratio for the nonlinear vibration absorber to the primary system is set to 0.06  , the 

linear tuned frequency is set to 0 1  , i.e. the absorber linear natural frequency is equal to the 

natural frequency of the primary system and the damping ratio of the primary system is 

0.001s   and two values of the damping ratios for the absorber are considered, namely 

0.002   and 0.02  , respectively. Various values of nonlinearity are selected, i.e. for 

-510   and 
-42 10   , respectively, in order to produce a harmonic response at all 

frequencies. The amplitude of the other harmonics never exceeded 5% of the harmonic 

amplitude at the excitation frequency. It is useful to consider the response sensitivity to the level 

of nonlinearity given by the value of the parameter  . The effect of the linear (i.e. 0  ) and 

nonlinear vibration absorber on the primary system and the secondary system displacement 

versus excitation frequency ratio   are shown in Figures 3.1-4(a)-(c).  

 

When the damping is relatively low, it can be observed in Figures 3.1(a)-(c) that the effect of 

the nonlinear absorber on the normalized primary system displacement sY  is to shift the first 

resonance peak 1r , the effective tuned frequency t  and bend the second resonance peak 

2r  to the right. An unstable branch appears in between the two stable branches of the response 

level of the first resonance peak 1r . In addition, the unstable branch may appear between the 
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two stable branches or partially above the response level of the second resonance peak 2r . In 

Figures 3.2(a)-(c) the effect of the nonlinearity on the secondary system displacement Y  is also 

to shift the first resonance peak 1r  and bend the second resonance peak 2r  to the right. A 

corresponding unstable branch appears in between the two stable branches of the response level 

of the first resonance peak for the displacement of the absorber mass Y . In addition, the 

unstable branch presents between the two stable branches of the response level of the second 

resonance peak. The corresponding phase curves for the primary and the secondary system are 

given in Figures 3.5-6(a)-(c). An unstable branch appears in between the two stable branches of 

the first resonance peak as observed in the plots of the response amplitudes. The unstable branch 

presents between the two stable branches of the response level of the second resonance peak.  

 

When the damping is higher than in the previous case, it can be observed in Figures 3.3(a)-(c). 

An unstable branch appears in between the two stable branches of the response level of the first 

resonance peak 1r . The response effect is slightly different for the second resonance peak 2r

. For low values of the nonlinearity, the unstable branch may appear between the two stable 

branches or partially above the response level of the second resonance peak 2r . For higher 

values of the nonlinearity, the unstable branch may appear at a response level above the stable 

branches of the second resonance peak 2r . In Figures 3.4(a)-(c) the corresponding unstable 

branch also appears in between the two stable branches of the response level of the first 

resonance peak for the displacement of the absorber mass Y . In addition, the unstable branch is 

present between the two stable branches of the response level of the second resonance peak. The 

corresponding phase curves for the primary and the secondary system are given in Figures 3.5-

8(a)-(c).   

 

By observation though, a difference is apparent between the vibration reduction of the linear 

and the nonlinear absorbers; the nonlinear device has a wider effective bandwidth. In Table 3.1-

2, using numerical values based on the HBM expressions, the effective bandwidth is increased 

by about 2% compared to the linear case when the damping is low. When the damping is higher, 

the effective bandwidth is increased from 4% to 17% compared to the linear absorber. These 

were also checked by numerical integration of the equations of motion. 
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The vibration attenuation amplitude could also be examined as a measure of the nonlinear 

absorber effectiveness. The nonlinear absorber parameters (e.g., nonlinear stiffness, damping 

ratio, mass ratio) will affect the vibration reduction. However, no analytical expression for the 

vibration attenuation derived due to the complexity of the mathematical algebraic relationships. 

 

Figures 3.1(a)-(b) also show that the first resonance frequency 1r  moves to a slightly higher 

frequency as it is affected by the nonlinearity. The peak response of the primary mass at the first 

resonance frequency is also higher than that for a linear absorber. Compared to the linear 

absorber, with a nonlinear absorber it can be seen that the nonlinearity has the effect of shifting 

the second resonant peak 2r  moving to higher frequency away from the effective tuned 

frequency t  thus improving the robustness of the device to mistuning. Above the vibration 

reduction bandwidth, i.e. 1 r , but not too far above this frequency, the primary mass 

response is lower with the nonlinear absorber attached. The frequency limit for this behaviour 

appears in the second frequency region where an unstable solution is possible and corresponds 

to the extreme bending of the second resonance peak. This ‘peak’ is almost at a constant value 

over a wide range of frequencies. Subsequently, above 2 r , this solution could not occur 

and the only real solution is the one valid at much higher frequencies. The primary system 

response with the attached linear and nonlinear absorber are almost identical in behaviour at 

very high frequencies, i.e. 1 .  
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  
1r  

2r  
t  Bandwidth 

for NDVA 

Bandwidth improvement 

compared to a linear 

absorber (%) 

0 (Linear case) 0.885 1.130 1 0.056  

-75 10  0.916 1.163 1 0.056 0 

-610  0.927 1.189 1 0.057 2 

-65 10  0.945 1.303 1 0.057 2 

-510  0.951 1.382 1.001 0.057 2 

Table 3.1 The frequency bandwidth for the vibration reduction produced by the nonlinear 

absorber on the primary system frequency response curves of the normalized displacement sY . (

1 0  , mass ratio 0.06   and damping 0.001s  , 0.002  ). 

 

 

  
1r  2r  t  Bandwidth 

for NDVA 

Bandwidth improvement 

compared to a linear 

absorber (%) 

0 (Linear case) 0.885 1.130 1 0.042  

-510  0.919 1.143 1.001 0.042 0 

-55 10  0.957 1.178 1.005 0.044 4 

-410  0.961 1.207 1.010 0.046 10 

-42 10  0.963 1.248 1.019 0.049 17 

Table 3.2 The frequency bandwidth for the vibration reduction produced by the nonlinear 

absorber on the primary system frequency response curves of the normalized displacement sY . (

1 0  , mass ratio 0.06   and damping 0.001s  , 0.02  ). 
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Figure 3.1 The effect of the nonlinear absorber stiffness on the primary system frequency 

response curves sY  as a function of  . (The ‘tuned’ frequency 0 1 1s    , mass ratio 

0.06   and damping 0.001s  , 0.002  ). The response for the system with the linear 

absorber is given by the dashed-dotted line. For the NDVA, the solid line is the stable solution 

and the dashed line gives the unstable solution. Direct numerical solutions are shown by the 

symbol ( ' ' ). (a) 
-610  , (b) 

-65 10    and (b) 
-510  . 
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Figure 3.2 The effect of the nonlinear absorber stiffness on the secondary system frequency 

response curves Y  as a function of  . (The ‘tuned’ frequency 0 1 1s    , mass ratio 

0.06   and damping 0.001s  , 0.002  ). The response for the system with the linear 

absorber is given by the dashed-dotted line. For the NDVA, the solid line is the stable solution 

and the dashed line gives the unstable solution. Direct numerical solutions are shown by the 

symbol ( ' ' ). (a) 
-610  , (b) 

-65 10    and (b) 
-510  . 
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Figure 3.3 The effect of the nonlinear absorber stiffness on the primary system frequency 

response curves sY  as a function of  . (The ‘tuned’ frequency 0 1 1s    , mass ratio 

0.06   and damping 0.001s  , 0.02  ). The response for the system with the linear 

absorber is given by the dashed-dotted line. For the NDVA, the solid line is the stable solution 

and the dashed line gives the unstable solution. Direct numerical solutions are shown by the 

symbol ( ' ' ). (a) 
-55 10   , (b) 

-410   and (b) 
-42 10   . 
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Figure 3.4 The effect of the nonlinear absorber stiffness on the secondary system frequency 

response curves Y  as a function of  . (The ‘tuned’ frequency 0 1 1s    , mass ratio 

0.06   and damping 0.001s  , 0.02  ). The response for the system with the linear 

absorber is given by the dashed-dotted line. For the NDVA, the solid line is the stable solution 

and the dashed line gives the unstable solution. Direct numerical solutions are shown by the 

symbol ( ' ' ). (a) 
-55 10   , (b) 

-410   and (b) 
-42 10   . 
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Figure 3.5 The effect of the nonlinear absorber stiffness on the phase of primary system 

frequency response curves sY  as a function of  . (The ‘tuned’ frequency 0 1 1s    , 

mass ratio 0.06   and damping 0.001s  , 0.002  ). The response for the system with 

the linear absorber is given by the dashed-dotted line. For the NDVA, the solid line is the stable 

solution and the dashed line gives the unstable solution. Direct numerical solutions are shown 

by the symbol ( ' ' ). (a) 
-610  , (b) 

-65 10    and (b) 
-510  . 
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Figure 3.6 The effect of the nonlinear absorber stiffness on the phase of secondary system 

frequency response curves Y as a function of  . (The ‘tuned’ frequency 0 1 1s    , 

mass ratio 0.06   and damping 0.001s  , 0.02  ). The response for the system with 

the linear absorber is given by the dashed-dotted line. For the NDVA, the solid line is the stable 

solution and the dashed line gives the unstable solution. Direct numerical solutions are shown 

by the symbol ( ' ' ).(a) 
-610  , (b) 

-65 10    and (b) 
-510  . 
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Figure 3.7 The effect of the nonlinear absorber stiffness on the phase of primary system 

frequency response curves sY  as a function of  . (The ‘tuned’ frequency 0 1 1s    , 

mass ratio 0.06   and damping 0.001s  , 0.02  ). The response for the system with 

the linear absorber is given by the dashed-dotted line. For the NDVA, the solid line is the stable 

solution and the dashed line gives the unstable solution. Direct numerical solutions are shown 

by the symbol ( ' ' ). (a) 
-55 10   , (b) 

-410   and (b) 
-42 10   . 
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Figure 3.8 The effect of the nonlinear absorber stiffness on the phase of secondary system 

frequency response curves Y as a function of  . (The ‘tuned’ frequency 0 1 1s    , 

mass ratio 0.06   and damping 0.001s  , 0.02  ). The response for the system with 

the linear absorber is given by the dashed-dotted line. For the NDVA, the solid line is the stable 

solution and the dashed line gives the unstable solution. Direct numerical solutions are shown 

by the symbol ( ' ' ). (a) 
-55 10   , (b) 

-410   and (b) 
-42 10   . 
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3.1.2 The effect of the nonlinear stiffness parameter when the tuned 

absorber frequency 0  is much higher ( 0 1 3s    ) 

Consider an absorber tuned to a high frequency by changing the linear tuned frequency 1  of 

the absorber, but keeping the mass ratio   and damping values s  and   constant. In a 

practical case, an absorber can be tuned to a high frequency by changing only the linear stiffness 

of the absorber but keeping the mass constant, but then the damping   will be changed. The 

corresponding vibration responses of the primary system due to a linear and the nonlinear 

absorber are shown in Figures 3.9 and 3.11(a)-(b). For a high tuned absorber frequency, the 

unstable response disappears. In this scenario the linear and the nonlinear absorber have 

approximately equal vibration reduction bandwidths. The corresponding displacement 

amplitude at the tuned frequency 0  for a nonlinear absorber attached is approximately equal 

to the response with a linear absorber. The reason for this is that the linear stiffness effect 

becomes larger in comparison to the stiffness nonlinearity and it reduces the influence of the 

nonlinear contribution. In Figures 3.9 and 3.11(a)-(b) the tuned frequency ratio is 0 3   (

1 3 s   ) and the minimum in the response is at the effective tuned frequency. Hence, there 

appears to be little benefit in having a nonlinear stiffness in the absorber if the tuned frequency, 

dependent upon the linear absorber stiffness, is too high compared to the primary system 

resonance; the effect is then minimal for reasonable values of the nonlinearity. In addition, the 

corresponding absorber response displacement is given in Figures 3.10 and 3.12(a)-(b). For the 

latter the effect of the nonlinear stiffness is neither apparent nor noticeable. 
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Figure 3.9 The effect of the nonlinear absorber stiffness on the primary system frequency 

response curves sY  as a function of  . The tuned frequency 0  is much higher than s . 

( 0 3  , mass ratio 0.06   and damping 0.001s  , 0.002  ). The response for the 

system with the linear absorber is given by the dashed-dotted line, the solid line is the stable 

solution using the NDVA. Direct numerical solutions are shown by the symbol ( ' ' ). (a) 
-610   low absorber stiffness and (b) 

-510   high absorber stiffness.  
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Figure 3.10 The effect of the nonlinear absorber stiffness on the secondary system frequency 

response curves Y  as a function of  . The tuned frequency 0  is much higher than s . 

( 0 3  , mass ratio 0.06   and damping 0.001s  , 0.002  ). The response for the 

system with the linear absorber is given by the dashed-dotted line, the solid line is the stable 

solution using the NDVA. Direct numerical solutions are shown by the symbol ( ' ' ). (a) 
-610   low absorber stiffness and (b) 

-510   high absorber stiffness.  
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Figure 3.11 The effect of the nonlinear absorber stiffness on the primary system frequency 

response curves sY  as a function of  . The tuned frequency 0  is much higher than s . 

( 0 3  , mass ratio 0.06   and damping 0.001s  , 0.02  ). The response for the 

system with the linear absorber is given by the dashed-dotted line, the solid line is the stable 

solution using the NDVA. Direct numerical solutions are shown by the symbol ( ' ' ). (a) 
-55 10    low absorber stiffness and (b) 

-42 10    high absorber stiffness.  
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Figure 3.12 The effect of the nonlinear absorber stiffness on the secondary system frequency 

response curves Y  as a function of  . The tuned frequency 0  is much higher than s . 

( 0 3  , mass ratio 0.06   and damping 0.001s  , 0.02  ). The response for the 

system with the linear absorber is given by the dashed-dotted line, the solid line is the stable 

solution using the NDVA. Direct numerical solutions are shown by the symbol ( ' ' ). (a) 
-55 10    low absorber stiffness and (b) 

-42 10    high absorber stiffness.  
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3.1.3 The effect of the nonlinear stiffness parameter on the effective 

tuned frequency and resonance frequencies 

From inspection of the previous results, the effective tuned frequency t  and the two 

resonance frequencies 1r  and 2r  have been identified. From various numerical simulations, 

using the HBM solution, these values have been presented as the nonlinear stiffness   has been 

increased. Figures 3.13 and 3.15(a)-(c) show the change in these resonance frequencies 1r , 

2r  and effective tuned frequency t  as the amount of nonlinearity   increases. Inspecting 

Figures 3.13 and 3.15(a), it appears that the nonlinearity has a much greater effect on the second 

resonance frequency 2r  than on the effective tuned frequency t  and on the first resonance 

frequency 1r  for a low tuned frequency 0 . This is because the nonlinearity has a much 

greater effect when the relative displacement across the nonlinear spring in the absorber is large. 

The effective bandwidth range for the nonlinear absorber are shown in Figures 3.13 and 3.15(a). 

The range shaded indicates the range of the nonlinear stiffness   when there is an improvement 

in using the nonlinear absorber compared to the linear absorber. The frequency range for the 

nonlinear absorber is L R   , where L  and R  are the lower and upper frequency 

edges for the vibration reduction bandwidth range respectively. This effective vibration 

bandwidth was determined as R L    in Tables 3.1 and 3.2, separately. 

 

Figures 3.14(a) and 3.16(a) show that the value for the first resonance frequency 1r  appears to 

be slightly shifted to both the amount of nonlinear stiffness   and also the tuned frequency 0 . 

The change in 0=1  produce a variation in 1r  of 6% and 9%, respectively. Figure 3.14(b) 

and 3.16(b) show that the effective tuned frequency in the normalized primary system 

displacement sY  is affected more by the level of the stiffness nonlinearity when the tuned 

frequency 0  is low, e.g. 0 1  . However, it is only slightly affected by the nonlinearity 

when the tuned frequency is high, e.g. 0 3  , which was previously examined for light 

damping [66]. In Figures 3.14 and 3.16(c), the second resonance frequency is dependent on 0  

and on the nonlinearity  , the latter having a much greater effect when the relative displacement 

across the nonlinear spring in the nonlinear absorber is large, corresponding to the response at 

2r . 
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Figure 3.13 The effect of the nonlinear absorber stiffness   for different linear tuned absorber 

frequencies ((a) 
0 1   (b) 

0 2   (c) 0 3  ) on the primary system: first resonance 

frequency 1r  ( ' ' ), effective tuned frequency t ( 'o' ) and second resonance frequency 2r  

( ' '☆ ). (mass ratio 0.06   and damping 0.001s  , 0.002  ). The solid lines around 

t  are the lower and upper frequency ranges for the vibration reduction bandwidth range 

respectively. Red shading denotes a bandwidth improvement compared to a linear absorber. 
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Figure 3.14 The effect of the nonlinear absorber stiffness   for different linear tuned absorber 

frequencies (
0 1  ( ' ' ), 

0 2  ( 'o' ), 
0 5   ( ' '☆ )) on the primary system: (a) first 

resonance frequency 1r , (b) effective tuned frequency t  and (c) second resonance 

frequency 2r . (mass ratio 0.06   and damping 0.001s  , 0.002  ). 
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Figure 3.15 The effect of the nonlinear absorber stiffness   for different linear tuned absorber 

frequencies ((a) 
0 1   (b) 

0 2   (c) 0 3  ) on the primary system: first resonance 

frequency 1r  ( ' ' ), effective tuned frequency t ( 'o' ) and second resonance frequency 2r  

( ' '☆ ). (mass ratio 0.06   and damping 0.001s  , 0.02  ). The solid lines around t  

are the lower and upper frequency ranges for the vibration reduction bandwidth range 

respectively. Red shading denotes a bandwidth improvement compared to a linear absorber. 
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Figure 3.16 The effect of the nonlinear absorber stiffness   for different linear tuned absorber 

frequencies (
0 1  ( ' ' ), 

0 2  ( 'o' ), 0 3   ( ' '☆ )) on the primary system: (a) first 

resonance frequency 1r , (b) effective tuned frequency t  and (c) second resonance 

frequency 2r . (mass ratio 0.06   and damping 0.001s  , 0.02  ). 
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3.2 The effect of damping in the attached nonlinear absorber ( ) 

The mass ratio for the nonlinear absorber mass to the primary system mass is set to 0.06  , 

the nonlinear stiffness parameter is 
-410  , the linear tuned frequency is 0 1   and the 

damping ratio for the primary system is 0.001s  . The value of damping is 0.012  , in 

order to produce a harmonic response at all frequencies, the amplitude of the other harmonics 

never exceeded 5% of the harmonic amplitude at the excitation frequency. The effect of the 

absorber damping   on the primary system frequency response curves of the normalized 

displacement sY  versus excitation frequency ratio   has been evaluated for various levels of 

damping and are given in Figures 3.17(a)-(c). An unstable branch appears in between the two 

stable branches of the response level of the first resonance peak. In addition, an unstable branch 

may appear between the two stable branches or partially above the response level of second 

resonance peak. In Figures 3.18(a)-(c), the effect of the absorber damping on the secondary 

system displacement Y  can also be observed. A corresponding unstable branch appears in 

between the two stable branches of the response level of the first resonance peak for the 

displacement of the absorber mass Y . In addition, the unstable branch presents between the two 

stable branches of the response level of the second resonance peak.  

 

In Figures 3.17(a)-(c) the linear damping ratio for the attached system is increased from 

21.25 10    to 
22.5 10   . The difference between the vibration response due to the 

linear and the nonlinear absorber is again that the nonlinear absorber has a much wider 

bandwidth. In Table 3.3, it is increased by about 6%, 10% and 9% compared to the linear case 

for values of 
21.25 10   , 

22 10    and 
22.5 10    respectively. It is noted that for 

a larger damping ratio  , the vibration reduction bandwidth is wider for the nonlinear absorber 

compared to the linear absorber case. In addition, in the response curves of the system, the 

larger damping has a much greater effect on the second resonance frequency 2r  than on the 

effective tuned frequency t
 
shifting to a lower frequency. The unstable branch occurs over a 

frequency which will significantly reduce around the second resonance frequency 2r .  
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In general by adding damping for both the linear and nonlinear absorber, the disadvantage is to 

produce a smaller vibration reduction bandwidth compared to lower absorber damping. When 

damping in the nonlinear absorber is greater than about 0.031, there appears to be no reduction, 

i.e. sY normalised primary mass response is greater than 1 at all frequencies i.e. s sY F k . This 

is observed in Figure 3.19. In many practical applications it is desirable to have a large vibration 

reduction bandwidth, so that the damping in the absorber needs to be quite low [26]. In addition, 

for higher absorber damping, the reduction of vibration at the effective tuned frequency t  

will be less. 

 

For the case of high damping, one might expect that the nonlinear absorber will dissipate more 

vibrational energy at some frequencies when the relative velocity is high. Thus, the ‘resonance’ 

peaks might be expected to be significantly reduced with increased damping. This is apparent in 

the reduction in the peak response amplitude at the resonance frequencies 1r  and 2r  for the 

linear absorber. However, for the nonlinear absorber the amplitude of the peaks at the resonance 

frequencies 1r  and 2r  appear only to be slightly affected. The first peak occurs near to a 

frequency where the solution is unstable and the second resonance occurs where the frequency 

response curve has bent to the right.  
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Figure 3.17 The effect of the damping in the nonlinear absorber on the primary system 

frequency response curves sY  as a function of  . (The ‘tuned’ frequency 0 1 1s    , 

nonlinear absorber stiffness 
410  , mass ratio 0.06   and damping 0.001s  ). The 

response for the system with the linear absorber is given by the dashed-dotted line. For the 

NDVA, the solid line is the stable solution and the dashed line gives the unstable solution. 

Direct numerical solutions are shown by the symbol ( ' ' ). (a) 
21.25 10   , (b) 

22 10    and (c) 
32.5 10   . 
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Figure 3.18 The effect of the nonlinear absorber stiffness on the secondary system frequency 

response curves Y  as a function of  . (The ‘tuned’ frequency 0 1 1s    , nonlinear 

absorber stiffness 
410  , mass ratio 0.06   and damping 0.001s  ). The response for 

the system with the linear absorber is given by the dashed-dotted line. For the NDVA, the solid 

line is the stable solution and the dashed line gives the unstable solution. Direct numerical 

solutions are shown by the symbol ( ' ' ).(a) 
21.25 10   , (b) 

22 10    and (c) 
32.5 10   . 
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Figure 3.19 The effect for damping in the nonlinear absorber equal to 0.031   on the 

primary system frequency response curves sY  as a function of  . (The ‘tuned’ frequency 

0 1 1s    , nonlinear absorber stiffness 
410  , mass ratio 0.06   and damping 

0.001s  ). The response for the system with the linear absorber is given by the dashed-

dotted line. For the NDVA, the solid line is the stable solution and the dashed line gives the 

unstable solution.  

 

 

 

  

 

1r  2r  t  Bandwidth 

for NDVA 

Bandwidth 

for linear 

absorber 

Bandwidth improvement 

compared to a linear 

absorber (%) 
21.2 10  

0.961 1.271 1.010 0.055 0.052 6 

21.25 10  
0.961 1.265 1.010 0.055 0.052 6 

21.5 10  
0.961 1.239 1.010 0.052 0.050 4 

21.75 10  
0.961 1.221 1.010 0.049 0.046 7 

22 10  
0.961 1.207 1.010 0.046 0.042 10 

22.25 10  
0.960 1.196 1.010 0.041 0.038 7 

22.5 10  
0.960 1.188 1.010 0.035 0.032 9 

22.75 10  
0.960 1.182 1.010 0.027 0.024 14 

23 10  
0.960 1.176 1.010 0.015 0.006 150 

Table 3.3 The frequency bandwidth for the vibration reduction produced by the nonlinear 

absorber on the primary system frequency response curves of the normalized displacement sY . (

0 1  , mass ratio 0.06  , nonlinear parameter 
410   and damping 0.001s  ). 
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3.2.1 The effect of the damping ratio in the nonlinear absorber on the 

effective and resonance frequencies 

Figure 3.20 shows the effect of the damping ratio   in the attached nonlinear absorber on the 

effective tuned frequency t  and the first and second resonance frequencies 1r , 2r . One 

can observe the change in these frequencies 1r , 2r  and t  as the damping ratio   

increases. The effective tuned frequency 1r  is only slightly affected by the damping ratio  , 

1r  moving to a lower frequency. The effective tuned frequency t  is essentially constant. 

The second resonance frequency 2r  moves to lower frequencies as the damping ratio   

increases. So, the damping ratio has a much greater effect on the second resonance frequency 

2r  than on the first resonance frequency 1r  and on the effective tuned frequency t . 

 

  

Figure 3.20 The effect of the nonlinear absorber damping ratio   on the primary system 

response effective tuned frequency t  ( 'o' ), first resonance frequency 1r  ( ' ' ) and second 

resonance frequency 2r  ( ' '☆ ). ( 0 1  , nonlinear absorber stiffness 
410  , mass ratio 

0.06   and damping 0.001s  ). 
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3.3 The effect of the nonlinear absorber mass ratio ( ) 

Consider a nonlinear absorber with a reasonably high nonlinearity, i.e. the nonlinear stiffness 

parameter is 
410  , the linear tuned frequency is 1 0   and the damping ratios for the 

primary system and the absorber are 0.001s   and 0.02   respectively. For this case 

variations of the mass ratio   have been investigated. The value of mass ratio is chosen, i.e. 

0.05  , in order to produce a harmonic response at all frequencies, the amplitude of the other 

harmonics never exceeded 5% of the harmonic amplitude at the excitation frequency. The 

primary system frequency response curves of the normalized displacement sY  versus excitation 

frequency ratio   are shown in Figures 3.21(a)-(c), where the mass ratio is increased from 

0.05   to 1.0 . An unstable branch appears in between the two stable branches of the 

first resonance peak. For low values of the mass ratio, the unstable branch may be between the 

two stable branches or partially above the level of the second resonance peak. For higher values 

of the mass ratio, the unstable branch appears in between the two stable branches of the 

response level of the second resonance peak. In Figures 3.22(a)-(c), the effect of the mass ratio 

on the secondary system displacement Y  can also be observed. A corresponding unstable 

branch appears in between the two stable branches of the response level of the first resonance 

peak for the displacement of the absorber mass Y . In addition, the unstable branch is present 

between the two stable branches of the response level of the second resonance peak. 

 

In Figures 3.21(a)-(c), the vibration reduction bandwidth for the nonlinear absorber generally 

has a wider bandwidth compared to the linear absorber. Given in Table 3.4, the bandwidth is 

increased by about 14%, 10% and 1% compared to the linear absorber case for a mass ratio 

value of 05.0 , 0.06   and 1.0 , respectively. From these values it can be seen that 

for a larger mass ratio  , a smaller increase occurs in the vibration reduction bandwidth of the 

nonlinear absorber compared to the linear case; it is known that the linear absorber becomes 

more effective when its mass is higher [2]. For a linear absorber, a broader vibration reduction 

bandwidth can be achieved by adding mass to the absorber. 

 

In addition, the nonlinear behaviour will be affected, the first resonance frequency 1r  and 

second resonance frequency 2r  move to slightly lower frequencies, but the effective tuned 
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frequency t  shifts to the linear tuned frequency, i.e. 1 . In practical cases, it is not 

reasonable for the mass of the absorber to be too large because additional static loading of the 

primary system will occur. As a result, the mass ratio of absorber is typically restricted to a 

factor equivalent of about 10% or less of the original primary system mass. 

 

 

  

 
1r  2r  t  Bandwidth 

for NDVA 

Bandwidth 

for linear 

absorber 

Bandwidth improvement 

compared to a linear 

absorber (%) 

0.05 0.967 1.203 1.014 0.033 0.029 14 

0.06 0.961 1.207 1.010 0.046 0.042 10 

0.07 0.954 1.212 1.007 0.056 0.055 2 

0.08 0.948 1.217 1.006 0.066 0.064 3 

0.09 0.942 1.222 1.005 0.076 0.075 1 

0.1 0.936 1.227 1.004 0.086 0.085 1 

Table 3.4 The frequency bandwidth for the vibration reduction produced by the nonlinear 

absorber on the primary system frequency response curves of the normalized displacement sY  (

0 1  , nonlinear parameter 
410   and damping 0.001s  , 0.02  ). 
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Figure 3.21 The effect of the mass in the nonlinear absorber on the primary system frequency 

response curves sY  as a function of  . (The ‘tuned’ frequency 0 1 1s    , nonlinear 

absorber stiffness 
410   and damping 0.001s  , 0.02  ).  The response for the system 

with the linear absorber is given by the dashed-dotted line. For the NDVA, the solid line is the 

stable solution and the dashed line gives the unstable solution. Direct numerical solutions are 

shown by the symbol ( ' ' ). (a) 0.05  , (b) 0.06   and (c) 0.1  . 
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Figure 3.22 The effect of the mass in the nonlinear absorber on the second system frequency 

response curves Y  as a function of  . (The ‘tuned’ frequency 0 1 1s    , nonlinear 

absorber stiffness 
410   and damping 0.001s  , 0.02  ).  The response for the system 

with the linear absorber is given by the dashed-dotted line. For the NDVA, the solid line is the 

stable solution and the dashed line gives the unstable solution. Direct numerical solutions are 

shown by the symbol ( ' ' ). (a) 0.05  , (b) 0.06   and (c) 0.1  . 
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3.3.1 The effect of the mass ratio in the nonlinear absorber on the 

effective and resonance frequencies 

Figure 3.23 shows the change in these frequencies 1r , 2r  and t  as the mass ratio   

increases. The first resonance frequency 1r  moves to lower frequencies as the mass ratio   

increases. The effective tuned frequency t  is slightly affected by the mass ratio  , moving 

to lower frequencies. However, the second resonance frequency 2r  is affected most by the 

mass ratio  , moving to higher frequencies. 

 

  
Figure 3.23 The effect of the nonlinear absorber mass ratio   on the primary system response 

effective tuned frequency t  ( 'o' ), first resonance frequency 1r  ( ' ' ) and second 

resonance frequency 2r  ( ' '☆ ). ( 0 1  , nonlinear parameter 
410  and damping 

0.001s  , 0.02  ).  
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3.4 The effect of the linear tuned frequency of the nonlinear absorber 

(
0 ) 

In this section, the mass ratio for the nonlinear absorber to the primary system is set to be 

constant with  =0.06, the nonlinear stiffness parameter is 
-410   and the damping ratios for 

the primary system and the nonlinear absorber are 0.001s   and 0.02   respectively. The 

value of linear tuned frequency is chosen such that 0 0.97  , in order to produce a harmonic 

response at all frequencies, the amplitude of the other harmonics never exceeded 5% of the 

harmonic amplitude at the excitation frequency. The effect of the linear tuned frequency of the 

nonlinear absorber ( 0 1 s   , where 1 1k m  ) on the primary system frequency 

response curves of the normalized displacement sY  versus excitation frequency ratio   is 

shown in Figures 3.24(a)-(c). An unstable branch appears in between the two stable branches of 

the response level of the first resonance peak 1r . The unstable branch is between the two 

stable branches or partially above the level of the response level of the second resonance peak. 

The effect of the linear tuned frequency of the nonlinear absorber on the secondary system 

displacement Y  can also be observed in Figures 3.25(a)-(c). A corresponding unstable branch 

appears in between the two stable branches of the response level of the first resonance peak for 

the displacement of the absorber mass Y . In addition, the unstable branch presents between the 

two stable branches of the response level of the second resonance peak.  

 

The linear tuned frequency is increased from 0 0.97   to 0 1.1  , effectively by changing 

the value of the linear stiffness term 1k  in the absorber, producing the responses plotted shown 

in Figures 3.24(a)-(c). As shown in Table 3.5, the linear tuned frequency chosen for the 

nonlinear absorber produced a vibration reduction bandwidth which is increased by about 5%, 

10% and 8% compared to the linear absorber case for a linear tuned frequency of 0 0.97  , 

0 1.0   and 0 1.1  , respectively. The vibration reduction bandwidth of the nonlinear 

absorber is not significantly wider than the linear absorber for a value of 0 0.97  . However, 

if the linear tuned frequency of the nonlinear absorber is higher, i.e. 0 0.99  , the effective 

tuned frequency t  will occur at frequencies above the linear tuned frequency, i.e. 1t  . 

This is in contrast to the linear absorber whose maximum benefit is at or very close to 0  , 
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the linear absorber tuned frequency. It is noted that for a higher value of the linear tuned 

frequency 0 , i.e. 
0 1  , the effective bandwidth of the nonlinear absorber will be smaller 

compared to the nonlinear absorber whose linear tuned frequency is set to 0 . An optimal 

choice for the linear tuned frequency might be possible if the objective is to maximize the size 

of the vibration reduction bandwidth. 

 

0  

 

1r  2r  t  Bandwidth 

for NDVA 

Bandwidth 

for linear 

absorber 

Bandwidth improvement 

compared to a linear 

absorber (%) 

0.97 0.961 1.120 0.982 0.039 0.037 5 

1 0.961 1.207 1.010 0.046 0.042 10 

1.05 0.961 1.228 1.057 0.057 0.053 8 

1.1 0.961 1.254 1.104 0.069 0.064 8 

1.15 0.961 1.285 1.152 0.084 0.079 6 

1.2 0.961 1.321 1.200 0.101 0.095 6 

Table 3.5 The frequency bandwidth for the vibration reduction produced by the nonlinear 

absorber on the primary system frequency response curves of the normalized displacement sY

(nonlinear parameter 
410  , mass ratio 0.06   and damping 0.001s  , 0.02  ). 

The results are compared to a linear absorber with the same tuned frequency, mass ratio and 

damping parameters. 
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Figure 3.24 The effect of the tuned frequency in the nonlinear absorber on the primary system 

frequency response curves sY  as a function of  . (nonlinear absorber stiffness 
410  , 

mass ratio 0.06   and damping 0.001s  , 0.02  ). The response for the system with 

the linear absorber is given by the dashed-dotted line. For the NDVA, the solid line is the stable 

solution and the dashed line gives the unstable solution. Direct numerical solutions are shown 

by the symbol ( ' ' ). The corresponding tuned frequencies are (a) 0 0.97  , (b) 
0 1.0   and 

(c) 
0 1.2  . 
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Figure 3.25 The effect of the tuned frequency in the nonlinear absorber on the secondary system 

frequency response curves Y  as a function of  . (nonlinear absorber stiffness 
410  , mass 

ratio 0.06   and damping 0.001s  , 0.02  ). The response for the system with the 

linear absorber is given by the dashed-dotted line. For the NDVA, the solid line is the stable 

solution and the dashed line gives the unstable solution. Direct numerical solutions are shown 

by the symbol ( ' ' ).The corresponding tuned frequencies are (a) 0 0.97  , (b) 
0 1.0   and 

(c) 
0 1.2  . 
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3.4.1 Comparison of the vibration reduction bandwidth for a linear 

and nonlinear absorber at the same effective tuned frequency 

Let a nonlinear absorber be chosen with the parameters so that the reduction due to it occurs at 

1  , the vibration reduction bandwidth is then compared to the linear absorber. Consider a 

nonlinear absorber with mass ratio  =0.06, the nonlinear stiffness parameter is 
-410   and 

the damping ratios for the primary system and the absorber are 0.001s   and 0.02  , 

respectively. The linear tuned frequency for the NDVA is set to 0 0.99  , in order to compare 

the vibration reduction bandwidth of the linear and nonlinear absorber at the same effective 

tuned frequency. The primary and secondary system frequency response curves of the 

normalized displacement versus excitation frequency ratio   are shown in Figures 3.26(a)-(b). 

The nonlinear absorber produces a wider vibration reduction bandwidth around an effective 

tuned frequency equal to 1t   compared to the linear absorber case. Given in Table 3.6, the 

bandwidth is increased by about 3% compared to the linear absorber.  

 

 
  Bandwidth 

for NDVA 

Bandwidth for  

linear absorber 

Bandwidth improvement compared to a 

linear absorber (%) 

0.06 0.044 0.042 3 

Table 3.6 The frequency bandwidth for the vibration reduction produced by the nonlinear 

absorber with linear tuned frequency 0 0.99   on the primary system frequency response 

curves of the normalized displacement sY  compared to the linear absorber at the same tuned 

frequency 1   (nonlinear parameter 
410   and damping 0.001s  , 0.02  ). 
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Figure 3.26 Comparison of the linear and nonlinear absorber at the same effective tuned 

frequency on (a) the primary system frequency response curves sY  and (b) the secondary 

system frequency response curves Y  as a function of  . (nonlinear absorber stiffness 
410  , mass ratio 0.06   and damping 0.001s  , 0.02  ). The response for the 

system with the linear absorber is given by the dashed-dotted line. For the NDVA, the solid line 

is the stable solution and the dashed line gives the unstable solution. Direct numerical solutions 

are shown by the symbol ( ' ' ). 
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3.5 Conclusions 

This chapter presented numerical results based on the HBM solutions and direct numerical 

integration. The cases shown consider the effect of the nonlinear stiffness parameter ( ), the 

damping ratio (  ), the mass ratio (  ) and linear tuned frequency ( 0 ) on the vibration 

reduction. In order to produce a harmonic response at all frequencies, a limited range of values 

for the above parameters was determined. From the results, it is seen that the above-mentioned 

parameters have significant effects on the resonances, the effective tuned frequency and the 

vibration reduction bandwidth. The key results are summarized again below: 

 

The nonlinear absorber can possess a much wider effective vibration bandwidth compared to a 

conventional linear absorber. The use of the stiffness nonlinearity will greatly increase the 

attractiveness of using a passive absorber to reduce excessive vibration amplitudes to acceptable 

levels in applications where the excitation bandwidth is restricted to match the vibration 

reduction bandwidths. Compared to the linear absorber, the nonlinearity has the effect of 

shifting the second resonant peak 2r  to a higher frequency away from the effective tuned 

frequency t , improving the robustness of the device to mistune. For the linear absorber this 

can be achieved by adding mass to the absorber, so in some way the nonlinearity has the same 

beneficial effect as adding to the absorber mass.  

 

Damping could increase the stability of the harmonic response for the system in the 

neighbourhood of the vibration reduction bandwidth. In general, by adding damping for both the 

linear and nonlinear absorber, a disadvantage is that a smaller vibration reduction bandwidth is 

produced compared to lower damping. However, for lower damping in the nonlinear absorber  , 

the effective bandwidth is slightly increased compared to the linear absorber with the same level 

of damping. Large damping in the nonlinear absorber generally produces a wider frequency 

vibration reduction bandwidth compared to the linear absorber. When damping in the nonlinear 

absorber is further increased above a certain value though, there appears to be no effective 

vibration bandwidth. In addition, the second resonance frequency moves to lower frequencies as 

the damping ratio increases. The damping ratio has a much greater effect on the second 

resonance frequency than on the first resonance frequency and on the effective tuned frequency. 
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For larger mass ratios the vibration reduction bandwidth for the nonlinear absorber is not 

significantly larger than that for a linear absorber. That is because the linear absorber can also 

produce a broader vibration reduction bandwidth by adding mass to the absorber. As the mass 

ratio increases, the effective tuned frequency is slightly affected by the mass ratio, moving to 

lower frequencies. For larger mass ratios the first resonance frequency moves to lower 

frequencies and the second resonance frequency moves to higher frequencies, respectively. 

 

For the nonlinear absorber, an optimal choice for the linear tuned frequency might be possible if 

the objective is to maximize the size of the vibration reduction bandwidth. In addition, the linear 

tuned frequency of the nonlinear absorber can be adjusted to compare the linear absorber at the 

same effective tuned frequency. In this case, the nonlinear absorber has a slightly wider 

vibration reduction bandwidth compared to the linear case.  

 

For a hardening stiffness nonlinear absorber design, the limitation on the value of the nonlinear 

stiffness parameter should be identified first. In order to produce an effective vibration 

bandwidth, the limitation on the value of the damping and the mass were determined. The larger 

the damping and the heavier the mass in the nonlinear absorber, a much wider effective 

vibration bandwidth will be produced compared to using a linear absorber with the same 

damping and mass levels. 

 

Following a similar pattern, the next chapter will focus on the dynamic characteristics of a 

system with an attached nonlinear absorber system under random excitation.  
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Chapter 4   

 

 Dynamic behaviour of a  

nonlinear vibration absorber: 

  random excitation 

 

 

For harmonic excitation in chapter 2, the mathematical expressions for the frequency response 

curves of the structural system were determined using the Harmonic Balance Method. The 

effect of the nonlinear vibration absorber parameters on the vibration reduction was presented in 

chapter 3. The objective of this chapter is to investigate the vibration response of a system with 

an attached nonlinear vibration absorber under random excitation. This chapter will briefly 

introduce the statistical techniques for random linear and nonlinear signal analysis. Time and 

frequency domain techniques are used to investigate the dynamic behaviour of the nonlinear 

vibration absorber. The effect of the random input amplitude, nonlinear stiffness, damping ratio 

and mass ratio on the vibration response will be discussed.  

 

The predictions given represent the vibration response due to Gaussian broadband force input. 

The Gaussian broadband input can investigate the vibration response of multiple degree-of-

freedom systems over a wide excitation range. The time domain analysis concentrates on 

determining the basic response statistics (mean, mean square, skew and kurtosis). The time 

series are often studied by observing the system mean square response and its behaviour for a 

range of excitation bandwidths and levels.   
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The power spectral density (PSD) is also referred to as the mean square spectral density. It is a 

measure of the frequency content of the total process. The linear frequency response functions 

can be considered as estimates of the variance for the linear part of the random response. The 

majority of the nonlinear aspects of the system response can be more easily shown and 

determined in the frequency domain. Numerical simulations of the nonlinear coherence 

functions are given and provide a keen insight into a model that could present the response of 

such systems. 

 

4.1 Analysis approaches for the simulated responses  

This section briefly introduces the numerical techniques for random linear and nonlinear signal 

analysis. To investigate the performance of the nonlinear vibration absorber one can use a 

statistical analysis technique on the time domain data. The frequency domain techniques present 

an insight into the response of such systems. In order to obtain good estimates of the spectrum 

of a signal the procedure adopted uses the smoothing spectral density method [19]. 

 

4.1.1 Time domain analysis                                                                                        

The mean value (first moment) of a continuous function x is given by 

  ( )x E x xp x dx



                                                                                                           (4.1) 

where ( )p x  is the probability density function (PDF) of x. 

For a discrete sampled signal, the estimated mean value is given by 

1

1
ˆ

N

x j

j

x
N




 
  
 

                                                                                                                        (4.2) 

where 
jx  are discrete values and N  is the number of data points.  

The mean square value (second moment) of x is defined by 

2 2 2 ( )x E x x p x dx



                                                                                                        (4.3) 

For a discrete signal the equivalent estimation is the mean square value 

2 2
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 
  
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                                                                                                                       (4.4) 

The second central moment (variance) about the mean is defined by 
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   
2 22 ( )x x xE x x p x dx  





    
                                                                               (4.5) 

For a discrete signal this is 

 
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The variance can be expanded to obtain a relationship with the mean values namely 

2 2 2

x x x                                                                                                                                (4.7) 

where 2

x  is the mean square value. 

The standard deviation   (equivalent to the root mean square (rms) response for a signal with a 

zero mean) is 

2 =x x x                                                                                                                             (4.8) 

The third central moment (skew) is defined as 

3 3
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     
                                                                             (4.9) 

For a discrete signal this is 
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The skew is equal to zero for a Gaussian distribution, since it has a symmetric PDF. A  non-

symmetric PDF can have positive or negative skew.  

The fourth central moment (kurtosis) is defined as  

4 4
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x x
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     

     
                                                                         (4.11) 

For a discrete signal this is 
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                                                                                                        (4.12) 

For Gaussian random signals, the kurtosis is equal to three. For non-Gaussian systems the 

kurtosis presents positive values less or greater than three. Values higher than three corresponds 

to more peaks in the time domain of the response, whilst values lower than three corresponds to 

fewer peaks. Such systems are called leptokurtic and platykurtic respectively. 

 

The third and fourth central moments are widely used for detecting non-Gaussianity. These may 

be used to check nonlinearity, since nonlinear systems typically exhibit non-Gaussian response 
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[74]. It should be noted though that linear multi-modal systems also have a non-Gaussian 

response when excited by a broadband Gaussian input. 

 

4.1.2 Frequency domain analysis and definitions                                                                              

4.1.2.1  Time-frequency relationships 

The Fourier transform of a signal ( )x t  is defined as [74] 

 2( ) ( ) ( )j ftX f x t e dt F x t







                                                                                         (4.13) 

and the inverse Fourier transform is 

 2 1( ) ( ) ( )j ftx t X f e df F X f







                                                                                   (4.14) 

The autocorrelation function with a time separation  is 

 ( ) ( ) ( ) ( ) ( )xxR x t x t dt E x t x t  




                                                                            (4.15) 

The auto power spectral density (PSD) and autocorrelation functions are related by the Fourier 

transform pair 

2( ) ( ) j f

xx xxS f R e d  






                                                                                                    (4.16) 

2( ) ( ) j f

xx xxR S f e df 




                                                                                                      (4.17) 

 

4.1.2.2  Random time history from PSD using IFT 

For analysis conditions it is useful to generate random time histories with a prescribed PSD. The 

system responses, which are produced from the random inputs, are then presented as a set of 

response PSDs. The input random time histories were obtained from an inverse Fourier 

transform (IFT) of the complex Fourier spectrum possessing frequency domain amplitudes and 

uniformly distributed random phase angles from 0 to 2 [75]. 
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The finite Fourier transform is defined from 
nyq nyqf f f    and the Nyquist frequency is 

determined by 1 (2 )nyqf t  , where t  is a time spacing. The magnitude of the Fourier 

transform based on the prescribed PSD is determined by 

( ) ( )FFF f TS f                                                                                                               (4.18) 

where ( )FFS f is the two-sided prescribed PSD of the white noise excitation, 1T f   is the 

total time period and f  is a chosen frequency spacing. 

 

The complex form of the force spectrum is given by [74] 

( ) ( ) jF f F f e                                                                                                          (4.19)           

where ( )F f  is the spectrum of the input signal F , which is a constant for a white noise 

random excitation signal.   is the phase with uniform probability of a value in the range 0  to 

2 . 

 

The time domain input signal is subsequently determined using the inverse Fourier transform 

2( ) ( )

nyq

nyq

f

j ft

f

F t F f e df



                                                                                                       (4.20) 

 

4.1.2.3  Frequency response and coherence functions 

The estimation process for the nonlinear frequency response function (FRF) is based on the 

estimation method used for linear systems [74]. The FRF is estimated by averaging the 

appropriate auto-spectral and cross-spectral density. The FRF estimators are defined as 
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S f
                                      (4.21a,b,c) 

where ( )xxS f  is the auto-spectral density of input, ( )yyS f  is the auto-spectral density of 

output and ( )xyS f  and ( )yxS f  are the cross-spectral densities between the input and the 

output.  

 

Equation (4.21a) can only provide the result for the transfer function amplitude, whilst equation 

(4.21b,c) provide the magnitude and phase. For a linear system, the 1( )H f  estimate usually 

underestimates the FRF at resonances of the structure, but gives better estimates at the anti-

resonance frequencies than 2( )H f . On the other hand, 2( )H f is relatively unbiased at 

resonances but significantly overestimates near the anti-resonance frequencies [74]. 
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For a nonlinear system, it is known that in general a harmonic input will produce a non-

harmonic response. The latter could contain sub and super harmonics or even frequency content 

which is not related to rational orders of one excitation frequency, e.g. in systems with impacts a 

harmonic input might produce a broadband response. Thus it is likely that the nonlinear 

absorber system will display frequency spectra which are not linearly related to the input. Thus 

when using a transfer function approach, these nonlinear responses will not contribute in any of 

the linear 1H  or 2H  estimators, as potentially the responses at certain frequencies will not be 

coherent with the input at these frequencies. The 0H  estimator, that uses the spectra of the 

outputs and inputs, takes a ratio of them at each frequency. So it is an estimator of the transfer 

function, but it cannot separate out what in the frequency content of the input produces a 

particular frequency content in the output [74-76]. In some cases the inspection of the input and 

output PSDs is more insightful.  

 

The coherence function between the ideal single input and output is a real valued function that 

ranges between 0 and 1 and is defined by 

2

2
( )

( )
( ) ( )

xy

xy

xx yy

S f
f

S f S f
                                                                                                         (4.22) 

When the output is completely determined by a linear function of the input the coherence value 

is 1. Coherence values less than 1 can be exhibited when noise is present, in either of both 

signals, or when nonlinear contributions exist in the output (e.g., nonlinear response terms) [75]. 

 

4.1.3 Smoothing spectral density estimates 

The accuracy of a spectral estimation is dependent on the effective bandwidth of the estimated 

spectrum and the record length of the time history data. Normally a suitable record length and 

sampling interval for digital spectral analysis of a continuous time series is chosen with a 

Nyquist frequency 
nyqf . The time spacing can be determined by 1 (2 )nyqt f  . For good 

estimates of the spectrum of a signal it is necessary to achieve a resolution frequency

block1rf T  in the frequency range [19, 77] 

2

ˆVar( ( )) 1

( )

xx

xx e

S f

S f B T
                                                                                                             (4.23) 

where eB  is the effective bandwidth of the estimated spectrum and blockT NT is the total 
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record length of the time history data ( )x t used for the estimation. 

 

To achieve really reliable results with small variance ˆVar( ( ))xxS f  on the predicted levels of 

the spectrum, the value of eB T must be greater than 9 [19]. In order to resolve a frequency 

difference of rf , the effective bandwidth eB  should certainly not exceed rf  and preferably 

should be less.  

Suppose that one puts 2e rB f , then the required record length is at least 

9 9 18

( 2)e r r

T
B f f

     

Then, good estimates of the spectrum of a signal can be produced. 

 

4.2 Time domain simulation of the governing differential equation  

The equations of motion for the system studied in chapter 2, namely the nonlinear absorber 

attached to a single degree-of-freedom primary system are given by  

                           (4.24a,b)              

                          

It is convenient to write equations (4.24a,b) in non-dimensional form as given by 

2 3

0 02 2 ( )s s s s

s

y y y w w w B


   


                                                        (4.25a,b)    

 

where the substitutions for the non-dimensional parameters are given below. 

, , ; , ,  

, , ; , , ,  and 

 . 

 is a reference displacement which is taken as the root mean square (rms) displacement of the 

primary system in the absence of the absorber, obtained analytically for a linear system [19] as 

, where  is the stationary Gaussian process with a constant power spectral 

3

1 3( ) ( ) ( ) ( )s s s s s s s s sm x c x k x c x x k x x k x x F t        

0)()()( 3

31  xxkxxkxxcxm sss
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density for the force input around the natural frequency s  .  is the derivative with 

respect to non-dimensional time .  

 

In equations (4.25a,b), the non-dimensional terms , , , ,  and  are, 

respectively, the mass ratio, a nonlinear stiffness parameter used for the random vibration case, 

the linear damping ratio of the main system, the linear damping ratio of the NDVA, the linear 

tuned frequency ratio and the non-dimensional excitation force given by the following algebraic 

expressions: 

, , , , ,  

The non-dimensional terms , ,  and  are actually the same as those used for the 

harmonic excitation case in Chapter 3. However, the non-dimensional terms  and  are 

different from those used previously, because of the change in the reference displacement 0x . 

 

The responses in the time domain presented later were determined using direct numerical 

integration (using the MATLAB ode45 function) of the non-dimensional equations of motion. 

As some of the non-dimensional terms are identical. Then some limited comparsion with the 

response to harmonic excitation might be possible. 
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4.3 The effect of the random input amplitude  

The non-dimensional system parameters used for predictions with the model consider a mass 

ratio for the system as =0.02, a linear tuned frequency set to  and damping ratios for 

the primary system and the absorber are  and  respectively. The primary 

and secondary system physical parameter values are set to , 

, , , 

  and , respectively. 

For this case variations of the input amplitude have been investigated. It is noted that the non-

dimensional parameter  will be affected by input amplitude  

 

The data record length was 40.96 s with a sample rate of 800 Hz (with a Nyquist frequency of 

400 Hz). The system was excited using a flat white noise random input from 50 to 250 Hz. The 

input data was obtained using an equivalent Fourier Transform of the PSD spectrum magnitude 

( )F f  with random phase angles for each frequency point (see section 4.1.2). The spectrum 

was zero padded above the maximum input frequency to 400 Hz to ensure a smooth time history 

that could be linearly interpolated while running the ODE solver. A 1.28s time record with a 

corresponding 0.78 Hz frequency spacing was used. The Inverse Fourier Transform of this 

spectrum can be calculated to yield time domain records for the random input. 

 

For the time domain analysis, the basic response statistics (mean, variance, mean square, skew 

and kurtosis) have been determined. The dynamic response for the system is described by 

Equations (4.26a,b). The vibration response of a typical input force and corresponding system 

are presented in Figures 4.1(a)-(c). 

 

Consider the sample data from Figures 4.1(b)-(c), which is used to estimate the mean, variance, 

mean square, skew and kurtosis using the formulae in section 4.1.1. In Table 4.1-2 the 

displacement response statistics of the primary and secondary system show that the behaviour of 

the nonlinear system is different compared to the linear absorber case, exhibiting a kurtosis 

value less than 3. In Table 4.3, the mean square displacement of the primary system without an 

absorber 
0

2

x  is produced by numerical simulation for variations of the input amplitude. The 

mean square displacement of the primary system without an absorber 
0

2

x is taken as the value 

for evaluating the nondimensional mean square displacement of the primary and absorber 

 0 1 

0.01s  0.008 
1=1.26 10  (kg)sm 

=2.12 ( N s m)sc   4=8.93 10   N msk  3=2.52 10  (kg)m 

2=3.4 10  ( N s m)c    3

1=1.79 10  N mk   9 3

3=8.93 10  N mk 


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system for the linear and nonlinear systems, i.e. 
0

2 2 2=
s sy x x    and 

0

2 2 2=y x x   , respectively. 

The linear and nonlinear absorbers produce a lower mean square primary system displacement 

compared to the primary system without an absorber, i.e. 2 < 1
sy . In Table 4.3 and Figure 4.2(a), 

the difference between the vibration response using the linear and nonlinear absorber is 

observed in that the mean square primary system displacement for the nonlinear absorber is not 

the same as the linear absorber case. The mean square primary system displacement for the 

nonlinear absorber is higher compared to the linear absorber case for a force amplitude 

0.1F  . It can also be observed that the displacement primary system PSD of the nonlinear 

absorber is much higher than the linear absorber at the first mode shown in Figure 4.4. This is in 

agreement in that the displacement PSD of the primary system for the first mode is the main 

contribution in the mean square response. The cumulative mean square displacement of primary 

system for the nonlinear absorber is also higher when using the linear absorber in Figure 4.6. In 

Figure 4.2(b), the mean square secondary system displacement response using the nonlinear 

absorber is lower compared to the linear absorber case. 

 

In Figure 4.3(a), the standard deviation of the primary system displacement with an attached 

nonlinear absorber does not present a linear increase for a linear increase in the input rms force. 

The displacement response exhibits a nonlinear behaviour due to the nonlinear absorber. In 

addition, for the nonlinear absorber there is a higher standard deviation for the primary system 

displacement compared to the linear absorber case for a force amplitude 0.1F  . In Figure 

4.3(b), the standard deviation for the absorber system displacement for the nonlinear absorber is 

lower compared to the linear absorber case i.e. the response of the absorber mass is reduced 

relative to the linear absorber case. 

 

For some range of non-dimensional parameters for the nonlinear absorber under random 

excitation, when increasing the force input magnitude there is a higher increase in the primary 

system response with a corresponding smaller than the input increase in the absorber system 

response, i.e. a negative effect when considering vibration control. 
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Input 

force 

Linear absorber Nonlinear absorber 

F  

(N) 
sx ( )m  2

sx
2( )m  

sx  
sx  

sx ( )m  2

sx
2( )m  

sx  
sx  

0.1 101.0 10  
-113.0 10  

3-1.1 10  3 118.5 10  
-113.1 10  

3-2.1 10  3.1 

0.3 104.1 10  
-102.9 10  

3-1.1 10  3 104.8 10   
-103.6 10  

4-6.9 10  3.1 

0.5 105.1 10  
-108.0 10  

3-1.2 10  3 101.5 10   
-91.1 10  

-44.4 10  3.1 

0.7 103.3 10  
-91.6 10  

3-1.1 10  3 107.8 10  
-92.4 10  

-41.6 10  3.3 

0.9 105.5 10  
-92.6 10  

3-1.1 10  3 101.2 10  
-94.0 10  

54.0 10  3.4 

1 101.0 10  
-93.2 10  

3-1.2 10  3 105.2 10   
-95.0 10  

52.7 10  3.4 

1.1 91.2 10  
-93.8 10  

3-1.2 10  3 91.0 10   
-96.2 10  

5-1.8 10  3.3 

1.3 108.6 10  
-95.4 10  

3-1.1 10  3 103.4 10   
-98.6 10  

56.1 10  3.1 

1.5 91.2 10  
-97.2 10  

3-1.1 10  3 109.7 10   
-81.2 10  

42.3 10  3.1 

1.7 92.3 10  
-99.2 10  

3-1.2 10  3 91.6 10   
-81.6 10  

4-4.5 10  3.1 

1.9 91.9 10  
-81.1 10  

3-1.1 10  3 91.4 10   
-81.9 10  

43.1 10  3.1 

Table 4.1 The effect of the random input force amplitude on the mean, mean square, skewness 

and kurtosis of the displacement response of the primary system. ( 1=1.26 10  (kg)sm  , 

=2.12 ( N s m)sc  ,  4=8.93 10   N msk  , 
3=2.52 10  (kg)m  , 

2=3.4 10  ( N s m)c    

 3

1=1.79 10  N mk   and  9 3

3=8.93 10  N mk  ) 

Input 

force 

Linear absorber Nonlinear absorber 

F  

(N) 
x ( )m  

2

x 2( )m  x  x  x ( )m  
2

x 2( )m  x  x  

0.1 -101.2 10   
-91.5 10  

53.6 10  3 -103.6 10   
-91.5 10  

5-2.0 10  3.1 

0.3 -106.2 10   
-81.4 10  

52.4 10  3 -95.9 10  
-81.2 10  

41.8 10  2.7 

0.5 -106.1 10   
-84.0 10  

52.3 10  3 -97.2 10  
-82.6 10  

-59.0 10  2.5 

0.7 -91.3 10   
-87.9 10  

52.7 10  3 -92.5 10   
-84.1 10  

4-3.4 10  2.5 

0.9 -91.9 10   
-71.3 10  

52.5 10  3 -92.5 10   
-85.4 10  

46.8 10  2.5 

1 92.5 10   
-71.6 10  

53.4 10  3 99.6 10  
-86.0 10  

4-4.3 10  2.5 

1.1 92.7 10   
-71.9 10  

52.4 10  3 81.5 10   
-86.8 10  

41.7 10  2.5 

1.3 93.3 10   
-72.7 10  

52.5 10  3 83.2 10  
-88.2 10  

4-5.9 10  2.4 

1.5 94.1 10   
-73.6 10  

53.0 10  3 82.6 10   
-89.8 10  

4-5.3 10  2.4 

1.7 92.3 10   
-74.7 10  

52.8 10  3 95.2 10  
-71.1 10  

47.9 10  2.4 

1.9 93.5 10   
-75.8 10  

53.4 10  3 -83.9 10  
-71.3 10  

46.6 10  2.4 

Table 4.2 The effect of the random input force amplitude on the mean, mean square, skewness 

and kurtosis of the displacement response of the secondary system (absorber mass). 

( 1=1.26 10  (kg)sm  , =2.12 ( N s m)sc  ,  4=8.93 10   N msk  , 
3=2.52 10  (kg)m  , 

2=3.4 10  ( N s m)c     3

1=1.79 10  N mk   and  9 3

3=8.93 10  N mk 
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Input 

force 

Input 

force 

Nonlinear 

stiffness 

The primary system 

without absorber 

Nondimensional response  

Linear absorber Nonlinear 

absorber 

F  (N) B    
0

2

x 2( )m  
2

sy  2

y  2

sy  2

y  

0.1 0.14 42.9 10  
-115.37 10  0.56 27.9 0.58 27.9 

0.3 0.14 32.8 10  
-105.11 10  0.57 27.4 0.71 23.5 

0.5 0.14 37.8 10  
-91.42 10  0.56 28.2 0.78 18.3 

0.7 0.14 21.5 10  
-92.79 10  0.57 28.3 0.86 14.7 

0.9 0.14 22.5 10  
-94.59 10  0.57 28.3 0.87 11.8 

1 0.14 23.1 10  
-95.64 10  0.57 28.4 0.89 10.6 

1.1 0.14 23.8 10  
-96.84 10  0.56 27.8 0.91 9.9 

1.3 0.14 25.2 10  
-99.61 10  0.56 28.1 0.90 8.5 

1.5 0.14 27.0 10  
-81.28 10  0.56 28.1 0.94 7.7 

1.7 0.14 29.0 10  
-81.64 10  0.56 28.7 0.98 6.7 

1.9 0.14 21.1 10  
-82.04 10  0.54 28.4 0.93 6.4 

Table 4.3 The effect of the random input force amplitude on the response of the primary system. 

0

2

x  is mean square displacement of the primary system without absorber. (
0 1  , mass ratio 

0.02   and damping 0.01s   and 0.008  ), where 
0F sB k x , 

0

2

0 xx  . 
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Figure 4.1 The vibration response of time history for signals whose rms force amplitude are 1 

N . (a) input random excitation (b) primary system (c) secondary system 
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Figure 4.2 The effect of the input rms force amplitude 
F  on the (a) primary and (b) absorber 

system mean square displacement response. Nonlinear absorber ( 'o' ) and linear absorber ( ' ' ). 

(
0 1  ,mass ratio 0.02   and damping 0.01s   and 0.008  ). 
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Figure 4.3 The effect of the input rms force amplitude 
F  on the (a) primary and (b) absorber 

system displacement standard deviation. Nonlinear absorber ( 'o' ) and linear absorber ( ' ' ). (

0 1  ,mass ratio 0.02   and damping 0.01s   and 0.008  ). 
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The nonlinear aspects of the system response are readily shown and considered in the frequency 

domain. The PSD, frequency response function (FRF) and coherence will help to identify the 

response of the nonlinear system. The methods used to estimate the FRFs are the standard 

estimated methods [74], which as stated previously are strictly only applicable to linear system 

behaviour. 

 

The displacement spectral density functions (PSD) for the primary and secondary system are 

presented in Figures 4.4-5. The sample size chosen for the PSD estimates was 1.28 s, which 

resulted in a frequency resolution f
 
of 0.78 Hz. The PSD estimates were made using a 

Hanning window, 67% overlap of the windowed data [78] and a sample rate of 800 Hz resulting 

in 1024 points for the FFT and 512 frequency domain points. A frequency resolution of 0.78 Hz 

was chosen as a compromise between the number of averages and frequency resolution (see 

Section 4.1.3). In this case, the number of averages was chosen to be 32. 

 

The dynamic performance of the primary system employing the nonlinear absorbers is evaluated 

through the PSD characteristics of the system response. The effect of the input force amplitude 

on the primary and secondary system PSD response versus excitation frequency can be 

evaluated for various levels of input force as shown in Figures 4.4-5. A difference between the 

vibration response due to the linear and the nonlinear absorber is that the nonlinear absorber has 

a higher response at the first mode. The cumulative displacement for primary system, by 

integrating the PSD, with a nonlinear absorber also shows a final higher response than when a 

linear absorber is used, see Figure 4.6. For the nonlinear absorber the high force amplitude 

applied to the primary system produced a much broader PSD for the primary and secondary 

response at the second mode and produces a larger vibration response at higher frequencies. The 

reason for this could be possibly due to the nonlinear stiffness effect. It shows a nonlinear effect 

as the amplitude of the force input is changed compared to the linear absorber case.  
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Figure 4.4 The effect of the input force amplitude on the primary system displacement PSD. 

(The ‘tuned’ frequency 
1 1s   , mass ratio 0.02   and damping 0.01s  , 0.008  ). 

The response for the system with the linear absorber is given by the dashed-dotted line, the solid 

line is the nonlinear absorber. (a) 0.3 (N)F  , (b) 0.5 (N)F   and (c) 1.0 (N)F  . 
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Figure 4.5 The effect of the input force amplitude on the secondary system (absorber) 

displacement PSD. (The ‘tuned’ frequency 
1 1s   , mass ratio 0.02   and damping 

0.01s  , 0.008  ). The response for the system with the linear absorber is given by the 

dashed-dotted line, the solid line is the nonlinear absorber. (a) 0.3 (N)F  , (b) 

0.5 (N)F   and (c) 1.0 (N)F  . 
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Figure 4.6 The effect of the input force amplitude on the primary system cumulative mean 

square displacement. (The ‘tuned’ frequency 
1 1s   , mass ratio 0.02   and damping 

0.01s  , 0.008  ). The response for the system with the linear absorber is given by the 

dashed-dotted line, the solid line is the nonlinear absorber. (a) 0.3 (N)F  , (b) 

0.5 (N)F   and (c) 1.0 (N)F  . 
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Figure 4.7 The effect of the input force amplitude on the secondary system (absorber) 

cumulative mean square displacement. (The ‘tuned’ frequency 
1 1s   , mass ratio 0.02   

and damping 0.01s  , 0.008  ). The response for the system with the linear absorber is 

given by the dashed-dotted line, the solid line is the nonlinear absorber. (a) 0.3 (N)F  , (b) 

0.5 (N)F   and (c) 1.0 (N)F  . 
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In Figures 4.8-9, the estimated displacement FRF of the primary and secondary system (
0H ) is 

given for an applied input force amplitude. The 
0H  estimator, that uses the spectra of the 

outputs and inputs, takes a ratio of them at each frequency to determine the effect of 

nonlinearity. However, a limitation of the 
0H  estimator is that it cannot separate out what in the 

frequency content of the input process produces a particular frequency content in the output. 

The effect on the displacement response of the primary system is to shift the first resonance 

peak 
1r , the effective tuned frequency 

t  and the second resonance peak 
2r  to higher 

frequencies. The effect of the nonlinearity on the secondary displacement response is also to 

shift the first resonance peak 
1r  and the second resonance peak 

2r  to the right. The 

nonlinear absorber has a higher vibration response at the first mode compared to using a linear 

absorber. The primary system responded over a much broader frequency response. The response 

at the second mode produces a vibration response across a wider and higher frequency range. It 

shows a nonlinear effect compared to the linear absorber case. For higher input levels of the 

force, the second peak at 
2r  of the primary system does not obviously exhibit a resonance or 

peak response compared to a lower input force.  

 

The estimated displacement FRFs of the system (
1H  and 

2H ) are given in Figures 4.10-11 and 

4.12-13. The definitions of 1 xy xxH S S  and 2 yy yxH S S  were described in section 4.1.2. 

However, the nonlinear absorber system will display frequency spectra which are not linearly 

related to the input. The nonlinear responses will not contribute in any of the 
1H  or 

2H  

estimators, as potentially the response at certain frequencies will not be coherent with the input 

at these frequencies. It shows a nonlinear effect compared to the linear absorber case. In 

addition, the corresponding phase information for the transfer function (
1H ) are shown in 

Figures 4.14-15. The effect of the primary and secondary system is to shift the first resonance, 

the effective tuned frequency and the second resonance peak to higher frequencies. For higher 

input force levels, the second resonance peak of the primary system will be reduced in 

amplitude compared to lower input force, but a broadening of the frequency content also occurs. 

 

The coherence functions in Figures 4.16-17 show that the transfer functions calculated are able 

to account for almost of the response for the linear absorber. However, the response with a  

nonlinear absorber does not fair as well, which results from significant nonlinear response 
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behaviour as expected in the simulated output data. The coherence for the responses with a 

linear absorber for a lightly damped system do not produce good values at the resonances and 

effective tuned frequencies due to bias errors. The bias error can be reduced by improving the 

resolution of the FRF estimates, i.e. the frequency resolution bandwidth should be reduced 

which requires more time history data [74]. 
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Figure 4.8 The effect of the input force amplitude on the primary system frequency response 

(
0H  estimator). (The ‘tuned’ frequency 

1 1s   , mass ratio 0.02   and damping 

0.01s  , 0.008  ). The response for the system with the linear absorber is given by the 

dashed-dotted line, the solid line is the nonlinear absorber. (a) 0.3 (N)F  , (b) 

0.5 (N)F   and (c) 1.0 (N)F  . 

2r

1r

t

50 100 150 200 250
10

-6

10
-5

10
-4

10
-3

 

 

50 100 150 200 250
10

-6

10
-5

10
-4

10
-3

 

 

(b) 

3

0.5 (N),

7.8 10

F

 



 
 

0  

m
( )

N

s sx x

FF

S
H

S


 

0  

m
( )

N

s sx x

FF

S
H

S


 3

0.3 (N),

2.8 10

F

 



 
 

(a) 

0  

m
( )

N

s sx x

FF

S
H

S


 
2

1.0 (N),

3.1 10

F

 



 
 

(c) 

Frequency (Hz) 



   

113 

 

  

  

  
 

Figure 4.9 The effect of the input force amplitude on the secondary system (absorber) frequency 

response (
0H  estimator). (The ‘tuned’ frequency 

1 1s   , mass ratio 0.02   and damping 

0.01s  , 0.008  ). The response for the system with the linear absorber is given by the 

dashed-dotted line, the solid line is the nonlinear absorber. (a) 0.3 (N)F  , (b) 

0.5 (N)F   and (c) 1.0 (N)F  . 
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Figure 4.10 The effect of the input force amplitude on the primary system frequency response 

(
1H  estimator). (The ‘tuned’ frequency 

1 1s   , mass ratio 0.02   and damping 

0.01s  , 0.008  ). The response for the system with the linear absorber is given by the 

dashed-dotted line, the solid line is the nonlinear absorber. (a) 0.3 (N)F  , (b) 

0.5 (N)F   and (c) 1.0 (N)F  . 
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Figure 4.11 The effect of the input force amplitude on the secondary system (absorber) 

frequency response (
1H  estimator). (The ‘tuned’ frequency 

1 1s   , mass ratio 0.02   

and damping 0.01s  , 0.008  ). The response for the system with the linear absorber is 

given by the dashed-dotted line, the solid line is the nonlinear absorber. (a) 0.3 (N)F  , (b) 

0.5 (N)F   and (c) 1.0 (N)F  . 
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Figure 4.12 The effect of the input force amplitude on the primary system frequency response 

(
2H  estimator). (The ‘tuned’ frequency 

1 1s   , mass ratio 0.02   and damping 

0.01s  , 0.008  ). The response for the system with the linear absorber is given by the 

dashed-dotted line, the solid line is the nonlinear absorber. (a) 0.3 (N)F  , (b) 

0.5 (N)F   and (c) 1.0 (N)F  . 
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Figure 4.13 The effect of the input force amplitude on the secondary system (absorber) 

frequency response (
2H  estimator). (The ‘tuned’ frequency 

1 1s   , mass ratio 0.02   

and damping 0.01s  , 0.008  ). The response for the system with the linear absorber is 

given by the dashed-dotted line, the solid line is the nonlinear absorber. (a) 0.3 (N)F  , (b) 

0.5 (N)F   and (c) 1.0 (N)F  . 

50 100 150 200 250
10

-6

10
-5

10
-4

10
-3

10
-2

 

 

50 100 150 200 250
10

-6

10
-5

10
-4

10
-3

10
-2

 

 

50 100 150 200 250
10

-6

10
-5

10
-4

10
-3

10
-2

 

 

(b) 

3

0.5 (N),

7.8 10

F

 



 
 

2  

m
( )

N

xx

xF

S
H

S


 

2  

m
( )

N

xx

xF

S
H

S


 3

0.3 (N),

2.8 10

F

 



 
 

(a) 

2  

m
( )

N

xx

xF

S
H

S


 

2

1.0 (N),

3.1 10

F

 



 
 

(c) 

Frequency (Hz) 



 

118 

 

  

  

  
 

Figure 4.14 The effect of the input force amplitude on the primary system showing the phase of 

the frequency response (
1H  estimator). (The ‘tuned’ frequency 

1 1s   , mass ratio 

0.02   and damping 0.01s  , 0.008  ). The response for the system with the linear 

absorber is given by the dashed-dotted line, the solid line is the nonlinear absorber. (a)

0.3 (N)F  , (b) 0.5 (N)F   and (c) 1.0 (N)F  . 
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Figure 4.15 The effect of the input force amplitude on the secondary system (absorber) showing 

the phase of the frequency response (
1H  estimator). (The ‘tuned’ frequency 

1 1s   , mass 

ratio 0.02   and damping 0.01s  , 0.008  ). The response for the system with the linear 

absorber is given by the dashed-dotted line, the solid line is the nonlinear absorber. (a)

0.3 (N)F  , (b) 0.5 (N)F   and (c) 1.0 (N)F  . 
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Figure 4.16 The effect of the input force amplitude on the primary system displacement and  the 

coherence of the frequency response. (The ‘tuned’ frequency 
1 1s   , mass ratio 0.02   

and damping 0.01s  , 0.008  ). The response for the system with the linear absorber is 

given by the dashed-dotted line, the solid line is the nonlinear absorber. (a) 0.3 (N)F  , (b) 

0.5 (N)F   and (c) 1.0 (N)F  . 

50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) 

3

0.5 (N),

7.8 10

F

 



 
 Coherence 

Coherence 3

0.3 (N),

2.8 10

F

 



 
 

(a) 

Coherence 2

1.0 (N),

3.1 10

F

 



 
 

(c) 

Frequency (Hz) 



   

121 

 

  

  

  
 

Figure 4.17 The effect of the input force amplitude on the secondary system (absorber) 

displacement and the coherence of the frequency response. (The ‘tuned’ frequency 
1 1s   , 

mass ratio 0.02   and damping 0.01s  , 0.008  ). The response for the system with the 

linear absorber is given by the dashed-dotted line, the solid line is the nonlinear absorber. (a)

0.3 (N)F  , (b) 0.5 (N)F   and (c) 1.0 (N)F  . 
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4.4 The effect of the nonlinear stiffness parameter ( ) 

In this section the mass ratio for the nonlinear absorber to the primary system is  =0.02, the 

linear tuned frequency is 
0 1   and the damping ratios for the primary system and the 

nonlinear absorber are 0.01s   and 0.008  , respectively. The primary and secondary 

system parameters are set to 
1=1.26 10  (kg)sm  , =2.12 ( N s m)sc  , 

4=8.93 10sk 

 N m , 
3=2.52 10  (kg)m  , 

2=3.4 10  ( N s m)c    and  3

1=1.79 10  N mk  , 

respectively. Variations of the nonlinear stiffness parameter ( ) have been investigated and a 

summary of the response statistics presented in Tables 4.4-5. The displacement response of the 

primary and secondary system show the nonlinear behaviour of the system resulted in a kurtosis 

value less than 3. The mean square displacement of the primary system without absorber 
0

2

x  is 

evaluated by numerical simulation as 
-9 21.42 10  ( )m . In Table 4.4 and Figure 4.18(a), for a 

low nonlinear stiffness parameter 
57.8 10   , the nonlinear absorber produces the same 

mean square primary system displacement compared to the linear absorber. For high nonlinear 

absorber stiffness, the nonlinear absorber produces a higher mean square primary system 

displacement compared to the linear absorber case. In addition, for high nonlinear absorber 

stiffness, the primary system displacement PSD of the nonlinear absorber is much higher 

compared to the linear case at the first mode, as shown in Figure 4.19. The cumulative mean 

square displacement of the primary system when using the nonlinear absorber also shows much 

higher responses compared to using a linear absorber in Figure 4.21. In Table 4.5 and Figure 

4.18(b), the mean square secondary system (absorber mass) displacement for the nonlinear 

absorber mass is lower than in the case of the linear absorber. This again appears to be a 

detrimental effect for increased values for the nonlinear stiffness in the absorber.  
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nonlinear parameter Nonlinear absorber 

    3

3  N mk  
sx ( )m  

2

sx 2( )m  
sx  

sx  Nondimensional 

response 
2

sy  

0 (linear case) 0 105.1 10  
-108.0 10  

31.2 10   3 0.56 

57.8 10  
78.93 10  

104.3 10  
-108.0 10  

31.5 10   3 0.57 
43.9 10  

84.47 10  
101.7 10  

-108.2 10  
32.1 10   3.1 0.58 

47.8 10  
88.93 10  

102.2 10   
-108.4 10  

32.4 10   3.1 0.59 
33.9 10  

94.47 10  
103.5 10   

-91.0 10  
45.4 10   3.1 0.73 

37.8 10  
98.93 10  

101.5 10   
-91.1 10  

44.4 10  3.1 0.80 
23.9 10  

104.47 10  
101.8 10  

-91.3 10  
42.5 10   3.2 0.91 

27.8 10  
108.93 10  

117.9 10  
-91.3 10  

42.1 10  3.1 0.94 
13.9 10  

114.47 10  
104.8 10   

-91.4 10  
45.6 10  3 0.98 

17.8 10  
118.93 10  

-106.0 10   
-91.4 10  

55.2 10  3 0.98 

Table 4.4 The effect of the nonlinear stiffness parameter on the mean, mean square, skewness 

and kurtosis of the displacement response of the primary system. The random input rms force 

amplitude is 0.5 N. The mean square displacement of the primary system without absorber is 
-9 21.42 10  m . (

0 1  , mass ratio 0.02   and damping 0.01s   and 0.008  ), 

where 
2

3 0 sk x k  . 

 

 

nonlinear parameter Nonlinear absorber 
    3

3  N mk  x ( )m  2

x 2( )m  
sx  

sx  Nondimensional 

response 
2

y  

0 (linear case) 0 106.1 10   
-84.0 10  

52.3 10  3 28.5 

57.8 10  
78.93 10  

91.3 10   
-84.0 10  

54.9 10  3 28.5 
43.9 10  

84.47 10  
119 10  

-84.0 10  
54.6 10  3 27.9 

47.8 10  
88.93 10  

95.3 10  
-83.9 10  

55.1 10  2.9 27.0 
33.9 10  

94.47 10  
92.9 10  

-83.2 10  
42.9 10  2.6 22.3 

37.8 10  
98.93 10  

97.2 10  
-82.6 10  

59.0 10  2.5 18.5 
23.9 10  

104.47 10  
96.3 10  

-81.4 10  
45.3 10   2.4 9.93 

27.8 10  
108.93 10  

93.4 10   
-81.1 10  

41.8 10  2.4 7.39 
13.9 10  

114.47 10  
81.6 10  

-95.5 10  
33.2 10   2.5 3.87 

17.8 10  
118.93 10  

83.9 10  
-94.4 10  

32.6 10   2.6 3.11 

Table 4.5 The effect of the nonlinear stiffness parameter on the mean, mean square, skewness 

and kurtosis of the displacement response of the secondary system (absorber mass). The random 

input rms force amplitude is 0.5 N. The mean square displacement of the primary system 

without absorber is 
-9 21.42 10  m . (

0 1  , mass ratio 0.02   and damping 0.01s   

and 0.008  ), where 
2

3 0 sk x k  . 
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Figure 4.18 The effect of the nonlinear stiffness   on the (a) primary and (b) absorber system 

mean square displacement response. The random input rms force amplitude is 0.5 N. Nonlinear 

absorber ( 'o' ) and linear absorber ( ' ' ). (
0 1  , mass ratio 0.02   and damping 

0.01s   and 0.008  ), where 
2

3 0 sk x k  . 
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The effect of the nonlinear stiffness parameter on the primary and secondary system 

displacement response PSD versus excitation frequency is illustrated in Figures 4.19-20, where 

the nonlinear absorber stiffness parameter is increased from 
47.8 10   to 

27.8 10   . 

For high nonlinear absorber stiffness, the nonlinear absorber produces a higher displacement 

response PSD in the primary system in the first mode compared to the linear absorber case seen 

in Figure 4.19. The cumulative displacement of the primary system using the nonlinear absorber 

is higher than the linear absorber, see Figure 4.21. The nonlinear absorber also produces a 

broader PSD for the primary and secondary system responses at the second mode and produces 

a vibration response at higher frequencies. It shows the nonlinear effect compared to the linear 

absorber case. For higher nonlinear stiffness, the second mode of the primary system does not 

obviously exhibit a resonance or peak response compared to the lower nonlinear stiffness case. 

These findings are similar to the vibration response for different input force amplitudes. In 

Figure 4.20 the effect on the increased nonlinearity on the absorber system mass displacement 

response PSD is to reduce it in the frequency region around the first mode. The cumulative 

displacement secondary system using the nonlinear absorber is lower than using the linear 

absorber in Figure 4.22. 
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Figure 4.19 The effect of the nonlinear absorber stiffness on the primary system displacement 

PSD. The random input rms force amplitude is 0.5 N. (The ‘tuned’ frequency 
1 1s   , mass 

ratio 0.02   and damping 0.01s  , 0.008  ). The response for the system with the linear 

absorber is given by the dashed-dotted line, the solid line is the nonlinear absorber. (a)
47.8 10   , (b) 

37.8 10    and (c) 
27.8 10   , where 

2

3 0 sk x k  . 
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Figure 4.20 The effect of the nonlinear absorber stiffness on the secondary system displacement 

PSD. The random input rms force amplitude is 0.5 N. (The ‘tuned’ frequency 
1 1s   , mass 

ratio 0.02   and damping 0.01s  , 0.008  ). The response for the system with the linear 

absorber is given by the dashed-dotted line, the solid line is the nonlinear absorber. (a)
47.8 10   , (b) 

37.8 10    and (c) 
27.8 10   , where 

2

3 0 sk x k  . 
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Figure 4.21 The effect of the nonlinear absorber stiffness on the primary system cumulative 

mean square displacement. The random input rms force amplitude is 0.5 N. (The ‘tuned’ 

frequency 
1 1s   , mass ratio 0.02   and damping 0.01s  , 0.008  ). The response 

for the system with the linear absorber is given by the dashed-dotted line, the solid line is the 

nonlinear absorber. (a)
47.8 10   , (b) 

37.8 10    and (c) 
27.8 10   , where 

2

3 0 sk x k  . 
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Figure 4.22 The effect of the nonlinear absorber stiffness on the secondary system cumulative 

mean square displacement. The random input rms force amplitude is 0.5 N. (The ‘tuned’ 

frequency 
1 1s   , mass ratio 0.02   and damping 0.01s  , 0.008  ). The response 

for the system with the linear absorber is given by the dashed-dotted line, the solid line is the 

nonlinear absorber. (a)
47.8 10   , (b) 

37.8 10    and (c) 
27.8 10   , where 

2

3 0 sk x k  . 
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4.5 The effect of the level of damping ( ) in the nonlinear absorber 

The non-dimensional system parameters where chosen with the mass ratio for the nonlinear 

vibration absorber to the primary system low, e.g.  =0.02, the nonlinear stiffness parameter 

37.8 10   , the linear tuned frequency 
0 1   and a damping ratio for the primary system 

0.01s  . The corresponding physical parameters of the primary and secondary system are set 

to 
1=1.26 10  (kg)sm  , =2.12 ( N s m)sc  , 

4=8.93 10sk   N m , 
3=2.52 10  (kg)m  , 

 3

1=1.79 10  N mk   and 
9

3=8.93 10k    3N m , respectively. It is useful to consider the 

response sensitivity to the level of absorber damping given by the value of the parameter  .  

 

In Table 4.6, the difference seen between the vibration response due to the linear and the 

nonlinear absorber is that the nonlinear absorber produces a higher mean square primary system 

displacement. On increasing the absorber damping, the primary system has a higher mean 

square displacement with a nonlinear absorber attached compared to the linear absorber case, as 

plotted in Figure 4.23(a). In Table 4.7 and Figure 4.23(b), the mean square displacement of the 

secondary system for the nonlinear absorber remains lower for all damping values considered in 

the nonlinear absorber compared to the linear absorber case. 
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Damping Linear absorber 

   ( N s m)c   
sx ( )m  

2

sx 2( )m  
sx  

sx  Nondimensional 

response 
2

sy  

0.002 38.49 10  
-101.5 10  

-91.2 10  
49.0 10   3 0.85 

0.004 21.70 10  
-105.9 10  

-91.0 10  
49.0 10   3 0.70 

0.005 22.12 10  
-105.5 10  

-109.5 10  
31.0 10   3 0.67 

0.008 23.40 10  
-105.1 10  

-108.0 10  
31.2 10   3 0.56 

0.012 25.09 10  
-107.6 10  

-106.6 10  
31.4 10   3 0.47 

0.016 26.79 10  
-105.9 10  

-105.7 10  
31.6 10   3 0.40 

0.020 28.49 10  
-101.2 10  

-105.1 10  
31.7 10   3 0.36 

0.024 11.02 10  
-101.1 10   

-104.6 10  
32.1 10   3 0.32 

0.028 11.19 10  
117.4 10  

-104.3 10  
32.1 10   3 0.30 

0.032 11.36 10  
-101.2 10   

-104.0 10  
32.4 10   3 0.28 

 

Damping Nonlinear absorber 

   ( N s m)c   
sx ( )m  

2

sx 2( )m  
sx  

sx  Nondimensional 

response 
2

sy  

0.002 38.49 10  
-103.2 10  

-91.4 10  
41.6 10  3.1 0.99 

0.004 21.70 10  
-129.0 10   

-91.3 10  
43.6 10  3.1 0.92 

0.005 22.12 10  
-102.4 10   

-91.2 10  
44.3 10  3.2 0.85 

0.008 23.40 10  
-101.5 10   

-91.1 10  
-44.4 10  3.1 0.78 

0.012 25.09 10  
-101.8 10   

-91.0 10  
43.5 10  3.2 0.70 

0.016 26.79 10  
-102.6 10  

-109.2 10  
51.9 10  3.3 0.65 

0.020 28.49 10  
-101.6 10  

-108.3 10  
44.2 10   3.4 0.59 

0.024 11.02 10  
-105.3 10   

-107.6 10  
47.0 10   3.4 0.54 

0.028 11.19 10  
-104.6 10   

-107.0 10  
49.1 10   3.4 0.49 

0.032 11.36 10  
-101.3 10   

-106.5 10  
31.1 10   3.4 0.46 

Table 4.6 The effect of the damping on the mean, mean square, skewness and kurtosis of the 

displacement response of the primary system. The random input rms force amplitude is 0.5 N. 

The mean square displacement of the primary system without absorber is 
-9 21.56 10  m . (

0 1  , nonlinear absorber stiffness 
37.8 10   , mass ratio 0.02   and damping 

0.01s  ). 
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Damping Linear absorber 

   ( N s m)c   
x ( )m  2

x 2( )m  sx  
sx  Nondimensional 

response 2

y  

0.002 38.49 10  
93.2 10   

-86.1 10  
57.5 10  3 43.0 

0.004 21.70 10  
91.9 10   

-85.2 10  
57.8 10  3 36.6 

0.005 22.12 10  
92.2 10   

-84.9 10  
57.8 10  3 34.5 

0.008 23.40 10  
106.1 10   

-84.0 10  
52.3 10  3 28.2 

0.012 25.09 10  
101.2 10   

-83.3 10  
65.2 10  3 23.2 

0.016 26.79 10  
91.6 10  

-82.8 10  
68.9 10  3.1 19.7 

0.02 28.49 10  
91.5 10  

-82.4 10  
51.2 10   3.1 16.9 

0.024 11.02 10  
-91.8 10  

-82.1 10  
53.1 10   3.1 14.8 

0.028 11.19 10  
91.6 10  

-81.9 10  
51.0 10   3.1 13.4 

0.032 11.36 10  
98.1 10  

-81.7 10  
51.7 10   3.1 12.0 

 

Damping Nonlinear absorber 

   ( N s m)c   
x ( )m  2

x 2( )m  x  
x  Nondimensional 

response 2

y  

0.002 38.49 10  
-97.1 10   

-83.5 10  
45.3 10   2.5 24.6 

0.004 21.70 10  
-93.6 10  

-83.1 10  
42.6 10  2.5 21.8 

0.005 22.12 10  
-91.9 10  

-83.0 10  
52.4 10  2.5 21.1 

0.008 23.40 10  
-97.2 10  

-82.6 10  
59.0 10  2.5 18.3 

0.012 25.09 10  
-104.6 10  

-82.4 10  
42.3 10  2.5 16.9 

0.016 26.79 10  
-92.6 10  

-82.2 10  
43.5 10   2.5 15.5 

0.02 28.49 10  
-92.7 10  

-82.0 10  
41.2 10   2.6 14.1 

0.024 11.02 10  
-91.2 10   

-81.9 10  
41.6 10   2.6 13.4 

0.028 11.19 10  
-108.6 10   

-81.7 10  
51.9 10  2.6 12.0 

0.032 11.36 10  
-91.8 10  

-81.6 10  
41.4 10  2.6 11.3 

Table 4.7 The effect of the damping on the mean, mean square, skewness and kurtosis of the 

displacement response of the secondary system (absorber mass). The random input rms force 

amplitude is 0.5 N. The mean square displacement of the primary system without absorber is 
-9 21.56 10  m . (

0 1  , nonlinear absorber stiffness 
37.8 10   , mass ratio 0.02   and 

damping 0.01s  ). 
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Figure 4.23 The effect of the nonlinear absorber damping ratio   on the (a) primary and (b) 

absorber system mean square displacement response. The random input rms force amplitude is 

0.5 N. Nonlinear absorber ( 'o' ) and linear absorber ( ' ' ). (
0 1  , nonlinear absorber stiffness 

37.8 10   , mass ratio 0.02   and damping 0.01s  ). 
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In Figures 4.24-25, the effect of the absorber damping on the primary and secondary system 

displacement response PSD is considered when   is increased from 35 10    to 

22 10   . In Figure 4.24, the nonlinear absorber produced a higher primary system 

vibration response at the first mode compared to the linear absorber. The cumulative 

displacement of the primary system using the nonlinear absorber is also higher compared to the 

linear absorber case, as shown in Figure 4.26. The nonlinear absorber produces a broader PSD 

for both the primary and secondary system responses at the second mode and produces a 

vibration response at higher frequencies. It can be observed that a high value of damping in the 

nonlinear absorber produces a narrower PSD in the primary and secondary displacement 

response at the second mode and reduced vibration response at higher frequencies compared to 

less absorber damping. For higher damping, there is an apparent reduction in the peak response 

amplitude at the first and second modes for the linear absorber, but it does not appear to be the 

case for the nonlinear absorber at the first mode. The cumulative displacement of the absorber 

system mass of the nonlinear absorber is also lower than that producing using the linear 

absorber, as seen in Figure 4.27. 
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Figure 4.24 The effect of absorber damping on the primary system displacement PSD. The 

random input rms force amplitude is 0.5 N. (nonlinear parameter 
37.8 10   , ‘tuned’ 

frequency 
1 1s   , mass ratio 0.02   and damping 0.01s  ). The response for the 

system with the linear absorber is given by the dashed-dotted line, the solid line is the nonlinear 

absorber. (a)
35 10   , (b)

38 10    and (c) 
22 10   . 
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Figure 4.25 The effect of absorber damping on the secondary system displacement PSD. The 

random input rms force amplitude is 0.5 N. (nonlinear parameter 
37.8 10   , ‘tuned’ 

frequency 
1 1s   , mass ratio 0.02   and damping 0.01s  ). The response for the 

system with the linear absorber is given by the dashed-dotted line, the solid line is the nonlinear 

absorber. (a)
35 10   , (b)

38 10    and (c) 
22 10   . 
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Figure 4.26 The effect of absorber damping on the primary system cumulative mean square 

displacement. The random input rms force amplitude is 0.5 N. (nonlinear parameter 
37.8 10   , ‘tuned’ frequency 

1 1s   , mass ratio 0.02   and damping 0.01s  ). 

The response for the system with the linear absorber is given by the dashed-dotted line, the solid 

line is the nonlinear absorber. (a)
35 10   , (b)

38 10    and (c) 
22 10   . 
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Figure 4.27 The effect of absorber damping on the secondary system cumulative mean square 

displacement. The random input rms force amplitude is 0.5 N. (nonlinear parameter 
37.8 10   , ‘tuned’ frequency 

1 1s   , mass ratio 0.02   and damping 0.01s  ). 

The response for the system with the linear absorber is given by the dashed-dotted line, the solid 

line is the nonlinear absorber. (a)
35 10   , (b)

38 10    and (c) 
22 10   . 
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4.6 The effect of the mass ratio ( ) 

Numerical solutions have been obtained when the linear tuned frequency is set to 
0 1   and 

the damping ratios for the primary system and the absorber are 0.01s   and 0.008   

respectively. The primary system parameters are set to 1=1.26 10  (kg)sm  , 

=2.12 ( N s m)sc  ,  4=8.93 10   N msk  , respectively. The secondary system parameter 

and non-dimensional parameters   and   values are presented in Table 4.8. It is noted that the 

simulation results are obtained using dimensional parameters, the non-dimensional parameter 

  will affect the nonlinear stiffness   which could be not kept constant. Numerical solutions 

have been simulated for variations in the mass ratio ( ) in Tables 4.9-10.  

 

Consider the nonlinear absorber whose parameters are given in Table 4.8. On increasing the 

mass ratio, the mean square displacement of primary system using the nonlinear absorber will 

reduce as seen in Table 4.9 and Figure 4.28(a). A reason may be that as the absorber mass 

increases, the nonlinear stiffness   reduction in the level of the nonlinearity then occurs. 

However, the mean square primary system displacement using a linear absorber slightly 

increases.  

 

In Table 4.9 and Figure 4.28(a), a difference between the vibration response using the linear and 

the nonlinear absorber is that the nonlinear absorber produces a higher mean square primary 

system displacement. On increasing the mass in the absorber, the primary system has a higher 

mean square displacement with a nonlinear absorber attached compared to the linear absorber. 

The cumulative displacement of the primary system using the nonlinear absorber is also higher 

than the linear absorber case, as seen in Figure 4.31. In Figure 4.28(b), as the mass ratio values 

between 0.01 0.07  , the mean square displacement of the secondary system for the 

nonlinear absorber remains lower values compared to the linear absorber. For higher mass ratio 

values between 0.07 0.1  , the nonlinear absorber produces approximately the same mean 

square secondary system displacement compared to the linear absorber case. 
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Mass 

ratio 

Nonlinear 

stiffness 

absorber system 

    m  (kg)  ( N s m)c    1  N mk   3

3  N mk  

0.01 21.56 10  
31.26 10  

21.70 10  
28.93 10  

98.93 10  

0.02 37.80 10  
32.52 10  

23.40 10  
31.79 10  

98.93 10  

0.03 35.20 10  
33.78 10  

25.10 10  
32.68 10  

98.93 10  

0.04 33.90 10  
35.04 10  

26.79 10  
33.57 10  

98.93 10  

0.05 33.12 10  
36.30 10  

28.49 10  
34.47 10  

98.93 10  

0.06 32.60 10  
37.56 10  

11.02 10  
35.36 10  

98.93 10  

0.07 32.23 10  
38.82 10  

11.19 10  
36.25 10  

98.93 10  

0.08 31.95 10  
21.01 10  

11.36 10  
37.15 10  

98.93 10  

0.09 31.74 10  
21.13 10  

11.53 10  
38.04 10  

98.93 10  

0.1 31.56 10  
21.26 10  

11.70 10  
38.93 10  

98.93 10  

Table 4.8 The secondary system parameters are estimated for the model predictions. 

(  39

3= 8.93 10  N mk  ). 
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Mass 

ratio 

Linear absorber 

  
sx ( )m  2

sx 2( )m  sx  
sx  Nondimensional 

response 2

sy  

0.01 91 10   
108 10  

47 10   3.1 0.57 

0.02 105.1 10  
108 10  

31.2 10   3 0.56 

0.03 109.6 10   
108 10  

41.2 10   3.1 0.56 

0.04 92 10   
108 10  

41.5 10  2.9 0.56 

0.05 102 10   
108 10  

31.6 10  3 0.57 

0.06 106.1 10   
108 10  

32.2 10  3 0.57 

0.07 101.9 10   
108.1 10  

31 10   3 0.57 

0.08 102.2 10  
108.1 10  

31.2 10   3 0.57 

0.09 101.7 10   
108.1 10  

32.9 10   3.1 0.57 

0.1 107.7 10   
108.1 10  

34.1 10   3 0.57 

 

Mass 

ratio 

Nonlinear 

stiffness 

Nonlinear absorber 

    
sx ( )m  2

sx 2( )m  sx  
sx  Nondimensional 

response 2

sy  

0.01 21.56 10  
101.4 10   

91.3 10  
47.9 10  3 0.90 

0.02 37.80 10  
101.5 10   

91.1 10  
44.4 10  3.1 0.80 

0.03 35.20 10  
93.4 10  

109.8 10  
58.7 10   3.3 0.69 

0.04 33.90 10  
91.1 10  

108.9 10  
41.2 10  3.1 0.63 

0.05 33.12 10  
91.7 10   

108.7 10  
43.2 10  3.1 0.61 

0.06 32.60 10  
106.1 10   

108.4 10  
33.3 10  3 0.60 

0.07 32.23 10  
102 10   

108.3 10  
32.4 10  3 0.59 

0.08 31.95 10  
101.3 10   

108.2 10  
48.2 10   3.1 0.58 

0.09 31.74 10  
105 10   

108.2 10  
32.2 10   3.1 0.58 

0.1 31.56 10  
105 10   

108.3 10  
34.9 10   3 0.58 

Table 4.9 The effect of the mass ratio on the mean, mean square, skewness and kurtosis of the 

displacement response of the primary system. The random input rms force amplitude is 0.5 N. 

The mean square displacement of the primary system without absorber is 
9 21.42 10  m . (

0 1   and damping 0.01s   and 0.008  ). 
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Mass ratio Linear absorber 
  

x ( )m  2

x 2( )m  x  
x  Nondimensional 

response 2

y  

0.01 97.7 10  
87.8 10  

64.7 10  3.1 54.9 

0.02 106.1 10   
84 10  

52.3 10  3 28.5 

0.03 92.5 10  
82.7 10  

55.9 10  3.1 19.3 

0.04 94.3 10   
82.1 10  

53.9 10  2.9 14.9 

0.05 92 10   
81.7 10  

41.6 10   2.9 12.2 

0.06 93.1 10   
81.5 10  

42 10   2.9 10.4 

0.07 91.5 10   
81.3 10  

41.5 10  3 9.01 

0.08 91.9 10   
81.1 10  

42.1 10  3 8.03 

0.09 91.4 10   
81 10  

45.6 10  3 7.25 

0.1 91.2 10   
99.4 10  

47.7 10  3 6.65 

 

Mass ratio Nonlinear 

stiffness 

Nonlinear absorber 

    
x ( )m  2

x 2( )m  x  
x  Nondimensional 

response 2

y  

0.01 21.56 10  
97.1 10   

-82.4 10  
46.3 10   2.4 16.5 

0.02 37.80 10  
97.2 10  

-82.6 10  
59 10  2.5 18.5 

0.03 35.20 10  
102.2 10  

-82.3 10  
31.5 10   2.7 16.3 

0.04 33.90 10  
93.2 10  

-81.9 10  
41.8 10  2.8 13.5 

0.05 33.12 10  
97 10   

-81.7 10  
53.7 10  2.8 11.6 

0.06 32.60 10  
91.1 10   

-81.4 10  
43.3 10   2.9 10.1 

0.07 32.23 10  
92.9 10   

-81.3 10  
42.6 10   2.9 8.87 

0.08 31.95 10  
103.7 10   

-81.1 10  
53.6 10  3 7.82 

0.09 31.74 10  
91.2 10   

-81.0 10  
44.4 10  3 7.18 

0.1 31.56 10  
92.4 10   

-99.4 10  
48.5 10  3 6.61 

Table 4.10 The effect of the mass ratio on the mean, mean square, skewness and kurtosis of the 

displacement response of the secondary system (absorber mass). The random input rms force 

amplitude is 0.5 N. The mean square displacement of the primary system without absorber is 
9 21.42 10  m . (

0 1   and damping 0.01s   and 0.008  ). 
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Figure 4.28 The effect of the mass ratio   on the (a) primary and (b) absorber system mean 

square displacement response. The random input rms force amplitude is 0.5 N. Nonlinear 

absorber ( 'o' ) and linear absorber ( ' ' ). (
0 1   and damping 0.01s   and 0.008  ). 
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The effect of the mass ratio on the primary and secondary system displacement PSD are 

presented in Figures 4.29-30, where the mass ratio is increased from 0.02   to 0.1  . For 

higher absorber mass, the linear absorber produces a broader and well separated range for the 

first and second resonance peaks compared to less absorber mass. The higher mass in the 

absorber results in a slightly higher displacement primary system PSD compared to the less 

absorber mass at the second resonance peak in Figure 4.29. The cumulative displacement of the 

primary system for higher absorber mass is also higher as seen in Figure 4.31. This is in 

agreement with the mean square primary system displacement is shown in Figure 4.28(a). The 

nonlinear absorber produces a higher displacement PSD for the primary system at the first mode 

compared to a linear absorber when the mass ratios are in the range 0.02   to 0.1  . The 

cumulative displacement of the primary system using the nonlinear absorber is also higher 

compared to the linear absorber case in Figure 4.31. It can be observed that higher values of the 

mass ratio of the nonlinear absorber produces a narrower PSD in the primary and secondary 

displacement response at the second mode and reduced vibration response at higher frequencies 

compared to less absorber mass.  

 

In Figures 4.29(c), for high mass ratios e.g. 0.1  , the nonlinear absorber for the given value 

of nonlinear stiffness starts to produce a similar response to the linear absorber. The reason for 

this could be possibly be because as the absorber mass m  increases, then the nonlinear stiffness 

  as defined will reduce, i.e. less nonlinearity in the response results. 
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Figure 4.29 The effect of the mass ratio on the primary system displacement PSD. The random 

input rms force amplitude is 0.5 N. (The ‘tuned’ frequency
1 1s    and damping 0.01s  , 

0.008  ). The response for the system with the linear absorber is given by the dashed-dotted 

line, the solid line is the nonlinear absorber. (a) 0.02  , (b) 0.05   and (c) 0.1  . 
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Figure 4.30 The effect of the mass ratio on the secondary system displacement PSD. The 

random input rms force amplitude is 0.5 N. (The ‘tuned’ frequency
1 1s    and damping 

0.01s  , 0.008  ). The response for the system with the linear absorber is given by the 

dashed-dotted line, the solid line is the nonlinear absorber. (a) 0.02  , (b) 0.05   and (c)

0.1  . 
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Figure 4.31 The effect of the mass ratio on the primary system cumulative mean square 

displacement. The random input rms force amplitude is 0.5 N. (The ‘tuned’ frequency
1 1s    

and damping 0.01s  , 0.008  ). The response for the system with the linear absorber is 

given by the dashed-dotted line, the solid line is the nonlinear absorber. (a) 0.02  , (b)

0.05   and (c) 0.1  . 
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Figure 4.32 The effect of the mass ratio on the secondary system cumulative mean square 

displacement. The random input rms force amplitude is 0.5 N. (The ‘tuned’ frequency
1 1s    

and damping 0.01s  , 0.008  ). The response for the system with the linear absorber is 

given by the dashed-dotted line, the solid line is the nonlinear absorber. (a) 0.02  , (b)

0.05   and (c) 0.1  . 
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The primary system parameters are set to 1=1.26 10  (kg)sm  , =2.12 ( N s m)sc  , 

 4=8.93 10   N msk  , respectively. The secondary system parameter and nondimensional 

parameters   and   values are presented in Table 4.11 and 4.12. Numerical solutions have 

been presented for the mean square displacement of the primary and absorber system, for values 

of the mass ratio and for various values of the nonlinear stiffness in Figure 4.33(a)-(b). The 

effect of the mass ratio on the primary and secondary system displacement PSD are presented in 

Figures 4.34-35 and 4.38-39. The cumulative displacement of the primary and secondary system, 

for values of the mass ratio and for various values of the nonlinear stiffness are given in Figure 

4.36-37 and 4.40-41.  

 

As the mass ratio increases between 0.01 0.06  , using the nonlinear absorber has a higher 

mean square primary system displacement compared to the linear absorber with the same mass 

level in Figure 4.33(a). The cumulative displacement of the primary system using the nonlinear 

absorber is also higher than using the linear absorber in Figures 4.31, 4.36 and 4.40. For higher 

mass ratios, i.e. between 0.06 0.1  , for small nonlinear stiffness, i.e. 

 38

3= 8.93 10  N mk  , it gives the same mean square primary system displacement compared 

to using the linear absorber. When the nonlinear stiffness is higher, the nonlinear absorber 

produces a higher mean square primary system displacement compared to the linear absorber 

with the same linear stiffness and mass levels in Figure 4.38. The displacement PSD of the 

primary system for the first mode is the dominant contribution in the mean square response. The 

reason could be due to the primary system and nonlinear absorber move in phase at the first 

mode. The displacement of the primary system presents similar to the single degree of system 

due to the higher nonlinear stiffness in Figure 4.38(a). The cumulative displacement of the 

primary system using the nonlinear absorber is also higher at the first mode compared to using a 

linear absorber.  
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Mass 

ratio 

Nonlinear 

stiffness 

absorber system 

    m  (kg)  ( N s m)c    1  N mk   3

3  N mk  

0.01 31.56 10  
31.26 10  

21.70 10  
28.93 10  

88.93 10  

0.02 47.80 10  
32.52 10  

23.40 10  
31.79 10  

88.93 10  

0.03 45.20 10  
33.78 10  

25.10 10  
32.68 10  

88.93 10  

0.04 43.90 10  
35.04 10  

26.79 10  
33.57 10  

88.93 10  

0.05 43.12 10  
36.30 10  

28.49 10  
34.47 10  

88.93 10  

0.06 42.60 10  
37.56 10  

11.02 10  
35.36 10  

88.93 10  

0.07 42.23 10  
38.82 10  

11.19 10  
36.25 10  

88.93 10  

0.08 41.95 10  
21.01 10  

11.36 10  
37.15 10  

88.93 10  

0.09 41.74 10  
21.13 10  

11.53 10  
38.04 10  

88.93 10  

0.1 41.56 10  
21.26 10  

11.70 10  
38.93 10  

88.93 10  

Table 4.11 The secondary system parameters are estimated for the model predictions 

(  38

3= 8.93 10  N mk  ). 

 

 

Mass 

ratio 

Nonlinear 

stiffness 

absorber system 

    m  (kg)  ( N s m)c    1  N mk   3

3  N mk  

0.01 1.56  31.26 10  
21.70 10  

28.93 10  
118.93 10  

0.02 17.80 10  
32.52 10  

23.40 10  
31.79 10  

118.93 10  

0.03 15.20 10  
33.78 10  

25.10 10  
32.68 10  

118.93 10  

0.04 13.90 10  
35.04 10  

26.79 10  
33.57 10  

118.93 10  

0.05 13.12 10  
36.30 10  

28.49 10  
34.47 10  

118.93 10  

0.06 12.60 10  
37.56 10  

11.02 10  
35.36 10  

118.93 10  

0.07 12.23 10  
38.82 10  

11.19 10  
36.25 10  

118.93 10  

0.08 11.95 10  
21.01 10  

11.36 10  
37.15 10  

118.93 10  

0.09 11.74 10  
21.13 10  

11.53 10  
38.04 10  

118.93 10  

0.1 11.56 10  
21.26 10  

11.70 10  
38.93 10  

118.93 10  

Table 4.12 The secondary system parameters are estimated for the model predictions 

(  311

3= 8.93 10  N mk  ). 
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Figure 4.33 The effect of the mass ratio   and for various values of nonlinear stiffness on the 

(a) primary and (b) absorber system mean square displacement response. The random input rms 

force amplitude is 0.5 N. (
0 1   and damping 0.01s   and 0.008  ). Linear absorber is 

dashed line and nonlinear absorber stiffness are  38

3= 8.93 10  N mk  ( '+' ), 

 39

3= 8.93 10  N mk   ( ' ' ) and  311

3= 8.93 10  N mk   ( 'o' ). 
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Figure 4.34 The effect of the mass ratio on the primary system displacement PSD. The random 

input rms force amplitude is 0.5 N. (The ‘tuned’ frequency
1 1s    and damping 0.01s  , 

0.008  ). The response for the system with the linear absorber is given by the dashed-dotted 

line, the solid line is the nonlinear absorber. (a) 0.02  , (b) 0.05   and (c) 0.1  . 
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Figure 4.35 The effect of the mass ratio on the secondary system displacement PSD. The 

random input rms force amplitude is 0.5 N. (The ‘tuned’ frequency
1 1s    and damping 

0.01s  , 0.008  ). The response for the system with the linear absorber is given by the 

dashed-dotted line, the solid line is the nonlinear absorber. (a) 0.02  , (b) 0.05   and (c)

0.1  . 
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Figure 4.36 The effect of the mass ratio on the primary system cumulative mean square 

displacement. The random input rms force amplitude is 0.5 N. (The ‘tuned’ frequency
1 1s    

and damping 0.01s  , 0.008  ). The response for the system with the linear absorber is 

given by the dashed-dotted line, the solid line is the nonlinear absorber. (a) 0.02  , (b)

0.05   and (c) 0.1  . 
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Figure 4.37 The effect of the mass ratio on the secondary system cumulative mean square 

displacement. The random input rms force amplitude is 0.5 N. (The ‘tuned’ frequency
1 1s    

and damping 0.01s  , 0.008  ). The response for the system with the linear absorber is 

given by the dashed-dotted line, the solid line is the nonlinear absorber. (a) 0.02  , (b)

0.05   and (c) 0.1  . 
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Figure 4.38 The effect of the mass ratio on the primary system displacement PSD. The random 

input rms force amplitude is 0.5 N. (The ‘tuned’ frequency
1 1s    and damping 0.01s  , 

0.008  ). The response for the system with the linear absorber is given by the dashed-dotted 

line, the solid line is the nonlinear absorber. (a) 0.02  , (b) 0.05   and (c) 0.1  . 
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Figure 4.39 The effect of the mass ratio on the secondary system displacement PSD. The 

random input rms force amplitude is 0.5 N. (The ‘tuned’ frequency
1 1s    and damping 

0.01s  , 0.008  ). The response for the system with the linear absorber is given by the 

dashed-dotted line, the solid line is the nonlinear absorber. (a) 0.02  , (b) 0.05   and (c)

0.1  . 
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Figure 4.40 The effect of the mass ratio on the primary system cumulative mean square 

displacement. The random input rms force amplitude is 0.5 N. (The ‘tuned’ frequency
1 1s    

and damping 0.01s  , 0.008  ). The response for the system with the linear absorber is 

given by the dashed-dotted line, the solid line is the nonlinear absorber. (a) 0.02  , (b)

0.05   and (c) 0.1  . 
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Figure 4.41 The effect of the mass ratio on the secondary system cumulative mean square 

displacement. The random input rms force amplitude is 0.5 N. (The ‘tuned’ frequency
1 1s    

and damping 0.01s  , 0.008  ). The response for the system with the linear absorber is 

given by the dashed-dotted line, the solid line is the nonlinear absorber. (a) 0.02  , (b)

0.05   and (c) 0.1  . 
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4.7 Conclusions 

This chapter presented random vibration simulations and subsequent statistical and frequency 

analysis of the simulated time history. The physical phenomenon lying underneath such 

dynamic behaviour was of main interest in this chapter. The effects of the random input 

amplitude, nonlinear stiffness ( ), absorber damping ratio ( ) and mass ratio (  ) on the 

vibration response were presented by considering a range of parameter values. The results 

obtained indicate that the mentioned above parameters have a significant effect on the vibration 

response. The key results presented in this chapter are as follows: 

 

For some ranges of the non-dimensional parameters, for high random input force amplitudes 

applied to the primary system, the nonlinear absorber provided significant nonlinear behaviour 

and produced a higher mean square primary system displacement compared to a conventional 

linear absorber. The cumulative mean square displacement of the primary system using the 

nonlinear absorber is also higher than when using the linear absorber. In addition, the nonlinear 

absorber produced a much broader PSD for the primary and secondary response at the second 

mode, resulting in a larger vibration response at higher frequencies. 

 

For a low nonlinear stiffness, the nonlinear absorber produces the same mean square primary 

system displacement compared to a linear absorber case. For a high nonlinear stiffness, the 

nonlinear absorber has a higher mean square primary system displacement compared to a linear 

absorber. Hence the use of a high stiffness nonlinearity does not improve the vibration reduction 

compared to the linear absorber case in term of the rms response. The difference between the 

linear and the nonlinear absorber follows a general trend with the nonlinear absorber reduces a 

broader PSD of the primary and secondary system responses at the second mode and a vibration 

response at higher frequency. In addition, the nonlinear absorber produces a higher 

displacement response PSD in the primary system at the first mode compared to the linear 

absorber case. 

 

As the damping in the nonlinear absorber is increased, the mean square primary system 

displacement is higher than when using a conventional linear absorber. For the mean square 

displacement of the secondary system, the nonlinear absorber response remains lower compared 

to the linear absorber. 
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For a nonlinear absorber with a low mass ratio, a higher mean square primary system 

displacement occurs compared to using a linear absorber with the same level of mass. On 

increasing the mass ratio then the mean square of primary system displacement using the 

nonlinear absorber will reduce and eventually is similar to using a linear absorber. The higher 

mass ratios actually result in a smaller nonlinear nondimensional  stiffness as it is defined. 

When the nonlinear stiffness is higher, the nonlinear absorber again produces a higher mean 

square primary system displacement compared to the behaviour using a linear absorber with the 

same level of linear stiffness and mass. 

 

For some range of parameter values, the nonlinear absorber under random excitation produces 

undesirable increasing in the mean square response of the primary system compared to a linear 

absorber. This means that the nonlinear absorber still needs to be selected and optimized with 

the best parameters for the particular application, so as to ensure that one obtains a reduced 

vibration response of the primary system.  
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Chapter 5  

 

 

Experimental validation: design and 

measurement of a nonlinear  

dynamic vibration absorber 

 

 

 

For harmonic excitation, described in chapter 2, the equations of motion were derived for the 

main structural system installed with an NDVA. Mathematical expressions for the frequency 

response curves of the structural system were subsequently determined. Chapter 3 investigated 

the effect of the nonlinear vibration absorber parameters (e.g., nonlinear stiffness, damping 

ratio, mass ratio and frequency ratio) on the vibration reduction. Chapter 4 uses a statistical 

analysis to investigate the effect of the nonlinear absorber parameters on the vibration reduction 

using broadband random input. Experimental validation is presented in this chapter for both 

harmonic and random excitation for comparison with the analytical and numerical results 

produced. 

 

A nonlinear absorber was designed and attached to a cantilever beam which was excited by a 

shaker. The support frame and cantilever beam can be considered and modelled at low 

frequency as a linear single degree-of-freedom system. The nonlinear absorber is designed to 

behave as the modelled hardening stiffness vibration absorber described earlier. The overall 

system is modelled as a nonlinear vibration absorber coupled to a linear system. An aim of the 
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experimental investigation is to demonstrate the corresponding vibration reduction of the 

configuration using this particular nonlinear vibration absorber. 

 

5.1 Nonlinear dynamic vibration absorber design and    experimental 

investigation 

5.1.1.  Implementation of the nonlinear stiffness characteristics  

The phenomenon of nonlinear stiffness was reproduced using a thin uniform clamped circular 

plate undergoing large flexural deflection [79]. The absorber mass was attached at the centre of 

the thin circular plate. The plate is clamped by a frame on its edges as illustrated in Figure 5.1. 

The circular plate has a radius r , thickness h , Poisson's ratio
 


 
and Young’s modulus of 

elasticity E . When the mass moves in the vertical direction, the plate bends with a large 

deflection producing axial strain and a change in length of the midplane axis. This large 

deflection, producing geometric nonlinearity, is the cause of the nonlinearity in the restoring 

force and hence effective stiffness of the absorber. The static relationship between the applied 

static force f  at the centre of the circular plate and the deflection at that point has been 

obtained when 
 
is equal to 0.3

 
[79] 

32

4
0.217 0.443

fr y y

Eh h h

 
   

 
                                                                                                (5.1) 

Equation (5.1) can be written as 

3

1 3f k y k y                                                                                                                           (5.2) 

where 

3

1 20.217


Eh
k

r
 and 3 2

0.443

0.217


Eh
k

r
 are the corresponding stiffness coefficients. 

 

Figure 5.1. Schematic representation of a nonlinear vibration absorber using a thin circular 

plate. 
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5.1.2 Description of the combined system with the nonlinear absorber         

The practical implementation of the nonlinear vibration absorber is shown in Figures 5.2-5.4. 

Photographs are shown in Figures 5.2-5.3 and a schematic representation is shown in Figure 5.4. 

A CAD diagram is given in Appendix B for the actual manufactured rig. A mass m  was 

attached to the thin plate, which is itself bolted to a cantilever beam by a support frame. The 

spring characteristics between the absorber mass and the support frame are due to the thin 

circular plate, which can be modelled as the stiffnesses 
1k  and 

3k  and for small dissipation 

effects a viscous damper c  was introduced. The thickness of the plate or shim and the attached 

mass can be altered and these have a large effect on the nonlinear absorber characteristics. In 

addition, the length of the cantilever beam also can be altered, so it is possible to consider 

different primary system natural frequencies. For large dynamic deformations a hypothesis was 

made that the absorber would be nonlinear. The cantilever beam was excited by an electro-

dynamic shaker. The support frame and beam structure without the absorber can be modelled at 

low frequencies as a linear system comprising a spring 
sk , a viscous damper 

sc  and a mass 
sm . 

Applying a constant amplitude current at each frequency to the shaker, then one could measure 

a constant force amplitude using a force gauge. The excitation force can be modelled as a 

constant amplitude harmonic force, applied to the primary system mass as shown in Figure 5.4. 

For the random excitation case, a constant white noise random excitation force is applied to the 

cantilever beam. A force gauge is also included to monitor and control the applied force and for 

acquisition of the actual applied force.  

 

Figure 5.2 Photograph of the actual experimental system consisting of a nonlinear absorber 

attached to a cantilever beam excited by an electro-dynamic shaker. 

shaker

beam

support frame
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Figure 5.3 Photograph showing the details of the nonlinear system. 

 

Figure 5.4 Schematic representation of a nonlinear absorber attached to a cantilever beam 

system excited by a shaker. 
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5.2 Experimental procedure and results: harmonic excitation                                                                                                                     

The schematic diagram of the experimental setup is shown in Figure 5.5. The electro-dynamic 

shaker was driven by a signal generator producing a stepped-sine signal. The accelerometers 

(PCB type 352C22) were attached to the support frame structure and to the mass of the absorber 

to measure the system response, while the oscilloscope was used to observe the system response. 

The data was acquired using a DataPhysics frequency analyser connected to the computer. 

 

Figure 5.5 Schematic diagram of the instrumentation setup used for the laboratory tests under 

harmonic excitation. 

 

5.2.1 Experimental procedure 

A preliminary test was implemented to broadly investigate the dynamic behaviour of the 

system. For each test, the shaker had a different force amplitude. In the high force amplitude 

test, a slow frequency sweep (where the force gauge recorded a constant amplitude voltage and 

hence force amplitude) was applied from 100 Hz to about 225 Hz and the response of the 

system was observed using the oscilloscope. The first resonance was monitored at around 123 

Hz, with large vibrational amplitudes in both systems. In addition, the first resonance peak was 

difficult to measure due to the light damping in the cantilever beam. When the frequency was 

increased beyond this, the effective tuned frequency was observed at about 183 Hz. In this 

frequency region the vibration of the primary system was a minimum. However, a second 

resonance occurred at about 213 Hz, where only the vibration of the absorber mass was large. 

This was followed by a sudden decrease in the motion of the mass of absorber; a jump-down in 
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the response. The frequency was then slowly swept down from this high frequency back to the 

low frequency. A sudden increase in the amplitude was observed at a frequency of about 199 

Hz, again only for the mass of the absorber (a jump-up). In the low force amplitude test, a 

response behaviour was observed that is approximately similar to a linear system. The first 

resonance, effective tuned frequency and second resonance were found to occur at around 125 

Hz, 160 Hz and 172 Hz respectively. The jump-up and jump-down frequencies did not occur. It 

is noted that the preliminary test used a voltmeter to observe the change in the response of the 

system. This initial experiment did not allow any data to be captured. 

 

For the measured data presented, the shaker was driven at discrete frequencies for the system 

with the thin plate, corresponding to the cases described above. The excitation frequency was 

increased from 100 Hz to 225 Hz, in 1 Hz increments, and then decreased to 100 Hz with the 

same frequency decrements. The amplitude of the excitation force was maintained at a constant 

level for all excitation frequencies, by manually adjusting the power amplifier so that the output 

voltage of the force gauge was 127 mV and 12.7 mV respectively. This corresponded to an 

equivalent force of 1.12 N and 0.11 N respectively. At each frequency, once the system was at 

steady-state, five seconds of acceleration time histories were captured using a DataPhysics 

frequency analyser connected to a PC. Subsequently, the acceleration of the support frame and 

beam structure and the absorber were measured, and then this data was processed to give the 

displacement. The data is presented in terms of the absolute displacement 
sx  of the primary 

system and the absolute displacement x  of the absorber. The Fourier series coefficients were 

extracted from these time histories and the amplitude of the first harmonic of each data set is 

plotted at the corresponding excitation frequency.  

 

5.2.2 Experimental results 

In Figures 5.6(a)-(b), the response of the system for which the forces have low and high 

amplitudes respectively. At low force amplitude, the data points in each graph are dashed-dotted 

lines. At high force amplitude, the data points in each graph are denoted by ' '  for increasing 

frequency and ' '  for decreasing frequency respectively. The non-harmonic (NH) responses at 

the corresponding excitation frequencies are given by the symbol ' o ' . The NH responses are 

those for which the amplitudes of the other harmonics exceed 5% of the amplitude of the 
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excitation frequency in the response. The time response and corresponding Fourier series 

coefficients for the system will be presented later. 

 

The response of the primary system 
sX  

is plotted in Figure 5.6(a). The frequency bandwidth 

was determined when 0sX X  in that frequency range, where 
0X  is the corresponding static 

extension of the linear spring represented by the cantilever beam for the same magnitude static 

load. The response 
0 1s sX F X F k   is the thin solid horizontal line shown in the figures. 

It can be seen that the first resonance frequency and effective tuned frequency occur at about 

125 Hz and 160 Hz for the low excitation amplitude and 123 Hz and 183 Hz for the high 

amplitude force cases, respectively. The nonlinear system attached to the cantilever beam 

structure has a significant  effect on its response. In addition, the corresponding jump-down 

frequencies occur at about 199 Hz and at approximately 213 Hz for the high force amplitude 

case. It is noted that a non-harmonic response occurred at the jump-down frequency at 199 Hz. 

However, jump-up and jump-down did not occur for the low force amplitude. In Figure 5.6(b), 

which shows the response of the absorber X , in addition to the peak associated with the first 

resonance frequency of the primary system, a jump-down and a jump-up frequency can also be 

observed for the high force input amplitude. In addition, Figures 5.7(a)-(b) show the 

corresponding phase of the responses with respect to the excitation. The corresponding phase 

responses of each data were measured using a digital phase meter. However, the phase of the 

responses could not be produced in the frequency ranges from 175 to 201 (Hz), which is due to 

the non-harmonic response in this frequency ranges. 

 

For excitation at 100, 120 and 150 (Hz), the amplitudes of other harmonics in the response did 

not exceed 5% compared to the fundamental amplitude. This is illustrated by the time histories 

shown in Figures 5.8-10. A harmonic response could not be achieved at excitation frequencies 

of 177, 182 and 195 (Hz), see Figures 5.11-13. This observation corresponds to the parts of the 

curve identified by the symbol ' o '  at 177, 182 and 195 (Hz) in Figures 5.6(a)-(b). It is also 

noted that the corresponding time histories for the excitation force were not a harmonic. This 

unexpected feature will affect the response of the entire system. In order to minimize the effect 

of the feedback of the system response on the excitation system, a vibration control system 

needs to be used in future tests.  
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Figure 5.6 Comparison of the measured frequency response curves for the system whose 

properties are given in Table 5.2. Plate thickness 0.2 (mm): (a) Absolute displacement of the 

primary system, (b) Absolute displacement of the absorber. Low force amplitude for 

0.11 NF   (dashed-dotted line). High force amplitude for 1.12 NF  : increasing 

frequency ( ' ' ), decreasing frequencies given by the symbol ( ' ' ). The response is not 

harmonic (NH) at the corresponding excitation frequencies given by the symbol ( ' o ' ). The thin 

solid horizontal line is the static equivalent response which is used to determine the vibration 

reduction bandwidth.  
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Figure 5.7 Comparison of the phase for measured frequency response curves. The system 

properties are given in Table 5.2. Plate thickness 0.2 (mm): (a) Phase of the primary system, (b) 

Phase of the absorber. Low force amplitude for 0.11 NF   (dashed-dotted line). High force 

amplitude for 1.12 NF  : increasing frequency ( ' ' ), decreasing frequency ( ' ' ).  
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Figure 5.8 Time response and corresponding Fourier series coefficients for the primary system 

frequency response curves and input force. (linear tuned frequency 
0 1.17  , nonlinear 

absorber stiffness 
32.37 10   , mass ratio 

25.11 10    and damping 35.95 10s
  , 

21.18 10   ). The actual response from numerical integration of the measured displacement 

is the solid line and the first-harmonic approximation is the dashed line. The corresponding 

excitation frequency is 100 (Hz). 
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Figure 5.9 Time response and corresponding Fourier series coefficients for the primary system 

frequency response curves and input force. (linear tuned frequency 
0 1.17  , nonlinear 

absorber stiffness 
32.37 10   , mass ratio 

25.11 10    and damping 35.95 10s
  , 

21.18 10   ). The actual response from numerical integration of the measured displacement 

is the solid line and the first-harmonic approximation is the dashed line. The corresponding 

excitation frequency is 120 (Hz). 
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Figure 5.10 Time response and corresponding Fourier series coefficients for the primary system 

frequency response curves and input force. (linear tuned frequency 
0 1.17  , nonlinear 

absorber stiffness 
32.37 10   , mass ratio 

25.11 10    and damping 35.95 10s
  , 

21.18 10   ). The actual response from numerical integration of the measured displacement 

is the solid line and the first-harmonic approximation is the dashed line. The corresponding 

excitation frequency is 150 (Hz). 
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Figure 5.11 Time response and corresponding Fourier series coefficients for the primary system 

frequency response curves and input force. (linear tuned frequency 
0 1.17  , nonlinear 

absorber stiffness 
32.37 10   , mass ratio 

25.11 10    and damping 35.95 10s
  , 

21.18 10   ). The actual response from numerical integration of the measured displacement 

is the solid line and the first-harmonic approximation is the dashed line. The corresponding 

excitation frequency is 177 (Hz). 
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Figure 5.12 Time response and corresponding Fourier series coefficients for the primary system 

frequency response curves and input force. (linear tuned frequency 
0 1.17  , nonlinear 

absorber stiffness 
32.37 10   , mass ratio 

25.11 10    and damping 35.95 10s
  , 

21.18 10   ). The actual response from numerical integration of the measured displacement 

is the solid line and the first-harmonic approximation is the dashed line. The corresponding 

excitation frequency is 182 (Hz). 
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Figure 5.13 Time response and corresponding Fourier series coefficients for the primary system 

frequency response curves and input force. (linear tuned frequency 
0 1.17  , nonlinear 

absorber stiffness 
32.37 10   , mass ratio 

25.11 10    and damping 35.95 10s
  , 

21.18 10   ). The actual response from numerical integration of the measured displacement 

is the solid line and the first-harmonic approximation is the dashed line. The corresponding 

excitation frequency is 195 (Hz). 
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5.2.3 Parameter estimation and model validation 

The cantilever beam was made of aluminium with a total length 0.09 mL  , cross-sectional 

area 0 04 m 0 004 mA . .  , density 3=2700 kg/m  and Young’s modulus 
270 GN/mE  . 

In addition, the circular plate was made of brass with thickness 
30.2 10  m , area

 
2 20 026  mA . , density 

3=8500 kg/m  and Young’s modulus 
2110 GN/mE  . The 

parameters for the systems tested were required in order to compare the experimental results 

with the model predictions. These parameters (
sm , 

sc , 
sk , m , c , 

1k , 
3k ) were measured 

independently and were estimated as follows.  

 

The Frequency Response Function (FRF) of the support frame attached to the cantilever beam 

without the absorber was measured using pseudo random force measurements. The primary 

system parameters (mass 
sm , damping 

sc  and stiffness 
sk ) were estimated by fitting a 

theoretical single degree of freedom FRF to the experimental FRF and this is shown in Figure 

5.14. In addition, the mass of the absorber m  was measured directly. The value for the viscous 

damping coefficient c  of the nonlinear absorber was estimated separately through the half 

power points method at low amplitude [2]. Moreover, the stiffnesses 
1k  and 

3k of the nonlinear 

absorber were estimated using the measurements of the static displacement for applied static 

loads presented in Figure 5.15-16. The estimated parameters are listed in Table 5.1-2. The 

equivalent system parameters for the equation of motion written in the non-dimensional form of 

Equations (2.6a,b) are listed in Table 5.3. It is noted that the system was designed such that by 

simply adjusting the thickness of the plate, in the vibration absorber, the linear and nonlinear 

stiffness of the absorber could be varied. The value of nonlinearity selected was 

32.42 10   , i.e. for 1.13F  , in order to produce responses with the amplitudes of the 

harmonic orders of the excitation frequency do not exceeding 5% compared to the amplitude of 

the response at the excitation frequency. The predicted frequency response curves for the 

absolute displacement of primary and absorber systems are presented in Figures 5.17-18. 
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sm  (kg) 

sc  (N．s/m) 
sk  (N/m) Input harmonic 

force F (N) 

Low force amplitude 310126   1.26 48.93 10  0.11 

High force amplitude 1.12 

Table 5.1 The primary system parameters are estimated by fitting the FRF to the experimental 

test using a pseudo random force. 

 

 (kg)  (N．s/m)  (N/m)  ( ) 

36.44 10  0.14 35.69 10  
106.9 10  

Table 5.2 The absorber system parameters are estimated the experimental test using the half 

power points method for c  and static load measurement for 
1k  and 

3k . 

 

   
0    

s    

Low force amplitude 21011.5   1.17 52.29 10  
31095.5   

21.18 10  

High force amplitude 32.37 10  

Table 5.3 Equivalent non-dimensional system parameters for the model predictions. 

 

 

 

 

Figure 5.14 The measured frequency response curve for the support frame and beam structure 

using a pseudo random force. Measured result (dashed line), curve fitting (solid line). 
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Figure 5.15 Photograph of the actual static load applied and static displacement measured with a 

dial gauge. 

 

 

Figure 5.16 Force–displacement characteristic of the shim thickness 0.2 (mm) under static loads. 

Measured results ( ' ' ), curve fitting for 3

1 3f k y k y   to estimate the coefficients (
1 3, k k ) for 

the nonlinear regression for the static displacement ( y ) (solid line) and circular plate theory 

prediction [79] (dashed line). 
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Figure 5.17 The predicted (HBM solution) frequency response curves for the absolute 

displacement of primary system whose properties are given in Table 5.3. Plate thickness 0.2 

(mm): (a) Low force amplitude for 0.11 NF  and (b) High force amplitude of 1.12NF  . 

HBM solutions: stable solution (solid line), unstable solution (dashed line). Direct numerical 

integration of the predicted displacement response at the excitation frequency are shown by the 

symbol ( ' ' ). 
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Figure 5.18 The predicted (HBM solution) frequency response curves for the absolute 

displacement of absorber whose properties are given in Table 5.3. Plate thickness 0.2 (mm): (a) 

Low force amplitude for 0.11 NF  and (b) High force amplitude of 1.12NF  . HBM 

solutions: stable solution (solid line), unstable solution (dashed line). Direct numerical 

integration of the predicted displacement response at the excitation frequency are shown by the 

symbol ( ' ' ). 
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Examining Figures 5.19, the high force input amplitude applied for the case of a nonlinear 

absorber produces a much wider vibration reduction bandwidth on the primary system 

compared to the low force input amplitude. The numerical parameters for the system are given 

in Table 5.3. The frequency response curves described by Equations (2.18) and (2.20) are shown 

in Figure 5.19-20. In addition, Figures 5.21-22 show the corresponding phase of the responses 

with respect the excitation. In Table 5.4, for the approximate HBM solution, the predicted 

bandwidth for vibration reduction is increased by about 311% and 188% for the increasing and 

decreasing input frequency cases, respectively, compared to the low amplitude ‘linear’ case. 

From the measurements, the corresponding reduction bandwidth is increased by about 30% and 

10% for the increasing and decreasing input frequency cases, respectively. The measured results 

for the NDVA did not produce a much wider effective vibration reduction bandwidth compared 

to the predicted values. A reason found is that the harmonic response at the excitation frequency 

could not be obtained over the frequency range from 175 to 201 Hz. Other harmonics are 

present in the response, so that the HBM expressions are not a sufficiently accurate 

representation of the real behaviour around these frequencies. The time response and 

corresponding Fourier series coefficients for the excitation force were shown in section 5.2.2. 

Some studies from others [36, 37] also present this vibration behaviour and response. 

 

In Table 5.5, in the low force amplitude test, the first resonance frequency peak in the 

experimental results occur at about 125 Hz compared to the approximate HBM solution at about 

126 Hz, these correspond to an error of approximately 1 %.  In addition, the effective tuned 

frequency occurs at about 160 Hz, compared to the approximate HBM solution at about 157 Hz. 

This difference in the tuned frequency is 2 %. In the high force amplitude test, the first 

resonance and effective tuned frequencies in the measurement results were found to occur at 

123 Hz and 183 Hz respectively. Those results were compared to the approximate HBM 

solution at 128 Hz and 169 Hz respectively, these correspond to an error of approximately 4 % 

and 8.3 %. In the high force amplitude test, the first resonance and effective tuned frequencies 

produce larger differences compared to the approximate HBM solution. The reason for this 

could be possibly due to the stiffness parameter of the absorber 
1k  was changed. It is suspected 

to be that the geometry of the thin plate being bolted on the circular ring for different tensions 

and material properties of the thin plate are affected by environmental factors such as 

temperature change.  
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In Figures 5.19(b), the measurement results did not contain the branch of the frequency response 

of the primary system at the lowest and highest jump-down frequencies. This reason could be 

probably due to the high amplitude of vibration of the primary and absorber system masses, 

which made it difficult to obtain this region using the actual experimental rig [66]. 

 

HBM solution Bandwidth for  

increasing 

frequency (Hz) 

Bandwidth 

improvement 

(%) 

Bandwidth for  

decreasing 

frequency (Hz)   

Bandwidth 

improvement 

(%) 

Low force amplitude 9  9  

High force amplitude 37 311 28  188 

 

Measurements Bandwidth for  

increasing 

frequency (Hz) 

Bandwidth 

improvement 

(%) 

Bandwidth for  

decreasing 

frequency (Hz)   

Bandwidth 

improvement 

(%) 

Low force amplitude 10  10  

High force amplitude 13 30 11  10 

Table 5.4 Comparison of the predicted and measured vibration reduction bandwidth due to the 

NDVA on the primary system frequency response curves. 

 

HBM solution 
1r  

2r  
t  

Low force amplitude 126 170 157 

High force amplitude 128 231 169 

 

Measurements 
1r  

2r  
t  

Low force amplitude 125 170 160 

High force amplitude 123 213 183 

Table 5.5 Comparison of the predicted and measured resonance and effective tuned frequencies 

on the primary system frequency response curves. 
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Figure 5.19 Comparison of the predicted (HBM solution) and measured frequency response 

curves for the absolute displacement of primary system whose properties are given in Table 5.3. 

Plate thickness 0.2 (mm): (a) Low force amplitude for 0.11 NF  and (b) High force 

amplitude of 1.12NF  . HBM solutions: stable solution (solid line), unstable solution 

(dashed line). Measured results: increasing frequency ( ' '  ), decreasing frequency ( ' ' ).  The 

response is not harmonic (NH) at the corresponding excitation frequencies given by the symbol 

( ' o ' ). 
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Figure 5.20 Comparison of the predicted (HBM solution) and measured frequency response 

curves for the absolute displacement of the absorber whose properties are given in Table 5.3. 

Plate thickness 0.2 (mm): (a) Low force amplitude for 0.11 NF  and (b) High force 

amplitude of 1.12NF  . HBM solutions: stable solution (solid line), unstable solution 

(dashed line). Measured results: increasing frequency ( ' '  ), decreasing frequency ( ' ' ).  The 

response is not harmonic (NH) at the corresponding excitation frequencies given by the symbol 

( ' o ' ). 
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Figure 5.21 Comparison of the predicted (HBM solution) and measured frequency response 

curves for the phase of primary system whose properties are given in Table 5.3. Plate thickness 

0.2 (mm): (a) Low force amplitude for 0.11 NF  and (b) High force amplitude of 

1.12NF  . HBM solutions: stable solution (solid line), unstable solution (dashed line). 

Measured results: increasing frequency ( ' '  ), decreasing frequency ( ' ' ).  
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Figure 5.22 Comparison of the predicted (HBM solution) and measured frequency response 

curves for the phase of the absorber whose properties are given in Table 5.3. Plate thickness 0.2 

(mm): (a) Low force amplitude for 0.11 NF  and (b) High force amplitude of 1.12NF  . 

HBM solutions: stable solution (solid line), unstable solution (dashed line). Measured results: 

increasing frequency ( ' '  ), decreasing frequency ( ' ' ). 
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5.3 Experimental procedure and results: random excitation                                                          

The schematic diagram of the experimental apparatus used in the testing is shown in Figure 5.23. 

A signal generator and a random vibration equalizer control system (LMS Test Lab) produced a 

random white noise signal to drive the electro-dynamic shaker. For the measured data, the 

accelerometers and oscilloscope were used to measure and observe the system response 

respectively. Low-pass filtering was used to eliminate any aliasing effect in the measured 

sampled data. The data acquisition was captured using a data acquisition frequency analyser 

(LMS Test Lab) connected to a PC. 

 

Figure 5.23 Schematic diagram of the instrumentation setup used for the laboratory tests under 

random excitation. 

 

The measured time domain data included the input force amplitude produced by the shaker and 

the acceleration responses of the primary system and absorber, respectively. For each test, the 

shaker had a different force amplitude. The amplifier and control system used were configured 

so that the shaker produced rms force amplitudes of 0.17, 0.32 and 0.78 N . The shaker force 

output was controlled to produce a flat force amplitude power spectral density (PSD) with a 

bandwidth from 50 to 250 Hz shown in Figure 5.24. The data record length was 20.48 s with a 

sample rate of 800 Hz (with a Nyquist frequency of 400 Hz). The measurement data was 

repeated 20 times.  
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Figure 5.24 Comparison of the measured excitation PSD for signals whose rms force amplitudes 

are 0.17 N (thin line), 0.32 N (dashed line) and 0.78 N  (thick line).  

 

5.3.1. Parameter estimation and model validation 

The corresponding experimental data and estimated system parameters (
sm , 

sc , 
sk , m , c , 

1k , 

3k ) for the experimental tests were described previously. Using the above parameters, the 

natural frequencies of the primary system and absorber can be calculated. 

 

For the random tests, the record length of the time history data was 20.48 s with a sample rate of 

800 Hz (with a Nyquist frequency of 400 Hz). The linear beam structure system with attached 

nonlinear absorber was excited with a flat white noise random force input from 50 to 250 Hz. 

The input random time history was obtained from the specified PSD using the Inverse Fourier 

Transform. The corresponding procedure was described in section 4.1.2. The spectrum was zero 

padded above the maximum input frequency to 400 Hz to ensure a smooth time history that 

could be linearly interpolated while running the ODE solver. A 0.64s time record with a 

corresponding 1.56 Hz frequency spacing was used. The excitation was investigated for signals 

whose rms force amplitudes were 0.17, 0.32 and 0.78 N . The measured and estimated PSD of 

the random input are shown in Figure 5.25. The compared spectrum level is within  3 dB  

over the bandwidth. 
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Figure 5.25 Comparison of the measured and predicted force excitation PSD for a rms force 

amplitude of 0.78 N . Measured result (dashed line), predicted solution (thick line). 

 

 

5.3.2 Comparison with theoretical predictions  

The experimental measurements and numerical predictions were obtained for both the random 

input and response data. The nonlinear absorber responses are investigated in both the frequency 

and time domains. The time series are often studied by observing the system mean square 

response and PSD. The PSD is a measure of the frequency content of the total process [60]. It 

has also been shown that the response of a system can be satisfactorily investigated by studying 

the mean square response [80]. The PSD and coherence can help to identify the response of the 

nonlinear system. 

 

5.3.2.1 Statistical analysis of the time domain responses 

For the time domain analysis, it is possible to determine the basic response statistics (i.e. the 

mean, variance, mean square, skew and kurtosis). The time domain analysis for the vibration 

reduction produced by the nonlinear absorber considered a determination of the statistical 

moments. The numerical parameters for the system are given in Table 5.1-2 and the dynamic 

response described by Equations (4.24a,b).  
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In Tables 5.6-7, the acceleration response of the primary system and absorber show the possible 

effect of the nonlinear behaviour of the system, indicated by a kurtosis value less than 3. In 

Figure 5.26(a), the mean square primary system acceleration for the nonlinear absorber is higher 

compared to the linear absorber case when the force input amplitudes are 0.32 NF   and  

0.78 NF  . In addition, comparison of the mean square primary system acceleration of the 

nonlinear absorber, the predicted solutions are higher compared to the measured results. It can 

also be found that, for the predicted solutions, the acceleration response PSD of the primary 

system at the first mode is much higher compared to the measured results shown in Figure 5.28. 

This is in agreement in that the acceleration response PSD in the first mode is the main 

contribution to the mean square response. The cumulative mean square acceleration of the 

primary system from the numerical predictions also produces a higher response than the 

measured result in Figure 5.30. 

 

In Figure 5.27, the standard deviation of the primary system acceleration with an attached 

nonlinear absorber did not produce a proportional increase as the input rms of the force 

increased. The acceleration response exhibits a nonlinear behaviour due to the nonlinear 

absorber. In addition, the standard deviation of the primary system acceleration using the 

nonlinear absorber is higher compared to the linear absorber for higher force amplitudes 

0.32 NF  . For the standard deviation acceleration of the absorber, the nonlinear absorber 

response is lower compared to the linear absorber response. 

 

For some range of values for the nonlinear absorber, the primary system response appears to 

exhibit a detrimental effect at increased input force magnitudes. Hence a negative effect for 

vibration control. This means that the nonlinear absorber still needs to be designed for the 

particular application, with the best parameters for reducing the vibration response of the 

primary system.  
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Input 

force 

Measurements Predictions 

F  

(N) 
sx

2
( )m s  

2

sx
2 2(( ) )m s  

sx  
sx  

sx

2
( )m s  

2

ssx
2 2(( ) )m s  

sx  
sx  

0.17 31.4 10   62.8 22.8 10  2.9 41.1 10   55.8 31.1 10  3.0 

0.32 32.7 10  149.5 24.5 10  3.4 41.6 10   234.6 48.2 10   2.9 

0.78 43.5 10  877.5 27.4 10  3.0 34.4 10   1631 41.4 10  2.8 

Table 5.6 Comparison of the measured and predicted mean, mean square, skewness and kurtosis 

of the acceleration response on the primary system whose properties are given in Tables 5.1-2.   

 

Input 

force 

Measurements Predictions 

F  

(N) 

x
2

( )m s  

2

x
2 2(( ) )m s  

x  
x  

x
2

( )m s  

2

x
2 2(( ) )m s  

x  
x  

0.17 48.7 10  761.1 21.7 10   3.3 31.3 10   741.2 48.2 10  3.0 

0.32 35.1 10  1675 22.0 10   4.0 31.6 10   2691 32.3 10  3.0 

0.78 39.8 10  8262 22.5 10   3.4 21.3 10   12880 37.1 10  3.3 

Table 5.7 Comparison of the measured and predicted mean, mean square, skewness and kurtosis 

of the acceleration response of the absorber mass whose properties are given in Tables 5.1-2.   
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Figure 5.26 Comparison of the predicted and measured mean square acceleration for (a) the 

primary system and (b) the absorber whose properties are given in Tables 5.1-2. Plate thickness 

0.2 (mm): the corresponding overall rms force amplitudes are 0.17 NF  , 0.32 NF   and 

0.78 NF  . The linear absorber for predicted solution is dashed line. The nonlinear absorber 

for the predicted solution  ( 'o' ) and  measured result ( ' ' ). 
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Figure 5.27 Comparison of the predicted and measured standard deviation acceleration for (a) 

the primary system and (b) the absorber whose properties are given in Tables 5.1-2. Plate 

thickness 0.2 (mm): the corresponding overall rms force amplitudes are 0.17 NF  , 

0.32 NF   and 0.78 NF  . The linear absorber for predicted solution is dashed line. The 

nonlinear absorber for the predicted solution  ( 'o' ) and  measured result ( ' ' ). 
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5.3.2.2  Frequency domain comparison                                                      

The numerical parameters for the system are given in Table 5.1-2 and the dynamic response 

described by Equations (4.24a,b). The acceleration response spectral density function (PSD) for 

the primary system and absorber are presented in Figures 5.28-29. The sample size chosen for 

the PSD estimates was 0.64 s, which resulted in a f of 1.56 Hz. The PSD 

estimates were made using a Hanning window, 67% overlap of the windowed data [78] and a 

sample rate of 800 Hz resulting in 512 points for the FFT and 256 frequency domain points. The 

resolution f of 1.56 Hz was chosen as a compromise between the number of averages and 

frequency resolution (see Section 4.1.3). In this case, the number of averages was chosen as 32.  

 

The high force input amplitude applied produces a much broader PSD for the primary and 

absorber response at the second mode. Also, it results in a larger vibration response at higher 

frequencies compared to the low force input amplitude. The reason for this could be possibly 

due to the nonlinear stiffness effect. For high force amplitude, the effect on the primary system 

acceleration response is to shift the first resonance, the effective tuned frequency and the second 

resonance to higher frequencies compared to the low force amplitude. The second mode of the 

primary system does not obviously exhibit a resonance or peak response compared to low force 

excitation. These responses show a nonlinear effect compared to the linear absorber case. The 

measured first resonance and effective tuned frequencies are different compared to the 

numerical predictions. One reason could be due to the stiffness parameter of the absorber 
1k  

changing. It is suspected that the geometry of the thin plate being bolted to the circular ring for 

different tensions and material properties are affected by environmental factors, such as room 

temperature changes. For the high force amplitude test, comparison of the mean square primary 

system acceleration showed that the predictions were higher than the measured results. The 

cumulative mean square acceleration of the primary system from the numerical simulations are 

also higher than the measured result, as seen in Figure 5.30.  

 

The coherence functions show where it is likely that the vibration absorber behaves quite 

linearly and is able to account for most of the response at the low force input amplitude, i.e. see 

Figure 5.32-33. However, the coherence response does not fair as well for the high force input 

amplitude, which might result from extraneous measurement noise or more likely significant 

nonlinear response in the output due to the nonlinear absorber behaviour. For low force input 

amplitude applied on the primary system, the coherence response for a lightly damped system 
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does not present good values at the resonances and effective tuned frequencies due to bias errors. 

The bias error can be reduced by improving the resolution of the FRF estimates, i.e. the 

frequency resolution bandwidth should be reduced which requires more time history data.  
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Figure 5.28 Comparison of the predicted and measured acceleration PSD for a primary system 

whose properties are given in Tables 5.1-2. Plate thickness 0.2 (mm): the corresponding overall 

rms force amplitudes are (a) 0.17 NF  , (b) 0.32 NF  and (c) 0.78 NF  . The 

predicted response solution is given by the solid line. The measured response is the dashed line. 
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Figure 5.29 Comparison of the predicted and measured acceleration PSD for an absorber whose 

properties are given in Tables 5.1-2. Plate thickness 0.2 (mm): the corresponding overall rms 

force amplitudes are (a) 0.17 NF  , (b) 0.32 NF  and (c) 0.78 NF  . The 

predicted response solution is given by the solid line. The measured response is the dashed line. 
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Figure 5.30 Comparison of the predicted and measured cumulative mean square acceleration of 

the primary system whose properties are given in Tables 5.1-2. Plate thickness 0.2 (mm): the 

corresponding overall rms force amplitudes are (a) 0.17 NF  , (b) 0.32 NF  and (c) 

0.78 NF  . The predicted response solution is given by the solid line. The measured 

response is the dashed line. 
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Figure 5.31 Comparison of the predicted and measured cumulative mean square acceleration of 

the absorber whose properties are given in Tables 5.1-2. Plate thickness 0.2 (mm): the 

corresponding overall rms force amplitudes are (a) 0.17 NF  , (b) 0.32 NF  and (c) 

0.78 NF  . The predicted response solution is given by the solid line. The measured 

response is the dashed line. 
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Figure 5.32 Comparison of the predicted and measured coherence for the primary system 

response. The system properties are given in Tables 5.1-2. Plate thickness 0.2 (mm): the 

corresponding overall rms force amplitudes are (a) 0.17 NF  , (b) 0.32 NF  and (c) 

0.78 NF  . The predicted response solution is given by the solid line. The measured 

response is the dashed line. 
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Figure 5.33 Comparison of the predicted and measured coherence for the absorber response. 

The system properties are given in Tables 5.1-2. Plate thickness 0.2 (mm): the corresponding 

overall rms force amplitudes are (a) 0.17 NF  , (b) 0.32 NF  and (c) 0.78 NF  . 

The predicted response solution is given by the solid line. The measured response is the dashed 

line. 

 

50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency (Hz) 

(a) 

(b) 

(c) 

Coherence 

 

Coherence 

Coherence 

0.32 NF   

0.78 NF   

0.17 NF   



   

203 

 

5.4   Conclusions 

A comprehensive experimental study of a passive nonlinear vibration absorber attached to a 

primary structure under harmonic and random excitations has been presented. The nonlinearity 

of the absorber was due to the particular geometrical configuration of the attached plate 

undergoing a large amplitude response. Experimental results have been presented to compare 

with the numerical solutions of the previously derived model. 

 

For harmonic excitation, the bandwidth reduction for the nonlinear absorber was determined 

and compared to the linear case previously presented in chapters 2 and 3. For comparison of 

measurements and HBM predictions, there was good agreement in frequency responses for the 

low force amplitude test. For the high force amplitude test, the frequency responses were not 

similar. In this latter scenario, the first resonance and effective tuned frequencies of the primary 

system presented the differences between measurements and HBM predictions. The reason for 

this could be possibly due to the stiffness parameter of the absorber was changed. It is suspected 

to be that the geometry of the thin plate being bolted on the circular ring for different tensions 

and material properties of the thin plate are affected by environmental factors such as 

temperature change. The measured results for the NDVA did not produce a much wider 

effective vibration reduction bandwidth as those predictions. One reason found is that the 

response at some frequencies was not harmonic. The response contained other frequencies, so 

that the HBM expressions do not accurately represent the actual solution. In addition, the 

excitation force time histories were not always purely harmonic. In order to minimize the effect 

of the system at the applied forcing, a control system for the excitation should be used in future 

tests. The measurement results also did not contain the branch of the frequency response of the 

primary system at the lowest and highest jump-down frequencies. This reason could be probably 

due to the high amplitude of vibration of primary and absorber system masses, which made it 

difficult to obtain this region using the actual experimental rig.  

 

For random excitation, in view of the analytical approach limitations, the measurements 

provided additional numerical response functions and quantities such as values for the mean 

square responses, PSDs and coherence. The  Power Spectral Densities show the frequency 

content of the measured and predicted input and response. The nonlinear effects in the system 

response are presented in the frequency domain. The response PSD is shown to possess a shift 

and broadening of the frequency content. However, the mean square response only  provides an 
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overall single value as a measure for the total response. In order to understand the variation or 

changes in the response by statistical analysis, the probability density function (PDF) of the 

response time histories could be used in the future. For the low force amplitude test, the 

measurement results produced good agreement with numerical predictions. For the high force 

amplitude test, the measurement results did not produce similar results compared to the 

predictions. In this latter scenario, for comparison of the mean square primary system 

acceleration showed that the predictions were higher than measured results. The predictions also 

presents higher cumulative mean square acceleration of the primary system at the first mode 

compared to measured results. This is in agreement in that the cumulative mean square 

acceleration of the  primary system for first mode is the main contribution in the mean square 

response. The first resonance, effective tuned and second resonance frequencies of the primary 

system display differences compared to the numerical predictions. It is likely that the stiffness 

parameter of the absorber changes during the time behaviour from its estimation using static 

tests compared to during the dynamic testing. The geometry of the thin plate may be affected by 

environmental factors such as temperature changes. For some values of the nonlinear absorber 

parameters, the primary system response appears to undergo a detrimental effect compared to 

using linear absorber for increased force input magnitudes. This means that the nonlinear 

absorber still needs to be selected for the particular application with the best parameters for 

reducing the vibration response of the primary system for the specified excitation levels.  
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Chapter 6   

Conclusions and Recommendations  

 

6.1   Conclusions 

Many researchers are interested in and have investigated the nonlinear vibration absorber. This 

thesis has been concerned with the way in which nonlinearity produced by the nonlinear 

absorber stiffness can be put to good use in a vibration absorber. The reasons for the preference 

of this passive approach are to be found in the cost, simplicity and reliability of this type of 

absorbers. The effect of the nonlinear vibration absorber parameters on the vibration response 

was investigated. The results of this research are summarized in the following. 

 

For harmonic excitation 

 The approximate analytical expressions (HBM method) which describe the behaviour 

for different parameters of nonlinear absorber under harmonic excitation have been 

derived. The relationship between the bifurcation curves and the frequency response 

curves was investigated. In addition, the stability characteristics of the periodic steady 

state solution were analyzed by Floquet theory. 

 

 There are some values of the parameters, e.g. for the nonlinear stiffness, for which 

harmonic responses do not occur for harmonic excitation. These limits have been 

explored and quantified. Where the response is non harmonic, the analysis has produced 

a Fourier series or transform representation of the response time histories where 

appropriate. The frequency response curves which need to identify the range of 

corresponding frequencies for non-harmonic response. 

 

 The nonlinear absorber has a much wider effective bandwidth compared to a 

conventional linear absorber. Compared to the linear absorber, the nonlinearity has the 

effect of shifting the second resonance peak to a higher frequency away from the 

effective tuned frequency, improving the robustness of the device to mistune. For the 
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linear absorber this can be achieved by adding mass to the absorber, so in some way the 

nonlinearity has the same beneficial effect as adding to the absorber mass. 

 

 The lower the damping in the nonlinear absorber, the effective bandwidth is slightly 

increased compared to the linear absorber with the same level of damping. However, 

larger damping in the nonlinear absorber generally produces a wider frequency 

vibration reduction bandwidth compared to the linear absorber. When damping in the 

nonlinear absorber is further increased above a certain value though, there appears to be 

no effective vibration bandwidth. In engineering applications, it is desirable to have a 

large vibration reduction bandwidth, so that the damping in the absorber needs to be 

quite small. 

 

 For larger absorber to primary system mass ratios, the vibration reduction bandwidth for 

the nonlinear absorber is not significantly different than that for a linear absorber. The 

linear absorber can also produce a broader vibration reduction bandwidth by adding 

mass to the absorber. 

 

 The nonlinear absorber has a slightly wider vibration reduction bandwidth compared to 

the linear case for the same effective tuned frequency for the same mass ratio and 

damping. 

 

 For a hardening stiffness nonlinear absorber design, the limitation on the value of the 

nonlinear stiffness parameter should be identified first. In order to produce an effective 

vibration bandwidth, the limitation on the value of the damping and the mass were 

determined. The larger the damping and the heavier the mass in the nonlinear absorber, 

a much wider effective vibration bandwidth will be produced compared to using a linear 

absorber with the same damping and mass levels. 

 

For random excitation 

 The simulations and subsequent statistical and frequency analysis were conducted for 

the nonlinear absorber. Dependent upon the level of nonlinearity and the amplitude of 
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the random input force applied to the primary system, the nonlinear absorber can 

produce a nonlinear behaviour. This can result in a higher vibration response of the 

primary system compared to that produced when using a linear absorber.  

 

 For a low nonlinear stiffness, the nonlinear absorber produces the same mean square 

primary system displacement compared to a linear absorber case. For a high nonlinear 

stiffness, the nonlinear absorber has a higher mean square primary system displacement 

compared to a linear absorber. The use of a high stiffness nonlinearity does not improve 

the vibration reduction compared to the linear absorber case. 

 

 As the damping in the nonlinear absorber is increased, the mean square primary system 

displacement is higher than when using a conventional linear absorber. 

 

 For a nonlinear absorber with a low mass ratio, a higher mean square primary system 

displacement occurs compared to using a linear absorber with the same level of mass. 

On increasing the mass ratio then the mean square of primary system displacement 

using the nonlinear absorber will reduce and eventually is similar to using a linear 

absorber. The higher mass ratios actually result in a smaller nonlinear 

nondimensional  stiffness as it is defined. When the nonlinear stiffness is higher, the 

nonlinear absorber again produces a higher mean square primary system displacement 

compared to the behaviour using a linear absorber with the same levels of linear 

stiffness and mass. 

 

 Based on the NDVA parameters, for some range of the parameters, the nonlinear 

absorber under random excitation produces undesirable levels for the mean square 

primary system displacement compared to using a linear absorber. This means that the 

nonlinear absorber still needs to be selected for the particular application with the best 

parameters for reducing the vibration response of the primary or main system.  
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Measurements  

 For comparison of measurements and HBM predictions, there was good agreement in 

frequency responses for the low force amplitude test. For the high force amplitude test, 

the frequency responses were not similar. In this latter scenario, the first resonance and 

effective tuned frequencies of the primary system presented large differences between 

measurements and HBM predictions. The reason for this could be possibly due to the 

stiffness parameter of the absorber was changed. It is suspected to be that the geometry 

of the thin plate being bolted on the circular ring for different tensions and material 

properties of the thin plate are affected by environmental factors such as temperature 

change. The NDVA measured results did not produce a much wider effective vibration 

reduction bandwidth compared to the predicted bandwidth. One reason found is that the 

harmonic response at the excitation frequency could not be achieved for some 

frequency ranges. Other harmonics contribute to the response, so that the HBM 

expression is not sufficiently accurate around these frequencies. In addition, the force 

excitation time histories were not purely harmonic and showed some variation. This 

unexpected feature will affect the response of the entire system. In order to minimize 

the effect of the practical system dynamics on the applied excitation system, a control 

system is required to ensure a harmonic input in future tests. 

 

 For random excitation, the corresponding nonlinear response of the system is presented 

in the frequency domain. The response PSD is shown to possess a shift and broadening 

of the frequency content. However, the mean square response only provides an overall 

single value and measure of the response. In order to understand the variation or 

changes in the response by statistical analysis, the probability density function of the 

response time histories could be used in the future. In the low force amplitude test, the 

measurement results produced good agreement with numerical predictions. For the high 

force amplitude test, the measurement results did not produce similar results compared 

to the predictions. In this latter scenario, for comparison of the mean square primary 

system acceleration showed that the predictions were higher than measured results. The 

first resonance, effective tuned and second resonance frequencies of the primary system 

show some  differences compared to the numerical predictions. A reason could be due 

to the stiffness parameter of the absorber which might change due to the geometry of 

the thin plate on the tensions varying due to environmental factors, such as temperature 

changes and expansion. For a range of parameters of the nonlinear absorber, the primary 
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system response did not show any advantage for increased input magnitudes. This 

means that the nonlinear absorber still needs to be selected, for the particular application, 

with the best parameters for reducing the vibration response of the primary system.  

 

6.2   Recommendations for Future Work 

The research presented in this thesis has improved the understanding of the characteristics and 

effects of the NDVA and its physical parameters on the vibration reduction. Experimental 

validation has also taken place. This study has also highlighted several issues discussed below 

which are thought to be worthy of further study: 

 

For harmonic excitation 

1. The numerical results for the vibration reduction bandwidth and effective tuned 

frequency have been obtained in previous studies. However, the mathematical 

expressions for the vibration reduction bandwidth and effective tuned frequency have 

not been investigated. A recommendation is to determine the effect of NVDA 

parameters on the vibration reduction bandwidth and effective tuned frequency with, if 

possible, analytical expressions. 

 

2. For the primary system with attached nonlinear absorber, the jump-up and jump-down 

frequencies produce a sudden (discontinuous) change of the amplitude of the system 

response. The frequencies at which these jumps occur depend upon whether the 

frequency is increasing or decreasing. An approximate analytical approach in the 

determination of the jump-up and jump-down frequencies and the corresponding 

vibration amplitudes of the NDVA could be considered.  

 

For random excitation 

3. In Chapter 4, a numerical technique have been presented to investigate the dynamic 

behaviour of nonlinear vibration absorber. However, an approximate analytical 

expressions of nonlinear system for mean square response under random excitation has 

not been studied.  
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Measurements 

 The nonlinear absorber system was designed to tune the nonlinear stiffness and change 

the mass of the absorber. However, the nonlinear absorber was not designed so that 

tuning the damping in the absorber is possible. Further research could be carried out on 

this issue. 
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Appendix A 

 

 

Stability analysis for the  

periodic solutions 

 

 

 

 
 

The equations of motion in non-dimensional form are given by (2.8a,b) 

(1+ ) 2 cos( )s s s sy y y w                                                                                (A1a,b)              

2 3

0 02 sw w w w y         

The stability of the calculated periodic solutions ( )sy   and ( )w   given by equations (2.9a,b) 

is calculated by applying Floquet theory [65, 81, 82]. The first perturbation of the periodic 

solutions 
0

( ) Y ( )s sy    and 
01( ) ( )w W   are given by introducing the small perturbations 

( )s   and ( )    

0
( ) Y ( ) ( )s s sy                                                                                                            (A2a,b) 

01( ) ( ) ( )w W                                       

Substituting equations (A2a,b) into equations (A1a,b) and taking the linear terms for the 

perturbations ( )s   and ( )   one obtains 

(1+ ) 2 0s s s s                                                                                            (A3a,b)                                          

0

2 2

0 0 12 3 sW              
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According to Floquet theory, equations (A3a,b) possess solutions of the form 

( )= ( )s se u   , ( )= ( )e u                                                                                          (A4a,b) 

where ( )su   and ( )u   are periodic functions with period T 2  , which is the period of 

0
Y ( )s   and 

01 ( )W   and   is the eigenvalue. The stability depends upon the real parts of the 

egienvalues   being negative. 

 

Time derivatives of equations (A4a,b) yields  

= +s s se u e u    , = u+e e u                                                                                      (A5a,b) 

2= +2s s s se u e u e u       , 
2= +2e u e u e u                                                  

(A6a,b) 

Substituting Equations (A4a,b)-(A6a,b) into Equations (A3a,b) gives 

   2

2

(1+ ) 2 (1+ )+2 1 2 (1+ )

                                                                        2 0

s s s s su u u

u u u

       

  

    

    
          

   
0

2

2 2 2

0 0 0 1

2

                  + 2 +2 2 +3 0

s s su u u

u u W u

 

      

   

     
                                     

                                                                                                                                              (A7a,b) 

In order to solve equations (A7a,b) a Fourier series expansion of ( )su   and ( )u   are expanded 

which produces 

1 2( ) cos( ) sin( )su p p                                                                                         (A8a,b)                                                                                 

1 2( ) cos( ) sin( )u q q       

where 
1 2 1 2,  ,  ,  p p q q  are the Fourier coefficient of the first order expansion 

 

Time derivatives of equations (A8a,b) yields  

1 2( ) ( sin( ) cos( ))su p p         , 
1 2( ) ( sin( ) cos( ))u q q             (A9a,b)                                                                                                                                                       

2

1 2( ) ( cos( ) sin( ))su p p         , 2

1 2( ) ( cos( ) sin( ))u q q        
       

                                                                                                                                            
(A10a,b)       

Substituting equations  (A8a,b)- (A10a,b) into equations (A7a,b) and equating the coefficient of 

each harmonic on both sides gives 

   

   

2 2

1 2 1

2 2

1 2 1

2 2

2 1 2

2 2

2 1 2

(1+ ) 2 (1+ )+2 + 1 2 (1+ )
cos( )+

+ 2

(1+ ) 2 (1+ )+2 + 1 2 (1+ )
               sin ( )=0

+ +2

s s

s s

p p p

q q q

p p p

q q q

       


  

       


  

      
 

     

      
 

    
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   

   

0

0

2 2

1 2 1

2 2 2 2

1 0 2 0 0 1 1

2 2

2 1 2

2 2 2 2

2 0 1 0 0 1 2

+ 2
cos( )

2 +2 + 2 +3

+ +2
               sin ( )=0

2 +2 + 2 +3

p p p

q q W q

p p p

q q W q

 


      

 


      

    
   
     
 

   
  
     
 

             

                                                                                                                                            (A11a,b) 

Equations (A11a,b) are multiplied by the terms cos( )  and sin( )  separately and 

integrated. Then, a system of linear homogeneous algebraic equations relating the coefficients 

1 2 1 2,  ,  ,  p p q q  and   are obtained  

   2 2 2 2

1 2 1 2(1+ ) 1 2 (1+ ) 2 (1+ )+2 +( ) 2 =0s sp p q q                      

   2 2 2 2

1 2 1 22 (1+ )+2 + (1+ ) 1 2 (1+ ) +2 +( ) 0s sp p q q                      

   
0

2 2 2 2 2 2

1 2 0 0 1 1 0 2( ) 2 + 2 +3 2 +2 =0 p p W q q                  

   
0

2 2 2 2 2 2

1 2 0 1 0 0 1 22 +( ) 2 +2 + 2 +3 =0p p q W q                 

    (A12a,b,c,d) 

Equation (A12a,b,c,d) is the form of matrix 

1 2 3 4 1

2 1 4 3 2

3 4 5 6 1

4 3 6 5 2

0

A A A A p

A A A A p

A A A A q

A A A A q

 

 

   
   
    

   
   

   

                                                                                 (A13)                                             

where 

 2 2 2 2

1 2 3 4A (1+ ) 2 (1+ ) 1, A 2 (1+ )+ , A , A 2s s                   

 
0

2 2 2 2

5 0 0 1 6 0A 2 +3 , A 2 +2W             

 

Substituting for 
0,  ,  ,  ,  s      and 

0

2

1W  values into 
1A  to 

6  A in equation (A13). Then, the 

determinant of the coefficient matrix of this system is set equal to zero, i.e. 

1 2 3 4

2 1 4 3

3 4 5 6

4 3 6 5

0

A A A A

A A A A

A A A A

A A A A

 

 










                                                                                             (A14)                                                          

A governing equation for the values of are given by   of equation (A15) can then be obtained 
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8 7 6 5 4 3 2

8 7 6 5 4 3 2 1 0 0B B B B B B B B B                                                     (A15)                        

The actual numerical values of   result in two possible scenarios, namely that the system is 

either stable or unstable. If all of the eigenvalues   lie in the left half of the complex plane,  i.e. 

the real parts of   are negative, then the periodic solution is stable. Otherwise, it is unstable if 

any eigenvalues lie in the right half plane. 
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Appendix B 

 

Design of the nonlinear  

vibration absorber 

 

 

 

Figure B.1. Schematic diagram of the nonlinear vibration absorber for the actual rig 

manufactured. The support frame structure and the shim are made of aluminium and brass, 

respectively. 
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